
Specification-Enhanced Execution

by

Jean Yang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

@ Jean Yang, MMX. All rights reserved.

ARCHIVES

OF TECHNOLOGY

JUL 12 2010

LIBRARIES

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part.

A uthor
D art t of Electrical Engineering and Computer Science

A A May 7, 2010

Certified by. ,- --. . . -

Armando Solar-Lezama
Assistant Professor

Thesis Supervisor

A ccepted by=
Terry Orlando

Chairman, Department Committee on Graduate Students

Specification-Enhanced Execution

by

Jean Yang

Submitted to the Department of Electrical Engineering and Computer Science
on May 7, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Our goal is to provide a framework that allows the programmer to easily shift re-
sponsibility for certain aspects of the program execution to the runtime system. We
present specification- enhanced execution, a programming and execution model that
allows the programmer to describe certain aspects of program execution using high-
level specifications that the runtime is responsible for executing. With our approach,
the programmer provides an implementation that covers certain aspects of program
behavior and a set of specifications that cover other aspects of program behavior. We
propose a runtime system that uses concolic (combined concrete and symbolic) execu-
tion to simultaneously execute all aspects of the program. We describe LogLog, a lan-
guage we have designed for using this programming and runtime model. We present
a case study applying this programing model to real-word data processing programs
and demonstrate the feasibility of both the programming and runtime models.

Thesis Supervisor: Armando Solar-Lezama
Title: Assistant Professor

Acknowledgements

I would like to thank my supervisor, Professor Armando Solar-Lezama for his in-

spiration, dedication, and enthusiasm. Professors Saman Amarasinghe and Martin

Rinard have also shaped my education education during these last two years. My

fellow CSAIL graduate students Eunsuk Kang, Sasa Misailovic, Aleksandar Milice-

vic, Joseph P. Near, Rishabh Singh, and Kuat Yessenov have never failed to provide

inspiring discussion and helpful feedback. Finally, I would like to thank my parents

and my sister Victoria for reminding me about what is important in life.

Contents

1 The Runtime Assistant 9

1.1 Contributions 10

2 Enhancing Data Processing Programs 11

2.1 Imputation in data processing .. 11

2.2 Specification-enhanced execution in LogLog 12

2.3 Executing with specifications... 13

3 Specifying and Executing Constraints on Data 16

3.1 A-LogLog by example . 16

3.1.1 Application and concretization with symbolic values 17

3.1.2 Evaluating concrete expressions...... 18

3.1.3 Symbolic abstractions vs. function abstractions 19

3.2 All together now . 20

3.2.1 Combined concrete and symbolic evaluation 20

3.2.2 Simple typing to ensure normalizing expressions 24

3.2.3 Constraint propagation correctness 24

4 LogLog language design 25

4.1 Abstract syntax . 25

4.1.1 Concrete and symbolic data...... 27

4.1.2 Types and type-level constraints 27

4.2 Introducing and eliminating constraints 27

4.2.1 Looking up type-level constraints

4.2.2 Concretizing the final result.............. 28

5 Implementation 29

5.1 Bounding space.... 29

5.2 High-level overview . 30

5.3 Interpreter architecture... .. 30

5.3.1 Frontend . 30

5.3.2 B ackend . 30

5.3.3 Solver and interface . 31

5.3.4 Frontend interface to backend 32

5.4 A lgorithm s . 32

5.4.1 Frontend . 32

5.4.2 B ackend . 34

5.5 Experience notes . 35

5.5.1 Performance wins......... 36

5.5.2 Ease of implementation vs. runtime performance 37

6 Case Study: Processing Real Census Data 38

6.1 Current Population Survey and imputation... 39

6.1.1 Experimental setup . 40

6.1.2 R esults . 42

6.2 Comparison with other languages....... 45

6.2.1 SQL....... 45

6.2.2 P ython . 46

7 Related work 49

7.1 Aspect-oriented programming........ 49

7.2 Programming with specifications......... 50

7.2.1 Executing specifications.......... 50

7.2.2 Constraint-based programming 50

. 27

7.3 Program analysis and repair .

7.4 Data processing

7.4.1 Parsing

7.4.2 Constraint databases .

7.4.3 Data cleaning

8 Conclusions and Future Work

8.1 Future work

52

.. 52

List of Figures

2-1 Census data with all relevant information present. 13

3-1 Evaluation. .. 22

4-1 Partial LogLog abstract syntax for expressions. Primitives p consist

of integers and booleans. Variables can either be identifiers n or field

accesses......... 26

6-1 Relevant code for imputation tests..... 41

6-2 Imputation code in Python........... 48

List of Tables

2.1 Census data missing relevant marital status and spouse items. 14

2.2 Census data missing marital status, spouse, and age items. 14

3.1 A-LogLog syntax. 21

6.1 Imputation rates for different CPS fields by percent [261. Household

edits involve hot deck imputation between households. Demographic

edits involve employing relational, longitudinal, and hot deck imputa-

tion based on demographic variables such as marital status, parents,

and spouse. 39

6.2 View of the March 2009 CPS data showing the following columns for

a subset of entries from household 26974: household ID, line number,

age, marital status, spouse line number, marital status imputation flag

(MI), and spouse imputation flag (SI)........ 40

6.3 Times (in seconds) for 1) deriving constraints on the input with in-

complete values (Cnsts.), 2) solving the Yices constraints (Yices), and

3) running the interpreter on the entire program (Total). The time for

deriving and solving constraints makes up a small fraction of the total

running time. We show the total number of records on the left, along

with the total number of missing records in the data set combining all

m issing item s. 43

6.4 While constraint evaluation introduces an expected factor of two over-

head, symbolic evaluation does not introduce signifcant overheads. . . 44

6.5 Python running times for comparable examples. 47

Chapter 1

The Runtime Assistant

The more the language runtime handles tedious program aspects, the easier it is to

write correct programs. Consider garbage collection, which relieves programmers of

the tedious and error-prone tasks of memory allocation and deallocation. Software

companies have reported productivity gains from switching to garbage-collected lan-

guages [281.

While the memory management problem has been solved with clever algorithms

and heroic implementations, there are many messy aspects of programming for which

there is not yet runtime support. It would be ideal to have a general infrastructure

for delegating responsibility to the runtime to handle such program aspects.

Our goal is to develop a general runtime system that can be programmed us-

ing high-level declarative specifications. Rather than relying on the programmer to

provide implementation details for all parts of the program, we envision having the

runtime serve as an assistant that takes responsibility for a set of execution details

during execution, alongside the core program. In this framework, the programmer

has the flexibility to decide how much to delegate to the runtime.

For implementing flexible runtime assistants we introduce specification-enhanced

execution, a novel programming and execution model that allows the programmer to

transfer responsibility from the core program to the runtime system by introducing

symbolic values and providing specifications that apply to symbolic expressions. The

runtime propagates constraints corresponding to symbolic values in order to derive

outputs consistent with the specifications. The execution model relies on the existence

of a constraint-resolution oracle for making symbolic values concrete.

To support specification-enhanced execution we introduce the LogLog language

and ani interpreter implementation that miakes use of an SMT (Satisfiability Modulo

Theories) solver. We demonstrate the usability of LogLog in the data processing

domain, where we can make the runtime responsible for handling missing input values.

We reconstruct census data processing examples as documented by the Census Bureau

and show that we can process almost 400,000 data entries with thousands of missing

inl seconds with negligible constraint-solving overhead. This case study suggests that

for certain programming tasks that may require considerable programming effort, it

is worthwhile to pursue the specification-enhanced execution approach.

1.1 Contributions

This thesis makes the following contributions.

" We present specification-enhanced execution, a programming and runtime model

that provides the flexibility for transferring responsibility of selected program

aspects to the runtime.

" We formally describe specification-enhanced execution and present LogLog, a

novel programing language.

" We describe an efficient interpreter implementation for LogLog and demon-

strate its performance, scalability, and usability on benchmark programs that

processing real census data.

