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Abstract

Protein materials such as spider silk can be exceptionally strong, and they can stretch
tremendously before failure. Notably, silks are made entirely of proteins, which owe
their structure and stability to weak molecular interactions, in particular, hydrogen
bonds (H-bonds). Beta-structures, a class of protein folds that employ dense arrays
of H-bonds, are universal in strong protein materials such as silks, amyloids, muscle
fibers and virulence factors. The biological recipe for creating strong, tough materials
from weak bonds, however, has so far remained a secret. In this dissertation, size,
geometry and deformation rate dependent properties of beta-structures are investi-
gated, in order to provide a link between the nanostructure and mechanics of protein
materials at multiple length scales. Large-scale molecular dynamics (MD) simula-
tions show that beta-structures reinforce protein materials such as silk by forming
H-bonded crystalline regions that cross-link polypeptide chains. A key finding is that
superior strength and toughness can only be achieved if the size of the beta-sheet
crystals is reduced to a few nanometers. Upon confinement into orderly nanocrystals,
H-bond arrays achieve a strong character through cooperation under uniform shear
deformation. Moreover, the size-dependent emergence of a molecular stick-slip fail-
ure mechanism enhances toughness of the material. Based on replica-exchange MD
simulations, the first representative atomistic model for spider silk is proposed. The
computational, bottom-up approach predicts a multi-phase material with beta-sheet
nanocrystals dispersed within semi-amorphous domains, where the large-deformation
and failure of silk is governed by the beta-structures. These findings explain a wide
range of observations from single molecule experiments on proteins, as well as char-
acterization studies on silks. Results illustrate how nano-scale confinement of weak
bond clusters may lead to strong, tough polymer materials that self-assemble from
common, simple building blocks.

Thesis Supervisor: Markus J. Buehler
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Background

Natural and biological phenomena are among the key driving forces of engineering

practice, as they not only inspire the design of man-made systems, but also continu-

ously test their function during service. For example, flight, inspired by bird locomo-

tion, enabled mankind to defy gravity and explore far reaches of space, only through

designs that can stand the the worst natural hazards, including weather storms, ra-

diation and vast temperature as well as pressure variations. This is perhaps the most

well-known example of biomimetics, the study of nature and biology for transferring

ideas to engineering. In this regard, the practice of making and using natural mate-

rials for improving the human condition dates back to early ages, starting with the

use of readily available resources such as stone, wood and bone. Most strikingly, the

rate with which we develop new materials has grown tremendously over centuries.

Just within the past few decades, many key technological advancements have been

pioneered using new materials and material design strategies. Composites have rev-

olutionized aviation and space exploration, polymers have prolonged life expectancy

through their use in armor technology and medicine, and silicon has transformed our

world by facilitating the information technology revolution. The race to develop ma-

terials that can surpass those readily found in nature, however, has lead to massive use

of resources and unsustainable practices. New developments in materials science and

engineering will have to acknowledge this need to return to environmentally friendly

practices [7].



Following Feynman's famous address [79] in 1959 entitled "There is plenty of room

at the bottom", referring to intriguing physical phenomena at the nano-scale, current

trends in developing new materials rely heavily on fabricating systems at exceedingly

smaller length scales through nanotechnology, reaching the limit of what can even

be detected or observed with the most sophisticated characterization tools available.

Controlling matter at the nano-scale in a bottom-up scheme has many advantages

compared with classical top-down approaches. Key phenomena that cannot be antici-

pated through continuum predictions can be investigated and exploited at the atomic

scale with nano-scale engineering. Most importantly, biological materials form in this

bottom-up fashion, for instance through self-assembly, and have superior properties

compared with common engineered materials [7, 42, 84, 245]. A key issue that needs

to be resolved for truly mastering biomimetics is understanding the role of hierar-

chies that extend from nano to macro in structural biological materials, and how this

translates into enhanced physical properties that we seek and want to improve.

Most of the structural materials in biology employ proteins as a key building

block, and most proteins are made from only a handful of the 20 common amino

acids that define all life forms on our planet. The genius in biology is, therefore, not

in the diversity of the building blocks, but rather in the complexity of their struc-

tural arrangement. Examples for such structural ingenuity include protein materials

such as spider silk, hair, connective tissue (skin, cartilage, tendon) and cells [245].

All of these materials have appealing properties such as very high extensibility and

fracture toughness, making them suitable for their functions requiring flexibility and

mutability [232, 93]. Proteins also serve as templates for biomineralized composites

employing inorganic materials, and thereby lead to a whole different class of materi-

als such as abalone shell, lobster cuticle and bone [231, 27]. This different material

design strategy leads to lower deformation capacity as required by their function but

very high strength and toughness. The fundamental understanding of self-assembly

(association) and failure (dissociation) of protein materials at the level of chemical

bonds is very important for transferring key biological material design concepts into

engineering solutions [41, 42].



In order to address the need for understanding mechanics of protein materials, this

thesis focuses on one of the most common topological features in structural protein

materials called beta-structures. These structures are common to silks, muscle fibers,

as well as tough pathological fibrils known as amyloids. The aim is to investigate how

the size and geometry of beta-structures in protein materials, for instance in spider

silk, influence their mechanical properties such as strength and toughness. The work

focuses on nano-scale behavior, but also discusses the impact of variations in the

nanostructure on macro-scale behavior for these materials. The results presented

in this thesis are based entirely on computational and theoretical approaches, and

all findings are extensively compared with experimental data available to provide

validation and support to the hypotheses presented in this work.

1.1 Physical concepts of failure at different length

scales

Failure and deformation of engineering materials has been studied extensively and

has changed our world by enabling the design of complex structures and advanced

devices. Compared with the current understanding of the behavior of engineered

materials, the fundamental physics of many biological phenomena continue to pose

substantial challenges with respect to model building, experimental studies, and sim-

ulation. Because of our lacking ability to engineer biological materials, we remain

hindered in our capacity to mass produce and utilize these materials for daily life

applications, through consumer products, medical devices and large-scale systems in

aerospace, defense and building technologies. The hierarchical bottom-up design ap-

proach in biology, from the level of genes (DNA), to proteins, to tissues, organs and

organisms, originates at the molecular scale and requires a bottom-up description

from a fundamental perspective. For this reason, approaches rooted in physics that

consider the structure-process-property paradigm of materials science are a powerful

means to investigate the properties of biological materials.



This thesis focuses on discussing the origin and mechanisms of materials failure, in

the context of biological materials consisting of protein building blocks. The starting

point for discussing failure in materials is coming up with a rigorous definition for

failure. Simply put, failure occurs when an engineered or natural component suddenly

loses its capacity to provide the service it was originally designed for, rendering it

either impossible or risky to use. The key factor here is that this loss is often sudden

yet significant, and that it occurs during the expected lifetime of the component.

With regards to this simple explanation, failure in structural materials and structures

occurs when the load bearing capacity of the designed system is significantly reduced

or completely lost due to a sudden, generally unforeseen development. In the case of

natural or biological systems, the definition remains the same, and is characterized by

a sudden loss of function. This could be or instance the sudden rupture and slipping

of the tectonic plates in an earthquake, which affects the ground's ability to provide

stable foundation for the built environment. An excerpt from Darwin's The Voyage

of the Beagle, describing an earthquake he experienced in Chile, illustrates how we

perceive the failure of the earth's crust:

"A bad earthquake at once destroys our oldest associations: the earth,

the very emblem of solidity, has moved beneath our feet like a thin crust

over a fluid; - one second of time has created in the mind a strange idea

of insecurity, which hours of reflection would not have produced".

In a simple view of failure, there are typically two aspects to the problem, the

designed material system and service conditions (for example, mechanical loads).

Materials deform when they are subjected to loads, this may or may not be observ-

able by the naked eye but is definitely observable in the microscopic world, as the

molecular bonds stretch, rotate and shear, which provides the basis for a material's

ability to change its shape. When the loads exceed a certain limit, bonds begin to

rupture, initiating the atomistic mechanism for failure. Depending on the properties

of interatomic bonds and the structure of the material at the nanoscale, failure will

occur through a variety of atomistic mechanisms, leading to for instance brittle or



ductile failure, or very slow failure as observed in creep and fatigue. Once the govern-

ing unit processes such as cracks, dislocations, diffusional mass transport, molecular

unwinding or sliding propagate through the material, they become observable at the

macro-scale and lead to failure of a larger component in the system, for instance a

beam in the case of a building collapse, bone in case of an injury, or the breakdown

of cells in genetic disease.

It is quite interesting from a historical perspective to consider how the field of

fracture and failure evolved since the earliest scientific works in the field, particularly

in the context of size-effects. While the foundation of the field is attributed to the

work of Griffith [95] and Irwin [114] in developing analytical methods for studying

fracture of solids, many other historical notables have shown interest in the field,

such as Leonardo da Vinci, who studied scaling of the failure strength of iron wires

as a function of their length and flaw presence [252]. Although his study was not

definitive due to the making and quality of the wires at that time, he was way ahead

of his time in his insight to hypothesize an inverse proportionality of length and

strength, such that shorter wires are stronger for a given thickness [10]. Galileo

Galilei also studied the strength of wires as a function of thickness, and applied the

same concept to testing of marble columns to conclude that the strength depends on

the cross-sectional area of the column yet not on the length, thereby providing the

intellectual basis for the concept of stress, defined as force per unit area. Mariotte,

a court engineer at the time of Louis XIV of France developed the concept of failure

strain to describe fracture strength of pressurized vessels, and also realized that larger

structures are likely to fail more easily due to the increased probability of having a

weakened zone. Some of these ideas were extended after the Industrial Revolution,

but no significant scientific development was achieved until Griffith proposed that the

physical basis for strength limit of materials is governed by flaws in the materials,

such as voids and cracks and other structural imperfections [95].

Following this breakthrough, the 20th century marked the rapid development of

the field of fracture mechanics, where the analytical treatment of how glass, ceramics,

metals, polymers, thin films and most recently, biological materials and tissues was



developed. The most recent expansion of the concepts of fracture models towards

biological materials and biological systems still bases on the fundamental concept

that flaws in the material ultimately control their overall strength; and the question

of how biological systems are capable of tolerating and healing such flaws has received

particular interest from the physics community [86]. A failure of a biological organism

to function is often related to a catastrophic response of a system to existing or newly

emerging flaws, such as genetic mutations, protein misfolding or the production of

foreign material in tissues.

As pointed out before, identifying properties of materials is only half of the task;

predicting service conditions is an equally demanding undertaking. Many of the

colossal failures in engineering practice or in medicine are rooted in extreme load-

ing conditions or a combination of factors (where each of which alone would not be

catastrophic) that were not anticipated in the design process or under typical evo-

lutionary constraints. Examples of such failures are many, and they have shaped

our understanding of materials design for increasingly safer practices and have driven

our scientific curiosity to elucidate the physical principles of life. The wind induced

collapse of the Tacoma Narrows Bridge, or massive seismic activities such as the

Northridge earthquake in California provided us with clues about how dynamic na-

ture of loading can lead to unforeseen failures in large structures. Brittle fracture

of the Liberty Ships during World War II illustrated how low temperatures in cold

climates can literally cause ships to snap like matchsticks. Fatigue induced failure

of the Comet airplanes, and later the Aloha Airlines Boeing 737 jets illustrated the

importance of corrosion and cyclic loading due to pressure changes. Failure of tissues

and organs in genetic or infectious disease are other vivid examples that illustrate

the great significance of failure in the context of life sciences, with severe impacts on

our very human existence. The central modern day challenges involve understand-

ing failure across a vast range length and time scales; encompassing materials that

will last for years in the harsh, unearthly conditions of the far reaches of space, or

on the quite contrary, within the smallest scales of human physiology as part of an

effort to develop "invisible" implants that will monitor, regulate and repair biological



processes at molecular precision.

The framework of understanding failure provides us with the foundation to ask

fundamental questions about the multi-scale behavior of materials under extreme

loading conditions and varying external constraints. One of the long-term goals of

this research field is to develop a new engineering paradigm that encompasses the

seamless analysis and design of structures and materials, starting from the molecular

level. The work that roots in first addressing fundamental concepts of materials and

structures may lead to the development of a new set of tools that can be applied,

together with advanced synthesis methods, to select, design, and produce a new

class of materials, similar to the approaches used today in computer aided design of

buildings, cars and machines, but now applied to engineer the fundamental molecular

makeup of materials.

Now that we have established a basic layman's definition of failure, the next

step is to come up with a rigorous physical explanation for how materials break.

The key challenge here is that clearly, not all materials are the same; glass breaks

differently than a metallic paper clip, and that is different than how a muscle tear in an

injury takes place. A technical definition of materials failure requires understanding

different failure modes, which may be activated under a variety of different boundary

conditions, and most importantly, by the multi-scale makeup of the material that

controls the most fundamental unit mechanisms of failure. For all these phenomena,

a consideration of physical processes at multiple time- and length-scales is essential

in order to develop rigorous models of failure.

The most fundamental source of the difference in materials behavior lies at the

atomistic scale, essentially controlled by the atomic interactions. Typically, materials

feature different types of chemical bonds, which lead to significantly variant nanos-

tructures that influence macroscale properties. In the case of glass, we observe that

fracture occurs suddenly and propagates through the specimen at extremely high

speeds (close to the order of sound speeds on the order of several km/sec). However,

it is extremely tough to break a metallic paper clip by trying to pull it apart, and

certainly, the same type of rapid fracture as observed in glass is not found. Yet, if the



Undeformed Stretching=store elastic energy Release elastic energy
dissipated into breaking
chemical bonds

Figure 1-1: Multi-scale mechanisms of failure. (a) Multiscale view of failure of glass, from
macro to nano. (b) Fracture can be envisioned as dissipation of elastic (reversible) energy.
This basic view of fracture holds for a very broad range of failure phenomena, from failure of
the Earth during earthquakes, failure of engineering materials, to failure of proteins. Figure
adapted from Ref. [28, 41].

material microstructure is altered by for instance bending a paper clip it repetitively,

it can eventually be broken with less effort. Muscle fibers on the other hand are ex-

tremely efficient in carrying loads repeatedly, but stretching them beyond their limits

may lead to sudden tearing of fibers, resulting in injury. Mechanical deformation of

biological tissues (e.g. blood vessels) is a natural cue that initiates the formation of

this very tissue through a process called angiogenesis (growth of new blood vessels)

[256]; however, changes in the material structure due to the buildup of calcium de-

posits and a heightened blood pressure might lead to catastrophic failure, causing

heart attack and stroke. So what leads to these rather distinct material phenom-

ena, and how can we formulate a fundamental physical model to predict the onset of

materials failure?

At a fundamental level, fracture of a material due to mechanical deformation

can be understood as dissipation of elastic energy into breaking of chemical bonds

and heat. This concept can be exemplified by envisioning an elastic material such

as a rubber band; by stretching it, elastic energy is stored inside the material. At

........ .... ............ ................



the moment of fracture, this elastic energy is dissipated, where most of the energy

goes into breaking or tearing of molecules and atomic bonds and into heating up the

sample. Whereas the storing of elastic energy is a process associated with the length

scales of a macroscopic specimen, the tearing of molecular bonds typically happens

at molecular and submolecular levels. This intimate connection of small and large is

a universal hallmark of fracture, and the development of appropriate models provides

the basis for exciting intellectual challenges and opportunities. Figure 1-1 illustrates

the basic process of fracture, including a schematic multi-scale view of failure of

glass (for which crack extension via repeated breaking of interatomic bonds is a unit

mechanism of fracture), as well as the mechanism of dissipation of energy during the

basic unit event of fracture.

1.2 Chemistry and hierarchical structure of pro-

tein materials

Proteins are the essential building blocks of living matter on Earth. Protein synthe-

sis occurs in the cell based on segments of a DNA code which defines the primary

structure of a protein given as a sequence of amino acids. A schematic describing

this process is shown in Figure 1-2. Amino acids typically have a polar backbone and

sidechains that can be charged, polar or hydrophobic. The linear primary structure

of a protein occurs through covalent peptide bonds that link amino acids. Through

weak interactions such as hydrophobic effects, van der Waals interactions and hydro-

gen bonding, proteins in the physiology create folds and filamentous structures that

carry out physiological functions. Tightly folded structures called globular proteins

have a wide range of functions, for instance as enzymes that control reactions or recep-

tors that control cell signaling and communication. Distinct from globular proteins,

fibrous proteins are large assemblies of polypeptide chains play mostly structural and

mechanical functions [120]. Many biological structural materials, including cell cy-

toskeleton, tendon, hair, nail, hoof and spider silk employ largely fibrous proteins that



have unique thermal and mechanical properties. Structure and mechanics of these

materials are largely controlled by the weak interactions at nano-scale, in particular,

hydrogen bonds.

Combination
of3DNA
letters equals

ACGT - a amino acid

Four letter E.g.: Proline - .. - Proline - Serine -

code "DNA" CCT, CCC, Proline - Alanine -

OCA, CCG Sequence of amino acids
Transcription- polypeptide Folding

translation (1D structure) (3D structure)

Figure 1-2: Figure illustrates how proteins are synthesized in biological systems based on
sequence information encoded in the DNA. A series of letter codes (nucleotides) is trans-
lated into the polypeptide sequence, which folds into complex three-dimensional geometries.
Three DNA letters correspond to a specific amino acid building block (further information,
see e.g. Ref. [4]). Figure reprinted from Ref. [42].

The behavior of materials, in particular their mechanical properties, are intimately

linked to the atomic microstructure of the material. Whereas crystalline materials

show mechanisms such as dislocation spreading or crack extension [22, 107, 57], bio-

logical materials feature molecular unfolding or sliding, with a particular significance

of rupture of chemical bonds such as hydrogen bonds, covalent cross-links or inter-

molecular entanglement. Other mechanisms operate at larger length scales, where

the interaction of extracellular materials with cells and of cells with one another, dif-

ferent tissue types and the influence of tissue remodeling become more evident. The

dominating mechanism emerges as a result of geometrical parameters, the chemical

nature of the molecular interactions, as well as the structural arrangement of the pro-

tein elementary building blocks, across many hierarchical scales, from nano to macro.

Table 1.1 provides examples of the strength of key chemical bonds found in biological

systems.

Overall, a major trait of virtually all biological materials is the occurrence of hier-

archies (Figure 1-3) and, at the molecular scale, the abundance of weak interactions.

..........



Bond Type Bond Strength (kcal/mol)
C C (Covalent) 195
C = C (Covalent) 146

C - C (Covalent) 83
S - S (Covalent) 51
-COO- .. . +H3N- (Ionic) 21

H2 0 ... H2 0 (H-bond) 5
-CH 3 ... H3 C- (London dispersion forces) 0.07

Table 1.1: Strength of chemical bonds in biology (Data summarized from Ref. [152, 246]).

The presence of hierarchies in biological materials may be vital to take advantage

of molecular and sub-molecular features, often characterized by weak interactions,

and multiply their properties so that they become visible at larger scales, in order to

provide a link between structural organization and function [82]. Utilization of weak

interactions to produce strong materials at moderate temperatures, and thus with

limited energy use, is very appealing for sustainable engineering practice, however,

the means to achieve this has so far remained elusive. Another important distinction

between traditional and biological materials is the geometrical occurrence of defects.

While defects are often distributed randomly over the volume in crystalline materials,

biological materials consist of an ordered arrangement of structure that reaches down

to the nano-scale. In many biological materials, defects are controlled with atomistic

or molecular precision, and their arrangement may play a major role in the material

behavior observed at larger scales. These features have been observed in bone, nacre,

collagenous tissue or cellular protein networks, among others [84, 30, 29].

The mechanical properties of biological materials have wide ranging implications

for biology. In cells for instance, mechanical sensation is used to transmit signals from

the environment to the cell nucleus or to control tissue formation and regeneration

[71]. The structural integrity and shape of cells is controlled by the cell's cytoskeleton,

which resembles an interplay of complex protein structures and signaling cascades

arranged in a hierarchical fashion [4, 109]. Bone and collagen, providing structure

to our body, or spider silk, used for prey procurement, are examples of materials

that have incredible elasticity, strength and robustness unmatched by many synthetic
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Figure 1-3: Overview of different material scales, from nano to macro, here exemplified
for collagenous tissue [30, 39, 42, 84, 89]. Biological protein materials such as collagen, skin,
bone, spider silk or cytoskeletal networks in cells feature complex, hierarchical structures.
The macroscopic mechanical material behavior is controlled by the interplay of properties
throughout various scales. In order to understand deformation and fracture mechanisms,
it is crucial to elucidate atomistic and molecular mechanisms at each scale and how they
interact. Figure reprinted from Ref. [42].

materials [187, 138, 139, 36, 39, 229, 67, 83]. Molecular precision in the bottom-up

hierarchical synthesis is believed to be the source of the exceptional properties of

these materials.

Promising strategies for probing biological materials at the nano-scale can be

currently developed by combining experiment and simulation concurrently. State-of-

the-art of materials modeling at multiple length scales has reached an unprecedented

level of sophistication both in computation and instrumentation, as evident from the

arsenal of techniques shown in Figure 1-4. Development and utilization of Atomic

Force Microscope (AFM)[186], optical tweezers [62, 229, 46, 16] or nanoindentation

[8, 70, 231] to analyze biological materials, in conjunction with advanced quantum me-

chanical (QM), molecular dynamics (MD) and finite element method (FEM) methods

will lead to the development of superior materials through an improved understand-

ing of the influence of nano-scale on the macro-scale. It is therefore reasonable to say

that modeling and simulation has evolved from explaining experimental observations

............. .I
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Figure 1-4: Coupling of different computational and experimental tools can be used to
traverse throughout a wide range of length- and time-scales. Such methods enable to pro-
vide a fundamental insight into physical phenomena, across various time- and length-scales.
Handshaking between different methods enables one to transport information from one scale
to another, either hierarchically or concurrently. Eventually, results of atomistic, molecu-
lar or mesoscale simulation may feed into constitutive equations or continuum models.
Experimental techniques such as atomic force microscope (AFM), molecular force spec-
troscopy (MFS), nanoindentation or optical tweezers (OT) now overlap into atomistic and
molecular approaches, enabling the direct comparison of experiment and simulation. High-
resolution structure prediction methods such as nuclear magnetic resonance (NMR) and
X-ray diffraction (XRD) provide atomistic models which can be investigated and refined
further with molecular dynamics (MD), coarse-grained (CG) models and the finite element
method (FEM). Methods used in this thesis (MD,CG) are highlighted.



into predictive tools that complement experimental analyses (see Figure 1-4).

The characterization of material properties for biological protein materials may

play a crucial role in better understanding diseases. Injuries and genetic diseases are

often caused by structural changes in protein materials, resulting in failure of the

material's intended function. In this sense, material properties play an essential role

in biological systems, and the current paradigm of focusing on biochemistry alone

as the cause of diseases is insufficient. It is envisioned that the long-term potential

impact of this work can be used to predict diseases in the context of diagnostic tools by

measuring material properties rather than focusing on symptomatic chemical readings

alone. Such approaches have been successfully explored for example for cancer and

malaria [60, 230]. A recent development of potentially great impact is the application

of nano-scale characterization and simulation tools to investigate amyloids, which are

tough protein beta-structures associated with neurodegenerative diseases [58, 112,

120, 124, 140, 176, 177, 210, 250]. Insight gained from these studies can aid the

development of novel detection methods and treatment strategies for some of the

related diseases.

1.3 Outline

The scope of this thesis is the investigation of the size-dependent mechanical proper-

ties of beta-structures in protein materials, focusing on applications in silks, amyloids

and beta-solenoid structures observed in virulence factors. All of these protein mate-

rials feature exceptional mechanical properties that have been linked to the existence

of beta-structures in the material, however, no systematic study has focused on assess-

ing geometry, size and rate dependence of the beta-topologies in a variety of systems.

Addressing this issue by laying out a theoretical and computational framework for

studying beta-structures is the fundamental goal of this thesis.

The content is arranged as follows: Chapter 2 outlines briefly methods used for

studying biological materials, focusing mostly on the approaches used in this the-

sis; Chapter 3 summarizes the development of a generic fracture strength model for



protein materials, with the scope of assessing the size-dependent rupture strength of

hydrogen bond assemblies; Chapter 4 reports one of the first studies on the com-

pressive strength of proteins, particularly focusing on the mechanics of beta-solenoid

protein nanotubes such as the cell-puncture needle of bacteriophage T4 virus; Chap-

ters 5 summarizes findings on the size-dependent strength and toughness of beta-sheet

nanocrystals in silks and other protein materials; Chapter 6 reviews modeling efforts

in understanding the molecular structure and mechanics of spider dragline silk, the

toughest material known. Chapter 7 provides a outlook for anticipated applications

of protein based materials, lays out recommendations for areas that require future

research, and concludes with a discussion of the importance of size-effects in protein

materials.
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Chapter 2

Methodology

In this Chapter, a brief review of the methods used in analyzing the nanomechan-

ics of biological molecules is provided. Along with theoretical methods, atomistic

and molecular simulation approaches are reviewed, focusing on molecular dynamics

simulation, a selection of force fields, coarse-graining methods, treatment of solvent

and enhanced sampling techniques. Experimental techniques that complement and

validate this work are briefly summarized for the reader's convenience.

2.1 Atomistic and molecular modeling

This section overviews atomistic and molecular modeling approaches used in this

thesis. Particular emphasis is given to molecular dynamics method and its variants.

A discussion of force fields, solvation models as well as enhanced sampling techniques

relevant to biomolecular simulations is provided.

2.1.1 Classical molecular dynamics formulation

Molecular dynamics (MD) is a tool for elucidating motion of atoms and molecules

at the nano-scale. The MD method is capable of describing atomistic mechanisms

that control many physical phenomena, in particular those related to the mechanics

of materials. An interesting example is fracture, where simulations can reveal, both



quantitatively and visually, the atomistic mechanisms that control deformation and

rupture of chemical bonds at the onset of failure at the nano-scale [243, 199, 42, 31,

40, 38, 34, 35, 28].

The basic idea behind atomistic simulation using MD is to compute the dynam-

ical trajectory of each atom in the material, by considering their atomic interaction

potentials, by solving each atom's equation of motion according to F = ma, leading

to positions ri(t), velocities vi(t) and accelerations a (t). The numerical integration

of Newton's law by considering proper interatomic potentials to obtain interatomic

forces enables one to simulate a large ensemble of atoms that represents a larger ma-

terial volume, albeit typically limited to several nanoseconds of time scale. The basic

concept of molecular dynamics is shown in Figure 2-1(a,b).

