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Abstract

Light is a wave, having both an amplitude and a phase. However, optical frequencies
are too high to allow direct detection of phase; thus, our eyes and cameras see only
real values - intensity. Phase carries important information about a wavefront and
is often used for visualization of biological samples, density distributions and surface
profiles. This thesis develops new methods for imaging phase and amplitude from
multi-dimensional intensity measurements. Tomographic phase imaging of diffusion
distributions is described for the application of water content measurement in an
operating fuel cell. Only two projection angles are used to detect and localize large
changes in membrane humidity. Next, several extensions of the Transport of Intensity
technique are presented. Higher order axial derivatives are suggested as a method
for correcting nonlinearity, thus improving range and accuracy. To deal with noisy
images, complex Kalman filtering theory is proposed as a versatile tool for complex-
field estimation. These two methods use many defocused images to recover phase and
amplitude. The next technique presented is a single-shot quantitative phase imag-
ing method which uses chromatic aberration as the contrast mechanism. Finally,
a novel single-shot complex-field technique is presented in the context of a Volume
Holographic Microscopy (VHM). All of these techniques are in the realm of compu-
tational imaging, whereby the imaging system and post-processing are designed in
parallel.
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Chapter 1

Introduction

Phase is an important component of an optical field that is not accessible directly

by a traditional camera. Transparent objects, for example, do not change the am-

plitude of the light passing through them, but introduce phase delays due to regions

of higher optical density (refractive index). Where these phase delays can be mea-

sured, previously invisible information about the shape and density of the object can

be obtained (see Fig. 1-1). Optical density is related to physical density, so phase

images can give distributions of pressure, temperature, humidity, or other material

properties [2]. Furthermore, in reflection mode, phase carries information about the

topology of a reflective object and can be used for surface profiling.

Amplitude

Figure 1-1: Complex-field of a HeLa cell sample. (a) Amplitude transmittance shows
no contrast because the cells are transparent. (b) Phase image, obtained by method
of Chapter 7, reveals details of the projected density.

When objects are semi-transparent, it becomes important to be able to separate

phase effects from those due to absorption. Since only intensity measurements are



made, decoupling phase and amplitude generally requires two measurements for each

data point. Techniques which can fully decouple phase from amplitude will be referred

to as 'complex-field' imaging techniques, or 'quantitative phase imaging', since they

provide a linear map of phase values.

1.1 Phase contrast

The first phase visualization techniques were not quantitative. In the early 1900s, mi-

croscopists recognized that a focused image contains no phase information, whereas a

slightly defocused image reveals something about the phase of the object [1]. Indeed,

an in-focus imaging system has a purely real transfer function and thus no phase

contrast. Defocus introduces an imaginary component, converting some phase infor-

mation into intensity changes [3, 4]. However, the phase to intensity transfer function

is generally nonlinear. Thus, a defocused image of a phase object is neither in-focus

nor quantitative, yielding only a qualitative description of the object.

Phase contrast microscopy [5] solved the problem of providing in-focus phase con-

trast, for which Frits Zernike won the Nobel prize in 1953. The method uses a phase

mask to shift only the DC term, such that it interferes with higher spatial frequencies.

This provides a simple, efficient method for converting phase information to intensity

information (see Fig. 1-2), however, is not a quantitative technique.

a) b)

Brightfield Phase contrast

Figure 1-2: Original phase contrast image, by F. Zernike, 1932 [1].



1.2 Interferometric phase imaging techniques

With the invention of the laser, coherent interference techniques for phase retrieval

became accessible, allowing extremely sensitive phase measurements (up to A/100) [6].

There are many experimental configurations for interferometry, but the main idea is

that the phase-delayed object wave $(x, y) = A(x, y)ei0Nx'Y) , where A(x, y) is ampli-

tude and #(x, y) is phase, is coherently added to a known plane wave reference Arei0

and the measured intensity is related to the cosine of the phase difference,

I(x, y) = (x, y) + Ar e2 (1.1)

A(x, y) 2 +|A 2 + 2|A(x, y)A,| cos(#(x, y) - 0).

Again, intensity is a function of both amplitude and phase, so the technique is

not quantitative.

1.2.1 Phase-shifting interferometry

Interferometry can become a complex-field technique by phase-shifting the reference

beam at least twice by a known small amount (usually A/2) and using multiple images

to reconstruct the phase distribution [7]. Sequential capture of the images leads to

experimental complexities which will be discussed in Chapter 2. Pixellated phase-

shift masks use a different method for single-shot phase imaging by shifting every 4th

pixel [8, 9].

Since the measurement is related to the cosine of the phase, there will be 27r ambi-

guities and an unwrapping process is required [10]. A sample interferogram is shown

in Fig. 1-3 along with the recovered amplitude map and the wrapped and unwrapped

quantitative phase maps. Images were obtained in a Mach-Zehnder interferometer

with four phase-shifted images and the unwrapping method proposed by Ghiglia [11].

The phase object is a cubic phase plate from CDM Optics.



Interrerogram

Figure 1-3: Phase-shifting interferometry of a cubic phase plate.

1.2.2 Digital holography

Digital holography (DH) is an interferometric method where light diffracts from an

object and the intensity of that diffraction pattern is captured on a camera [12, 13,

14, 15]. Since we know exactly how light propagates, the field can be digitally back-

propagated to the focal plane of the object within any linear isotropic medium (or

nonlinear medium [16]). When the phase of the diffracted field at the camera is not

measured, it must be assumed, leading to the 'twin-image' problem, an artifact caused

by a defocused replicate of the object at twice the distance (see Fig. 1-4). Phase-

shifting [17] or other phase imaging methods which capture both the amplitude and

phase at the camera plane do not suffer from the twin image problem.

a) b)

0.6

0

-0.5

With twin image No twin image

Figure 1-4: Twin image problem. (a) Amplitude reconstruction without phase infor-
mation at hologram plane, (b) amplitude reconstruction with phase information.

. ....... ..............................



One popular alternative to complex-field DH is the off-axis configuration [18, 19].

By adding a tilt to the reference beam, a spatial carrier frequency modulates the

diffracted field and shifts the object and twin image spectrum to different parts of

the Fourier plane, such that they can be extracted independently by selecting out

the proper section of the hologram's Fourier transform. The major advantage is the

capability for single-shot complex-field imaging, at the cost of a large loss in resolution,

since only a small number of the total available pixels are used.

The importance of phase in propagation

Light propagation under the Fresnel approximation is a convolution of the field with

the quadratic pure-phase factor given by the Fresnel kernel [20],

i27rz/A r -r

h(x, y; A z) = - exp, (x2 (+ y2) (1.2)

The intensity of the propagated field is:

I(x, y; Az) = 1,0(x, y) 9 h(x, y; Az) 2 = .71 {I(u, v)H(u, v; Az)} 2, (1.3)

where 9 denotes convolution, T-1 denotes 2D inverse Fourier transform, u, v are

the spatial frequency variables associated with x, y, TI(u, v) is the Fourier transform

of the field to be propagated, A is the wavelength of illumination, z is the propagation

distance, and H(u, v; Az) = F {h(x, y; Az)} is the Fourier domain Fresnel kernel.

Since propagated intensity is dependent on both amplitude and phase, both are

needed to back-propagate the field uniquely. As an example, Fig. 1-5 shows two

different complex-fields which produce the same intensity pattern after propagation

by the same distance. If one were to measure the phase of the propagated fields, they

would not be the same. This emphasizes the benefits of measuring the full complex

field in DH experiments.



Figure 1-5: Two different complex fields having the same propagated intensity.

1.2.3 Differential interference contrast microscopy

Differential interference contrast (DIC) [21, 22] is a popular technique for phase

imaging, due to its high spatial resolution, lack of scanning and high sensitivity to

small phase gradients [23, 24]. In a DIC microscope, a Wollaston prism is used

to create two sheared wavefronts of orthogonal polarization, $6 = Ase(*a-") and

_O- = A_ ei(0-6-0) , then a second prism re-shifts these wavefronts after passing

through the object. Thus, the object wave interferes with a shifted version of it-

self. The intensity in a DIC image is the interference pattern created by the sheared

wavefronts:

I(x, y) = |A6 12 + |A_ _12 - 2A6A _6cos(#6 - 4-6 + 20), (1.4)

where 0 is a bias controlled by the prism and 6 is the shear. Like interferome-

try, the intensity measurement from DIC is not quantitative in phase, but can be-

come quantitative with versions of spatial phase-shifting [25, 26, 27], assumption of

pure-phase [28], or multiple images at different depths [29]. We include DIC as an

interferometric phase imaging technique, although its main application is in partially

coherent microscopy.



1.3 Non-interferometric phase imaging techniques

There is great incentive to avoid the complexity and coherence requirements of inter-

ferometric techniques in order to obtain useful information directly from brightfield

images [30]. Partially coherent illumination enables imaging systems to capture infor-

mation beyond the coherent diffraction limit [31], avoids the problem of speckle [32],

and has potential for use in ambient light, opening up important applications in as-

tronomy and high-resolution microscopy. The problem involves computing phase from

a set of intensity measurements taken with a known complex transfer function induced

between the images (usually defocus). This leads to a versatile and experimentally

simple imaging system where the main burden is on the computation.

1.3.1 Shack-Hartmann sensors

Shack-Hartmann sensors place a lenslet array in front of the camera such that, for each

lenslet, the lateral location of the focal spot specifies the direction of the incoming

light at that lenslet, which is re-interpreted as wavefront slope [33]. The image can

be thought of as a low-resolution discretized Wigner distribution. Phase retrieval can

be very accurate and robust to noise if the lenslets are much larger than the camera

pixel size, causing a severe loss in spatial resolution since each lenslet provides only

one measurement of lateral phase. Shack-Hartmann sensors are popular in wavefront

sensing for adaptive correction of atmospheric turbulence, where incoming light is not

coherent and spatial resolution is not critical.

1.3.2 Iterative techniques

Some of the earliest algorithms for computing phase from propagated intensity mea-

surements are iterative techniques based on the Gerchberg-Saxton (GS) [34] method.

GS uses both an in-focus and Fourier domain image (i.e. far field), and alternately

bounces between the two domains. At each step, an estimate of the complex-field

is updated with measured or a priori information [35, 36, 37, 38). A more general

algorithm, of which GS is a subset, accounts for non-unitary transforms between the



image planes [39], and similar algorithms with Fresnel (instead of Fourier) transforms

between the two images have been used for both phase imaging [40, 41] and phase

mask design in computer-generated holography (CHG) [42, 43, 44, 45] (see Fig. 1-6).

In this case, the amount of defocus between the images will affect the accuracy of

the phase retrieval [46] and optimal defocus is object-dependent. Generally, such

techniques work better with larger propagation distances, since this provides better

diffraction contrast [46, 47].

All of the iterative techniques can be classified as a subset of the more general

projection-based algorithms [48], which place no restriction on the transforms used

for the optimization, allowing simultaneous enforcement of constraints across multiple

domains [49, 50]. Solutions are not provably unique, but are likely to be correct [51],

and many tricks exist for reducing the solution space [52]. A priori information can be

incorporated and phase-mask design can be guided to a particular class of practical

solutions, such as pure-phase [50] or binary phase [45]. In the case of imaging, where

there is only one correct solution, one can reduce the solution space by using more

than two intensity images (i.e. a stack of defocused images) [53, 54] or using phase

masks to introduce custom complex transforms between the image planes [55]. Still,

defocus remains a popular contrast mechanism, due to its simplicity and the fact that

the optimal transfer function is object-dependent. Here, we refer to this entire class

of techniques as 'iterative techniques'.

propagate

iterate

backpropagate

object constraints image constraints

Figure 1-6: Schematic of an iterative technique, with two images in the Fresnel do-
main. 0 is the complex-field at the first image plane and h is the propagation kernel.

.............. ......... ....



1.3.3 Direct methods

Direct solutions have been proposed to retrieve phase from intensity measurements

in 1D [56] or under the assumption of pure-phase [57], small-phase [58, 59] or ho-

mogeneous objects [60]. Recursive [61] and single-shot methods [62] trade off spatial

resolution for complex information. One direct technique which has found great use

is the Transport of Intensity (TIE) technique, described below.

1.3.4 Transport of Intensity

When light passes through a phase object, the wavefront gets delayed and bends the

rays, defined to be perpendicular to the wavefront (see Fig. 1-7). If the change in

slope of the rays (or, the axial derivative of intensity) can be measured, then the

associated phase delay is given by the TIE [63, 64, 65]:

BI(x y) _-A

' = (VI -I(x, y)Vq#(x, y)), (1.5)
z 27r

where I(x, y) is the intensity in the image plane, A is the spectrally-weighted mean

wavelength of illumination [66] and Vi denotes the gradient operator in the lateral

dimensions (x, y) only.

TIE imaging is able to produce accurate complex-field reconstructions with par-

tially coherent light [67], right out to the diffraction limit of the imaging system [68]

and without the need for unwrapping [69]. The properties and limitations of the TIE

method will be discussed in detail in Chapter 4.

I I I I

a i t a

Az

Figure 1-7: A plane wave passing through a phase object. Grey arrows are rays and
blue dashed lines are the associated wavefronts.



1.3.5 Estimation theory

Estimation theory provides a framework for recovering complex-field from partial

measurements. A maximum likelihood estimation [70] method has been proposed

and extended for use with multiple intensity images [71, 72], decreasing the error

bounds [73]. The practical application is still iterative, and it can get stuck at local

maxima when noise disrupts the images [74, 75]. Regularization of the objective

function enables a trade-off between noise and information [75, 76], but the technique

does poorly for small defocus between the images [77]. In Chapter 6, a new way of

using estimation theory for complex-field imaging is proposed which uses the extended

complex Kalman filter to recursively guess the wave-field and separate it from severe

noise.

1.4 Computational imaging

All of the complex-field techniques presented above fall under the category of 'compu-

tational imaging'. Computational imaging refers to the idea of the computer becoming

a part of the imaging system. The goal is not to capture the desired final image di-

rectly, but to capture an image or images that can efficiently be processed to recover

the desired quantity. Phase imaging techniques are one of the earliest forms of com-

putational imaging. In fact, since phase cannot be measured directly and there is no

known optical mapping that converts phase directly to linear intensity, quantitative

phase imaging is necessarily a computational imaging technique.

Computational imaging has been named the third revolution in optical sensing,

after optical elements and automatic image recording [78]. Over the years, computers

have gotten much better, while physical optics still faces many of the challenges it

faced in the early days (e.g. precision polishing and aberration correction). Com-

putational design of optical elements is still fabrication-limited [79], but automatic

image recording allows images to be manipulated at will after capture, enabling the

revolution of computational imaging.

The goal is no longer to design an optical system to relay the desired informa-



tion to the camera, but to design a system which optimizes the optical system and

post-processing simultaneously. Optical elements can be considered analog signal

processing blocks, and it is up to the designer to decide, based on experimental and

computational constraints, which processing is best done by the optical system vs.

the computer. Unnecessary information need not be captured, as in compressive

sensing [80], and multiple images can be used to recover higher-dimensional data that

cannot be captured in a 2D plane, as in tomography [81] and phase-space tomogra-

phy [82]. Even under the constraint of taking a single 2D image, spatial pixels can be

traded for information in other dimensions. For example, when a cubic phase mask

is inserted in a camera, the entire image appears blurred, but inversion allows one

to recover a sharp image with extended depth of focus [83]. Other coded aperture

techniques recover depth information [84], allow multiple view angles by inserting a

lenslet array [85, 86] or use novel coding of the integration time [87] to capture an

image that looks nothing like the object but can be used to gain useful information.

Volume holograms [88], which will be discussed in Chapter 8, are particularly useful

optical elements for computational imaging, in that they can be designed to filter and

multiplex a wide variety of spatial, spectral and angular information.

Much of the work in this thesis describes new methods of computational phase

imaging. Illumination, optics and processing are optimized simultaneously to achieve

different goals, including in situ imaging, real-time processing and accuracy in the

presence of noise.

1.5 Outline of thesis

Chapter 2 introduces phase tomography using phase-shifting interferometry and de-

scribes new ways of including a priori information in the inherently ill-posed recon-

struction, particularly in the case of diffusion distributions, where useful information

can be extracted from very few projections.

Chapter 3 demonstrates the implementation of a specific novel application of in-

terferometric phase tomography which uses just two angles to detect and localize large



changes in water content in a fuel cell membrane while the fuel cell is in operation.