In this thesis, we present specification-enhanced execution in the context of data

processing programs, formally describe our programming and execution model, de-

scribe the LogLog language and its implementation, and describe a case study in

census data processing.

Chapter 2

Enhancing Data Processing Programs

Many programs that process real-world data have simple computational goals but

become quite complex due to the need to handle missing inputs. These missing inputs

can come from phenomena such as sensor malfunction and survey non-response. We

show how to use specification-enhanced execution to delegate imputation as a task for

the runtime system to perform alongside a program operating on well-formed data.

In this chapter, we introduce a running example related to processing census data.

2.1 Imputation in data processing

While it is simple to produce standard census summaries such as total population

count from idealized census data, analyzing real census data is much more complex

due to the significant rate of non-response and response ambiguity and the importance

of handling the incomplete data without biasing the results [3]. There are many

documented methods for handling this: for instance, Franconi et al. write that to

account for the nontrivial number of people who fail to declare their marital status, we

can use the assumption that marriage relationships are symmetric [10]. This process

of assigning values is called imputation; imputation methods have a significant effect

the outcome of data analysis [31 but are often tedious to implement.

2.2 Specification-enhanced execution in LogLog

We show how to delegate imputation tasks to the runtime. The LogLog runtime pro-

cesses symbolic expressions alongside concrete ones by propagating constraints that

come from specifications associated with type declarations. We can make the runtime

responsible for imputation by representing missing values as symbolic variables.

To compute the average age of people who are married, we can write a LogLog

program that loads a list of record based on the censusdata record type, filters the

entries, and takes the average over the age fields:

rtype census_ data { name uid

age : integer

married : boolean

spouse uid

mother : uid

father uid

children uid list }

census = load census.txt as (census data list)

married = filter census by married;

average - avg(married.age);

This is the core program that dictates the control flow structure of the execution.

To specify an imputation strategy for censusdata records, the programmer can de-

clare a subtype of censusdata. Below we show the declaration of the censusdata_ imputed

subtype, which says that for any record r of type censusdataimputed, if the spouse

field of r is valid, then the married field should be true:

type census data imputed = censusdata

with (r) { r.spouse >= 0 implies r.married }

We can also relate the entries we have read based on the spouse fields by defining the

following list type: .

type census _rel _imputein = censusdataimputed list

with (rel) {

forall r, r' in rel : (r.spouse == r'.name) implies

Name Age ... Married I Spouse ... Mother

0 28 true 3 1

1 48 false - 2

2 70 true 11 4

3 34 true 0 11

4 88 true 39

Figure 2-1: Census data with all relevant information present.

((r.name == r'.spouse) and (r.married = r'.married))

}

For all relations rel of type census rel impute_m, for any two records r and r' in the

relation, there is a symmetric relationship between the spouse fields and the married

fields are equal.

We can easily extend the specification to impute ages based on the age of parents

and children, either by adding another constraint through conjunction or by subtyping

census_rel_impute_ m, as we show below:

type census _rel _imputema = census rel impute_m

with (rel) {
forall r, r in rel

((r.mother == r'.name) or (r.father == r'.name)) implies

r age < r'.age - 12

}

The LogLog runtime will use and propagate these constraints when handling missing

values.

2.3 Executing with specifications

An execution over well-formed data simply sums over all the ages and divide by the

total. From the data in Table 2-1, the LogLog interpreter would return 55.

An execution over data with missing values makes the missing values symbolic,

performs combined concrete and symbolic execution, and makes the symbolic result

Table 2.1: Census data missing relevant marital status and spouse items.

Name Age ... Married Spouse ... Mother

0 28 true 3 1

1 false - 2

2 true 11 4

3 34 11

4 88 true 39

Table 2.2: Census data missing marital status, spouse, and age items.

concrete based on constraints derived from types. Below we show the execution of the

LogLog interpreter on the data in Table 2.1, in which entry 3 is missing the "Married"

and "Spouse" fields.

sumo = 28

sumi = 28

sum 2 = 98

sum3 = if rel[3].married then 132 else 98

sum 4 = sum 3 + 88

The runtime evaluates the married field to the symbolic variable rel[3].married and

the sum becomes a symbolic expression. To make a symbolic value concrete, the

runtime system will derive a value consistent with the type-level specification. In the

case of this example, the constraints will determine that rel[3].married is true.

Name IAge ... Married Spouse].. . Mother

0 28 true 3 1

1 48 false -1 2

2 70 true 11 4

3 34 - 11

4 88 true 39 -

The runtime system propagates both missing age and marital status information,

as we show with respect to the data in Table 2.2:

sumo = 28

sumi = 28

sum 2 = 28 + rel[2].age

sum3 = if rel[3].married then sum 2 + 34 else sum2

sum 4 = sum3 + 88

The runtime system determines rel[3].married is true and there should be following

bounds on rel[2].age:

28 + 12 = 40 < rel[1].age,

rel[1).age + 12 < rel[2].age,

rel[2].age + 12 < 88.

This allows us to determine

43 < rel[2].age < 88,

which allows us to derive

48.25 < average < 59.5.

Note that the results of such computations retain uncertainty until a concrete value

is required.

Chapter 3

Specifying and Executing Constraints

on Data

The underlying execution is quite simple: we have a language with two modalities,

one for concrete execution and one for handling symbolic values and associated con-

straints. The key feature is the concept of symbolic variables, which designate values

that are the responsibility of the runtime. The execution model evaluates expressions

containing symbolic values symbolically and associates the resulting symbolic expres-

sions with constraints that are used to make the result concrete. We show how to

perform simultaneous concrete and symbolic evaluation, constraint propagation, and

concretizing values.

3.1 A-LogLog by example

We describe the exeuction model using A-LogLog, the A-calculus extended with two

constructs, symbolic abstraction and a constrained term. A symbolic abstraction o-y.t

introduces a scoped symbolic variable y in the body of the term t. A constrained

term t|. associates the symbolic variables in t with the constraint Y; this constraint

is used in making a symbolic expression concrete. For instance, consider the expres-

Sion UY.(Yjy=2y). This is a symbolic abstraction over the variable y containing the

constrained term yly=2y. This term indicates that the variable y is bound to the

constraint that y = 2y. Since this is the only information we have about y, to fully

evaluate the a-term we can resolve the result y = 0.

Let us further examine how we can evaluate expressions in this calculus. Recall

the following standard A-calculus functions for pairs (x, y):

mkpair: Ax.Ay.Af.(f x y)

fst: Ap.p (Ax.Ay.x)

snd: Ap.p (Ax.Ay.y)

If we wanted to constrain the two elements of the pairs to be equal, we can write

the following pair constructor that makes use of a constrained term:

mkeqpair = Ax.Ay.Af.((f x y)|x=y)

Here we have a constructor that takes pair arguments x and y and returns a pair

Af.((f x y)I2=y) that constraints x and y to be equal. This constraint applies if either

of the arguments are symbolic.

3.1.1 Application and concretization with symbolic values

Consider the case when we construct a pair involving a symbolic value:

uz.(mkeqpair 1 z) - oz.((Ay.Af.f z ylz=y) 1)

Oz.(Af.f z 1|2=1

Af.(f 1 111=1)

We first evaluate the body of the a expression, getting the constrained symbolic pair

[z, 1]|1 . The evaluation of the concretization of a-bound variable z yields [1, 1]11=1.

Now consider the following evaluation where we have a symbolic variable involved

in a conditional.

o-z.(let x = (mkeqpair 1 z) in (if (snd x = 1) then 1 else 0))

-- uz.(if (zIz=1 = 1) then 1 else 0)

-cz.((if (z = 1) then 1 else 0)|2=1)

-+41

We evaluate the body of the a-expression by evaluating the conditional and then

concretizing the variable z based on the constraint z = 1. When we concretize, we

get z = 1, so the expression evaluates to 1.

