
Multimodal Speech Interfaces

for Map-based Applications

by

Sean Liu

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

c© Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 21, 2010

Certified by. .
James R. Glass

Principal Research Scientist
Thesis Supervisor

Certified by. .
Stephanie Seneff

Principal Research Scientist
Thesis Supervisor

Certified by. .
Alexander Gruenstein

Software Engineer, Google
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Multimodal Speech Interfaces

for Map-based Applications

by

Sean Liu

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2010

In partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents the development of multimodal speech interfaces for mobile and
vehicle systems. Multimodal interfaces have been shown to increase input efficiency
in comparison with their purely speech or text-based counterparts. To date, much of
the existing work has focused on desktop or large tablet-sized devices. The advent of
the smartphone and its ability to handle both speech and touch inputs in combination
with a screen display has created a compelling opportunity for deploying multimodal
systems on smaller-sized devices.

We introduce a multimodal user interface designed for mobile and vehicle devices,
and system enhancements for a dynamically expandable point-of-interest database.
The mobile system is evaluated using Amazon Mechanical Turk and the vehicle-
based system is analyzed through in-lab usability studies. Our experiments show
encouraging results for multimodal speech adoption.

Thesis Supervisor: James R. Glass
Title: Principal Research Scientist

Thesis Supervisor: Stephanie Seneff
Title: Principal Research Scientist

Thesis Supervisor: Alexander Gruenstein
Title: Software Engineer, Google

3

4

Acknowledgments

First I’d like to thank Jim Glass. Jim has been a phenomenal advisor throughout

my entire four years at MIT. He was willing to support me even as a freshman, and

each year he has graciously allowed me to continue researching with the group. An

advocate for me inside and outside the lab, Jim has given me the flexiblity and en-

couragement to pursue personally meaningful projects for an unforgettable experience

at MIT.

It has also been a pleasure working with Stephanie Seneff. She has been gracious

and patient in teaching me the details of the dialogue system and in helping me aug-

ment its features. From fixing cryptic seg faults to outdated grammar files, Stephanie

has been invaluable in traversing the many roadblocks, bringing her smiles the entire

way.

None of this work would have been possible without Alex Gruenstein, who has

been an extraordinary mentor. I came to Alex as a freshman with few skills and

experiences, but he was willing to take me on as an undergraduate researcher. He has

devoted countless hours to craft manageable and meaningful research opportunities,

and even after graduating has continued to offer his guidance. This thesis builds

on his previous work, and I am grateful for inheriting his remarkable City Browser

system.

A huge thank you goes to Ian McGraw who, along with Alex, developed WAMI

and has been extremly helpful in making modifications to the City Browser system.

Ian pioneered the group’s work with Amazon Mechanical Turk and has been generous

in sharing the tools that he developed along with his insights. Thanks also goes to

Chiaying Lee, who was instrumental in getting the transcription engine running.

The work on vehicle systems is the result of Jeff Zabel’s tireless support. He

made it possible to obtain the vehicle system and explore interfaces on speech-based

navigation systems. I am grateful for having had the opportunity to work with Jeff

and other BMW associates as an intern at the BMW Technology Office, experiencing

first-hand the efforts that go into developing autombile systems.

5

The vehicle interface usability data was the effort of collaborators at the Age Lab.

Special thanks go to Jarrod Orszulak, Bryan Reimer, and Shannon Roberts.

The many coding obstacles would not have been crossed without Scott Cyphers,

who delved into the code and helped me resolve numerous errors and library refer-

encing challenges. Lee Hetherington was also instrumental in integrating dynamic

updates for the recognizer system.

Thanks to the other friends, students, and staff of SLS including JingJing Liu,

Ibrahim Badr, Stephen Shum, Yushi Xu, Yaodong Zhang, and Marcia Davidson for

all their endless encouragement.

This research is funded in part by the T-Party project, a joint research program

between MIT and Quanta Computer Inc., Taiwan.

6

Contents

1 Introduction 15

1.1 Challenges of Mobile Interface Design 16

1.2 Multimodal Interfaces for Mobile Devices 16

1.3 Handling Widespread Populations . 18

1.4 Efficient User Studies . 18

1.5 Thesis Outline . 18

2 Background 19

2.1 Related Multimodal Speech Interfaces 19

2.2 The City Browser System . 20

2.2.1 Web-Accessible Multimodal Interface Framework 20

2.2.2 Speech recognizer . 21

2.2.3 Language Understanding Components 22

2.2.4 Database Content . 22

2.2.5 Previous Evaluation . 23

2.3 Chapter Summary . 23

3 User Interface Design 25

3.1 An Extensible Layout Framework . 25

3.1.1 Separating Client and Server Code 26

3.1.2 Isolating Device-specific Implementations 27

3.2 Multimodal Input Mechanisms . 28

3.2.1 WAMI iPhone Application . 28

7

3.3 Graphical Layout for Mobile Devices 28

3.4 Future Work . 31

4 Mechanism for On-Demand Dynamic Content 33

4.1 Dynamic POI Content Generation . 34

4.1.1 Online Content Using the Yelp API 34

4.2 On-the-fly Recognizer Vocabulary Updates 37

4.3 Dynamic Inputs in the User Interface 38

4.4 Future Work . 39

5 Amazon Mechanical Turk Experiments 41

5.1 Background on Amazon Mechanical Turk 42

5.2 Collecting User Interactions with City Browser 42

5.2.1 Generating Task Scenarios . 43

5.2.2 Embedding Into the Mechanical Turk Interface 43

5.2.3 Transcribing the Audio . 44

5.2.4 Usage Statistics . 45

5.3 Retraining Language Models with Turk Data 47

5.3.1 Class n-gram Language Model 48

5.3.2 Collecting Sample Queries . 49

5.3.3 Tagging Point-of-Interest Types 50

5.3.4 Language Model Experiments 51

5.3.5 Discussion . 53

5.4 Chapter Summary . 54

6 Vehicle-based Multimodal Interfaces 55

6.1 System Components . 56

6.1.1 Input Controls . 56

6.2 Evolution of the Interface . 57

6.2.1 Second Interface Iteration . 58

6.2.2 Third Interface Iteration . 58

8

6.3 Vehicle Interface Usability Study . 60

6.4 Chapter Summary . 63

7 Conclusion 65

7.1 Future System Improvements . 66

7.2 Expanding to Additional Device Interfaces 67

7.3 Final Words . 67

A Vehicle Usability Study Tasks 69

9

10

List of Figures

1-1 The desktop and tablet version of City Browser (top-left) juxtaposed

with the redesigned mobile (top-right) and vehicle (bottom) versions

of the interface. 17

2-1 A screenshot of the City Browser interface. Here the user is asking for

restaurants near Logan Square. 21

2-2 City Browser ’s Architecture (reproduction of Figure 5 in [11]). Shaded

boxes represent components provided by the WAMI toolkit. 22

3-1 A screenshot of the original City Browser interface, developed in [9]. . 26

3-2 A screenshot of the latest City Browser interface. 27

3-3 A screenshot of City Browser scaled to a mobile device screen. 29

3-4 Screenshots of the City Browser mobile system. The left-most screen-

shot shows the results list after asking for “Italian restaurants in Cam-

bridge”. The middle screenshot shows the map results. The right-most

screenshot shows the help suggestions with sample queries. 30

3-5 Streaming recognition results. As the user speaks to the system, the

recognition results (shown in blue) are streamed immediately to the

screen. Here the user is speaking, “Show me cheap Italian restaurants

in Cambridge that are high quality.” 31

4-1 An example JSON result returned by querying the Yelp API for hotels

in Cambridge. 35

11

4-2 An example database frame created from the Yelp JSON result for

hotels in Cambridge. 36

4-3 The user interface showcasing the ability to arbitrarily enter a metro

region to the system. 39

5-1 Four example scenarios generated by AMT workers. 43

5-2 A screenshot of the Mechanical Turk interface of City Browser. 44

5-3 A sample interaction between a user and the City Browser system. U

indicates the user, and S indicates the system. 45

5-4 The Mechanical Turk HIT for transcribing audio. 45

5-5 The average utterance length in a session versus the number of utter-

ances in the session. Overlayed is the line of best fit. 46

5-6 The number of correct and incorrect responses by the number of word

errors in the utterance. 47

5-7 The Mechanical Turk HIT used to collect queries. 50

6-1 Vehicle System Configuration. One laptop acts as the language under-

standing processor, while the other interfaces with the vehicle. 56

6-2 The interior control panel of the vehicle. (a) steering wheel buttons,

(b) navigation display, and (c) center console iDrive and buttons. . . 57

6-3 Iteration 1 of the City Browser vehicle interface. 58

6-4 Iteration 2 of the City Browser vehicle interface. This iteration includes

speech suggestions and map control icons. 60

6-5 The BMW interface. 61

6-6 Iteration 3 of the City Browser vehicle interface. Clockwise from top

left: the screen shown when the vehicle starts, the map results, speech

suggestions, and detailed result information. This iteration also in-

cludes map control icons located on the circular iDrive symbol on the

edge of each pane. 61

6-7 Two example tasks given to participants in the vehicle interface usabil-

ity study. 62

12

List of Tables

3.1 Device-Specific View Methods . 28

5.1 Word Error Rates of the City Browser Corpora [12] 51

5.2 Language Model Experiments Word Error Rates. The CB corpus

consists of 2,163 transcribed utterances from recorded user interac-

tions with the previous City Browser system. The templates are

20,000 sample sentences generated from manually created template

files. Templates(partial) represents 1,000 randomly selected sentences

from the complete 20,000 set. The AMT dev set consists of the 291

transcribed interactions from AMT, held out from the test set. The

AMT text represents the 1,000 tagged text input queries. 52

6.1 Vehicle Input Keys . 57

6.2 Iteration 1 Vehicle Input Key Mapping 59

A.1 Tasks used in the pilot usability study of the vehicle-based City Browser

system, reproduction of Table 4.3 in [9]. 70

13

14

Chapter 1

Introduction

The advent of the smartphone has sparked the exploration of multimodal systems for

mobile devices. These devices offer a rich combination of speech, graphics, and touch

inputs, which together enable compelling user interfaces.