Due to the experimental limitations of interferometric phase imaging, non-interferometric

methods for phase imaging are often more suitable. Chapter 4 introduces and dis-

cusses the properties of TIE imaging and describes methods for improving the limi-

tations on this technique, which will be the focus of the remaining chapters.

Chapter 5 proposes a modification of TIE imaging that allows more accurate

phase results by using multiple defocused images to remove nonlinearity effects. This

technique is accurate, computationally efficient and greatly extends the range of the

TIE. However, it does not sufficiently address the problem of noise instability. Thus,

the next improvement is to use estimation theory to recover the complex field from a

noisy data.

Chapter 6 describes the use of an extended complex Kalman filter to recover

complex-field from very noisy intensity images. The method is highly computational

and requires compression techniques for making it computationally tractable, but

offers near-optimal smoothing of data.

From methods that use lots of images and are heavily computational, Chapter 7

moves in the opposite direction, to a phase imaging technique that is single-shot and

achieves real-time phase in a standard optical microscope. The technique leverages the

inherent chromatic aberrations of the imaging system to obtain at the camera plane

a color image that can be processed to obtain quantitative phase (in the absence of

color-dependent absorption or material dispersion). The processing is parallelizable

and a real-time system has been implemented on a Graphics Processing Unit(GPU).

Chapter 8 presents one final implementation of TIE imaging for use in a volume

holographic microscope (VHM). The VHM enables capture of multiple defocused

images in a single-shot by using a thick holographic multiplexed filter, and these

images are then used to solve for phase via the TIE.

Finally, Chapter 9 states conclusions and future work.



Chapter 2

Complex-field tomography

Computerized tomography (CT) is one of the earliest examples of computational

imaging, the principles of which were suggested before computers existed [89]. The

method involves recovery of N+1 dimensional information from a set of N dimensional

projections taken at varying angles. In this chapter, the basics of tomographic imaging

are reviewed as a basis for a discussion of complex-field tomography and the error

considerations in sequential phase-shifting applications. Finally, a look at sparse angle

tomography of diffusion distributions reveals that useful information can be extracted

from projection data at very few angles using a priori information.

2.1 Tomography

For simplicity, we introduce the concept of tomography in terms of a purely absorb-

ing semi-transparent 2D object, to be reconstructed from ID projections under the

geometric optics approximation (A -+ 0)). The object is illuminated by a plane wave

with intensity Io. The intensity of the ray, I, after projection through the object is

given by Beer's law [31],

I = IOexp - a(x, y)dl) , (2.1)

where a(x, y) is the absorption coefficient and the line integral is taken along the



length of the ray, 1. Assuming parallel ray illumination, the Radon transform [90]
describes the projections of f(x, y) in a 2D matrix encoded on the axes ((, 6), where

( = xcosO + ysinO describes the projection axis variable and 0 is the projection angle

(see Fig. 2-2 for geometry). The Radon transform p((, 9) of f(x, y) is,

p((, 9) = f f(x, y)6(xcosO + ysinO - ()dxdy. (2.2)

Thus, each column of the Radon transform is a projection along a different an-

gle. A sample object and its Radon transform are shown in Fig. 2-1. Since each

point on the object traces out a sinusoidal path through the Radon transform, the

representation is also called a 'sinogram'.

(a) (b)
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projection angle e

Figure 2-1: The Radon transform. (a) Object density map f(x, y) and (b) its Radon
transform.

Once the set of projections has been collected and arranged into its Radon trans-

form, the solution of f(x, y) can be obtained via an inverse Radon transform. The

tomographic inversion process is most intuitive in terms of the Projection-slice theo-

rem.

2.1.1 The projection-slice theorem

The Projection-slice theorem states that the ID Fourier transform of the projection

at angle 9 is a line in the 2D Fourier transform of the object, perpendicular to the

projection ray (see Fig. 2-2). Mathematically, the 1D Fourier transform of the projec-



tion is P(w, 9) = FiD {p( , 6)} and it defines a line in the object Fourier transform,

F(u, v), given by:

P(w,O) = F(wcos6, wsin), (2.3)

an elegant derivation of which is found in Kak [81].

VV

f (X,'Y F(u, v)

Figure 2-2: The Projection-slice theorem.

2.1.2 Filtered back-projection

Projections at equally spaced angles from 0 to 180 degrees will fill in lines of the

Fourier domain reconstruction of F(u, v) in a spoke-wheel pattern, as seen in Fig. 2-

3(a), and the desired field f(x, y) is the inverse 2D Fourier transform of F(u, v).

However, since it would require an infinite number of angles to fully specify F(u, v),

the inversion is inherently ill-posed. Furthermore, the sampling of F(u, v) is non-

uniform, with low frequencies being more densely sampled than high frequencies,

causing noise instability in the high frequencies. It is for these reasons that the

practical inversion of the tomographic problem usually takes the form of a filtered-

back-projection algorithm [81], where each projection-slice in the Fourier domain is

pre-multiplied by a ramp filter (Ram-Lak) to account for uneven sampling, and some

sort of apodization filter to attenuate high frequency noise (see Fig. 2-3b).

Many alternative inversion algorithms exist [91], one of which uses the unique
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Figure 2-3: Filtered back-projection. (a) Sampling in the Fourier domain by pro-
jections, (b) a Hamming window (top) is pixel-wise multiplied by a Ram-Lak filter
(middle) to get the Fourier domain projection filter (bottom). (c) Reconstruction
using 180 projections.

mathematical properties of the sinogram to interpolate incomplete projection data

in the Radon domain by constraining the data to produce a valid sinogram [92,

93). For example, in the case of sparse binary objects, the sinogram will be a finite

superposition of sine waves with varying amplitude and phase according to their radial

and angular positions, respectively. Each sinusoid requires only a few data points to

specify it, leading to interesting methods in compressive imaging.

2.2 Phase tomography

Tomography has traditionally taken the form of amplitude tomography [94], yet the

extension to complex-field tomography is straightforward. In this case, the atten-

uation constant a(x, y) becomes complex, and separate Radon transforms may be

derived independently for the amplitude and phase projections. Phase tomography

was first presented in the context of large-scale refractive index fields [2, 95, 96, 97]

and later used in microscopy with phase-shifting interferometry [98], TIE [99, 100] or

other phase imaging methods [101, 102].

In the case of microscopy, when the object is no longer large compared to the

wavelength, scattering effects cannot be ignored. Diffraction tomography is a well-

studied and important extension to CT which allows true 3D imaging of scattering



objects [103, 104, 105, 106, 107, 98, 108, 109]. Under the Rytov approximation,

the 3D scattering potential can be solved for directly by using intensity diffraction

tomography [110, 111, 112], of which CT is a subset [113].

2.2.1 Phase-shifting complex-field tomography

Assume that the phase and amplitude at each projection angle is captured using

phase-shifting in a Mach-Zehnder interferometer (see Fig. 2-4).

aeir
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Figure 2-4: Tomographic arrangement in a Mach-Zehnder interferometer.

For simplicity, the analysis is restricted to two-dimensional objects. The complex

object is denoted as a(x, y)eO(x'Y), where a(x, y) is the amplitude distribution and

#(x, y) is the phase distribution. A phase-shifting projection set (PS 2) is defined as

the set of four phase-shifting sinogram measurements:

Io(0, () = |1 + A ()eio(0, )12

Ii(6, ) -e/2+ A(0, ()eio(O, )12 (2.4)

I2(6, ) =le + A(0, ()e"' |2

I3(0, ) = Ie3,/2 + A (0, ()ei4(0, )12,

where A(9, () and <>(0, () are the integrals of object absorption and phase delay,

respectively, along the projection angle 0, ( is the projection index and 1o, 1, '2,

.. .. .. .....



13 are the measurements with phase shifts equal to 0, 7/2, 7r, and 37r/2 radians,

respectively. The reconstruction proceeds as follows: First, for each PS 2 we obtain

the quantity [114]

tan (6,) - (0, . (2.5)

More phase-shifted interferograms may be used with an n-point reconstruction

algorithm where available [7]. Phase is solved for and unwrapped at each projection,

before applying the inverse Radon transform algorithm to '$(O, (), and recovering the

estimate of the object phase distribution. The mean intensity of PS 2 gives |A(O, )12

to get an estimate of amplitude.

Two-dimensional phase unwrapping is an important research area, as noise and

phase-shifting error cause the unwrapped solution to become ill-posed [10]. After

studying the merits and effectiveness of varying techniques, we chose the Precondi-

tioned Conjugate Gradient solution [11] with Discrete Cosine Transform initial con-

dition [115] to unwrap the phase and obtain the unwrapped phase.

2.2.2 Experimental results

Using the setup of Fig. 2-4, and extending the mathematical description to 3D, we

experimentally reconstruct complex volumetric objects by taking 2D projection sets

at 36 equally-spaced angles. Inter-frame phase-shifts were induced by moving a mirror

linearly on a piezo-controlled stage, and the actual phase shifts were determined by

an inter-frame intensity correlation method [116]. The object was rotated in 5 degree

steps from 0-180 degrees, taking a four-frame projection set at each angle. In these

experiments, the objects were immersed in index-matching oil, to reduce refractive

ray-bending and increase fringe spacing (to avoid aliasing at the CCD). Phase-shifting

error is a major source of inaccuracy; hence, a study of the effects of this type of error

on tomographic reconstructions follows.
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Figure 2-5: Sample 2D cross-sections of 3D complex-field objects immersed in index-
matching fluid.

2.2.3 Error analysis of phase-shifting tomography

The effect of phase-shifting error for 2D interferometry of phase-only objects has

been well-analyzed in the literature [7, 117, 118]. Here, we extend these studies to

show how the effects of phase-shifting error propagate to the tomographic phase and

amplitude reconstruction [119].

Phase-shifting alone theoretically gives perfect reconstruction. Tomography, how-

ever, has inherent error due to finite data in the projection-slice theorem [81]. The

propagation of phase-shifting errors to the amplitude reconstruction and further, to

the tomographic reconstruction, is not intuitive, since each projection contains error,

which is then input to the Radon transform.

We consider five types of error (see Table 2.1). Type I, constant phase error, is

a constant phase 6c added to each phase-shift. Type II represents a miscalibration

of the phase-shifter, resulting in each phase-shift between successive measurements

deviating from the prescribed value of 7r/2 by a fixed amount 6J. Type III simulates

normally distributed statistical error in the phase-shifter. Types IV, V simulate error

due to mirror tilt during phase-shifting for one or all three phase-shifts, respectively.

These are the commonly encountered error types when using a piezo-controlled mirror

to phase-shift, however may also apply to other phase-shifting methods including

A:3



Type I Type II Type III Type IV Type V
Ideal shift Constant error Miscalibration Statistical Tilt Statistical tilt

0 0 0 0 0 0
7r/2 7r/2 + 6c -r/2 + 61 7r/2 + 61 -r/2 + ax 7r/2 + o 1 x

7r 7+6 7+261 r+62 7 + a2X
37r/2 37r/2 + 6c 3-/2 + 361 37r/2 + 63 3-r/2 37r/2 + a3X

Table 2.1: Types of phase-shifting error

Electro-Optic Modulators, diffraction gratings, and rotating half-wave plates.

Figure 2-6 plots the mean-squared relative amplitude and phase error for Type

I-V phase-shifting errors, along with the tomographic reconstruction error map of a

null object. Statistics were performed across an ensemble of 40 randomly generated

complex phantom objects, using the filtered back-projection algorithm with a Ram-

Lak interpolation filter, number of pixels N = 128 and number of projections Np,.oj

180.

Type I error is the mildest type, as can be seen in Figure 2-6(a), but in practice

it is not commonly encountered. As expected, the phase error is concentrated near

the outer edges, where the inverse radon transform is more sparsely sampled. Type

II(niscalibration) has the same effect, only with twice as much sensitivity (Figure 2-

6(b)). Type III phase-shift errors are unavoidable and can be modeled as zero-mean

normally distributed random variables 61, 62, 63 added to the phase shifts (Fig. 2-

6(c)). For comparison, a standard commercial piezo-stage mirror positioner, with

50nm positional accuracy, gives a standard deviation o-(6) = 0.08 waves error at

632.8nm.

If the phase-shifting mirror is tilted with respect to the object beam, a linear phase

variation across x results for all phase shifts, as modeled in Type IV error (Fig. 2-

6d). The difference in tilt between one phase-shifted interferogram and its successors

causes an obvious radially varying phase error in the tomographic reconstruction (see

Fig. 2-6(d), error map) which could be erroneously interpreted as measured data.

Finally, in Type V error, the tilt error coefficients Ci, a2, a3 are normally distributed
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random variables. Statistically varying tilt can cause greater phase errors (Fig. 2-

6(e)). However, the error distribution is more uniform when compared to Type IV

errors.

Generally, systematic or miscalibration errors (Types 1, 11, and IV) result in non-

uniform distribution of the error across the object, whereas the opposite is true for

random errors (Types III and V). As in any tomographic system, the error will be

heavily object-dependent; however, these models may help in digitally detecting and

removing unwanted error.

2.3 Sparse-angle tomography of diffusion processes

In the previous section, errors were explored for tomographic reconstructions assum-

ing many projection angles. Practically, it is often impossible to get projection data

simultaneously for many angles. Thus, we look now at the important case of sparse-

angle tomography, where very few angles of projection data are available. A general

rule for managing interpolation error and sampling sufficiently the Cartesian grid of

F(u, v) is that the number of samples in each projection, N, should be similar to the

number of projections, Nproj [81]. Using a 1200 pixel camera would imply that we

should measure the phase at 1200 evenly spaced projection angles in order to get a

good reconstruction over the whole frequency range. We show here that the inherent

spatial and temporal smoothness of the diffusion processes allows us to decrease the

number of required projection angles in tomography of diffusion processes.

As mentioned in Sec. 2.1.2, when more angles are added to the reconstruction, low

frequencies near the origin become oversampled, while higher frequencies are more

sparsely sampled. If the object contains only low frequency information, the required

number of projection angles (for a given resolution) should decrease. Limited angle

tomography, where projections from a contiguous range of angles is missing due to

occlusions, has been studied [120, 121) and is generally non-unique [122, 123, 124],

but the case of sparse anglular sampling of smooth data is not well-studied.

The Kaiser filter has been suggested as a basis for reconstructing smooth distribu-



tions [125] and is applied here in the Fourier Domain. The Kaiser window is defined

as [126],

Io( - u 2 ) 0 .5)K(u) = (3)(2.6)

with 1o being the modified Bessel function of the first kind, order 0, C the cutoff

frequency for the window, and # controls the spatial influence of the basis functions.

A Kaiser function with large 3 tends to a Gaussian curve in frequency and object

spaces, and the Gaussian function is a solution to the diffusion equation. While a

Gaussian curve technically has infinite bandwidth, we assume that it is effectively

bandlimited by the noise floor of the camera. Thus, the expected effective bandwidth

covers only a small portion of the available bandwidth determined by the camera.

Happily, this low frequency information is also the area in frequency space which has

the least interpolation error due to the restricted number of angles. By redesigning

the filter in the back-projection method to restrict the solutions to the class that we

are looking for, we eliminate the higher frequency information that would normally

corrupt the image. It should also be noted that this processing step serves also as a

data compression step.

2.3.1 Projections of diffusion distributions

The diffusion equation is a partial differential equation (PDE) that shows up in many

important physical and mathematical situations. It describes the statistics of random

walk processes such as heat conduction.

We start with the linear 2D diffusion equation:

Of(X, y, t) - DV 2 f (x, y, t), (2.7)
at

where f(x, y, t) is the diffusion field (for example, temperature or concentration)

over space and time and D is the diffusion coefficient (or thermal conductivity in the

case of heat conduction).

Equation 2.7 is separable in (x, y, t) and so it can be split into uncoupled dimen-



sionally independent equations in x, y and t (i.e. f (x, y, t) = X(x) . Y(y) -T(t)) [127.

One consequence of this separability is that the projection of a 2D diffusion profile

along any angle is a ID diffusion profile.

Take the 2D Gaussian function, a fundamental solution to Eq. 2.7,

1 -2 2

g(x, y; o) = C2e 2,2
27r (2.8)

Taking a projection along x,

P(Y) = 27ro2 2e - e
2

2, dx. (2.9)

A change of variables z = x leads to,

p(y) = -7 (f e- 2 dz)
1 e 2

v/2io-

which has the form of a ID Gaussian curve. Similarly, the projection of a sum of

2D Gaussians is a sum of ID Gaussians and any 2D diffusion solution of the Gaussian

form will have projections that are 1D diffusion solutions.

