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Abstract

We develop logarithmic approximation algorithms for extremely general formulations of

multiprocessor multi-interval offline task scheduling to minimize power usage. Here each

processor has an arbitrary specified power consumption to be turned on for each possible

time interval, and each job has a specified list of time interval/processor pairs during which

it could be scheduled. (A processor need not be in use for an entire interval it is turned

on.) If there is a feasible schedule, our algorithm finds a feasible schedule with total power

usage within an O(log n) factor of optimal, where n is the number of jobs. (Even in a

simple setting with one processor, the problem is Set-Cover hard.) If not all jobs can be

scheduled and each job has a specified value, then our algorithm finds a schedule of value

at least (1 - c)Z and power usage within an O(log(1/E)) factor of the optimal schedule of

value at least Z, for any specified Z and c > 0. At the foundation of our work is a general

framework for logarithmic approximation to maximizing any submodular function subject

to budget constraints.
We also introduce the online version of this scheduling problem, and show its relation

to the classical secretary problem. In order to obtain constant competitive algorithms for

this online version, we study the secretary problem with submodular utility function. We
present several constant competitive algorithms for the secretary problem with different
kinds of utility functions.

Thesis Supervisor: Erik D. Demaine
Title: Associate Professor
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Chapter 1

Introduction

Power management systems aim to reduce energy consumption while keeping the perfor-

mance high. The motivations include battery conservation (as battery capacities continue

to grow much slower than computational power) and reducing operating cost and environ-

mental impact (both direct from energy consumption and indirect from cooling).

Processor energy usage A common approach in practice is to allow processors to enter

a sleep state, which consumes less energy, when they are idle. All previous work assumes

a simple model in which we pay zero energy during the sleep state (which makes approx-

imation only harder), a unit energy rate during the awake state (by scaling), and a fixed

restart cost a to exit the sleep state. Thus the total energy consumed is the sum over all

awake intervals of a plus the length of the interval.

There are many settings where this simple model may not reflect reality, which we

address in this paper:

1. When the processors are not identical: different processors do not necessarily con-

sume energy at the same rate, so we cannot scale to have all processors use a unit

rate.

2. When the energy consumption varies over the time: keeping a processor active for

two intervals of the same length may not consume the same energy. One example

is if we optimize energy cost instead of actual energy, which varies substantially in



energy markets over the course of a day. Another use for this generalization is if a

processor is not available for some time slots, which we can represent by setting the

cost of the processor to be infinity for these time slots.

3. When the energy consumption is an arbitrary function of its length: the growth in

energy use might not be an affine function of the duration a processor is awake. For

example, if a processor stays awake for a short time, it might not need to cool with a

fan, saving energy, but the longer it stays awake, the faster the fan may need to run

and the more energy consumed.

We allow the energy consumption of an awake interval to be an arbitrary function of the

interval and the processor. We also allow the processor to be idle (but still consume energy)

during such an interval. As a result, our algorithms automatically choose to combine mul-

tiple awake intervals (and the intervening sleep intervals) together into one awake interval

if this change causes a net decrease in energy consumption.

Multi-interval task scheduling Most previous work assumes that each task has an arrival

time, deadline, and processing time. The goal is then to find a schedule that executes all

tasks by their deadlines and consumes the minimum energy (according to the notion above).

This setup implicitly assumes identical processors.

We consider a generalization of this problem, called multi-interval scheduling, in which

each task has a list of one or more time intervals during which it can execute, and the

goal is to schedule each job into one of its time intervals. The list of time intervals can

be different for each processor, for example, if the job needs specific resources held by

different processors at different times.

Prize-collecting version All previous work assumes that all jobs can be scheduled using

the current processors and available resources. This assumption is not necessarily satisfied

in many practical situations, when jobs outweigh resources. In these cases, we must pick a

subset of jobs to schedule.

We consider a general weighted prize-collecting version in which each job has a spec-

ified value. The bicriterion problem is then to find a schedule of value at least Z and



minimum energy consumption subject to achieving this value.

Online Setting We introduce an interesting version of our problem which is closely re-

lated to the classical secretary problem. Assume that you have a set of tasks to do, and the

processors arrive one by one. You want to pick a number of processors (according to your

budget) to do the tasks, i.e. say you can pick k processors. We can see the processors as

some secretaries, and we want to hire k secretaries to do the tasks. The secretaries arrive

one at a time, and we have to decide immediately whether we want to hire the arrived secre-

tary or not. At first we show how to characterize this problem using submodular functions

in classical secretary problem. We later present constant competitive algorithms for this

problem.

Our results We obtain in Section 2.2 an O(log n) -approximation algorithm for schedul-

ing n jobs to minimize power consumption. For the prize-collecting version, we obtain

in Section 2.3 an O(log(1/c))-approximation for scheduling jobs of total value at least

(1 - E)Z, comparing to an adversary required to schedule jobs of total value at least Z

(assuming such a schedule exists), for any specified Z and c > 0. Both of our algorithms

allow specifying an arbitrary processor energy usage for each possible interval on each

processor, specifying an arbitrary set of candidate intervals on each processor for each job,

and specifying an arbitrary value for each job.

These results are all best possible assuming P $ NP: we prove in Appendix .1 that

even simple one-processor versions of these problems are Set-Cover hard.

Our approximation algorithms are based on a technique of independent interest. In

Section 2.1, we introduce a general optimization problem, called submodular maximiza-

tion with budget constraints. Many interesting optimization problems are special cases of

this general problem, for example, Set Cover and Max Cover [33,43] and the submodular

maximization problems studied in [38, 39]. We obtain bicriteria ((1 - e), O(log 1/e))-

approximation factor for this general problem.

In Section 2.2, we show how our schedule-all-jobs problem can be formulated by a

bipartite graph and its matchings. We define a matching function in bipartite graphs, and



show that this function is submodular. Then the general technique of Section 2.1 solves the

problem.

In Section 2.3, we show how the prize-collecting version of our scheduling problem can

be formulated with a bipartite graph with weights on its nodes. Again we define a matching

function in these weighted bipartite graphs, and with a more complicated proof, show that

this function is also submodular. Again the general technique of Section 2.1 applies.

The general algorithm in Section 2.1 has many different and independent applications

because submodular functions arise in a variety of applications. They can be seen as utility

and cost functions of bidding auctions in game theory application [16]. These functions

can be seen as covering functions which have many applications in different optimization

problems: Set Cover functions, Edge Cut functions in graphs, etc.

Previous work The one-interval one-processor case of our problem with simple energy

consumption function (a plus the interval length) remained an important and challenging

open problem for several years: it was not even clear whether it was NP-hard.

The first main results for this problem considered the power-saving setting, which is

easier with respect to approximation algorithms. Augustine, Irani, and Swamy [5] gave an

online algorithm, which schedules jobs as they arrive without knowledge of future jobs,

that achieves a competitive ratio of 3 + 2/2. (The best lower bound for this problem

is 2 [9,31].)

For the offline version, Irani, Shukla, and Gupta [31] obtained a 3-approximation al-

gorithm. Finally, Baptiste [9] solved the open problem: he developed a polynomial-time

optimal algorithm based on an sophisticated dynamic programming approach. Demaine et

al. [13] later generalized this result to also handle multiple processors.

The multi-interval case was considered only by Demaine et al. [13], after Baptiste men-

tioned the generalization during his talk at SODA 2006. They show that this problem is

Set-Cover hard, so it does not have an o(log n)-approximation. They also obtain a 1 + a-

approximation for the multi-interval multi-processor case, where a is the fixed restart cost.

Note that a can be as large as n, so there is no general algorithm with approximation factor

better than E (n) in the worst case (when a is around n).



However, both the Baptiste result [9] and Demaine et al. results [13] assume that pro-

cessors enter the sleep state whenever they go idle, immediately incurring an a cost. For

this reason, the problem can also be called minimum-gap scheduling. But this assumption

seems unreasonable in practice: we can easily leave the processor awake during sufficiently

short intervals in order to save energy. As mentioned above, the problem formulations con-

sidered in this paper fix this issue.



Chapter 2

Scheduling with SubModular

Maximization

2.1 Submodular Maximization with Budget Constraints

Submodular functions arise in a variety of applications. They can represent different forms

of functions in optimization problems. As a game theoretic example, both profit and bud-

get functions in bid optimization problems are Set-Cover type functions (including the

weighted version) which are special cases of submodular functions. As another application

of these functions in online algorithms, we can mention the secretary problem in different

models, the bipartite graph setting in [37], and the submodular functions setting in [1].

The authors of [39] studied the problem of submodular maximization under matroid and

knapsack constraints (which can be seen as some kind of budget constraints), and they give

the first constant factor approximation when the number of constraints is constant. We try to

find solutions with more utility by relaxing the budget constraints. We give the first (1 - E)-

approximation for utility maximization with relaxing the budget constraint by log (1/c). In

our model, we allow the cost of a subset of items be less than their sum. This way we can

cover more general cases (nonlinear or submodular cost functions). All previous works

on submodular functions assume that the cost function is linear. Therefore they can not

cover many interesting optimization problems including the scheduling problems we are

studying in this paper. Later we combine this result with other techniques to give optimal



scheduling strategies for energy minimization problem with parallel machines.

Now we formulate the problem of submodular maximization with budget constraints.

Definition 1. Let U = {ai, a2 ,... , an} be a set of n items. We are given a set S =

{S1, S2,... , Sm} C 2U specifying m allowable subsets of U that we can add to our solu-

tion. We are also given costs C1, C2 , ... , Cm for the subsets, where Si costs Ci. Finally,

we are given a utility function F : 2 U -+ R defined on subsets of U. We require that F is

submodular meaning that, for any two subsets A, B of U, we have

F(A)+ F(B) ;> F(AnB)+ F(A U B).

We also require that F is monotone (being a utility function) meaning that, for any subsets

A C B C U, we have F(A) < F(B).

The problem is to choose a collection of the input subsets with reasonable cost and

utility. The cost of a collection of subsets is the sum of their costs. The utility of these subsets

is equal to the utility of their union. In particular; if we pick k subsets Si, S2,. . . , Sk, their

cost is Ek Ci and their utility is equal to F(Uk IS,). We are given a utility threshold x,

and the problem is to find a collection with utility at least x having minimum possible cost.

Note that all previous work assumes that the set S of allowable subsets consists only of

single-item subsets, namely {a1 }, {a2 }, ... , {a. Equivalently, they assume that the cost

of picking a subset of items is equal to the sum of the costs of the picked items (a linear cost

function). By contrast, we allow that there be other subsets that we can pick with different

costs, but that all such subsets are explicitly given in the input. The cost of a subset might

be different from the sum of the costs of the items in that subset; in practice, we expect the

cost to be less than the sum of the item costs.

We need the following result in the proof of the main algorithm of this section. Similar

lemmas like this are proved in the literature of submodular functions. But we need to prove

this more general lemma.

Lemma 2.1.1. Let T be the union of k subsets S1, S2, ... , Sk, and S' be another arbitrary



subset. For a monotone submodular function F defined on these subsets, we have that

k

([ F(S'U S) - F(S')] F(T) - F(S').
j=1

Proof Let T' be the union of T and S'. We prove that jJ[F(S' U S) - F(S')]

F(T') - F(S') which also implies the claim. Define subset Sj be (U'S 3,) U S' for any

0 i < k. We prove that

F(S' U Sj) - F(S') > F(S;) - F(S>_1).

Because F is submodular, we know that F(A) + F(B) > F(A U B) + F(A n B) for

any pair of subsets A and B. Let A be the set S' U Si, and B be the set S>i1. Their union

is Sf, and their intersection is a superset of S'. So we have that

F(S' U Sj) + F(S>_1) F(Si) + F([S' u S] n [Si_-])

> F(St) + F(S').

This completes the proof of the inequality, F(S' U Si) - F(S') F(S) - F(S>_1).