Researchers are exploring the use of speech recognition in combination with tradi-

tional input mechanisms to create multimodal interfaces. These interfaces have been

reshaping traditional interaction paradigms, evolving from simple keyword searching

to conversational dialogue. However, the vast majority of these multimodal appli-

cations are designed for desktop and tablet devices. Though speech is particularly

promising for phone-sized mobile devices, the interfaces presented in related literature

have difficulty scaling to the smaller screens and limited inputs of mobile and vehicle

systems.

This thesis explores the development of multimodal systems specifically built for

mobile devices. We present a redesigned MIT City Browser 1 interface sized both

for an iPhone and for an automobile navigation system, with additional back-end

augmentations for adding new interfaces and growing the point-of-interest database.

We report the results of online user testing and in-vehicle usability experiments to

show the potential for multimodal speech interfaces on mobile devices.

1A system previously designed in [9] which allows users to query for local points-of-interest using
speech and manual inputs.

15

1.1 Challenges of Mobile Interface Design

Mobile devices present a number of user interface design challenges [4]. First, the

smaller screen size heavily constrains the amount of displayable information [1]. Ap-

plications such as City Browser, which are built for desktop and tablet computers,

have a large number of features for rich functionality. The challenge of building a

mobile interface is retaining functionality without sacrificing usability.

Second, users expect mobile devices to be aware of physical context, since they take

devices with them into a wide range of environments [27]. Users take for granted the

ability to reference locations and objects relative to their position, such as requesting

directions from “here” to “there”. This challenge is an important consideration in

redesigning desktop interfaces, which generally are geared toward stationary usage.

Third, phone-sized devices have limited input controls. Both the number and size

of input keys are restricted by the device’s physical dimensions. While desktop ap-

plications can expect input from keyboards and pointing devices, mobile smartphone

systems are constrained by fewer controls.

Fourth, given the ubiquity of mobile devices, mobile users comprise a widespread

population. Systems should be able to handle the diverse input queries which reflect

the varying use cases, experiences, and personal backgrounds of users.

Finally, users multitask with their mobile devices, such as while traveling or in

between conversations. This interaction method presents the challenge of task inter-

ruption and decreased user attention.

1.2 Multimodal Interfaces for Mobile Devices

Speech is compelling in its potential to address mobile interface challenges. Speech

recognition capability enhances learnability and is unconstrained by the limited man-

ual controls. For instance, in the Speech Dasher system developed in [31], speech

was shown to nearly double the input rate when compared to manual entry. In map-

based systems, multimodality showed task completion speed-ups of 10%, outperform-

16

Figure 1-1: The desktop and tablet version of City Browser (top-left) juxtaposed
with the redesigned mobile (top-right) and vehicle (bottom) versions of the interface.

ing both pure manual and pure speech systems [24]. Combined with natural language

understanding, speech pushes interfaces toward effortless conversational interaction.

Many of the existing multimodal interfaces are built for either desktop usage or

larger tablet-sized mobile devices. For example, Figure 1-1 shows the original City

Browser interface, which presents rich information content and controls for desktop

web browsers. However, these interfaces are difficult to use when simply scaled down

to phone-sized mobile devices, as the screen real estate cannot support the application

content. In this work, we present re-designed interfaces of the City Browser system,

which retain functionality while scaling to the small screen sizes.

17

1.3 Handling Widespread Populations

One step toward handling widespread user populations is ensuring database coverage

for the multitude of potential user queries. The desktop version of City Browser uti-

lizes a pre-generated database of points-of-interest (POIs) scraped from the Internet.

This method presents the challenge of keeping the data up-to-date and expanding the

POI coverage to new cities, as the web-scraping scripts must be constantly adapted

to the changing source web pages. In this thesis, we explore an alternative method of

accessing online content on-demand through search APIs. This offers the benefit of

automatically expanding the database when necessary and leveraging the data kept

current by online providers.

1.4 Efficient User Studies

Traditional methods of evaluating systems have focused on in-lab studies or individ-

ually reaching out to potential participants. These methods of soliciting participants

have high associated time and labor costs. The advent of Amazon Mechanical Turk

(AMT) has enabled new methods of rapidly collecting user feedback. Developers can

post tasks through the AMT service, which distributes the requests to a large net-

work of workers. We use AMT as a method for evaluating our interface and efficiently

collecting feedback to iterate and improve the system.

1.5 Thesis Outline

This thesis is presented as follows: Chapter 2 reviews related work; Chapter 3 dis-

cusses the interface framework and development for mobile devices; Chapter 4 reviews

system augmentation to enable on-demand content generation; Chapter 5 explains ex-

perimentation and evaluation of the mobile interface; Chapter 6 introduces our vehicle

system; and Chapter 7 provides a conclusion and future research direction.

18

Chapter 2

Background

This chapter highlights related work on multimodal mobile interfaces. We then in-

troduce the City Browser system architecture and previous work.

2.1 Related Multimodal Speech Interfaces

A number of multimodal mobile interfaces have been created by the community.

TravelMan, developed at the University of Tampere, Finland is a multimodal mobile

route guidance system [29]. It provides transport information services for buses,

metro, and the tram. The system both presents route information and helps plan the

journey. The interface displays its graphical information through text, though future

aims are to incorporate map interaction.

AT&T’s MATCH (Multimodal Access to City Help) system [16] is a mobile in-

terface for the Fujitsu PDA, which is a type of tablet device. The system provides

information regarding restaurants, local attractions, and travel. The interface allows

for both speech input and pen-based gestures. Overall, the system closely resembles

the City Browser system, although the accessed database is smaller in MATCH.

Similarly, Google has built a large-vocabulary automatic speech recognition sys-

tem to interface with their search engine [7] and other services. Other companies,

such as Microsoft, VLingo, and Dragon, have deployed applications which similarly

showcase the growing trend of integrating speech recognition technologies into mobile

19

devices.

The MIT Spoken Language Systems group has also explored multimodal mobile

interfaces in other domains beyond City Browser. For instance, one project built a

music player interface, in which users could use speech to query and play their music

library. Similarly, the group developed an entertainment system for playing TV and

videoclips in which a mobile device served as the control [10].

One challenge of mobile applications that extends beyond the interface is designing

for widespread populations [25]. Users come from diverse backgrounds and bring

differing experiences and expectations. One piece of this challenge addressed in our

work on City Browser is dynamically augmenting the database when confronted with

user requests in metro regions not in the database. Similar work leveraging third-

party content providers has been done by AT&T, in a prototype voice local search

system [5]. This system uses automatic speech recognition for parsing user queries,

and then extracts search terms to query an online YellowPages search service. City

Browser follows suit, but builds the database on the fly, trading off between querying

capabilities and requiring a database in advance.

2.2 The City Browser System

The work in this thesis builds on the City Browser system, developed in [9]. City

Browser was one of the first widely-available web-based multimodal applications. The

system allows users to query for local points-of-interest (POIs), such as restaurants,

hotels, and museums. Users can interact with the system through natural spoken

language in addition to mouse and pen gestures. The system served as a proof-of-

concept for enriching web application interaction with speech capability. A screenshot

of the interface is shown in Figure 2-1.

2.2.1 Web-Accessible Multimodal Interface Framework

City Browser is built with the Web-Accessible Multimodal Interfaces (WAMI) toolkit

[9]. WAMI provides the skeleton to attach speech recognizer, synthesizer, and lan-

20

Figure 2-1: A screenshot of the City Browser interface. Here the user is asking for
restaurants near Logan Square.

guage understanding servers. The MIT Spoken Language Systems group also hosts

a WAMI server and recognizer, allowing developers to similarly integrate speech into

their web applications through a Javascript API.

The City Browser architecture uses a customized WAMI architecture, shown in

Figure 2-2. The shaded, gray boxes represent components provided by the default

WAMI toolkit. The other components, such as the natural language processing server,

were built specifically for the map-based city browsing domain.

2.2.2 Speech recognizer

The WAMI framework passes on spoken utterances from the client to the speech

recognizer, SUMMIT [8], developed by the Spoken Language Systems Group (SLS).

Of particular relevance to this project is SUMMIT’s ability to dynamically swap out

vocabulary sets for proper nouns [15]. For instance, while a user is browsing the city

of Boston, the name recognition for local points-of-interest (POIs) is limited to the

21

Browser

GUI Controller
(javascript)

Web Server

Audio Controller
(Java applet)

Speech
Recognizer

Speech
Synthesizer

Logger

Server

Core GUI
(html/javascript)

Context‐Sensitive
Language Model

NL Parser
Google Maps

API Context & Gesture
Resolver

NL Generator

Dialogue Manager

Suggestions
Generator

POIs Geography

Map‐Based GUI

Confidence
Annotator

Multimodal
Corrections Driver

Figure 2-2: City Browser ’s Architecture (reproduction of Figure 5 in [11]). Shaded
boxes represent components provided by the WAMI toolkit.

Boston metro region. The SUMMIT recognizer outputs the text transcription of the

utterance, with the proper nouns labeled by class.

2.2.3 Language Understanding Components

The speech recognizer output and GUI manipulations by the user are passed to the

language understanding services. The natural language parser converts the text to

an intermediate parsed state, and context resolution and dialogue management is

performed to resolve semantic meaning. Once the user’s intention is parsed, the

system performs a database lookup. The relevant results are returned back to the

user interface through the WAMI components.