(2.10)



Chapter 3

Two angle interferometric phase

tomography of fuel cell membranes

3.1 Introduction

As an application of complex-field tomography, we apply a modified phase tomog-

raphy system for the purpose of water content monitoring in fuel cell systems [1281.

Fuel cells are compact, reliable sources of clean energy. A PEM fuel cell consists of

current collectors, an anode and a cathode, separated by a thin membrane. Hydrogen

gas and oxygen are supplied to the anode and cathode sides, respectively, through

serpentine gas flow channels, shown in Figure 3-1. With the help of a Platinum cat-

alyst, the hydrogen splits into positive ions, which pass through the membrane, and

electrons, which go through the circuit to supply the load. On the other side, the

positive and negative ions recombine with supplied oxygen to form water.

The performance and breakdown of PEM fuel cell systems is critically dependent

on the local water content in the membrane [129, 130]. High humidity increases the

fuel cell efficiency and prevents failure [131, 132]. However, excessive humidity causes

condensed droplets to form in the flow channels, locally blocking the reaction [133,

134, 135]. In order to design more durable and efficient fuel cell systems, it is desired

to detect water content changes while the fuel cell is in operation [136]. Furthermore,

real-time monitoring of the local water content could be used as input to a feedback
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Figure 3-1: Schematic of a PEM fuel cell system.

control system which would maintain ideal humidity across the entire membrane

during operation.

Several groups have developed methods of imaging water content in fuel cell sys-

tems, using Magnetic Resonance Imaging [137, 138], Neutron imaging [139, 140, 141,

142], X-ray imaging [143], transparent windows [144, 145] and optical fluorescence

spectroscopy [146]. However, all of these methods are either invasive, expensive or

have poor spatial or temporal resolution. St.Pierre [136] compares many methods

and reviews their limitations. The end goal is to develop a real-time water imag-

ing method which is inexpensive, non-invasive, and has good spatial and temporal

resolution [147].

We develop here a system using interferometric phase tomography for 2D in situ

monitoring of the water content in the membrane from 1D projection data with

high spatial and temporal resolution. The refractive index is assumed to be directly

proportional to water content [148, 149] and the membrane is more than 95% optically

clear. Interferometry has often been used for concentration gradient measurements of

transparent liquid solutions [150] and we have shown previously that it is also suitable

for measuring water concentration gradients in solid Nafion® PEM membranes [151,

152]. In these experiments, light was shone through the flat face of the membrane;

.... .................



thus, water content changes cause small changes in optical path length (OPL). For

in situ measurements, light cannot be shone through the face of the membrane, as

the surrounding current collectors are opaque (see Fig. 3-1). Thus, we shine the

light through the length of the membrane, 'in-plane'. Preliminary results from our

in-plane configuration were demonstrated in [153]. Nafion@'s refractive index is very

close to that of water, and it is sometimes used for index-matching in biofilms [154].

This means that the index changes due to humidity are very small (~ 10-4 /%RH);

however, in the in-plane configuration, the OPL is longer by orders of magnitude than

in the through-plane case, causing large phase gradients and serious problems with

aliasing in the phase unwrapping process, as well as increased internal absorption,

refraction and scattering.

W CCD2

mirrz

wave plate
Heelaser

collimator

Figure 3-2: Double Mach-Zehnder interferometer configuration. Waveplates are used
to adjust the relative intensities of the reference and object arms.

The extreme sensitivity of interferometry prevents its widespread implementation

for large phase change measurements. We show here how these problems might be

avoided for many diffusion distributions by unwrapping the phase temporally instead

of spatially. Furthermore, we use two-angle tomography to reconstruct the in-plane

water content from projections. We are limited in physical space to only imaging

two projections at once, and the desire for temporally resolved reconstructions makes

rotation of the object impractical. This presents a new and interesting problem in

the reconstruction of tomography data from a severely limited number of projections.

Generally, two angles will not be enough to recover accurately a 2D distribution [81].

However, by taking advantage of the inherently smooth and well-known diffusion



process of the water in time and space, we are able to modify the backprojection

filter with this a priori information in such a way as to recover useful 2D water

content data.

3.2 Optical system

The PEM fuel cell system sandwiches a 3cm x 3cm x 125ptm semi-transparent mem-

brane between two 7cm x 7cm x 2cm opaque current collectors with flow channels

etched into them (see Figure 3-1). Light is shone in-plane at two orthogonal angles

using the custom designed double Mach-Zehnder interferometer (Figure 3-2). We

model the fuel cell as a thick slit with a complex transmission function, due to line

integrals of absorption and refractive index through the membrane (see Figure 3-3).

For each angle, we record the interference between the diffracted field from the slit and

a plane wave reference. Figure 3-4 shows a sample interferogram and amplitude-only

image. We then reconstruct via our modified inverse Radon transform, as described

in Section 3.5.

D=2cm

a=125pm

phase delay +
absorption

z

t. Y

E
-

Azlb, = AD 0Pa Iw

Figure 3-3: Optical model of light in system.

In this system, internal refraction, absorption and scatter are assumed small and

will be a source of error. The absorbing electrodes of the fuel cell prevent higher

order modes from passing through, leaving only the DC term; thus, waveguiding

may be ignored. The main source of error in our measurements comes from the

external scatter that occurs at the input and output edges of the membrane, due



b)

Figure 3-4: In-plane images a) interferogram and b) amplitude only.

to rough edges and striations created when cutting the membrane (see Figure 3-5(a-

b)). In this experiment, the rough edges were polished with 12,000 grit sandpaper

to make them optically smooth. The reduction in roughness and edge scatter can

be seen in Figure 3-5(c-d). This polishing step greatly improves the contrast of the

interferograms and reduces information crosstalk in the lateral direction, improving

the effective spatial resolution of the system.

a) b)

c) d)

Figure 3-5: Effect of membrane edge polishing. a) Unpolished edge, b) interfero-
gram with unpolished membrane, c) polished edge, d) interferogram with polished
membrane.

Diffraction of the object beam at the slit created by the fuel cell electrodes will

cause reduced signal intensity at the interferogram, as well as crosstalk between the

horizontal pixels, which reduces resolution. The effect is predictable and reversible,

using digital holographic (DH) techniques to numerically backpropagate the field

at the camera to the slit. Figure 3-6 shows one such solution, using an iterative

250 pm



Gerchberg-Saxton-Fienup type algorithm in the Fresnel domain [36]. However, DH

techniques require large data sets, which become expensive at the fast frame rates

we desire and suffer from numerical error and large computation complexity. Thus,

we simply mitigate diffractive spreading by moving the camera as close to the slit

as possible and assuming a smooth phase distribution. This method and assumption

work well in practice in our system.

a) 0.8
-P 0.6

0.4
0.2

b) 2
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Figure 3-6: Backpropagated solution using Gerchberg-Saxton-Fienup type iterative

method in the Fresnel domain with 50 iterations. (a) Amplitude and (b) phase.

3.3 Sampling diffusion-driven distributions

The intensity at the detector plane for a projection across y, is given by:

I(x, t) = I, + 1(x, t) ±2) cos (7r An(x, y, t)dy) (3.1)

where I, is the reference beam intensity (assumed to be uniform), I(x, t) is the

object beam, A = 632.8nm is the HeNe laser wavelength, Y is the membrane length

in the y direction, and An(x, y, t) = gnAA(x, y, t) is the refractive index in the plane

of the membrane, where A is the water content of the membrane. Water content

is defined as the ratio of water molecules to Nafion@ molecules, where Ad,, 2

and Awet ~ 20. The expression for the second projection I(y, t) is analogous. The

measured phase 4x(x, t) which wraps every 27r is

#X(x, t) = 2 J AA(x, y, t)dy. (3.2)



After obtaining two data sets of interferogram projections over time, our recon-

struction algorithm goes as follows. For each pixel along x, variations in water con-

tent over time appear as changes in frequency of intensity oscillations (Figure 3-7(a)).

Faster oscillations indicate larger changes in water content. A simple peak and valley

detection algorithm is applied to the intensity vs time data, then the phase is cumu-

latively integrated across time, adding ir for each subsequent peak or valley detected.

This unwrapped phase data is then interpolated and multiplied by the known con-

stant, a, as measured in previous literature [148, 149], to convert it to water content

(Figure 3-7(b)).
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Figure 3-7: Unwrapping intensity variations. (a) Intensity vs time for one pixel, while
humidifying. Circles indicate detected peaks and valleys. (b) Water content change
vs time after phase unwrapping and conversion.

Usually, phase unwrapping is done in the spatial domain. Algorithms attempt

to integrate the cosine of the phase, as measured, over the entire domain, either

in ID or 2D. Any noise or phase discontinuity makes the inversion ill-posed, and

various algorithms have been developed to best approximate the true phase [10]. All

of these methods, however, carry the restriction that the phase difference between

two adjacent pixels must not exceed 7r in order to avoid aliasing in the unwrapping

process. This smoothness restriction is much more difficult to meet when taking a

phase projection through a long OPL, as here, or a large phase change. To avoid

aliasing in diffusion interferometry, we find that it is much easier to use temporal

rather than spatial unwrapping of the phase.

....... ...... .



Given that water can only diffuse into and through the membrane, the water

content distribution must be a solution to the diffusion equation,

aA a2A= D X2 (3.3)

Assuming a linear diffusion coefficient, D, the change in water content over x due

to a step variation is

aA a F(x1
= (Af - A) erfc . (3.4)ax ax /f4Dt

where Ai and Af are the initial and final water content in the membrane, respec-

tively. Using this solution, we require that the phase difference between pixels be

less than 7r to meet Nyquist sampling conditions, and substitute known values of our

system, to get the minimum spatial sampling:

Axmin = 84__ (aq5 (sample) _ 6 samples (35)
axmax J A 7r pm

Therefore, to avoid aliasing, we must use a camera with 0.16pr or smaller pixel

pitch, which is not possible. On the other hand, the temporal derivative of water

content in- a diffusion profile is:

aA _B A x
-_ = - (3.6)at ax 2t

which leads to a minimum temporal sampling:

Atmin = aA ) a' (sample) - 352 samples (37)
atmax aA k r sec

It is easy to find inexpensive cameras or line sensors achieving frame rates above

352 fps. Line sensors with speeds up to 40MHz are available, allowing even faster

and larger phase changes to be imaged. Temporal unwrapping will give us valid

reconstructions, where spatial unwrapping would not.



3.4 Temporal phase unwrapping

One type of temporal phase unwrapping was proposed by Huntley and Saldner [155]

in terms of fringe projection profiling. They took many interferograms while shifting

the fringe pitch, then unwrapped each pixel independently of the others, in order to

reconstruct a single 2D unwrapped phase image without reverting to complicated 2D

phase unwrapping techniques [10]. In our approach to temporal phase unwrapping,

phase changes are not actively induced in the reference beam. Rather, the phase

changes are precisely what we are trying to measure from the object beam. Thus, we

essentially perform a differential phase measurement.

3.5 Two angle tomography

Once the temporally unwrapped phase is computed for each projection set, yielding

the data sets $,(x, t) and #,(y, t), the two projection sets are then used to tomo-

graphically reconstruct the phase at each time sample. A naive application of the

inverse Radon transform will yield useless results due to the huge amount of missing

information that must be interpolated by the tomographic algorithm. As in Sec. 2.3,

the inherent spatial and temporal smoothness of the water diffusion process allows us

to drastically decrease the number of required projection angles while still accurately

detecting and localizing water content changes. In the extreme case of only two pro-

jection angles, where we collect 2N data points and try to reconstruct an N 2 image,

we expect only the lowest frequency data to be properly reconstructed. With only

two angles, there is no need for a ramp interpolation filter, and we simply place the

two projections in the center row and column of the Fourier domain reconstruction,

averaging the DC term,

<D(u # 0, 0, t) = F{#x(x, t)}K(u);

<D (0, o :/ 0, t) = Tf{#y(y, t)}IK (v);



<D(0, 0, t) = (F{#$y(0, t)} + F{#O(0, t)})/2;

(3.8)

where <D is the 2D Fourier transform of the phase reconstruction, with spatial

frequency variables u and v, F denotes a ID Fourier transform, and K(u) is the

Kaiser window, defined in Sec. 2.3. The C parameter is set here at the maximum

frequency expected from diffusion of water into Nafion@, given that the water must

diffuse through half of the thickness of the membrane before a measurement is taken.

A fairly large # value of 5 was chosen to match the spreading of water from a point,

based on the known diffusion coefficient.

3.6 Experimental results

A simple test object was built, consisting of two 15mm x 15mm aluminum plates

sandwiching a Nafion@ membrane of the same dimensions. The top aluminum plate

has a 2mm radius hole drilled into it. A drop of water was placed in this hole, and the

ID interferogram data were collected and processed from both cameras. Six frames

from the 500fps 2D experimental reconstruction video are shown in Figure 3-8, with

a white circle indicating the hole position. As expected, water content originates

within the hole, then diffuses outward into the surrounding regions. The positional

accuracy of the water drop centroid is better than 1mm throughout the experiment's

duration. The reconstruction has visible 't' shaped artifacts, due to the two angles

used. If only large changes in water content need be detected, such as those which

occur when a water drop forms in the flow channel, then a simple threshold process

may be applied to reduce data. Such a modification would be useful in real-time

feedback control of the membrane humidity, where we do not require high resolution

images, but rather simple detection and 2D position of changes.

Next, the same system was used to monitor water content in-situ in a real fuel

cell system. For this experiment, the water was introduced by flowing humidified

air through the flow channels. A finite element (FEM) simulation of the expected
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Figure 3-8: Experimental results for a test object. 2D water content reconstructions

after a) 0 s, b) 160 s, c) 320 s, d) 480 s, e) 640 s, f) 800 s. The white circle indicates

the location of the water drop.

water content profile near the corner of the flow channel area, and its projections, are

shown in Figure 3-9(a). For this simulation, a nonlinear diffusion coefficient curve

was used [156, 157].

In the experimental data, when we look at a subsection of the data from one

angle over time, we are able to resolve three individual flow channels taking on water

(Figure 3-9(b)). These experimental results show the overall water content in the

membrane increasing greatly in the area where the flow channels are present, then

diffusing to the outer areas via in-plane diffusion. As expected, no water content is

detected outside the area of the membrane.

Figure 3-10 shows select tomographically reconstructed frames of 2D water con-

tent distribution, recovered from the full two angle projection data. As expected, the

water is introduced into the membrane first in the area where the flow channels are

present, then diffuses outward to the rest of the membrane. The computed water

content maximum values are consistently somewhat lower than expected, most likely

due to the information spreading caused by few angle tomographic reconstruction.
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Figure 3-9: (a) FEM simulation of water
section of the Nafion® membrane after 3
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Figure 3-10: Experimental results for fuel cell. 2D water content reconstructions after
a) 0 min, b) 15 min, c) 30 min, d) 45 min, e) 65 min, f) 95 min.
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3.7 Discussion

We have demonstrated a system capable of in-situ monitoring of water content changes

in a PEM fuel cell system by using two-angle interferometric phase tomography with

temporal unwrapping of the phase data before conversion to water content data. The

unique constraints of the system require modification of standard techniques for phase

unwrapping and tomographic reconstruction. We are nevertheless able to obtain rea-

sonable reconstructions of the water content in the fuel cell membrane with only two

projection angles, by using a priori knowledge of the distribution smoothness in space

and time. This system forms the possible basis for a real-time monitoring system that

could be integrated with feedback to keep the fuel cell system operating at maximum

efficiency and to prevent failure.
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Chapter 4

Transport of Intensity imaging

While interferometry is a useful tool for complex-field imaging, it suffers from extreme

sensitivity to environmental conditions and complexity of implementation due to the

requirement for a laser source and reference beam. Thus, 'noninterferometric' meth-

ods of phase imaging may be more useful in many applications where illumination and

optical components are limited. The Transport of Intensity equation (TIE) offers an

experimentally simple phase imaging technique for computing phase quantitatively

from only two defocused images [63, 65], and the work of Chapters 5-8 is based on or

inspired by this technique.