(a) Point representation

XXr(t) v(t)

(b) ****g Energystretching

repulsion r

bending 
r

41", , attaction
rotation

Figure 2-1: Model of the individual energy contributions due to bond stretching, bond
bending, bond rotation as well as electrostatic and vdW interactions. The combination
of these terms constitutes the entire energy landscape of interatomic and intermolecular
interactions. Figure reprinted from Ref. [41].

Classical molecular dynamics generates the trajectories of a large number of par-

ticles, interacting with a specific interatomic potential. Thereby, the complex 3D

structure of an atom (composed of electrons and a core of neutrons and protons) is
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approximated by a point particle, as shown in Figure 2-1(b)). Molecular dynamics

is an alternative approach to methods like Monte-Carlo, with the distinction that

MD provides full dynamical information and deterministic trajectories. It should be

emphasized that Monte-Carlo schemes provide certain advantages as well; however,

this point will not be discussed further here as all simulation studies presented here

are carried out with a MD approach. The total energy of the system is written as the

sum of kinetic energy (K) and potential energy (U),

E=K+U (2.1)

where the kinetic energy is

N

K = m( v , (2.2)
j=1

and the potential energy is a function of the atomic coordinates rj,

U = U(rj), (2.3)

with a properly defined potential energy surface U(rj). The numerical problem to be

solved is a system of coupled second order nonlinear differential equations:

m dt2 = -VrjU(r) j = 1..N, (2.4)

which can only be solved numerically for more than two particles, N > 2. Typically,

MD is based on updating schemes that yield new positions from the old positions,

velocities and the current accelerations of particles. In the commonly used Verlet

scheme, this can be mathematically formulated as

ri(to + At) = -ri(to - At) + 2ri(to)At + ai(to) (At)2 + O((At)4) (2.5)

The forces and accelerations are related by ai = fi/m. The forces are obtained from

the potential energy surface - sometimes also called force field - as



d2r-
F=mdt 2  -Vr U(rj) j = 1..N. (2.6)

This technique can also be used for not only single atoms but also groups of atoms

as in the case of coarse-grained meso-scale approaches. The basis of simulations is

simply Newton's law and a definition of how atoms interact with each other. The

availability of interatomic potentials for a specific material (based on the characteristic

type of chemical bonding) is often a limiting factor for the applicability of the MD

method. Provided interatomic potentials are available, MD is capable of directly

simulating a variety of very complex physical phenomena, including self-assembly of

polymers, diffusion, fracture, as well as protein folding, unfolding and aggregation.

Unlike many continuum mechanics approaches, atomistic techniques require no

a priori assumption on the defect dynamics or elastic properties, such as isotropy.

Once the atomic interactions are chosen, the complete material behavior is deter-

mined. Choosing appropriate models for interatomic interactions provides a rather

challenging and crucial step that remains subject of a very active discussion in the sci-

entific community. A variety of different interatomic potentials are used in the studies

of biological materials at different scales, and different types of protein structures re-

quire the use of different atomistic models. A drawback of atomistic simulations is

the difficulty of analyzing results and the large computational resources necessary

to perform the simulations. Due to computational limitations, MD simulations are

restricted with respect to the time scales that can be reached, limiting overall time

spans in such studies to tens of nanoseconds, or in very long simulation studies to

fractions of microseconds. Therefore, many MD simulations on stretching proteins

and crystalline materials have been carried out at large deformation rates, exceeding

several m/sec.

Recent advances in computational power now enables the simulation of billions of

particles in MD simulations, reaching dimensions on the order of micrometers. Figure

2-2 depicts the historical development of computational power.

The goal of Sections 2.1 and 2.2 is to provide a brief overview of popular in-
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Figure 2-2: Development of computing power over the past decades. The development
illustrates the emergence of petaflop computers in the next few years. The plot also sum-
marizes the number of atoms that can be treated with these computing systems; these
numbers are developed for simple interatomic potentials with short cutoffs. For CHARMM
or ReaxFF potentials, the number of atoms is significantly smaller. Figure reprinted from
"Atomistic Modeling of Materials Failure", Copyright 2008, with permission from Springer
[28].

teratomic force fields and modeling approaches suitable for simulating the behavior

of protein structures. For additional information, the reader may refer to extensive

review articles, in particular regarding force field models [249, 159, 206, 63].

2.1.2 Force fields

All-atom force fields are used in molecular dynamics simulations of biological materials

at the nanoscale. Among all force field approaches, all-atom potentials are considered

to be highly accurate and computationally efficient way of studying dynamics of

macromolecules. A wide range of force fields and simulation programs are currently

available, most notably AMBER [179], CHARMM force fields and programs [25,

160], OPLS force field [118], GROMOS/GROMACS packages are commonly used in

.... ........ ................. .

Computing power "Petaflop" conuters



all-atom molecular dynamics [242], NAMD program [169, 182] which can carry out

computations using CHARMM and other force fields. For the sake of brevity, the

main aspects of the CHARMM force field and its implementation in NAMD will be

discussed here; the basic concepts of the MD technique and force field formulations

are common to all packages used in the field (for a general review, see for instance

[159, 183].

The CHARMM force field is widely used in the protein and biophysics community,

and provides a reasonable description of the behavior of proteins. The parameters in

force fields are often determined from more accurate, quantum chemical simulation

models by using the concept of force field training [92]. Parameters for the CHARMM

force field have been meticulously optimized and revised over the years taking into

consideration a wide variety of input including ab initio results, experimental crystal

structures and geometries, as well as vibrational spectra [160].

The potential includes bonding and non-bonding (interaction) terms to describe

short and long-range forces between particles. In the CHARMM model, the math-

ematical formulation for the empirical energy function that contains terms for both

internal and external interactions has the form:

U(R) = Ebonds Kb(b - bo) 2 + ZUB KUB(S - SO) 2 + Zange KO(O - 00)2+

Edihedrals KX(1 + cos(nX - 6)) + Zimpropers Kimp(q - 0)2+ (2.7)

E Rmin(ij) 12 _ Rmin(ij) )6 ]+_i
Znonbond rij rij rij

where the constants after summation are bond, Urey-Bradley, angle, dihedral angle,

and improper dihedral angle force constants, respectively; and are terms in paran-

theses are the bond length, Urey-Bradley 1,3-distance, bond angle, dihedral angle,

and improper torsion angle, respectively, with the subscript zero representing the

equilibrium positions for the individual terms. Figure 2-1 shows a schematic of the

individual energy contributions listed in eq. (2.7).

The Coulomb and Lennard-Jones 6-12 terms constitute the external or nonbonded



interactions; characterized by the Lennard-Jones well depth and the distance at the

Lennard-Jones minimum, the partial atomic charge, the effective dielectric constant,

and the distance between atoms i and j. In CHARMM, no additional terms are used

for hydrogen bonds, the charge and LJ components were verified to be adequate for

describing protein, solvent and interface hydrogen bonding. In all-atom force fields,

water molecules are generally also treated explicitly. Parameters of the force field

generally are specified considering a specific water model (e.g. TIP3P dimer model

for CHARMM) [160, 159].

The CHARMM force field belongs to a class of models with similar descriptions

of the interatomic forces; other models include the DREIDING force field [164], the

UFF force field [190] or the AMBER model [249, 179]. In CHARMM and other clas-

sical force fields, bonded terms are modeled with harmonic springs or its variations,

and therefore can't be modified or broken once defined by the connectivity input

obtain from the topology of the molecule. Further, the atom charges are fixed and

cannot change during simulation. These simplifications improve the simulation speed

drastically and are not a major issue for most simulations studying conformation of

proteins under ambient physiological conditions. On the other hand, simulations in

extreme conditions such as mechanical perturbations (e.g. protein unfolding studies)

or harsh chemical environments require reactive force fields that can take into account

changes in fixed charges of the molecules, formation and breaking of bonds, as well

as variations in bond order.

Several flavors of reactive potentials have been proposed in recent years [21,

223, 69]. Reactive potentials can overcome the limitations of empirical force fields

and enable large-scale simulations of thousands of atoms with quantum mechan-

ics accuracy. The reactive potentials, originally only developed for hydrocarbons,

have been extended recently to cover a wide range of materials, including met-

als, semiconductors and organic chemistry in biological systems such as proteins

[33, 35, 50, 51, 52, 69, 222, 221].

While the reactive force fields show promise for capturing intricate chemical details

of materials at extreme conditions [51], they are also more expensive computation-



ally and require time to perfect for each application. The parameters developed for

some the most common elements such as C,H,O,N,S have been tested extensively in

many different benchmark studies, however, applications to material systems require

training a new set of parameters through extensive quantum simulations. As with

other methods bridging the quantum to nano-scale systems, the ideal solution de-

pends critically on the application. Typically, after careful consideration of the size

of the system and phenomena of interest, most QM/MM strategies developed are a

compromise between fully quantum and fully classical treatment, providing adequate

sampling time and chemical information.

2.1.3 Coarse-grained modeling approaches for protein struc-

tures

Although a very accurate description of macromolecules, all-atom modeling approaches

have historically been prohibitively extensive when large systems and long simulation

times must be considered. This lead to the development of coarse-grained models

[237] (Figure 2-3), which provide simplified representations of macromolecules em-

ploying less degrees of freedom and simple bonded and non-bonded interactions that

can be rapidly calculated in each time step. Coarse-grained models have so far been

successfully applied to a wide range of problems including protein folding, allostery,

aggregation, molecular biomechanics as well as multi-scale description of complex

materials such as bone. The various approaches are briefly reviewed here.

Single bead models are perhaps the earliest approach taken for studying macro-

molecules. The term single-bead derives from the idea of using single beads (masses)

for describing each amino acid in a protein structure. Elastic Network Model (ENM)

[236], Gaussian Network Model (GNM) [99] and Go-model [104] are well-known ex-

amples of this simplistic approach.

Simple models such as ENM and Go-like models treat each amino acid as a single

bead located at the Ca position, with mass equal to the mass of the amino acid. The

beads are interconnected by harmonic or nonlinear springs representing the covalently
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Figure 2-3: Overview over various coarse-graining techniques [237] . The figure illustrates
commonly used coarse-graining applications in biomolecular simulations. A schematic rep-
resentation of the model, indicative number of parameters, methods of solution, main char-
acteristics and applications are shown. Axes indicate increasing complexity of the models
in parameterization and molecular representations. Figure reprinted from "Current Opin-
ions in Structural Biology", "Coarse-grained models for proteins", Vol. 15, pp. 144-150,
Copyright 2005, with permission from Elsevier [237].

bonded protein backbone. In the Go-like models, an additional Lennard-Jones term

is included in the potential to describe short-range non-bonded native interactions

between atoms within a cutoff distance. Despite their simplicity, these models have

been extremely successful in explaining thermal fluctuations of proteins [237] and have

also been implemented to the unfolding problem to elucidate experimental results

[251, 226, 65]. A more recent direction is coupling of ENM models with finite element

frameworks for mechanistic studies on protein structures and assemblies [9].

Due their simplicity, single-bead models have several shortcomings. With clas-

sic ENM, only harmonic deviations from the initial configuration are possible. In

................. ...................... ........... .. _- - ...... ....... .



the Go-model, native interaction definitions lead to a minimally frustrated landscape

which his highly biased towards the input configuration of the molecule; such mod-

els therefore cannot predict folding/unfolding intermediates and meta-stable states.

Explicit treatment of protein-solvent interactions, non-native interactions and hydro-

gen bonds is also not possible with single-bead models. For unfolding, results are

only qualitative at best, although revealing important aspects of topology dependent

mechanical resistance [251, 226].

Using more than one bead per amino acid can lead to more detailed descriptions

of macromolecules. In the simplest case, addition of another bead can be used to

describe specific side-chain interactions [6]. Four to six bead models capture even

higher amount of detail by explicit or united atom description for backbone carbon

atoms, sidechains, carboxyl and amino groups of amino acids. A great example of this

approach is the coarse-grained models developed for studying folding and aggregation

in proteins using discontinuous molecular dynamics [171, 170].

Although multi-bead models have superior qualities compared to single-bead de-

scriptions, dozens of additional energetic terms involving pseudobonds and other

means to avoid complex dihedral/improper potentials that stabilize the conforma-

tion of the polypeptide chain have to be introduced for generic models (see Figure

2-3). Even with the introduction of these terms, some of which are physically not

as intuitive, the models offer limited applicability, as specific side chain interactions

are only valid for simple residues such as glycine and alanine. More complex yet

fast to compute potentials that intrinsically take into account sequence specificity are

extremely challenging to develop, making readily available all-atom descriptions and

simulation packages more favorable for most applications.

More recently, coarser-level modeling approaches have been applied to model

biomolecular systems at larger time and length scales. These models typically employ

superatom descriptions that treat clusters of amino acids as beads. The elasticity of

the polypeptide chain is captured by simple harmonic bond and terms. This view-

point of hierarchical multi-scale modeling can be computationally very efficient, and

capture shape dependent mechanical phenomena in large biomolecular structures [5]



and can also be applied to collagen fibrils in connective tissue as well as mineralized

composites such as nascent bone [27]. An alternative approach to hierarchical multi-

scale approaches is the use of concurrent molecular dynamics simulation methods,

where a different level of detail can be employed in different regions of the system

studied and computations are carried out simultaneously, with information exchange

between the coarser and finer descriptions[153, 32].

2.1.4 Treatment of solvent: Implicit vs. Explicit

Historically, there has been two main directions of thought in modeling solvent in

proteins and polymers. Most biomolecular simulations have either an explicit or im-

plicit treatment of solvent around the molecule, as performing simulations in vacuum

generally leads to inaccurate results, since the molecular friction, hydrophobic effects

and dielectric screening properties of the solvent are not captured. In the explicit

solvent approach, each water molecule is treated individually in the simulation. The

molecular forces and solvent dynamics are computed on each of these molecules as

they are done on the solute. As a result of including most of the details of water

in the simulation, explicit solvent approaches are considered to be the most truthful

to experimental data. In the implicit solvent approach, the overall effect of water

with respect to the conformation of the molecule is taken into consideration. Instead

of extensive dynamics calculations on the solute, these models carry out theoretical

calculations on the behavior of solvent around the solute as a continuum, and com-

pute forces and energies accordingly. Since water and pH = 7 is the most common

physiological solvent conditions, the focus here is on the models developed for this

general purpose.

Several molecular models have been developed for explicit water. Most approaches

take the molecule as rigid, and consider only non-bonded interactions such as elec-

trostatics (Coulomb's law), dispersion and repulsion forces, typically described with

a 12-6 Lennard jones potential (see eq. (2.7)). Three-site models such as SPC and

TIP3P, with interactions on the 2 H and 0 atoms of the molecule, are the most com-

monly used approaches. Models such as TIP3P have been implemented with small



modifications for their use with empirical protein force fields such as CHARMM [160].

Higher accuracy models, based on a larger number of interactions sites (e.g. TIP4P,

TIP5P) have also been proposed [118, 161]. While these are still in the testing stages,

TIP4P has gained acceptance in applications with CHARMM as it provides an im-

provement over TIP3P and is only approximately 7% slower [15]. The extent of the

implementation of these water models varies greatly based on the MD engine and

protein force field used, and transferring water among different force fields requires

extensive testing and careful consideration. All explicit solvent simulations in this

thesis were carried out using TIP3P solvent model with CHARMM22 all-atom force

field [160].

Despite the increase in accuracy, explicit treatment of water brings with itself sig-

nificant challenges. Explicit treatment of water is a severe obstacle against scaling up

in biological simulations, since a large water box or water sphere needs to be used to

keep the protein within a periodic boundary. In many cases, majority of the compu-

tational effort goes into simulating motion of the solvent, whereas typically the solute

is of more interest. This makes the explicit calculations very prohibitively expensive

for large-scale simulations. Another consideration is the difficulty of the calculation

of the solvation energy and free energies of folding (AG) from explicit solvent MD

simulations, whereas this is readily available with implicit solvent methods.

This has lead to the development of implicit solvent models, which treat water

as a continuum and calculate its effective influence on the solute. In certain cases,

implicit solvent techniques can be as fast as 50% slower than simulations done in

vacuum, which are generally hundreds of times faster than explicit solvent runs.

EEF1 effective energy model [147] is one of the fastest solvent models; it uses a

Gaussian based solvent exclusion model in combination with a modified CHARMM19

polar hydrogen energy function. This model used in Chapter 6 to sample amorphous

structures taken by spider silk protein segments. Other methods take into account free

energy of solvation by calculating the accessible surface area of the protein, which can

capture more accurate solvent physics, but are computationally much more expensive.

Such methods can be used in combination with the generalized Born (GB) formulation



(numerical approximation to the exact Poisson-Boltzmann equation that is solved in a

continuum electrostatic model) to accurately capture the electrostatic and non-polar

effects of water on folding mechanisms on proteins [49]. Viscosity of water molecules

can also be implemented in simulation by using Langevin dynamics with a friction

coefficient. Recent developments in analytical treatment of solvent have rendered

implicit solvation a reasonable alternative to explicit treatment of water. For more

information on mathematical basis and details of different solvent models, the reader

may refer to the more comprehensive reviews in this field [48, 183, 202].

2.2 Sampling and force manipulation methods

Due to the short time scale of MD simulations and the challenges in observing rare

events such as folding, unfolding and structural transitions, many different methods

have been developed to speed up the sampling rate of MD simulations. Here we

discuss methods to assess how protein structures react to external mechanical pertur-

bations, focusing on steered molecular dynamics and constant force methods. This is

followed by a brief overview of advanced sampling methods, focusing on replica ex-

change molecular dynamics approach implemented here and discussed in more detail

in Chapter 6.

2.2.1 Steered molecular dynamics

Application of mechanical forces to biomolecules is of interest to scientists and en-

gineers for several reasons. First, mechanical characterization of individual proteins

is crucial for understanding larger-scale behavior of many fibrous materials, such as

collagen, titin, spider silk or intermediate filaments in the cell. Second, rare events

such as unfolding or structural transitions are often cued by mechanical forces in the

cell or extra-cellular matrix (ECM), therefore single-molecule experiments and sim-

ulation allow understanding key these biophysical processes. Another key reason for

force manipulation is to probe the stability of proteins, where by applying systematic

forces, one can probe the energy landscape of the protein and thereby quantify the



thermodynamical stability of the system in a wide range of physiological conditions.

To apply forces to the molecule that induce deformation, steered molecular dynamics

(SMD) has evolved into a useful tool [154]. Steered MD is based on the concept of

adding a harmonic moving restraint to the center of mass of a group of atoms. This

leads to the addition of the following potential to the Hamiltonian of the system:

1 -,.-U(ri, r2,..., t) = 2k[vt - (R(t) - Ro) - ]2 . (2.8)

where R(t) is the position of restrained atoms at time t, Ro denotes original coor-

dinates and v and n' denote pulling velocity and pulling direction respectively. The

net force applied on the pulled atoms is F(ri, r2 , ... , t) = k(vt - R(t) - Ro) - n. By

monitoring the applied force (F) and the position of the atoms that are pulled over

the simulation time, it is possible to obtain force-versus-displacement data that can

be used to derive the mechanical properties such as bending stiffness or the Young's

modulus (or other mechanical properties). SMD studies are typically carried out with

a spring constant k = 10 kcal/mol/ A 2. The SMD method mimics an AFM nanome-

chanics experiment, as illustrated in Figure 2-4. Due to the time-scale limitations of

MD to several nanoseconds, there is typically a large difference in the pulling rates

and transducer stiffnesses in simulation and experiment. This requires additional

consideration in order to interpret MD results in light of experimental findings.

2.2.2 Quasi-static constant force method

An alternative approach to SMD is applying constant forces to a molecular system

and observing the fluctuations in the system as a function of time. This method

is useful when the loading conditions are complex, for instance, when the response

of a molecular assembly to a combination of shear, tensile and bending loads are of

interest.

While this is a favorable approach, there are certain differences of this technique

from SMD. First, the method is load controlled, in other words, a loading scenario

where load is increased incrementally throughout the simulation by updating forces
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Figure 2-4: Single molecule pulling experiments. Panel (a) depicts an experimental setup
based on AFM, and panel (b) depicts a steered molecular dynamics (SMD) analogue. In the
SMD approach, the end of the molecule is slowly pulled. This leads to a slowly increasing
force over the displacement, as schematically shown in subplot (c). Both approaches, AFM
and SMD lead to force-displacement information. In addition to the F(x) curve, SMD
provides detailed information about associated atomistic deformation mechanisms.

can lead to very large deformation on local bonds if the forces selected are relatively

large. Using very small forces (picoNewtons or lower if possible) and allowing the

system to equilibrate under the load in a quasi-static manner can alleviate this issue.

A second issue is that very large accelerations can be observed upon rupture of bonds

and unfolding in load controlled simulations of molecular assemblies where the failure

force is high. This may lead to unrealistic scenarios where the rebinding of molecules

or interaction with water may not be sampled due to the fast motion of the molecule.

For these scenarios, a displacement controlled approach such as SMD, or more precise

control of the force at the onset of rupture may be preferred. In scenarios where the

influence of a specific force value is of interest, for instance in computing distance of

stable transition state activated mechanically, constant force is again a very useful

method.
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2.2.3 Improving sampling: Replica exchange MD

As discussed earlier, time-scale limitations of MD arise from the necessity to use

femtosecond time-steps required for capturing the vibrations of light atoms correctly.

Since the simulation time is limited to nanoseconds, and some of the phenomena of

interest happen in the order of microseconds or higher, improving the sampling of

the equilibrium states of a molecular system is of great interest. This is particularly

important for polymers and biological systems, where the native state of the protein

requires traversing through a rough energy landscape with many local minima (Figure

2-5(a).

Many different enhanced sampling methods have been developed in the past [3,

13, 146]. The focus here is on the replica exchange molecular dynamics (REMD)

method, which is used in Chapter 6 to investigate the molecular structure of spider

dragline silk proteins. The REMD method combines the best aspects of Monte-Carlo

(MC) simulation [3] with MD to improve sampling. The basis of replica exchange

(parallel tempering) is that instead of a single simulation, M replicas are simulated,

each in the canonical ensemble, and each at a different temperature, T. In general

Ti < T2 < ... TM, where T is normally the temperature of the system of interest.

Figure 2-5(b-c) illustrates this concept. The replicas do not interact energetically.

If the probability of performing a swap move is equal for all conditions, exchanges

between ensembles i and j are accepted with the MC type probability given as

A = min(1, exp[+(0i - O3)(U(r-7 ) - U(rj)]), (2.9)

where U(ff) denotes the potential energy of the system as a function of atomic

coordinates, and #i = 1/(kBTi). Exchanges are typically attempted between systems

with adjacent temperatures, j = i + 1. In MD, one must also take into account the

momenta of all the particles in the system according to temperature. According to

the algorithm by Sugita and Okamoto, the velocities of the system are rescaled after

the exchange as
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Figure 2-5: Replica exchange molecular dynamics (REMD) method. Complex systems
such as proteins have a very rugged energy landscape that cannot be sampled efficiently
with classical MD, as shown in panel (a). Higher temperatures increase the diffusion rate of
a protein and allow overcoming larger energy barriers that cause kinetic trapping. Extensive
runs at high temperature however also introduce artifactual, non-native states, which are
eliminated in REMD through more detailed investigation at low temperatures. Panel (b)
shows the concept of replicas, where identical systems are modeled at different temperatures
(possibly starting from different initial conditions). Higher temperatures typically sample
an much greater variety of conformations, leading to a broader probability distribution of
energies as shown in panel (c). Favorable conformations that have a lower energy can be
exchanged with the adjacent lower temperature replica.
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9()new = (i)oId /Tnew/Tod (2.10)

to satisfy balance criterion of statistical mechanics [224].

REMD is considered to be an effective tool for investigating folding and aggrega-

tion of proteins, as it reduces the likelihood of kinetic trapping at non-native states

[203]. Through a fast search of the conformation space at high temperatures and more

detailed investigation at low temperatures, it allows the system to overcome energy

barriers and local minima corresponding to non-native structures [78, 189, 192, 166]

of proteins and allows identifying native protein structures from the amino acid se-

quence, with atomistic resolution. An application of this method to investigate spider

silk nanostructures can be found in Chapter 6.

2.3 Data analysis and visualization

A wide variety of scripts are commonly used for analyzing data from MD simula-

tions. Basic python and shell scripts are used to generate assemblies of structures.

For equilibration simulations, root mean square deviation (RMSD), hydrogen bond

dynamics, trajectory smoothing and distribution of strains can all be calculated by

means of .tcl scripts integrated that can be used in conjunction in VMD [111]. A

wide range of functions available in MATLAB have also been used in this thesis to

use raw data from simulations to extract material properties, displacement profiles

and strain distributions.

All scripts used in this thesis are provided in Appendix A with appropriate de-

scriptions within the script.

2.3.1 Analysis methods for simulation results

2.3.2 Visualization schemes

Visualization plays a crucial role in the analysis of MD simulation results, as the

raw data represents merely a collection of positions, velocities and accelerations as a



function of time. In particular, structural features and patterns of proteins are difficult

to analyze. To address this point, many visualization tools have been developed for

displaying protein molecules and assemblies. A rather versatile, powerful and widely

used visualization tool is the Visual Molecular Dynamics (VMD) program [111]. VMD

enables one to render complex molecular geometries using particular coloring schemes.

It also facilitates describing important structural features of proteins by using a simple

graphical representation, such as alpha-helices, or the protein's backbone. The simple

graphical representation is often referred to as cartoon model. These visualizations

are often the key to understand complex dynamical processes and mechanisms in

analyzing the motion of protein structures and protein domains, and they represent

a filter to make useful information visible and accessible for interpretation.