If we sum this inequality over all values of 1 < i < k, we can conclude the claim:

k k

Z F(S' U Sj) - F(S') > E F(S) - F(Sj_1)
i=1 i=1

= F(T') - F(S')

F(T) - F(S').

Now we show how to find a collection with utility (1 - c)x and cost O(log (1/c))

times the optimum cost. Later we show how to find a subset with utility x in our par-

ticular application, scheduling with minimum energy consumption. It is also interesting

that the following algorithm generalizes the well-known greedy algorithm for Set Cover

in the sense that the Set-Cover type functions are special cases of monotone submodular



functions. In order to use the following algorithm to solve the Set Cover problem with a

logarithmic approximation factor (which is the best possible result for Set Cover), one just

needs to set 6 to some value less than 1 over the number of items in the Set-Cover instance.

Lemma 2.1.2. If there exists a collection of subsets (optimal solution) with cost at most

B and utility at least x, there is a polynomial time algorithm that can find a collection of

subsets of cost at most O(B log (1/c)), and utility at least (1 - c)x for any 0 < E < 1.

Proof The algorithm is as follows. Start with set S = 0. Iteratively, find the set Si with

maximum ratio of min{x, F(S U Si)} - F(S)/C for 1 < i < m where min{a, b} is

the minimum of a and b. In fact we are choosing the subset that maximizes the ratio of

the increase in the utility function over the increase in the cost function, and we just care

about the increments in our utility up to value x. If a subset increases our utility to some

value more than x, we just take into account the difference between previous value of our

utility and x, not the new value of our utility. We do this iteratively till our utility is at least

(1- E)x.

We prove that the cost of our solution is 0(B log (1/c)). Assume that we pick some

subsets like S', S2,... , Sk, respectively. We define the subsets of our solution into log (1/6)

phases. Phase 1 < i < log (1/c), ends when the utility of our solution reaches (1 - 1/2')x,

and starts when the previous phase ends. In each phase, we pick a sequence of the k' subsets

S, , . . . , Sk,. We prove that the cost of each phase is 0(B), and therefore the total cost

is O(B log (1/c)) because there are log (1/c) phases.

Let S', be the last subset we pick in phase i. So F(UJ>1 S,) is our utility at the end of

phase i, and is at least (1 - 1/2i)x, and F(U%- S ) is less than (1 - 1/2')x. So we pick

subsets S' _+, S'_2, ... , S' in phase i. We prove that the ratio of utility per cost of

all subsets inserted in phase i is at least ./2 Assume that we are in phase i, and we want

to pick another set (phase i is not finished yet). Let S' be our current set (the union of all

subsets we picked up to now). F(S') is less than (1 - 1/2')x. We also know that there

exists a solution (optimal solution) with cost B and utility x. Without loss of generality, we

assume that this solution consists of k subsets Si, S2,. . . , Sk. Let T be the union of these



k subsets. Using lemma 2.1.1, we have that

k

Z[F(S' U Sj) - F(S')] > F(T) - F(S') > x/2.
j=1

If F(S' U Sj) is at most x for any 1 < j k, we can say that

k

S[min{x, F(S' U Sj)} - F(S')]
j=1

k

[ F( S' U Sj) - F(S')] > F(T) - F(S') > x/2'.
j= 1

Otherwise there is some j for which F(S' u Sj) is more than x. So min{x, F(S' U Sj)} -

F(S') is at least x/2i because F(S') is less than (1 - 1/2')x. So in both cases we can claim

the above inequality. We also know that

k

E C, B,
j= 1

where Cj is the cost of set Sj. In every iteration, we find the subset with the maximum

ratio of utility per cost (the increase in utility per the cost of the subset). Note that we also

consider these k subsets S1, S2, ... , Sk as candidates. So the ratio of the subset we find

in each iteration is not less than the ratio of each of these k subsets. The ratio of subset

Sj is [min{x, F(S' U Sj)} - F(S')]/Cj. The maximum ratio of these k subsets is at least

the sum of the nominators of the k ratios of these sets over the sum of their denominators

which is
Z=1[min{x, F(S' U Sj)} - F(S')] X

E =1 Ci 2i B

So in phase i, the utility per cost ratio of each subset we add is at least x . Now we can

bound the cost of this phase. We pick subsets S _g ,i 2 S'-2, ... , S', in phase i. Let

uo be our utility at the beginning of phase i. In other words, uo is F(U 1 Sj). Assume

we pick 1 subsets in this phase, i.e., 1 is ai - ai_1. Let u3 be our utility after inserting jth

subset in this phase where 1 < j < 1. Note that we stop the algorithm when our utility



reaches (1 - E)x. So our utility after adding the first 1 - 1 subsets is less than x. Our utility

at the end of this phase, ul might be more than x. For any 1 < j 1 - 1, the utility per

cost ratio is uj - uj_1 divided by the cost of the jth subset. For the last subset, the ratio

is min{x, ul} - u1_1 divided by the cost of the last subset of this phase. According to the

definition of the phases, our utility at the beginning of this phase, uo is at least (1- 1/2- 1 )x.

So we have that
i-1

min{x, ul} - u_1 + uj - =j_1 =
j=1

min{x, ul} - uo x - (1 - 1/2'- 1)x = x/2'- 1 .

On the other hand, we know that the utility per cost ratio of all these subsets is at least

x. Therefore the total cost of this phase is at most

[min{x, ul} - u1_1 + iu - u1_] x/24-

x/2iB - x/2iB'

which is at most 2B. So the total cost in all phases is not more than log (1/c) 2B. E

2.2 Scheduling to Minimize Power in Parallel Machines

We proved how to find almost optimal solutions with reasonable cost when the utility func-

tions are submodular. Here we show how the scheduling problem can be formulated as an

optimization problem with submodular utility functions.

First we explain the power minimization scheduling problem in more detail.

Definition 2. There are p processors P1, P2,.. , Pp and n jobs ji, j2, .. . , in. Each pro-

cessor has an energy cost c(I) for every possible awake interval I. Each job ji has a unit

processing time (which is equivalent to allowing pre-emption), and set T of valid time

slot/processor pairs. (Unlike previous work, T does not necessarily form a single interval,

and it can have different valid time slots for different processors.) A feasible schedule con-

sists of a set of awake time intervals for each processor and an assignment of each job to

an integer time and one of the processors, such that jobs are scheduled only during awake

time slots (and during valid choices according to T) and no two jobs are scheduled at the



same time on the same processor The cost of such a schedule is the sum of the energy costs

of the awake intervals of all processors.

In the simple case which has been studied in [9, 13], it is assumed that the cost of an

interval is a fixed amount of energy (restart cost a) plus the size of the interval. We assume

a very general case in which the cost of keeping a machine active during an interval is a

function of that machine, and the interval. For instance, it might take more energy to keep

some machines active comparing to other machines, or some time intervals might have

more cost. So there is a cost associated with every pair of a time interval and a machine.

These costs might be explicitly given in the input, or can be accessed through a query

oracle, i.e., when the number of possible intervals are not polynomial.

If we pick a collection of active intervals for each machine at first, we can then find and

schedule the maximum number of possible jobs that can be all together scheduled in the

active time slots without collision using the maximum bipartite matching algorithms. So

the problem is to find a set of active intervals with low cost such that all jobs can be done

during them.

Let U be the set of all time slots in different machines. In fact for every unit of time,

we put p copies in U, because at each unit of time, we can schedule p jobs in different

machines, so each of these p units is associated with one of the machines. We can define

a function F over all subsets of U as follows. For every subset of time slot/processor

pairs like S C U, F(S) is the maximum number of jobs that can be scheduled in time

slot/processor pairs of S. Our scheduling problem can be formulated as follows. We want

to find a collection of time intervals I1, I2,..- , Ik with minimum cost and F(Uk11) = n

(this means that all n jobs can be scheduled in these time intervals). Note that each I, is a

pair of a machine and a time interval, i.e., I1 might be (P2, [3, 6]) which represents the time

interval [3, 6] in machine P2. The cost of each Ii can be accessed from the input or a query

oracle. The cost of this collection of intervals is the sum of the costs of the intervals. We

just need to prove that function F is monotone and submodular. The monotonicity comes

from its definition. The submodularity proof is involved, and needs some graph theoretic

Lemmas. Now we can present our main result for this broad class of scheduling problems.



Theorem 2.2.1. If there is a schedule with cost B which schedules all jobs, there is a

polynomial time algorithm which schedules all jobs with cost O(B log n).

Proof We are looking for a collection of intervals with utility at least n, and cost O(B log n).

Lemma 2.2.2 below states that F (defined above) is submodular. Using the algorithm of

Lemma 2.1.2, we can find a collection of time intervals with utility at least (1 - c)n and

cost at most O(B log (1/c)) because there exists a collection of time intervals (schedule)

with utility n (schedules all n jobs) and cost B. Let E be 1/(n + 1). The cost of the result

of our algorithm is O(B log (n + 1)), and its utility is at least (1 - 1/(n + 1))n > n - 1.

Because the utility function F always take integer values, the utility of our result is also n.

So we can find a collection of time intervals that all jobs can be scheduled in them. We just

need to run the maximum bipartite matching algorithm to find the appropriate schedule.

This means that our algorithm also schedules all jobs, and has cost O(B log (n + 1)). E

There is another definition of submodular functions that is equivalent to the one we

presented in the previous section. We will use this new definition in the following lemma.

Definition 3. A function F is submodular if for every pair of subsets A C B, and an

element z, we have:

F(A U {z}) - F(A) > F(B U {z}) - F(B)

Now we just need to show that F is submodular. We can look at this function as

the maximum matching function of subgraphs of a bipartite graph. Construct graph G as

follows. Consider time slots of U as the vertices of one part of G named X. Put n vertices

representing the jobs in the other side of G named Y. Note that the time slots of U are

actually pairs of a time unit and a processor. Put an edge between one vertex of X and a

vertex of Y if the associated job can be scheduled in that time slot (which is a pair of a time

unit and a processor), i.e., if the job can be done in that processor and in that time unit.

Now every subset of S C X is a subset of time slots, and F(S) is the maximum number of

jobs that can be executed in S. So F(S) is in fact the maximum cardinality matching that

saturates only vertices of S in part X (it can saturate any subset of vertices in Y). A vertex



is saturated by a matching if one of its incident edges participates in the matching. Now we

can present this submodularity Lemma in this graph model.

Lemma 2.2.2. Given a bipartite graph G with parts X and Y. For every subset S C X,

define F(S) to be the maximum cardinality matching that saturates only vertices of S in

part X. The function F is submodular.

Proof We just need to prove that, for two subsets A C B C X and a vertex v in X, the

following inequality holds:

F(A U {v}) - F(A) ;> F(B U {v}) - F(B).

Let M1 and M 2 be two maximum matchings that saturate only vertices of A and B

respectively. Note that there might be more than just one maximum matching in each case

(for sets A and B). We first prove that there are two such maximum matchings that M1 is

a subset of M 2, i.e., all edges in matching M1 also are in matching M 2. This can be proved

using the fact that A C B as follows.

Consider two maximum matchings Mi and M2 with the maximum number of edges in

common. The edges of M 1AM 2 form a bipartite graph H where A1AA 2 is A1 U A2 - Ai n

A2 for every pair of sets A1 and A 2. Because it is a disjoint union of two matchings, every

vertex in H has degree 0, 1 or 2. So H is a union of some paths and cycles. We first prove

that there is no cycle in H. We prove this by contradiction. Let C be a cycle in H. The

edges of C are alternatively in M1 and M2. All vertices of this cycle are either in part Y

of the graph or in A C X. Now consider matching Mj = M 1AC instead of M 1. It also

saturates only some vertices of A in part X, and has the same size of M 1. Therefore Mj is

also a maximum matching with the desired property, and has more edges in common with

M 2 . This contradiction implies that there is no cycle in H.