TIE imaging is uniquely able to produce accurate quantitative phase reconstruc-

tions with partially coherent light [67], right out to the diffraction limit [68] and

without the need for unwrapping [69]. It was originally developed for the Trans-

mission Electron Microscope (TEM) [158] and X-ray imaging [159, 160, 47], where

lenses and monochromatic sources are extremely expensive. For the same reasons,

TIE has also found use in neutron imaging [161], Lorentz microscopy of magnetic

microstructure [162] and matter-wave phase measurement of quantum-mechanical

wave-fields [163]. In the optical regime, TIE imaging has been used for cell track-

ing and confluence [164] and can emulate non-quantitative modalities like DIC [165].

Other extensions involve adding gratings to the system to improve performance [166],

use with multi-focal systems [167], solution of the twin image problem in digital holog-

raphy [168] and tomographic 3D phase imaging [100].



The TIE is a wave-optical technique which involves measuring the derivative of

intensity along the optical axis, then solving a partial differential equation (PDE) to

recover phase directly. While one cannot in general determine phase from intensity

alone, the wave equation specifies uniquely how intensity will propagate [169].

4.1 Theory

When two images are only slightly defocused from each other, phase contrast due

to diffraction between the images is linear in intensity [47]. In this regime, the TIE

describes a direct solution for phase and amplitude. The general form of the TIE,

given previously in Eq. 1.5, is:

BI(x y) _A

-IX 2w (V 1 .I (X, Y)V-q5(X, Y)) , (4.1)

where I(x, y) is the intensity in the image plane, A is the spectrally-weighted mean

wavelength of illumination [66], 4(x, y) is phase at the image, and Vi = -- +

denotes the gradient operator in the lateral dimensions only. Phase can therefore be

recovered (to within a constant) from a measurement of the intensity derivative along

the optical axis. In the derivation of the TIE [63], another related equation results

which is not used for imaging but is included here for completeness (neglecting the

(x, y) indices),

47r 2a4 I2 I (V,1)2 27rI2 -- - -_ 12 (v 1q) 2 + 2. (4.2)
A Oz 2 4A

In the case of uniform intensity, the object is a 'pure-phase' object and I(x, y)

can be taken out of the gradient operator in Eq. 4.1 and rearranged to simplify the

equation to [170]

2- 1 =I(xy) V2 #(x, y). (4.3)
A I(x, y) &z

This is a classic Poisson equation, stating that the contrast from a pure-phase

object at small defocus is proportional to the Laplacian of the phase [171]. The result



is edge-enhanced images and the potential for single-shot phase imaging [60]. Note

that there is no weak phase assumption and the limits on the measurable magnitude of

the phase object are only those due to sampling. Furthermore, since the measurement

is proportional to the second derivative of phase, large gradients in phase can be

recovered with relaxed sampling requirements, compared to the aliasing problems

that were described in Section 3.3 for interferometric measurements.

4.1.1 Analogies with other fields

The TIE can be thought of as a local conservation of energy equation, describing

the flow of energy in terms of intensity, which is true only in a homogeneous media.

Optical rays follow trajectories of the Poynting vector, obeying Fermat's principle and

the Eikonal equation, where phase variations bend the rays and redirect the Poynting

vector.

The general form for a continuity equation, which describes local conservation of

some quantity, q, is

=- - f + s (4.4)
at

where f is flux of the conserved quantity and s incorporates any sources or sinks.

This equation appears in many fields, some of which are given in table 4.1. If the TIE

(Eq. 4.1) is a continuity equation expressing local conservation of intensity, with t

replaced by z, then IV1 45 must describe the flux of intensity along z, or the Poynting

vector, which we show to be true in Appendix A. The TIE further assumes that

there is no generation or loss of intensity at the boundaries (s = 0), though loss at

the boundary due to finite apertures could be modeled as a sink.

Light propagation has previously been suggested under the fluid mechanics anal-

ogy of optical hydrodynamics [172], for which it also obeys the Euler equation for

irrotational flow of inviscid (zero viscosity) fluids [173],

a
ko  + a -Vja = k 2noV 1 (An), (4.5)

0Z



Table 4.1: Analogies to the continuity equation

where ko is the free-space wavevector, no is the refractive index of the media and

An is the change in index. Here, a is analogous to fluid velocity and z replaces

time. Indeed, optical 'flow' has be used to study complicated fluid phenomena by

analogy in nonlinear optical media [174] and optics has recently helped to explain

fluid phenomena [175, 176].

4.2 Solving the TIE

The solution of Eq. 4.3 is a simple inverse Laplacian, whereas the full complex-field

solution to Eq. 4.1 requires two such solutions, as described below [63]. First, we

introduce an auxiliary function Vif(x, y) = I(x, y)V 1 #b(x, y) and sub it into Eq. 4.1

to get,

V2F(x, y) = V1 (I(x, y)V 1 #(x, y)) I(x, y). (4.6)

This is a Poisson equation which can be solved for F(x, y). Next, we rearrange

the definition of the auxiliary function and take the gradient of that equation to get

another Poisson equation in terms of phase,

(ViF(x, y)
Vi = I V2 #(x, y). (4.7)

I(x, y)

62

Conserved quantity

Fluid dynamics Mass

Heat transfer Energy

Navier-Stokes Linear momentum

Electromagnetics Charge density

Quantum mechanics Probability density

Optics Intensity



The Poisson solution to this equation gives the desired phase map, and the am-

plitude distribution is simply the pixel-wise square root of the measured intensity at

focus.

4.2.1 Poisson solvers

There are many numerical solutions to the the Poisson equation [177], each having

different accuracy and speed performance. Iterative methods, most of which are on

the order of 0(N 2 ), include the Jacobi method, conjugate gradient methods and

successive over-relaxation. Multi-grid solutions have been suggested as the most

accurate, but are quite slow. Direct methods include LU methods, pseudo inverse or

FFT methods, of which the last is the fastest for large images.

In this work, an FFT Poisson solver of order O(N 2 logN) is used, because of its

speed and computational efficiency [178, 53]. Figure 4-2 shows error plots using this

FFT method vs. a multi-grid method, showing minimal loss of accuracy.

The Fourier domain Poisson solution of Eq. 4.3 is given by,

(u, v) = ', ,) (4.8)
--47r2 (U2 + V2)

where F(u, v) and 1D(u, v) are the 2D Fourier transforms of the driving term (left

hand side of Eq. 4.3) and the desired phase, #(x, y), respectively. This solution can

be interpreted as a deconvolution in the Fourier domain.

4.2.2 Boundary conditions

Any solution of 2D Poisson equations will require known or imposed boundary condi-

tions [177]. This would mean that we need to know the phase at the boundary of the

image, which is impossible since that is what we are trying to measure. If the object

is centered in the field of view, zero phase change at the boundary can be assumed,

but when Dirichlet or Neumann boundary conditions are falsely assumed, errors will

occur [179].

Due to the cyclic nature of the discrete FFT solution, periodic boundary conditions



are expected, which can cause problems without sufficient padding of the matrices.

One way to avoid such problems is to use a mirror-padding scheme to force correct

boundaries [180]. It is interesting to note that since every pixel in the Fourier domain

affects every pixel in the space domain solution, boundary errors should be spread

across all pixels, meaning that large image sizes should be less affected overall by

erroneous boundary conditions. A simulation of the effect of padding is shown in 4-1.

Here, a test phase object with non-zero boundary conditions was used, the intensity

derivative was calculated, and the phase solution was recovered using increasingly

larger border around the image. The mean RMS error of the result decreases with

increased padding, but never reaches zero, since light very near the border will be

lost to the system upon propagation.

a) b) 0, .

00

00li

size of border (padding)

Figure 4-1: (a) Test phase object with non-zero boundary conditions (radians). (b)
Error plot as padding is increased (number of extra pixels added to each edge).

4.2.3 Measuring BI/8z

Equation 4.1 is well-posed and invokes only the paraxial approximation. However,

since the intensity derivative cannot be measured directly, finite difference methods

are used to approximate the derivative from two defocused images centered about the

focal plane,

BI(x, y) I(x, y, Az) - I(x, y, -Az) (49)
az 2Az

where Az is the axial defocus distance. The choice of Az is an important factor in

the quality of the reconstruction. Generally, when Az is large, the linearity assump-



tion inherent to the finite difference approximation breaks down (see Fig. 4-2(d)).

This 'nonlinearity' error blurs the image, in that multiple diffraction fringes give rise

to nonlinear phase contrast. Small Az avoids nonlinearity error, but also leads to

a small numerator in Eq. 4.9, which reduces the signal to noise ratio (SNR) of the

derivative approximation and results in noisy phase reconstructions, as seen in Fig. 4-

2(a). Noise is 1% Poisson noise and plots are of the mean root mean squared (RMS)

error across all pixels and 100 trials. Thus, there will be an optimal Az [181] which is

dependent on the object spatial spectrum and the noise characteristics of the camera

(see Fig. 4-2(c,e)). As a rule of thumb, we require a Fresnel-like number associated

with characteristic feature size, x, to be greater than 1, such that AAz < x2

a) C) Error 3
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Figure 4-2: Error mechanisms in TIE imaging. (a) Noise corrupted reconstruction
at small Az, (b) actual phase, (c) error in phase reconstruction for increasing Az.
Error bars denote standard deviation, and FFT and Multi-grid refer to the method
of Poisson solver. (d) Nonlinearity corrupted phase reconstruction at large Az, and
(e) phase reconstruction at optimal Az. Phase color scale is 0 - 7r.

4.2.4 Noise

Due to the requirement for low phase contrast in order to maintain accuracy, the TIE

technique becomes extremely noise-sensitive [182], and maximum accuracy is set by

the noise floor. As can be seen in Fig. 4-3(a), as noise increases, the optimal Az

also increases because longer propagation distances provide stronger phase contrast,

overcoming noise. However, the error never goes below the 'nonlinearity line', so the

- md



minimum reconstruction error goes up nonlinearly with noise, as is seen in Fig. 4-3(b).
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Figure 4-3: (a) Error in reconstructions as Az is increased for increasing amounts of
added noise. Added noise increases the optimal Az value and (b) increases the error
in the optimal reconstruction nonlinearly.

Thus, error is critically dependent on noise and averaging or taking longer expo-

sures is an important way to improve the image quality. Figure 4-4 demonstrates the

improvement given'by averaging just two images to reduce the noise by a factor of 2.

0.5

0.4

0.3

A
0.2

01
B - no averaging

average 2 images

Az (pm)

Figure 4-4: Error plots vs. defocus distance for noisy data, where averaging two
images leads to a significant improvement in the optimal phase reconstruction.

Work has been done to improve noise instabilities by using more than two images

with estimation theory [183], provided that all the images are within the small defocus

regime (suggesting low phase contrast). In Chapter 5, we extended the TIE beyond

this small defocus limit by using higher order derivatives to correct for nonlineari-

ties, while still allowing improved noise performance [184]. This technique maintains

speed and computational efficiency and allows a trade-off between noise performance

and accuracy, but fails in the case of significant diffraction between images or large



amounts of noise. In Chapter 6 we seek a more general technique that can adaptively

take into account noise and varying distance between images, Az, with a single model,

using Kalman filtering.

4.2.5 Object spectrum

Most of the properties of the TIE are dependent on spatial frequency, because defocus

is. Unfortunately, we cannot know a priori the spatial power spectrum for an arbitrary

object. The system will be optimal for only one of these at a time. An example of

the effect of object spectrum is given in Fig. 4-5, where error is plotted as a function

of defocus for increasingly smooth test objects. As expected, smoother objects are

better recovered at large defocus distances and nonlinearity error increases with Az

for all objects.
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Figure 4-5: (a) Error in reconstructions as Az is increased for increasing smoothing
factor (sf). The 'nonlinearity line' is lower for smoother objects and (b) error drops
quickly with smoothness.

4.2.6 Partial coherence

A coherent wave by definition has a well-defined phase. However, in the case of

partial coherence, where light is moving in many different directions at once, each

direction has a different wavefront and the definition of 'phase' becomes unclear.

Nugent [66] has suggested a new definition of phase as the real part of the refractive

index of the object under test. Thus, an object can have a clearly defined phase

...........................



component, even though the wave-field may not. Furthermore, phase can be defined

in terms of the time-average Poynting vector [185] or a particular statistical moment

of the mutual coherence [163]. In the coherent case, this becomes the traditional

wave phase. The consequence for partially coherent phase imaging with the TIE is

that in the paraxial case, where light is mainly traveling in one direction, the average

propagation direction of all of the coherent components describes well the average

phase contribution [67]. Higher spatial coherence will give better phase contrast;

however, lower spatial coherence offers a higher resolution limit, (up to a factor of two

greater than the coherent diffraction limit) [4]. This tradeoff was explored using the

weakly scattering transfer function formalism of Streibl [186], where it was found that

phase information is carried out to the partially coherent diffraction limit with no loss

of resolution [68, 187]. An increase in the (in)coherence parameter (NA condensor/NA

objective) decreases phase contrast gradually. Temporal partial coherence can also be

averaged, such that the TIE can be used with polychromatic illumination [188] using a

wavelength value that is the spectrally-weighted mean wavelength of illumination [66].

The validity of the TIE under partially coherent illumination offers a major advantage

over interferometric phase imaging techniques for TEM and optical regimes, in that

high coherence sources need not be used and resolution can be greater.

4.3 Limitations

TIE methods are known to have a number of practical difficulties, including align-

ment of the intensity images, accuracy of known Az, and violation of conservation of

intensity due to light leaving the system between images at the boundary [179]. One

major disadvantage of the technique is the sequential capture of the images, which

requires precise motion of either the object or camera between images. This leads to

artifacts caused by object motion and prevents real-time phase imaging. In order to

capture both images at once, a beamsplitter could be added to the system and two

cameras at slightly different distances from the object could be used. This, however,

does not solve the problem of aligning the images and ensuring that there is no tilt



between the images. In Chapter 7, a new version of the TIE will be introduced that

allows single-shot phase imaging in real-time, without hardware complications and

image registration problems.

One insight gained from the hydrodynamic analogy, which was previously recog-

nized in terms of the TIE [66], is that we cannot measure vector phase contributions

with purely orbital angular momentum, since orbital angular momentum will redirect

intensity laterally with no change in axial intensity. The consequence of these purely

vectorial contributions is phase vortices, which are constrained to have a point where

intensity is zero and phase is undefined, thus making the solution non-unique [67].

Luckily, vectorial phase contributions generally do not appear in the near-field, where

TIE operates, unless the object itself contains phase vortices.
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Chapter 5

Transport of Intensity imaging

with higher order derivatives

5.1 TIE imaging with many intensity images

Traditional TIE imaging requires only two images that are defocused from each other;

however, there are trade-offs between the amount of defocus, the accuracy of the

result and noise considerations, as discussed in Chapter 4. When multiple z plane

images are available, the extra information should give better results. However, one

cannot simply use the TIE equation to solve for pairs of images and reconstruct

the phase from the average of those, as this is equivalent to using the first and last

image only, between which the TIE linearity assumption may break down. This

chapter demonstrates a method for incorporating many images and correcting for

nonlinearity. The technique trades off accuracy and noise suppression while still

retaining the computational and experimental advantages of the TIE solution. We

show that axial intensity derivatives are well represented by higher order polynomials,

where the linear derivative component specifies the phase of the object at focus. This

technique greatly increases the validity range of TIE phase retrieval and allows many

images to be incorporated into the result for better noise performance.

Soto et al. [1831 originally proposed using many images to estimate the derivative

by finding the least squares estimator. Their technique allows better noise perfor-



mance; however, higher order derivatives are treated as error. Thus, nonlinearity

errors dominate when the total z range exceeds the linear regime defined in Ch. 4.

Other approaches for extending the TIE into the Fresnel domain involve using hybrid

methods of linearization [189, 190], or using iterative methods [53] very similar to

those of the well-known phase diversity technique [36, 71].

We present here a simple modification to the traditional TIE algorithm to account

for higher order effects. The result is a better approximation of the first order deriva-

tive by estimating higher order derivatives and removing their effect, which leads to

more accurate phase retrieval.

5.2 Theory

5.2.1 Derivation

Following the wave-optical derivation of the TIE given in Beleggia [169], in which

the Fresnel operator is linearized with respect to z, we showed in [184] and repeat in

Appendix B that one can derive a higher order TIE equation by keeping more terms in

z when approximating the Fresnel operator by a polynomial. The end result is that

keeping higher order terms in the Fresnel operator is equivalent to keeping higher

order terms in the intensity derivative. This is expected, since the TIE contains no

approximations other than the paraxial approximation, and it is the finite difference

measurement of the intensity derivative which causes error. Thus, we may proceed

with a simple derivation that seeks to measure as accurately as possible the first

derivative of intensity at the focal plane, z = 0.