2.4 Experimental techniques

Recent advances in experimental techniques further facilitate analyses of ultra-small

scale material behavior. For instance, techniques such as nanoindentation, optical

tweezers, or atomic force microscopy (AFM) can provide valuable insight to ana-

lyze the molecular mechanisms in a variety of materials, including metals, ceramics

and proteins. Mechanical signature of proteins and other single biomolecules can be

obtained by AFM where the biomolecule is attached to a surface and manipulated

by a cantilever that pulls the molecule at constant force. Figure 2-4 depicts AFM

experiments on protein structures. A saw-tooth shaped force-displacement profile

is commonly observed and linked to sequential unfolding of certain domains in the

protein. Worm-like chain model (WLC) [45, 162] is frequently used to describe the

entropic elasticity of these domains. The reader may refer to articles regarding de-

tails of these experimental approaches (see, e.g. [186, 255, 227, 229, 167, 98, 62, 18]).

A selection of experimental techniques is summarized in Figure 1-4, illustrating the

overlap with multi-scale simulation methods.

An important experimental technique in conjunction with atomistic modeling of

protein materials is x-ray diffraction; results of such experiments provide the initial



atomistic and molecular structure, the starting point for all atomistic simulations.

The structure of many proteins, elucidated using such experiments, has been de-

posited in the Protein Data Bank [14].

Since recent advances in experimental methods now enable one to probe time- and

length-scales that are also directly accessible to large-scale atomistic based simulation,

the combination of experiment and simulation might lead to a particularly fruitful

interaction. This is particularly promising since the kind of information obtained

from experiment and simulation might be complementary.

2.5 Theoretical bond strength models at the atomic

level

The strength of a material is ultimately governed by the cohesive strength of the

various bonds that it employs at the atomic scale. Evaluation of bond strength is

therefore a fundamental question for materials science applications. Furthermore,

most biological systems consist of weak bonds that can break and reform at room

temperature and small forces, which plays a functional role in the structural trans-

formations of proteins, cell adhesion and motility [76, 142]. Developing quantitative

models that can predict the strength of individual bonds under mechanical, chem-

ical and thermal perturbations is therefore an issue of fundamental importance to

biophysicists, chemist and materials scientists.

One of the first atomic level models for assessing bond strength was Bell's model for

cell adhesion [12]. Bell's model is a simple and popular phenomenological model that

describes the the frequency of failure of reversible bonds. The concept of reversibility

relates to the idea that the bond is weak, and therefore can reform under thermal

fluctuations. For instance, electrostatic, van der Waals, or H-bond interactions can

be considered to be reversible bonds that can break and reform at high frequency.

The frequency of dissociation is characterized by an off-rate, scaling inversely with a

bond lifetime [126].



Bell's theory explains the force dependence of the off rate, and thus provides

an understanding of how molecular forces drive bond breaking at the nano-scale.

Bell's model builds upon the fundamental concepts of the Arrhenius equation and

transition state theory of reactions; it was also inspired by Zhurkov's work on the

kinetic fracture theory of the strength of solids [259] [1001. Bell predicted that the

off rate of a reversible bond, which is the inverse of the bond lifetime, increases when

subjected to an external force f. Indeed, the rupture of bonds occurs via thermally

assisted crossing of an activation barrier Eb which is reduced by f - Xb as the applied

force f increases, Xb being the distance between the bound state and the transition

state. Thus the Bell off rate expression is

(Eb - fx-bz\
k=wo exp - b T (2.11)

where wo is a natural vibration frequency and kB - T the thermal energy. The force

fo = Eb/xb represents the force to vanish completely the energy barrier and gives a

very rough value of the rupture force.

This conjecture was established long before single molecule experiments were per-

formed. Later, it became very successful especially to describe forced unfolding of

biological molecules. The simplicity of the model and its capacity to predict energy

barriers and rupture strength of bonds has been useful for interpreting experimental

observations. The model has also been the basis of more advanced theories regarding

the strength of single bonds and bond clusters.

Despite its success, Bell's model has several shortcomings. For instance, when

Bell's model is applied to complex problems such as protein unfolding, the multidi-

mensional nature of the energy landscape of biomolecules has to be reduced to a single

relevant reaction coordinate. The loss of information from this simplification may be

important in systems that have multiple unfolding pathways and transition states.

Another limitation is the fact that the distance to the transition state, Xb is assumed

to be constant with different rates. An extension to Bell's model based on Kramer's

theory was provided by Evans et al., in order to provide a more general expression



for the off-rate by taking into account by taking into account force dependent terms,

in particular Xb(f) [75, 165].

An important contribution of the Bell model is the prediction that the strength

of bonds depends crucially on the loading rate. A key prediction is that above a

critical loading rate, the force of rupture increases logarithmically with the loading

rate, a phenomenon observed in many experiments. The bond strength f* is defined

as the most probable rupture force and corresponds to the peak of the force density

distribution. Given that Xb, Eb and the loading rate rf = Af/At remain constant,

Bell model predicts the logarithmic dependence of strength on the loading rate:

Sln 7 Xb (2.12)
Xb kB ' T 0

where ko is the off rate in the absence of force. This expression reported in [55, 255]

is very powerful as it can directly quantify energy landscape and distance to the

transition state by using a series of rate-dependence simulations or experiment. An

extension of the Bell model has been formulated for stiff transducer systems (e.g.

MD simulations), where loading rate is characterized by the pulling velocity of the

transducer and time required to reach the transition state [1]. In this case, pulling

velocity can be written in terms of the off-rate, ko and Xb as v = ko -Xb and expression

in eq. (2.12) becomes

_kB*'T kB*'T

f = ln(v) - ln(vo) (2.13)
Xb Xb

where vO = wo - Xb - exp (-Eb/(kB - T))

Similar to the eq. (2.12), eq. (2.13) also predicts a linear relationship of the failure

force with ln(v). Figure 2-6 summarizes the concept of the effect of external force on

energy landscape and logarithmic dependence of strength.

In force probe techniques, a transducer is usually moved at constant speed relative

to a substrate in which the bond is anchored. The pulling speed v is linked to

the loading rate rf through the stiffness K of the transducer rf = K - v. Thus,

this description of rate dependence is very important because it enables to get the
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Figure 2-6: Panel (a) shows the evolution of the energy landscape of a bond subjected
to a force. The minimum corresponds to the bound state. The transition state is the peak
of the potential and corresponds to the bond rupture. The parameter Xb is the distance
between the bound state and the transition state. According Bell's theory, the rupture of
a bond occurs via thermally assisted crossing of an activation barrier Eb which is reduced
with an applied force f. Panel (b) shows the logarithmic dependence of the force on pulling
velocity. Linear fit to the f vs. ln(v) allows prediction of phenomenological parameters for
Eb and Xb from experiment or simulation.

bond constants ko and Xb from a simple linear regression on the f vs. ln(rf) curve.

This rationalizes the variation among rupture force values obtained from different

experimental and simulation techniques, where different loading rates were used. It

is typically observed however that the logarithmic dependence breaks down when

probing across many time-scales [1, 2]. An explanation can be that Xb and Eb do

not remain constant (change of mechanism, multiple energy barriers) or the elastic

behavior changes with the loading rate.

Several attempts have been made to extend the simple Bell model. For instance,

it has been shown that rebinding can have a great impact on strength [209, 208, 75].

Similar to a force dependent Xb term, the existence of a rebinding rate can alter

the logarithmic rate dependence of rupture force. In non-equilibrium pulling regime,

other models attempt also to explain non-logarithmic rate dependence [110] Moreover,
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other extensions try to implement the influence of the transducer stiffness in order to

explain the disparities in measured unbinding force among different methods [248 .

Another important concept to be included in these extensions is the energy landscape

roughness of bonds [113].

According to Bell's theory, the lifetime of an individual weak bond such as an

H-bond is very low. However, in biology, weak bonds can provide more significant

strength by forming arrangement of multiple bonds. Several attempts have been

made to study the strength of multiple parallel bonds [208, 74, 73]. These models

aim to describe the influence of various parameters on the strength. Key parameters

include the shape of the single bond potential profile, bond cluster size, rebinding

rate, the constant external force, the loading rate and the stiffness of the transducers.

Given the complexity of the structure, elasticity and energy landscape of biological

materials, perhaps hybrid approaches combining concepts from fracture mechanics,

statistical mechanics and chemistry will provide the most insight into generalized

theories of protein strength and elasticity. One good example of this approach is a

model developed for biopolymer extensibility, which combines the Worm Like Chain

(WLC) elasticity with a thermodynamic two-state model extended from Bell's theory

[193]. Similarly, combination of elastic network models with statistical theories may

also provide to be a fruitful approach [65]. A challenge that remains, however, is

to provide generic analytical theories that can explain both the elastic behavior and

rupture strength of biopolymers. Chapter 3 will focus on a recent model developed

based on fracture theory, chain elasticity, and Bell model to predict the mechanical

strength of H-bond assemblies in protein materials.



Chapter 3

Generic fracture strength model

for beta-structures in proteins

At a fundamental level, material failure is linked to how atoms and molecules detach

from each other through nanoscale processes. For instance, in order to understand

the failure mechanics of proteins and biomolecular assemblies from a physical science

perspective, we need to identify the universal and diverse features of polypeptides, and

the relative importance of these features on mechanical properties of these materials.

This calls for a simplified framework that is focused on the general rather than the

specific properties of proteins. In line with this goal, this chapter presents a generic

approach to describe failure of protein materials at the molecular level [128, 131, 129].

3.1 Mechanical significance of beta-sheet proteins

Natural fibers can match the strength of steel, as in the case of spider silk [247],

yet the chemical bonds that give rise to these properties, namely H-bonds, are al-

most one thousand times weaker than the interatomic metallic bonding. The source

of the macroscopic strength remains a mystery: The fact such strong materials can

be created using weak H-bonds is counter-intuitive and has been discussed contro-

versially. For instance, mechanical resistance of proteins has been linked to their

orientation [198, 251, 23, 94]. However, how the topology, the number of parallel



strands and their lengths influence the strength remains divisive. Most theoretical

concepts that attempt to explain the strength of spider silk and similar materials are

based on phenomenological continuum-type theories that are not directly linked to

specific atomistic and molecular processes. As a consequence, nano-scale deformation

and fracture mechanisms in silk and other beta-sheet dominated protein materials

remain unknown.

Steered molecular dynamics (SMD) simulations [155, 115, 149] have confirmed that

the mechanical resistance of beta-sheet rich proteins derive from hydrogen bonding

between beta-strands of beta-sheet structures. Mechanical resistance is highly depen-

dent on pulling geometry; the key beta-sheets must be loaded in shear, parallel to

the strand direction [198, 251, 23, 94] such that parallel hydrogen bond assemblies

in between the beta-strands cooperatively resist deformation. This loading geometry

also corresponds to physiological conditions in for instance the 127 domains in the

muscle tissue [163], and it justifies the orientation of beta-sheets predominantly along

the fiber direction in spider silk [173] (see also Figure 3-1).

The shear loading leads to stronger structures since it induces concurrent as op-

posed to sequential breaking of H-bonds. Based on this view, longer strands would

have higher mechanical strength, since more H-bonds contribute to the mechanical

resistance. In contrast, it is observed in experimental analyses of protein structures

that strand lengths do not exceed several residues (one residue equals roughly one

H-bond), or equivalently a few nanometers in virtually all beta-sheet structures cur-

rently known [180]. These short strands are typically arranged between short random

coil segments, forming a composite of H-bond networks and chains exhibiting entropic

elasticity. These structural features appear to be a universal phenomenon.

Moreover, this particular geometry is astonishing since other protein structures

such as those found in collagenous tissue [39] or cytoskeleton networks [4] display much

larger structural features, reaching 300 nm and more. However, in contrast to beta-

sheets, the intermolecular interactions in these protein materials are not primarily

based on H-bonds, but include much stronger electrostatic and covalent bonding.

This suggests that the ultra small features in beta-sheets may be related to the
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Figure 3-1: Beta-sandwich structures are a characteristic feature of mechanical proteins
that employ networks of parallel H-bonds that work cooperatively in shear. Interstrand
hydrogen bonds (thicker yellow lines) act as mechanical clamps that resist unfolding, as
shown in panel (a) (the inset shows the characteristic shear topology of 127 domain from
muscle protein titin). The single double-strand system panel (b) is taken as a model to
study the strength of beta-sheet strands.

specific properties of the H-bond networks.

Despite significant advancements in our understanding of the nanomechanics of

beta-structures in materials [195, 194, 172, 196, 198, 251, 23, 94], several key funda-

mental questions remains unanswered. Using theoretical and computationals tools,

this chapter aims to address the following points:

* Estimating the strength limit of H-bond assemblies in protein materials

* Improving current understanding of the structure-mechanics relationship of

strong beta-sheet proteins

" Understanding how the length of beta-strands in beta-sheets influences their

mechanical properties

Addressing these key issues through studies on complex protein structures is ex-

tremely difficult, due to the challenges in isolating rupture events in the unfolding
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process. For this purpose, the next section discusses atomistic results based on a sim-

ple beta-sheet model system. The structure represents a mechanical clamp as found in

beta-structured proteins. An isolated nano-scale model captures intricate key details

that govern force-induced unfolding of such systems, in particular entropic elasticity

of polypeptide chains at low force levels, and the energetics of hydrogen bonding.

These two aspects of the protein unfolding problem had been commonly addressed

separately in experimental and computational studies. The simplistic theoretical and

computational results presented here aim to capture the coupling between the elas-

ticity of protein backbone and H-bond energy release due to bond rupture during the

unfolding process.

3.2 Molecular structure of beta-sheets and atom-

istic modeling results

The beta-sheet, along with the alpha-helix, is one of the two most common types of

secondary structures that make up protein materials [246]. Typically a sheet consists

of several parallel (or anti-parallel) peptide chain segments with multiple interstrand

H-bonds that stabilize the structure. Regular structure of the sheet is extended

onto less regular loop sections and random coils that exhibit entropic elasticity under

low external force levels. Unlike alpha helices, which consist generally of a single

polypeptide chain folded onto itself in helix form by localized H-bond interactions,

beta-sheets can be formed not only by intramolecular attraction between two regions

of the same polypeptide chain but also by intermolecular forces between individual

polypeptides, serving as Nature's glue for assembling very complex nanostructures.

The complex nature of full protein domains makes it extremely difficult to find

generic, quantitative predictions of the strength of beta-sheet structures. The goal

here is to overcome this challenge by selecting a simple structural model and well-

defined loading conditions to provide crucial physical insight into the common ob-

servations made by both computational and experimental approaches in the earlier



works on beta-structures.

As a simple model representation of larger beta-sheet rich protein structures (Fig-

ure 3-2(a)), a small, full atomistic protein model embedded in explicit solvent (TIP3P

water), as shown in Figure 3-2(b) is considered here. The model contains three beta-

strands with inter-strand H-bonds, representing the beta-sheet protein motif that

forms larger protein structures as shown in Figure 3-2(a). The strands in this model

system have free chains at their extremities, representing already unfolded domains

of a macromolecule.

C

TEAR

SHEAR

Figure 3-2: Molecular structure and loading conditions, used for molecular dynamics
simulations. Beta-sandwich structures are a characteristic feature of mechanical proteins,
which employ networks of parallel H-bonds that work cooperatively in shear, like the Z1Z2-
telethonin complex in titin (shown in panel (a)). Inter-strand H-bonds (thick yellow lines)
act as mechanical clamps that resist unfolding, as shown in panel (b) for the 127 domain of
titin. A a three-strand system with free chains at the ends, as shown in panel (b) is taken
as a model to study the strength of beta- strands. Two deformation modes are studied,
in-plane shear and out-of-plane shear, which are referred to here as SHEAR and TEAR
modes, respectively (panels (c) and (d)). In the TEAR mode, the middle strand is pulled
out in the direction orthogonal to the strand direction. In the SHEAR mode, the middle
strand is pulled in the direction of the beta-strand, leading to uniform loading of H-bonds.

All-atom MD simulations were performed using segments from the crystal struc-

ture of a beta-barrel protein obtained from Protein Data Bank [14] (PDB ID 1i78).

The model three-strand beta-sheet system studied corresponds to residues 134-144

................ ............ ..... ...........



(lower strand), 161-176 (middle strand and free chain) and 203-211 (upper strand) in

the PDB file 1i78.

In MD simulations, energy minimization is carried out for 20,000 steps, which

allows for a favorable conformation to be achieved. This is followed by an equilibration

procedure, during which the molecular assembly is heated up to 300 K with a rate of

25 K every 25 steps. An NVT ensemble is employed to hold the temperature constant

at the final temperature of 300 K. Using a time step of 1 fs, each molecular assembly is

subjected to equilibration for 2 ns. The system is equilibrated while all Ca atoms on

top and bottom strands were fixed. This constitutes the boundary conditions adopted

for uniformly shearing two strands with minimal translational and rotational motion

of the molecular assembly.

To simulate forced rupture of H-bonds between the strands, the Steered Molecular

Dynamics procedure (SMD) with a constant velocity pulling scheme is used, in line

with the general description in Chapter 2. An SMD spring constant of 10 kcal/mol/A 2

is used. Pulling rates ranging from 20 m/s to 0.1 m/s are employed in this study to

estimate the energy barriers and location of the transition state for each deformation

regime. These pulling velocities are reasonable in light of previous studies [155, 87,

149] on beta-sheets. To subject the assembly to shear, the terminal Ca atom of

the middle strand free chain is pulled, while the other strands are subject to fixed

boundary conditions described in the equilibration process.

Bond dynamics analysis is done based on NAMD results and visualization schemes

using the VMD program [111]. H-bond rupture is defined to occur at an extension

of 4 A. A large sampling of trajectories (10 bond extension data points per ps) are

used to estimate rupture dynamics accurately in each deformation mode.

Maximum force for rupture is obtained from MD simulations. A moving average

is employed such that force-displacement plots employ 1 point per 1 A extension. In

tear mode, since the bond rupture events occur sequentially and a series of peaks

are observed, the mean force over all rupture events is taken as the representative

maximum force, as it is statistically more significant than the absolute maximum for

this deformation mechanism.



3.2.1 MD Simulations in tear and shear modes for a simple

beta-sheet model

As a simple model representation of larger beta-sheet rich protein structures (Fig-

ure 3-2(a)), a small, full atomistic protein domain embedded in explicit water is

considered, as shown in Figure 3-2(b). The model contains three beta-strands with

inter-strand H-bonds, representing the beta-sheet protein motif that forms larger pro-

tein structures as shown in Figure 3-2(a). The strands in this model system have free

chains at their extremities, representing unraveled protein domains. The behavior

of this protein assembly is studied by large-scale molecular dynamics (see Chapter

2 for details regarding the numerical procedure). In the analyses of the mechanical

response of this system, the center strand is pulled in different directions of loading,

while the outermost strands remain fixed.

The goal of the computational experiments is to probe the strength and rupture

mechanism of the model system in two extreme modes of deformation. In the out-of-

plane shear mode (TEAR, Figure 3-2(c)), the middle strand is pulled perpendicular to

the plane of the sheet. The computational experiment in the TEAR mode is designed

so that the H-bonds break sequentially, one-by-one. This case enables assessment of

the rupture behavior and energy landscape of individual H-bonds. The second case

considered is the the in-plane shear mode (SHEAR, Figure 3-2(d)). In this case, the

middle strand is pulled out in the axial direction of the three strands. The SHEAR

case is designed to asses the rupture behavior and the energy landscape of a large

number of H-bonds under uniform shear loading. For both deformation modes, a

systematic study of the rupture force F against pulling rate v is carried out, and

the results are plotted on a logarithmic scale over three orders of magnitude (Figure

3-3(a)). The curves obtained for each deformation mode fall on two distinct lines in

the F vs. ln(v) plane, which indicates according to Bell Model (see Chapter 2) [1]

that the unfolding event can be characterized by a two state system with a discrete

and unique energy barrier, Eb and location of the transition state, Xb [12 .

The energy barrier in the TEAR deformation mode is ETEAR = 2.83 kcal/mol. An
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analysis of the bond rupture dynamics reveals that the H-bonds break sequentially

(Figure 3-3(b)), indicating that the energy barrier to break a single H-bond in this

protein is EgB = 2.83 kcal/mol. The energy barrier in the SHEAR deformation

mode is ESHEAR - 9.64 kcal/mol, significantly larger than in the TEAR mode. The

analysis of the rupture mechanism in the SHEAR mode reveals that H-bonds break

in clusters of multiple bonds (Figure 3-3(b)).

The comparison of the energy barriers in the TEAR and SHEAR mode can reveal

how many H-bonds participate in the rupture mechanism in SHEAR loading. This is

possible because the energy barrier in the TEAR mode corresponds to rupture of indi-

vidual H-bonds. The number of H-bonds that break concertedly in the SHEAR mode

is given by the ratio of the Eb values for SHEAR and TEAR; it is EbHEAR/EEAR

3.4. This suggests that H-bonds break in clusters of 3 to 4, but not more, even when

the loading conditions (uniform shear) allow them to respond cooperatively.

The key finding from this study is that despite the presence of more than a dozen

H-bonds in the system, all loaded in uniform shear, H-bond rupture occurs in clusters

of 3-4. In terms of the energy barrier, it appears to be limited to a finite value, despite

the possibility for a manifold increase of the resulting energy barrier due to the large

number of H-bonds. An explanation to this phenomenon is provided in the next

section, where a theoretical framework of the asymptotical strength limit prediction

of hydrogen bond assemblies is presented.

3.3 A generic fracture strength model for proteins

Non-covalent bonds such as H-bonds are indispensable to biological function as they

play a key role in cell adhesion and motility, formation and stability of protein struc-

tures and nucleic acids, and receptor-ligand interactions. The weak nature of these

bonds makes it a necessity for them to work cooperatively and function in assemblies.

Strength of multiple parallel bonds has received notable interest and has been studied

both theoretically, using statistical mechanics approaches as well as experimentally

with the atomic force microscope (AFM) [75, 165, 105, 208, 73, 101, 225].



The fundamental question of strength is also linked to the protein unfolding prob-

lem, where the rupture of parallel inter-strand H-bonds controls the mechanical un-

folding pathway. Atomistic simulation [156, 149] and single-molecule force microscopy

studies [194, 195, 47] have shown that beta-sheet rich proteins exhibit higher rupture

forces, since they employ parallel strands with numerous H-bonds that act as mechan-

ical clamps under shear loading [198, 251, 23, 94]. In both experiment and simulation

of mechanically resistant proteins, maximum force peak observed is linked to an in-

dividual event corresponding to the unraveling of a single beta-sheet in the protein.

The dependence on pulling velocity has also been widely discussed in the literature

[1, 219] and explains the discrepancy of force values between MD simulations and ex-

perimental methods, the former employing fast and the latter near equilibrium pulling

rates. It is astonishing to see that regardless of the variation in topology and size

of structures studied, almost all so called 'mechanical' proteins (e.g. fibronectin and

titin domains) examined so far exhibit a rupture force of a few hundred piconewtons

(pN) at experimental pulling rates [219, 226].
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Figure 3-4: Summary of earlier studies on rupture force of beta-domains as a function
of pulling rate as reported in [128]. This figure summarizes findings (adapted from [226])
of the strength of beta-sheets rich proteins (focus on fibronectin, immunoglobulin domains
in ECM and titin). The overall behavior suggests that the rupture force asymptotically
approaches a limiting value for vanishing pulling rates (continuous line is a power law fit to
data for 127 [219]).
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Earlier experimental and simulation results are presented in Figure 3-4 where

rupture force is plotted against pulling velocity on log (v) scale. The asymptotical

limit at vanishingly slow (quasi-static) rates can be inferred from the overall behavior

as well as from the power law fit to data based on unfolding force data corresponding

to the 127 domain in titin (data obtained from references [219, 226]). This observation

suggests that without the presence of salt bridges or covalent links, the strength of

individual protein domains asymptotically approaches a limiting strength. Thus far,

no theoretical basis or prediction has been proposed for such an intrinsic strength

limit; most earlier analysis have been focused on the rate dependent behavior in

order to explain the increase in unfolding forces with increasing pulling speed (Figure

3-4). An explanation to this phenomenon can be provided by applying basic concepts

from fracture mechanics to the protein unfolding problem. To simplify the complex

unfolding problem, let's focus on a model system that consists of a single beta-sheet

strand stabilized by H-bonds, which has been identified as the mechanical clamp that

governs strength during unraveling of the protein [198, 251, 23, 94] (see Figure 3-2).

The next section focuses on developing a theoretical framework for this problem.

3.3.1 Griffith-Irwin energy balance concept and the protein

strength model

This section reviews a theoretical model based on the structure presented in Figure

3-5, consisting of a single strand with multiple peptide H-bonds and a free chain

representing unraveled protein domains. The idealized model is shown in Figure 3-

5(a), where a polypeptide chain of arbitrary length is attached to a substrate and

strained in one end with force F. This setup serves as the model to develop the

theoretical framework. As a maximum strength value that is not hindered by too

few H-bonds is sought after, let's consider an infinitely long beta-strand (that is, the

length of the strand, L, -+ oc).

Here, Griffith's theory of fracture mechanics ([95] is adopted to predict the critical

rupture force required to break the bonds in the theoretical model system (see Figure
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Figure 3-5: Schematics to explain the main concepts of the WLC-based fracture theory,
as well as the implications on the energy landscape [128, 129]. Panel (a): A single double-
strand system as a polypeptide chain of infinite length (L2 -+ oo), with a free end of length
a is considered. The polypeptide chain is stabilized by an array of parallel H-bonds, and
strained due to the external force F. At the onset of rupture (panel (b)), several H-bonds
break, and the contour length increases due to the detachment of a piece of the chain
of length dA. Panel (c): The change in the contour length and the end-to-end distance
at the onset of rupture yields two distinct WLC curves, relating to the states before and
after rupture; the area enclosed between the WLC force extension curves is equivalent to the
change in free energy before and after rupture. This dissipated (released) energy must equal
the adhesion energy per unit length at the onset of rupture. Panel (d) shows a schematic
of how the energy barrier changes from rupture of a single H-bond up until the limiting
energy barrier Eb,max, when 3-4 H-bonds rupture simultaneously. This energy barrier is the
highest energy barrier of an assembly of H-bonds under uniform loading.
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3-5(a) and (b)). The concept is based on the idea that the onset of fracture is

characterized by the condition that the change in potential energy Wp of a system

due to extension of a crack balances the energy necessary to create new surfaces.