Now suppose instead of returning 0 or 1, we want to increment some variable

which happens to be symbolic.

crz.ov.(As.(let = (mkeqpair 1 z) in (if (snd x = 1) then s + 1 else s)) (vI,>io))

-uz.uv.(if (zz=1 = 1) then (vjv io) + 1 else (vjv>io))

-+ Oz.cxv.((if (z = 1) then v + 1 else v)|(Z=1),(vio))

-+ cz.((if (z = 1) then 11 else 10)|(Z=1)A(1010))

-11

We evaluate the expression, simplifying the concrete portions as much as possible and

pushing the constraints to the outermost term. We first concretize v = 10 according

to our constraints, leaving the constraint z = 1 on the term because it still contains

free symbolic variables. We then concretize z and get a final expression of 11.

3.1.2 Evaluating concrete expressions

The system only applies constraints to symbolic expressions: if a constraint has no

symbolic variables, then the system ignores it. Concrete pair creation would cause

the constraint variables to be substituted as follows:

((Ax.Ay.Af.(f x yIK=y)) 1) 0 -> (Ay.A f.(f 0 yIo=y)) 1

Af.(f 0 1|o=1)

Though we clearly have an unsatisfiable constraint here, we have no symbolic variables

in the expression, so the constraints will not matter during evaluation. Applying fst

will result in the following evaluation:

(Ap.p (Ax.Ay.x)) (Af.(f 0 1|o=1)) - (Af.(f 0 1|o=1)) (Ax.Ay.x)

((Ax.Ay.x) 0 1)lo=

- ((Ay.1) 0)|o=1

-1|=1

->I

Since the constant 1 is fully concrete, it is not under the jurisdiction of the constraints

and so we can strip the constraint to produce a value.

3.1.3 Symbolic abstractions vs. function abstractions

According to our evaluation rules, we only evaluate a function abstraction when the

function is applied. On the other hand, we evaluate o--abstractions eagerly, by first

evaluating the body and then concretizing the o-bound variables.

The way to delay the evaluation of a o-abstraction is to place it inside a A-

abstraction:

Af.o-y.f y.

The rules describe the following evaluation:

(Af-yjf y) (Ax.zlxgo) o-y.((Az.zlxgo) y)

o7 -(ylygo)

0.

The evaluation does not concretize the expression until the application of f has been

fully evaluated.

We can express the construct "carry out the rest of the computation and then

concretize y" if we have the rest of the computation expresses as some continuation

k. We can write the expression

(Af.oy.f y) k,

the evaluation of which would yield f y before concretizing y. Given a program

written in continuation-passing style, at any point we can introduce o--abstracted

variables to be concretized after finishing the rest of the computation.

3.2 All together now

We show the abstract syntax of A-LogLog in Table 3.1. We only deviate from the

standard A-calculus with the symbolic abstraction and constrained term. Note that

values only have constraints if they are under a A-abstraction.

3.2.1 Combined concrete and symbolic evaluation

In 3-1 we describe the rules for our mixed concrete and symbolic evaluation. The

rules assume all variables have unique names. Note that the a substitutes variable

bindings in constraints as well as in term bodies.

The interesting rules are CONCRETIZE, which evaluates an expression and then

assigns a concrete value to the result, the rules OPSYM and CONDSYM, which

t t

t op t

if t then t else t

v

o-y.t

t|,

terms:

variable

application

arithmetic/boolean operation

conditional

value

symbolic abstraction

constrained term

values:

abstraction value

integer

boolean

constraint functions:

term

Table 3.1: A-LogLog syntax.

t ::-

v ::

Ax.t

i

b

t

Symbolic abstraction:
t --+ t'|, 7 -- -y' SAT((y = c) /\ ty

o-y.t ->4 ty

[y F-+ c]t' cYE -)> t
(COTNCRETIZE)

Function application:

t 1 - t' t' t2 -+ t,. (A P
ti t 2 -- t' (APP)

te -> tc Y ta -> t' [x - t'at 1 ->

(if tc then (Ax.ti) else (Ay.t 2)) ta - (if t'c

Arithmetic and boolean operations:

t2 -> t' [x -+ t 2 t 1 -- t'

(Ax.ti) t 2 -> t'* (APPABS)

[y '-' t'a]t2 -> t'12|

then t' else t')|y7 (APPSYM)

t -* v 1 t2 -+ v 2 V1 OP V2 = Vr

ti OP t 2 -- Vr (OPABS)
t1 -* t'll|yi t 2 -> t2|-

ti op t 2 -> (t' op t'2)|AY2

Conditionals:

tc -- truel,' tt|, -+- t;t
if tc then tt else tf - tI (CONDABS - TRUE)

te -> '-t> t t| t 5 -> t'i|ite t -(i t'c th n f fl y .
if t, then tt else tf --> (if t' then t' else Lt(?y~y)~ (E - CONDSYM)

Constrained terms and values:

t -> t' _ (C
t| I- -> t', (C

TERM)

tA 2 -> t'

(tI 1) - -I2 t' (CS - TERM)

freevars(y) 0
vl, -, v (C - VAL)

Figure 3-1: Evaluation.

(OPSYM)

describe how to evaluate operations on symbolic expressions, and CS-TERM, which

describes how to combine constraints.

The CONCRETIZE rule says that the concretization of the symbolic abstraction

oy.t involves first evaluating t to some constrained term t'|, fully evaluating the

constraints, finding an assignment y = c such that y = c is consistent with the

evaluated constraint 'y', and then evaluating the term t'jy with the substitution y - c

to get the final result. This rule provides the only nondeterminism in the semantics;

the nondeterminism comes from finding a satisfiable assignment for y. In this rule we

assume the existence of a SAT function which determines whether a set of constraints

is satisfiable. The SAT function is defined on conjunctions of arithmetic, boolean, and

conditional expressions containing integers and variables. All expressions involved in

the conjunction must have boolean type and all variables must have integer type.

We apply a function by evaluation the function body, evaluating the argument,

and applying the function to the argument. The APP rule reduces the function being

applied; if we have either a A-expression or a conditional A-expression we can use

the APPABS or APPSYM rules to directly apply the function by first evaluating the

argument and then performing substitution. Evaluation is call-by-value.

Evaluating arithmetic and boolean expressions and conditional expressions in-

volves evaluating the arguments and pushing the constraints to the top-most level.

Evaluation either joins constraints by conjunction or creates a ternary constraint

operation which is of the form tc?y 1 : Y2 and means (tc A l) V (-,tc A 72).

We also have the C-TERM rule, which says that the evaluation of a constrained

term involves evaluating the term body. The CS-TERM rules says that if we have

a constrained term with a constraint on it, we combine the constraints using con-

junction. The C-VAL rule says that if we have a constrained value with no free

symbolic variables in the constraint, we can strip the constraint. Note that if there

are free symbolic variables, we need to keep the constraint for when we concretize the

expression.

From these rules we see that this evaluation of A-LogLog adds the following to

the standard #-reduction rules of the A-calculus: propagating constraints, evaluating

the constraint before concretizing a u-bound variable, and invoking the satisfiability

oracle to find a suitable assignment to o-. The overhead from constraint propagation

comes from the substitutions during program evaluation and the operations required

to combine constraints for evaluating function applications, arithmetic/boolean op-

erations, and conditions.

3.2.2 Simple typing to ensure normalizing expressions

We can enhance the semantics with a standard type system that supports recursive

functions to ensure that all well-typed expressions are normalizing.

3.2.3 Constraint propagation correctness

We have the property that for a u-bound variable y, all constraints relevant to y

apply in the concretization of y. Since all o variables become concrete values in the

concretization of u-expressions, evaluation of the term body of constrained terms

proceeds analogously to evaluation in the A-calculus. Like in evaluation of the A-

calculus, after an evaluation t -- t', a A-expression can only exist in the body of t'

if t' is a A-expression. For an evaluation t -+ t'|, Iy captures all constraints in the

body of t except those inside A-abstractions. Because of these two properties, for

an evaluation ay.t -- uy.(t'l) where t does not have a function type, y captures all

constraints in the body of t.