Since intensity does not propagate linearly beyond the small defocus region, due to

diffraction, we attempt to estimate and remove the effect of the nonlinear higher order

derivatives. Paraxial propagation suggests that the axial intensity curves will remain

smooth over multiple wavelengths of defocus. We start with the Taylor expansion of

the axial intensity for one pixel in (x, y) as the light propagates,
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Figure 5-1: Higher order derivative components (bottom) of axial intensity for a
propagating test object having separate amplitude and phase variations (top). Note
unequal scale bars.
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Here, 1(0) is the intensity at focus (including absorption or nonuniform illumi-

nation) and BI/Dz is the desired intensity derivative to be used in the solution of

Eq. 4.3. These derivative components for a simulated test object (composed of a

cartoon phase object and hat and mustache amplitude distribution) are shown in

Fig. 5-1. The value of higher order components drops off quickly, suggesting that the

Taylor series is a good expansion set for intensity propagation curves. Furthermore,

amplitude can be independently extracted from the 0th order derivative, which is the

intensity at focus and contains no phase information. Interestingly, only the even

derivative orders (0th, 2 nd 4 th) will contain amplitude information. This is because

the derivatives of a complex exponential function alternate between being real and

imaginary, causing cancellation at every second derivative order upon taking intensity.



Traditional TIE measures the finite difference (FD) approximation to the intensity

derivative using Eq. 4.9. Including corrections for the higher order terms given in

Eq. 5.1 leads to a new measure of the linear derivative:

BI I(Az) - 1(0) (Az) 21 (Az) 2 a3j (Az) 3 a4(
+ - + __ + ... (5.2)Bz Az 2! (z

2  3! &z 3  4! Dz4

Thus, the error in the two-plane FD measurement is caused by the higher order

derivatives (shown in square brackets in Eq. 5.2). By measuring these higher order

components numerically and removing them, one should obtain a more accurate es-

timate of the first derivative. This new first derivative estimate is then substituted

into Eq. 4.3 to solve for phase without reverting to iterative methods.

There is a great body of research on numerical techniques and finite difference

schemes for measuring derivatives from more than two measurements [177]. Generally,

the n'h order derivative of a function can be computed numerically from (n+1) or more

equally spaced measurements. Unfortunately, these finite difference approximations

for higher orders come with their own error and noise issues. Here, we describe the

implementation of two techniques which we found most successful for image-based

schemes.

5.2.2 Technique 1: Image weights for measuring higher order

derivatives

The effect of measuring and subtracting the unwanted higher order derivatives by

finite difference methods leads to the problem choosing a set of image weights such

that all but the 1 " order in Eq. 5.2 is canceled. Consider the linear derivative that

we wish to estimate as a superposition of weighted images:

&I a-I-m + a-m+I-m+1 + ... + ajIj + ... + an 1In-1 + anI (
i Az (5.3)

where a3 is the image weighting, Ij is the intensity image taken at z =jAz,



meaning Io is the focused image, negative j corresponds to under-focused images,

and positive j corresponds to over-focused images. Thus, (m + n + 1) is the total

number of images. We seek to find coefficients for each image such that the desired

orders are canceled. The requirements that must be met in order to expect accuracy

of a certain order are given in Table 5.1. Forward derivative measurements refer to

using images defocused in one direction only and centered derivative measurements

take a set of defocused images both over and underfocused, where the central image

is in focus. As expected, canceling higher order derivatives requires more images in

order to simultaneously meet all of the desired requirements. The system of equations

to be solved is given by [191]:

(-n) 0  (-in + 1)0 ... (n - 1) a-m 0

(-n) 1  (-in + 1)1 ... (n - 1)1 a-m+1 1

(-m) 2  (-m + 1)2 2) a-m+2 0 (5.4)

(m)m+"? (-M + 1 )m+n ... (n _ 1)m+ an 0

where m + n = k, and k is the order of derivative to be corrected for. Resulting

sets of image weights are given in Table 5.1.

The disadvantage of this technique is that the higher order approximations to

the first derivative become noise sensitive. For example, in the 2nd order case shown

in Table 5.1, I1 has a weight of 4, meaning that the noise of I1 is amplified by a

factor of 4. Thus, if the 2nd order component is smaller than the noise floor, noise

is added to the resulting 1" derivative estimate, making it worse. Since the higher

order components are object-dependent, one cannot know where the crossover point

will occur without an estimate of the object. One solution is to take 4 images at 11

and average them, thus achieving noise balance, at the cost of capturing more images

at each plane.



Accuracy Requirements Forward derivative Centered derivative

0th order EN a 0

1S" order ENaln -0 1 - '0

Az

2 nd order ENaflm2 =0 -12+41,-31on -I-,
2Az 2Az

3rd order ENan 3 = 0 13-912 181 - 1110
6Az______ _

4th order ZN 4an = 0 -314 + 1613 - 3612 + 48I1 - 251o 1-2 - 8I- 1 + 81 - I2

12Az 12Az

kth order ZN anink = 0 Solve Eq. 5.4

Table 5.1: Finding image weights for a desired order of accuracy.

5.2.3 Technique 2: Polynomial fitting of higher orders

When only a single image at each z position is available, or better noise performance

is desired for a large data set, a simple curve fitting technique will offer better perfor-

mance, at the cost of more computation time. In this technique, I(z) for each pixel

is fit to a polynomial model and the first order component is extracted for computing

phase via Eq. 4.3. In the limit of first order, the technique will fit to a straight line

and the result will be similar to that of of Soto et al. [183]. By fitting to higher or-

der polynomials, however, one can obtain a more accurate estimate of the first order

derivative. Here we use a least-squares fit to polynomials which weights all images

equally. The order of the polynomial fit function should be less than the number of

images used, and more images will result in better noise performance without sacri-

ficing accuracy. The pixel-wise treatment lends itself well to parallel computing, such

as computation on a Graphics Processing Unit (GPU).



5.3 Simulations

First, we show simulations of two test phase objects and their nonlinearity error as a

function of Az using Technique 1 (see Fig 5-2). Here we use two simulated intensity

images for each phase reconstruction, defocused from each other by Az. The phase

solution is obtained with an FFT Poisson solver, and the root-mean-squared (RMS)

error is plotted as the mean over all pixels. As can be seen, the inclusion of a 2n

order correction factor is better than standard TIE (which assumes 1" order) for

all values of Az in the absence of image noise. Note that the curves are object-

dependent, though generally, higher order corrections become more useful with large

Az because the nonlinearity is greater in this range. Figure 5-3 shows a similar

simulation including up to 4th order correction with no noise. As expected, there is

diminished improvement as more orders are corrected for, but the inclusion of higher

orders is always beneficial at any Az. When noise is added, this is no longer true,

since the higher order estimates are more sensitive to noise (see Fig. 5-3(b)). Cross-

over points form in the error plots and the optimal set of orders to use will be noise

and object-dependent, as expected for Technique 1. When the noise balancing scheme

described above is used, however, the higher order corrections error curves once again

fall below their successive order (see Fig. 5-3(c)).
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Figure 5-2: Plot of simulated nonlinearity error for two different phase objects as
Az increases, showing improvement when using 2"d order TIE. Inset shows in focus
phase image for (a) test phase object and (b) random phase object. Phase values are
radians.
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Figure 5-3: Error plots with test object in Fig. 5-2(b) for increasing Az with a)
no noise, b) noise (standard deviation o- = 0.001) with no averaging, c) noise with
averaging. Error bars denote standard deviation.

Figure 5-4(a) shows some simulated intensity images as a pure phase object prop-

agates. The data set uses 80 images axially spaced by Az = 1pm, with illumination

wavelength 532nm and total image size of 90pum. Figure 5-4(b) plots the axial inten-

sity curves for a few randomly selected pixels. Since it is a pure phase object, all pixels

have unity intensity at focus (z = 0) and the phase contrast is purely antisymmetric.

The axial intensity curves in this z range are quite smooth, but severely nonlinear

since the data span a z range well beyond the small defocus regime that defines the

TIE. Figure 5-4(c) plots a single intensity curve and its corresponding fitted curves

for 1 s, 7 th and 1 3 th orders, showing that the 1s' order fit is a very poor estimate,

while the 1 3 th order fit is accurate.

Using this data set, we fit each pixel intensity to progressively higher orders of

polynomials as described in Technique 2, compute the linear derivative, then solve

the TIE for phase.' Results are shown in Fig. 5-5. The 1" order reconstruction is

quite blurry and cannot pick up sharp edges, which are most susceptible to non-

linearity. Lower spatial frequencies better satisfy the linearity assumption and thus

are reconstructed faithfully. Indeed, in the error plots shown in the bottom row of

Fig. 5-5, the main source of error is in the pixels near the sharp edges of the lettering.

With progressively increasing order polynomial fit, the sharpness of the reconstruction

improves and the error decreases.

Figure 5-6 plots the mean actual error in the phase result for increasing polynomial

fit order, along with the RMS error of the fit when significant Poisson noise (o =

No noise Noise without Averaging
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Figure 5-4: (a) Simulated intensity focal stack with a pure phase object (max phase
0.36 radians at focus). (b) Axial intensity profile for a few randomly selected pixels.
(c) Single pixel intensity profile with corresponding fits to 1", 7th and 13th orders,
having 0.0657,0.0296 and 0.0042 RMS fit error, respectively.
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Figure 5-5: Simulation of phase recovery improvement by fitting to higher order
polynomials. Top row: Recovered phase (radians). Bottom row: Error maps for
corresponding phase retrieved. Polynomial fits are, from left to right, 1"' order, 7"'
order, 13th order, and 2 0 1h order.
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0.003) is added to each intensity image. It is tempting to use the RMS fit error as a

metric for determining the accuracy of the system, but at some point over fitting will

occur (i.e. adding more fit orders will only serve to fit to noise), resulting in a better

fit but more actual error in the result.
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Figure 5-6: Actual error and RMS fit error for increasing fit orders.

A comparison with previously developed techniques using the same data set, but

with noise (o- = 0.0015), is shown in Fig. 5-7. The traditional TIE reconstruction

uses only two images, defocused by 2pm and is extremely sensitive to noise in the

low frequencies [182] (mean error=0.110). The Soto method [183] achieves good noise

performance, but poor accuracy (mean error=0.025). The blur is due to the model

of purely linear light propagation, which is not true. The iterative technique result

(mean error=0.024) uses 500 iterations. Finally, the result using 6 'h order image

weighting (technique 1), which uses a data set allowing multiple images at each z

plane, achieves both good resolution and good noise suppression (mean error=0.022),

as does the result using technique 2 with 2 0 1h order TIE (mean error=0.010).

5.4 Experimental results

Intensity focal stack images were taken in an in-line geometry with a 4f imaging

system between the object and camera. Laser illumination (A = 532nm) was used and

the CCD sensor was axially translated by 5pm between each of 60 images (see Fig. 5-8

for results). The phase object in this case is a PMMA substrate with 190nm trenches

etched into an MIT pattern. As expected, the object becomes nearly invisible at focus,
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Figure 5-7: Phase reconstructions from simulated noisy intensity images for different
phase retrieval algorithms. Color bars denote radians.

with opposite contrast on either side of focus. Phase results are displayed as the height

of the object in the axial dimension, where height, h, is given by h = #(An)A/27r

Similar to the simulated results, the traditional TIE reconstruction is hidden behind

low frequency noise and the Soto method is blurred due to nonlinearity. The iterative

technique does well for this object but is somewhat noise-sensitive, and 2 0 th order

TIE is able to recover a sharp result with good noise performance.

Since the TIE is valid for partially coherent illumination, we can use our improved

derivative estimate with stacks of defocused images taken in a brightfield microscope.

Experiments were carried out with a 20x objective (NA = 0.45), adjusting the micro-

scope focal position in 5 steps separated by 2.6pm. A Tungsten-Halogen lamp source

provided broadband illumination. Reconstructions using the two proposed techniques

are shown in Fig. 5-9 for both phase and amplitude. Note that sharp edges appear

as amplitude effects due to the loss of light from scattering at these edges, and dust

particles appear only in the amplitude reconstruction, not the phase reconstruction.

20*h order - technique 2Actual Dhase
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Figure 5-8: Experimental reconstruction of a phase object using different reconstruc-
tion algorithms. Top row: subset of the through-focus diffracted intensity images
with Az = 5tm and effective pixel size of 0.9pm. Bottom row: Traditional TIE
phase reconstruction, Soto method, iterative method after 500 iterations, and 2 0th
order TIE using technique 2 (radians).

5.5 Discussion

Including higher order intensity derivatives in the formulation of TIE imaging im-

proves the accuracy of phase estimation. By correcting for nonlinearities, we extend

the TIE technique into the Fresnel domain and make use of large stacks of data

spanning longer distances, to allow for more practical imaging systems. By fitting

to polynomials at each pixel and using many images in the phase solution, we can

choose the order of derivative correction to trade off accuracy and noise performance.
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Figure 5-9: Experimental reconstruction of a test phase object from multiple intensity
images in a brightfield microscope. Top row: Phase reconstructions (radians), Bottom
row: amplitude reconstructions. Left column: technique 1 (4 1h order), Right column:
technique 2 (4 th order).
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Chapter 6

Complex-field estimation by

Extended Kalman Filtering

6.1 Optimal phase from noisy intensity images

In this chapter, a new method for complex-field estimation from noisy intensity mea-

surements in many planes is presented, using a complex extended Kalman filter to

model and predict light propagation. The technique offers near-optimal smoothing

of noisy measurements and is recursive rather than iterative, so is suitable for adap-

tive measurements. We discuss several ways to reduce the computational complexity

by data compression and block processing. This technique should find use in wave-

front sensing for very low-light situations. The framework presented could also allow

adaptation for propagation through turbulence, scattering or nonlinear media, where

statistical models are available.

The method presented in this chapter allows a stack of noisy defocused images to

be used recursively for recovering phase and amplitude, offering near-optimal smooth-

ing in noisy environments. As in all propagation-based phase contrast techniques, the

performance of the technique is parameter dependent. To quote Langer [192], "The

recorded contrast from the object is non-trivially dependent on the propagation dis-

tance, while noise does not follow this relation." Thus, the optimal image planes

will depend on the wavefront itself. The recursive and predictive capabilities of the



Kalman filter will enable future applications in adaptive optimal positioning of the

image planes by estimating the wavefront and predicting the (wavefront-dependent)

optimal next measurement.

6.2 Theory

We wish to determine the 2D optical complex-field, @(x, y, zo) = A(x, y, zo)exYzo) at

a distance zo from the camera, where A(x, y, zo) is amplitude and 4(x, y, zo) is phase.

We capture a sequence of N noisy intensity measurements, I(x, y, zX) = |(x, y, 2

at various distances z0 ,z 1 ,...Zn...ZN separated by Az. Assume here propagation

through a linear homogeneous medium, so the field propagates according to the ho-

mogeneous paraxial wave equation,

8@V)(x, y, z) iA
= -y ) V ) (x, y, z), (6.1)az 47r

where A is the wavelength of illumination and V1 is the gradient operator in the

lateral (x, y) dimensions only. Note that V)(x, y, z) is complex-valued, so this equation

is not exactly analogous to the TIE. Assume that the probability distribution of

measured intensity at each pixel is independent and Poisson,

2 | ( ,y, za)| 2
I(x,Y,zn)]

P [I(x, y, zn) 10(x, y, zn)] = -Y(XYZ) (x,y,z, (6.2)
I (X, y, zO)!

where -y is the gain at the camera. We would like to find the conditional probabil-

ity distribution of $ (x, y, zn) given measurements of I(x, y, zn). Because I(x, y, zn) is

not Gaussian and depends nonlinearly on O(x, y, zn), the estimation problem is non-

linear, and it is extremely computationally expensive to solve for the exact conditional

probability distribution P [0/(x, y, zO) I(x, y, zO), ...I(x, y, zn)]. One way of obtaining

a near-optimal estimate is to use the complex nonlinear Rauch-Tung-Streibel (RTS)

smoother [193, 194]. The following theory can be considered an implementation of

the extended complex Kalman filter [194, 195, 196].

We represent the complex-field as a raster-scanned complex column vector,



O(zu, yi, Z)

a(z) = (6.3)
(X i, Y2, Z)

(XM, YM, z)

where M is the number of pixels in each dimension (x, y). We must include

both the real and imaginary parts of the field in our state vector, since the intensity

measurements are a function of both. The evolution of the discretized complex-field

is,

da
= La, (6.4)

dz

where L is determined from the paraxial wave equation (Eq. 6.1), which is linear

in complex field. The nonlinear measurement set is the intensity of this complex field

at all z-steps and is represented by

I (zi, y1, Z.)