In the Griffith theory, the negative of the expression for the potential energy

change with respect to a crack advance of one unit distance 6a is called the energy

release rate or crack driving force given as:

,G = P - .(3.1)
6a

The total potential energy in the system can be expressed as the sum of the elastic

energy stored in the material, denoted by <D, and the work done by the external load,

denoted by WF:

WP =b +WF (3.2)

The onset of fracture is characterized by the condition that the potential energy

released due to a unit crack advance 6a must equal the energy required per unit length

to create a new fracture surface. The idea that fracture surface energy, -Y, must equal

the energy release rate at the onset of fracture leads to

G - -W . (3.3)
6a

Despite being originally proposed as a continuum fracture theory, the energy bal-

ance notion relies on purely thermodynamical concepts and has been used in the past

to describe fracture phenomena at various length scales, including atomistic phenom-

ena in collagenous tissue [39].

The model system can be broken down into three components, the external force,

the peptide H-bonds, and the elasticity of the free chain that represents the back-

bone of unfolded protein domains. Since the strength at vanishing pulling rates is of

interest here (quasi-static deformation),the system is assumed to be in equilibrium

and the force is constant over infinitesimal time scales. The strength of H-bonds are

characterized by their dissociation energy, Eb.



To understand the fracture behavior of polypeptides bonded by H-bonds, one can

extend the theoretical framework laid out by Griffith and Irwin by taking into con-

sideration that at the force levels of interest, the elasticity of the protein backbone is

primarily due to entropic rather than energetic effects. The Marko-Siggia worm-like

chain (WLC) model [45, 162] is one of the most widely used expressions to predict

the entropic elasticity of polypeptide chains, and has been adopted widely as the elas-

tic description of the backbone (a wider range of earlier studies provide substantial

evidence that this model is an excellent model for the behavior of individual, un-

constrained polypeptide chains [194, 195, 80, 163, 172, 46]). According to the WLC

model, the force-extension behavior of a polypeptide chain can be given as:

k BT F x\ -2 x 1
F(x) = 1 - - + 4- -1, (3.4)

4(, A A

where (p is the persistence length, A is the contour length (length when fully-

extended), and x is the end-to-end length of the chain. While the Griffith theory

considers the change in internal energy, U of the system, in the case of entropic

elasticity, the expression sought after is related to how the free energy - rather than

the internal energy, changes as a function of crack extension. It is emphasized here

that this generalization from the internal energy to the free energy does not change the

concept behind the Griffith model and thus the Griffith model is applicable without

any further modifications.

The approach can be summarized as follows: (i) free energy is released per unit

polypeptide rupture distance is calculated (free energy release rate, it increases with

larger applied force); (ii) the critical free energy release rate is determined, such that

it is equal to the cohesion energy of a H-bond system, and then (iii) the critical force

required to initiate rupture based on this critical free energy release rate is computed.

Integration of the force-extension equation of the WLC model yields the free

energy A = U - TS at a specific deformation state. This is because the WLC

equation describes forces that arise due to changes in the entropy of the system and

is derived by calculating the change of free energy as a function of the deformation



variable, x. The potential free energy stored in the molecule of end-to-end distance

i and contour length A, subject to force F is given by the integral of the force F,

integrated from the reference point taken at zero to the end-to-end distance 2 (this is

a general expression valid for any contour length A and any end-to-end distance 1):

kBTF iV
A(,j A) = F(z;) dz = - - - + - . (3.5)o Fp 4 A 4 2A 1

Before the onset of rupture, the molecule has a free end-to-end distance of length

x1 and an initial contour length of A, and is strained by an external force, F which

remains constant at the onset of rupture. When H-bonds rupture the end-to-end

distance as well as the contour length both increase. Let's assume that a piece of the

molecule of length 6A detaches at the moment of rupture. The contour length then

changes from A, (before rupture) to A2 = A + 6A (after rupture). The change of the

end-to-end distance from x1 (before rupture) to X2 (after rupture) can be calculated

by considering that the force before and after rupture is identical. Before fracture,

kBT X -2
F1 , + 4x -1 ,(3.6)

4 pA, A,

and after rupture,

_kBT X2 X2_____
F2 =i_ +4 -1 (3.7)

4A 1+A, A) A,+ '6A

Assuming that the system is equilibrated at all times, the force remains constant

before and after fracture (F = F1 = F 2). Based on this assumption, one can equate

eqns. (3.6) and (3.7) and obtain an expression for end-to-end distance after rupture,

X2 as a function of the initial end-to-end distance, xi:

X2 = X1. (3.8)
A,

The change in end-to-end distance during rupture is



6X= A-+6A 1. (3.9)

Knowledge of these parameters now enables us now to calculate the change in free

energy (6Wp = 6<D + 6 WF) due to rupture of a piece of length 6A. Recall that the

quantity G = -Wp/A is the energy release rate. Since

4<D = A2 - A1, (3.10)

and

6 WF = -Foz, (3.11)

the net change in free energy is given by

6Wp = A 2 - A1 - F6x. (3.12)

To greatly simplify these expressions, one can introduce a deformation variable

a = x/A, which denotes the stretch level of the chain. The physical meaning of a is

the ratio of end-to-end length of the free chain to its contour length, and is defined in

the range from 0 to 1 in context of the WLC theory. The WLC expression for force

then becomes:

FWLC 1 ~ a)-2 + 4a-1) (3.13)

Similarly, AWLC = f FWLC(a)da becomes the free energy of the chain as a

function of the stretch state, based on the worm-like chain (WLC) model. Eq. (3.13)

represents a continuum approximation for the elasticity of polypeptide chains; any

other appropriate elasticity model could also be used in context of the approach

presented here. Noting that the deformation variable a remains constant as 'crack'

propagates, the free energy state function of the system can then be written as:

Wp(x, A) = AAWLC(a) - Fz - -y,(L - A). (3.14)



The condition for rupture can be found by taking the derivative of eq. (3.14) with

respect to dA; dA/dA = 0 yields the critical a value (denoted as ac,) that will enable

propagation of bond rupture under constant force. The critical value, ac,, can then

be substituted into eq. (3.13) to obtain the failure force Fe. The force extension

behavior showing energy dissipated in a unit cycle of bond rupture is given in Figure

3-5(a-c). The fracture condition can simply be given as:

G(a) = kBT [a (1 - a)- 2 - (1 - a)- 1 + 2a 2 + 1] (3.15)
4 ,

The value of G depends only on the ratio a but not on the individual values of

xi and A.This equation can immediately be used to calculate a critical condition for

initiation of failure by assuming G = y, and obtaining the value a, that satisfies this

condition. The parameter -y, is the ID analogy to cohesive energy (twice the fracture

surface energy), and is defined as:

EHYS (3.16)EX0

where EgB is the energy released by a single bond and L2,o is the average distance

between two bonds. Once the critical value, ac, is solved for, the rupture force can

be obtained as:

Fbreak(acr) = kBT [(1 - ac, 2 + 4a-1]. (3.17)
4 (,

Figure 3-5 (c) displays the process of loading the structure, the rupture event,

and the return to the initial configuration. The area between the two curves is the

dissipated free energy that is employed in the breaking of the H-bonds.

The only input parameters in this model are the persistence length (, of the

polypeptide chain, as well as the dissociation energy of a H-bond, EHIB (-y, is cal-

culated directly from E'B). EHB for peptide H-bonds is known to generally lie

in the range of 2-9 kcal/mol, whereas the persistence length has been found to be

approximately 0.4 nm for many different polypeptides and also for DNA strands

[194, 172, 46, 173, 213].



3.3.2 Prediction of maximum strength for H-bond clusters

To obtain a numerical prediction for Nr, the following parameters are chosen: T=

300 K and y, = 0.94 kcal/(mol -A) (for EHn = 2.83 kcal/mole from the TEAR mode

MD simulation), and = 0.4 nm from previous experimental studies ([194, 172, 46,

173, 213]. The equation can be solved numerically to find the parameter a = x/A, the

ratio of the end-to-end distance to contour length. It turns out that a =0.85 for the

particular value of -y, selected. This means that rupture occurs when the free chain is

stretched to 85 % of its contour length. The predicted asymptotic force limit is 127

pN. It should be noted that this value does not depend on the number of H-bonds

that participate; rather, it is an intrinsic maximum shear strength limitation.

This is the most important result of this analysis: The force Fbreak is the absolute

maximum strength that can be attained by any parallel bond arrangement, at near

equilibrium pulling rates. The rupture force Fbreak is independent of the contour

length A,, since the solution to eq. (3.15) only depends on a.

The significance of this result is evident by the comparison with experimental

and computational results of the unfolding force as a function of pulling speed, as

shown in Figure 3-4. It is apparent that the pulling speed dependence suggests that

a limiting force of approximately 100 to 300 pN is reached for vanishing pulling rates.

This observation has been noted previously in the literature; however, it has never

been explained. This work closes this gap and provides the first rigorous explanation.

These findings indicate that the key to understand this strength limitation is the

interplay between entropic elasticity and the energy of H-bond adhesion; since both

components are 'material intrinsic properties' of protein structures, the force limit

represents a universally valid value.

3.3.3 Application to double strand shear in beta-sheets

One of the underlying assumptions in the beta-sheet strength model is that the bonded

chain is fully relaxed in the context of the WLC model leading to the condition

A(x, A) = AAWLC(x/A) - F(x) - -ys(L - A). This assumption is a result of the fact



that in the first term, free energies are consistently calculated with respect to the

fully relaxed state, such that AWLC = fo FwLC(a)da. This represents a particular

case of the theory that which leads to the least number of parameters and yields the

simplest analytical formulation possible.

To extend the theory to take into account other cases, additional terms have to

be considered. In general, the attached segment of the chain would have a finite

average end-to-end distance given as sL, where 0 < s < 1 and L is the contour

length of the attached segment (see inset, Figure B-1). In addition to the terms

already present, one should also take into account the initial entropic free energy of

the bonded segment of the chain due to its partially extended configuration. Then,

the free energy state function becomes A(x, A) AAWLC(x/A) - F(x - sA) - -y,(L -

A) + (L - A)AFIX(s) where the last term AFIX = f FWLC(a)da has to be introduced

since free energy integrals are taken with respect to the zero-stretch state, whereas the

liberated segment already has a prestrech. The entropic elasticity and H-bond energy

terms contribute separately to free energy summation. If the chain is considered

fully-extended, the WLC theory cannot be used as it diverges at very high extension

levels. Quantifying the strength with assumptions on initial extension state of the

bonded chain is therefore not straightforward.

Proceeding as done previously but now with the prestretch accounted for, one can

substitute a = x/A and solve for the critical value of a that satisfies AWLC(acr) +

F(s - acr)+,ys - AFIx(s) = 0, FWLC(acr) = Fe. Provided that s is known and within

the range of values admissible to the WLC model, rupture is thermodynamically fa-

vorable. Our calculations indicate that for Eb = 4 kcal/mol , p = 0.4 nm, variations

in s in the range 0 < s < 0.6 yield results within the error range observed from the

original beta-sheet strength theory presented in Section 3.3.2.

In the case that a large prestretch is assumed in the chain (e.g. s ~ 1), the WLC

theory may not be the most suitable elasticity function as the free-energy diverges for

extended chains. This scenario, specific to beta-sheet systems, would also involve the

possibility that stick-slip motion is the governing mechanism of failure where H-bond

reforming occurs after sliding. In this case one can evaluate the critical condition as



2AWLC(a,) + F(s - 2a,) +y, - 2AFIX(s) = 0 and extrapolate results to the case with

(e.g. s ~ 1). These results, which are shown in Figure 3-6 are in excellent agreement

with our original prediction, illustrating the robustness of the main contributions of

this work. Overall, the results shown in Figure 3-6 here and also presented in Section

3.3.2 agree well with experiments (Figure 3-4) on beta-proteins.

It should be noted that the number of H-bonds present and the loading geometry

will generally affect the strength of the assembly. The predictions reported here

correspond to the maximum strength of a large cluster of H-bonds loaded uniformly,

illustrating an upper strength limit beyond the size-dependent regime.

Strength Prediction for Beta-Sheets
140

120 'V 00 0d

801 . sL0.

-*--. F (original)
a: 40ma

* F(s)

-- linear fit

0 0.2 OA 0.6 0.8 1

Figure 3-6: Strength prediction for varying values of s, including an extrapolation to
s=1 (double stranded slip case relevant to beta-sheet topologies). The linear extrapolation
is done for 0 < s < 0.8, for values admissible to the WLC model. The value for s ~ 1
approaches the prediction made by our original model (see strength predictions in Section
3.3.2). The inset shows the double strand shear condition and parameter s, defined as the
ratio of end-to-end length to contour length for the attached segment.
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3.3.4 Influence of H-bond cluster size

MD simulations on the simplistic system suggest that H-bonds exhibit limited coop-

eration under external force. The equilibrium theory presented in the previous section

complements this idea by showing that the rupture force of a beta-sheet with numer-

ous H-bonds is finite. Theoretical derivation illustrates an extreme case of infinitely

many H-bonds loaded extremely slowly and uniformly; this is essentially a scenario

that allows maximum possible cooperation of the H-bonds.

The finite strength limit indicates that indeed a limited number of H-bonds actu-

ally participate in the rupture process and contribute to strength. Calculation of the

critical number of H-bonds that break simultaneously from the strength prediction

would be of great interest as this would yield a critical length scale for beta-strands

beyond which further mechanical stability can't be achieved by additional bonds. The

goal here is to link the strength limit to the number of bonds broken at the initiation

of the rupture by using the phenomenological Bell model (see Chapter 2), in order to

provide a link between external rupture force and energy barrier to unfolding. This

idea is similar fracture process zone estimation in cracks propagating in a specimen.

Let's recall that the rupture force of the protein assembly is given as:

Fbreak - kBT [(1 - ac ) 2 + 4acr - 1- (3-18)

In order to calculate the number of H-bonds that participate in a unit fracture

event, the process at the rupture front where an unknown number of H-bonds, Ncr,

break simultaneously should be considered. The strength of this cluster of H-bonds

can be modeled by a statistical theory based on Bell's model [12]. The key parameter

is the energy barrier: The energy barrier rises Ncr-fold when Ncr H-bonds break

simultaneously. Thus the rupture force of this system is

1F 1
Flocal (Ncr) = kBTIn + E0BNdj (3.19)

xB I W

where w = 1 x 1013 s-1 (natural frequency of bond vibration), T is the characteristic

time scale for H-bond dissociation, and XB is the applied pulling distance at the



moment of bond rupture.

The parameter LB = 4 A corresponds to the distance required to pull the strand

to initiate permanent rupture of bonds based on geometric considerations. The char-

acteristic time scale T= 20 ps corresponds to the time scale at which H-bond rupture

occurs. This value is chosen according to experimental [213] and computational [1]

results, and characterizes the dynamics of H-bond rupture, which is much faster than

the loading rate in the asymptotic limit.

At the moment of rupture, the local rupture force given by eq. (3.19) must equal

the critical rupture load Fbreak, given by eq. (3.19). Setting F,"ca (Nc,) = Freak, thus

enables calculation of the number of H-bonds that break simultaneously in the unit

rupture event,

Nc= kT [(1 - ac)2 + 4ac, - 1 - In( . (3.20)

A numerical prediction for Nc, is obtained by setting T= 300 K and 7, = 0.94

kcal/mol/A 1 (for EgB = 2.83 kcal/mole from the TEAR mode MD simulation),

and (,= 0.4 nm from previous experimental studies ([194, 172, 46, 173, 213]. The

prediction of the critical number of H-bonds that break concurrently is N, = 3.1.

The corresponding predicted maximum energy barrier (see Figure 3-5(d)) for this case

is Eb,max = NcrEB = 8.77 kcal/mol, with an asymptotic strength limit (at vanishing

pulling rates) of 127 pN.

This is the most important result of this derivation: The value Eb,m, = NcEOJB

represents the highest energy barrier that can be achieved by a uniformly loaded H-

bond assembly, providing an upper limit for its strength. Moreover, the prediction for

the energy barrier is very close to what is observed in the SHEAR mode (EbHEAR_

9.64 kcal/mol ~ Eb,ma, =8.77 kcal/mol) in MD simulations. There exists an intrinsic

upper limit of 3-4 H-bonds that can break concurrently, illustrating that the conven-

tional assumption of uniform shear loading of H-bonds in beta-strand fails once the

number of H-bonds in an assembly exceeds this critical value.

The shear strength of beta-sheets can be calculated as a function of the strand



length, in the asymptotic limit (the analysis of the geometry of beta-sheets reveals

that 1 H-bond ~ 1 residue is a good approximation). The maximum rupture force of

the sheet is then given by as

Fea(N) = max(F,,," I(N), Freak), (3.21)

where N is the number of H-bonds in the assembly.

Equation (3.21), hereon abbreviated as the beta-strand strength model (BSSM),

expresses the fact that any beta-sheet that employs less than the critical number

of H-bonds Ncr, features a rupture force that is described by eq. (3.19), that is,

the strength of increases with a increasing number of participating H-bonds. If N

=Nc, the rupture force equals Feak, the asymptotic strength limit of an assembly

of H-bonds.

The shear strength equals the force required to break all of the bonds in the

strand, F,1jt(N), divided by the contact area between the strands. Here it is assumed

that the thickness T, of a beta-strand equals 5 A, and its length is given by N x L2,o.

The rupture force divided by the area NL.,oT gives the theoretical shear strength

estimate for a beta-sheet,

(3.22)omax(N) = F .(N)
NL,,oT

For short strand lengths, since the rupture force does not increase with strands

longer than the critical length scale, the shear strength of longer strands is much

lower than short ones, scaling as

(3.23)

for large N > Nc,. The implications of this result is discussed in the following

section.

0-max(N)~ ,
N



3.4 Experimental validation

3.4.1 Direct comparison with AFM experiments

The fracture model model presented in the previous section can be used to explain

the physics of bond rupture events observed in AFM or optical tweezers experiments.

Here the focus is on interpreting and explaining the characteristic rupture behavior

observed in the classical AFM study by Fernandez et al. on the titin 127 domain, with

a single set of parameters. This study considers a protein domain with two differently

sized clusters of H-bonds (cluster I with 2 H-bonds and cluster II with 6 H-bonds,

lying below and above the critical number of H-bonds, N,.) (see Figure 3-7).

a b F

127 B A
200 - Cluster I

deviation A
100 from WLC
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Extension (nm) Cluster 11
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Figure 3-7: . Example force extension profiles of beta- sandwich protein structures, as
obtained from experimental analyses (rupture marked with a cross). Force-extension profiles
of 127 domain shown in panel (a) reveal a two-step process of unfolding, corresponding to
rupture of two separate clusters of H bonds (plots redrawn based on data from Ref. [163].
The curves reveal that a single WLC model alone is not capable of describing the entire
deformation range, and that there exist a transition from one WLC curve to a second one
at a force level of approximately 110 pN.

Through a careful investigation of experimental data, Fernandez and his colleagues

identified multiple force peaks and deviations from the WLC fit [163] to the force

........... . . ........ ....



extension profiles of the 127 domains. The unfolding of a single domain of the titin

molecule occurs in a two-step process, involving first a hump barrier at which the first

cluster of H-bonds break, and secondly a maximum rupture force at which the entire

protein domain unfolds, followed by a rapid decay of the force. When the first cluster

of H-bonds is removed by a proline mutation that breaks the cluster (that is, cluster

I has zero H-bonds), the characteristic force peak and deviation of this cluster is not

observed. The geometry of 127 domain and the behavior found in experiments on

127 and 132 domains are reviewed in Figure 3-7(a-b). Since the structure of the 127

domain is well known and its mechanical response has been characterized in detail

by several AFM studies and molecular dynamics simulation (MD) [194, 156, 163]), it

is a suitable benchmarking problem for validation of the BSSM.

We apply the BSSM to the structure shown in Figure 3-7(b). H-bond dissociation

energy EHB= 5.05 kcal/mol and persistence length ( = 0.4 nm, according to the

experimental values reported for 127 in Ref. [163]. Once these two parameters are

fixed, the complete force-extension curve for this structure can be predicted with-

out any additional fitting parameters. A direct comparison of the predicted energy

barriers, strength and elasticity curve with the AFM experiment is shown in Figure

3-8(a-c). The initial loading of the entire protein domain follows a WLC-behavior

until cluster I (N = 2) breaks. Rupture occurs at 120 pN according to BSSM. This

strength prediction is based on the energy barriers predicted by the Bell model (con-

cept illustrated in Figure 3-8(a), and discussed in Chapter 2), since for this protein

domain N, = 2.41 > N = 2. This rupture force is in close agreement with the exper-

imental value of 108 pN. After rupture of cluster I, the contour length of the protein

increases by the amount of 6.6 A (corresponding to the free chain length exposed due

to the rupture of 2 H-bonds). More load can be sustained by the strongest cluster

in the protein consisting of 6 H-bonds, hence the force continues to increase on the

shifted WLC curve (due to the increased contour length) until the rupture of cluster

II, which leads to complete unraveling.

The key question to address is, how much additional force can cluster II (6 H-

bonds) resist at the point of rupture, and how this compares with cluster I (2 H-



bonds). The discussion of this issue illustrates the controversy associated with the

current understanding. If one takes the same Bell formulation as done previously for 2

H-bonds (for which a good agreement was observed between theory and experiment),

rupture should occur at 471 pN (see Figure 3-8(b)). However, the experimentally

observed value is between 190-220 pN (see Figure 3-8(b-c)), significantly lower than

this prediction, leading to a controversy in the interpretation of this phenomenon.

According to the current understanding, this inconsistency can only be addressed by

empirically selecting a second set of model parameters that describe the breaking of

cluster II.

The issue is resolved with the realization that the rupture process for cluster II is

governed by a different mechanism and must be described by the free energy release

criterion and not the Bell model. The BSSM predicts that the maximum number of

bonds that can break simultaneously for this protein domain is N,. = 2.41, suggesting

that the rupture force should saturate beyond 3 H-bonds to a value of approximately

156 pN. This finding explains the lower than expected rupture strength of cluster II,

and why the Bell model is not capable of predicting the strength of cluster II.

The theoretical framework developed here applies for near-equilibrium pulling

rates where the constant force assumption of the energy balance criterion is valid.

Although AFM experiments are carried out at relatively slow deformation rates, non-

equilibrium processes may still be significant. It is observed that the experimental

force peak of 190-220 pN for the second cluster turns out to be higher than the BSSM

prediction of 156 pN. It has been established that peak forces in experiments are highly

rate dependent [75, 165, 219, 2]. The instantaneous loading rates in the experiments

after the rupture of the first cluster may be significantly higher than equilibrium

conditions, and may provide an explanation for this discrepancy. Furthermore, the

flat transition predicted by BSSM, as a result of the assumption that the force remains

constant during H-bond rupture, has also not been observed by this experiment.

Rather, force seems to ramp up slightly at this point, indicating that indeed the

equilibrium condition has not been reached. Future AFM experiments at slower

pulling rates and higher resolution may provide better validation for the theoretical
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Figure 3-8: Comparison of the height of the overall energy barrier as a function of
the number of H bonds in a beta strand, N. Calculation of the height of the effective
energy barrier for six H bonds loaded in shear, based on experimental data, Bell theory,
BSSM, and MD simulation results are shown in panel (a). Panel (b) shows the rupture
strength of a beta-sheet (point of deviation from the WLC model), as a function of the
number of interstrand H bonds, N. While the Bell model (homogeneous shear assumption)
predicts a continuous increase in force with increasing cluster size, BSSM predicts saturation
after three H-bonds in agreement with experimental data from I27 (geometry shown in
Figure 3-7(b)). With a minimal number of constant parameters (persistence length of the
polypeptide o and H-bond dissociation energy Ehb) and structural information (H-bond
cluster size N), BSSM is able to predict the strength of different domains of a beta protein
during an unfolding experiment. The dotted circle predicts the strength according to the
Bell model; apparently it is much too large compared with the experimental observation.
Panel (c) illustrates the force-extension behavior of I27 under external loading, experimental
data [163] (inset) and direct comparison with elastic behavior predicted by BSSM theory
(blue and red curves, rupture marked by a cross ). Extension and relaxation processes
are described by the WLC equation (eq. (3.4)), and the fracture force is predicted by
Bell theory (eq. (3.19)) or for larger clusters by the Griffith energy balance condition (eq.
(3.21)).We note that the length scales in the experimental results (shown in the inset of (c))
have been normalized by the number of tandem repeats stretched experimentally, to obtain
the extension length scales corresponding to rupture of a single domain. The shaded area
corresponds to the energy dissipated by the rupture of two H bonds. Note the indication
of points A and B in this plot and in panel (b), for the geometry shown in Figure 3-7(b).
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predictions presented here. Despite the disagreement, this simple model describes the

overall force-extension behavior well.

Figure 3-8(a) summarizes the energy barrier predictions for the rupture of cluster

II based on BSSM predictions, experimental values, as well as simulation results for

a model three strand beta-sheet system [128, 131, 129]. It should be noted here

that according to BSSM model, the energy dissipated by cluster rupture (that is,

by overcoming of the energy barrier) depends on the force level and the change in

contour length of the system rather than individually on initial and final states, in

agreement with experiments [194, 172].

This comparison confirms that BSSM is capable of explaining key events in un-

folding of proteins. The only input parameters are the H-bond dissociation energy

and persistence length, which show limited variability for proteins [194, 195, 80, 172,

154, 173].

3.4.2 Comparison with proteomics data

Since the number of H-bonds in a beta-strand is proportional to the number of residues

(Lcr Nc, assuming that the H-bonds are arranged in a linear geometry as shown

in Figure 3-9 (a)), numerical prediction for Nc, leads to a critical geometric strand

length Lc,: Strands beyond L, are prone to localization of deformation and rupture

of H-bonds that reduces their efficacy, since not all of the H-bonds participate in the

rupture process and thus contribute to the strength (Figure 3-9(a)). The physical

basis for this limitation is the entropic elasticity of the protein backbone (an intrinsic

property of protein structures) as well as the characteristic energy of H-bonds (also

an intrinsic property of protein structures).

Notably, this finding explains recent proteomics data [180] obtained by analyzing

the strand lengths of a wide range of beta-sheet structures. Figure 3-9(b) illustrates

that shorter beta-strands are more prevalent [180]; strands that employ less than five

residues are most common, and the prevalence decays sharply after this point.