Chapter 4

LogLog language design

We have built a programming language LogLog on top of the A-LogLog execution

model, making design decisions based on ease of programming, ease of reasoning

about the program, and ease of writing programs with good performance. The key

decisions we made in LogLog are as follows:

" In LogLog, the programmer introduces constraints by associating them with

type declarations. This provides syntactic sugar for the programmer to intro-

duce constraints and also facilitates reasoning about symbolic expressions.

" The LogLog programmer introduces can use the symbolic keyword to intro-

duce symbolic abstractions. This allows programmers to introduce symbolic

variables that are scoped for the rest of the computation and concretized after

the program finishes evaluating result term body.

4.1 Abstract syntax

We show the abstract syntax in Figure 4-1. At the top level, a program consists of

type declarations and data declarations. The goal of evaluation is to produce a value

from the data declarations. This data can have concrete and symbolic components.

The programmer declares constraints to associate with symbolic values by associating

them with types. During execution, the runtime system uses type and type-constraint

Type (T) =

Var (v) =

Value (v) -

Exp (e) -

Dec] (7'd)-

Dec] (d,) =

Deci (dr) =-

Program

int
bool

list T

record n,

T -* 72

n

n . nf

p

record T rn e ; e)*}

List

fun v: r e

app ei e2

e1 Arithop e2

e1 Boolop e2

if ec then et else ef

I

symbolic

forall n in n,r. Ye - Yd

e

rtype n, { ng Tr (,vn : Tf)* }

type Tnew T T

d, with -Yd

nd : Td e

d* d*

Figure 4-1: Partial LogLog abstract syntax for expressions. Prinitives p consist of
integers and booleans. Variables can either be identifiers n or field accesses.

Constraint

Type

Data

=

information to propagate constraints for symbolic expressions. These constraints are

later used when making symbolic expressions concrete.

4.1.1 Concrete and symbolic data

We have the symbolic expression, which introduces a new symbolic variable. If we

have a continuation k expressing the rest of the computation at a point we evaluate

a symbolic expression, we evaluate the expression by introducing a new variable v

and yielding ov.k v. This assumes we have the computation in continuation-passing

style. Concretizing of all symbolic variables occurs at the end of the computation.

4.1.2 Types and type-level constraints

Type declarations allow the programmer to declare new record types, type aliases, or

associate types with constraint functions. The requirement for a constraint function

Yd associated with type T is that it has type T -+ bool. We use the resulting boolean

constraint for concretizing if v is symbolic.

If we have a type T and we declare a new type T' with constraint -}, we have the

subtyping relationship T' <: T. For concrete values, T and T' are equivalent types.

Since we know symbolic expressions of type T' satisfy the constraints declared with

T, whenever we need an expression of type T we can also use an expression of type T'.

4.2 Introducing and eliminating constraints

The evaluation introduces constraints by looking up type-level constraints of symbolic

expressions. The evaluation eliminates constraints when evaluating the final result

through concretization.

4.2.1 Looking up type-level constraints

In the LogLog framework, the runtime associates constraints with terms based on

what the user has defined. When evaluating t : T, where T is associated with some

constraint function f : T - bool, we get the evaluation

t : r -- t'| f () : r.

For instance, suppose t' were the census data record from our introductory example,

where vO is a symbolic variable:

censusdata_ imputed { name = 0; age = 54; married = vO; spouse - 1; ... }

Recall that we had the following constraint:

type census data imputed = censusdata

with (r) { r.spouse >= 0 implies r.married }

In applying the constraint to the record, we would add the constraint r.married = true

to our constraint environment since the record's spouse field is a valid (positive) user

ID.

When there is a data structure containing values, for instance a list of census

records, the runtime will iterate over the data structure to apply constraints to each

element. The programmer can also declare constraint functions on the list type, in

which case the constraint function is responsible for iterating over the list.

4.2.2 Concretizing the final result

At some point in the computation, we will have fully evaluated everything except for

the a-bound variables, so we will have something of the form

ovo.uv1.ov 2 .t|,

where y encapsulates constraints on all of the a-bound variables. At this point we can

assign values to all of the symbolic variables based on -y to yield the final (concrete)

result.

Chapter 5

Implementation

The main goal of this chapter is to describe how we bound memory usage in our

LogLog implementation. We describe the interpreter architecture, interpreter algo-

rithms, run-time garbage collection, and our experience optimizing the interpreter.

5.1 Bounding space

Space, rather than time, is the most important thing to bound. As we saw with

the evaluation rules, running time introduces a constant factor of overhead to term

evaluation time, plus the amount of time it takes to evaluate the final constraints for

each symbolic abstraction. On the other hand, the sizes of the symbolic expression

and final constraint are a function of the number of operations, conditionals, and

function applications. For each variable substitution in a function application, this

size grows by a factor of the number of times the variable appears. Without shared

state, the space could grow exponentially.

We can observe, however, that since substituted expressions are immutable the

number of unique expressions grows linearly with the number of function applications.

Thus common-subexpression elimination can limit the space expansion to be linear

in the number of applications. We use the structural hashing techniques performed

by SMT solver such as UCLID 116] and STP [13].

5.2 High-level overview

The system includes a frontend that drives the interpreter loop, a backend runtime

system that performs optimizations and garbage collection, and an SMT constraint

solver for resolving linear constraints. To reduce space overhead we use eager sinipli-

fication, expression sharing, and eager garbage collection in storing expressions and

constraints.

We use OCaml for the frontenid, C-- for the backend, and the SMT solver Yices

for constraint solving. The architecture was driven by the tradeoff between ease of

implementation and need to control memory usage.

5.3 Interpreter architecture

The frontend performs preprocessing, drives the evaluation loop, and performs type-

level constraint applications. The backend stores evaluation state and performs eager

optimizations to reduce the size of the state. The oracle resolves constraints.

5.3.1 Frontend

The frontend evaluation environment stores a mapping of names to type constraints,

variable names to types, type names to type-level constraints, and function names to

function definitions.

5.3.2 Backend

The backend is a runtime system that keeps track of 1) the expressions being evaluated

and 2) the corresponding constraints.

The runtime system stores expressions as directed acyclic graphs of nodes. Atomic

nodes are constants, relations, records, and symbolic variables. There are also nodes

corresponding to arithmetic expressions, boolean expressions, and ternary expressions,

which involve a guard, a true case, and a false case.

The runtime is responsible for keeping the following state:

" A stack that stores information about expression nodes. The frontend commu-

nicates with the backend through this stack.

* A variable environment mapping front-end variables to expression nodes.

" A vector of symbolic nodes to keep track of which variables need to be con-

cretized.

" A vector of assertions as the constraint environment.

Expression nodes

Our backend uses different kinds of nodes that inherit from a parent ExpressionNode

class. ExpressionNode objects store a unique ID, pointers to parents (which are

NULL by default), serialization functions, and additional information relevant to the

type of node it is. We have expression nodes for boolean operations (AND, OR,

NOT, GT, GE, LT, LE, EQ, NEQTY), arithmetic operations (PLUS, TIMES, DIV

NEG), atomic values (CONST, RELATION, RECORD), symbolic values (SYM), and

ternary expressions (TERNARY).

As an optimization, we store a tagged union of expression nodes and 64-bit integers

on the stack so that we don't have the overhead of creating ConstNode objects. We

eagerly simplify arithmetic/boolean operations involving constants.

Symbolic nodes

The backend gives unique ID's to symbolic nodes and keeps a vector of pointers to

them. Symbolic nodes can be created in the frontend or when the backend encounters

missing values when reading relations from file.

5.3.3 Solver and interface

We use the Yices SMT solver [29] to resolve constraints. The backend calls the solver

by writing constraints to file; the solver does not store state between calls. The

backend reads the solver output from standard input and updates the symbolic nodes

to be constant nodes with their newly assigned values.

5.3.4 Frontend interface to backend

The frontend interacts with the backerid by passing arguments to backend functions

(to specify control flow and communicate constants), by pushing and popping nodes

onto the stack (to share expression nodes), arid by reading backend return values.