2.2.4 Database Content

The POI database content for City Browser is scraped from the online city guide,

Citysearch1. To add to the database requires updating the web-scraping scripts in

order to reflect the Citysearch website updates. Our POI database was last updated in

1http://www.citysearch.com

22

2007, highlighting the challenges of keeping the content current. Chapter 4 highlights

work on developing dynamically expandable databases, pulling content from online

seach APIs.

2.2.5 Previous Evaluation

The City Browser desktop and tablet systems were previously evaluted by contacting

participants individually and offering gift certificates for online user studies. This

process was both challenging and time consuming, requiring reaching out to poten-

tial participants and then manually transcribing the interactions. In Chapter 5, we

showcase the speed-ups in user evaluation from using Amazon Mechanical Turk.

2.3 Chapter Summary

This chapter highlighted a number of parallel efforts in building speech mobile inter-

faces, demonstrating the increasing prevalence of speech interaction mechanisms. The

remainder of this thesis focuses on the work involved in redesigning and augmenting

the City Browser system for mobile and vehicle devices, as well as its expansion to

interface directly with web-based databases. We will also describe a user study based

on Amazon Mechanical Turk, which allows for the widespread and rapid solicitation

of user feedback.

23

24

Chapter 3

User Interface Design

One focus of this project has been developing a mobile interface for the City Browser

system. The mobile interface builds off the City Browser desktop and tablet interfaces

[9], shown in Figure 3-1. In this chapter we first present the creation of a framework for

adding user interface designs to the system. Second, we discuss the mobile interface

input mechanisms and challenges to designing for small screens. Finally, we give an

overview of the mobile City Browser interface.

3.1 An Extensible Layout Framework

One step toward achieving wide-spread use of the City Browser system is supporting

multiple devices: desktop, tablet, vehicle, and mobile. As additional devices with

new screen sizes and input mechanisms are released, we hope to continue the effort

of developing interfaces customized for these devices. To facilitate development, we

created a framework for easily adding interfaces to the City Browser system. In this

chapter, we will discuss using this framework for creating a mobile interface. The

vehicle interface is discussed in Chapter 6.

25

Figure 3-1: A screenshot of the original City Browser interface, developed in [9].

3.1.1 Separating Client and Server Code

The City Browser user interface implementation in [11] was closely linked with the

server-side code. This was primarily due to server-side requirements for embedding

audio recording applets in the interface. The latest version of the Web-Accessible

Multimodal Interfaces (WAMI) toolkit1, however, allows for a clean separation be-

tween the server-side speech handling and the client-side interface. The interface was

re-implemented for this client/server separation, as well as upgraded in look and feel.

Specifically, we expanded the screen real-estate dedicated to the map, condensed con-

trols into the left column, and added details for each of the results list entries. The

new desktop interface is shown in Figure 3-2. It should be noted that the desktop

interface also doubles as the tablet interface. Given the large screen on tablet ma-

chines and the fine control of tablet pens, the desktop layout is naturally extendable

to these devices.

1http://wami.csail.mit.edu/

26

Good Italian restaurants Cambridge

Figure 3-2: A screenshot of the latest City Browser interface.

3.1.2 Isolating Device-specific Implementations

We modularize the client-side code into generic methods and device-specific methods.

For instance, code needed to parse point-of-interest (POI) results from the server is

standard to all the interface implementations, whereas the layout controls are device-

specific.

We allow the device-specific views to be interchanged by requiring that the view

modules implement an interface. Each implementation is required to have the meth-

ods listed in Table 3.1, which provide controls for loading the layout, adding device-

specific listeners, and handling server responses. Additionally, a Cascading Style

Sheets (CSS) design file can be specified to completely redesign the look of the inter-

face.

Which view to load is specified through a parameter passed in via the URL. The

main system then loads the appropriate view’s files based on this parameter. A new

interface design can be added by extending the loading switch function and specifying

new Javascript control and CSS design files.

27

Method Purpose

loadLayout Called when the device has finished loading the interface.
handleDeviceReady Called when the WAMI audio applet has finished loading.
showSuggestions Called when the system wants to display the suggestions.
showResults Called when the system wants to display POI results.
handleDeviceMessage Called when the server returns a message.

Table 3.1: Device-Specific View Methods

3.2 Multimodal Input Mechanisms

In mobile devices, the primary input mechanism for manipulating the graphical user

interface is touch. Touch imposes several constraints: buttons should be at least

22mm in width [19] and the interface should not require too much panning and

zooming to view [14]. To take advantage of the multi-touch functionality of the map,

we defer to the Google Maps API2, which allows multi-touch zoom and panning.

3.2.1 WAMI iPhone Application

For a user to load City Browser on their iPhone, they must view the site through

the WAMI iPhone application. The WAMI iPhone application3 handles the speech

recording on the mobile device, which is otherwise unsupported in the default iPhone

browser. The application is essentially a web browser with added speech recording

functionality. When a WAMI web-application is loaded by the WAMI browser, the

web-application’s reference calls to the WAMI API also load a “Hold to Talk” button

at the bottom of the application.

3.3 Graphical Layout for Mobile Devices

Since the City Browser system was originally designed for desktop and tablet devices,

it had no corresponding mobile interface. Loading the system in a mobile device’s

web browser simply presented a scaled version of the page, as shown in Figure 3-3.

2http://code.google.com/apis/maps/
3http://wami.csail.mit.edu/mobile.php

28

Figure 3-3: A screenshot of City Browser scaled to a mobile device screen.

In designing a mobile user interface, we followed the W3’s Mobile Web Best Prac-

tices4. To fit all the City Browser functionality into the screen dimensions (320px

by 370px5), we divide the conceptual pieces of the interface into widgets: application

navigation, map control, recognition results, and help suggestions, as shown in Fig-

ure 3-4. Much of this organization was based on our previous work on vehicle-based

interfaces [12]. A persistent menu of buttons at the top of the screen serves as the

application navigation, allowing users to toggle between the other widgets.

When the user first accesses the application, they are greeted with the map-pane

in focus, as shown in the middle screenshot of Figure 3-4. After a query is spoken

to the system, the interface automatically toggles to the results list. If the system

fails to understand multiple utterances in succession, then the suggestions screen is

shown. All other toggling between panes is controlled manually by the user.

As the user speaks, a streaming recognition system returns recognized concepts

back to the user, as shown in Figure 3-5. This provides immediate feedback, generat-

ing the perception of a faster system and giving the users immediate feedback as to

4http://www.w3.org/TR/mobile-bp/
5Visible display area within the WAMI mobile iPhone app

29

Figure 3-4: Screenshots of the City Browser mobile system. The left-most screen-
shot shows the results list after asking for “Italian restaurants in Cambridge”. The
middle screenshot shows the map results. The right-most screenshot shows the help
suggestions with sample queries.

whether they are being understood. Once the entire utterance is processed, however,

we update and reorder the output’s key-concepts. This interface is modeled after

the success of FlightBrowser [21], in which concept slots were displayed to the user.

In this project, however, we show only the concept values for space-considerations.

Specifically, we show the domain-specific values in this order:

1. Price range

2. Recommendation

3. Cuisine

4. Topic

5. Location

6. Remaining concept values

30

Italian

Italian

cheap Italian restaurants

cheap good Italian restaurants

Figure 3-5: Streaming recognition results. As the user speaks to the system, the
recognition results (shown in blue) are streamed immediately to the screen. Here
the user is speaking, “Show me cheap Italian restaurants in Cambridge that are high
quality.”

3.4 Future Work

Future work should focus on two particular areas. The first is exploring better meth-

ods of organizing recognition results and allowing concept correction by the user.

Promising correction methods have been implemented in [30], and would be applica-

ble to City Browser. The second area is expanding the number of device interfaces,

such as for the recently released iPad device. Although the desktop interface would

likely fit the screen dimensions well, the iPad’s focus on touch inputs may require

adapting the City Browser controls.

31

32

Chapter 4

Mechanism for On-Demand

Dynamic Content

This chapter presents a mechanism for dynamically generating point-of-interest con-

tent, as deployed in the City Browser system. Generating content on-demand con-

trasts with pre-generating read-only databases. In the pre-generated database ap-

proach, having fixed data provides the benefit of offline training for language models,

but poses the challenge of requiring developers to preemptively identify and create

databases needed for responding to all potential user queries. Using a database di-

vided by metro regions and point-of-interest types, the number of data sets needed

for coverage of just the United States quickly grows out of hand.

We introduce a method for augmenting the pre-generated static database ap-

proach on-demand. As users request content for metro regions unavailable in the

database, the system pulls information from online web resources to dynamically

grow the database and fill in the missing information. This approach is analogous

to other systems which pull information from content providers, such as the MIT

Flight Browser system which links to ITA [26], or the AT&T Voice Search system

which connects to http://www.yellowpages.com [5]. Using the third-party content

provider and search infrastructure provides the benefits of up-to-date databases and

well-addressed scalability issues [5].

The rest of this chapter proceeds as follows: first, we present the format of the on-

33

demand database entries; second, we discuss augmentations to the system architecture

for on-demand database generation; finally, we describe interface adjustments to allow

for the wide range of user inputs.

4.1 Dynamic POI Content Generation

A challenge to the scalability of the City Browser system is the database content

coverage. As a widely-deployed web application, City Browser receives queries from

users requesting points-of-interest (POIs) from a vast number of metro regions. An-

ticipating the locations, building the databases, and maintaining up-to-date content

is time-consuming for a large-scale system.

Here we describe the method for generating the database content on-demand,

with the goal of interchanging the static pre-generated with the dynamic on-demand

sources transparently to the system. The primary module of interest is the database

lookup module. The database lookup module takes as input the requested metro

region and POI type. In the previous version of the system, if no database matching

the input parameters was available, the system simply returned an empty set. Our

augmented version expands the database on-the-fly with information pulled from

other content providers.