Further, it is found that the shear strength correlates closely to the prevalence of

the strand length (see Figure 3-9(b)). The key conclusion of this analysis is that the
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Figure 3-9: Size effects, shear strength and prevalence of strand length of beta-sheets.
Panel (a): This plot illustrates the difference of the strength of a single, long beta strand
vs. a combination of multiple small strands. In the upper plot, only H-bonds at the
boundary are being stretched and contribute to the strength. In the lower plot, all H-bonds
throughout the entire structure contribute to the strength, making the overall structure
three times stronger. Panel (b): Shear strength of beta-sheets as a function of strand
length, and prevalence of beta-sheet strand length as reported in [180]. The highest shear
resistance is found at a characteristic length scale of 3.1 residues. Beyond this length scale,
the shear strength drops rapidly. The plot of the prevalence over the strand length illustrates
that shorter beta-strands are more prevalent [180]; in particular, strands that employ less
than five residues are most common, and the prevalence decays sharply after this point.
The dotted line marks the number of H-bonds in alpha-helical protein domains, where each
convolution features 3.6 residues per turn.

evolutionary driving force for the selection of strand lengths in beta-sheet structures

may be the maximization of the mechanical (and hence, thermodynamical) stability.

This hypothesis is strongly supported by the fact that both the prevalence curve and

the shear strength show a similar behavior (Figure 3-9(b)).

The intrinsic strength limit presented here applies to individual protein domains

and can only be overcome by using structural hierarchies. Indeed, such hierarchical

structures are commonly found in many mechanically strong biological materials such

as spider silk and muscle tissue.

Moreover, the theoretical development reported here is not limited to beta-strands.

As long as the system of interest contains an assembly of H-bonds that are loaded

uniformly, the theoretical derivation reported here is valid. Therefore, this finding

also explains the characteristic structure of alpha-helical proteins, which feature 3.6

.... .... ...... ............ .. .. ........ ........ .... .... ........................ ....... .. ......... ...... .... ...... .. .. .. .. .. .. .... ....



H-bonds (assuming 1 residue ~ 1 H-bond) per turn, which are loaded in parallel

and that break concertedly (as recently shown in [1]). The characteristic number

of H-bonds per turn in AHs closely resembles the strength limit predicted by the

fracture theory. In other words, increasing the number of H-bonds per turn does

not have an effect in increasing the mechanical stability of the protein. Similarly,

beta-helix protein structures also feature a helical arrangement of ultra-short beta-

strand segments with each less than 5 H-bonds. Figure 3-10 compares characteristic

length scales observed in common protein secondary structures and the theoretical

prediction presented here.
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Figure 3-10: Characteristic dimensions of common protein secondary structures. This
figure compares the characteristic dimensions of alpha-helices, beta-sheets and beta-helices
to the strength limit. Since the theoretical derivation considers uniform deformation of
H-bonds with no particular specificity to geometry, it may also apply to other protein
structures where geometric confinement leads to higher mechanical stability. The fact that
3.6 H-Bonds per convolution exists on alpha-helices and beta-sheets on the sides of helices
occur in clusters of 4 may be indicative of such a biological concept.

The fact that the results of this model only depend on fundamental properties of

protein structures underlines the significance of the findings. The only input parame-



ters in this model are the persistence length (, of the polypeptide chain, as well as the

dissociation energy of a H-bond, EHB (-y is calculated directly from EHB). Both pa-

rameters can be determined reliably from either experiment or atomistic simulation.

The parameter EgB typically depends on the solvent, which influences the strength

of H-bonds in the system [66]. Variation of the bond strength and predicted rupture

strength can be estimated from Figure 3-11(a). Figure 3-11(b-c) suggests that the

value of N, does not change significantly with variation in the parameters ,, EgB

and T. The main conclusion of this analysis is summarized in Figure 3-11(d), which is

related to the biological material design concept outlined in this section. As a result

of utilizing weak bonds and flexible chains that behave entropically ( p in the order of

a nanometer), cooperative rupture behavior at high force can be achieved for biopoly-

meric systems. Increasing bond strength naturally increases material strength, but

reduces cooperation, leading to brittle behavior where bonds behave individually.

3.5 Discussion and conclusions

A variety of models for the fracture mechanics of ceramics and metals have been

reported over the past decades, involving detailed descriptions of dislocation and crack

extension mechanisms. However, similar advances for biological protein materials

have thus far remained elusive. The results reviewed in this section for the first

time describe a rigorous fracture mechanics approach to describe the fundamental

bond rupture events in protein materials. In analogy to dislocation nucleation and

propagation in ductile metals, the breaking of H-bonds represents a fundamental unit

mechanism of materials failure.

It has been shown that the rupture strength of H-bond assemblies is governed by

geometric confinement effects, suggesting that clusters of at most 3-4 H-bonds break

concurrently, even under uniform shear loading of a much larger number of H-bonds.

This universally valid result leads to an intrinsic strength limitation that suggests

that shorter strands with less H-bonds achieve the highest shear strength.

As reported in Figure 3-4, the prediction close to 127 pN is in excellent agreement



a 300 _44 =0.4 nm b .- 0.4 nm
-- 4 =0.8 nm 4y.-.8nm

S 250 - -, =2nm
_ 04 ag2nm

200

e 150 z 2

S 100

E501

0 2 4 6 8 10 12 0 2 4 6 8 10
Eb (kca/mol) Eb (kcallmol)

C b d chain
stiffness

6N

4 1HBb~ 

e0

4HB

104 10'T 10' 10. bond strengthf (s)

Figure 3-11: Sensitivity analysis for the critical number of H-bonds, Nc (adapted from
[129]). This plot illustrates the sensitivity of Nc, due to variations of the key physical
parameters used in the length-scale derivation. This analysis illustrates the effect of uncer-
tainties in these parameters on Nc. Panel (a): Nc is plotted as a function of Eb and (,
and it is evident that Nc ; 3 i 1 H-bonds over the domain of a range of measured values
for variations in the H-bond energy and for variations in the persistence length. Panel (b):
There is also a weak logarithmic dependence of Nc on the characteristic time of H-bond
rupture, T. The critical number of H-bonds Ncr ~ 4 ± 2 H-bonds over eight orders of mag-
nitude of time-scale (here Eb = 2.83 kcal/mol and (, = 0.4 nm), suggesting that thermal
contributions are less important due to the high energy barrier. These results illustrate
the significance and universality of this finding and support that the results obtained are
robust. Panel (d) summarizes the key concept that emerges from this analysis, weak bonds
and flexible chains lead to cooperative failure at high strength.



to a wide range of experimental data, and may explain the convergence to a finite

limiting value at small deformation speeds. The size dependence analysis becomes

of particular interest when compared with recent experimental proteomics data, sug-

gesting a correlation between the shear strength and the prevalence of beta-strand

lengths in biology (see Figure 3-9(b) and Figure 3-10). Shorter strands are more

common in nature, and they exhibit higher mechanical (and hence thermodynam-

ical) stability according to this prediction. This hypothesis is confirmed by direct

large-scale full-atomistic MD simulation studies of beta-sheet structures in explicit

solvent. It is also in agreement with experimental results that show a non-linear, di-

minishing increase of strength with increasing H-bond cluster size [163]. The finding

suggests that the intrinsic strength limitation of H-bonds is overcome by the forma-

tion of a nanocomposite structure of H-bond clusters, thereby enabling the formation

larger, much stronger beta-sheet structures. Such hierarchical features are commonly

observed in strong materials such as spider silk and muscle fibers. The results could

have interesting implications for the design mechanically robust, strong biomimetic

or peptide based self-assembled materials. The model further confirms that fracture

mechanics concepts, previously primarily applied to macroscale fracture phenomena,

can also be directly applied at nanoscale, and can be used to describe failure mecha-

nisms in protein materials. Similar approaches can be used to lay the foundation for

the development of plasticity and strength models of biological protein materials.
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Chapter 4

Nanomechanics of beta-solenoid

structures

This chapter is focused on the nanomechanical properties of #-helices, where MD tech-

nique is employed to study tensile and buckling behavior of these protein nanotube

type structures. A snapshot of the molecular structure of this protein material is

shown in Figure 4-1. The /-helix is a protein structure that has been discovered rela-

tively recently [254]. This protein structure represents a helical nanotube that consists

of beta-sheet walls. The beta-helix is considered to belong to a novel, different type of

secondary structure class called beta-solenoids. Beta-sheets and beta-solenoids make

up all beta-structured protein motifs discovered so far, and share similar chemical,

structural and mechanical properties.

Due to its recent discovery, this protein structure has not been studied as exten-

sively as a-helices or /-sheets or many other protein structures, and therefore, there

exists virtually no understanding of its mechanical behavior. Other than the work

presented here, no experimental or computational studies of the mechanics of this

protein structure have been reported up to date.

As reported in Ref. [130, 133], MD simulations that employ a fully atomistic

model with an explicit solvent, and very slow pulling rates over extraordinarily long

time-scales reaching the fraction of a micro-second (250 ns) are carried out to simu-

late the tensile deformation of this motif. This is followed by a series of compressive
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Figure 4-1: Full atomistic model (panel a): The structural coordinates of the single-beta-
helix protein are obtained from the Protein Data Bank (PDB ID lfwy) and solvated with a
skin of water. Hydrogen bonds that are oriented parallel to the helix axis and perpendicular
to the strands enable this system to be stable in this conformation. The beta-helix is a
nanotube-like structure (panel b) with a triangular cross-section formed by three strands
on the edges. This particular protein structure is classified as a single-stranded left handed
beta-helix, consisting of a single polypeptide chain that creates a helix with approximately
four to five beta-strands per side (panel c).
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loading molecular dynamics simulations of the single and triple beta-helix structures,

where it will be illustrated that this protein motif can withstand extremely large

compressive loads, far exceeding the tensile strength. Size-dependent failure modes

under compressive loading are summarized in a deformation map, and rate depen-

dence of failure is discussed. These findings illustrate the potential of the beta-helix

protein motif as an inspiration for nano-scale materials applications, ranging from

stiff nanotubes to self-assembling peptide based fibers inspired by amyloids.

There is very little known about the structure-property-function link of beta-

solenoids. One of the main goals of the analysis presented in this chapter is to

illustrate the applicability of the simulation approaches to a recently discovered struc-

ture, for which little or no experimental data exists. Predictive modeling approaches

such as the one presented here may provide valuable insight into structure-function-

property relationships of other protein structures and may motivate experimental

studies associated with disease aspects or materials science applications of proteins.

The analyses presented here elucidate the intriguing mechanical properties of this

important self-assembling protein structure, which may be eventually be used for de-

veloping exceptionally strong and elastic fibers that can surpass the strength of steel,

as in the case of spider silk [247].

4.1 Background on beta-solenoids

Despite being discovered only recently as a protein structure, the 3-helix has already

gained tremendous interest in the scientific community. This is largely attributed

to the belief that the /-helix is the fundamental structural unit of certain kinds of

amyloid fibers, in particular those associated with prion proteins [250, 136]. Amy-

loids are caused by uncontrolled aggregation of proteins in tissue and organs during

the course of many different fatal diseases such as Alzheimer's, Huntington's, prion

diseases and type 2 diabetes [58]. It is not clearly known whether the amyloid fib-

rils form as the result of a mechanism to convert more toxic oligomers to larger, less

harmful aggregates, or if they are the pathological agents themselves [53]. However, it



is now generally accepted that large amounts of amyloid deposition in tissue may be a

cause of organ malfunction. There is also growing evidence suggesting that amyloids

play a central role in pathogenesis of at least some of the aforementioned diseases

[137]. Investigation of this new protein structure is therefore of great importance

for the medical and biophysical community as it may reveal crucial insight into the

formation and assembly of these fibers and may provide ideas for novel remedies to

diseases affecting millions. Recent experimental studies have revealed the molecular

structure of several proteins that contain this motif, as a result, atomistic models for

the single-helix and triple-helix beta-solenoids have now been established, enabling

all-atom simulations [254, 121].

Amyloids are most widely known for the pathological conditions that they are di-

rectly or indirectly associated with. From a materials scientist's perspective, however,

amyloid formation is a fascinating materials growth phenomenon that can be put in

use for beneficial applications [58]. Engineered self-assembling amyloid fibrils have

been used as nano-wire templates, taking advantage of their patterned nanotubular

structure [191, 205]. Amyloids are also found in some natural adhesives [167], and in

spider silk in silk glands [125, 216], which has attracted some interest into possible

structural applications of these materials and their interesting mechanical properties

[124, 85]. Notably, amyloids are found to be extremely sturdy protein structures that

can often not be disintegrated by the organism itself, suggesting a particularly stable

structural arrangement and as a consequence, possibly large resistance against me-

chanical unfolding. These aspects motivate the studies of the mechanical properties

of this protein structure.

Although a single structural motif such as the 3-helix may not be an accurate

molecular level description for all the different kinds of amyloids discovered so far,

it is a model that captures all essential structural and biochemical features common

to amyloids and is therefore an excellent representative system to begin a rigorous,

nanomechanical characterization of amyloids and similar fibrous materials.



4.2 Single beta-helices in tension and compression

Single beta-helices form when a single polypeptide chain is coiled into a wide helix,

formed by beta-strands separated by loop regions of variable length. Each side of

the helix is an anti-parallel beta-sheet structure and helices generally contain two or

three-sheets (sides). For the triple-sheet beta-helices investigated here, no specific

sequence pattern has been identified so far [20].

All-atom MD simulations are performed using segments from the crystal structure

of a protein obtained from Protein Data Bank [14] (PDB ID lfwy). The segments

used for the simulations form the characteristic beta-helix structure. For investigating

mechanics of beta-helix structures, only the C-terminal domain of this protein is

taken, which adopts a left-handed parallel beta-helix motif (residues 250-328).

The force displacement profiles obtained from simulations of the beta-helix model

reveal that the mechanical behavior of this molecule is different from a Hookean

spring. An important feature is that the mechanical response is quite asymmetric

with respect to tension and compression, as shown in Figure 4-2(a-b). The maximum

force observed in compression happens at approximately 17% engineering strain and

is six times larger than the peak force observed in tension at approximately 800%

strain (Figure 4-2(c)). Up until 17% strain, both systems behave more or less lin-

early, allowing comparison of stiffness values in small deformation regime. The elastic

moduli computed using both hollow and solid cross-section assumptions show that

the 3-helix in compression is approximately 18 times stiffer than in tension, as shown

in Figure 4-2(d).

The peaks, rises and valleys in the complex non-linear force response curve can

only be understood by studying the details of the individual bond rupture events.

Most of the helix loops uncoil with hydrogen bonds breaking more or less sequentially.

Comparatively long time scales of the simulation and the coupling between tension

and torsion in the helix allow the molecule to reorient its strands during the course

of the simulation. In the later stages of unfolding, a sheet with five hydrogen bonds

aligns itself parallel to the loading direction, as opposed to the general perpendicular
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orientation of the strands. In this case, five hydrogen bonds in this sheet deform

homogeneously under shear, cooperatively resisting further stretching like a hook-up

point. Simultaneous rupture of these bonds corresponds to the force peak observed

at approximately 120 A pulling displacement. Simultaneous vs. sequential rupture

events are illustrated in Figure 4-3.

The force vs. displacement profile of the #-helix reveals distinct deformation

mechanisms under tensile loading, which are marked in Figure 4-4(a). Here, the

same averaging scheme is used, with a different number of averaged points (bins) to

illustrate different levels of detail in force response curve (different curves in Figure 4-

4(a)) to enable a more careful analysis of the force-extension curve. The first peak (A)

corresponds to the unfolding of the first loop at the fixed end. Unfolding of this loop

relaxes the structure, resulting in a decrease in force (B). The regime that follows

this is characterized by steady uncoiling of loops at the far end (C). The peak at

approximately 60 A pulling extension corresponds to the unfolding of the first loop at

the near end, namely the N-terminal of the protein (D). Following this, the molecule

relaxes again and steadily uncoils at a lower force value (E). The force begins to rise

again due to reorientation of the helix to load hydrogen bonds in parallel and reaches

a peak force value of approximately 600 pN (F), when approximately 5 hydrogen

bonds on a single side break simultaneously.

The direct correlation between the number of bonds that break and the mechanical

response can be quantified by plotting the number of ruptured bonds as a function

of extension (NHB(x)), as shown in Figure 4-4(b). To more rigorously analyze the

bond rupture events as a function of deformation, a 9th order polynomial function

is fitted to the bond break history data. The fit is depicted in Figure 4-4(c). The

first derivative of this function, plotted in Figure 4-4(d) relates linearly to the rate of

bond rupture events since the protein is pulled at a constant pulling velocity (thus

NHB(t)~ NHB(X) since x ~ t at constant ±).

The valleys correspond to periods where the backbone is being stretched out with-

out any or with few hydrogen bonds breaking, and the peaks indicate simultaneous

rupture of a larger number of hydrogen bonds. This can be confirmed by comparing
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Figure 4-3: Tensile deformation - sequential vs. simultaneous rupture. The peaks,
rises and valleys in the complex, non-linear force response curve can be better interpreted
by studying individual bond rupture events. While most of the helix loops uncoil with

hydrogen bonds breaking more or less sequentially (panels a-c), comparatively long time-

scales of the simulation and the coupling between tension and torsion in the helix allow

the molecule to reorient its strands during the course of the simulation. At this point,
five hydrogen bonds in a sheet deform rather homogeneously under shear, cooperatively

resisting further stretching like a strong traction point (panels d-f). Simultaneous rupture

of these bonds corresponds to the largest force peak obtained over the course of the 250 ns

time span of the simulation.
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Figure 4-4: Relationship between bond rupture events and mechanical signature. The
force vs. displacement profile of the beta-helix reveals distinct deformation mechanisms
under tensile loading (panel a). Here, the same averaging scheme is used with different
number of bins to illustrate the differences in level of detail associated with this process.
The first peak in force-displacement curve (A) corresponds to the unfolding of the first loop
at the fixed end. Unfolding of this loop relaxes the structure, resulting in the low force point
(B). The regime that follows this is characterized by steady uncoiling of loops at the far
end, with no more than 1-2 hydrogen bonds breaking at the same time (C). Peak force at ~
60 A extension corresponds to the unfolding of the first near end loop (D). Following this,
the molecule relaxes again and steadily uncoils with lower resistance (E). The force begins
to increase again when the helix is reoriented and hydrogen bonds are loaded in parallel,
and reaches a crest with a force value of ~ 600 pN (F) when five hydrogen bonds on a single
side break simultaneously. The direct correlation between the number of bonds that break
and the mechanical response can be quantified by plotting the number of ruptured bonds as
a function of extension (panel b). To further analyze the bond rupture events as a function
of time, a ninth order polynomial function is fitted onto the bond data (panel c). The slope
of this function relates to the speed of bond breaking events. The troughs correspond to
periods where the backbone is being stretched out without any hydrogen bonds breaking,
and the peaks indicate simultaneous rupture of a large number of bonds (panel d).
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Figure 4-4(d) with Figure 4-4(a). It is apparent that each peak in the force-extension

curve corresponds to a peak in the slope of the H-bond rupture history NHB(t),

suggesting that the instantaneous strength of the beta-helix is proportional to the

H-bond breaking rate,

E9NH B(t)
F(t) ~ . (4.1)

at

This result may be useful for the development of constitutive relations or strength

theories of protein structures.

In compression simulations, it is observed that failure occurs by sliding out of an

entire single strand, corresponding to a local fracture scenario at a critical compressive

forcePfr = 3,154 pN.

In order to gain understanding of the mechanical behavior at larger length scales, a

simplistic continuum model for the compressive strength of the beta-helix is proposed

here. Schematic views, boundary conditions and the dimensions of the simplified

hollow triangular section are shown in Figure 4-5. It is assumed that localized failure

as observed in MD simulations competes with Euler buckling of the structure. Using

the simplified model illustrated in Figure 4-5, the Euler buckling load [235] for this

specific geometry is calculated as

Pcr,O = 2 l (4.2)
4L 2

where Lo is the original length of the helix and the factor of four in the denominator

derives from fixed-free boundary conditions. For the length LO used in the simulations,

the Euler buckling load is Pc,o = 6,474 pN. This value is larger than the maximum

compressive force value observed from simulation, denoted Pfr=3 ,15 4 pN, which is

observed for a localized shear failure of the nanotube. Thus it is expected that the

dominating failure mode for the geometry used in the MD simulations is not Euler

buckling. This prediction is in good agreement with the MD simulation results that

show that local failure is the governing mechanism. However, as the length of the

molecule is increased, it is expected that Euler buckling, rather than localized failure,
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will be the dominating deformation mechanism.

Using the peak force from SMD as an estimate for the maximum strength of the

helix for a local fracture scenario, the critical molecular length beyond which Euler

buckling [235] governs is calculated using this value as the critical buckling load:

Lcr = ~ 2.15 nm.2VPfr

Based on these results, the compressive strength of the beta-helix as a function

of its length can be plotted, as shown in Figure 4-6(a). The analysis reveals that

buckling governs at length scales exceeding only a few nanometers. The resulting

compressive strength of the helix is determined by the governing mechanism, given

by

Pmax(L) = min[ Pr, Pcr(L)] (4.3)

where Pfr is the maximum force observed in local fracture deformation mode and

Pc,(L) is the buckling load as a function of length. As expected, strength diminishes

with increasing length. It should be noted that note that this simple calculation

is based on the assumption that the local failure strength Pfr is independent of

the molecular length. The persistence length [17] of this structure, (p, can also be

estimated as

EI
k = '(4.4)

where kB is Boltzmann's constant, and T is temperature, given as 300 K, and El is

determined from material and structural properties determined from all-atom model

and simulation results. At length scales exceeding (,, even thermal vibrations could

cause significant deformation in the molecule, so the behavior is like an ultra-thin

wire. For the beta-helix structure, this length scale is found to be in the order of a

few micrometers ($,= 1.425 pm). The length scales estimated here can be utilized

to construct a simple deformation map, indicating regions of different mechanical

behavior as a function of the protein nanotube's length, as presented in Figure 4-

6(b).
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Figure 4-5: Schematics of the compression studies in an engineering analysis. The
molecular structure is subjected to uniform compression load on each Ca atom on the
first loop at the N-terminal (panel a). All of the Ca atoms are fixed in the last loop,
namely C-terminal of the domain. The boundary conditions (panel b) are idealized based
on the SMD setup and are used for buckling analysis. The cross-section of the beta-helix
is triangular, with a strand on each side (panel c). The dimensions of the helix can be
approximated from VMD to build a simplistic model. In this case, the helix is modeled as

a hollow triangular section. All calculations are repeated for a solid section assumption as

well (panel d).
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Figure 4-6: Compression analysis of results: in SMD simulations, failure occurs by
sliding out of a single strand, corresponding to a local fracture scenario. The max force
value observed for this case is lower than the Euler buckling load, further supporting that
local failure is the governing mechanism. The maximum force observed from SMD is used
as an approximation for the fracture strength for the 'short column', and the critical length
beyond which buckling governs is calculated based on this value. Using these results, the
strength of the helix as a function of its length is plotted (panel a). The persistence (, length
can also be determined, identifying the length scale at which thermal vibrations can cause
significant deformation in the molecule. These results are summarized in a deformation map
(panel b), indicating different regions of mechanical behavior as a function of length. Very
short helices are sturdy and fail locally, longer helices are governed by buckling effects, and
extremely long helices behave like wires with negligible capacity for sustaining compressive
loads.

From SMD simulations and continuum studies, one can conclude that in compres-

sion; very short helices below a few nanometer lengths are sturdy and fail locally.

Longer helices are governed by buckling effects, and extremely long helices beyond

a molecular length on the order of a micrometer behave like wires with negligible

capacity for sustaining compressive loads. This suggests that the nanotube length

must be limited to a critical length scale on the order of a few nanometers in order

to provide most optimal resistance to compressive deformation. It is noted that a

similar transition of the behavior has been observed for carbon nanotubes, albeit at

different values of the critical length scales [43].

MD simulations reveal that the beta-helix nanotube structure is extremely ex-

tensible and can sustain tensile deformation up to ~ 800 % without rupture of the

covalently bonded protein backbone. As the /-helix structures are similar to #-spirals
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found in extensible domains found in elastin and spider capture silk [239, 11], sim-

ulations illustrate that extension over tens of nanometers and rupture of dozens of

hydrogen bonds during deformation may be the molecular basis of the extraordinary

toughness of these materials, in line with previous hypotheses [217], as the protein

structure deforms while dissipating a significant amount of energy.

Recent experimental and MD studies have revealed that proteins with a shear

topology have been found to provide exceptional resistance to forced unfolding due

concurrent breaking of multiple hydrogen bonds upon loading parallel to strand ori-

entation [198, 251, 23, 94, 72]. The analysis shown in Figure 4-4(d), further validates

this claim. It is also observed that during the course of an ultra-long time scale MD

simulation that extends to fractions of microseconds, significant unfolding and reori-

entation in the molecule can take place as a result of external force. This observation

may provide insight into how beta-sheet rich domains in amyloid-like spider silk in

the silk gland may be transformed to a shear topology due to forces experienced in

spinning and elongational flow and may illustrate the impact of this reorientation on

mechanical strength. The processing of protein fibers to generate such shear topolo-

gies could provide a means to enhance the mechanical resistance.

Usually, there is little motivation to study proteins under uniform compressive

loads, as most proteins studied mechanically so far have found applications in fibers,

materials that are predominantly loaded in tension. Thus there are very few studies

in the literature that focus on this mode of deformation. The inspiration for the

compressive study reported here derives from the triple beta-helix structure in the

gp5 domain in the needle-like cell-puncture device of bacteriophage T4 [121]. Extreme

responsiveness under compression shown here is a truly unique feature of the beta-

helical topology among protein structures identified so far. The hollow triangular

cross section of the beta-helix is thereby very efficient for serving under compression

as it can sustain significant loads without buckling, while at the same time providing

a highly dissipative, yet reversible mechanical behavior under tensile stretching. The

methods presented here can perhaps be used to develop a critical length scale for the

optimal resistance under compressive deformation for bacteriophage T4 cell puncture
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device. A detailed investigation of this structure is presented in the next section.