I7 (XzM, y1, Z.) .(6.5)
I(zi, y2, zn)

\X M~, YM, zn)

The measurement model of the intensity measurement as a function of a(zn) is

given by,

r/n = h (a (z,)) + v (6.6)

h(a(zn))) = -yl |a(z)a*(zn), (6.7)



where the multiplication in Eq. 6.7 is an element-by-element multiplication, *

denotes the complex conjugate, y/n is the camera gain at step n and vn is sensor noise

in the image.

Assume some initial estimate, do, for the statistics of a(zo) and for its covariance

matrices:

ao = (a(zo)) (6.8)

Q(zo) = ([a(zo) - &(zo)] [a*(zo) - &*(zo)]T) (6.9)

P(zo) = ([a(zo) - b(zo)] [a(zo) - a(zo)]T) . (6.10)

where the matrices Q(z) and P(zn) represent discrete values of the coherence

functions at z,, T denotes transpose, and Q(zo) and P(zo) are the initial estimates of

these matrices at z = 0.

At each subsequent z-step, we propagate forward the state estimate and covariance

matrices to find the expected intensity measurement for that z-step:

= L&,(6.11)
dz
dQ = LQ + QLt, (6.12)
dz
dFP

= LP + PL, (6.13)
dz

where t denotes conjugate transpose. Since the noise covariance Rn = (ononT)
depends on an, we should use the estimated 6, to calculate Rn at each step. Since

we have assumed that each pixel has independent noise, Rn will be diagonal.

Next, we calculate the Kalman gain matrix, Kn, and the measurement covariance

matrix,

Kn = yn [Q(Zn)A(Zn) + P(z.)A*(zn)j Dn 1, (6.14)



D n = 7 2 [A*(zn)Q(zn)A(zn) + A*(zn)P(zn)A*(zn) + c.c.] + Rn, (6.15)

where A(za) is a diagonal matrix with the diagonal vector equal to (za) and Hn

is a linearization of the intensity operator matrix,

oh h 3h (.6
Hn(a(zn)) = alll=az,) = l OalBa (6.16)

a=&Oa ) = ) a=et(zn,)

In order for our technique to be valid, this linearization must be justifiable between

any two images (i.e. the intensity at a given pixel must be linearizable with respect

to z). TIE theory tells us that this linearization will be valid when 2Azu 2 < 1, where

z is the propagation distance and u is a given spatial frequency [47]. In practice,

nonlinearity, which occurs when the Az step is too large, causes a low-pass filtering

effect of the result.

Next, we update the estimates and covariances:

d(z&) = d(zn) + Kn [r, - h(d(zn)], (6.17)

Q(z4) = [I - yKnA* Q(zn) - 7ynKi*P*(z.), (6.18)

P(z4) = I - NKnA*1 P(zn) - 7yKnA*Q*(zn), (6.19)

where I is the identity matrix. These steps are repeated for each z-step until

z = zk. Once the estimate at ZN is obtained, it can be digitally backpropagated to

the focal plane.

A block diagram of the Kalman filter is given in Fig. 6-1. The top loop represents

a model of the dynamic system (T represents the transition process and w, 'process

noise', which we assume to be negligible), and the bottom loop represents the esti-

mation process. The iterative technique of Allen et al. [53] can be represented with a

similar model, but uses a constant unity gain Kn = 1 and iterates through the images

many times. In our Kalman filter, unity gain only occurs when there is zero noise

(i.e. the measurement is exact). Using a gain of less than one suggests that we do

not fully trust the measurement. In the input-output method [36] non-unity feedback



is used, but the gain is constant across all pixels and chosen subjectively. In truth,

the optimal gain is object-dependent and dynamic across each pixel. By using the

Kalman gain matrix, we find the dynamically-changing optimal gain for each pixel

as the object propagates, under the limits of model assumptions and linearization.

Furthermore, by including the information from each image optimally, we need only

consider images once, allowing a recursive rather than iterative algorithm.

An interesting adaptation of this method would involve modeling propagation

through turbulent or scattering media as process noise, w, or or using an L matrix

for propagation through inhomogeneous or nonlinear media.

intensity
a. H I(zn)

tpropagate 4

aa_, a,

Figure 6-1: Kalman filter schematic diagram.

6.3 Implementation

Direct application of Kalman filtering theory leads to a very large complex state vector

of size 2M 2 , where M is the number of pixels in one dimension. This state vector

will have a covariance matrix of 4M 4 , which is currently an unrealizable memory

requirement on standard computers for typical image sizes. Thus, we suggest two

methods for data compression to reduce computational complexity, but point out that

the use of 64 bit personal computers and better memory management will significantly

relax the computational requirements of this technique in the future. Processing



speed-up was achieved by using parallel processing on a Graphics Processing Unit

(GPU), though the main computational limitation was the memory requirements for

storage and manipulation of the covariance matrix (currently 3Gb in 32bit Matlab,

or hardware limited in 64bit).

6.3.1 Compression method 1. Fourier compression

Smooth images which concentrate most of their information in low spatial frequencies

can be represented by less data when sampled in the Fourier Domain (FD). Thus,

if Fourier coefficients are used as state variables, a smaller state vector may be used

if the image is sparse in the FD. The choice of a suitable sparse domain can use

insights from compressive sensing [80]. For example, in imaging through turbulence,

phase distributions are often assumed to follow Kolmoogorov statistics [56], namely

<b(u) = Cu-"/3, where <D(u) is the power spectrum of the phase and C is a constant.

Thus, high frequency information is highly attenuated and a Fourier compression

scheme will be useful. For imaging wavefront aberrations in a microscope, the first

few Zernike polynomials would be used.

6.3.2 Compression method 2. Block processing

The second method for managing computation involves simply blocking the image into

chunks and processing each separately. This will be valid only when phase gradients

in one block have negligible effect on the intensity of pixels in the neighboring block.

Technically, in Fresnel propagation every pixel transfers information to every other

pixel; however, the intensity changes are greatest near the phase disturbance. Thus,

one can define, based on Fresnel propagation, a rough estimate of the local area in

which the intensity changes at z = ZN occur [20], Ax = 4 Az. Using a block size

larger than this value will minimize crosstalk error.



6.4 Simulations

We simulated the 3D intensity field for a propagating wavefront from a complex

object, propagating from focus in 0.5pm steps over a total distance of 50pm with

wavelength 532nm. The intensity data was then corrupted by Poisson noise having a

standard deviation o- = 0.999, to yield the noisy test measurements shown in Fig. 6-

2. After recursively incorporating all the noisy images into a forward-propagating

Kalman filter using block processing (block size 60x60 pixels), the recovered phase

and amplitude are shown in Fig. 6-2 as compared to the original object field. Note

that the highly scattering sharp edges of the phase information manifest as absorption

edges, due to the information being scattered outside the aperture of the system.

Intensity images

Amplitude Phase
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Figure 6-2: Simulated results using Kalman field estimation. Left: selected images
from the noisy measurements. Right: actual amplitude and phase at focus compared
to the recovered amplitude and phase (radians).

We show in Fig. 6-3 the progress of the filter as images are added and the light

propagates. The first and third rows, respectively, show the propagation of amplitude

and phase. The second and fourth rows show the Kalman estimation of these quan-

tities as the filter moves from z = 0 to z = 50pum, adding a noisy measurement of

intensity at each step to refine the dynamic estimate. We start here with a zero initial



guess and find that the error in both phase and amplitude estimates decreases as more

images are added (see Fig. 6-4). Error is defined as the average root-mean-squared

(RMS) error across all pixels.

z sten 1 z steD 20 z step 40 7 tpn 100

Figure 6-3: Progress of Kalman field estimation. Row 1: Actual intensity as field

propagates, Row 2: evolution of intensity estimate from Kalman filter (starts with

zero initial guess), Row 3: actual phase (radians) as field propagates, Row 4: evolution

of phase estimate (radians) from Kalman filter.

To get a sense of the noise level in the measured data, the simulated actual axial

intensity of the central pixel is shown in Fig. 6-5, along with its noise-corrupted

measurements. This amount of noise will destroy any complex-field imaging method

that does not explicitly account for noise, as we show in Fig. 6-6. We show only the

phase of the recovered complex-field, since that is the more difficult parameter to

estimate. The TIE technique, even with a large Az of 50pm for greater contrast, is

taken over by noise. Higher order TIE, as proposed by Waller et al. [184], can trade off

noise performance for nonlinearity error correction. The best reconstruction using this

noisy dataset is 1"t order TIE (similar to Soto method [183]), and is shown in Fig. 6-6

................ .... ..
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Figure 6-4: Error convergence for Kalman filter as images are added.

to have good noise performance but severe nonlinearity error. Iterative techniques

do not account for noise in image data and so are disproportionately affected by the

noise of the last image included [39, 46]. So, for this noise level, the Kalman field

estimation result offers the best phase reconstruction.
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Figure 6-5: Axial intensity curve for a single pixel and its corresponding noisy mea-
surements (Poisson noise, o- = 0.999).

We present a second demonstration of Kalman field estimation, this time using the

Fourier compression scheme described in Sec. 6.2. A smooth (but not bandlimited)

pure-phase distribution was used, and results are shown in Fig. 6-7. Here, 50 images

with a = 5.5 were used, with 18x18 Fourier coefficients kept as state variables, out

of 1OOx1O0 pixels in (x, y). As expected, the complex-field reconstruction error is on

the order of the noise standard deviation divided by the number of images used.
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Figure 6-7: Simulated results using Kalman field estimation with Fourier compression.
Data set uses 50 images having Az = 0.2pm and noise a = 5.5. The image is 100
x 100 pixels in size, and 18 x 18 state variables are used. Left: images from actual
intensity as light propagates and the noisy measured images. Right: actual amplitude
and phase at focus, compared to the recovered amplitude and phase (radians).
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6.5 Experimental Results

Experiments were conducted using laser illumination (A = 532nm) and a precision

motion stage to move the camera while obtaining a stack of defocused images. The

test object in this case was an electron beam etched PMMA substrate with 190nm.

trenches. The setup is shown in Fig. 6-8, where a 4f system is used to magnify and

relay the field at the object to the camera. Intensity images were collected while

moving the camera along the optical axis for 50 steps separated by 5ptm, where the

central image is in focus. A few images from the resulting image stack are shown in

Fig. 6-9. Here, the sharp edges of the phase object make the Fourier compression

scheme invalid and block processing is used instead. Recovered phase and amplitude

are shown in Fig. 6-9.

Object
plane

Collimator

4f system
Camera4=

Figure 6-8: Experimental setup using laser illumination and 4f system, with camera

on a motion stage for obtaining multiple images in sequence.

6.6 Discussion

We have demonstrated the use of Kalman filtering for recovering complex wave-fields

from multiple defocused images in severe noise. This technique allows recursive es-

timation of phase and amplitude with near-optimal smoothing of noise, and has the

potential for extension to other difficult imaging situations.

................ 11 ............
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Figure 6-9: Experimental results using Kalman field estimation with block processing.
Left: measured images, Right: recovered amplitude and phase (radians).
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Chapter 7

Phase from chromatic aberrations

7.1 Introduction

In the previous two chapters, methods were introduced for computing phase accu-

rately from many intensity images and in the presence of noise. Like phase-shifting

techniques, these methods will be useful for static or slowly moving objects, where

the set of defocused images can be captured quickly enough to avoid motion be-

tween images. In many applications, however, dynamic events cannot be captured

fast enough using sequential measurements. Examples include fast motion of bio-

logical cells, profiling of moving mechanical parts, or fast-changing density fields. A

single-shot method would allow real-time quantitative phase imaging of such dynamic

events. Furthermore, if efficient algorithms and computing power can be used to re-

cover and display the phase map in real-time, important applications will open up in

interactive measurements and adaptive optical correction of wavefront distortions.

Here, we show that phase may be computed accurately from a single color image in

a brightfield microscope with no hardware modification. The technique uses a quan-

tification of the chromatic aberration that is inherent to every imaging system [197].

By combining this technique with parallel processing on a standard Graphics Pro-

cessing Unit (GPU), we demonstrate real-time phase recovery. This leads to a simple

and inexpensive way of achieving quantitative phase images in real-time, allowing a

new class of high-resolution dynamic and interactive experiments in existing systems.



Our approach is inspired by the TIE under the recognization that, in the Fresnel

propagation kernel, wavelength A and distance z appear always together [198]. Thus,

the two variables can be exchanged in the derivation of the TIE equation to yield

a version which uses measurements at different wavelengths rather than different

positions. By using a color camera (and due to the fact that strict coherence is not

required), we are able to capture the images in a single-shot. Furthermore, we show

that chromatic dispersion in the imaging system allows in-focus phase images with

optimal contrast.

Chromatic dispersion is the phenomenon that causes different wavelengths to prop-

agate at different speeds in a dielectric medium (see Fig. 7-1). The effect was a major

impediment to the early development of refractive telescopes. For years, scientists

have worked to reduce the resulting chromatic 'aberration' in imaging systems by

using long focal lengths, reflective optics or achromatic lenses [199]. Isaac Newton's

revolutionary telescope design of the 1 7th century, which was more powerful than

refracting telescopes a dozen times its size, was based on reflective optics to avoid

chromatic aberration [200]. In 1973, Courtney-Pratt recognized that these aberra-

tions could be used to gain some depth information about an object [201] because the

different colors focused to different depths in the object [202], and this idea was later

extended to confocal systems [203] as a method for reducing scanning or for measuring

chromatic aberration in a confocal system [204]. Recently, Guichard [205] proposed

to use chromatic defocus for extended depth of focus. Here, we propose chromatic

dispersion as a phase contrast mechanism, where either free-space dispersion or imag-

ing lens dispersion can be used to recover phase quantitatively. Certainly, it has been

recognized previously that image system aberrations can create phase contrast [206]

- in fact, defocus is the primary aberration and exactly what is used in the TIE to

solve for quantitative phase. The use of chromatic defocus, however, has not been

explored as a phase contrast mechanism.
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Phase Free-space dispersion RGB color channels
object

Figure 7-1: Free-space diffraction from a phase object exhibits chromatic dispersion,
such that the three color channels (R-red, G-green, B-blue) record different diffracted
images.

7.2 Theory

The TIE is derived from the paraxial wave equation after Fresnel propagation [20].

Wavelength A and distance z are interchangeable in the propagation equation - in

fact, defocus is the product of the two ( = Az. Thus, we find:

BIr(x y) _-1

' - V e (I(x, y)V#(x, y)), (7.1)
og 27

where I(x, y) is intensity, #(x, y) is phase, and Viis the two-dimensional gradient

operator in the lateral dimensions. One implementation of this equation allows a

defocused phase to be recovered by taking images with different wavelengths in a single

plane, similar to that proposed for X-ray imaging with quantified dispersion [159,

207, 208] and in diffraction tomography [209]. Since the technique does not require

strict coherence, filters may be used to separate the colors. Thus, we recognize that

the images can be retrieved simultaneously from the RGB channels of any color

camera, allowing single-shot phase imaging free of lateral or tilt registration problems.