Now we study the paths in H. At first we prove that there is no path in H with even

number of edges. Again we prove this by contradiction. The edges of a path in H alternate

between matchings M1 and M2. Let P be a path in H with even number of edges. This

path has equal number of edges from M1 and M 2. Now if we take M2 = M 2AP instead

of M2, we have a new matching with the same number of edges, and it has more edges in



common with M1 . This contradiction shows that there is no even path in H.

Finally we prove that all other paths in H are just some single edges from M 2, and

therefore there is no edge from M1 in H. This completes the proof of the claim that M1 is a

subset of M2. Again assume that there is a path P' with odd and more than one number of

edges. Let ei, e2 ,... , e21+1 are the edges of P'. The edges with even index are in M1 , the

rest of the edges are in M2 otherwise Mj - M2 AP' would be a matching for set B which

has more edges than M 2 (this is a contradiction). Because P' is an odd path, we can assume

that it starts from part Y, and ends in part X without loss of generality. Now if we delete

edges e2 , e4 , ... , e2l from M 1, and insert edges ei, e3 , ... , e21- 1 instead, we reach a new

matching M,. This matching uses a new vertex from Y, but the set of saturated vertices of

X in matching M1 is the same as the ones in M1 . These two matchings also have the same

size. But Mj has more edges in common with M 2. This is also contradiction, and implies

that there is no such a path in H. So M1 is a subset of M2 .

We are ready to prove the main claim of this theorem. Note that we have to prove this

inequality:

F(A U {v}) - F(A) > F(B U {v}) - F(B).

We should prove that if adding v to B increases its maximum matching, it also increases

the maximum matching of A. Let M3 be the maximum matching of B U {v}. Let H' be the

subgraph of G that contains the edges of M 2AM 3. Because M3 has more edges than M 2 ,

there exists a path Q in H' that has more edges from M3 than M 2 (cycles have the same

number of edges from both matchings). The vertex v should be in path Q, otherwise we

could have used the path Q to find a matching in B greater than M2, i.e., matchings M2AQ

could be a greater matching for set B in that case which is a contradiction.

The degree of v in H is 1, because it does not participate in matching M 2, does partic-

ipate in M 3. So v can be seen as the starting vertex of path Q. Let ei, e2 , .. . , e2 /+1 be the

edges of Q. The edges e2, e4, ... , C21 are in M2, and some of them might be in M 1. Let

0 < i < 1' be the maximum integer number for which all edges e2, e4, ... , e2i are in M1 .

If e2 is not in M 1, we set i to be 0. If we remove edges e2, e4 , ... , e2 from M 1, and insert

edges e1, e3, ... , e2i+1 instead, we reach a matching for set A U {v} with more edges than



M1 . So adding v to A increases the size of its maximum matching.

Now the only thing we should check is that edges ei, e3 , . . , e2 i+1 does not intersect

with other edges of M1 . Let v = vo, v1 , v2, ... , v21 +1 be the vertices of Q. Because we

remove edges e2, e4, .. . , e2i from M 1, we do not have to be worried about inserting the

first i edges ei, e3 , ... , e2 - 1. The last edge we add is e2i+1 = (v2i, v2 +1 ). If v2i+1 is not

saturated in M 1, there will be no intersection. So we just need to prove that v 2i+1 is not

saturated in M 1.

If i is equal to ', the vertex v2 i+1 = v 21+1 is not saturated in M2. Because M1 is a

subset of M 2, the vertex v2i+1 is also not saturated in M 1.

If i is less than ', the vertex v2i+1 is saturated in M2 by edge e2i+ 2 . Assume v2i+1

is saturated in Mi by an edge e'. The edge e' should be also in M 2 because all edges

of M1 are in M 2. The edge e' intersects with e2i+2, so e' has to be equal to e2i+ 2. The

definition of value i implies that e2i+ 2 should not be in M1 (we pick the maximum i with

the above property). This contradiction shows that the vertex v2i+1 is not saturated in M 1,

and therefore we get a greater matching in A U {v} using the changes in M1 . D

2.3 Prize-Collecting Scheduling Problem

We introduce the prize-collecting version of the scheduling problems. All previous work

assumes that we can schedule all jobs using the existing processors. There are many cases

that we can not execute all jobs, and we have to find a subset of jobs to schedule using low

energy. There might be priorities among the jobs, i.e., there might be more important jobs

to do. We formalize this problem as follows.

As before, there are P processors and njobs. Each job ji has a set T of time slot/processor

pairs during which it can execute. Each job ji also has a value zi. We want to schedule a

subset of jobs S with value at least a given threshold Z, and with minimum possible cost.

The value of set S is the sum of its members' values, and it should be at least Z. Following

we prove that there is a polynomial-time algorithm which finds a schedule with value at

least (1 - c)Z and cost at most O(log (1/c)) times the optimum solution. Note that the

optimum solution has value at least Z.



Later in this section, we show how to find a solution with utility at least Z, and loga-

rithmic approximation on the energy consumption (cost).

Theorem 2.3.1. If there is an schedule for the prize-collecting scheduling problem with

value at least Z and cost B, there is an algorithm which finds a schedule with value at least

(1 - e)Z and cost at most O(B log (1/6)).

Proof Like the simple version of the scheduling problem, we construct a bipartite graph,

and relate it to our algorithm in Lemma 2.1.2. The difference is that the bipartite graph

here has some weights (job values) on the vertices of one of its parts. And it makes it

more complicated to prove that the corresponding utility function is submodular. At first

we explain the construction of the bipartite graph, and show how to reduce our problem to

it. Then we use Lemma 2.3.2 to prove that the utility function is submodular.

We make graph G with parts X and Y. The vertices of part X represent the time

slot/processor pairs. So for each pair of a time unit in a processor, we have a vertex in

X. On the other part, Y, we have the n jobs. The edges connect jobs to their sets of time

slot/processor pairs, i.e., job ji has edges only to time slot/processors pairs in T, so a job

might have edges to different time units in different processors. The only difference is that

each edge has a weight in this graph. Each edge connects a job to a time slot/processor

pair, the weight of an edge is the value of its job. Every schedule is actually a matching in

this bipartite graph, and the value of a matching is the sum of the values of the jobs that are

scheduled in it. This is why we set the weight of an edge to the value of its job.

The problem again is to find a collection of time intervals for each processor, and sched-

ule a subset of jobs in those intervals such that the value of this subset is close to Z, and the

cost of the schedule is low. If we have a subset of intervals, we can find the best subset of

jobs to schedule in it. This can be done using the maximum weighted bipartite matching.

The only thing we have to prove is that the utility function associated with this weighted

bipartite graph is submodular. This is also proved in Lemma 2.3.2. IZ

Lemma 2.3.2. Given a bipartite graph G with parts X and Y. Every vertex in Y has a

value. For every subset S C X, define F(S) be the maximum weighted matching that

saturates only vertices of S in part X. The weight of a matching is the sum of the values of



the vertices saturated by this matching in Y. The function F is submodular

Proof Let A and B be two subsets of X such that A C B. Let v be a vertex in X. We

have to prove that:

F(A U {v}) - F(A) > F(B U {v}) - F(B)

Let M1 and M 2 be two maximum weighted matchings that saturate only vertices of A

and B in X respectively. Among all options we have, we choose two matchings M1 and

M 2 that have the maximum number of edges in common. We prove that every saturated

vertex in M1 is also saturated in M 2 (note that we can not prove that every edge in M1 is

also in M2). We prove this by contradiction.

The saturated vertices in M1 are either in set A or in set Y. At first, let v' be a vertex in

A that is saturated in M 1, and not saturated in M 2. Let u' be its match in part Y (v' is a time

slot/processor pair, and u' is a job). The vertex u' is saturated in M2 otherwise we could

add edge (v', u') to matching M2, and get a matching with greater value instead of M2. So

u' is matched with a vertex of B like v" in matching M 2. If we delete the edge (v", u') from

matching M2, and use edge (v', u') instead, the value of our matching remains unchanged,

but we get a maximum matching instead of M2 that has more edges in common with M1

which is contradiction. So any vertex in X that is saturated in M1 is also saturated in M2 .

The other case is when there is vertex in Y like u' that is saturated in M 1, and not

saturated in M2. The vertex u' is matched with vertex w c- A in matching M1 . Again if w

is not saturated in M2, we can insert edge (w, u') to M 2, and get a matching with greater

value. So w should be saturated in M2. Let u" be the vertex matched with w in M2. For

now assume that u" is not saturated in M1 . Note that u' and u" are some jobs with some

values, and w is a time slot/processor pair. If the values of jobs u' and u" are different, we

can switch the edges in one of the matchings M1 or M 2, and get a better matching. For

example, if the value of u' is greater than u", we can use edge (w, u') instead of (w, u") in

matching M 2, and increase the value of M 2. If the value of u" is greater than u', we can

use edge (w, u") instead of (w, u') in matching M1 , and increase the value of M 1. So the

value of u' and u" are the same, we again can use (w, u") instead of (w, u') in matching



M 1, and get a matching with the same value but more edges in common with M 2. This is

a contradiction. So u" should be saturated in M1 as well, but if we continue this process

we find a path P starting with vertex u'. The edges of this path alternate between M1 and

M 2 . Path P starts with an edge in M1, so it can not end with another edge in M1 otherwise

we can take M2AP instead of M2 to increase the size of our matching for set B which is

a contradiction. So path P starts with vertex u' and an edge in M 1, and ends with an edge

in M2. We have the same situation as above, and we can reach the contradiction similarly

(just take the last vertex of the path as u"). So we can say that all saturated vertices in M1

are also saturated in M 2.

Despite the unweighted graphs, F(A U {v}) - F(A) and F(B U {v}) - F(B) might

take values other than zero or one.

If M2 is also a maximum matching for set B U {v}, we do not need to prove anything.

Because F(B U {v}) would be equal to F(B) in that case, and we know that F(A U {v})

is always at least F(A). So assume that M2 is a maximum matching for set B U {v} that

has the maximum number of edges in common with M2, and its value is more than the

value of M2. Consider the graph H that consists of edges M2AM 2. We know that H is

union of some paths and cycles. We can prove that H is only a path that starts with vertex

v. In fact, if there exists a connected component like C in H that does not include vertex

v, we can take matching M2AC which is a matching for set B U {v} with more edges in

common with M 2. Note that the value of matching M2AC can not be less than the value

of M2 otherwise we can use the matching M 2AC for set B instead of matching M 2, and

get a greater value which is a contradiction (M2 is a maximum value matching for set B).

So graph H has only one connected component that includes vertex v. Because vertex

v does not participate in matching M2, its degree in graph H should be at most 1. We also

know that v is saturated in M2, so its degree is one in H. Therefore, graph H is only a

path P. This path starts with vertex v, and one of the edges in M2. The edges of P are

alternatively in M2 and M 2. If P ends with an edge in M 2, the set of jobs that these two

matchings, M2 and M2, schedule are the same. So their values would be also the same, and

F(BU {v}) would be equal to F(B) which is a contradiction. So path P has odd number of

edges. Let ei, e2 , .. -, e21+1 be the edges of P, and v = vO, v1 , V2,.. . , v2 1 i be its vertices.



Note that vo, v2 , .. , v21 are some time slot/processor pairs, and the other vertices are some

jobs with some values. Edges e2, e4 ,... , e2l are in M2, and the rest are in M2.

The only job that is scheduled in M2, and not scheduled in M2 is the job associated with

vertex v21+1 . Let xi be the value of the vertex v2i+1 for any 0 < i < 1. So F(BU{v})-F(B)

is equal to x1. We prove that x, is not greater than any xi for 0 < i < 1 by contradiction.