4.3 Triple beta-helices and the cell-puncture nee-

dle application

This section focuses on a systematic nanomechanical characterization of the triple-

beta-helix structure of the cell puncture device needle of the bacteriophage T4 virus,

using molecular dynamics (MD) simulations. The behavior of this structure is studied

under compressive loading, as in the case of physiological conditions, and investigate

the rate dependent strength and stiffness of the molecule over four orders of magnitude

in deformation rates.

The coordinates for the molecular model (monomer) are obtained from the Protein

Data Bank [14], PDB file ID 1k28. The trimer is built by rotating the monomer

structure around the helical axis and creating duplicates in a single coordinate file.

The molecular assembly is truncated at the end of the gp5C domain and protein

structure and coordinate files of this triple-beta-helix domain is created using psfgen

tool in NAMD using CHARMM topology and parameter files [169, 160]. The assembly

is then minimized for 10,000 steps and equilibrated in TIP3 water box of 6 x 6 x 12 nm

for 1.2 ns, with periodic boundary conditions. Simulations are carried out in an NPT

ensemble using the Langevin piston Nose-Hoover method implemented in the NAMD

software [169]. A Langevin piston with a target pressure of 1.01325 bar (1 atm) is used.

The Langevin piston temperature is set at 310 K throughout the simulation. The

stability of the protein structure without load applied is verified from hydrogen bond

dynamics as well as RMSD data obtained from the molecular dynamics trajectory.

The Steered Molecular Dynamics (SMD) approach [154] with a constant com-

pression velocity is used as the protocol for simulating the force-induced deformation

of the protein. An SMD spring constant as k =1 kcal/mol/A 2 and a varying SMD

displacement rate of v = 0.1 to 25 m/sec). Compared with other SMD studies [219],

the lowest effective loading rates used here (kv) are 10 to 100 times slower, reaching
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simulation times exceeding 20 ns. For the system size (approximately 40,000 atoms)

and time-scales of interest, these simulations require parallel computing resources.

The simulations are carried out on a Linux cluster at the Laboratory for Atomistic

and Molecular Mechanics, as well on the BlueGene supercomputer at the San Diego

Supercomputing Center.

The boundary conditions for compression simulations consist of fixing the first

two convolutions of the protein structure at one end, while applying the moving

harmonic constraint to atoms in two convolutions on the other end of the molecule.

This approach leads to uniform loading conditions throughout the cross section. The

fixity and moving harmonic constraints are applied to Ca atoms of all three molecules

of the triple-helix.

A different simulation protocol is used to estimate stiffness of the system at quasi-

static loading. In this simulation method, referred to as small-perturbation simula-

tions (SPS), the deformation velocity is kept constant initially until a desired dis-

placement level is reached. At this point, the SMD velocity (initially 0.1 m/s, the

slowest accessible rate) is reduced to zero, and the rate dependent effects on force dis-

appear while the end-to-end length oscillates around a displaced equilibrium point.

The system is then equilibrated and ratio of the long-time average of the change in

end-to-end length to the net force acting on the system is taken as the representative

stiffness of the system at quasi-equilibrium loading.

Molecular visualization of trajectories are performed using the VMD program

[111], with H-bond cutoff distance and angle of 4 A and 40' respectively. Post-

processing is carried out using MATLAB, and averaging scripts are used for force-

displacement plots and curve fitting tools for studying the rate dependence behavior.

The best fit for rate-dependent plots is selected based on goodness criteria of the fit

(e.g. R2 values, confidence bounds) from a wide range of mathematical functions.

The topology of the cell-puncture device and the atomistic structure of the needle

domain are shown in Figure 4-7(a). The (gp5C)3 domain of the molecular assembly

represents the triple-helix beta-solenoid topology that is used to puncture through

the outer cell membrane as part of the infection process. Following puncture, the
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gp5 lysozyme domains shown in Figure 4-7(a) enzymatically breakdown the cell wall,

after which the puncture device needle structure disassembles and viral DNA is in-

jected into the cell through a larger cylindrical protein nanotube in the tail sheath.

The protein assembly consists of three intertwined polypeptide chains with identical

folds that are symmetric rotations of each other around the helical axis. The trian-

gular helical cross section consists of beta-sheets on each of the three sides with a

slight twist of ~ 3 degrees per strand, as can be observed from the cross-sectional

view shown in Figure 4-7(b). Atomistic simulations are performed to observe how

the beta-helix topology of the needle behaves under a compressive loading scenario

similar to physiological conditions. The main goal of the simulations is to understand

the mechanical properties of this specific topology and investigate whether it could

sustain large forces required to puncture through a cell membrane. Figure 4-7(c) il-

lustrates the setup for compression simulations, where the standard SMD protocol is

implemented to apply compressive forces to the molecule at a constant loading rate.

First, the compressive strength of the structure is characterized at different load-

ing rates. This is an important aspect, as the simulations are carried out at much

faster rates than experiments and extrapolation to slower rates is not straightforward.

Figure 4-8(a) illustrates typical deformation profile of the triple-beta-helix under com-

pression (results shown here from simulation with deformation speed v = 25 m/s).

Significant "elastic" compression of the molecule can be observed before failure, in

particular at the faster loading rates. As the structure is symmetric and an equilateral

triangle at all cross-sections, there is no general weak axis based on the initial topol-

ogy. This is because an equilateral triangle has the same moment of inertia along any

axis passing through the center of mass, and hence the bending rigidity is uniform in

all possible buckling directions (see Section 4.4). Moreover, further uniformity and

interesting torsional properties are perhaps achieved through the true helical form of

the molecular structure. It is observed that failure occurs when the structure buck-

les with respect to a random "weakened" axis due to perturbations stemming from

non-heterogeneous evolution of the topology under external force, H-bond rupture

mediated by water molecules and thermal vibrations.
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Figure 4-7: Schematics and simulation setup for the triple-beta-helix. Panel (a) illustrates
the molecular structure of the cell puncture device of bacteriophage T4 virus and the needle
generally known as the gp5C domain encircled in red. The protein assembly consists of three
polypeptide chains with identical folds that are symmetric rotations of each other around the
helical axis. The triangular helical cross section rotates 3 degrees with every convolution, as
can be observed from the cross-section view shown in panel (b). Atomistic simulations are
performed to observe how the beta-helix topology of the needle behaves under compressive
force, to clarify whether it could sustain large forces required to puncture through a cell
membrane. Panel (c) illustrates the setup for compression simulations, where the standard
SMD protocol is implemented to apply compressive forces to the molecule with a constant
loading rate.
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Figure 4-8: Snapshots of deformation, force extension plots. Panel (a) illustrates typical
deformation profile of the triple-beta-helix under compression (results from simulation with
deformation speed v = 25 m/s). Significant compression of the molecule can be observed
before failure, in particular at the faster loading rates. As the structure is symmetric and
an equilateral triangle at all cross sections, there is no general weak axis based on the initial
topology. Failure occurs when the structure buckles with respect to a random weak axis
due to non-heterogeneous evolution of the topology under external force, H-bond rupture
mediated by water molecules and thermal vibrations. Force extension profiles for different
loading rates are shown in panel (b). The initial force extension behavior can be estimated
by a linear regime followed by nonlinear plastic-like behavior toward failure.
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Force extension profiles for different loading rates are shown in Figure 4-8(b). The

initial force extension behavior can be estimated by a linear elastic regime followed

by nonlinear behavior towards failure, reminiscent of the buckling curves observed

for most engineering materials. Rate-dependent elastic modulus of the system can be

extracted from small deformation measurements where nonlinear instability effects

are negligible, such that such that E = kL/A, where k is the initial stiffness, L = 7.7

nm is the length, and A = 90 A2 is the cross-sectional area of the molecule assuming

a hollow section with 5 A thickness representing the beta-sheet walls of the nanotube.

The peak force form each simulation can be plotted in force vs. log (v) space to

illustrate rate dependent mechanical behavior over roughly four orders of magnitude

in time-scales. Figure 4-9(a) illustrates the rate-dependent failure force (approxi-

mated as the peak force from the simulation) of the triple-beta-helix as a function

of the deformation speed. A power-law fit describes the behavior best, and can also

be verified as the points lie on a straight line in a log-log curve. While most of the

data lies in the nanoNewton force range, failure forces on the order of a few hundred

picoNewtons are expected for this specific topology at slower, experimental deforma-

tion rates based on the power law description. Figure 4-9(b) illustrates dependence

of the initial stiffness on the loading rate, where a different behavior from the power

law is observed since the stiffness seems to converge to a finite value at increasingly

fast pulling rates. Figure 4-9(c) shows that the peak force observed from simulations

corresponds to the point at which the number of H-bonds in the system begins to

decrease, leading to structural instability.

The stiffness of the molecule is expected to converge to a finite value also at

exceedingly slower rates, representing the quasi-static long time limit. Since time-

scales of typical MD runs are much shorter than those in an ideal equilibrium-loading

scenario, a different simulation protocol is adopted to estimate stiffness of the system

at quasi-static rates. In these simulations (small-perturbation simulations, SPS), the

thermal motion of the molecule around a displaced equilibrium point is investigated.

Figure 4-10(a) and (c) show the loading scenario for the system as a function of time,

while panels (b) and (d) of Figure 4-10 illustrate the change in end-to-end length of
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Figure 4-9: Rate dependence of force and stiffness. Panel (a) illustrates the rate-
dependent failure force of the cell- puncture needle as a function of the deformation speed.
We observe that a power-law fit describes the behavior best, and can also be verified as the
points lie on a straight line in a log log curve. While most of the data lies in the nanoNew-
ton force range, failure forces in the order of a few hundred picoNewtons are expected for
this specific topology at slower, experimental deformation rates. Panel (b) illustrates that
the stiffness is also rate-dependent, but its scaling is different from the power law behavior,
as the stiffness is observed to converge to a finite value at increasingly fast pulling rates.
Based on the analysis on small perturbation studies, it is predicted that a similar conver-
gence is also likely in long time limit, slow deformation rates. Hence an exponential fit with
a constant term makes most physical sense and also fits the data best. According to this, at
faster rates, where the time-scale is too short for the system to respond to force (e.g., sys-
tem is "frozen", or "shocked"), the stiffness values around 12 N/rn. At slower rates thermal
vibrations and water-mediated H-bond rupture leads to softer response. In the long time
limit, system will converge to its static loading stiffness, measured here to be approximately
0.75 N/rn. An exponential function with constant term captures this rate-dependence effect
over all time-scales. Panel (c) illustrates that the peak force corresponds a moment shortly
after the decrease in the total number of H-bonds in the system, suggesting that H-bond
rupture is a key event defining the onset of instability.
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the system due to the external force for two different levels of strain. The estimate

for long-time limit yields 0.75 N/m for both cases, independent of the extent of

deformation, supporting the result for the linear elastic fit for the initial deformation.

This value is used as the constant term for the exponential fit to stiffness shown in

Figure 4-9(b).
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Figure 4-10: Small perturbation simulations (SPS). Panels (a) and (c) show the loading
scenario for the system as a function of time, while (b) and (d) illustrate the change in
end-to-end length of the system due to the external force. In the SPS, deformation velocity
is kept constant initially, until a desired displacement level is reached. At this point, the
SMD velocity (initially 0.1 m/s, the slowest accessible rate) is reduced to zero, and the
rate-dependent effects disappear. The system is then equilibrated for 8-10 ns and the
averaged ratio of displacement to force is taken as the representative stiffness of the system
at static loading. The estimate for long-time limit turns out to be 0.75 N/m for both
cases, independent of the extent of deformation, supporting the linear elastic fit for initial
deformation.

In the range of loading rates studied, it is observed that the deformation profile of

the system resembles those observed in typical buckling of columns, albeit the actual
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dynamics of the system appears to be much more complex. Mapping of the initial

stiffness to the peak force is challenging without further validation from experiments.

However, a straightforward continuum type description of the rate dependent failure

load based on the initial stiffness value can be formulated using Euler-Bernoulli beam

buckling formulation. Since the exact boundary conditions of the system is unknown,

the parameter a that denotes end conditions of an idealized beam is determined based

on the values for force and stiffness for a small range of loading rates. The region of

the fitting is denoted in Figure 4-9(a,b).

Classic Euler BCs

a b

LT

a=2 a=0.707 a=0.5

2EI

(aL)2

Continuum
Model a-g1.59-10.14

a~2.5nm
Figure 4-11: Schematics for continuum formulations. Panel (a) illustrates the simplified
model of the structure for applying a continuum buckling theory to the system, taking
into account rate-dependent initial stiffness of the system. Panel (b) illustrates different
constants that need to be used based on boundary conditions of the compressive loading.
Since the exact boundary conditions of the spring + beam system is unknown, the constant
that gives the best mapping between initial stiffness and failure force is selected. The
buckling formulation obtained can then be used to describe failure force at vanishing pulling
rates based on the stiffness value obtained from small perturbation simulations.
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Figure 4-11(a) illustrates the simplified model of the structure for applying a con-

tinuum beam-buckling theory to the system, taking into account the rate dependent

initial stiffness of the system. The critical force that will lead to buckling can be

estimated based on Euler theory [235] as:

Pcr =(aL)2  (4.5)

where the parameter a denotes the effective length scaling factor based on the bound-

ary conditions of the buckling mode. The moment of inertia I, and cross-sectional

area A are estimated from the atomistic model with a hollow cross-section assump-

tion. Figure 4-11(b) illustrates different constants that need to be used based on

boundary conditions of the compressive loading. Since the exact boundary condi-

tions of the system submerged in water is not precisely known in this case, a value for

the constant a is selected to provide the best mapping between initial stiffness and

failure force (taken here as the critical buckling load) prediction based on simulation

results. The buckling formulation obtained can then be used to describe failure force

at vanishing pulling rates based on the stiffness value obtained from small perturba-

tion simulations. The selected region for stiffness and failure force values are shown

in Figure 4-9(a) and (b) where the dimensionless buckling parameter a is found to

be 1.59+.1425. The physical interpretation of this finding is that the boundary con-

ditions adopted correspond to a case resembling fixed-free boundary conditions in

typical Euler buckling with partial lateral restraints due to non-ideal loading condi-

tions, fluid interaction or nonlinear material behavior.

Based on the constants obtained from the fitting to rate dependent regime, one

can also provide a prediction for quasi-static loading rates. Taking the stiffness result

from SPS simulations where ksps = 0.75 N/m, it is predicted that the failure load

at near static deformation rates will be roughly 225 pN; a value that could be tested

experimentally. The power law fit error bounds shown in Figure 4-9(a) agree well

with this value. The fit can be modified to include this result as a constant term

and matches well with the data from simulations, but more data points (in particular
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at experimental rates) is necessary before an accurate asymptotical value can be

proposed.

4.4 Solenoid cross-sectional shape its mechanical

implications

The central matter addressed in this section is whether the triangulation of the core, as

observed in certain amyloids and beta-solenoids (see Figure 4-12) [177, 121, 120, 136],

may be a universal strategy to create structures with minimal amount of material use,

yet maximum rigidity [130, 133]. This question is related to a century old problem in

mechanics: the shape of the strongest column, or posing the question in the terminol-

ogy of biology, the shape of the strongest filament. Lagrange, Weinberger, Clausen

and others have studied this fundamental problem; and several solution approaches

have been discussed controversially for the selection of the optimal cross-sectional

shape [123]. Here a simple analysis is proposed, emphasizing the biological and

nanomechanics relevance, and considering a select number of convex cross-sections

observed in biological and engineering structures. The ideas put forth here can be

investigated further with experimental techniques, where bending and compression

tests or thermal fluctuation analysis of these domains can shed light on rigidity of

fibrils and their link to materials science and biology applications.

The bending rigidity of a filament is linked to geometrical features of its cross-

section such as the second moment of area (I) and the cross-sectional area (A). For

a filament of given cross sectional area A, and length L, the ability to resist bending

due to thermal or mechanical forces is directly proportional to EI, where E denotes

elastic modulus of the material obtained by measuring the relationship between force

and elongation in a tensile stretching test. For a given filament length and material

properties (i.e. elastic modulus, E), the radius of gyration defined as rG = min/A,

provides a measure of a cross-section's capacity to resist bending, where Imm denotes

the smallest second moment of area along any axis passing through the centroid of
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Figure 4-12: Triangular core of amyloids and beta-solenoids. The figure illustrates the
cross-sectional properties of triangular peptide nanostructures discussed in this section. An
equilateral triangle has been proposed as the cross-sectional shape of the 3-cross structure
of certain amyloids (a). Cell-puncture device needle of bacteriophage T4 virus (b) is triple
beta-helix with an equilateral triangle as the cross section. For the amyloids, each side is
approximately 7 nm in length, whereas the cell-puncture device needle is much smaller,
with a side length of approximately 2.5 nm. Panel (c) illustrates triangular and circular
cross-sections of identical area. Axes indicated could be used to calculate second moment of
area, I. Due to the symmetry of the structures, I is the same along any axis passing through
the centroid, but larger for the triangle than for the circle. Comparing the shaded areas
that lie outside the shared region, one can easily see that the triangular cross section places
more area away from the centroid, thereby dramatically increasing I for the same amount
of material. Continuum theory predictions indicate that ~ 21% increase in bending rigidity
can be achieved by triangulation. Panel (a, left) modified from PNAS, "Molecular structural
basis for polymorphism in Alzheimer's #-amyloid fibrils", Vol. 105 (47), pp. 18349-18354,
Copyright 2008, with permission from the National Academy of Sciences [177].
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the cross-section. This axis is the weakest axis along which bending or buckling of

the structure would be easier under ambient forces. As such, the parameter rG is

commonly used in structural mechanics as a key parameter for quantifying the failure

strength of columns in buildings. Similarly, rG is also used in polymer science to

quantify the flexibility of a macromolecule, and is linked to the persistence length,

representing the length beyond which direction vectors of a filament are uncorrelated.

Persistence length is directly correlated to bending rigidity as (, = k.

The second moment of area, I around an axis is defined as I= f x2 dA. For the

equilateral triangle, second moment of area is the same for all axes passing through

the centroid and is given as [90]:

= bh 3  hb3  (4.6)
36 48

To compare a triangular cross-section with a circle, let's consider an area equality

criterion that gives corresponding dimensions for circle and triangle:

2 bh
7r2 _ (4.7)

where b,h denote the base and height of the equilateral triangle, and r is the radius

of the circle with equivalent area. For an equilateral triangle,

h = (4.8)
2

and therefore the equivalence in eq. (4.7) becomes

r 2  - (4.9)
47

In the case of an equilateral triangle, the minimum second moment of area is given

as:

IA 9 (4.10)
mn 96
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where b denotes the length of a side. For a circle, second moment of area is again the

same for all axes passing through the centroid and is given as [90]:

Izz = IYY = r 4  (4.11)
4

Considering an area (and for constant length, volume) equality, one can evaluate the

minimum moment of area of a circle as :

o3b 4

Imi. = 34 (4.12)mn 647r

One can then compute the ratio Imi/Imji to compare which section for given cross-

sectional area, A, yields higher minimum second moment of inertia. In this case, it is

observed that the triangle beats the circle by 21%. In typical Euler buckling formula

for columns, failure load is directly related to Imin such that:

Pr~ Imin/A ~ G (4.13)

where rG is the radius of gyration. Hence by maximizing Imin, a triangular column

makes use of material in a better fashion to yield stiffer structures. The argument

is also valid for overall bending rigidity, leading to more persistent fibers. One can

also show that the same reasoning applies for hollow sections provided that the wall

thickness is large enough to prevent shell buckling.

The cross sections of circle or regular convex polytopes discussed above, such as

equilateral triangle, square and hexagon, have the advantage that the rigidities for

bending in different planes containing the axis are the same. For other shapes like

rectangle with disparate length and width, the bending resistance is then limited by

the mode with lower rigidity.

Continuum analysis suggests that filaments with an equilateral triangle as the

cross-section have the greatest radius of gyration than any other convex cross-sectional

shape for a constant cross-sectional area, including a circle. The advantage of the

triangle that leads to 21% higher rigidity is its capability of distributing material

further from the principal axes, away from the center, to provide a more efficient
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resistance to bending.

This analysis has been extended by studying several different cross-sectional shapes

using the finite element method (FEM) simulations [134]. Five types of cross-sections

have been studied: triangle, square, hexagon, circle and triangle with rounded corners

(considering that the corresponding biological structures with a sharp corner would

have too high potential energy), all with equal area. Triangle is observed to perform

best among all sections as it has the highest minimum moment of inertia, support-

ing that it is the ideal convex regular polytope that maximizes rigidity per material

usage.

The results presented here are scale-independent and universal as they are purely

geometrical, and can in principle be applied at all scales, including to building de-

sign, micromechanical systems, or nanostructures. The twisted triangular core of the

cell-puncture needle, as well as amyloid filaments and many other fibrous protein

topologies [16] may suggest that this concept also emerges as a design principle in

biology, be it as a result of spontaneous aggregation as in amyloids, or as part of an

evolutionary strategy as in the case of T4 virus. An investigation of the mechani-

cal properties of these biological nanofibers merits further studies that focus on the

universal geometric features of these structures and their link to their mechanical

properties. Ideas that stem from such investigations could lead to more efficient de-

signs of materials and structures, ranging from nanostructures to extreme designs

in architecture such as skyscrapers and space elevators where novel materials with

exceptional mechanical properties are crucial.

4.5 Discussion and conclusion

This section summarized findings from molecular dynamics simulations and atomisti-

cally informed continuum modeling of nanomechanics of the beta-helix protein motif,

a key building block of amyloids and self-assembling peptide based fibers. This pro-

tein nanotube motif is highly extensible under tensile deformation; sustaining strains

up to %800. Under compression, the structure is very robust and exhibits high re-
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sistance before failure occurs. Through continuum approaches, the length-dependent

deformation map of beta-helices under compression was illustrated.

The approach reviewed here illustrates how molecular dynamics simulations can

reveal crucial information about biological structures when experimental data is not

readily available. Such information can be used to build predictive models that ex-

plain materials behavior and structure property function relationships for proteins

and protein based materials.

So far nanomechanical characterization of protein materials has focused on individ-

ual proteins, in an attempt to explain their specific biological functions or structural

features from a biophysical perspective. Difficulties in interpretation and general-

ization of results from unfolding experiments or simulations of complex large-scale

individual proteins are evident. For this reason, molecular modeling of particularly

simplistic protein structures that play a universal and crucial role in nano-scale defor-

mation mechanisms of many protein materials is currently the only reliable option for

shedding light on deformation mechanisms, size-effects and other important aspects

that can not easily be generically defined for more complex systems. Experimental

studies at these length scales are extremely challenging with current technologies,

therefore predictive models that can generalize nano-scale MD simulation results are

indispensable for explaining experimental findings at larger scales.

Simulation studies and the analysis of the underlying mechanisms have shed light

on the underlying atomistic mechanisms. The simulations have provided important

insight on the rate dependent stability of this molecular assembly, illustrating that

weak interactions such as H-bonds and electrostatic repulsion between charged side-

chains govern the response to external force. This could be seen as similar to other

biological materials, such as cartilage, where such weak interactions at the molecular

scale also contribute significantly to the elastic modulus [44].

Further, it has been shown that an exponential fit with a constant term fits the

rate-dependent stiffness data best, which makes physical sense as well, since constant

molecular stiffness values are expected at both extremely slow (quasi-static) and fast

(shock) loading rates. The analytical model enables us to predict the stiffness under
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a wide range of conditions and time-scales, including shock loading and quasi-static

loading. A plausible explanation for this rate-dependence behavior is that at faster

rates, where the time-scale is too short for the system to respond to force (e.g system

is "frozen", or "shocked"), the system has no time to readjust itself, water molecules

have limited influence on H-bond dynamics, and thermal vibrations of the molecule

are limited to very short timescales in which the dominant dynamic modes of the

system can not be sampled adequately, hence the system reacts in a stiffer manner.

At slower rates, thermal vibrations and water mediated H-bond rupture leads to a

softer response. In the long time limit, system will converge to its static loading

stiffness, estimated here to be approximately 0.75 N/m, roughly fifteen times lower

than the stiffness values observed under shock loading conditions. An exponential

function with a constant term captures this rate-dependence effect well over all time-

scales in an analytical model.

Biological molecule d (nm) & (nm) Reference
Polypeptide Chain 0.5 0.4 [194, 173]
Tropocollagen 2 11-16 [228, 36]
Actin Filament 6-8 3000-17000 [91, 168]
Intermediate Filament 10 1000-3000 [168]
Single beta-helix 3 900-1400 [130]
Triple beta-helix 3 800-14,000 [133]
Amyloid 4-7 6,000-50,000 [218, 176]
Microtubule 25 1,000,000 - 8,000,000 [91]

Table 4.1: Diameter and persistence length of biological filaments.

The beta-helix topology exhibits very high mechanical stability under compres-

sive loads, reaching strength values close to nanoNewtons at fast deformation rates.

The extreme rigidity of the molecule is most evident when it is compared with other

biomolecular and inorganic nanostructures. Table 4.1 compares the diameter and

persistence length of single biomolecules as well as biomolecular assemblies. Further

experimental studies, both in vivo and in vitro are required to investigate how the

specific topology of the cell-puncture device is suitable for its function and whether

the molecular assembly can be optimized further by chemical and structural modifi-
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cations, for example for the purpose of creating multifunctional, bioactive or mechan-

ically rigid protein nanotubes. Key contributions of this work are listed below:

" This work illustrates that the stiffness and compressive strength of the molecule

are strongly rate dependent (as it is the case of most biological matter). In

particular at fast deformation rates this may be relevant in puncture impact on

the surface of a cell. This study indicates that the cell puncture device has a very

high persistence length to diameter ratio, compared with other biomolecules,

and can exhibit stiffness values much higher than that of a cell membrane (for

instance, one study [61] shows kCELL ~ 0.27 N/m for E. coli, much less than

kHELIX = 0.75-12 N/m as observed in this study).

" This is the first computational study at atomistic resolution that provides a

detailed analysis of the compressive mechanical behavior of a single biological

molecule, in this case a beta-solenoid type topology. The results and methods

reported here can be readily applied to other protein structures, in particular

to amyloids and prion proteins that show a similar molecular architecture. The

mechanical compliance of protein deposits with cells and surrounding tissue

at oligomer and fibril length scales may have important implications for many

pathological conditions such as neurodegenerative diseases.