Furthermore, we describe below a method for in-focus phase imaging with optimal

contrast by introducing a wavelength-dependent z via chromatic aberrations. We

assume here a thin phase object with negligible object dispersion.
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7.2.1 Derivation

Equation 7.1 is derived as follows. Start with a complex object @/(x, y) = A(x, y)eO{'Y)

where A(x, y) is amplitude, #(x, y) is phase and and x, y denote the lateral dimen-

sions. Assuming plane wave illumination, the field after the object is @(x, y) and

propagates along the optical axis z according to the Fresnel propagation kernel [20],

i2rz/A2

h(x,y; ) exp (x

At a defocus of (, the recorded intensity is

+ y2) . (7.2)

I(x, y; ) = |@(x, y) 9 h(x, y; ) = F- 1 {''(u, v) H(L, v; ) 2 (73)

where F-1 denotes 2D inverse Fourier Transform, U, v are the spatial frequency

variables in Fourier space, and I(u, v) and H(u, v;() are 2D Fourier Transforms of

O(x, y) and h(x, y; (), respectively. We Taylor expand H(u, v; () and linearize with

respect to (:

(7r() 2(u2 + V2)2

H(n,'v;() = 1 - i~r(( 2 + v 2 ) 2!
1- i-r(n 2 + v2) (7.4)

Then, taking into account i27u -a VI, the intensity is given by,

I(x, y; ()= +x, y) + i 2(XY) 2
47r (7.5)

After some algebra, this leads to,

I(x, y;) Io(x, y) - V1 * (Io(x, y)Vje(x, y)), (7.6)
27r

where Io(x, y) is the in-focus intensity. In the limit of small defocus, this gives

Eq. 7.1:

I(x, Y; + of) - I(x, y; ) BI' -1
= IVI

-2wT
* (Io(x, y)Vq#(x, y)). (7.7)
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7.2.2 Resolution, accuracy and noise considerations

The x, y resolution of the phase result will be determined by the imaging system;

however, accuracy is dependent on the amount of chromatic defocus and noise. Sim-

ilar to the TIE, Eq. 7.1 is well-posed and invokes only the paraxial approximation;

however, the derivative measurement is a finite difference approximation:

0I I((R) ~ I( B) NR - NB
- ~ + A (7.8)

where NR and NB are are the noise values in the red and blue color channels,

respectively, (R and (B are the corresponding defocus, and A = (R - (B- The

derivative measurement becomes unstable due to amplification of noise by A- 1 .

Increasing the defocus between colors provides better signal to noise ratio (SNR) in the

derivative estimate; however, the linearity assumption inherent to the finite difference

approximation is compromised when defocus is large (see Fig. 7-2). This plot shows

simulated noise-free error in the phase result due to nonlinearity as the wavelength and

distance between the images are varied. In the limit of infinitesimally small defocus

(Az -+ 0), the error goes asymptotically to zero. Of course, small defocus leads to

small signal and noise instability. Thus, the noise floor will determine the minimum

acceptable defocus between images, which sets the maximum accuracy according to

Fig. 7-2.
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0 : 1000
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Figure 7-2: Noise-free error simulation for varying values of wavelength and z with a
random test phase object. In the absence of noise, the error goes asymptotically to
zero with decreasing defocus.
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As a general rule for minimizing nonlinearity, we require A( :; x2 , where x is the

characteristic size of the feature to be reconstructed. This corresponds to the case

where there is no more than one significant diffraction ring from a delta function

object (see Fig. 7-3), similar to the definition of Fresnel number [31].

2 1 0.3

noise sensitive nonlinear
x2/,

Figure 7-3: Validity range for accurate phase imaging. x is the characteristic object

size to be recovered.

7.3 Controlling chromatic aberration

Where there are no optics between the object and the camera (free-space dispersion),

the phase recovered will be that at the image plane, yielding a defocused result. We

desire an in-focus phase image, where the two colors used are over and under focused

by the same amount, making the result accurate to second order. Furthermore, in

order to non-destructively measure the phase, an imaging system must be used to

relay the complex field being measured to the camera, and all refractive imaging

systems have some chromatic dispersion.

Below, we outline the method for designing an in-focus phase imaging system

with tunable defocus, either in a 4f setup [210] or in a microscope. Microscope ob-

jectives usually attempt to correct the effects of chromatic aberration with expensive

compound achromatic lenses [199]. Here, we recommend cheap lenses which are not

corrected for chromatic aberration, and outline the procedure for quantifying defocus.
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Figure 7-4: Chromatic 4f system for controlling wavelength-dependent focus:

schematic of ray trace for red, green and blue wavelengths.

7.3.1 Chromatic defocus in a 4f system

For a single thin lens, using the Lens maker's formula [210], the shift in focal length

f at wavelength A from the center wavelength A0 is:

Af (A) = ri(A) - fAo)f(AO), (7.9)
(n(A) - 1)

where n(Ao) and n(A) are the lens refractive indices at A0 and A, respectively. In

a 4f system designed for A0 (see Fig. 7-4), the wavelength-dependent axial focal shift

is

Af'(A) = Af 2(A) + , (7.10)
Afi(A) + Af 2(A) - (fi(A) 2 /Af 1 (A))'

where Afi(A) and Af 2(A) are the focal length shifts of the first and second lenses,

respectively, fi(A) = fi(Ao) - Afi(A) and f 2 (A) = f 2 (Ao) - Af 2 (A). The total chro-

matic defocus in the 4f system is ((A) = A -Af'(A) and has been plotted in Fig 7-5(a).

Note that defocus is nearly linear with wavelength, allowing for a well-centered mea-

surement of the intensity derivative, with green in-focus and red and blue defocused

by equal and opposite amounts.

One can choose fi (A) and f2(A) (or the dispersion of the lens material) to tune

the slope of this curve such that the optimal defocus exists for a given object.
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Figure 7-5: Design of a chromatic 4f system for differential defocus of color channels.
(a) Quantification of chromatic defocus for three values of f2 given fi = 200mm with
BK7 lens dispersion, (b) spot diagram at image showing negligible lateral chromatism.

7.3.2 Lateral chromatic aberration

It should be noted that the colors also incur slightly different spherical aberration,

giving rise to lateral chromatic aberrations, which the above derivation of chromatic

defocus ignores. For a single lens, chromatic defocus is proportional to f/V, while

lateral chromatic aberration is proportional to h/V, with h being the lateral field of

view and V being the Abbe number of the lens material [210],

V = , 1(7.11)
nF - nC,

where nD, nF and nC are the Fraunhofer spectral lines at 589.2nm, 486.1nm and

656.3nm respectively. For reference, the Abbe number for BK7 glass is 64.7. Thus,

axial chromatic aberration will be much stronger than lateral chromatic aberration as

long as h << f. We show in Fig. 7-5(b) a spot diagram from a Zemax ray trace that

demonstrates negligible lateral aberrations in the 4f system used, but caution that

this condition might become difficult to meet in very high NA systems. Another way

to avoid lateral chromatic aberration is to use specialty gradient index or diffractive

lenses [211].
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7.3.3 Choice of color camera

We have chosen here to use a Bayer filter camera, which is the standard type of color

camera. These cameras obtain color information by aligning a filter array over the

sensor such that every second pixel is green-filtered, and every fourth is red or blue-

filtered, as in Fig. 7-6(a). The spectral response of the filter for a typical color sensor

is shown in Fig. 7-6(b).

Lateral aliasing could occur for the maximum spatial frequency that the camera

supports, and we suggest oversampling the data by a factor of four to avoid this.

In practice, lateral aliasing has not been a problem, and demosaicing algorithms

for JPEG images have no noticeable effect on the results. More expensive 3CCD

cameras and Foveon sensors would provide perfect lateral sampling; however, the

spectral width of the Foveon color channels is much larger than that of the Bayer

filter pattern, reducing the contrast between the channels and giving a more noise-

sensitive result. Since noise is a critical factor in this technique, Bayer filter cameras

have an advantage.

40
a) b) - Blue

N~ -- Red

~25V

0 10E

30 400 450 500 550 600 650 700 750 800

Wavelength (nm)

Figure 7-6: (a) Bayer filter color pattern, (b) spectrum of filters in standard Bayer-
filter camera.

7.3.4 Imaging with achromats

Since a key application for this technique will be live cell microscopy of fast dynamics,

we look next at a microscope imaging system, where most standard objectives are
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achromatic or apochromatic (i.e. they correct for chromatic defocus at two or more

wavelengths). Achromatic objectives which focus red and blue (but not green) wave-

lengths to the same position will have a wavelength-focus curve of the form shown in

Fig. 7-7(a).. Thus, the red and blue channel have nearly the same defocus (by design)

and measuring the intensity derivative as BI/Dk ~ (IR - IB)/A' will give negligible

phase contrast (see example in Fig. 7-7(b)). Instead, the intensity derivative should

be measured as follows:

I (IR + IB) - 2IG

S2(7.12)

where R, G and B denote the red, green and blue and A( is the defocus differ-

ence between the red/blue channels and the green channel. The result is shown in

Fig. 7-7(c), giving a much better phase image. Conveniently, the green color channel

will have half the noise of each of the red and blue channels, since green occupies

twice the area of the total sensor in the Bayer pattern (Fig. 7-6(a)). Therefore, by

using achromats and averaging the red and blue channels, we achieve optimal noise

performance. Similarly, we can double the resolution of the sensor when red and blue

channels contain the same information. Again, the defocus should correspond to a

centered derivative measure.
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Figure 7-7: Imaging with achromatic lens. (a) Focal shift plot for standard achromatic

lens, (b) phase result using standard processing, (c) phase result using achromatic

processing.
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7.4 Experimental results

A MEMS deformable mirror (DM) array [212] developed for adaptive optics [213]

provides a well-characterized dynamic phase object. Using the setup shown in Fig. 7-

8, the phase of a DM with 16 actuators addressed was imaged (see Fig. 7-9). The

green color channel is in focus (no phase contrast), while the red and blue channels

are under and over focused, respectively. From this single color image, the solution

of Eq. 7.1 provides a quantitative map of the phase, which is then reinterpreted as

height (height = #A/27rAn). The mirror was reconfigured dynamically and the phase

was captured in real-time.

Collimator

White light
source

Deformable
mirror

Color camera

Figure 7-8: Experimental setup for deformable mirror experiments.

For these experiments, the light source was a Tungsten-Halogen lamp, the 4f

system parameters were fi = 200 mm, f2 = 75 mm, and a 5 Megapixel camera

(Edmund Optics 3112c) with standard Bayer color filter was used. The DM was a

Boston Micromachines Corp. 12 x 12 actuator array with 3.5pm stroke and 8kHz

frame rate.

Microscope image results using an achromatic objective with Eq. 7.12 and 7.1 are

shown in Fig. 7-10. Images were obtained with a Nikon Eclipse T2000-U using a

20x/0.4NA objective lens and Koehler illumination. Figure 7-10(a,b) demonstrates

the capabilities of our system for imaging sharp phase gradients with submicron

accuracy. The MIT test object was fabricated by Se Young Yang using electron beam
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Figure 7-9: Phase retrieval from a single color image. (a-c) Red, green and blue color

channels, (d) captured color image of DM with 16 posts actuated. (e) Phase retrieval

solution giving inverse height profile across the mirror.
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Figure 7-10: Phase retrieval in a standard brightfield microscope. (a) Color image
of PMMA test object, (b) recovered phase map (colorbar indicates nm). (c) Color
image of live HMVEC cells, (d) recovered optical path length map (normalized). (e)
Color image of HeLa cells, (f) Phase map (normalized).

lithography to etch a 190nm deep trench in Polymethyl methacrylate (PMMA). Note

that the sharp edges appear as an outlines in the color image, due to light at those

sharp edges scattering outside the system aperture. Figure 7-10(c,d) shows phase

imaging of a live cell sample of adult human dermal microvascular endothelial cells

(HMVEC) in EGM-2MV growth medium (video available by request), and Fig. 7-

10(e,f) is a live cell sample of HeLa cells. In the case of the cells, which are much

smoother than the MIT object, the contrast is very low in the color images, but still

sufficient for obtaining quantitative phase results.

7.4.1 Material dispersion considerations

The disadvantage of this technique is that color-dependent absorption or material

dispersion will create artifacts in the result. Reflective objects such as the MEMS

deformable mirror presented above will not have these problems, but in the trans-

mission case these may be present. We have found these effects to be minimal in
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all of the biological samples presented here, as well as the PMMA test object. For

example, in the PMMA test objects, we can roughly calculate the expected erroneous

phase shift due to material dispersion. PMMA has a relatively high material disper-

sion, with refractive index n at the mean color channel wavelengths of nR = 1.48858,

no = 1.49423 and nR = 1.50019 [214]. Thus, the difference in refractive index is

about 0.4% of the nominal refractive index, meaning phase shift errors will be ap-

proximately 0.4% of the total phase shifts. For the 190nm phase objects used here

this amounts to a phase shift difference of 0.004 radians, or less than 1nm when phase

is converted to height.

7.5 Comparison with other methods

A comparison of experimental results to that of a commercial interferometer is shown

in Fig. 7-11. The recovered phase maps match very well, although the interferometer

result exhibits some streaking, likely due to the unwrapping algorithm aliasing at

large phase gradients. TIE-based techniques do not require unwrapping and therefore

do not suffer from this problem, making them more suitable for measuring sharp

phase objects without stringent sampling requirements in the lateral dimensions. This

advantage will be particularly useful in large-scale density measurements such as

those explored in Chapter 3, where long optical path lengths lead to large phase

gradients. The elimination of the need for phase unwrapping also has advantage in

computational speed of computing the result. In the next section, we describe a

real-time implementation enabled by parallel processing.

A comparison of the result obtained with traditional TIE is also shown in Fig. 7-

12 for images of HMVEC cells. The traditional TIE result was obtained from two

oppositely focused images of approximately equivalent defocus as occurs between the

color channels, but using the green color chanel only to give equivalent resolution.

The difference map shows no obvious systematic differences where the cells are and

is mainly a result of the differential noise between the images, giving a cloudy ef-

fect. This suggests that material dispersion is not a problem in these results. Some
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Figure 7-11: Comparison with commercial profilometer data. (Left) Height map from
Zygo interferometer compared to (Middle) height map from the technique described
here. Colorbar indicates height in pm. (Right) Cross-section along one actuator
(influence function of DM) using both techniques.
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Figure 7-12: Comparison with traditional TIE. (Left) Normalized optical path length
(OPL) from traditional TIE, (Middle) normalized OPL from our technique and
(Right) the difference between the two results.

small differences are seen at the edges of the cells, but it is difficult to attribute these

differences to any one phenomena, since it could be a result of imperfect image reg-

istration between the two intensity images in the traditional TIE reconstruction, or

due to movement of the cells between the two images captured.

7.6 Real-time computations on a GPU

Given a measurement of BI/8k, Eq. 7.1 is solved directly for #(x, y) using standard

Poisson solvers, as in traditional TIE imaging. Since FFTs are fast (order N2 logN)

and amenable parallel processing, the FFT Poisson solution to Eq. 7.1 is used for real-

time computation, also offering tolerance to boundary condition errors [53]. Graphics
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Processing Units (GPUs) are particularly good for inexpensive parallel computing on

a standard computer. GPUs are becoming standard computation tools in optics [215,

216] and computer vision [217, 218], offering huge speedup factors using standard

computers. We use here an NVidia GTX 285 GPU with 240 processor cores and 1

GB of memory to solve Eq. 7.1 in real-time. Code was written by Nick Loomis in

NVidia CUDA and C [219].

Figure 7-13 outlines the steps used in the real-time processing system on the GPU.

A Bayer-encoded image frame is read from the camera into the host computer's mem-

ory (CPU), then transferred to the GPU. The color channels are separated out and

normalized against the pre-measured background intensity, and then used to compute

the defocus derivative, BI/8a. Equation 7.1 is then solved by taking a parallelized

FFT, deconvolving in the FD with a small regularization parameter proportional to

the noise estimate, and then taking the inverse FFT. The resulting phase map is

displayed directly from the GPU or returned to the host computer.

Det CPU GPU

Figure 7-13: Schematic of processing steps on the GPU. Det: detector, CPU: host
computer.

A snapshot image from this real-time system is shown in Fig. 7-14, taken win a

Nikon Eclipse TE2000-U microscope with 20x achromatic objective (NA=0.4) and

slowly dying HeLa cell samples. The individual red, green and blue color channels

are displayed, along with their color composite image, showing little phase contrast,

and the quantitative phase map recovered is shown on the right-hand side.

Measured performance times are given in Fig. 7-15. The GPU time is the total

time spent by the GPU and host computer when calculating phase from a single input

image and is the minimum time required per input frame. GPU time is linear with the
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Figure 7-14: Snapshot from real-time reconstruction. Contrast was adjusted for dis-
play.

number of pixels and includes fixed overhead from FFT computations. The overhead

becomes marginally more significant with faster frame rates, decreasing the relative

performance of the GPU - with the GPU falling behind the camera at approximately

2000 fps.
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Figure 7-15: GPU performance. (a) Computation time vs. number of pixels in image,
(b) GPU speed/camera read-in speed vs. framerate.