5.4 Algorithms

5.4.1 Frontend

The frontend drives the interpreter loop. It stores types and function declarations

while the backend stores relations arid the value environment.

The frontend drives the interpreter loop. The top-level evaluation loop function

has the following type signature:

evaluate : Evalenv.evalenv ref -> Ast.topdecl list -> unit

Given a list of top-level declarations and a reference to a fronterid evaluation envi-

ronment, the function modifies the environment according to the declarations. This

can include binding types, binding type-level constraints, arid binding global values.

Below we show the code for evaluating top-level value assignments:

match deel with

Ast.AssignDecl (name, ty, rhs) ->

Evalenv.bindTypeEnv env name ty;

(match rhs with

| Ast.RhsExp exp

processTopExp name exp ty;

Evalenv.bindValueEnv env (Ast.Var name)'

ProcessConstraints. addTypeConstraints env name

Ast.Concretize exp ->

Oracle. concretize env (ref exp) ty;

Evalenv.bindValueEnv env (Ast.Var name))

If the top-level declaration is an assignment to an expression, we call the evaluation

loop and then apply type level constraints; otherwise, we concretize.

Expression evaluation

The evaluation loop makes nodes in the back-end and puts the result onto the backend

stack. It has the following type signature:

evalExp : Evalenv.evalenv ref -> Ast.exp ref -> Ast.typerep -> unit

Given an environment, and expression, and its type, the evaluation function pushes

a resulting node onto the backend stack by communicating with the backend. For

instance, we show the case for evaluating arithmetic operations below:

| Ast.Arithop (op, el, e2) ->

evalExp env el Ast.IntType;

evalExp env e2 Ast.IntType;

BackendInterface.basicArithop (AstBackend.getarithop op)

For an arithmetic operation with operator op and arguments el and e2, we first

evaluate el and push it onto the stack, evaluate e2 and push it onto the stack, and

then we call the backend interface function with the operator. The backend function,

which expects the operands to be on the stack in this order, pops the operands and

creates an operator node on the stack.

Constraint application

We apply constraints to values of relation or type. The function has the following

type signature:

addTypeConstraints : Evalenv.evalenv ref -> Ast.varname -> unit

Given an environment and a name, we add type constraints for the variable in the

backend. Note that we only add type constraints when we bind a variable at the top

level.

We do various things while applying constraints to make things more efficient.

When iterating through a relation, we apply constraints only when one of the impli-

cated values is symbolic. To avoid building constraints and then throwing them away,

we first determine whether a constraint could have symbolic portions before construct-

ing it. If a constraint is predicated by a condition (for the matching constraints), we

also evaluate the condition and only construct the constraint if the condition is true

or symbolic.

5.4.2 Backend

Calling optimizations

Whenever we bind an object in the environment, we call the simplification and com-

mon sub-expression elimination optimizations.

The backend invokes simple optimizations when creating nodes and whole-expression

optmizations when storing variables. Simple optimizations involve flattening con-

stants at the operator level; whole-expression optimizations involve using the common-

subexpression tables and more involved constant propagation.

The rate at which we perform optimizations balances the desire to optimize eagerly

to minimize space usage and the overhead of optimization per expression.

Whole-expression optimizations

We have two optimization passes: one for basic constant propagation and one for

common sub-expression elimination.

We perform basic constant propagation that simplifies arithmetic and boolean

expressions as much as possible, looking across levels for expression trees.

The common sub-expression we store are 0 and 1 constants and to non-constant

expressions corresponding to bound variables. We have a string hash table where we

hash pointers to expressions using the type of the expression, its unique ID, and other

relevant information.

Reference counting garbage collection

We perform reference counting garbage collection in order to do it as eagerly as

possible so that we do not run out of space. We produce garbage mostly as a result

of performing optimizations.

We will define what it means for a variable to be live and explain an algorithm

that satisfies the following properties:

" An expression is live if the front-end can still access it.

* An expression is dead if and only if its reference count is zero. If an expression

is live, its reference count is positive.

" If an expression is dead, our backend will reclaim the memory.

An expression is live if there is still a pointer to the expression. An expression

can be live in the following ways:

" There is a pointer to the expression on the stack.

" The expression is bound in the variable environment.

" The expression is an ancestor of some other expression.

" There is a pointer to the expression in our common sub-expression tables.

Whenever a node is set as the parent of another node, pushed onto the stack, or

bound as a variable, we increment the reference count.

A node can only become garbage when we perform optimizations. Thus during

optimizations, whenever we replace a node we are careful to

5.5 Experience notes

We learned quite a bit from trying to implement a prototype interpreter that was

sufficiently efficient with respect to time and space.

We initially implemented the interpreter in OCaml with a Yices backend us-

ing standard functional idioms. We first optimized that interpreter and then re-

implemented the back-end using C--++. We switched for two reasons: it was becom-

ing difficult to get performance gains from the OCail without reasoning about the

OCail compiler and we had some existing C---+ infrastructure supporting efficient

processing and storage of symbolic expressions.

5.5.1 Performance wins

The biggest performance win, both in the OCaml implementation and inl the mixed

implementation, came from getting almost constant-time access to all records sharing

a field value. For instance, if we are applying constraints that depend on matching on

field f, instead of looking through the relation for matching field f it is much more

efficient to store the records as a hash table of lists keyed by field f.

OCaml implementation

We saw performance gains from using references instead of values as much as possible,

getting rid of closures, and compiling to native code rather than byte code. We also

saw performance gains from eager optimization of symbolic expressions.

Mixed implementation

We needed to implement eager reference-counting garbage collection in the C-+-

backend in order to not run out of memory on processing large relations. A significant

speedup came from noticing that rather than storing all nodes, we can keep a stack of

nodes and only store bound nodes in a map. We also saw good speedups from using

a tagged union of expression node pointers and integers, since most of the values we

saw were actually integers. Because the tagged union structure was small enough to

store directly rather than allocating on the heap, we were able to avoid the allocation

and deletion overhead.

5.5.2 Ease of implementation vs. runtime performance

Our OCaml interpreter was initially easy to implement and maintain. The initial im-

plementation, which occured in tandem with making language design decisions, took

one person-month. As the OCaml implementation became more optimized, how-

ever, maintenance became more time-consuming-the complexity came from having

to reason about the order of stateful operations such as environment updates.

The C-+ backend, which exhibits the same behavior as the initial OCaml inter-

preter, was fairly painful to implement. It took almost 3 person-months; much of

this difficulty came from the fact that we were modifying a large existing platform of

sparsely documented research code.

Chapter 6

Case Study: Processing Real Census

Data

We conducted a case study implementing documented imputation strategies on hun-

dreds of thousands of records from the U.S. Census Bureau. Our benchmarks are

based on the documented imputation strategies. We also compare LogLog to SQL

and Python in terms of both programming and efficiency of the resulting program.

We show the following:

" Data processing is a suitable domain for specification-enhanced execution. While

there are many real-world data items that may be missing, only a small fraction

of them are missing in a given data set.

" LogLog provides a good programming interface for expressing the documented

imputation strategies.

" Constraint solving takes up a negligible portion of the total running time.

* Constraint derivation is reasonably fast.

" Symbolic execution does not introduce more runtime overhead than standard

execution.

This suggests that this approach is not only useful but feasible for principled data

cleaning of real world data.

Household Demographic
Month/year

Range Mean Range Mean

Jan. 1997 0.16 - 5.84 0.41 0.08-9.2 1.35

Jan. 2004 0.01-3.42 0.56 0.12-19.0 2.41

Table 6.1: Imputation rates for different CPS fields by percent [26]. Household edits
involve hot deck imputation between households. Demographic edits involve employ-
ing relational, longitudinal, and hot deck imputation based on demographic variables
such as marital status, parents, and spouse.