" This study shows that the critical buckling load based on the Euler-Bernoulli

beam theory could possibly be used to predict buckling phenomena at the nano-

scale when coupled with atomistic information, in this case rate dependent

stiffness of the molecule. The agreement with failure force values obtained

from molecular dynamics simulations supports this point. Investigation of the

length-dependent stability of this particular topology either experimentally or

by simulation is a necessity to determine whether or not Euler buckling is ac-

tually a valid model for this system.

* A basic structure-property-function relationship can now be proposed for this

protein topology. The cell puncture needle is suitable for its function since: (i)
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The hollow triangular cross section is ideal for compressive loading as it has no

particular weak axis and maximizes moment of inertia per unit area (compared

with other cross-sections such as square or circle), increasing the failure force

dramatically. (ii) The structure utilizes weak H-bonds in compression to achieve

significant compressive strength, an energetically efficient way of generating

force to penetrate the cell membrane and a simpler method compared to more

complex assembly mechanisms such as biomineralization.(iii) The stiffness of

the molecule is significantly higher than that of cells, for all deformation rates

studied, making this system ideal for serving as a puncture needle, (iv)The

length of the molecule is long enough to span through the cell membrane but

not significantly longer, allowing the molecule to have enough strength to serve

its function without being susceptible to buckling at lower force levels. Longer

molecules would fall short of this capability, as the buckling force scales inversely

with the square of the length according to Euler theory.

From a materials scientist's perspective, generic properties of chemical interac-

tions, bond rupture mechanisms and deformation modes are key input parameters

that one needs to build multi-scale models that can predict properties of bulk ma-

terials. In light of this, the fundamental, simplistic approach presented here for

beta-helices is extremely important for explaining universal deformation mechanisms,

size effects and chemical / thermodynamical properties of biological materials and

structures. Simulation methods coupled with theoretical frameworks such as those

reviewed here illustrate the state-of-the-art in nano-scale / multi-scale modeling tech-

niques for materials applications. The findings point out the potential of using the

beta-helix protein motif for a variety of nano-scale materials science applications,

ranging from stiff peptide nano-tubes to self-assembling peptide based fibers inspired

by amyloids. These results illustrate that beta-helix structures appear as a promis-

ing candidate for many functional nanomaterials that may be used for structural

applications, tissue scaffolds and non-invasive drug delivery systems inspired by the

bacteriophage T4.
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Chapter 5

Size dependence of the strength

and toughness of beta-sheet

nanocrystals in silk

Silk features exceptional mechanical properties such as high tensile strength and great

extensibility making it one of the toughest materials known. The exceptional strength

of silks, exceeding that of steel, arises from beta-sheet nanocrystals that universally

consist of highly conserved poly-(Gly-Ala) and poly-Ala domains. This is counterintu-

itive, since the key molecular interactions in beta-sheet nanocrystals are H-bonds, one

of the weakest chemical bonds known. This chapter summarizes findings from a series

of large-scale molecular dynamics simulations, revealing that beta-sheet nanocrys-

tals confined to a few nanometres achieve higher stiffness, strength and mechanical

toughness than larger nanocrystals. The analysis presented illustrates that through

nanoconfinement, a combination of uniform shear deformation that makes most effi-

cient use of H-bonds, and the emergence of dissipative molecular stick-slip deforma-

tion lead to significantly enhanced mechanical properties. These findings explain how

size-effects can be exploited to create bioinspired materials with superior mechanical

properties in spite of relying on mechanically inferior, weak H-bonds.
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5.1 Background on spider silk and significance of

nanocrystals

Silk is a biological protein fiber with exceptional tunable mechanical properties such

as high tensile strength and great extensibility, making it one of the toughest and most

versatile materials known [247, 212, 11]. Since its development in China thousands of

years ago, silk has been utilized throughout history not only as luxury fabrics but also

in various technological applications including parachutes, medical sutures, and more

recently, tissue regeneration [244]. Variations in synthesis conditions such as temper-

ature, reeling speed and pH lead to silk-based peptide fibrils or protein aggregates

with rather different structural and mechanical properties [233, 68, 188, 150]. How-

ever, despite decades of research in silk production and mechanical properties, the

mass-production of silk and biomimetic materials remains a challenge, particularly

due to silk's unique features that can only be achieved by the controlled self-assembly

of the macromolecular constructs with molecular precision at the nanoscale.

Recent investigations revealed that anti-parallel beta-sheet crystals at the nanoscale,

consisting of highly conserved poly-(Gly[G]-Ala[A]) and poly-Ala repeats found in

both commercial and spider silk [103], play a key role in defining the mechanical

properties of silk by providing stiff orderly cross-linking domains embedded in a

semi-amorphous matrix that consists predominantly of less orderly beta-structures,

31 helices and beta-turns (Figure 5-1(a))[234, 240, 151]. Beta-sheet nanocrystals,

bonded via assemblies of H-bonds [128, 131, 129], have dimensions of a few nm and

constitute ~ 10-15% of the silk volume, while with less orderly extended structures

the beta-sheet content can exceed 50% for spider and silkworm silks [96, 200, 68].

When silk fibers are exposed to stretch, beta-sheet nanocrystals reinforce the par-

tially extended and oriented macromolecular chains by forming interlocking regions

that transfer the load between chains under lateral loading, similar to their function

in other mechanical proteins [194, 163, 23, 72, 149, 151, 226, 37]. Thereby, beta-

sheet nanocrystals provide cohesion between the long polypeptide strands, enabling

the amorphous domains to stretch significantly. Eventually, fracture of beta-sheet
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nanocrystals occurs at large deformation and large loads, where the typical loading

at individual beta-sheet nanocrystals is lateral [103]. Recent experiments demon-

strated that when the size of beta-sheet nanocrystals is reduced by moderating the

reeling speed or by metal infiltration, silk displays enhanced toughness and greater

ultimate strength [233, 68, 150], exceeding that of steel and other engineered materi-

als. This is particularly intriguing, since H-bonds comprise the chemical bonds that

underlie the beta-sheet nanocrystals structures, and are one of the weakest chemical

bonds known. The issue of how H-bonded silk threads can reach such great strength

and toughness to overcome the limitations of their inferior building blocks is a ques-

tion of fundamental importance to understanding the behavior of a broader class of

beta-sheet rich biological protein materials (e.g. amyloids, beta-solenoids, virulence

factors).

To address this issue, the investigation of the properties of silk beta-sheet nanocrys-

tals requires an accurate representation of the protein's amino acid sequence and

chemical interactions from a bottom-up perspective. This renders explicit water

molecular dynamics a suitable tool, as it provides an accurate description of the

physical mechanisms governing self-assembly (association) and failure (dissociation)

of polypeptide chains at submicron length-scales [26, 207, 219, 158, 37]. Here the

focus is on beta-sheet nanocrystals with the sequence from Bombyx mori silk [81] as

a model system, resembling the structure of nanocrystals found in silks from most

spider and silkworm species due to the extremely high sequence conservation of the

crystalline regions (consisting of [GAIN or [AIN repeats with 4-12 residues).

5.2 Simulation setup and theoretical background

The methods used in this Chapter are briefly overviewed in this section. A mix of

MD simulation and continuum theory is used here to quantify the size-dependent

strength and toughness of beta-sheet nanocrystals.
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Figure 5-1: Simulation setup and theoretical considerations. Panel(a) illustrates a
schematic of the hierarchical spider silk structure. Panel (b) shows the atomistic struc-
ture of the silk beta-sheet nanocrystal obtained from the Protein Data Bank (identification
code 2slk) and replicated to build beta-sheet nanocrystals of different size. In the first
set of simulations, the beta-sheet nanocrystal is subject to loading conditions similar to a
cantilever beam with a constant tip loading, used to identify the bending rigidity and other
structural properties. This loading mimics the characteristic lateral loading relevant to silk
mechanics. Panel (c) shows the schematic representation of the beta-sheet nanocrystal and

definition of coordinates used here (upper part, where parameters b and h describe geomet-

ric parameters related to the number of sheets and the length of strands in the nanocrystal,
and L the size of the nanocrystal in the y-direction). The lower part shows the geometry

of the bending study and defines the displacement variable. Setup for pull-out simulations,
where in order to characterize fracture resistance of the nanocrystals, the central strand of
the middle sheet is pulled out with constant velocity, while the top and bottom strands are

restrained, as shown in panel (d).
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5.2.1 MD simulation setup

In order to examine the key mechanical parameters of the silk beta-sheet nanocrystals

as a function of size, two sets of computational experiments are carried out, namely

bending and pull-out simulations. The choice of this setup is motivated by a desire to

create a model system to quantify the size-dependent lateral stiffness of silk beta-sheet

nanocrystals under lateral loading, which is the key loading condition of nanocrystals

in silk [211, 173, 215]. In the bending scenario (Figure 5-1(b)), a constant lateral force

is applied at one end of the nanocrystal while the other end remains fixed, resembling

a cantilever beam with tip loading (see Figure 5-1(a)). This setup mimics biological

assays employed in single molecule experiments to assess mechanical properties (e.g.

elastic moduli) or the persistence length of biofilaments [174, 140]. In the pull-out

scenario (Figure 5-1(c)), the centre strand of the assembly is pulled out while the

outermost ends of the nanocrystal are fixed, in order to assess the deformation and

fracture behavior of the system at large forces. The pull-out setup complements the

first one by revealing the strength, fracture toughness and molecular failure mecha-

nisms of nanocrystals as a function of their size.

The coordinates for the molecular model of silk are obtained from the Protein

Data Bank with identification code 2slk [811, where different size nanocrystals used

here are built by truncating the system to four strands and replicating the system by

shifting the molecules at a proper distance [81]. The protein structure and coordinate

files are created using the psfgen tool in NAMD [169] using CHARMM topology and

parameter files [160]. The assembly is then minimized and equilibrated in a TIP3

explicit water box. Simulations are carried out in an NPT ensemble (Langevin piston

Nose-Hoover method). The piston target pressure is set to 1.01325 bar (1 atm), and

the temperature is 300 K. The stability of the beta-sheet nanocrystal without load

applied is verified from H-bond dynamics, as well as RMSD data obtained from the

molecular dynamics trajectory.

Simulations under lateral loading (Figure 5-1(b)) are carried out using the constant

force module in NAMD. One end of the nanocrystal is fixed by constraining the
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motion of the Ca-atoms at on the bottom strand of each sheet. The other end of

the nanocrystal is deformed by tip loading, where a constant force is applied to the

terminal Ca-atom of each strand at the top. For simulating the pull-out scenario

(Figure 5-1(d)) Steered Molecular Dynamics (SMD) method is used [219], with a

constant pulling velocity. The boundary conditions consist of fixing Ca-atoms on

the top and bottom strands with an SMD spring constant k =10 kcal/mol/A 2 and

a displacement rate z =0.0005 A/ps, in line with other recent SMD studies [219].

For the pullout simulations, the absolute value of the force levels will differ from

experimental studies due to rate effects. Based on earlier studies comparing molecular

dynamics simulations of beta-sheets with single molecule experiments [219, 128] it is

estimated that the strength values are lowered by a factor of six at experimental

rates, leading to pull-out strengths in the range of 250-400 pN. Indeed, the values

incorporating rate effects are in agreement with AFM experimental results of the

strength of spider silk nanofibers [173]. The comparison of the influence of the crystal

size on strength and toughness, the focus of the study reported in this paper, is

independent of the specific rate as confirmed by additional simulations carried out at

varying SMD strain rates (v = 0.0005 - 0.02 A/ps). Whereas the measured values of

the rupture force vary with rate, the length-scale in which the stick-slip mechanism

emergences is observed to be rate-independent.

The strain distribution analysis is carried out from the trajectories obtained from

SMD simulations. The bond strain is calculated based on the average initial bond

lengths and average length over a short time period just before first bond rupture.

Measurements are taken from H-bonds below and above the strand and bond po-

sitions, and lengths are averaged at each point to provide a single trend across the

cross-section. Bond strain is defined as the average initial length over the final, and

cutoff is defined as 3 A (H - 0 distance). A smoothing spline curve is fitted to the

data to show the general trend for each case. The overall trend does not depend on

this choice of fitting procedure.
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5.2.2 Continuum theory formulations

Here, continuum beam theory to analyze the bending deformation of the system. By

considering pure bending, the deformation of the tip is given as:

Pti = (5.1)
t 3EI

where P is the total applied force, E is the elastic modulus, and I is the second

moment of area around the bending axis. By defining an effective stiffness keff =

F/otip, the size dependence of the stiffness can be compared with the results obtained

from atomistic simulations (for small forces keff is independent of the force value).

Since the pure bending theory fails to describe the results of these simulations, an

extended beam model that includes the effects of shear deformation is considered [56].

Incorporating shear effects, eq. (5.1) becomes:

ti = -- + PL3  (5.2)
DT 3DB

The effective stiffness is given as:

P L L 3
keff(L) = = ( + ) . (5.3)

6 tip \DT 3DB!

Equation (5.2) is compared with the pure bending formulation neglecting shear

contribution in Figure 5-2(a). From the analysis of the best-fit curves, it is observed

that while the pure bending formulation can explain data for large crystal sizes, it fails

to provide a good overall description of the stiffness-size relationship, in particular

for small crystals.

The ratio of the first and second terms in eq. (5.2) quantifies the relative impor-

tance of shear contributions in the deformation for a given beam with constant length

and material properties. This parameter is defined as the shear contribution ratio s,

which is given by

3DB 1 Eh2  h2

s(L) = =2DT - -2  (5.4)
L2 DT 4GL 2 L2
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where the terms DB = El and DT = GA, denote the bending and shear rigidity. In

this notation, E and G stand for elastic and shear moduli, respectively, and A, is the

cross-sectional area.

Best-fit curves for individual displacement profiles are obtained using results from

the tip-displacement analysis, where values for DB and DT are taken as an initial

estimate and further refined for each case within the 95% confidence range (roughly

corresponding to ±50% maximum variation in DB and DT). The displacement profile

is then computed as:

Py P (2 ,
6(y) = + L Y 3 0 < y < L, (5.5)

DT DB 2 5

where y denotes the distance from the fixed end along the length of the structure. The

data points depicted in Figure 5-3(b) show the s values obtained for each case based

on the refined DB and DT values from displacement profile curves. Deviations in these

parameters are largely due to thermal vibration noise as well as nonlinearities arising

from out-of-plane deformations, which influence small and large systems variably.

To further confirm the size dependence of shear contributions, a pure shear (linear)

deformation profile is fitted to the smallest system to quantify how well it predicts

the tip displacement as a function of size. The tip deviations are calculated as the

difference between the tip displacements calculated from the refined fit vs. the pure

shear fit.

Cross sectional dimensions of b = 1.37 nm and h = 2.23 nm are used in the

calculation of the moduli values, based on atomic coordinates. The elastic and shear

moduli of the material can then be estimated from DB and DT . It should be noted

here that since the system is highly anisotropic, Poisson's ratio cannot be directly

derived from these values, which is highly specific to the plane of deformation studied.
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5.3 Size-effect of beta-sheet nanocrystals: Predic-

tions and experimental validation

Figure 5-2(a) shows snapshots from bending studies where the constant force applied

laterally at the tip scales with the nanocrystal size, ranging from 100-375 pN. A soft-

ening of the system in larger nanocrystals is evident from snapshots of deformation,

which increase as the size of the nanocrystal increases. The scaling of the stiffness

is first compared with a classical Euler-Bernoulli beam theory commonly applied to

biological filaments and nanostructures [56]. This model shows disagreement when

the stiffness of the nanocrystal is plotted against size, and fails to properly describe all

of the simulation results shown in Figure 5-3(a). This is because shear deformations

are neglected in this classical beam theory, as it only considers tensile and compres-

sive stresses in a beam's cross-section. Upon inclusion of shear correction [56], the

agreement between simulation and beam theory is excellent, as shown in Figure 5-

3(a). The comparison of the simulation results with the two models suggests that the

disagreement arises from the shear contributions to deformation, which is neglected

in the conventional theory but is apparently critical in describing the deformation

mechanisms in beta-sheet nanocrystals.

Moreover, the series of nanomechanical experiments enables us to identify the

distribution of strains in the nanocrystal. The relative importance of shear contribu-

tions in the deformation of a beta-sheet nanocrystal of size L is given by the shear

contribution ratio

3DB 1 Eh2  h2

s(L) = = DT - -2  (5.6)
L2DT 4 GL2 L2

where the terms DB = El and DT = GA, denote the bending and shear rigidity. In

this notation, E and G stand for elastic and shear moduli, respectively, and A, is the

cross-sectional area. For a rectangular cross section (Figure 5-1(c)), I = bh3 /12 and

As = bh. The shear contribution ratio s plotted a function of size shown in Figure

5-3(b) illustrates that as the size of the nanocrystal gets smaller, the loading scenario

133



b c

Figure 5-2: Snapshots of deformation profiles and failure mechanisms of silk beta-sheet
nanocrystals. Panel (a) exhibits the size-dependent elastic deformation of beta-sheet
nanocrystals, based on simulations in the bending setup under lateral loading (Figure 5-
1(b,c)). Smaller structures show a linear displacement profile, in line with shear governed
deformation, whereas a nonlinear profile with a significantly higher curvature is observed
for longer structures, illustrating a transition from shear to bending governed deformation.
Panels (b,c) illustrate fracture mechanism during pull-out simulations (lateral loading con-
dition shown in Figure 5-1(d)). The beta-sheet nanocrystal sizes investigated here range
from ~ 2-7 nm. Panel (b) shows a visualization of the failure mechanism in a beta-sheet
nanocrystal employing 7 strands (L = 2.83 nm), with snapshots taken just before and after
failure by rupture of H-bonds. Panel (c) depicts the molecular failure mechanism of the
largest beta-sheet nanocrystal studied (L = 6.56 nm), with snapshots taken just before and
after failure by rupture of H-bonds. The main difference in the failure mechanism between
the cases shown in panels (b,c) is that longer structures fail by significant bending, which
leads to a crack like flaw formation due to non-uniform tensile deformation of H-bonds.
In the case of shorter structures as shown in panel (b), the system responds more rigidly
(stiffer), and H-bonds break via a stick-slip motion due to uniform shear loading. The
stick-slip failure mode leads to significantly enhanced energy dissipation and multiple force
peaks in the force-displacement curve (see Figure 5-4(a)).
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becomes predominantly shear (s > 1), whereas for large beta-sheet nanocrystals pure

bending controls deformation (s < 1). The existence of this important size-effect

is independent of the particular boundary conditions employed here and is a result

purely of the geometry and material properties of beta-sheet nanocrystals.

This change in stress distribution inside the nanocrystal has major implications

on how individual H-bonds are loaded. When s < 1, H-bonds are stretched in tension

(i.e., pulled in the bonding direction). By contrast, when s > 1, H-bonds are being

sheared (i.e., pulled orthogonal to the bonding direction). For the smallest system

considered here (L=1.87 nm), the shear contribution is twice of that of bending,

whereas for the largest system (L=7.04 nm), shear contributes less than 10% to the

total deformation. By defining a critical shear contribution ratio s* = 1, a a critical

shear transition length scale can be identified as L* ~ 2.5 nm. Since both DB and DT

scale linearly with the number of sheets (i.e., dimension b along the x-axis as shown

in Figure 5-1), the shear contribution ratio s is independent of variations of b.

In addition to the analysis of the significance of shear contributions as a function

of the nanocrystal size, the elastic and shear moduli of the material can be estimated

from DB and DT . Based on this analysis, the shear modulus G = 4.6 GPa and

the elastic modulus E =22.6 GPa. Density Functional Theory (DFT) calculations

confirm this result, leading to G = 10.32 GPa and E = 36.45 GPa. The DFT

results are slightly higher, as expected for static calculations at zero temperature.

Most importantly, these findings agree very well with reported experimental values

of the elastic modulus of spider silk nanocrystals, where values in the range of E=16-

28 GPa have been reported [181, 143] (see Table 5.1 for an overview). This direct

comparison between simulation results and experiments provides validation for this

simulation approach. The shear modulus of silk beta-sheet nanocrystals has not been

tested directly, but results from torsion experiments on silk fibers that suggested shear

moduli of 2.38 GPa for N. Clavipes dragline silk and 3.81 GPa for B. mori silk [141],

in a similar range as the results obtained here.

The change in the distribution of strains in a nanocrystal as a function of its size

is expected to have important repercussions on their ultimate fracture behavior under
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Figure 5-3: Size dependence of the stiffness, and bending versus shear contributions as
a function of beta-sheet nanocrystal size. Effective stiffness of the beam, calculated from
the ratio of force applied to the observed time average of displacement at the tip (panel
(a)). When only bending deformation is taken into account, large deviations between the
model and simulation results are observed. When shear contributions to deformation are
incorporated into the model, the agreement with continuum theory is remarkable. Ratio
of bending to shear contributions (defined as the shear contribution ratio s), as a function
of beta-sheet nanocrystal size L (panel (b)). For the smallest system studied, the shear
contribution is twice of that of bending, whereas for the longest system, shear contributes
less than 10% to the total deformation. Displacement profiles for each case, where the
continuous curves illustrate the continuum theory predictions that include both bending and
shear (panel (c)). Data points in panel (b) show the s ratios obtained for each case, based
on the refined DB and DT values from displacement profile curves. The inlay in panel(c)
shows an illustration of the deviation of the tip displacement by considering the difference
between the model that incorporates shear and bending and a model that incorporates
only shear. The plot shows that the deviation is small for small beta-sheet nanocrystals,
confirming the hypothesis that shear dominates at small nanocrystal sizes. In contrast,
the deviation increases to rather large values at large nanocrystal sizes, showing that shear
dominated deformation breaks down once the crystal size exceeds a critical dimension.
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Approach Young's Modulus (GPa) Shear Modulus (GPa)
MD ([135]) 22.6 4.6

Experiment ([143, 181]) 16-28 2-4*
DFT ([135]) 36.45 10.32
*Experimental measurements of the shear modulus were done at the fiber scale

Table 5.1: Elastic properties of beta-sheet nanocrystals: MD, experiment and DFT com-
parison.

extreme loads. This is because in large nanocrystals H-bonds are loaded in tension,

but are loaded in shear in small nanocrystals. Since H-bonds are known to be signif-

icantly weaker in non-uniform tension than in uniform shear [23], they thus feature

a greatly varied capacity to withstand deformation. To test this hypothesis, the fail-

ure mechanisms of beta-sheet nanocrystals are investigated by carrying out pullout

simulations (Figure 5-1(c)), utilized here to examine the ultimate strength, elastic

energy storage (resilience) and energy dissipation (toughness) capacity of beta-sheet

nanocrystals under variations of the beta-sheet nanocrystal size L. Force-displacement

curves are shown in Figure 5-4(a) for varying nanocrystal sizes. As can be inferred

from Figure 5-4(b-c), both the initial stiffness and the ultimate strength (maximum

force peak) reach significantly larger values as the system size decreases below ~ 3

nm. Notably, the toughness is also maximized for systems beyond ~ 3 nm as shown in

Figure 5-4(c). The length scale at which the changes in the material behavior occurs

is strikingly similar to the critical crystal size estimated above, L* ~ 2.5 nm, corrob-

orating the hypothesis that the change in the strain distribution in the nanocrystals

has major implications on their fracture behavior as the capacity of H-bonds to resist

mechanical loads is altered.

The molecular mechanisms that lead to this behavior are evident from force-

displacement graphs and an analysis of the molecular trajectories. In the case of

small systems, the molecular assembly is stiff, and the initial rupture is followed by

a stick-slip motion as the strand slides and reforms H-bonds. This leads to multi-

ple force peaks in the mechanical response (see Figure 5-4(a)), which significantly

increases the total dissipated energy. Similarly, the resilience of the system, defined
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Figure 5-4: Strength, toughness, resilience and strain distribution in beta-sheet nanocrys-
tals as a function of crystal size. Figure summarizes results from pullout simulations. Panel
(a) shows the force-displacement profiles. Smaller systems exhibit multiple force-peaks due
to a slip-stick motion that can only take place when the interacting surfaces in beta-sheet
nanocrystals, adjacent beta-strands, are rigidly stabilized and act cooperatively. In this case
the stiffer response of the system leads to higher pull-out forces and thus greater strengths
(panel (b)) and significantly enhanced energy dissipation due to the slip-stick failure mech-
anism. The significance of this atomistic mechanism is evident from panel (c), where the
representative toughness of the system is calculated as the area under the force-displacement
curve. The results suggest that smaller beta-sheet nanocrystals are capable of dissipating
significantly more energy during failure, which results in a high fracture toughness. Sim-
ilarly, the resilience of the system - defined as the energy stored just before the initial
rupture of H-bonds - is also greater for smaller size systems. In panel (d), an analysis of
internal strain distribution in the beta-sheet nanocrystal is shown, as a function of crys-
tal size. The plot shows the normalized H-bond strain over z/h, for different nanocrystal
dimensions (load applied at z/h=O). This data clearly shows that the strain distribution
becomes more homogeneous for small nanocrystals, but shows significant strain localization
in large nanocrystals. The dashed lines illustrate the length-scales below which cooperation
of the H-bonds is ensured through shear dominated loading, in agreement with bending
simulations presented in Figure 5-3.
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here as the elastic energy stored in the linear regime preceding the first rupture

event, also becomes greater as the size is decreased, as shown in Figure 5-4(c). The

molecular mechanism that leads to this change is directly evident from Figure 5-

4(d), which shows the strain distribution of H-bonds along the section of the pulled

strand preceding failure. As the size of the nanocrystal is reduced below ~ 3 nm, the

strain distribution becomes increasingly uniform and approaches an almost constant

value throughout the entire section of the nanocrystal. The constant level of strain

throughout small nanocrystals leads to homogeneous shear failure, in agreement with

the observations reported in Figure 5-2(b). In contrast, the strain concentration that

emerges at the loading point in large nanocrystals results in the formation of crack-

like flaws that initiate catastrophic failure even at small loads, as shown in Figure

5-2(c).