Assume x is less than x, for some i < 1. We could change the matching M2 in the

following way, and get a matching with greater value for set B. We could delete edges

e2i+2, e2i+4 , ... , e2, and insert edges e2i+3, e2i+5 , . .. , 221+1 instead. This way we schedule

job v21+1 instead of job v2 i, and increase our value by x, - xi. Because M2 is a maximum

matching for set B, this is a contradiction so x, should be the minimum of all xis.

If all edges e2, e4, ... , e2l are also in matching M 1, we can use path P to find a matching

for set A U {v} with value x, more than the value of M 1. We can take matching M1 AP for

set A U {v}. Because vertex v21+1 is not saturated in M 2, it is also not saturated in M 1. So

M 1 AP is a matching for set A U {v}. We conclude that F(A U {v}) - F(A) is at least x,

which is equal to F(B U {v}) - F(B). This completes the proof for this case.

In the other case, there are some edges among e2, e4, ... , e21 that are not in M1. Let

e2j be the first edge among these edges that is not in M 1. So all edges e2, e4, ... , 2-2

are in both M1 and M2. Note that e2j matches job v2j-1 with the time slot/processor pair

v2j in matching M 2. If job v2j- 1 is not used (saturated) in matching M 1, we can find a

matching as follows for set A U {v}. We can delete edges e2, e4 ,... , e2j-2 from M1 , and

insert edges ei, e3, ... , e2j-1 instead. This way we schedule job X2j- 1 in addition to all

other jobs that are scheduled in M 1. So the value of F(A U {v}) is at least xj_1 (the value

of job x2j-1) more than F(A). We conclude that F(A U {v}) - F(A) = xj_ 1 is at least

F(B U {v}) - F(B) = xi.

Finally we consider the case that v2 -1 is also saturated in M1 using some edge e other

than e2j. Edges e and e2j are in M1 and M2 respectively, and vertex v2j- 1 is their common

endpoint. So these two edges should come in the same connected component in the graph

M 1AM 2 . We proved that all connected components of M 1AM 2 are paths with odd number

of edges that start and end with edges in M2. Let Q be the path that contains edges e and

e2j. This path contains edges e', e ', ... , e2J, e'i = e, e' 2 , - , e'21'+1. The last edge



of this path, e',+, matches a job v' with a time slot/processor pair. Let x' be the value of v'.

Vertex v' is not scheduled in matching M 1. At first we prove that x' is at least x, (the value

of job v2i). Then we show how to find a matching for set A U {v} with value at least x'

more than the value of M1 .

If x' is less than x, we can find a matching with greater value for set B instead of M 2.

Delete edges e' = e23, e'+2, e'+4 , . - ., e' and also edges e2j± 2, e2j+4, --- , e2l from M2 ,

and insert edges e'+i = e, e'±3, --. , e'21, and edges e221i, e2 ±3, . . 21 1 to M 2 instead of

the deleted edges. In the new matching, job v' with value x' is not saturated any more, but

the vertex v2 1 i with value x, is saturated. So the value of the new matching is x, - x' > 0

more than the value of M 2 which is a contradiction. So x' is at least x1.

Now we prove that there is a matching for set A U {v} with value x' more than the value

of M 1. We can find this matching as follows. Delete edges e'i = e, e'±+, .. -, e'2 ,, and

edges e 2, e4 , . . ., -2, and insert edges e'±2, e'+4, . - ., e'2 1-, and edges ei e3 , . . ,2-1

This way we schedule job v' with value x' in addition to all other jobs that are scheduled in

M 1. So we find a matching for set A U {v} with value x' more than the value of M 1.

So F(A U {v}) - F(A) is at least x'. We also know that F(B U {v}) - F(B) is equal

to x1. Because x' is at least x1, the proof is complete. 11

Now we are ready to represent our algorithm which finds an optimal solution (with

respect to values).

Theorem 2.3.3. If there is an schedule for the prize-collecting scheduling problem with

value at least Z and cost B, there is an algorithm which finds a schedule with value at least

Z and cost at most O([log n + log A] B) where 3 is the ratio of the maximum value over the

minimum value of all n jobs.

Proof Let vma, and Vmin be the maximum and minimum value among all n jobs respec-

tively. We know that Z can not be more than n - Vma. Define c to be vmi = 1

Using Theorem 2.3.1, we can find a solution with value at least (1 - E)Z and cost at most

O(Blog(nA)) = O([logn + log A]B). Let S' be this solution. If the value of S' is at

least Z, we exit and return this set as our solution. Otherwise we do the following. Note

that we just need eZ more value to reach the threshold Z, and EZ is at most Vmin. So we



just need to insert another interval which increases our value by at least Vmin. In the proof

of Lemma 2.3.2, we proved that the value of F(B U {v}) - F(B) is either zero or equal

to the value of some jobs (in the proof it was x, the value of vertex v21 -1). So if we add

an interval the value of set is either unchanged or increased by at least Vmin. So among all

intervals with cost at most B, we choose one of them that increase our value by at least

Vmin. At first note that this insertion reaches our value to Z, and our cost would be still

O([log n + log A]B).

We now prove that there exists such an interval. Note that the optimum solution consists

of some intervals S1, S2 ,. .. , Sk. The union of these intervals, T has value F(T) which is

at least Z. So F(T) is greater than the value of our solution F(S'). Using Lemma 2.1.1,

F(S' U Si) - F(S') should be positive for some 1 < i < k. We also know that the cost of

this set is not more than B because the cost of the optimum solution is not more than B.

So there exists a time interval (a set like Si) that solves our problem with additional cost at

most B. We also can find it by a simple search among all time intervals. E

Note that in the simple case studied in the literature, the values are all identical, and A

is equal to 1.



Chapter 3

Online setting and Secretary Problem

3.1 Motivations and Preliminaries

Online auction is an essence of many modem markets, particularly networked markets, in

which information about goods, agents, and outcomes is revealed over a period of time, and

the agents must make irrevocable decisions without knowing future information. Optimal

stopping theory is a powerful tool for analyzing such scenarios which generally require

optimizing an objective function over the space of stopping rules for an allocation pro-

cess under uncertainty. Combining optimal stopping theory with game theory allows us to

model the actions of rational agents applying competing stopping rules in an online market.

This first has been considered by Hajiaghayi et al. [27] which initiated several follow-up

papers (see e.g. [6-8,26,30,36]).

Perhaps the most classic problem of stopping theory is the well-known secretary prob-

lem. Imagine that you manage a company, and you want to hire a secretary from a pool of

n applicants. You are very keen on hiring only the best and brightest. Unfortunately, you

cannot tell how good a secretary is until you interview him, and you must make an irrevo-

cable decision whether or not to make an offer at the time of the interview. The problem is

to design a strategy which maximizes the probability of hiring the most qualified secretary.

It is well-known since 1963 [14] that the optimal policy is to interview the first t - 1 appli-

cants, then hire the next one whose quality exceeds that of the first t - 1 applicants, where



t is defined by ' +1  1 <E= j_; as n -+ 00, the probability of hiring the best

applicant approaches 1/e, as does the ratio t/n. Note that a solution to the secretary prob-

lem immediately yields an algorithm for a slightly different objective function optimizing

the expected value of the chosen element. Subsequent papers have extended the problem

by varying the objective function, varying the information available to the decision-maker,

and so on, see e.g., [3,24, 46, 48].

An important generalization of the secretary problem with several applications (see e.g.,

a survey by Babaioff et al. [7]) is called the multiple-choice secretary problem in which the

interviewer is allowed to hire up to k > 1 applicants in order to maximize performance of

the secretarial group based on their overlapping skills (or the joint utility of selected items in

a more general setting). More formally, assuming applicants of a set S = {ai, a2 , - - , an }

(applicant pool) arriving in a uniformly random order, the goal is to select a set of at most k

applicants in order to maximize a profit function f : 2s - R. We assume f is non-negative

throughout this paper. For example, when f(T) is the maximum individual value [22,23],

or when f(T) is the sum of the individual values in T [36], the problem has been considered

thoroughly in the literature. Indeed, both of these cases are special monotone non-negative

submodular functions that we consider in this paper. A function f : 2 -* R is called

submodular if and only if VA, B C S : f(A) + f(B) > f(A U B) + f(A n B). An

equivalent characterization is that the marginal profit of each item should be non-increasing,

i.e., f(A U {a}) - f(A) < f(B U {a}) - f(B) if B C A C S and a E S \ B. A function

f : 2S -4 R is monotone if and only if f(A) < f(B) for A C B C S; it is non-monotone

if is not necessarily the case. Since the number of sets is exponential, we assume a value

oracle access to the submodular function; i.e., for a given set T, an algorithm can query

an oracle to find its value f(T). As we discuss below, maximizing a (monotone or non-

monotone) submodular function which demonstrates economy of scale is a central and very

general problem in combinatorial optimization and has been subject of a thorough study in

the literature.

The closest in terms of generalization to our submodular multiple-choice secretary

problem is the matroid secretary problem considered by Babaioff et al. [8]. In this prob-

lem, we are given a matroid by a ground set U of elements and a collection of independent



(feasible) subsets I C 2u describing the sets of elements which can be simultaneously

accepted. We recall that a matroid has three properties: 1) the empty set is independent;

2) every subset of an independent set is independent (closed under containment)1 ; and fi-

nally 3) if A and B are two independent sets and A has more elements than B, then there

exists an element in A which is not in B and when added to B still gives an independent

set 2. The goal is to design online algorithms in which the structure of U and I is known

at the outset (assume we have an oracle to answer whether a subset of U belongs to I

or not), while the elements and their values are revealed one at a time in random order.

As each element is presented, the algorithm must make an irrevocable decision to select

or reject it such that the set of selected elements belongs to I at all times. Babaioff et

al. present an O(log r)-competitive algorithm for general matroids, where r is the rank of

the matroid (the size of the maximal independent set), and constant-competitive algorithms

for several special cases arising in practical scenarios including graphic matroids, truncated

partition matroids, and bounded degree transversal matroids. However, they leave as a main

open question the existence of constant-competitive algorithms for general matroids. Our

constant-competitive algorithms for the submodular secretary problem in this paper can

be considered in parallel with this open question. To generalize both results of Babaioff

et al. and ours, we also consider the submodular matroid secretary problem in which we

want to maximize a submodular function over all independent (feasible) subsets I of the

given matroid. Moreover, we extend our approach to the case in which 1 matroids are given

and the goal is to find the set of maximum value which is independent with respect to all

the given matroids. We present an 0(1 log2 r)-competitive algorithm for the submodular

matroid secretary problem generalizing previous results.

Prior to our work, there was no polynomial-time algorithm with a nontrivial guarantee

for the case of 1 matroids-even in the offline setting-when 1 is not a fixed constant.

Lee et al. [?] give a local-search procedure for the offline setting that runs in time 0(ni)

and achieves approximation ratio 1 + e. Even the simpler case of having a linear function

cannot be approximated to within a factor better than Q(l/ log 1) [?]. Our results imply an

iThis is sometimes called the hereditary property.
2This is sometimes called the augmentation property or the independent set exchange property.



algorithm with guarantees 0(1 log r) and 0(1 log2 r) for the offline and (online) secretary

settings, respectively. Both these algorithms run in time polynomial in 1. In case of the

knapsack constraints, the only previous relevant work that we are aware of is that of Lee et

al. [?] which gives a (5 + c)-approximation in the offline setting if the number of constraints

is a constant. In contrast, our results work for arbitrary number of knapsack constraints.

Our competitive ratio for the submodular secretary problem is ,7 . Though our algo-

rithm is relatively simple, it has several phases and its analysis is relatively involved. As

we point out below, we cannot obtain any approximation factor better than 1 - 1/e even for

offline special cases of our setting unless P = NP. A natural generalization of a submod-

ular function while still preserving economy of scale is a subadditive function f : 2s - R

in which VA, B C S : f(A) + f(B) > f(A U B). In this paper, we show that if we

consider the subadditive secretary problem instead of the submodular secretary problem,

there is no algorithm with competitive ratio 5(V i). We complement this result by giving

an 0(fri)-competitive algorithm for the subadditive secretary problem.