6.1 Current Population Survey and imputation

We use data from the U.S. Census Bureau's Current Population Survey (CPS), a

monthly survey sampling about 50,000 households used by government policymakers,

students, and academics [241. Imputation strategies have been shown to be important

in affecting research conclusions in this domain [3]. Specifically, we use the Annual

Social and Economic (ASEC) March supplement, which provides microdata, or survey

data where the unit of observation is individuals, families, and households [25]. This

data contains relationship information about people within families and households

and social information such as the number of children in the household enrolled in

public school. The 2009 supplement contains 392,550 records.

The Census Bureau documents standard procedures for reconstructing answers

from nonresponse from other available information [25]: relational imputation in-

volves inferring the missing value from other characteristics on the person's record or

within the household; longitudinal edits involve looking at the previous month's data;

"Hot deck" imputation infers the missing value from a different record with similar

characteristics. While there are many ways in which imputations may need to occur,

the number of imputations is low relative to the size of the data set, as we show in

Table 6.1.

The supplement data sets contain preprocessed data that is annotated with a set

of fields containing imputation flags, which indicate how certain fields have been im-

puted. These flags may either be binary imputed/not imputed, or they may contain

Household [Line Age [Mar. Spouse MI SI

26974 11 00 9 00 0 0

26974 13 06 0 70 0 0

26974 05 27 1 07 4 2

26974 07 32 1 05 0 0

Table 6.2: View of the March 2009 CPS data showing the following columns for a
subset of entries from household 26974: household ID, line number, age, marital sta-
tus, spouse line number, marital status imputation flag (MI), and spouse imputation
flag (SI).

more information, such as "Allocated from hot deck" or "Allocated from spouse" [241.

In Table 6.2 we show some entries from a household where the marital status infor-

mation for one of the household members has been imputed. We can see that the

marital status and spouse line number for the person on line 5 came from the person

on line 7.

6.1.1 Experimental setup

We use the following columns of the CPS data:

" Household ID. The March supplement assigns a unique identifier to each house-

hold.

" Individual line number. The data identifies individuals according to their line

number with respect to a household.

" Age. From the imputation flags and surrounding data, it appears to be imputed

from reference tables from previous years.

" Marital status and spouse line number. The documentation says that these

values are imputed from relational information. The spouse line number is with

respect to the same household ID. Marital status can be integer values 0 - 9

indicating statuses including "single, never married" and "widowed."

(* CPS data record type. *)
rtype cps data

{ household : int
line_no int

;age :int
marital int
spouse no int
hotlunchno : int}

type cpsrel = cpsdata relation

(* RELATIONAL IMPUTATION *)
type mdatainferredrel = cps-rel

with (rel) {
forall r. r' in rel

((r.household == r'.household) and

(e.spouse == r'.lineno)) implies ((r.line-no

I
(* Load data and take conditional sum. *)
in rel m -data inferred rel = load data.txt
result int = concretize (sum-married in_rel)

(* LONGITUDINAL IMPUTATION *)
(* Load reference relation. *)
referencerel : cpsrel = load 'ref.txt'

(* Define data type for longitudinal imputation. *)
rtype age datainferred rel = cps_rel

with (rel) {
forall r in rel : exists r' in referencerel forsym r.age

((r.household == r'.household) and

(r.lineno == r'.lineno)) implies (r.age == r'.age)

I

(* Load data and sum over age field. *)
in rel age_data_inferredrel = load 'data.txt'
result int = concretize (cunages inrel)

(* HOT DECK IMPUTATION *)
type lunchdatainferred = lunchdata relation

with (rel) {
exists r, r' in rel forsym r.hotlunchno:

(r.household == r'.household) implies (r.hot_lunchno =

I

r'.spouse) and (e.married

r'.hot lunch no)

Figure 6-1: Relevant code for imputation tests.

r'.married))

* Number of children in household who get hot lunch. Fields like this seem to be

imputed from surrounding values that are similar: in this case, this value can

be imputed from another individual from the same household.

We tested the performance of the LogLog implementation on the following kinds

of imputations:

1. Relational imputation. We impute missing marital status and spouse fields for a

record with household ID h line number e by looking at whether there is another

record with household h listing t as the spouse line number.

2. Longitudinal imputation. We impute missing ages by looking up the value inl a

reference table.

3. "Hot deck" imputation. We impute a missing hot lunch number for a record

with household ID h by using a value from another record with household ID

h.

4. Combined imputation. We combine these three imputation strategies, creating

a type with all three constraints and performing a sum over the age field.

We show the relevant code from these tests in Figure 6-1. Note that since longitudinal

and hot deck imputation have constraints necessarily apply to concrete values, we use

exists rather than forall.

For each example, we created a data set with missing values by examining the

relevant imputation flags. For example, for the relational imputation test we use the

imputation flags for the marital status and spouse line number to set the implicated

items as missing while leaving the other items intact. For the longitudinal imputation

example, we used the original data set as the reference table. The input data for the

"combined imputation" example has missing items in all relevant columns.

6.1.2 Results

We ran the tests on increasingly large subsets of the data with the following total

percentages of records with missing items:

Total # bad Relational Longitudinal

records Cnsts. Yices Total Cnsts. j Yices Total

8,192 66 0.02 0.000 0.08 0.04 0.000 0.08

16,384 152 0.06 0.000 0.15 0.07 0.000 0.16

32,768 344 0.25 0.000 1.28 0.14 0.000 0.33

65,546 1007 0.28 0.004 0.64 0.30 0.000 0.69

131,072 1990 0.57 0.000 1.30 0.64 0.000 1.46

262,144 3745 1.16 0.004 2.62 1.32 0.000 3.02

392,550 5693 1.81 0.004 4.09 2.04 0.000 4.62

Total # bad "Hot deck" Combined

records Cnsts. Yices Total Cnsts. Yices I Total

8,192 66 0.02 0.000 0.06 0.10 0.000 0.16

16,384 152 0.06 0.000 0.12 0.20 0.000 0.32

32,768 344 0.12 0.000 0.26 0.42 0.000 0.67

65,546 1007 0.25 0.000 0.54 0.88 0.000 1.40

131,072 1990 0.53 0.000 1.11 1.82 0.000 2.87

262,144 3745 1.09 0.000 2.30 3.86 0.000 6.04

392,550 5693 1.67 0.000 3.54 5.82 0.000 9.04

Table 6.3: Times (in seconds) for 1) deriving constraints on the input with incomplete
values (Cnsts.), 2) solving the Yices constraints (Yices), and 3) running the interpreter
on the entire program (Total). The time for deriving and solving constraints makes
up a small fraction of the total running time. We show the total number of records
on the left, along with the total number of missing records in the data set combining
all missing items.

Total # bad Combined Combined

records no missing Cists. Eval. Total

8,192 66 0.06 0.10 0.06 0.16

16,384 152 0.12 0.20 0.12 0.32

32,768 344 0.24 0.42 0.23 0.67

65,546 1007 0.48 0.88 0.48 1.40

131,072 1990 0.98 1.82 1.05 2.87

262,144 3745 1.99 3.86 2.18 6.04

392,550 5693 3.01 5.82 3.22 9.04

Table 6.4: While constraint evaluation introduces an expected factor of two overhead,
symbolic evaluation does not introduce signifcant overheads.

Relational Longitudinal "Hot deck" Combined

0.433% 1.445% 0.588% 1.450%

We ran the programs on an machine with an Intel Core 2 Quad Q9650 processor

(3.0 GHz, 12M L2 cache, 1333MHz FSB) running 64-bit Linux. We show the running

times of the LogLog interpreter on our data sets in Figure 6.3. The results show that

1) the time it takes to apply the constraints grows roughly linearly arid 2) the time it

takes to solve the constraints is low. We expect the constraint derivation and solving

to scale: Yices is good at solving unquantified constraints, arid we derive constraints

linear in the number of missing records.

According to these results, expression evaluation is much slower than constraint

application or constraint solving. This is because we have not done much to optimize

the symbolic evaluation; the interpreter performance does not reflect limitations on

the speed of the symbolic evaluation. In the longitudinal arid combined examples the

interpreter slows down quite a bit. This is because we load the reference relation into

memory and thus incur more garbage collection overhead during evaluation.