4.1.1 Online Content Using the Yelp API

We use Yelp1 as our content provider for the dynamic database. Yelp, best known for

its restaurant information and reviews, has POI content for food, health, and local

attractions. Their database is exposed through the Yelp Search API2. Developers can

provide the API with a set of search terms, and Yelp returns up to 20 POI results.

The City Browser database lookup function was modified such that, when no

database content is available, the system requests data from Yelp. For the majority

of cases, the metro region and POI type are used as the search parameters. In a

1http://www.yelp.com
2http://www.yelp.com/developers/documentation/search_api

34

{"message": {"text": "OK", "code": 0, "version": "1.1.1"}, "businesses":
[{"name": "Charles Hotel",
"id": "PmnIrliSIYc_0L5fWUhbKA",
"address1": "1 Bennett St",
"city": "Cambridge",
"state": "MA",
"zip": "02138",
"country": "USA",
"longitude": -71.12182,
"latitude": 42.372297000000003,
"phone": "6178641200",
"state_code": "MA",
"categories":[{"category_filter": "hotels",

"name": "Hotels"}],
"neighborhoods": [{"name": "Harvard Square"}],
"url": "http://www.yelp.com/biz/charles-hotel-cambridge",
"avg_rating": 4.5},
...

]}

Figure 4-1: An example JSON result returned by querying the Yelp API for hotels

in Cambridge.

few select POI types such as restaurants, in which more than 20 results would be

beneficial, the search parameters are further refined (e.g. by cuisine type) such that

multiple Yelp queries may be made in succession. All requests are made on-demand,

and the full process of querying Yelp and generating the database takes approximately

one second. Yelp data are returned in the JSON string format. An example result to

a query for hotels in Cambridge is shown in Figure 4-1.

Since one goal in augmenting the system with on-demand functionality is to min-

imize impact to existing methods, the JSON object is adapted to mimic the static

pre-generated database files. The JSON object returned from Yelp is converted to a

frame with an identical format to the database frames on disk. An example of such a

frame is shown in Figure 4-2. Since the database lookup function retrieves results in

identical formats independently of the source, the change is transparent to a majority

of the system, with the exception of the recognizer vocabulary, as discussed in section

4.2. The search results from Yelp are cached on disk to improve lookup time on future

requests, thus dynamically growing the database.

35

{c hotels
:nfound 20
:orphan_metro_region "cambridge"
:values ({q hotel

:city "cambridge"
:citysearch_id 1
:latitude 42.372297
:longitude -71.12182
:name "charles hotel"
:nicknames ("charles hotel"

"charles")
:phone "(617) 864-1200"
:rating 90
:recommendation "highly recommended"
:rest_id 1
:source "www.yelp.com"
:state "ma"
:street "bennett street"
:streetnum "1" }

...
) }

Figure 4-2: An example database frame created from the Yelp JSON result for hotels
in Cambridge.

One important note is that the geographical information data (streets, neighbor-

hoods, and cities) is a special case of querying information from Yelp. The geograph-

ical data is needed when user’s ask for POIs located in a specific city or on a specific

street. Yelp does not expose the geographical data in their Search API. Therefore we

infer the city, street, and neighborhood information from the POIs that were gener-

ated from querying Yelp. First we generate a list of all unique city names and streets

seen in the POI database, also recording the association between streets and their

cities. To obtain the latitude and longitude information for each city, we randomly

select a POI located in the given city, and borrow the POI’s latitude and longitude.

A better alternative for future implementations would be averaging the latitudes and

longitudes of all POIs in the city, or looking up the values in a separate city database,

such as the U.S. Census Bureau’s TIGER database3.

3http://www.census.gov/geo/www/tiger/

36

4.2 On-the-fly Recognizer Vocabulary Updates

In the existing system, whenever the user switches to a new metro region, the dialogue

control rules dispatch messages to the recognizer to update the dynamic vocabulary in

the system. For instance, switching from the Boston to the San Fransisco metro region

triggers the system to load finite state transducers (FSTs) from the San Fransisco

FST database. These FSTs include the names and pronunciations of restaurants,

museums, hotels, and geographical data, such that the recognizer can appropriately

identify these spoken words.

We can distinguish two approaches to updating the vocabulary in the recognizer.

The first approach involves loading static FST files, which have been pre-generated

and stored on disk. The second approach involves passing a dynamically generated

list of elements to the recognizer, to be automatically inserted into the dynamic class

FST. The first case is well suited for data which has been preprocesssed and generated,

such as pre-scraped data from the Internet.

We decide to use the second approach for the Yelp data. We utilize a recognizer

capability, which enables us to pass in a list of new POIs to be dynamically added

automatically to the recognizer’s vocabulary. The recognizer automatically generates

pronunciation baseforms through a letter-to-sound system for any words not present

in its static lexicon.

The database lookup function flags to the system whether the vocabulary updates

should come from the static FST files or the dynamically generated lists. In the latter

case, the data are either queried from Yelp or read from a disk cache. This mechanism

is implemented by adding several dialogue control rules. The dialogue processing flow

is governed by these dialogue control rules, which dictate under which conditions to

load the recognizer FSTs. We create twin rules: one handles the loading of the

static recognizer FST files, and the other one handles the passing of a dynamic list of

POIs. If data is dynamically pulled from Yelp, we trigger the second rule, otherwise

triggering the first.

Currently, all the requests to Yelp happen immediately when a user switches to

37

a new metro region. The advantage of this approach is that we can immediately

load the recognizer’s vocabulary with the names of all POIs. This corresponds to

the creation of a single FST of all proper nouns, incorporated immediately into the

general background model. Users can ask for restaurants by name without having

to first cue the system. The disadvantage is the several seconds of delay when the

system switches to a new metro region that has no cached data. The alternative,

“lazy” approach, is to fetch data only when requested. This would preclude a user

from immediately asking for a specific POI by name, but would spread the timing

delays across multiple interactions with the user. Additionally, this approach to

dynamically load vocabularies has been shown to increase recognition accuracy [12].

The database lookup function is able to support both approaches, but the dialogue

rules and grammar are currently written for the first approach.

4.3 Dynamic Inputs in the User Interface

The dynamic content generation enables flexibility in metro region selection. In the

previous City Browser system, users were restricted to a pre-defined set of cities.

This has now been upgraded to a text box in which any city can now be input to

the system, as shown in Figure 4-3. In the ideal case, we would even allow the user

to specify a metro region change via speech, as done in the multi-pass, dynamic-

vocabulary system built in [15]. For now this functionality is unsupported, but is a

potential area of expansion.

One final note is expanding the natural language system to also allow any POI

type. Although the database functionality is already written to handle any arbitrary

POI type, the language understanding systems have not been trained to understand

these POI words (e.g. “pharmacies”, “parking lots”, etc.). Current additional work

is being done to augment the grammars to handle a wider range of POI types.

38

Figure 4-3: The user interface showcasing the ability to arbitrarily enter a metro
region to the system.

4.4 Future Work

There are three main areas for future work. The first is implementing a more robust

caching scheme. Currently the data pulled from Yelp is cached in text files written

to disk. Using a SQL database would be more robust and able to handle potential

concurrency challenges.

The second area for future work is delaying POI requests from Yelp to when users

specifically request the data, as opposed to the implemented approach of immediately

requesting data when the user switches metro regions. This would explore the trade-

offs between timing delays and the ability to ask for POIs immediately by name.

The optimal approach will likely be a combination of pre-emptive and on-demand

querying.

The third area is expanding the input methods to allow for metro region changes

using speech. This work would explore incorporating all metro regions into the static

vocabulary background model.

39

40

Chapter 5

Amazon Mechanical Turk

Experiments

In this chapter we discuss two City Browser experiments using Amazon Mechanical

Turk (AMT). In the first experiment, we collect and analyze user interactions with a

live version of our system deployed through AMT. AMT enables us to reach a large

audience at a low cost, contrasting the traditional method of seeking out test users

individually.

Second, we use AMT to rapidly compile sample text inputs to the system, which

are then used as training data for the recognizer’s language model. In three days, we

are able to collect over 12,000 typed sample queries to our system. We then tag all

proper nouns in the sample queries in order for the data to be usable as training sets

for our system language models. In this work we resort to manual and pattern-based

tagging methods, and therefore use only a small 1,000 sentence subset. Future work

would explore auomated tagging methods to incorporate all 12,000 sample queries in

the training data. To evaluate the retrained language model, we run the recognizer

on the transcribed utterances obtained from our first experiment, which collected

live interactions. Even with only the 1,000 additional sentences, we show that the

additional training data provides a 9% relative reduction in WER, bringing it to

29.2%.

41

5.1 Background on Amazon Mechanical Turk

Amazon Mechanical Turk1 (AMT) provides a potential solution for rapid collection

of usability and training data. The service allows programmers to post Human Intel-

ligence Tasks (HITs) online, tasks to be solved by workers for small monetary rewards

generally ranging from $0.01 to $0.10 per task. The workers come from all around

the world, though we restrict the HIT availability to workers in the United States in

order to focus on native American English speakers.

AMT is increasingly used by the research community for its crowdsourcing ability.

One such example is the use of AMT for user studies and feedback solicitation [17]. As

long as tasks are verifiable and concrete, AMT has been shown to provide high quality

user studies at a cheaper and faster rate than traditional in-lab studies. Another

example is the speech community’s use of AMT to process spoken data. AMT HITs

have been crafted to have workers transcribe spoken documents both quickly and

accurately at a fraction of the cost of professional transcribers [22, 23].