Background on submodular maximization Submodularity, a discrete analog of con-

vexity, has played a central role in combinatorial optimization [40]. It appears in many

important settings including cuts in graphs [25, 32, 42], plant location problems [11, 12],

rank function of matroids [15], and set covering problems [18].

The problem of maximizing a submodular function is of essential importance, with

special cases including Max Cut [25], Max Directed Cut [28], hypergraph cut problems,

maximum facility location [2, 11, 12], and certain restricted satisfiability problems [17,29].

While the Min Cut problem in graphs is a classical polynomial-time solvable problem,

and more generally it has been shown that any submodular function can be minimized in

polynomial time [32,44], maximization turns out to be more difficult and indeed all the

aforementioned special cases are NP-hard.

Max-k-Cover, where the goal is to choose k sets whose union is as large as possible,

is another related problem. It is shown that a greedy algorithm provides a (1 - 1/e)-

approximation for Max-k-Cover [35] and this is optimal unless P = NP [18]. More

generally, we can view this problem as maximization of a monotone submodular func-



tion under a cardinality constraint, that is, we seek a set S of size k maximizing f(S).

The greedy algorithm again provides a (1 - 1/e) -approximation for this problem [41]. A

1/2-approximation has been developed for maximizing monotone submodular functions

under a matroid constraint [21]. A (1 - 1/e)-approximation has been also obtained for a

knapsack constraint [45], and for a special class of submodular functions under a matroid

constraint [10].

Recently constant factor (I + c)-approximation algorithms for maximizing non-negative

non-monotone submodular functions has also been obtained [20]. Typical examples of such

a problem are max cut and max directed cut. Here, the best approximation factors are 0.878

for max cut [25] and 0.859 for max directed cut [17]. The approximation factor for max

cut has been proved optimal, assuming the Unique Games Conjecture [34]. Generalizing

these results, Vondrak very recently obtains a constant factor approximation algorithm for

maximizing non-monotone submodular functions under a matroid constraint [47]. Subad-

ditive maximization has been also considered recently (e.g. in the context of maximizing

welfare [19]).

Submodular maximization also plays a role in maximizing the difference of a mono-

tone submodular function and a modular function. A typical example of this type is the

maximum facility location problem in which we want to open a subset of facilities and

maximize the total profit from clients minus the opening cost of facilities. Approximation

algorithms have been developed for a variant of this problem which is a special case of

maximizing nonnegative submodular functions [2, 11, 12]. The current best approxima-

tion factor known for this problem is 0.828 [2]. Asadpour et al. [4] study the problem

of maximizing a submodular function in a stochastic setting, and obtain constant-factor

approximation algorithms.

Our results and techniques The main theorem in this paper is as follows.

Theorem 3.1.1. There exists a 1/ -competitive algorithm for the monotone submodular

secretary problem. More generally there exists a 8e 2 -competitive algorithm for the non-

monotone submodular secretary problem.

We prove Theorem 3.1.1 in Section 3.2. We first present our simple algorithms for the



problem. Since our algorithm for the general non-monotone case uses that of monotone

case, we first present the analysis for the latter case and then extend it for the former case.

We divide the input stream into equal-sized segments, and show that restricting the algo-

rithm to pick only one item from each segment decreases the value of the optimum by at

most a constant factor. Then in each segment, we use a standard secretary algorithm to

pick the best item conditioned on our previous choices. We next prove that these local

optimization steps lead to a global near-optimal solution.

The argument breaks for the non-monotone case since the algorithm actually approxi-

mates a set which is larger than the optimal solution. The trick is to invoke a new structural

property of (non-monotone) submodular functions which allows us to divide the input into

two equal portions, and randomly solve the problem on one.

Indeed Theorem 3.1.1 can be extended for the submodular matroid secretary problem

as follows.

Theorem 3.1.2. There exists an 0(1 log2 r) competitive algorithm for the (non-monotone)

matroid submodular secretary problem, where r is the maximum rank of the given 1 ma-

troids.

We prove theorem 3.1.2 in Section 3.3. We note that in the submodular matroid secre-

tary problem, selecting (bad) elements early in the process might prevent us from selecting

(good) elements later since there are matroid independence (feasibility) constraints. To

overcome this issue, we only work with the first half of the input. This guarantees that at

each point in expectation there is a large portion of the optimal solution that can be added

to our current solution without violating the matroid constraint. However, this set may not

have a high value. As a remedy we prove there is a near-optimal solution all of whose large

subsets have a high value. This novel argument may be of its own interest.

We shortly mention in Section 3.4 our results for maximizing a submodular secretary

problem with respect to 1 knapsack constraints. In this setting, there are 1 knapsack capaci-

ties Ci : 1 < i < 1, and each item j has different weights wij associated with each knapsack.

A set T of items is feasible if and only if for each knapsack i, we have ZjCT Wi 5 C < .



Theorem 3.1.3. There exists an 0(l)-competitive algorithm for the (non-monotone) multi-

ple knapsack submodular secretary problem, where 1 denotes the number of given knapsack

constraints.

Lee et al. [?] gives a better (5 + c)-approximation in the offline setting if 1 is a fixed

constant.

We next show that indeed submodular secretary problems are the most general cases

that we can hope for constant competitiveness.

Theorem 3.1.4. For the subadditive secretary problem, there is no algorithm with compet-

itive ratio in 6(/T). However there is an algorithm with almost tight O(VbY) competitive

ratio in this case.

We prove Theorem 3.1.4 in Section 3.5. The algorithm for the matching upper bound is

very simple, however the lower bound uses clever ideas and indeed works in a more general

setting. We construct a subadditive function, which interestingly is almost submodular,

and has a "hidden good set". Roughly speaking, the value of any query to the oracle is

proportional to the intersection of the query and the hidden good set. However, the oracle's

response does not change unless the query has considerable intersection with the good set

which is hidden. Hence, the oracle does not give much information about the hidden good

set.

Finally in our concluding remarks in Section 3.6, we briefly discuss two other aggregate

functions max and min, where the latter is not even submodular and models a bottle-neck

situation in the secretary problem.

All omitted proofs can be found in the appendix.

3.2 The submodular secretary problem

3.2.1 Algorithms

In this sections, we present the algorithms used to prove Theorem 3.1.1. In the classic

secretary problem, the efficiency value of each secretary is known only after she arrives. In



order to marry this with the value oracle model, we say that the oracle answers the query

regarding the efficiency of a set S' C S only if all the secretaries in S' have already arrived

and been interviewed.

Algorithm 1 Monotone Submodular Secretary Algorithm

Input: A monotone submodular function f : 21 - R, and a randomly permuted stream of

secretaries, denoted by (ai, a2, ... , an), where n is an integer multiple of k.
Output: A subset of at most k secretaries.
To := 0
1 := n/k
For i :=1 to k
U (i - 1)1 + 1/e
asi := max f(T_ 1 U {ay})

(i-1)l<j<U,
If ai < f(T_ 1) then a := f(T_1 )
Pick an index pi : ui < pi < il such that f(T_ 1 U {ap,}) > a
If such an index pi exists then T: T_ 1 U {a, }
Else

Ti := T-_1
Output Tk as the solution

Our algorithm for the monotone submodular case is relatively simple though its analysis

is relatively involved. First we assume that n is a multiple of k, since otherwise we could

virtually insert n - k [a] dummy secretaries in the input: for any subset A of dummy

secretaries and a set B C S, we have that f(A U B) f(B). In other words, there is no

profit in employing the dummy secretaries. To be more precise, we simulate the augmented

input in such a way that these secretaries are arriving uniformly at random similarly to the

real ones. Thus, we say that n is a multiple of k without loss of generality.

We partition the input stream into k equally-sized segments, and, roughly speaking, try

to employ the best secretary in each segment. Let 1: denote the length of each segment.

Let ai, a2 ,.- , an be the actual ordering in which the secretaries are interviewed. Break

the input into k segments such that Sj = {a(j-1)+1, a(j-1)l+2 , ... , agl} for 1 < j < k, and

Sk = {a(k4-1)+1, a(k-1)l+2, ... , an}. We employ at most one secretary from each segment

Si. Note that this way of having several phases of (almost) equal length for the secretary

problem seems novel to this paper, since in previous works there are usually only two

phases (see e.g. [27]). The phase i of our algorithm corresponds to the time interval when



the secretaries in Si arrive. Let T be the set of secretaries that we have employed from

Uj=1 S. Define To 0 for convenience. In phase i, we try to employ a secretary e

from Si that maximizes f(T_ 1 U {e}) - f(T_ 1). For each e E Si, we define gi(e) =

f(T_ 1 U {e}) - f(T_1 ). Then, we are trying to employ a secretary x E Si that has the

maximum value for gi (e). Using a classic algorithm for the secretary problem (see [14]

for instance) for employing the single secretary, we can solve this problem with constant

probability 1/e. Hence, with constant probability, we pick the secretary that maximizes

our local profit in each phase. It leaves us to prove that this local optimization leads to a

reasonable global guarantee.

The previous algorithm fails in the non-monotone case. Observe that the first if state-

ment is never true for a monotone function, however, for a non-monotone function this

guarantees the values of sets T are non-decreasing. Algorithm 2 first divides the input

stream into two equal-sized parts: U1 and U2. Then, with probability 1/2, it calls Algo-

rithm 1 on U1, whereas with the same probability, it skips over the first half of the input,

and runs Algorithm 1 on U2 .

Algorithm 2 Submodular Secretary Algorithm

Input: A (possibly non-monotone) submodular function f : 2S -+ R, and a randomly
permuted stream of secretaries, denoted by (ai, a 2 , . . , an), where n is an integer multiple
of 2k.
Output: A subset of at most k secretaries.

U1 := {ai,a 2,. . , an/2}
U2 := {an/2 + 1, ... , a a}
0 < X < 1 be a uniformly random value.
If X < 1/2

Run Algorithm 1 on U1 to get S1
Output Si as the solution
Else
Run Algorithm 1 on U2 to get S2

Output S2 as the solution



3.2.2 Analysis

In this section, we prove Theorem 3.1.1. Since the algorithm for the non-monotone sub-

modular secretary problem uses that for the monotone submodular secretary problem, first

we start with the monotone case.

Monotone submodular

We prove in this section that for Algorithm 1, the expected value of f(Tk) is within a

constant factor of the optimal solution. Let R = {ai,, ai2 , . . , aik} be the optimal solution.

Note that the set {ji, i 2 , - , ik} is a uniformly random subset of {1, 2, ... , n} with size k.

It is also important to note that the permutation of the elements of the optimal solution on

these k places is also uniformly random, and is independent from the set {ii, i2 ,.- , ik}-

For example, any of the k elements of the optimum can appear as aj1. These are two key

facts used in the analysis.

Before starting the analysis, we present a simple property of submodular functions

which will prove useful in the analysis. The proof of the lemma is standard, and is included

in the appendix for the sake of completeness.

Lemma 3.2.1. If f : 2s -+ R is a submodular function, we have f(B) - f(A) ;

ZaEB\A [f(A U {a}) - f(A)] for any A C B C S.

Define X := {IS, n rs RI # 0}. For each Si E X, we pick one element, say si, of

Si n R randomly. These selected items form a set called R' = {si, S2, .. , sjxj} C R of

size IX I. Since our algorithm approximates such a set, we study the value of such random

samples of R in the following lemmas. We first show that restricting ourselves to picking

at most one element from each segment does not prevent us from picking many elements

from the optimal solution (i.e., R).

Lemma 3.2.2. The expected value of the number of items in R' is at least k(1 - 1/e).

Proof We know that |R'I = IX I, and IXI is equal to k minus the number of sets Si whose

intersection with R is empty. So, we compute the expected number of these sets, and

subtract this quantity from k to obtain the expected value of |XI and thus R'.