6.2 Comparison with other languages

We found that LogLog provides usability advantages over both SQL and Python and

that LogLog is much faster than Python on the census data benchmarks.

6.2.1 SQL

As expected, we were able to perform the imputation much faster in SQL. We found,

however, that while SQL seems to have similar language features for specifying each

individual imputation strategy, getting the imputation right involves carefully man-

aging the order of updates to make sure the necessary values propagate where they

need to go.

The target SQL query we want to write is straightforward:

(select sum(age) from combineddata where married = 1 and hotlunch = 0);

In order to do this, however, we need to perform imputation on the missing fields.

Doing the imputation in SQL involves creating the appropriate tables to fill in the

missing values. We can run something like the following query runs in 0.10 seconds:

update combineddata, combined data ref

set combined data.age = combined_ dataref.age + 1

where combineddata.age is null

and combined data.household = combined data ref.household

and combineddata.line - combined_ data_ref.line;

Imputing the "married" field in an analogous takes 0.03 seconds; imputing the "hot

lunch" field takes 0.05 seconds.

While SQL provides good language support for specifying individual imputation

strategies, it is up to the programmer to manage the order of the updates and other

dependencies. For instance, consider the case when we are imputing age from the

previous year, but the previous year's age is also missing. While LogLog allows us

to write a set of constraints that we can reuse and have the runtime system apply

only when we need them., in SQL we would need to manually consider all cases and

manually execute the imputations by hand, in the right order. The LogLog strategy

allows more flexibility in specifying application-specific imputation strategy, as it does

not require the programmer to maintain multiple versions of the data and manually

track versioning and dependencies.

6.2.2 Python

We implemented the benchmark examples in Python, which is similar to LogLog

because it is another interpreted language not specifically optimized for data process-

ing. We found LogLog to be both more usable and more efficient than Python for

the benchmark examples.

As expected, we found it easier to write the benchmarks in LogLog than in Python.

We first wrote a version of the imputation where we imputed all missing values inl

a record before processing the aggregation function and then we made this function

more optimal by short-circuiting some evaluations. We show the fastest version of

the program in Figure 6-2; including comments it is almost 100 lines of Python.

The running times in Figure 6.5 show that while Python performs better when

the constraints are simple, LogLog outperforms Python when we need to impute

multiple values. While the LogLog program runs over all examples in 9.04 seconds,

the unoptimized Python program takes 256.18 seconds and the faster version takes

86.03 seconds.

Total

records LogLog

Combined

Python/init. Python/opt. I

- 8,192 0.16 0.08 0.02

16,384 0.32 0.30 0.13

32,768 0.67 1.12 0.42

65,546 1.40 6.78 2.13

131,072 2.87 32.30 9.98

262,144 6.04 115.63 38.42

392,550 9.04 256.18 86.03

Table 6.5: Python running times for comparable examples.

Total Relational Longitudinal "Hot deck"

records LogLog _Python LogLog Python LogLog I Python

8,192 0.08 0.02 0.08 0.02 0.06 0.02

16,384 0.15 0.03 0.16 0.03 0.12 0.03

32,768 1.28 0.06 0.33 0.06 0.26 0.07

65,546 0.64 0.13 0.69 0.14 0.54 0.13

131,072 1.30 0,33 1.46 0.31 1.11 0.30

262,144 2.62 0.72 3.02 0.72 2.30 0.68

392,550 4.09 1.29 4.62 1.28 3.54 1.17

def sumInputRelCondAge(:
agesum - 0
for entry in input rel:

married = False

Figure out if the current person is married.
if entry [3] == "1":

married = True
elif entry [3]

If the entry is missing, loop over the list of records in the same
household to find if someone lists the current person as their spouse.
for housemate in input _relbyhousehold[entry[]]:

married = housemate[4] == entry[1]

Figure out if the current person has anybody in the household getting hot
lunch.
getshotlunch False
if entry [5]

for housemate in inputrelby_household[entry[]]:
housematehotlunch = housemate[5]
if housemate hotlunch

gets_hot_lunch = int(housematehotlunch) > 0
else:

gets hotlunch = int(entry[5]) > 0

if married and gets_hot_lunch:
Now the age might be missing too.
if entry[2]

age = 0
for housemate in refrel_by _household:

if housernate[2] != "!!":
age = int(housemate[2])

else:
age = int(entry[2])

agesum = agesum + age
print agesum

Figure 6-2: Imputation code in Python.

Chapter 7

Related work

In this chapter we discuss related work in aspect-oriented programming, executing

specifications, and program analysis involving. We also describe how the functionality

LogLog provides compares with the state of the art in data processing.

7.1 Aspect-oriented programming

This work is related to aspect-oriented programming [14], which proposes a program-

ming technique that helps isolate program aspects for specific functionality such as

error and failure handling. Aspect-oriented programming involves program aspects

that executes when control reaches a certain point. There are two issues with aspect-

oriented advice: 1) it may interfere with normal program function and 2) it relies

on traditional compiler technologies and thus rather than permeating the computa-

tion, the advice takes responsibility for subcomputations. Dantas and Walker address

the first issue by showing how to apply aspect-oriented programming to use a model

of "harmless advice" where they propose a framework where aspects obey a weak

non-interference property and present an information flow security case study [6].

The specification-enhanced execution model solves the interference problem by

having the constraints only apply to a well-specified subset of expressions during

execution. Our model resolves the second issue by proposing a novel mixed execution

model rather than relying on traditional compiler technologies.

7.2 Programming with specifications

7.2.1 Executing specifications

Carroll Morgan extends Djikstra's guarded command language for predicate trans-

former semantics with specification statements, which specify parts of the program

that are "yet to be developed" [181. Morgan's goal is different from ours in that

while the specification statement executes as a subprocedure, our approach allows

the specification to govern part of the execution alongside the rest of the program.

7.2.2 Constraint-based programming

Our goals are similar to those of Kaleidoscope'90, a "constraint imperative pro-

gramming language" that combines imperative and constraint-based programming

paradigms into a single language [4]. Kaleidoscope aims to provide full support for

constraint-based programming within an imperative model, making it difficult to pro-

vide performance guarantees. Also, Kaleidoscope follows a reactive model, allowing

constraints to introduce control dependencies between unrelated pieces of code.

7.3 Program analysis and repair

Our domain-specific use of goal-oriented programming for handling exceptional cases

is similar to the approach of Demsky's work on data structure repair [7]. While this

work uses goal-oriented programming for on-the-spot repairs, our programming model

uses constraints for determining program execution over a longer period of time.

This has the flavor of the "let the program run" philosophy of acceptibility-oriented

computing [221, but while acceptibility-oriented computing is motivated by the lack

of a specification, our model assumes the desire to adhere to a specification.

We employ techniques familiar to the program analysis community to yield con-

sistent results: we use constraint propagation techniques similar to those used in

program analysis [15, 1, 21 and our combined symbolic and concrete execution is

similar to the combined symbolic and concrete execution in concolic testing 1231.

7.4 Data processing

7.4.1 Parsing

Like PADS system for processing ad hoc data [9, 5, 27, 171, we are addressing the

difficulties in handling real-world data. While PADS addresses the difficulties of

handling syntactic corner cases (parsing), we are concerned with semantic corner

cases (processing well-formatted data that is not semantically well-formed).

7.4.2 Constraint databases

LogLog differs from constraint databases, which 1) use constraints for resolving

queries and 2) do not use constraints to modify the value of data [8, 21].

7.4.3 Data cleaning

The state-of-the-art for data cleaning is based on the Extraction Transformation

Loading (ETL) paradigm, in which a data cleaning tool is used to transform the data

and create a cleaned data set on which further analysis can be performed. The LogLog

strategy allows more flexibility in specifying application-specific imputation strategies

and has the advantage that the imputation strategy is documented alongside with

the program. This eliminates the need for maintaining multiple variations of the data

and keeping track of which versions should be used with which applications.