Similarly relevant is the use of AMT to efficiently construct large corpora, espe-

cially important for natural language and speech systems as they rely on the training

data for performance [2]. Corpora have been shown to be built at remarkable speeds

using AMT. A corpus of over 100,000 read utterances was constructed in under three

days in the address recognition domain [22]. Similarly, researchers at Nokia were

able to generate enough content from AMT to add new languages to their speech

recognizer [18].

5.2 Collecting User Interactions with City Browser

Although the ideal usability study for our mobile version of City Browser would be

in-person evaluations on a mobile device, we made a first approximation study by

deploying the system online as a web application. We embedded our online mo-

bile interface into an AMT Human Intelligence Task (HIT), requesting that workers

interact with City Browser to complete tasks.

1http://www.mturk.com

42

You’re in New York shopping on Canal Street, when your friend calls and tells you to meet
her at the Gershwin Theatre. Find out how to get there using public transportation.

You are helping friends find their way to the Cheer’s Bar in the Boston Commons. Help them
find their way from State Street to the Bar.

You want to take your little sister to the water park and hotel about 1 hour north of Vancouver,
WA but don’t know the name. Find out the resort’s name and phone number.

You are driving through Northern California to meet a long lost family member at the historic
Cascade theater located in Redding, California, but your not sure what freeway exit to take
or where the theater is located. Find the theater address and freeway exit information.

Figure 5-1: Four example scenarios generated by AMT workers.

5.2.1 Generating Task Scenarios

The first step in our usability study was generating the task scenarios. One innovation

of [22] was the use of AMT not only to evaluate the system, but also to generate the

scenarios used in the evaluation. We collected a total of 69 scenarios from users, of

which 36 were usable. Four example scenarios are shown in Figure 5.2.1. We modify

these scenarios focus on the Boston region, since our data for the Boston-area is more

robust and complete. Future work would test the system across additional metro

regions.

5.2.2 Embedding Into the Mechanical Turk Interface

We then made a version of City Browser customized for AMT. This version mim-

icked the same dimensions and look and feel of the mobile version. However, we

made a small number of changes, such as replacing audio synthesis with text system

responses, presenting incremental recognition results, and constantly displaying the

task description. These changes were guided by the AMT user testing framework

developed in [22]. A screenshot of the AMT Human Intelligence Task (HIT) is shown

in Figure 5-2.

The goal of the HIT was to elicit user interaction with the system. In total we

gathered 579 utterances from 124 tasks and 35 users. A sample interaction is shown

in Figure 5-3. We offered AMT workers $0.10 per completed task.

43

Figure 5-2: A screenshot of the Mechanical Turk interface of City Browser.

5.2.3 Transcribing the Audio

In order to run experiments on the data, we transcribed the spoken interactions.

Again we utilized AMT, shown as an effective transcription method [20, 22, 23]. We

created a transcription HIT which presented workers with audio files and our speech

recognizer’s top transcription hypotheses. The HIT then asked users to correct the

recognition output. A screenshot of this HIT is shown in Figure 5-4. We paid workers

$0.01 per transcription, taking approximately 1 day to transcribe all 579 utterances.

The HIT had three workers transcribing each utterance. We then ran an alignment

script to merge the transcriptions based on a voting scheme using transcription simi-

larities. Manual examination of 50 of the utterances manually, there is approximately

a 90% sentence accuracy rate.

44

U1: Find a hotel near Harvard University.
S2: There are 10 hotels near University in Harvard. All of them are in Cambridge. Most are

in Harvard Square. [results shown on map]
U3: [user clicks results and scans listing] Find a hotel in Harvard Square.
S4: There are 8 hotels near Harvard Square. They are concentrated on Cambridge Street and

Bennett Street. [results shown on map]
U5: Find a hotel on Cambridge Street.
S6: There are 2 hotels near Harvard Square on Cambridge Street. The A Friendly Inn and

the A Bed and Breakfast in Cambridge. [results highlighted on map]
U7: What is the address for A Friendly Inn on Cambridge Street?
S8: A Friendly Inn is located at 1673 Cambridge Street in Harvard Square in Cambridge. [A

Friendly Inn is focused on map]

Figure 5-3: A sample interaction between a user and the City Browser system. U
indicates the user, and S indicates the system.

Figure 5-4: The Mechanical Turk HIT for transcribing audio.

5.2.4 Usage Statistics

Here we compute some general statistics on the user data. The average utterance

length was 6.92 words per utterance, and there were an average of 35.4 words per

session. In particular, we hypothesized that the greater the number of interactions

for the task, likely the shorter the utterance length. However, as shown in Figure 5-5,

there is no strong correlation (correlation coeffcient -0.129). Likely the differences are

simply caused by some users being more verbose than others. Next we also note the

effect of WER on the system response. Figure 5-6 shows that, as WER increases, the

percentage of correct responses rapidly declines.

The recorded interactions highlighted a number of areas for interface improvement,

45

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14
Utterance Length vs. Number of Utterances in Session

Number of Utterances in Session

A
ve

ra
ge

 N
um

be
r

of
 W

or
ds

 P
er

 U
tte

ra
nc

e
in

 S
es

si
on

Figure 5-5: The average utterance length in a session versus the number of utterances
in the session. Overlayed is the line of best fit.

to be explored in future work:

• Improved recognition of museums. Museums in particular seemed to suffer from

the greatest number of recognition errors, likely due to problems in the system

training data.

• Typed-input correction mechanisms. Some POIs were impossible to request,

since the database simply did not have the information. Supporting typed-

inputs appears to be an important needed feature as a fall-back for information

entry.

• Single concept correction. Often times utterances would be correct with the ex-

ception of a single concept, such as the confusion between Museum of Fine Arts

and Museum of Science. However, to correct the error, users had to restate the

entire utterance, since our mobile interface lacked a correction scheme. Future

work would explore the best way to integrate this correction feature into the

mobile interface.

46

Correct and Incorrect Responses vs Word Errors

Word Errors

N
um

be
r

of
 U

tte
ra

nc
es

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

200
Incorrect responses
Correct responses

Figure 5-6: The number of correct and incorrect responses by the number of word
errors in the utterance.

5.3 Retraining Language Models with Turk Data

This section discusses efforts to improve the speech recognizer language model used by

the MIT City Browser system. We focus on the collection of training data by eliciting

typed inputs from users. The primary difficulty is that high quality data is hard to

come by, often requiring both long collection times and intensive annotation labor.

Our collection process uses Amazon Mechanical Turk (AMT) to amass typed input

queries, which can be obtained faster and cheaper than recording and transcribing

interactions. These typed queries are obtained by asking AMT users what they

would input to a hypothetical city information system. To evaluate our improved

language model, we use a test corpus consisting of spoken utterances from AMT

users interacting with a live version of City Browser. We show that the improved

language model, trained with the addition of our typed sample queries, realized a

9% relative reduction in WER from 32.1% to 29.2%. Finally, by running an oracle

experiment training the language models with the transcribed test data, we show that

the lower-bound on language model performance is 21%.

Language models for speech recognizers require a substantial amount of data. The

47

current recognizer used by the MIT City Browser system uses more than 20,000 sam-

ple sentences. Amassing high quality data is traditionally a laborious task involving

creating a live system to record spoken user interactions, transcribing the recorded

audio, and finally annotating proper nouns. Amazon Mechanical Turk (AMT) offers

a means of collecting data more efficiently than this traditional method. We use the

service to obtain human-generated sample text queries by presenting AMT workers

with a hypothetical speech system and asking them for example text inputs. This

data is then added to our baseline system’s data to retrain the language model.

It is important to note that for the example text inputs to be used as training

data for the recognizer and natural language components, all proper nouns in the

text must be tagged with their POI class. In this work, we use manual and pattern-

matching methods, which limit us to a small 1,000 sentence subset of the full 12,000

sentences. Future work would explore automated tagging algorithms to incorporate

the full 12,000 sentences.

To test the language model, we use the transcribed utterances from our usability

experiments. Our system’s baseline recognizer has a recognition word error rate

(WER) of 32.1%. A majority of the baseline system’s training data consists of

sentences automatically generated from template files [13]. Our hypothesis is that

human-generated sample inputs would improve the language model accuracy, driving

WER toward the oracle experiment’s lower bound of 21%. We show that adding in

the typed sample inputs from AMT reduced the WER, bringing it down to 29.2%.

5.3.1 Class n-gram Language Model

The language model assigns a probability P (W) to an input word sequence W =

w1, w2, ..., wn. The City Browser reocgnizer, SUMMIT, utilizes a class n-gram lan-

guage model, where all words are mapped to equivalent classes

W = {w1, ..., wn} → {c1, ..., cn} (5.1)

in which the classes are each of the POI types, such as RESTAURANTS, HOTELS, and

48

MUSEUMS. All proper nouns in the vocabulary are then mapped to one of these classes.

The formula for the language model with these equivalent classes then becomes

P (W) ≈
n∏

i=1

P (wi|ci)P (ci|ci−(N−1), ..., ci−1) (5.2)

where the probability of the word within the class, P (wi|ci) is the maximum likelihood

estimate

P (wi|ci) =
C(wi)

C(ci)
(5.3)

and C(wi) is the number of times wi is observed in the training corpus, and C(ci) is

the number of times a class ci is observed.

The current recognizer language model is trained on a combination of 2,163 tran-

scribed utterances and 20,000 sample sentences automatically generated from tem-

plate files defined by system developers. The templates specify recursive context-free

grammar rules, and word combinations are permuted to fill the grammatical struc-

tures and generate sample sentences.

5.3.2 Collecting Sample Queries

To collect our training data, we created an AMT HIT which requested workers to

provide us with typed sample queries. Our HIT described a hypothetical system which

understands queries about local points-of-interest (POIs), and presented screenshots

of the mobile City Browser interface. Additionally, we gave the workers five reference

sentences, representative of the queries understood by the system. Note that these

sentences were the same for all workers, and future work should explore randomizing

the sentences presented. We then requested that workers provide us with typed

sentences of what they would ask such a system. A screenshot of this HIT is shown

in Figure 5-7.