Consider a set Sq, 1 < q K k, and the elements of R = {aI%, aj 2, . . . , a%,}. Define Ej as

the event that a, is not in Sq. We have Pr(E1) = (k-1)1 =1 -1, and for any i : 1 < i < k,

we get

Pr(k -1)1 (i -1) <(k-1)1
n -( - 1) n k

where the last inequality follows from a simple mathematical fact: ' < n if c > 0

and x < y. Now we conclude that the probability of the event Sq n R 0 is

Pr(nk_1 Ej) = Pr(E1) - Pr(E2|E1) - Pr(Ek In -l E) < I - <

Thus each of the sets S1, S2 , . . . , Sk does not intersect with R with probability at most

1/e. Hence, the expected number of such sets is at most k/e. Therefore, the expected value

of |XI = IR' is at least k(1 - 1/e). E

The next lemma materializes the proof of an intuitive statement: if you randomly sam-

ple elements of the set R, you expect to obtain a profit proportional to the size of your

sample. An analog this is proved in [19] for the case when IRI/IA I is an integer.

Lemma 3.2.3. For a random subset A of R, the expected value of f (A) is at least 1- f(R).

Proof Let (X1 , x 2 ,. . . , Xk) be a random ordering of the elements of R. For r = 1, 2,..., k,

let F, be the expectation of f({x1, ... , x,}), and define D, : F, - F,_1, where FO is

interpreted to be equal to zero. Letting a := A, note that f(R) = Fk = D1 + - + Dk,

and that the expectation of f(A) is equal to Fa = D1 + - + Da. We claim that D1

D 2 2 ... Dk, from which the lemma follows easily. Let (Y1, Y2, ... , Yk) be a cyclic

permutation of (x 1 , X2 .. . , X), where yi = Xk, Y2 = X1, Y3 = X2, ... , YA = Xk1. Notice

that for i < k, F is equal to the expectation of f({y2,... , yi+1}) since {y2, - , yi+1} is

equal to {xi, . . , xi}.

F is also equal to the expectation of f({yi, ... , yi}), since the sequence (yi, ... , yi)

has the same distribution as that of (Xi, - -, Xi). Thus, Dj+1 is the expectation of f({yi,

- -- , Yi+1}) -f ({y2, ... , yi+1}), whereas Di is the expectation of f({yi, . . ., yi}) -f({y2,

... , yi}). The submodularity of f implies that f({yi, .... , yi+1}) - f ({Y2, -- , YI#+}) is less

than or equal to f({yi, . . . , yj}) - f({y 2 ,... , yi}), hence Dj+1 Di. E



Here comes the crux of our analysis where we prove that the local optimization steps

(i.e., trying to make the best move in each segment) indeed lead to a globally approximate

solution.

Lemma 3.2.4. The expected value of f (Tk) is at least f (R).

Lemma 3.2.4. Define m := IR' for the ease of reference. Recall that R' is a set of secre-

taries {Si, S2,.... ,S m} such that si E S, flRfori : 1 < i < m and hi : 1 hi k. Also

assume without loss of generality that hi < hi for 1 i' < i < m, for instance, si is the

first element of R' to appear. Define Aj for each j : 1 < j < k as the gain of our algorithm

while working on the segment Sj. It is formally defined as A3 := f(T) - f(Tji_). Note

that due to the first if statement in the algorithm, Aj > 0 and thus Ex[Aj] 2 0. With

probability 1/e, we choose the element in S which maximizes the value of f(T) (given

that the set T_1 is fixed). Notice that by definition of R' only one si appears in Sh%. Since

si E Sh, is one of the options,

Ex[Ah>] 2 Ex[f(Th,_1 U {si}) - f(T,_1)] (3.1)
e

To prove by contradiction, suppose Ex[f(T)] < - f(R). Since f is monotone,

Ex[f(T)] < - f(R) for any 0 < j < k. Define B : {ssi, - , Sm}. By

Lemma 3.2.1 and monotonicity of f,

f(B) f(B U Th,_1) f(Th,_1 ) + S[f (Th,_1 U {sj}) - f(Th,_1)],
j~i

which implies

Ex[f(B)] < Ex[f (Th,_1)] + Ex[f(T,_1 U {sj}) - f(Th,_j)].
i=i

Since the items in B are distributed uniformly at random, and there is no difference

between si, and si2 for i ii, i2 < m, we can say

Ex[f(B)] < Ex[f(Th,_1)] + (m - i + 1) - Ex[f (Th,_1 U {si}) - f(Th,_1)]. (3.2)



We conclude from (3.1) and (3.2)

Ex[Ahjl > Ex[f (Th, 1 U {si}) - f(Th-1)]
e

Ex[f(B)] - Ex[f(Thi-1)]

e(m - i + 1)

Since B is a random sample of R, we can apply Lemma 3.2.3 to get Ex[f(B)] >

iIBf(R) = f(R)(m - i + 1)/k. Since Ex[f(Th,_1)] EL -f(R), we reach

Ex[Ah] > Ex[f(B)] - Ex[f(Th,-l)]
-- e(m - i + 1)

Adding up (3.3) for i : 1 < i < [m/2~, we obtain

Ex[Ahjl > [I f (R)
ek

m
7ek

[m/2

-f(R). 

Since l <In b for any integer values of a, b : 1 < a < b, we conclude
-a a+1orayit

[m/2] _][2

> mf(R)
- ek

f (R)
ek

m- . f(R).
7ek

in .
[M1

A similar argument for the range 1 < i < Lm/2] gives

5ExAh.]> L
>- ,21

f (R)
ek

We also know that both I: ZY 2 Ex[Ahj] and Z~m /21 Ex[Ahj] are at most Ex[f(T)]

because f(T) 2 1j=j Ah%. We conclude with

2Ex[f(T)] > [m] f R Smf(R)

7ek
-In

- n m
In2

_ mf(R) Inm2

7ek ]Mn 1 [21

> f(R)rmf(R) 1
ek 7k e(m - i + 1)

Fm/2-

S=1

(3.3)

1
M-i +

+ m] f(R) mf(R)
2 Jek 7ek

-n - f(R) -In .



and since m/2m/21 4.5

mf(R) mf(R)

- ek 7ek .lr,4.5)

mf(R)(I in4.5 > mf(R) 2

k e 7e - k *7

which contradicts Ex[ f(Tk)] mf(R), hence proving the supposition false. D

The following theorem wraps up the analysis of the algorithm.

Theorem 3.2.5. The expected value of the output of our algorithm is at least l7ef (R).

Proof The expected value of IR'I = m > (1 - 1/e)k from Lemma 3.2.2. In other

words, we have Ek -1 Pr[IR' = m] - m > (1 - ) k. We know from Lemma 3.2.4

that if the size of R' is m, the expected value of f(Tk) is at least 21f(R), implying that

vev Pr [f(Tk) = v IR'l = m] -o -2 f(R), where V denotes the set of different values

that f(Tk) can get. We also know that

k k

Ex[f (T)] = Ex[f (Tk)IIR'| =m] Pr[IR'| =m] > E 7k f (R) Pr[IR'| = m] - 7k Ex[|R'\] >-
m=1 M=17kk

Non-monotone submodular

Before starting the analysis of Algorithm 2 for non-monotone functions, we show an inter-

esting property of Algorithm 1. Consistently with the notation of Section 3.2.2, we use R

to refer to some optimal solution. Recall that we partition the input stream into (almost)

equal-sized segments Si : 1 < i < k, and pick one item from each. Then T denotes the set

of items we have picked at the completion of segment i. We show that f(T) 2 Lf (R U T)

for some integer i, even when f is not monotone. Roughly speaking, the proof mainly fol-

lows from the submodularity property and Lemma 3.2.1.

Lemma 3.2.6. If we run the monotone algorithm on a (possibly non-monotone) submodu-

lar function f, we obtain f (Tk) > - f (R U T ) for some i.



Proof Consider the stage i + 1 in which we want to pick an item from Si+1. Lemma 3.2.1

implies

f(R U Ti) < f(Ti) + f(Ti U {a}) - f(T).
aER\Ti

At least one of the two right-hand side terms has to be larger than f(R U T)/2. If this

happens to be the first term for any i, we are done: f(T) f(T) jf(R U T) since

f(T) > f(T) by the definition of the algorithm: the first if statement makes sure f(Ti)

values are non-decreasing. Otherwise assume that the lower bound occurs for the second

terms for all values of i.

Consider the events that among the elements in R \ T exactly one, say a, falls in Si+1-

Call this event Ea. Conditioned on Ea, Ai+ 1 := f(T+1) - f(T) is at least f(T U {a}) -

f(Ti) with probability 1/e: i.e., if the algorithm picks the best secretary in this interval.

Each event Ea occurs with probability at least 1 - 1. Since these events are disjoint, wek e

have

Ex[Ai+1 ] E Pr[Ea].f(Ti+1) ef(T)
aER\Ti

ek f(Ti U {a}) - f(Ti)
aER\Ti

> 2eI f (R U Ti)
2 e2kf(U%

and by summing over all values of i, we obtain:

Ex[fL(Tk)] Ex[ Ai] f(R U Ti) 2 min f(R U Ti). D

Unlike the case of monotone functions, we cannot say that f(R U Ti) f(R), and con-

clude that our algorithm is constant-competitive. Instead, we need to use other techniques

to cover the cases that f(R U T) < f(R). The following lemma presents an upper bound



on the value of the optimum.

Lemma 3.2.7. For any pair of disjoint sets Z and Z', and a submodular function f, we

have f(R) < f(R U Z) + f(R U Z').

Proof The statement follows from the submodularity property, observing that (R U Z) n

(R U Z') = R, and f ([R U Z] U [R U Z']) > 0. E

We are now at a position to prove the performance guarantee of our main algorithm.

Theorem 3.2.8. Algorithm 2 has competitive ratio 8e 2

Proof Let the outputs of the two algorithms be sets Z and Z', respectively. The expected

value of the solution is thus [f(Z) + f(Z')]/2.

We know that Ex[f(Z)] c'f(R U X 1) for some constant c', and X 1 C U1. The only

difference in the proof is that each element of R \ Z appears in the set Si with probability

1/2k instead of 1/k. But we can still prove the above lemma for c' := 1/4e2 . Same holds

for Z': Ex[f(Z')] if (R U X2) for some X 2 c U2 .

Since U1 and U2 are disjoint, so are X1 and X2. Hence, the expected value of our

solution is at least -[f(R U X1) + f(R U X2)]/2, which via Lemma 3.2.7 is at least

e f(R). D

3.3 The submodular matroid secretary problem

In this section, we prove Theorem 3.1.2. We first design an O(log2 r)-competitive algo-

rithm for maximizing a monotone submodular function, when there are matroid constraints

for the set of selected items. Here we are allowed to choose a subset of items only if it is

an independent set in the given matroid.

The matroid (U, I) is given by an oracle access to I. Let n denote the number of items,

i.e., n := |UI, and r denotes the rank of the matroid. Let S E I denote an optimal solution

that maximizes the function f. We focus our analysis on a refined set S* C S that has

certain nice properties: 1) f(S*) 2 (1 - 1/e)f(S), and 2) f(T) f(S*)/log r for any



T C S* such that |TI = IS*/2i. We cannot necessarily find S*, but we prove that such a

set exists.

Start by letting S* = S. As long as there is a set T violating the second property above,

remove T from S*, and continue. The second property clearly holds at the termination of

the procedure. In order to prove the first property, consider one iteration. By submodularity

(subadditivity to be more precise) we have f (S*\T) f(S*) -f(T) (1 -1/ log r)f(S*).

Since each iteration halves the set S*, there are at most log r iterations. Therefore, f (S*)

(1 - 1/ log r)l09' - f(S) (1 - 1/e)f(S).