7.7 Discussion

We have proposed and demonstrated a new method for high-resolution, in-focus phase

imaging that is simple, inexpensive, accurate and only camera-limited in terms of

speed. The method benefits from all the advantages of a partially coherent system,

namely the potential for diffraction-limited resolution, simple experimental setup, and

scalability. The single-shot nature of the technique eliminates hardware misalignment

between images and motion artifacts, and there is no specialty hardware to be pur-

chased. In developing this technique, we have explored a new way to look at chromatic
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dispersion in imaging systems and described how to use it to gain phase information,

rather than treating it purely as aberration. This allows use of inexpensive lenses

that are not corrected for chromatic aberration.
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Chapter 8

Quantitative phase imaging in a

Volume Holographic Microscope

8.1 Introduction

In this chapter, a method for quantitative phase imaging in a Volume Holographic

Microscope (VHM) from a single exposure is demonstrated. The VHM system uses

a multiplexed volume hologram (VH) to simultaneously collect images from different

focal planes. This 3D intensity information is then used to solve the TIE and recover

phase quantitatively [220].

8.2 Volume Holographic Microscopy

Volume Holographic Microscopy (VHM) [88, 221] is a technique for imaging 3D in-

tensity information on a 2D camera. It is a versatile tool for real-time spatial and

spectral filtering, allowing three-dimensional imaging which, when combined with

confocal techniques, obtains depth-sectioned images without scanning [222]. Given

the large range of applications in biological imaging, where objects of interest are of-

ten transparent or semi-transparent, it is desired to obtain phase contrast within the

VHM system. VHM under coherent illumination will have a very narrow field of view;

thus, interferometric techniques are not suitable. Knife-edge methods have been im-
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plemented recently as a non-quantitative means of phase contrast in the VHM [223].

Here, we describe how to use the TIE imaging technique [63] to quantitatively recover

the phase from VHM images, without hardware modification.

Volume holograms (VHs) [224] are recorded in PQ-PMMA with multiple refer-

ence beams at slightly different angles, or at different wavelengths [225]. When the

VH is illuminated by partially coherent light, Bragg matching ensures that only the

light originating from certain depth slices are passed through the VH filter, and each

diffracts to a different angle. Thus, multiple depth slices are imaged simultaneously

on one camera plane, laterally separated from each other. The number of depth slices

is given by the number of multiplexed gratings recorded, and the bandwidth of the

illumination determines the lateral width of each slice. A detailed description can be

found in Barbastathis [226].

When a thin phase object, such as a biological sample, is placed centered in

the system's entrance pupil plane, the resulting VHM image contains a through-focus

stack of intensity images, obtained in a single shot. This 3D intensity information can

then be used with phase retrieval algorithms to recover quantitative phase information

as described below. The phase retrieval algorithm used here is the Transport of

Intensity (TIE) technique.

In a similar method, quadratically distorted thin gratings (i.e. Raman-Nath

regime) were used to obtain two images at different depths in a single shot [227]. These

images were later input to phase diversity techniques for wavefront sensing [228].

Much work has been done to extend these results to more efficient gratings [229] and

broadband light [230]. However, a Raman-Nath grating quickly loses efficiency and

suffers severe crosstalk as more gratings are multiplexed into the hologram. VHM, in

contrast, operates in the Bragg regime enjoying two benefits: high efficiency [231] and

multiplexing with minimal crosstalk [232, 233, 234]. Chapter 5 described a method

for using more than two depth slices of intensity to improve the accuracy of phase

recovery. Thin gratings will be limited by crosstalk in the number of depth slices that

can be multiplexed and the degradation due to crosstalk, where VHs can record as

many depth slices as will fit on the camera, enabling improved phase imaging.
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8.3 The VHM system

The VHM system geometry is shown in Fig. 8-1, for the case of a VH with two mul-

tiplexed holographic gratings. Illumination is provided by a white light source with

notch filter of bandwidth 40nm centered at 532nm. By using broadband illumination

with sharp-edged notch filters, crosstalk between depth slices can be minimized (as

compared to LED illumination) while still obtaining a large lateral field of view with

flat illumination across each slice.

The object to be imaged is placed in the system in transmission mode, and the

VH is located in the Fourier plane of a 4f imaging system. Each multiplexed grating

within the hologram is Bragg matched to a different depth within the object and

diffracts to a different carrier spatial frequency, which gets projected to a different

location on the camera by the collector lens [235].

z
Z

MO
Notch
flter

White light
source lns

+-+ planle
dz VH

Figure 8-1: Schematic of a VHM system. The VH is located on the Fourier plane of
the 4f system, and each multiplexed grating acts as a spatial-spectral filter to simul-
taneously project images from different depths on a CCD camera, laterally separated.
MO is microscope objective.

According to coupled mode theory [231], a grating recorded at one wavelength can

be Bragg matched at another wavelength by using a different reconstruction angle.

The propagation vectors of the incident (ki) and diffracted (kd) beams at the Bragg

condition are related by the K-vector closure relation,
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k 1 - kd,1 = ki2- kd,2 = K, (8.1)

where k =1 = = , k 2 = = , K is the grating vector, n is

the refractive index of the recording material, and A is wavelength in free space (see

Fig. 8-2).

K

(a) (b)

Figure 8-2: (a) Bragg circle diagram (b) Geometry
grating (image courtesy of Yuan Luo).

analysis of a volume holographic

The relationship between the mismatch in the illumination angle (dO) and wave-

length (dA) is given by

80 K
BA 47rn sin(a - 0)

(8.2)

where a is the angle of the grating vector with respect to the normal to the record-

ing material surface, and 0 -is the reconstruction beam angle, as shown in Fig. 8-2.

Equation 8.2 shows that incident beams with different wavelengths can be recon-

structed using plane-wave illumination at their respective incident beam angles. Thus,

lateral information about the object can also be obtained with a broadband source,

and the bandwidth determines the field of view.

8.4 TIE in the VHM

The depth-slices must first be extracted from the VHM image which contains one

depth slice sub-image for each multiplexed grating. The VHM image is bit-wise di-
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vided by the background image (i.e. the input field without an object) to normalize

the intensity values and account for non-uniform illumination. Where the background

image is dark, a division-by-zero instability occurs; thus, a small regularization pa-

rameter is used. Once the depth slices have been intensity normalized and cropped

from the VHM image, they are laterally registered to each other using a modified

cross-correlation algorithm that accounts for opposite phase contrast. Finally, the

axial intensity derivative is computed using the depth slices, which is then used to

solve for phase via the TIE (Eq. 4.1). One advantage of capturing all the images at

once is that object motion between images is not detrimental, and large data sets can

be captured simultaneously.

8.5 Experimental results

Experiments were conducted in a transmission VHM system (built by Yuan Luo),

with two gratings multiplexed in a single VH. Illumination was provided by a colli-

mated Tungsten-Halogen white light source with a bandpass filter centered at 650mn

and having a bandwidth of 40nm. A 50x objective lens (NA=0.65) and a Mitutuyo

collection lens formed the 4f system, and images were captured on a monochrome

CCD array. To test the phase retrieval accuracy, a known test object was fabricated

by electron beam etching of PMMA and placed at the object plane of the 4f sys-

tem such that it was halfway between the two multiplexed axial focal planes of the

VHM. Figure 8-3(a) shows the captured image using the test object, where the two

bright bands correspond to two multiplexed depth slices having an axial separation

of 50p-m. The two sub-images are oppositely defocused. Figures 8-3(b,c) are the

extracted registered depth sections after background normalization, and Fig. 8-3(d)

shows the resulting retrieved phase.

The result verifies that the recovered phase is quantitatively accurate. The weak

low-pass filter effect is a consequence of the relatively large Az between the two depth

slices. This can be avoided by using a VH that has been recorded with an optimized

axial depth slice separation for the object under test.
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Figure 8-3: Phase recovery from a VHM image. (a) Image captured by the camera.
(b,c) Extracted background normalized sub-images, over and under-focused by the
same amount. (d) Recovered height.

As a comparison, we imaged the object under similar conditions, but with two

separate images between which the object was axially translated by 50pm. These

two images were then used to obtain phase information according to traditional TIE

imaging. The resulting phase image is compared to that obtained from a single image

using our technique in Fig. 8-4, using an onion skin as the phase object.

1

05

0

-0.5

TIE VHM-TIE

Figure 8-4: Comparison of phase recovery methods with an onion skin object. (a)
Phase from traditional TIE method (Az = 50pm), (b) phase from a single-shot VHM
system (radians).
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8.6 Discussion

We have demonstrated an extension to the VHM system which allows quantitative

phase measurement without hardware modification and from a single-shot. The tech-

nique is a promising add-on modality for real-time capture of phase information in

a VHM. Furthermore, it opens the door to exploration of fast dynamics with thick

phase objects. Future work will include use of VHs with more multiplexed gratings

and higher order correction of the nonlinearity in the phase result. Further, 3D imag-

ing with the TIE is an interesting possibility, but has important limitations [187]. 2D

phase results from thick weakly scattering objects can be predicted when the defocus

distance is on the order of the depth of field and the object is only a few times thicker

than the depth of field [236]. If sectioned intensity information can be obtained by

a VHM, the opportunity for single-shot 3D phase information without tomography

would be a very interesting possible extension of this technique; however, more work

is needed to explore this potential.
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Chapter 9

Conclusions and future work

This thesis has explored new methods of computational imaging for phase recovery.

It was demonstrated that phase tomography can be modified for smooth diffusion

distributions to detect and localize large changes in water content in operating fuel

cell membranes from very few angles. This system has many other applications in

large-scale density measurements, such as temperature or humidity distributions in

air. By using temporal unwrapping and very fast sensors, such as line scan sensors,

the system would be able to recover large phase gradients from long optical path

lengths, making it suitable for such large-scale measurements of dynamic refractive

index changes. For the fuel cell application, the next steps are to build a feedback

system to correct for water content disturbances. Greater accuracy and detail could

be achieved by more sophisticated post-processing and compression techniques could

reduce large data sets. As it is, the system is suitable for laboratory studies of

operating fuel cells and could be developed to for use in field studies where space is

not a constraint and environmental conditions can be controlled. Still, work should

be done to reduce the complexity of the system setup. For example, TIE techniques

could be investigated for application to the fuel cell membrane measurements.

Higher order axial intensity derivatives were shown to help in recovering accurate

phase information from stacks of defocused images, by modifying the TIE technique.

This method is practical and should help in improving results for all forms of TIE

imaging, particularly where small Az steps are difficult to accomplish and the linearity
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assumption is difficult to meet. When noise corrupts the images, however, the Kalman

filtering technique will offer better performance, and is a promising technique for

versatile new applications in recovering phase from stacks of noisy images. Further

work is needed in assessing the performance of the technique and computing the

error bounds. The Kalman filter is highly computational and will benefit from new

methods for compression and intelligent data processing with large state vectors, much

of which can be found in the literature of control theory. Furthermore, the Kalman

filter offers an intuitive way for extending this technique to situations where the 'noise'

is not shot noise in the image, but due to scattering media between the object and

the camera. This would be done by including 'process noise' in the derivation of

the Kalman filter and statistically modeling the scattering process. Furthermore, we

point out that the propagation transfer function in the Kalman filter need not be

linear homogeneous propagation, and simple adaptations could lead to complex-field

estimation as the light propagates through nonlinear or arbitrary refractive index

media. Since it is a recursive technique, the Kalman filter could be extended to make

adaptive measurements, in which the complex-field is estimated and the optimal

transfer function is imposed on the system before the next measurement is taken,

achieving the best possible accuracy from intensity measurements.

The work of Chapter 7 demonstrates real-time phase recovery in a white light

microscope and should have further applications in imaging of fast-moving cellular

dynamics and biological samples in a microfluidic channel, an important field in live

cell biological imaging [23]. Adaptive optics (AO), in particular, requires fast cal-

culation of the phase map, and often employs matrix solutions to the phase from

low-resolution Shack-Hartmann sensors. The speed and spatial resolution (which are

related) of Schack-Hartmann sensors is currently sufficient for today's AO systems

because the adaptive mirrors used for correction are currently of low spatial resolution

(the largest currently available is 32 x 32 actuators). However, MEMS-based adaptive

mirrors offer great promise for scalability, and when these devices reach large actuator

counts, speed and resolution of the wavefront sensor will become more important. TIE

is currently under investigation as an adaptive optics correction method [237], and is
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the basis for the curvature sensing method [238, 239]. Our method for phase recovery

still has limitations imposed by using color as a free parameter for obtaining phase.

Namely, object wavelength-dependent dispersion and absorption are neglected, and

will cause problems when they are significant. More work must be done to study

these limitations and possible corrections for them. One attractive application is the

use of this technique for large-scale density measurements, such as temperature dis-

tributions in air. There could be great experimental advantages in being able to use

partially coherent illuminations and capture large changes in density in a single-shot,

without the need for phase unwrapping or a separate reference beam.

The work in Chapter 8 can accurately reconstruct 2D complex-field objects from

their 3D intensity information obtained in a VHM. Current extensions include the

application to color-coded VHM and a more thorough characterization of the holo-

gram in use for digital post-processing correction of fabrication errors. In the case of

optically sectioned intensity images, there remains the the very interesting question

of 3D phase information and whether it is possible to compute accurately the 3D

complex-field of thick objects without tomography. If methods for accurate 3D imag-

ing could be developed in the VHM, it could provide an elegant method of single-shot

3D imaging of phase and amplitude.

127



128



Appendix A

Derivation of Poynting vector

S cx IV LO(x, y)

The term inside the brackets of Eq. 4.1, IV 1 #(x, y), can be thought of as the local

Poynting vector. Here, we derive this relationship from Maxwell's equations in a

source-free region. Thus, the TIE is a local conservation of energy within a homo-

geneous media, which directly follows from Maxwell's equations. Start with a plane

wave traveling predominantly in the direction, E = A(x, y)e(xsY), where A is

amplitude and #(x, y) is phase.

We use Maxwell's equations in source-free regions in free space [240] with the

constitutive relations D = coE and B = poH:

V x =co-Eat
V X -po0H (A.1)

VE0

V H=0,

where co = 8.85 x 10-1 farad/m and so = 47r x 10-7 henry/m are, respectively,

the permittivity and the permeability of free space. Assuming time harmonic fields,
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let - - -+ iw to get:at

-iwpuH =V x E = eo(y)

--* e-i(Y') H AH = xA
Zimp Bay

OA
Oy+ AiaYp Y)

Ai#x, y))

-Q A + Ai 0 X '' (A.2)ax Ox]

(A.3)
- O A.# 1(x, y)

Ox ax)

Using the definition of the Poynting vector, S = E x H*, and substituting in

Eq. A.3 and E, we get:

= eAe(xY) i(x,y) (A - AiaB(x,y)
to \W, ax axM (A.4)

AiaB(XY

-i^ B A + 8_A A)+A2 a4(x,y) +9a(,y)
opt Br ax y ) p + 8 x + B y

= n (iAViA + IVi#i(x, y)).

Therefore, the time-average Poynting vector power density is,

(S) = -Re
2 1 [IVi#(xy)]

2wp

(A.5)

(A.6)

and the proof is complete.
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Appendix B

Wave-optical derivation of Higher

Order TIE

We provide here an alternative derivation of the higher order TIE technique described

in Ch. 5. The derivation follows a similar path as the wave-optical derivation of

traditional TIE given in Beleggia [169]. Here we show only the ID version for clarity,

where the 2D extension is straightforward.

The key to the derivation is a Taylor expansion of the Fresnel operator H(x; z, A)

in the Fourier Domain:

2 (7r Az) 2 u4
H(u; z, A) = 1izu = 1 - iirA zu2 2 .. (B.1)

where u is the spatial frequency variable, A is the spectrally-weighted mean wave-

length of illumination, and z is the propagation distance. In the traditional TIE

derivation, only the first two terms are kept (i.e. linearization with respect to z). For

higher order TIE, we keep more than the linear terms. Here, we derive 2nd order TIE

as an example.

We use @4(x) = AeWx) to represent the wave-field or complex object transmittance

function to be recovered, with I (u) = FV) being its Fourier Transform. The measured

intensity, I(x; z, A), of a wave-field propagated by z is therefore:
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= |f{W(u)H(u;z,A)} 12

= 7 {(u) (1 - i7rAzu 2 (- AZ) 2u4

2

2

then, using i27u -+ V, we get:

(A z 2V)
47

A2z2 740(X)
32-r2

=-()() - [( )*) @(x)

A2z2

32r2 V4(x)*) (x) - (V4 (

-18 [( V4@(x)*)

2

- (V 20(X)) (X)*]

) (x)* + 2V20(x)V2V(X)*

V 2V)(X) _ (V40(X)) V 20(x)* + ...

In the case of 2nd order, this expression simplifies after some algebra to:

BI(x)
Bz

A~Z192 1(X)

2 6z 2 ...
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