Initially we paid workers $0.03 per sentence provided, for a total of 7800 sample

inputs. We then experimented with decreasing the pay rate, collecting an additional

4200 inputs at $0.025 per sentence. We found that the rate of collection was essentially

49

Figure 5-7: The Mechanical Turk HIT used to collect queries.

unchanged. Overall the entire collection process took approximately 3 days.

In the process we encountered several difficulties. We found that the AMT workers

were extremely biased by the example sentences we provided. In our initial iteration

of the HIT, we emphasized the Boston metro region, only to find that a significant

portion of the worker queries also referenced Boston. Therefore we updated the

examples to reference cities across the nation. Similarly, the HIT also suffered from

worker abuse. In one such example, a single turker submitted over 5,000 sample

inputs consisting of a single phrase structure “show me CUISINE restaurants in CITY”,

in which each sentence differed from the others only by the cuisine type or city. This

data was no better than automatic template-based data, and was therefore thrown

out. In our next iteration of the HIT, we made it clear that a variety of sentences

were needed, and that simple swapping of proper nouns would result in a rejected

submission.

5.3.3 Tagging Point-of-Interest Types

In order to use the sample AMT inputs as training data, we tagged the POIs in the

sentences with their word-classes. Several well-known algorithms exist for this task

such as the contextual semantic tagger in [3], however, due to the limited number of

50

sample queries, we chose to tag the data using rule-based methods. We requested

that AMT workers provide correctly punctuated and capitalized inputs. Therefore, we

leveraged the sentence grammatical structures to infer the POI tags. As an example,

our script searched for the pattern “phone number of OBJECT restaurant” and inferred

that OBJECT should be tagged as a restaurant. For instance, this pattern matches the

sentence, “show me the phone number of All Asia restaurant” and outputs “show me

the phone number of [restaurant] All Asia [/restaurant] restaurant”. The script

rules provided only a rudimentary pass at tagging POIs. We therefore manually took

a second pass at tagging a 1,000 sentence subset of the queries, with the expectation

that more accurate and automated algorithms could be used in the future as the

number of samples queries increased. For the rest of this chapter, all mentions of the

AMT sample text queries are in reference to the 1,000 manually tagged inputs.

5.3.4 Language Model Experiments

The goal of our experiments was to assess the utility of the typed sample queries to

improve language model performance, using the recognizer’s word error rate (WER)

as the performance metric. First we established the baseline system’s performance.

We divided the 579 spoken utterances from our usability study into two subsets,

reserving 288 utterances as the test set, and 291 utterances as a development set to

compare against the typed sample query performance. The baseline recognizer gave a

WER of 32.1%. This WER is similar to performance on other corpora from the City

Browser domain [9], as shown in Table 5.1. The comparable baseline WER suggests

that the performance on the turk corpus may be generalizable to the system’s overall

performance.

Tablet Web Car-Pilot Car
WER 27.4% 29.2% 31.9% 36.1%

Table 5.1: Word Error Rates of the City Browser Corpora [12]

We ran a number of experiments, evaluating language model performance using

varying subsets of training data. The complete results are shown in Table 5.2. Here

51

Language Model Training WER

0. baseline (CB corpus + templates) 32.1%

1. AMT dev set 30.6%
2. CB corpus 34.3%
3. AMT text 51.3%
4. templates 47.4%
5. templates (partial) 49.2%
6. AMT dev set + AMT text 29.1%
7. AMT dev set + CB corpus 27.7%
8. AMT dev set + CB corpus + templates 30.3%
9. AMT dev set + CB corpus + AMT text 26.5%
10. AMT dev set + CB corpus + AMT text + templates 27.9%
11. CB corpus + templates + AMT text 29.2%

12. oracle 21.0%

Table 5.2: Language Model Experiments Word Error Rates. The CB corpus consists
of 2,163 transcribed utterances from recorded user interactions with the previous City
Browser system. The templates are 20,000 sample sentences generated from man-
ually created template files. Templates(partial) represents 1,000 randomly selected
sentences from the complete 20,000 set. The AMT dev set consists of the 291 tran-
scribed interactions from AMT, held out from the test set. The AMT text represents
the 1,000 tagged text input queries.

we describe each of these experiments in turn.

Our first two experiments demonstrate that transcribed interactions are the best

training data for the language model, as these utterances are most representative

of the test set. Experiment 1 shows that retraining with the 291 transcribed AMT

utterances produced a language model with a WER of 30.6%, beating the baseline

system. It should be noted that the development set was collected from the same task

scenarios as the test set, accounting for the large reduction in WER with only a few

training utterances. Similarly experiment 2 gave a WER of 34.3%, which is fairly close

to the baseline. The higher WER is due to the fact that the CB corpus utterances

were collected from past in-lab studies on the desktop interface, and therefore not as

representative of AMT workers using the mobile design.

Experiments 3, 4, and 5 showcase the performance of the language model trained

on the text data sets. Experiment 3 used the 1,000 tagged utterances obtained from

AMT, while experiments 4 and 5 used the full 20,000 template sentences and a ran-

52

domly selected 1,000 sentence subset, respectively. The increased WER, in compari-

son with the results of experiments 1 and 2, signifies the differences between text and

verbal data.

We then explored permutations of data sets to identify promising combinations

for improving language model performance. We started with the AMT dev set and

first added the AMT text sample queries, which gave a WER of 29.1%. Not sur-

prisingly, replacing the AMT text data with the transcribed CB corpus utterances

in experiment 7 improved the WER to 27.7%, and adding back in the AMT text

dropped our WER to its lowest value of 26.5%. What’s interesting is the addition of

the templates. In both experiments 8 and 10, the addition of the templates increased

WER. This highlights that the templates, which are intended for wide coverage of

potential utterances, are not as representative of this particular test set.

In experiment 11, we showed how the AMT text data can improve language

models in the absence of transcribed interactions. We obtained a 29.2% WER (9%

improvement relative to the baseline) on the 288 utterance test set. This result

validates our initial hypothesis that the typed text queries can be representative of

actual spoken interactions with the system.

Finally, we performed an oracle experiment to see the best possible WER that

could be achieved with language model improvements. This was done by using only

the test corpus as the language model training data. We found the best performance

of our language models to be a 21.0% WER. The reason for such a high WER is

largely attributed to low recognition rates of proper nouns and missing vocabulary

words. For instance, in the top 50 confused words, 24 were proper nouns, such as

“Harvard”, “Quincy”, and “Cambridge”. Similarly, in the top 15 deleted words, we

find “museum”, “fine”, and “arts”, corresponding to “Museum of Fine Arts”, along

with “Blue” and “Fin”, corresponding to “Blue Fin restaurant.”

5.3.5 Discussion

The experimental results first reinforce the notion that transcriptions of actual spo-

ken interactions with the system are the best quality data for training a language

53

model. However, the results also highlight that typed text queries can nonetheless

provide improvements, given that transcribed utterances can be time-consuming and

expensive to collect.

Experiment 7 demonstrates that, given enough available data representative of

the test set, the automatically generated template data and sample text queries may

no longer be needed. However, this is not always possible, and in such cases supple-

menting with human-generated data has the potential to increase performance. These

sample text queries were shown to outperform the templates in Experiments 8 and 10,

a possible indication that it may be valuable to invest in the small costs of obtaining

examples from AMT workers or alternatively revisiting the template generation.

The poor results of the typed turk data alone show that they are insufficient as

the sole training data for the system, highlighting the differences between spoken and

typed text. However, as the other results show, the typed text sentences are still

good supplements to actual transcribed data. In particular, the similarity between

the CB corpus+ templates+AMT dev set and CB corpus+ templates+AMT text

results suggests that the typed turk text can be an adequate approximation of the

spoken utterances.

5.4 Chapter Summary

In this chapter we documented the process of collecting user interactions with the sys-

tem and retraining the recognizer’s language model. The presence of a large number

of incorrect system responses suggests opportunities for improving recognition, vo-

cabulary, and understanding. Toward tackling this problem, we showed a 9% relative

reduction in the WER of the City Browser recognizer by augmenting the language

model training data with typed sample queries collected using Amazon Mechanical

Turk (AMT). Moreover, we highlighted how quickly and cost-effectively such data

could be collected, serving as a potential replacement for sentences automatically

generated from template files.

54

Chapter 6

Vehicle-based Multimodal

Interfaces

As features such as route guidance and media players are added to vehicle interfaces,

the non-driving task demands for drivers increase. For route guidance systems in

particular, the traditional methods of selecting destinations, scrolling through lists,

and manually entering location names letter-by-letter are lengthy tasks with high

cognitive load [32]. Speech-enabled interfaces have been shown to be safer alternatives

compared with these visual-manual entry methods [6, 28].

There are two common types of vehicle speech-enabled interfaces. The first type

focuses on speech-enabling the traversal of hierarchical menus that would be other-

wise navigated manually. These systems often employ small vocabularies with fixed

grammatical structure. The second type, which we explore in this project, allows

unrestricted natural language speech input, in which users are not constrained to

pre-defined information hierarchies. This approach has been shown to be more effi-

cient and less distracting for drivers [6].

This chapter presents our work building a vehicle interface for City Browser. First

we describe the vehicle, hardware, and system configurations. Second we present

the vehicle interfaces we developed. Finally we discuss the results of a usability

experiment on the interface.

55

Figure 6-1: Vehicle System Configuration. One laptop acts as the language under-
standing processor, while the other interfaces with the vehicle.