We analyze the algorithm assuming the parameter IS*|I is given, and achieve a competi-

tive ratio O(log r). If |S*I is unknown, though, we can guess its value (from a pool of log r

different choices) and continue with Lemma 3.3.1. This gives an O(log 2 r)-competitive

ratio.

Algorithm 3 Monotone Submodular Secretary Algorithm with Matroid constraint

Input: A monotone submodular function f : 2U - R, a matroid (U, I), and a randomly
permuted stream of secretaries, denoted by (ai, a2, ... , an).
Output: A subset of secretaries that are independent according to I.

U1 := {a, a2 , ... , an/ 2]}
Pick the parameter k :I |S*I uniformly at random
from the pool {20, 21, 2 1o'}

If k =O(log r)
Select the best item of the U1 and output the singleton
Else run Algorithm 1 on U1 and respect the matroid
Run Algorithm 1 on U1 to search for k items
and respect the matroid independence oracle I

TO := 0
[ : n/kI

For i 1 to k
U (i - 1)1 + l/e
aei := max f(T_ 1 U {a3 })

(i-1)l<j<U,
Ti_1U{a3 }EI

If ai < f(T_ 1) then ai := f(T_ 1)
Pick an index pi : ui < pi < il such that f(T_ 1 U {ap,}) > ac and T_ 1 U {ap,} E I
If such an index pi exists then T: T_ 1 U {a, }
Else T := Ti_ 1

Output Tk as the solution



Lemma 3.3.1. Given IS* , Algorithm 3 picks an independent subset of items with size

IS* 1/2 whose expected value is at least f (S*)/4e log r.

Proof Let k := IS* . We divide the input stream of n items into k segments of (almost)

equal size. We only pick k/2 items, one from each of the first k/2 segments.

Similarly to Algorithm 1 for the submodular secretary problem, when we work on each

segment, we try to pick an item that maximizes the marginal value of the function given

the previous selection is fixed (see the for loop in Algorithm 1). We show that the expected

gain in each of the first k/2 segments is at least a constant fraction of f(S*)/k log r.

Suppose we are working on segment i < k/2, and let Z be the set of items already

picked; so IZI < i - 1. Furthermore, assume f(Z) f(S*)/2log r since otherwise, the

lemma is already proved. By matroid properties we know there is a set T ; S* \ Z of size

[k/2 [ such that T U Z E I. The second property of S* gives f(T) > f(S*)/ log r.

From Lemma 3.2.1 and monotonicity of f, we obtain

E[f(Z U {s}) - f(Z)] f(T U Z) - f(Z) f(T) - f(Z) > f(S*)/2log r.
sET

Note that each item in T appears in this segment with probability 2/k because we divided

the input stream into k/2 equal segments. Since in each segment we pick the item giving

the maximum marginal value with probability 1/e, the expected gain in this segment is at

least

e. k - [f (Z U {s}) - f(Z)] f(S*)/ek log r.

sGT

We have this for each of the first k/2 segments, so the expected value of our solution is at

least f(S*)/2e log r. E

Finally, it is straightforward (and hence the details are omitted) to combine the algo-

rithm in this section with Algorithm 2 for the nonmonotone submodular secretary problem,

to obtain an O(log2 r)-competitive algorithm for the non-monotone submodular secretary

problem subject to a matroid constraint.



Here we show the same algorithm works when there are 1 > 1 matroid constraints and

achieves a competitive ratio of 0(1 log 2 r). We just need to respect all matroid constraints

in Algorithm 3. This finishes the proof of Theorem 3.1.2.

Lemma 3.3.2. Given IS*\ , Algorithm 3 picks an independent subset of items (i.e., indepen-

dent with respect to all matroids) with expected value at least f (S*) /4el log r.

Proof The proof is similar to the proof of Lemma 3.3.1. We show that the expected gain

in each of the first k/21 segments is at least a constant fraction of f(S*)/k log r.

Suppose we are working on segment i < k/21, and let Z be the set of items already

picked; so IZI < i - 1. Furthermore, assume f(Z) f(S*)/2log r since otherwise, the

lemma is already proved. We claim that there is a set T C S*\Z of size k-1 x Lk/21] 2 k/2

such that T U Z is an independent set in all matroids. The proof is as follows. We know that

there exists a set T1 C S* whose union with Z is an independent set of the first matroid,

and the size of T is at least IS* I - IZI. This can be proved by the exchange property of

matroids, i.e., adding Z to the independent set S* does not remove more than IZI items

from S*. Since T is independent with respect to the second matroid (as it is a subset

of S*), we can prove that there exists a set T2 g T of size at least ITiI - IZI such that

Z U T2 is an independent set in the second matroid. If we continue this process for all

matroid constraints, we can prove that there is a set T which is an independent set in all

matroids, and has size at least IS*I - 1 Z| I k - 1 x [k/21] k/2 such that Z U T is

independent with respect to all the given matroids. The rest of the proof is similar to the

proof of Lemma 3.3.1-we just need to use the set T instead of the set T in the proof.

Since we are gaining a constant times f(S*)/k log r in each of the first k/21 segments,

the expected value of the final solution is at least a constant times f(S*)/l log r. EZ

3.4 Knapsack constraints

In this section, we prove Theorem 3.1.3. We first outline how to reduce an instance with

multiple knapsacks to an instance with only one knapsack, and then we show how to solve

the single knapsack instance.



Without loss of generality, we can assume that all knapsack capacities are equal to one.

Let I be the given instance with the value function f, and item weights wij for 1 < i < 1

and 1 < j n. Define a new instance I' with one knapsack of capacity one in which the

weight of the item j is wj := maxi wi. We first prove that this reduction loses no more than

a factor 41 in the total value. Take note that both the scaling and the weight transformation

can be carried in an online manner as the items arrive. Hence, the results of this section

hold for the online as well as the offline setting.

Lemma 3.4.1. With instance I' defined above, we have ; OPT(I) < OPT(I') OPT(I).

Proof The latter inequality is very simple: Take the optimal solultion to I'. This is also

feasible in I since all the item weights in I are bounded by the weight in I'.

We next prove the other inequality. Let T be the optimal solution of I. An item j is

calledfat if w' 1/2. Notice that there can be at most 21 fat items in T since ZET w

EjET E wi < . If there is any fat item with value at least OPT(I)/4l, the statement

of the lemma follows immediately, so we assume this is not the case. The total value of

the fat items, say F, is at most OPT(I)/2. Submodularity and non-negativity of f gives

f(T \ F) > f(T) - f(F) OPT(I)/2. Sort the non-fat items in decreasing order

of their value density (i.e., ratio of value to weight), and let T' be a maximal prefix of

this ordering that is feasible with respect to I'. If T' = T \ F, we are done; otherwise,

T' has weight at least 1/2. Let x be the total weight of items in T' and let y indicate

the total weight of item T \ (F U T'). Let ax and ay denote the densities of the two

corresponding subsets of the items, respectively. Clearly x + y < l and ax > ay. Thus,

f(T\F) = a-z+ay-y < ax(x+y) < ax-l. Now f(T') > ax. > f(T\F) > If(T)

finishes the proof. E

Here we show how to achieve a constant competitive ratio when there is only one knap-

sack constraint. Let wj denote the weight of item j : 1 < j < n, and assume without loss

of generality that the capacity of the knapsack is 1. Moreover, let f be the value function

which is a non-monotone submodular function. Let T be the optimal solution, and define

OPT := f(T). The value of the parameter A > 1 will be fixed below. Define Ti and T2 as



the subsets of T that appears in the first and second half of the input stream, respectively.

We first show the this solution is broken into two blanaced portions.

Lemma 3.4.2. If the value of each item is at most OPT /A, for sufficiently large A, the

random variable If (T1 ) - f (T 2)| is bounded by OPT /2 with a constant probability.

Proof Each item of T goes to either T or T2 with probability 1/2. Let the random vari-

able X denote the increase of the value of f(T 1 ) due to the possible addition of item j.

Similarly X? is defined for the same effect on f(T 2). The two variables X and X? have

the same probability distribution, and because of submodularity and the fact that the value

of item j is at most OPT/A, the contribution of item j in f(T) - f(T 2) can be seen as

a random variable that always take values in range [- OPT /A, OPT /A] with mean zero.

(In fact, we also use the fact that in an optimal solution, the marginal value of any item

is non-negative. Submodularity guarantees that this holds with respect to any of the sub-

sets of T as well.) Azuma's inequality ensures that with constant probability the value of

If(TI) - f(T 2)1 is not more than max{f (T1 ), f(T 2)}/2 for sufficiently large A. Since both

f(T) and f(T 2) are at most OPT, we can say that they are both at least OPT /4, with

constant probability. D

The algorithm is as follows. Without loss of generality assume that all items are feasi-

ble, i.e., any one item fits into the knapsack. We flip a coin, and if it turns up "heads," we

simply try to pick the one item with the maximum value. We do the following if the coin

turns up "tails." We do not pick any items from the first half of the stream. Instead, we

compute the maximum value set in the first half with respect to the knapsack constraint;

Lee et al. give a constant fator approximation for this task. From the above argument, we

know that f(T) is at least OPT/4 since all the items have limited value in this case (i.e.,

at most OPT /A). Therefore, we obtain a constant factor estimation of OPT by looking at

the first half of the stream: i.e., if the estimate is OPT, we get OPT /c < OPT < OPT.

After obtaining this estimate, we go over the second half of the input, and pick an item j if

and only if it is feasible to pick this item, and moreover, the ratio of its marginal value to

wj is at least OPT/6.



Lemma 3.4.3. The above algorithm is a constant competitive algorithmfor the non-monotone

submodular secretary problem with one knapsack constraint.

Proof We give the proof for the monotone case. Extending it for the non-monotone re-

quires the same idea as was used in the proof of Theorem 2. First suppose there is an item

with value at least OPT /A. With probability 1/2, we try to pick the best item, and we

succeed with probability 1/e. Thus, we get an 0(1) competitive ratio in this case.

In the other case, all the items have small contributions to the solution, i.e., less than

OPT /A. In this case, with constant probability, both f(T) and f (T2) are at least OPT /4.

Hence, OPT is a constant estimate for OPT. Let T' be the set of items picked by the

algorithm in this case. If the sum of the weights of the items in T' is at least 1/2, we are

done, because all these items have (marginal) value density at least OPT/6, so f(T') 2

(1/2) - (OPT/6) = OPT/12 2 OPT /48.

Otherwise, the total weight of T' is less than 1/2. Therefore, there are items in T2 that

are not picked. There might be two reasons for this. There was not enough room in the

knapsack, which means that the weight of the items in T2 is more than 1/2. However,

there cannot be more than one such item in T2, and the value of this item is not more

than OPT/A. Let z be this single big item, for future reference. Therefore, f(T')

f(T 2 ) - OPT /A in this case.

The other case is when the ratios of some items from T2 are less than OPT/6, and thus

we do not pick them. Since they are all in T2, their total weight is at most 1. Because of

submodularity, the total loss due to these missed items is at most OPT/6. Submodularity

and non-negativity of f then gives f(T') > f(T 2 ) - f({z}) - OPT/6 > OPT - OPT A -

OPT/6 = O(OPT). 1

3.5 The subadditive secretary problem

In this section, we prove Theorem 3.1.4 by presenting first a hardness result for approxima-

tion subadditive functions in general. The result applies in particular to our online setting.

Surprisingly, the monotone subadditive function that we use here is almost submodular; see

Proposition 3.5.3 below. Hence, our constant competitive ratio for submodular functions is



nearly the most general we can achieve.

Definition 4 (Subadditive function maximization). Given a nonnegative subadditivefunc-

tion f on a ground set U, and a positive integer k < U|, the goal is to find a subset S of

U of size at most k so as to maximize f (S). The function f is accessible through a value

oracle.