Other data cleaning tools incorporate constraints to facilitate the expression of

imputation strategies. For instance, Potter's Wheel provides constraints that help

identify the missing data [20, 19]. Once the tool has identified missing data, the

programmer can interactively specify how to handle these exceptional cases with the

goal of producing a transformed data set. The Ajax framework [11], by Galhardas

et. al. is based on their declarative data cleaning method [12] and provides a logic

for users to specify data cleaning transformations of mapping, matching, clustering,

and merging, and interacts with the user to handle the exceptional cases. All of these

tools are based on the ETL paradigm and are thus different from LogLog.

Chapter 8

Conclusions and Future Work

We present specification-enhanced execution, a paradigm for transferring responsibility

for certain aspects of the program to the runtime system. The specification-enhanced

paradigm is particularly useful in aiding the programmer there are so many possible

dynamic cases that the static search space is too large to perform synthesis.

In this thesis we describe the programming and execution model and LogLog,

a novel programming language that support specification-enhanced execution. We

demonstrate the feasibility of our programming and execution models with a case

study in processing census data. We show that our implementation can process real

applications on real data in seconds with negligible constraint-solving overhead. We

also show that it is both less efficient and less natural to write the same programs in

Python. [Mention SQL.]

Our results support the feasibility of 1) using LogLog for data processing and of 2)

applying the specification-enhanced execution model to other domains. These results

are promising for leaving programming details to runtime assistants in the future.

8.1 Future work

An immediate direction for future work is exploring applications to information flow.

One aspect that programs often delegate to runtimes is information flow and access

control: making sure sensitive data leaks through certain boundaries only when the

receiving end has the appropriate permissions. Access control requires functionality

that may be orthogonal to program functionality, but it is very much tied to the entire

program execution. It is also natural to express access control specifications in the

form of simple, high-level logical constraints. Specification-enhanced execution can

allow the programmer to delegate access control management to the runtime system

1) without requiring the programmer to provide heavy annotations and 2) without

requiring a new compile-time or run-time framework specifically for this purpose.

We would also like to develop a framework generalizing specification-enhanced

execution to control flow specifications in a way that still yields efficient programs.

The vision is to develop a method for easily creating robust systems by delegating

tedious and error-prone aspects of system behavior (for example, exception handling)

to the runtime system.

Bibliography

[1] A. Aiken. Scalable program analysis using boolean satisfiability. Formal Methods

and Models for Co-Design, ACM/IEEE International Conference on, 0:89-90,

2006.

[2] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and Peter

Hawkins. An overview of the saturn project. In PASTE '07: Proceedings of the

7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools

and engineering, pages 43-48, New York, NY, USA, 2007. ACM.

[3] Richard V. Burkhauser, Shuaizhang Feng, Stephen P. Jenkins, and Jeff Larri-

more. Estimating trends in us income inequality using the current population

survey: The importance of controlling for censoring. Working Paper 14247, Na-

tional Bureau of Economic Research, August 2008.

[4] James R. Cordy and Mario Barbacci, editors. ICCL'92, Proceedings of the 1992

International Conference on Computer Languages, Oakland, California, USA,

20-23 Apr 1992. IEEE, 1992.

[51 Mark Daly, Yitzhak Mandelbaum, David Walker, Mary Fernandez, Kathleen

Fisher, Robert Gruber, and Xuan Zheng. Pads: an end-to-end system for pro-

cessing ad hoc data. In SIGMOD '06: Proceedings of the 2006 ACM SIGMOD

international conference on Management of data, pages 727 729, New York, NY,

USA, 2006. ACM.

[6] Daniel S. Dantas and David Walker. Harmless advice. In J. Gregory Morrisett

and Simon L. Peyton Jones, editors, POPL, pages 383-396. ACM, 2006.

[7] Brian Demsky and Martin Rinard. Data structure repair using goal-directed

reasoning. In JCSE '05: Proceedings of the 27th international conference on

Software engineering, pages 176 -185, New York, NY, USA, 2005. ACM.

[8] Jan Van den Bussche. Constraint databases, queries, and query languages. In

Constraint Databases, pages 20-54, 2000.

[9] Kathleen Fisher and Robert Gruber. Pads: a domain-specific language for pro-

cessing ad hoc data. SIGPLAN Not., 40(6):295-304, 2005.

[101 Enrico Franconi, Antonio Laureti Palma, Nicola Leone, Simona Perri, and

Francesco Scarcello. Census data repair: a challenging application of disjunc-

tive logic programming. In LPAR '01: Proceedings of the Artificial Intelligence

on Logic for Programming, pages 561-578, London, UK, 2001. Springer-Verlag.

[11] Helena Galhardas, Daniela Florescu, Dennis Shasha, and Eric Simon. Ajax: An

extensible data cleaning tool. In SIGMOD Conference, page 590, 2000.

112] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-

Augustin Saita. Declarative data cleaning: Language, model, and algorithms.

In VLDB '01: Proceedings of the 27th International Conference on Very Large

Data Bases, pages 371- 380, San Francisco, CA, USA, 2001. Morgan Kaufmann

Publishers Inc.

[13] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and ar-

rays. In Computer Aided Verification (CAV '07), Berlin, Germany, July 2007.

Springer-Verlag.

[14] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented

programming. In ECOOP, pages 220-242, 1997.

[15] Daniel Kroening, Edmund Clarke, and Karen Yorav. Behavioral consistency of

C and Verilog programs using bounded model checking. In Proceedings of DAC

2003, pages 368-371. ACM Press, 2003.

[16] Shuvendu K. Lahiri arid Sanjit A. Seshia. The uclid decision procedure. In CAV,

pages 475-478, 2004.

[17] Yitzhak Mandelbaum, Kathleen Fisher, David Walker, Mary Fernandez, and

Artem Gleyzer. Pads/ml: a functional data description language. SIGPLAN

Not., 42(1):77 -83, 2007.

[18] Carroll Morgan. The specification statement. A CM Trans. Program. Lang. Syst.,

10(3):403- 419, 1988.

[191 Vijayshankar Raman, Andy Chou, arid Joseph M. Hellerstein. Scalable spread-

sheets for interactive data analysis. In 1999 ACM SIGMOD Workshop on Re-

search Issues in Data Mining and Knowledge Discovery, 1999.

[20] Vijayshankar Raman and Joseph M. Hellerstein. Potter's wheel: An interac-

tive data cleaning system. In VLDB '01: Proceedings of the 27th International

Conference on Very Large Data Bases, pages 381 390, Sari Francisco, CA, USA,

2001. Morgan Kaufmann Publishers Inc.

[211 Peter Z. Revesz. Datalog and constraints. In Constraint Databases, pages 155-

170, 2000.

[22] Martin Rinard. Acceptability-oriented computing. In In 2003 ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages, and Applica-

tions Companion (OOPSLA &AZOS Companion) Onwards! Session, pages 221-

239. ACM Press, 2003.

[23] Koushik Sen. Concolic testing. In ASE '07: Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering, pages

571-572, New York, NY, USA, 2007. ACM.

[241 The Bureau of Labor Statistics arid the Census Bureau. Current population

survey. http://www. census. gov/cps/, 2009.

[25 U.S. Census Bureau. Current Population Survey, 2009 Annual Social and Eco-

nomic (ASEc) Supplement, 2009.

[261 U.S.Census Bureau. Technical Paper 66, Design and Methodology: Current Pop-

ulation Survey, 2006.

[27] Qian Xi, Kathleen Fisher, David Walker, and Kenny Qili Zhu. Ad hoc data and

the token ambiguity problem. In Andy Gill and Terrance Swift, editors, PADL,

volume 5418 of Lecture Notes in Computer Science, pages 91-106. Springer, 2009.

[28] Paul Yao. Selecting a windows mobile api - .net compact framework and win32.

http://msdn.microsoft. com/en-us/library/dd630621.aspx, April 2010.

[29] Yices: An smt solver. http: //yices. csl. sri. com/.