6.1 System Components

We deployed the City Browser vehicle interface in a BMW 530xi sedan. Two laptops

are mounted in the trunk of the vehicle. The first laptop performs language process-

ing in addition to acting as the web server. The second laptop handles all vehicle

interfacing, such as monitoring the vehicle state and user interactions. Additionally,

the laptop display and audio are output to the car’s built-in display and sound sys-

tems. For speech recording, a microphone speaker array is attached to the driver’s

sun visor. We use this microphone configuration since the car’s built-in microphone

had high noise-levels. Figure 6-1 shows the hardware configuration in the trunk of

the vehicle.

6.1.1 Input Controls

The vehicle has a large set of input buttons and controls. The City Browser system

primarily utilizes the iDrive controller. The iDrive is a knob which can be shifted

up, down, left, and right. Additionally it can be pressed down for selections and

rotated clockwise and counter-clockwise. The additional buttons available – used by

early versions of our interface – are show in Table 6.1.1. The locations referenced are

shown in Figure 6-2.

56

Input Button Name Location Purpose in BMW’s Interface

Speech Recording steering wheel Speech recording
Speech Recording center console Speech recording
Star steering wheel Programmable (no default behavior)
Diamond steering wheel Programmable (no default behavior)
Telephone center console Telephone dialing
Menu center console Main menu button of vehicle navigation system
Up steering wheel Scrolling up menu results
Down steering wheel Scrolling down menu results

Table 6.1: Vehicle Input Keys

(a)

(b)

(c)

Figure 6-2: The interior control panel of the vehicle. (a) steering wheel buttons, (b)
navigation display, and (c) center console iDrive and buttons.

6.2 Evolution of the Interface

The original City Browser vehicle interface was a custom-sized version of the desktop

interface, as shown in Figure 6-3. In this version the recognition results were shown at

the top of the screen, the point-of-interest (POI) results on the right, and the map on

the left. The vehicle’s star key was mapped to toggle between the sections. Depending

on the section in focus, the keys were bound to various functions. A full mapping of

the input keys and functionality is shown in Table 6.2. The biggest challenge of this

design was the learnability of the key mappings. For instance, it was unclear which

57

Figure 6-3: Iteration 1 of the City Browser vehicle interface.

key was used to switch focus areas and which area was currently in focus.

6.2.1 Second Interface Iteration

To address the learnability of the previous interface, we attempted to more clearly

highlight the section in focus. This is shown in Figure 6-4, in which the focus area is

accented by graying out the rest of the interface. Additionally, we removed the use of

the Star key to switch focus between areas, as most pilot subjects attempted to shift

the iDrive instead. To allow for the iDrive up/down/left/right keys to be bound to

switching focus areas required alterations to the map-controls. We added a sub-menu

when the map was focused, in which users could select a specific-map-mode (such as

panning mode), which would toggle the iDrive shifting to panning functionality. This

map-menu is shown in Figure 6-4’s top screenshot. Lastly we added a suggestions

list, which could be reached by shifting down on the iDrive.

6.2.2 Third Interface Iteration

Informally collected feedback on the second interface highlighted two additional prob-

lems with the interface: legibility and complex controls. In particular, the font sizes

were too small to be read while driving. Drivers could afford only quick glances,

leaving insufficient time to read the lists of restaurant results.

In creating another iteration of the design, we followed the BMW look and feel,

58

Interface State Input Key Function

General Diamond Switch state

Map State

Up Zoom out
Down Zoom in
iDrive Spin Right Zoom in
iDrive Spin Left Zoom out
iDrive Up Pan north
iDrive Down Pan south
iDrive Left Pan west
iDrive Right Pan east

Recognition State

iDrive Press Select correction
iDrive Spin Right Scroll correction selection
iDrive Spin Left Scroll correction selection
iDrive Left Move to previous correctable word
iDrive Left Move to next correctable word

POI Results State

iDrive Press Get details about selected POI
Up Scroll up
Down Scroll down
iDrive Spin Right Scroll down
iDrive Spin Left Scroll up

Table 6.2: Iteration 1 Vehicle Input Key Mapping

59

Figure 6-4: Iteration 2 of the City Browser vehicle interface. This iteration includes
speech suggestions and map control icons.

shown in Figure 6-51. Here we isolated each of the focus areas of the interface into

their specific panes. We then arranged the panes in a 1-D ordering, as opposed to the

previous design’s 2-D layout. The user could shift the iDrive left and right in order

to navigate to the different interface panes. We also found that previous users did

little with correcting sentences, and therefore we removed the recognition results to

simplify the interface. This design is shown in Figure 6-6.

6.3 Vehicle Interface Usability Study

Working with the MIT Age Lab, we designed a usability experiment for the vehicle-

based City Browser interface. Our goal was to both assess the system and gauge

the potential for speech integration into vehicle navigation systems. We recruited 80

participants from the Cambridge area, balanced across three age groups (25-34, 45-54

1http://www.designingforhumans.com/.a/6a00d8341c870753ef010535c084e3970c-pi

60

Figure 6-5: The BMW interface.

Figure 6-6: Iteration 3 of the City Browser vehicle interface. Clockwise from top left:
the screen shown when the vehicle starts, the map results, speech suggestions, and
detailed result information. This iteration also includes map control icons located on
the circular iDrive symbol on the edge of each pane.

and 65-74) [12]. These participants were asked to interact with the vehicle interface

by completing tasks after being shown a brief system overview. A photoelectric

plethysmograph (PPG) to measure heart rate along with contacts to measure skin

conductance level were attached to each participant. All tasks were conducted in a

stationary vehicle.

The subjects were given 12 experimental tasks. Two example tasks and user in-

teractions are shown in Figure 6-7, with the complete set of tasks shown in Table A.1.

These tasks involved locating POIs using the interface.

Overall the results were positive: nearly 75% of participants found the system to

be useful, over 90% found the system to be reasonably accurate, and over 85% found

61

You’re meeting up with some friends in Cambridge and want to
take them to a Chinese restaurant. Find one and get directions
to it.
U. Show me Chinese restaurants in Cambridge
S. There are 12 Chinese restaurants in Cambridge. [Shows a results screen
similar to figure 1b]
U. [Uses iDrive controller to browse the list, leaving All Asia Cafe high-
lighted]
U. Give me directions.
S. Here are directions from this location to All Asia Caf.[Show directions
on the map]
You’re picking up a friend from his apartment in Quincy at 180
Hancock Street. Find the address on the map and find a cheap
restaurant near his apartment to have dinner.
U. Where is one eighty Hancock Street in Quincy.
S. Here is one eighty Hancock Street in Quincy [Shows the address marked
on the map]
U. Are there any cheap restaurants near there?
S. There are fifteen inexpensive restaurants near one eighty Hancock
Street in Quincy. [Shows a results screen similar to figure 1b]
U. [Uses iDrive controller to browse]

Figure 6-7: Two example tasks given to participants in the vehicle interface usability
study.

the system easy to learn. The usability study pointed out several areas for further

work:

• Recognition results display. Currently there is no indication of what the system

recognized. Although not necessarily required to always be present, there should

be a quick method to display what the system heard.

• Improving learnability. The iDrive icon on the edge of the system’s panes is

intended to serve as an indicator for the available iDrive functionality. This

was not immediately apparent to a large number of users and should be further

explored.

• Suggestion selectability. Currently the suggestions screen displays unselectable

example sentences. An improvement to the interface would allow for users to

select the suggestions, automatically inputting them to the system.

62

6.4 Chapter Summary

In this chapter we presented a vehicle-based version of the City Browser system.

Through multiple iterations, we developed an interface which maintained the func-

tionality of the desktop version, but adapted controls and display for the automobile

environment. Our usability study provided positive feedback for pursuing speech

integration and encourages future work to incorporate speech functionality into nav-

igation systems.

63

64

Chapter 7

Conclusion

In this thesis, we presented mobile and vehicle interfaces for the City Browser sys-

tem. These interfaces were specifically designed to address the challenges of small

screens and limited inputs on mobile devices. Additionally, we augmented the system

architecture with a user interface platform to support more efficient reconfiguration

for alternative interface designs. We then enhanced the back-end services with the

ability to dynamically add data retrieved from third party sources.

Our mobile interface was tested through Amazon Mechanical Turk (AMT). We

leveraged the service to rapidly collect a large number of queries, which were then

used to retrain and improve the recognizer’s language model. Our experiments clearly

showed that the best training data is transcribed utterances from recorded interac-

tions with the system. However, when such data are lacking, human-generated sample

queries provide a potential alternative. After adding in text sample queries to our

training sentences, we were able to see a 9% relative reduction in our recognizer’s

word error rates, bringing it from 32.1% to 29.2%. Similarly, AMT enabled us to

efficiently distribute the system to many users and elicit feedback for improvements

in future iterations of the system. Finally, our vehicle usability study on our nav-

igation interface demonstrated the increasing readiness for speech integration into

automotive guidance.

65

7.1 Future System Improvements

There still remain several areas for system improvement. The on-demand database

system is currently limited to expanding the database immediately when a user shifts

to an unsupported metro region. A more flexible design would allow finer granularity,

augmenting the database for an unsupported request at any time. Similarly, the user

should be able to shift metro regions using speech, as opposed to being limited to

manual metro region controls.

The database system can additionally be improved with a caching scheme sup-

porting concurrency. The current system uses text files written to disk, and could be

made more robust with an SQL database.

A natural extension of the system would be developments for the transit-related

domain. The current City Browser system focuses on points-of-interest, touching on

transit briefly through simple driving directions and subway map overlays. In terms of

directions, however, users frequently are more interested in getting public transporta-

tion schedules and route guidance. We did an initial exploration of adding transit

support; however, we faced difficulties with transportation routing services. Public

transportation data is rapidly becoming more available through the Google Transit

Feed Specification1, and may be more mature in the coming months. Similarly, an

effort to develop open source routing services has been launched by OpenTripPlan-

ner2.