3.5.1 Hardness result

In the following discussion, we assume that there is an upper bound of m on the size of

sets given to the oracle. We believe this restriction can be lifted. If the function f is not

required to be monotone, this is quite easy to have: simply let the value of the function f

be zero for queries of size larger than m. Furthermore, depending on how we define the

online setting, this may not be an additional restriction here. For example, we may not be

able to query the oracle with secretaries that have already been rejected.

The main result of the section is the following theorem. It shows the subadditive func-

tion maximization is difficult to approximate, even in the offline setting.

Theorem 3.5.1. There is no polynomial time algorithm to approximate an instance of sub-

additive function maximization within O(x/n) of the optimum. Furthermore, no algorithm

with exponential time 2' can achieve an approximation ratio better than O( |r/t).

First, we are going to define our hard function. Afterwards, we continue with proving

certain properties of the function which finally lead to the proof of Theorem 3.5.1.

Let n denote the size of the universe, i.e., n := I UI. Pick a random subset S* C U by

sampling each element of U with probability k/n. Thus, the expected size of S* is k.

Define the function g : U -+ N as g(S) := IS n S*I for any S C U. One can easily

verify that g is submodular. We have a positive r whose value will be fixed below. Define

the final function f : U -+ N as

f(S) 1 if g(S) 0

fg(S)/r] otherwise.



It is not difficult to verify the subadditivity of f; it is also clearly monotone.

In order to prove the core of the hardness result in Lemma 3.5.2, we now let r := A ,

where A> 1 + and t = Q(log n) will be determined later.

Lemma 3.5.2. An algorithm making at most 2' queries to the value oracle cannot solve the

subadditive maximization problem to within k/r approximation factor.

Proof Note that for any X g U, f(X) lies between 0 and [k/rl. In fact, the optimal

solution is the set S* whose value is at least k/r. We prove that with high probability the

answer to all the queries of the algorithm is one. This implies that the algorithm cannot

achieve an approximation ratio better than k/r.

Assume that Xi is the i-th query of the algorithm for 1 < i < 2'. Notice that Xi can be

a function of our answers to the previous queries. Define Ei as the event f (Xi) = 1. This

is equivalent to g(X ) < r. We show that with high probability all events Ei occur.

For any 1 < i < 2t, we have

Pr Ei E] =Pr[ j] > Pr h 21-
Eii E3 Pr -1E,] - i >1-ZEiE.

j=1 Pr[(ij _ 1

Thus, we have Pr[n1 E >] 1- 2' 1 1 Pr[Ei] from union bound. Next we bound Pr [Ei].

Consider a subset X C U such that IX I < m. Since the elements of S* are picked randomly

with probability k/n, the expected value of X n S* is at most mk/n. Standard application

of Chernoff bounds gives

Pr[f (X) 1] = Pr[g(X) > r] = Pr IX n S*1 > A ink < - (A - 1)2 ik } < exp{-3t} <-

where the last inequality follows from t 2 log n. Therefore, the probability of all Ei events

occurring simultaneously is at least 1 - 1/n. E

Now we can prove the main theorem of the section.

Theorem 3.5.1. We just need to set k = m = s/ . Then, A = v/, and the inapproximabil-

ity ratio is Q( ).Restricting to polynomial algorithms, we obtain t := O(log+E n), and



considering exponential algorithms with running time O(2"), we have t = 0(t'), giving

the desired results. D

In case the query size is not bounded, we can define f(X) := 0 for large sets X, and

pull through the same result; however, the function f is no longer monotone in this case.

We now show that the function f is almost submodular. Recall that a function g is

submodular if and only if g(A) + g(B) g(A U B) + g(A n B).

Proposition 3.5.3. For the hard function f defined above, f (A) + f (B) > f (A U B) +

f (A n B) - 2 always holds; moreover; f (X) is always positive and attains a maximum

value of 0 (flu) for the parameters fixed in the proof of Theorem 3.5.1.

Proof The function h(X) := g(X)/r is clearly submodular, and we have h(X) f(X) <

h(X) + 1. We obtain f(A) + f(B) h(A) + h(B) h(A U B) + h(A n B) > f(A U

B) +f(ArnB) -2. E

3.5.2 Algorithm

An algorithm that only picks the best item clearly gives a k-competitive ratio. We now

show how to achieve an O(n/k) competitive ratio, and thus by combining the two, we

obtain an O(fi)-competitive algorithm for the monotone subadditive secretary problem.

This result complements our negative result nicely.

Partition the input stream S into f := n/k (almost) equal-sized segments, each of size

at most k. Randomly pick all the elements in one of these segments. Let the segments

be denoted by S1, S2, . . . , Sj. Subadditivity of f implies f(S) < E f(Si). Hence, the

expected value of our solution is EZ -f(Si) > if(S) > 1 OPT, where the two inequalities

follow from subadditivity and monotonicity, respectively.

3.6 Conclusions and further results

In this paper, we consider the (non-monotone) submodular secretary problem for which

we give a constant-competitive algorithm. The result can be generalized when we have a



matroid constraint on the set that we pick; in this case we obtain an O(log2 r)-competitive

algorithm where r is the rank of the matroid. However, we show that it is very hard to com-

pete with the optimum if we consider subadditive functions instead of submodular func-

tions. This hardness holds even for "almost submodular" functions; see Proposition 3.5.3.

One may consider special non-submodular functions which enjoy certain structural re-

sults in order to find better guarantees. For example, let f(T) be the minimum individual

value in T which models a bottle-neck situation in the secretary problem, i.e., selecting

a group of k secretaries to work together, and the speed (efficiency) of the group is lim-

ited to that of the slowest person in the group (note that unlike the submodular case here

the condition for employing exactly k secretaries is enforced.) In this case, we present a

simple 0(k)-competitive ratio for the problem as follows. Interview the first 1/k fraction

of the secretaries without employing anyone. Let a be the highest efficiency among those

interviewed. Employ the first k secretaries whose efficiency surpasses a.

Theorem 3.6.1. Following the prescribed approach, we employ the k best secretaries with

probability at least 1/e 2k.

Indeed we believe that this 0(k) competitive ratio for this case should be almost tight.

One can verify that provided individual secretary efficiencies are far from each other, say

each two consecutive values are farther than a multiplicative factor n, the problem of max-

imizing the expected value of the minimum efficiency is no easier than being required to

employ all the k best secretaries. Theorem ?? in Appendix .3 provides evidence that the

latter problem is hard to approximate.

Another important aggregation function f is that of maximizing the performance of the

secretaries we employ: think of picking k candidate secretaries and finally hiring the best.

We consider this function in Appendix ?? for which we present a near-optimal solution.

In fact, the problem has been already studied, and an optimal strategy appears in [23].

However, we propose a simpler solution which features certain "robustness" properties

(and thus is of its own interest): in particular, suppose we are given a vector ('Y1, 722 ... , 7k)

such that 7 ;> -y7+1 for 1 < i < k. Sort the elements in a set R of size k in a non-increasing

order, say ai, a2, ... , ak. The goal is to maximize the efficiency E> 7yai. The algorithm



that we propose maximizes this more general objective obliviously; i.e., the algorithm runs

irrespective of the vector 7, however, it can be shown the resulting solution approximates

the objective for all vectors -/ at the same time. The reader is referred to Appendix ?? for

more details.



.1 Hardness Results

Here we show some matching hardness results to show that our algorithms are optimal

unless P = NP. Surprisingly the problem we studied does not have better than log n

approximation even in very simple cases, namely, one interval scheduling with nonuniform

parallel machines, or multi-interval scheduling with only one processor.

It is proved in [13] that the multi-interval scheduling problem with only one processor

and simple cost function is Set-Cover hard, and therefore the best possible approximation

factor for this problem is log n. We note that in the simple cost function the cost of an

interval is equal to its length plus a fixed amount of energy (the restart cost). All previous

work studies the problem with this cost function. In fact, Theorem 7 of [13] shows that the

problem does not have a o(log N)-approximation even when the number of time intervals

of each job is at most 2 (each job has a set of time intervals in which it can execute).

Theorem .1.1. It is NP-hard to approximate 2-interval gap scheduling within a o(log N)

factor where N is the size of input.

Now we show that the one-interval scheduling problem, for which there exists a polynomial-

time algorithm in [13], does not have any o(log N)-approximation when only a subset of

processors are capable of executing a job. Assume that each job has one time interval in

which it can execute, and for each job, we have a subset of processors that can execute this

job in its time interval, i.e., the other processors do not have necessary resources to execute

the job. We also consider the generalized cost function in which the cost of an interval is

not necessarily equal to its length plus a fixed amount. We call this problem one-interval

scheduling with nonuniform processors.

Theorem .1.2. It is NP-hard to approximate one-interval scheduling with nonuniform pro-

cessors problem within a o(log N) factor where N is the size of input.

Proof Like previous hardness results for these scheduling problems, we give an approximation-

preserving reduction from Set Cover, which is not o(log n)-approximable unless P = NP

[43]. Let E = {el, e2,.. . , en} be the set of all elements in the Set-Cover instance. There



are also m subsets of E, S1, S2, ... , Sm in the instance. We construct our scheduling prob-

lem instance as follows. For each set Si, we put a processor P in our instance. For each

element ei, we put a job ji. Only jobs in set Si can be done in processor P. The time inter-

val of all jobs is [1, n]. The cost of keeping each processor alive during a time interval is 1.

Note that the cost a time interval is not a function of its length in this case, i.e., the cost of

an interval is almost equal to a fixed cost which might be the restart cost. So the optimum

solution to our scheduling problem is a minimum size subset of processors in which we

can schedule all jobs because we can assume that when a processor is alive in some time

units, we can keep that processor alive in the whole interval [1, n] (it does not increase our

cost). In fact we want to find the minimum number of subsets among the input subset such

that their union is E. This is exactly the Set Cover problem. II

.2 Polynomial-Time Algorithm

for Prize-Collecting One-

interval Gap Minimization

Problem

The simple cost function version of our problem is studied in [9,13] as the gap-minimization

problem. Each job has a time interval, and we want to schedule all jobs on P machines with

the minimum number of gaps. (A gap is a maximal period of time in which a processor is

idle, which can be associated with a restart for one of the machines.) There are many cases

in which we can not schedule all jobs according to our limitation in resources: number of

machines, deadlines, etc. So we define the prize-collecting version of this simple problem.

Assume that each job has some value for us, and we get its value if we schedule it. We

want to get the maximum possible value according to some cost limits. Formally, we want

to schedule a subset of jobs with maximum total value and at most g gaps. The variable g is

given in the input. Now we show how to adapt the sophisticated dynamic program in [13]

to solve this problem.



Theorem .2.1. There is a (np 5g)-time algorithm for prize-collecting p-processor gap

scheduling of n jobs with budget g, the number of gaps should not exceed g.

Proof In the proof of Theorem 1 of [13], Cti,t2 ,k,q,li, 2 is defined to be the number of gaps

in the optimal solution for a subproblem defined there. If we define C'1,t2,k,q,1i,l2,g, to be

the maximum value we can get in the same subproblem using at most g' < g gaps, we can

update this new dynamic program array in the same way. The rest of the proof is similar;

we just get an extra g in the running time. El



.3 Omitted proofs and theorems

Lemma 3.2.1. Let k :BI - |A. Then, define in an arbitrary manner sets {Bi} such

that

e Bo =A,

SlBi\Bi_1=1for i:1<ik,

" and Bk = B.

Let bi := Bi \ Bi_1 for i : 1 < i < k. We can write f (B) - f(A) as follows

f(B) - f(A)
k

= [f(Bi) - f(Bi_1)]
i=1

k

[f(Bi_1 U {bi}) - f(Bi_1)]
i=1

<E[f(A U bi) - f(A)],
i=1

where the last inequality follows from the non-increasing marginal profit property of sub-

modular functions. Noticing that bi E B \ A and they are distinct, namely bi # be for

1 i # i' < k, finishes the argument. E
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