Another area for improvement is expanding system vocabulary and providing bet-

ter data for the recognizer language models. Our oracle experiment results highlight

both the potential gains and limitations of an improved language model. The rest of

the gains could come from supporting additional POI names and categories.

User correction and guidance schemes are other areas for potential research. The

work in [30] showcases the wide variety of speech correction mechanisms and their

ability to handle out of vocabulary words and increase input rates. The City Browser

system explored initial methods of showing recognition results, but did not provide

1http://code.google.com/transit/spec/transit_feed_specification.html
2http://opentripplanner.org/

66

a mobile concept correction interface. Furthermore, the system could be enhanced

with the ability to guide the user in times of confusion, such as clarifying ambiguous

concepts or requesting additional information to further specify the user query. These

augmentations would drive the system toward a more-conversational interface.

7.2 Expanding to Additional Device Interfaces

As more mobile devices are brought to market, additional opportunities are created to

extend the City Browser interface. For instance, the recent launch of the iPad offers

a platform to build a touch-based tablet-sized interface. The increasing prevalence

of Android-based phones could drive the development of a resizable mobile interface,

one which could automatically scale to device screens.

Moreover, the initial success of the vehicle interface highlights the opportunities

for applying the City Browser system to new domains, such as reviving the kiosk

system for subway information booths, building large-scale TV interfaces, or designing

intermediate netbook-sized views.

7.3 Final Words

The work in this thesis showcased the growing acceptance and usability of spoken di-

alogue systems through multimodal interfaces. We used City Browser, a map-based

application, to highlight the potential of these systems. Our evaluations showed

promising direction for creating rich multimodal interaction. With further improve-

ments and developments, City Browser and other spoken dialogue systems have the

potential to shift the interface paradigm toward natural conversational interaction.

67

68

Appendix A

Vehicle Usability Study Tasks

In this appendix we provide the 12 scenarios used in the vehicle-based user study [9].

69

Task Description
0 Tutorial task, part of which involves the subject being instructed to say “Show me

Chinese Restaurants”
1 You need to find a hotel in Somerville. Use the system to find the name of a hotel.
2 You’d like to find a restaurant that’s just a short drive away for lunch. You are in

the mood for Indian food.
3 You’re showing some friends around Boston and want to go to the Museum of

Science. Get directions to the museum.
4 You’re meeting up with some friends in Cambridge and want to take them to a

Chinese restaurant. Find one and get directions to it.
5 You’re supposed to go to Chelmsford to meet a friend at a restaurant called Garlic

Bistro. Find out their phone number, so you can call them to make a reservation.
6 You’re on your way to a meeting in Boston, located at 28 Huntington Ave. Get

directions to this address. You’d like to take your client out to dinner afterwards
somewhere within walking distance. Find an Italian restaurant – something upscale
that looks good – to suggest, and get its phone number and address.

7 Your aunt is in town and you want to take her to the Museum of Fine Arts. Get
directions to the museum.

8 You are visiting a friend in Brighton and would like to go with him to a Greek
restaurant. Find one and get directions to it.

9 You’re supposed to meet a friend at a restaurant called Fugakyu, but neither of you
remember exactly where it is. You know it’s in Brookline, and that it’s Japanese.
Get the address so you can tell your friend where it is, and get directions there for
yourself.

10 You’ve got a friend visiting from out of town who is staying in Boston at the
Sheraton hotel. Get directions there so you can pick him up. Find a restaurant
that doesn’t cost a lot of money to go to for dinner which is near the hotel.

11 You’re picking up a friend from his apartment in Quincy at 180 Hancock Street.
Find the address on the map and find a cheap restaurant near his apartment to
have dinner.

12 You’ve just gotten in the car and plan to head to a restaurant called Thai Moon
which is located in Arlington. Get directions to this restaurant.

Table A.1: Tasks used in the pilot usability study of the vehicle-based City Browser
system, reproduction of Table 4.3 in [9].

70

Bibliography

[1] Q. Brown, F. Lee, D. Salvucci, and V. Aleven. Interface challenges for mobile
tutoring systems. Proceedings of the 9th international conference on Intelligent
Tutoring Systems, 5091:693 – 695, 2008.

[2] C. Callison-Burch and M. Dredze. Creating speech and language data with
Amazon’s Mechanical Turk. NAACL-2010 Workshop, 2010.

[3] A. Cucchiarelli. Semantic tagging of unknown proper nouns. Natural Language
Engineering, 1999.

[4] M. Dunlop and S. Brewster. The challenge of mobile devices for human computer
interaction. Personal and Ubiquitous Computing, 6:235 – 236, 2002.

[5] J. Feng and S. Bangalore. Query parsing for voice-enabled mobile local search.
Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2009.

[6] C. Forlines, B. Schmidt-Nielsen, B. Raj, K. Wittenburg, and P. Wolf. A compar-
ison between spoken queries and menu-based interfaces for in-car digital music
selection. In Proceedings of International Conference on Human-Computer In-
teraction, 2005.

[7] A. Franz and B. Milch. Searching the web by voice. Proceedings of the 19th
international conference on Computational linguistics, 2:1 – 5, 2002.

[8] J. Glass. A probabilistic framework for segment-based speech recognition. Com-
puter Speech and Language, 17:137–152, 2003.

[9] A. Gruenstein. Toward Widely-Available and Usable Multimodal Conversational
Interfaces. PhD thesis, MIT Department of Electrical Engineering and Computer
Science, 2009.

[10] A. Gruenstein, B. Hsu, J. Glass, S. Seneff, I. Hetherington, S. Cyphers, I. Badr,
C. Wang, and S. Liu. A multimodal home entertainment interface via a mobile
device. Proc. of ACL Workshop on Mobile Language Processing, 2008.

[11] A. Gruenstein, I. McGraw, and I. Badr. The WAMI toolkit for developing,
deploying, and evaluating web-accessible multimodal interfaces. ICMI, 2008.

71

[12] A. Gruenstein, J. Orszulak, S. Liu, S. Roberts, J. Zabel, B. Reimer, B. Mehler,
S. Seneff, J. Glass, and J. Coughlin. City Browser: developing a conversational
automotive HMI. CHI, 2009.

[13] A. Gruenstein and S. Seneff. Context-sensitive language modeling for large sets of
proper nouns in multimodal dialogue systems. Proc. IEEE/ACL 2006 Workshop
on Spoken Language Technology, 2006.

[14] C. Gutwin and C. Fedak. Interacting with big interfaces on small screens: a com-
parison of fisheye, zoom, and panning techniques. ACM International Conference
Proceeding Series, 62, 2004.

[15] I. Hetherington. A multi-pass, dynamic-vocabulary approach to real-time, large-
vocabulary speech recognition. Proc. Interspeech, pages 545–548, 2005.

[16] M. Johnston, S. Bangalore, G. Vasireddy, A. Stent, P. Ehlen, M. Walker, S. Whit-
taker, and P. Maloor. MATCH: an architecture for multimodal dialogue systems.
Proceedings of the 40th Annual Meeting on Association for Computational Lin-
guistics, pages 376 – 383, 2002.

[17] A. Kittur, E. Chi, and B. Suh. Crowdsourcing user studies with Mechanical
Turk. Conference on Human Factors in Computing Systems, 2008.

[18] J. Ledlie, B. Odero, E. Minkov, I. Kiss, and J. Polifroni. Crowd translator: on
building localized speech recognizers through micropayments. ACM SIGOPS
Operating Systems Review, 2010.

[19] S. Lee and S. Zhai. The performance of touch screen soft buttons. Human
Factors in Computing Systems, 2009.

[20] M. Marge, S. Banerjee, and A. Rudnicky. Using the Amazon Mechanical Turk
for transcription of spoken language. ICASSP, 2010.

[21] G. Matthias. Incremental speech understanding in a multimodal web-based spo-
ken dialogue system. Master’s thesis, MIT Department of Electrical Engineering
and Computer Science, 2009.

[22] I. McGraw, C. Lee, I. Hetherington, S. Seneff, and J. Glass. Collecting voices
from the cloud. Language Resources Evaluation Conference, 2010.

[23] S. Novotney and C. Callison-Burch. Cheap, fast and good enough: automatic
speech recognition with non-expert transcription. NAACL, 2010.

[24] S. Oviatt. Multimodal interactive maps: designing for human performance.
Human-Computer Interaction, 12:93–129, 1997.

[25] L. Reeves, J. Lai, J. Larson, S. Oviatt, T. Balaji, S. Buisine, P. Collings, P. Co-
hen, B. Kraal, J. Martin, M. McTear, T. Raman, K. Stanney, H. Su, and
Q. Wang. Guidelines for multimodal user interface design. Communications
of the ACM, pages 57 – 59, 2004.

72

[26] S. Seneff and J. Polifroni. Dialogue management in the Mercury flight reservation
system. Proc. Dialogue Workshop, ANLP-NAACL, 2000.

[27] P. Tarasewich. Designing mobile commerce applications. Communications of the
ACM, pages 57 – 60, 2003.

[28] L. Tijerina, E. Parmer, and M. Goodman. Driver workload assessment of route
guidance system destination entry while driving: a test track study. Proceedings
of the 5th World Congress on Intelligent Transportation Systems, 1998.

[29] M. Turunen, J. Hakulinen, A. Kainulainen, A. Melto, and T. Hurtig. Design of
a rich multimodal interface for mobile spoken route guidance. Interspeech, 2007.

[30] K. Vertanen. Recognition and correction of voice web search queries. Proceedings
of the International Conference on Spoken Language Processing, pages 1863–
1866, 2009.

[31] K. Vertanen and D. MacKay. Speech Dasher: fast writing using speech and gaze.
CHI: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2010.

[32] K. Young and M. Regan. Driver distraction: a review of the literature. Report
(Monash University. Accident Research Centre), 2003.

73