An important implication of the model involves the length of individual beta-

strands, represented by the parameter h (see Figure 5-1(c)). The strand length h is

proportional to the number of amino acids in a beta-strand, since h = NLo (where Lo

~ 3 A is the Ca-distance along a beta-strand, and N denotes the number of amino

acids in a beta-strand). Since s ~ h2/L 2 (eq. (5.4)), the shear contribution ratio s

is expected to be higher for nanocrystals composed of longer beta-strands, leading

to a greater shear contribution for a given nanocrystal size L. This scaling implies

that modulating the beta-strand length could result in more rigid, tougher and more

resilient structures. Specifically, the model predicts that for any given nanocrystal

length L, a minimum strand length h could be found to reach a desired high level of

S.

However, as shown in earlier studies the effectiveness of each beta-strand to carry

homogeneous load under shear is limited, and by itself is a function of the strand

length h [128, 131, 129]. While small groups of H-bonds in beta-strands can in-

deed work cooperatively under homogeneous shear, this mechanism breaks down be-

yond a critical number of H-bonds, at N* ~ 4 (or equivalently, a critical strand

length h* = N*Lo), due to a competition between entropic elasticity of the chain and

the energetics of H-bonds that will lead to localized failure within each beta-strand
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[128, 131, 129] (Figure 5-5(a) for a visualization of this effect). Most importantly,

noting this limitation on h, the nanocrystal size cannot be increased arbitrarily, and

a critical nanocrystal size L* emerges at which it provides the best overall mechan-

ical performance. An esimate for the critical dimensions can be given as h* - 1-2

nm and L* 4 2-4 nm, defining length-scales at which all H-bonds in the nanocrystal

gain a strong character through cooperativity (Figure 5-5). Notably, these critical di-

mensions are in agreement with experimental evidence that suggest that poly-Ala and

poly-(GA) repeats typically span 4-12 amino acids (i.e., in the range of h = 1-3 nm).

It is very important to note here that the cooperativity of H-bonds in the formation

of beta-sheet nanocrystals differs from cooperativity of H-bonds under mechanical

load. This is due to the fact that the latter depends strictly on the stress-state of the

H-bonds as shown here, which is also true for other beta-sheet structures [130, 23]

5.4 Discussion and implications for materials de-

sign

The main conclusion of this Chapter is that the nanoscale confinement of beta-sheet

nanocrystals in silks plays a fundamental role in achieving great stiffness, resilience

and fracture toughness at the molecular level of the structural hierarchy of silks,

suggesting that smaller is stronger and tougher. In contrast to conventional belief,

cooperative failure of H-bonds cannot be presumed a priori. Rather, the existence

of cooperativity depends quite strongly on the size of the crystals and breaks down

once beta-sheet nanocrystals exceed a critical size. Smaller beta-strand nanocrystals

provide a greater stiffness and fracture resistance, as they are predominantly loaded

in uniform shear, which leads to cooperative rupture of H-bonds and stick-slip energy

dissipation mechanisms (Figure 5-4). Similar stick-slip mechanisms exist in other bi-

ological materials (e.g. wood or bone), and are also observed in metals in the form of

dislocations that provide ductility [122, 84, 148, 128, 131, 129, 102]. Further contri-

butions to the macroscale behavior of silk could arise from higher order effects due to
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Figure 5-5: Hierarchical effects in the architecture of spider silk nanocrystals. The
formation of confined beta-sheet nanocrystals with critical strand length h* and critical
nanocrystal size L* provides maximum strength, toughness and stiffness. Panel (a) shows
the schematic phase diagram to show the interplay of the parameters h and L in defining
the properties of nanocrystals (S = schematic plot of the strength of a beta-strand as a
function of strand length h [128, 131, 129], F = strength of nanocrystal as a function of
crystal size L, T = toughness of nanocrystal as a function of crystal size L; both plotted
schematically based on the results shown in Figure 5-4). While increasing the number of
H-bonds in a beta-strand increases its mechanical stability for small numbers of H-bonds,
the effect does not continue for beta-strands that contain more than ~ 4 H-bonds, resulting
in a plateau of the force S for lengths in excess of h*. The physics behind this is a local-
ization of deformation, similar to localization of shear slip in a crystal when dislocations
are formed [122, 84, 148, 128, 131, 129, 102]. Panel (b) depicts a schematic illustration of
how hierarchical structure formation in the strand length h and nanocrystal size L lead to
the formation of high performance beta-sheet nanocrystals that combine strength, tough-
ness and resilience despite being composed of structurally inferior, weak building blocks,
H-bonds.
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the hierarchical structure of the material [233, 84, 148, 102]. Since bending is a funda-

mental mode of deformation of beta-sheet nanocrystals that can be thermally excited

[178], these findings could also be important for their thermodynamical stability.

From a slightly different point of view, the generation of a nanocomposite struc-

ture (Figure 5-5(b)) can be regarded as the deliberate placement of defects, which

effectively results in flaw-tolerance [86]. Larger beta-sheet nanocrystals are softer

and fail catastrophically at much lower forces due to crack-like flaw formation, as

visualized directly in Figure 5-2. This catastrophic breakdown leads to rapid disin-

tegration of silk fibers, which is further enhanced due to easier access of competing

water molecules to H-bonds that facilitate rupture [219, 184]. This implies that

silks with larger nanocrystals are weaker, in agreement with experimental studies

[68]. Specifically, these results explain experimental findings that the reduction of the

nanocrystal dimensions below 3 nm increases the ultimate strength and the modulus

multiple-fold [68]. The mechanism underlying these experimental observations could

be the brittle nature of larger beta-sheet nanocrystals. Initiating failure of small beta-

sheet nanocrystals requires much higher forces and a significantly larger amount of

mechanical energy. Furthermore, smaller crystals feature a self-healing ability until

complete rupture occurs, which is attributed to the capacity of H-bonds to reform

during stick-slip deformation. This mechanism protects backbone H-bonds from ex-

posure to surrounding water. In the overall mechanical behavior of silk, strong, tough

and mechanically resilient beta-sheet nanocrystals provide effective cross-links that

contribute to the extraordinary macroscopic tensile strength and toughness of silks.

The approach illustrated here is generally applicable for predicting material prop-

erties of macromolecular nanocrystals and the shear transition length scale directly

from atomistic simulation. The method uses generic parameters that can be calcu-

lated from experiments or atomistic simulations, and is in principle applicable to a

broad range of nanostructures, including synthetic materials (e.g. polymer, ceramic

or metal fibres). Moreover, the significance of shear contributions in nanocrystals is

also relevant to protein fibres with a similar chemical makeup, such as amyloids, beta-

solenoids, protein nanotubes or other fibrous beta-proteins that employ beta-strands
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and may be linked to their significant stiffness and bending rigidity [140]. Indeed,

there is evidence that shear effects are important in other biological filaments such as

actin bundles and microtubules [54, 174]. The stiffness and stability of these struc-

tures may be improved slightly by controlling side-chain packing and steric zipper

formation (e.g. poly-Ala vs. Gly-Ala repeats). but the scaling of the shear contribu-

tions is not be expected to vary considerably since Gly-to-Ala substitutions have been

shown to have marginal influence on the mechanical properties of silk nanocrystals

[253].

The size effect revealed here elucidates an efficient strategy to overcome the in-

trinsic brittleness and mechanical weakness of H-bonds by confining structures at

controlled length-scales, which guarantees uniform deformation and concerted failure

(Figure 5-5). Another consideration is that, given the seemingly simple nature of the

amino acid composition of silk beta-sheet nanocrystals, their capacity to resist me-

chanical perturbation arises not from their specific chemical features but rather from

universal features of the protein backbone combined with the high level of control over

their structural dimensions. The utilization of weak H-bonds under nanoconfinement

illustrates how a weakness is turned into a strength. Most engineered materials rely on

strong (e.g. covalent) bonding, which requires considerable energy use during mate-

rial synthesis that can also lead to catastrophic failure once bonds break. In contrast,

the use of weak H-bonding facilitates self-assembly at moderate temperatures and

provides a built-in capacity to self-heal since broken bonds can be reformed.

The application of these findings to the design of synthetic materials could pro-

vide us with new material concepts based on inexpensive, abundant constituents and

facilitate the development of effective cross-linking domains. Since we are not limited

technologically by natural building blocks, the potential to enhance biological ma-

terials beyond their natural capacity exists, perhaps through the combination with

carbon nanostructures. Other opportunities include the incorporation of mutability,

to develop materials whose mechanical properties can be controlled by external cues

such as temperature, pH, magnetic or electric fields.
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Chapter 6

Nanostructure and molecular

mechanics of spider dragline silk

protein assemblies

Spider silk is a self-assembling biopolymer that outperforms most known materials

in terms of its mechanical performance. While experimental studies have shown that

the molecular structure of silk proteins has a direct influence on the stiffness, tough-

ness and failure strength of silk, no molecular level analysis of the nanostructure and

associated mechanical properties of silk assemblies have been reported. This sec-

tion focuses on a report of the atomic-level structures of MaSpI and MaSp2 proteins

from the N. Clavipes dragline spider silk sequence, obtained using replica exchange

molecular dynamics, and subjected to mechanical loading for a detailed nanome-

chanical analysis. The structural analysis reveals that poly-alanine regions in silk

predominantly form distinct and orderly beta-sheet crystal domains, while disorderly

regions are formed by glycine rich repeats that consist of 31-helix type structures and

beta-turns. The structural predictions are validated against experimental data based

on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon

atomic distances, as well as secondary structure content. A selection of structures is

subject to mechanical loading, which reveals that distinctly different hydrogen bonded

regions and the type of secondary structure control the mechanical response of silk
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at the nanoscale. Both structural and mechanical characterization results show ex-

cellent agreement with available experimental evidence. These findings set the stage

for extensive molecular-level investigations of silk, which may contribute towards an

improved understanding of the source of the strength and toughness of this biological

superfiber.

6.1 Background on spider silk ultrastructure and

mechanics

Chemistry and nanoscale features of biological materials are crucial to understand

the source of their mechanical properties such as strength, failure mechanisms and

elasticity [84]. In protein materials, the primary structure of macromolecules, consist-

ing of a linear sequence of individual amino acids describes the chemical specificity

of the interactions at the molecular level, which give rise to formation and failure

characteristics of the material [37, 148]. Spider silk is an extraordinary material that

surpasses most synthetic fibers in terms of toughness through a balance of ultimate

strength and extensibility [247, 212, 11, 214, 233]. The source of silk's unique prop-

erties has been attributed to the specific secondary structures of proteins found in

the repeating units of spider silk proteins [103], which assemble into a hierarchical

structure as shown in Figure 5-1(a).

Experimental studies have thus far primarily focused on developing a mapping be-

tween repeating sequence units of spider silk and the basic structural building blocks

of fibrils. Two distinct proteins are typically found in dragline silks with similar se-

quence across species [88]. One of the most studied silk from spiders, N. Clavipes

dragline silk contains MaSp1 and MaSp2 proteins, with different repeat units and

possibly distinct mechanical functions [108, 24, 103]. MaSp1 contains glycine (Gly

or G) rich Gly-Gly-X (GGX) repeats with poly-alanine (Ala or A) and GA domains,

where X typically stands for alanine, tyrosine, leucine, or glutamine. Whereas MaSp2

also contains poly-Ala domains, it has a repeat unit with high proline content in
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the form of (GPGQQ/GPGGY). The proline rich segments are intrinsically twisted

which inhibit edge-to-edge aggregation of strands, thereby controlling the location

and size of beta-sheet nanocrystals in silk. These segments, bearing sequence resem-

blance to elastin, are thought to form beta-spiral or type II beta-turn structures that

provide extensibility through hidden length formation and control the unique ther-

momechanical properties of spider silk [93, 204, 103]. Earlier studies have suggested

that MaSp1 is more dominant in the composite morphology of the spider dragline silk

than MaSp2, with a ratio of approximately 3:2 or higher, depending on the species

[24, 106, 97, 220]. Recent investigations revealed that anti-parallel beta-sheet crystals

at the nanoscale, consisting of highly conserved poly-(Gly[G]-Ala[A]) and poly-Ala

repeats found in both commercial and spider silk [103], play a key role in defining the

mechanical properties of silk by providing stiff orderly cross-linking domains embed-

ded in a semi-amorphous matrix with less orderly structures [151, 234, 240]. Earlier

studies have shown that hydration level and solvent conditions such as ion content and

pH play a role in the structure and mechanical properties of silk proteins[188, 64]. For

instance, a unique aspect of silk fibers is their capacity to exhibit a dramatic reduction

in length upon hydration; a phenomenon known as supercontraction [211, 241].

Beta-sheet nanocrystals that employ dense network of hydrogen bonds [129, 135]

have dimensions of a few nm and constitute at least 10-15% of the silk volume, while

with less orderly extended structures the beta-sheet content can be much higher for

most silks [68, 96, 200]. The existence of 31-helices, and beta-turn or beta-spiral con-

formations has been suggested as models for the amorphous domains [151, 181, 234];

however, no definite atomistic level structural model has yet been reported. It is

anticipated that novel statistical mechanics approaches [185], experimental methods,

such as x-ray diffraction and scattering [197, 238], solid-state NMR [241, 108, 214]

and Raman spectroscopy [151, 200, 201], combined with pioneering multiscale atom-

istic modeling methods such as those based on density functional theory [135, 184] or

molecular dynamics [26, 42, 135, 158] will provide more insight into the atomic reso-

lution structure for complex materials such as spider silk. However, due to the lack

of current large-scale atomic resolution models, the links between genetic makeup,
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chemical interactions and structure, as well as their associated macroscale mechan-

ical properties remain obscure. Earlier atomistic studies have focused solely on the

well-defined crystalline regions consisting of poly-Ala (spider silk) or poly-Gly-Ala

repeats (commercial silk) [253, 135], and studies on the links between structural and

nanomechanical features of the nanocomposite structure of silk have remained a chal-

lenge.

6.2 Simulation approach

In this work, atomistic simulations are carried out to identify nanostructural mod-

els of spider silk proteins, with the goal to develop a link between genetic sequence

and resulting mechanical properties. The challenges of reaching native (equilibrium)

structures within the time-scales accessible to conventional molecular dynamics sim-

ulation require enhanced sampling methods such as replica exchange molecular dy-

namics (REMD) [224] . REMD method (see Chapter 2) is used to investigate the

structures formed by assemblies of short segments of MaSp1 and MaSp2 proteins.

Along with other protein structure prediction approaches [19, 258], REMD is con-

sidered to be an effective tool for investigating folding and aggregation of proteins,

as it reduces the likelihood of kinetic trapping at non-native states [203]. Through a

fast search of the conformation space at high temperatures and more detailed inves-

tigation at low temperatures, it allows the system to overcome energy barriers and

local minima corresponding to non-native structures [78, 166, 189, 192] of proteins

and allows identifying native protein structures from the amino acid sequence, with

atomistic resolution. The overall approach is summarized in Figure 6-1(a).

The computational approach used here consists of two steps, (i) structure identi-

fication with validation against experimental results, and (ii) mechanical stretching

of the resulting structures, with subsequent analysis of mechanical properties and

deformation mechanisms.
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Figure 6-1: Simulation protocol and representative structure results. Panel (a) summa-
rizes the approach taken here to identify the nanostructure of spider silk proteins, here
focused on the MaSp1 and MaSp2 silk sequences from the N. Clavipes spider. Monomers
representing sections of the MaSp1 and MaSp2 proteins (containing a poly-alanine repeat
in the center) are used as the basic building block. Replica exchange simulations are carried
out at multiple temperatures, and an ensemble of most likely, final structureas are compared
with experimental evidence. Panel (b) illustrates the natural process of silk assembly (and
fiber formation) during which silk proteins are subject to shear. The natural process of
shearing and alignment of protein monomers motivates the choice of the initial geometry
shown in panel (a). Panel (c) shows the mechanical loading condition employed in these
simulations.
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6.2.1 Structure identification

Primary protein structures (polypeptide sequences) are created with the amino acid

sequence of the N. Clavipes MaSp1 and MaSp2 proteins, which constitute the majority

of the silk's core [108]. The MaSp1 sequence is (in one-letter amino acid codes):

GGAGQGGYGGLGSQGAGRGGLGGQGAGAAAAAA

GGAGQGGYGGLGSQGAGRGGLGGQGAG.

The MaSp2 sequence is:

GPGQQGPGGYGPGQQGPGGYGPGQQGPSGPGSAAAAAAAA

GPGQQGPGGYGPGQQGPGGYGPGQQGPSGPGS

The monomers consist of two glycine-rich repeating units surrounding a poly-

alanine segment to represent a single monocrystal. MaSp1 protein consists primarily

of GGX type repeats followed by a GA and poly-Ala region. MaSp2 on the other

hand has proline-rich GPGQQGPGGY repeats, and a poly-Ala region. The start-

ing configuration is a lattice structure consisting of anti-parallel arrangement in one

direction and parallel arrangement in the other. Previous findings on poly-alanine

aggregation suggest that anti-parallel orientation in the hydrogen bonding direction

and parallel stacking in the side-chain direction lead to stable beta-sheets [157], hence

such an arrangement is considered here to be a good starting point for obtaining as-

sembled structures by silk proteins. In the initial setup, each strand is separated by

10 A in a square lattice (see Figure 6-1(a)). The simulations start from an extended

conformation, which is very relevant in the processing of silk where elongational flow

in the spinning duct leads to stretching and alignment of monomers in the concen-

trated dope, as shown in recent experimental work [188] (see Figure 6-1(b) for a

schematic). It should be noted that higher temperature replicas can allow wide sam-

pling around this basic orientation, where strands can rearrange in anti-parallel or

parallel fashion as the strands can diffuse within the lattice. At high temperature

replicas, weak interactions between the strands can be broken; i.e. the system melts

and reforms a wide range of structures that can be investigated in detail at lower

temperatures. A key hypothesis here for using an initial orderly lattice arrangement
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is that edge-to-edge aggregation of strands - similar to amyloids [125] -, is the driving

force for formation of mono-crystals, rather than local folding of the backbone onto

itself through short turn structures. This is supported by recent experiments, which

suggest that large extensional forces during spinning, and high concentration of the

dope are requirements for crystal formation ([188]). This assumption is reasonable

in the context of a monocrystal study as pursued here, and does not rule out the

possibility of the formation of folded intramolecular contacts at longer length scales.

Experimental evidences also suggest that strand orientation in the proximity of the

crystals is aligned more or less parallel the fiber axis, also supporting this initial

configuration [201, 240].

Structure prediction simulations are carried out with Langevin dynamics using

CHARMM [25] and the EEF1.1 force field with a Gaussian effective solvent energy

function [147]. The REMD protocol is setup using the MMTSB toolset [77]. A simula-

tion time step of 2 fs is used by employing the SHAKE algorithm for hydrogen atoms.

Solvent friction is added via a Langevin friction term that allows for high mobility

and conformational sampling. While the EEF1.1 model has some particular modi-

fications and simplifications on solvent, side-chain and hydrogen bond interactions,

it has the benefit of being orders of magnitude faster than other implicit or explicit

solvent models, and the solvent volume exclusion model is particularly attractive for

large-scale assembly processes as in the case of spider silk. Since force fields are gener-

ally parameterized for room temperature calculations, ensemble structures belonging

only to the lowest temperature replica are used, and higher temperature replicas serve

only the function of overcoming kinetic trapping and fast conformational search in

the REMD scheme.

Initial structures are oriented along the main chain axis using built-in functions in

CHARMM (see geometry shown in Figure 6-1). Long initialization runs are performed

achieve distinct starting configurations to enhance better sampling in the production

run. This is followed by a production run starting from the final configurations of

the replicas from the initialization run and using an exchange time step of 2 ps to

allow the relaxation of the system. Starting from the final configurations of the
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initial run, simulations are carried out on 64 replicas distributed over the 300-650

K temperature range (the high temperature replicas ensure that the protein can

sample a wide range of conformations, specifically including those that resemble the

initial structural ordering of strands). Each replica is simulated for a total of 10 ns,

corresponding to a total simulation time of 640 nanoseconds.

An ensemble of structures is analyzed from the last 1,000 exchanges of the produc-

tion run from the lowest temperature replica, and is used to extract the lowest energy

structures (coordinates of all structures generated from the simulations are available

upon request). Representative final structures are selected based on a clustering al-

gorithm based on mutual similarity according to root mean square deviation for each

structure. The K-means clustering algorithm is used here (from the MMTSB toolset

[77]) to identify the largest clusters that have approximately 10% or more presence in

the selected set, corresponding to the top 5 clusters. From the selected clusters, struc-

tures closest to the cluster center are selected as the representative models. Analysis

on dihedral angles and alpha-carbon distances are carried out using the complete data

set to achieve better statistical representation. The secondary structure content is

calculated in Visual Molecular Dynamics (VMD) [111] using the STRIDE algorithm.

6.2.2 Mechanical analysis

Mechanical stretching tests are done using a constant loading rate of 2 pN applied

every 20 ps, that is, a loading rate of 0.2 N/s. Half of the chains are randomly

selected to be pulled in +z direction while the other half is pulled in -z, to impose

the characteristic lateral loading of the crystals as experienced in the native silk

structure (see schematic shown in Figure 6-1(c)).

Force-extension plots are based on the forces applied, and the measured distance

between the center of mass of pulled atoms is computed. The analysis on hydrogen

bond dynamics is computed using .tcl scripts.
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6.3 REMD and mechanical stretching simulation

results

This section summarizes the findings from REMD simulations on example spider silk

building blocks. Structural predictions are presented and compared with experimental

evidence. The focus is primarily on dihedral angles, since this approach allows for a

direct quantitative comparison that is independent of the size of the system studied.

Since the majority of silk consists of glycine and alanine amino acids, a comparison

of the dihedral angles of glycine and alanine residues with experimental data on these

amino acids in spider silk provides the most reliable validation for the simulations.

6.3.1 Predicted representative structures and experimental

validation

For MaSpi alanine residues (see Figure 6-2(a)), it is observed that the most common

phi-psi angle value is around (-150,135) in excellent agreement with experimental find-

ings that suggested (-135,150), corresponding to a beta-sheet structure. For glycine

(see Figure 6-2(b)), the results show a symmetry around the origin, exhibiting a wide

distribution around approximately (+/-75,-/+75), in agreement with experimental

findings around (+/-60,-/+135) [240] that also have symmetry. Similar results are

observed for MaSp2 (Figure 6-2(c-d)), however, a wider distribution of glycine dihe-

dral angles is evident from the Ramachandran plot.

While mapping of the poly-alanine regions to beta-sheet conformation is straight-

forward from the data on alanine residues for both structures, the glycine regions

require more data to be able to distinguish them within common protein structures.

A close look at proline residues in MaSp2 shows peaks around (-60,-30) and (-60,120),

corresponding to type I and type II beta-turns that would incorporate adjacent Gly

residues. From the ensemble of structures obtained from MaSp1 replica exchange sim-

ulations, alpha-carbon atom distances are computed between glycine residues that

are three residues apart, to characterize the basic repeat unit length of the GGX
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Figure 6-2: Comparison of resulting structures for MaSp1 and MaSp2 with experimental
data for validation. Panels (a-d): For Ala residues, the most common phi-psi angle value
is around (-150,135) in excellent agreement with experimental findings that suggested (-
135,150) that correspond to a beta-sheet structure. For Gly residues, a wide distribution
around approximately (+/-75,-/+75) is observed with symmetry around the origin, in line
with experimental findings around (+/60,-/+135) that also show a symmetric distribution.
The wider distributions in MaSp2 may be due to a more amorphous structure caused by high
proline content. Panel (e): Dihedral angle distribution of Proline residues cluster around
(-60,-30) and (-60,120), which correspond to type I and type II beta-turn conformations
respectively.
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domains. The probability distribution of Ca(i)-Ca(i+3) distances measured from

atomic coordinates has a distinct peak around 9 A. This value is greater than most

known beta-turn structures and falls short of the anti-parallel beta-sheet conforma-

tions that typically exceed 10 A. These domains have interchain hydrogen bonding

that is less oriented and sparser. Based on these observations, it is also evident that

these disorderly structures in MaSp1 resemble the characteristics of 31-helices, which

are the most likely conformations taken by the Gly-rich domains, supporting earlier

hypotheses reported in the literature [144, 240]. The density of hydrogen bonding in

these regions is significantly reduced compared with the orderly network in beta-sheet

nanocrystals, suggesting that moderating the number and orientation of intermolec-

ular interactions leads to the characteristic heterogeneous structural arrangement

observed in silks.

For illustrative purposes, a representative collection of structures obtained from

the simulations is shown in Figure 6-3 where percentages of different secondary struc-

tures are illustrated in each sub-panel (I-V). For both MaSp1 and MaSp2, a significant

percentage of residues are found to be in semi-extended, disorderly conformations in

agreement with the discussion put forth based on experimental studies [188]. These

results suggest that poly-alanine regions have an extremely high propensity for aggre-

gating into crystalline beta-sheet structures by inter-strand hydrogen bond formation

and intersheet stacking in the side-chain direction. Along with Glycine regions that

also form extended regions, the beta-sheet percentage ranges from 28% to 55% for

the sequences studied in this work. These results compare well with recent NMR

studies on dragline silk, which have indicated 34% beta-sheet content [117]. This

highly orderly domain is dispersed within the glycine-rich repeat units, which are

still fairly oriented but much less-orderly, forming more amorphous structures. A key

finding from the secondary structure content analysis is the lack of any alpha-helix

conformation of the MaSp1 and MaSp2 silk constituents, supporting a wide range

of experimental evidence that ruled out this conformation [108, 116, 117, 240]. In-

stead, results presented here suggest that disorderly structures resembling 31-helices

and beta-turns dominate non beta-sheet conformations in these proteins. The higher
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content of proline in MaSp2 leads to more disorderly structures in amorphous regions

and well-defined beta-sheet crystal regions. This is evident from both the lower ratio

of beta-sheets in this sequence, and also the shorter lengths of beta-strands when

comparing MaSp1 structures in Figure 6-3(a) with those of MaSp2 in Figure 6-3(b).

Altogether, the structure identification and comparison with available experimen-

tal results suggest that the models obtained from the simulations resemble those found

in native spider silk. Overall, crystal structures consisting of poly-Ala repeats have

the size of 2-3 nanometers in the chain direction, with partial beta-sheet domains in

semi-crystalline regions, particularly for MaSp1. Stacks of 2 to 4 sheets (1-2 nm) and

up to 8 strands per sheet (2-4 nm) are observed in simulations (but these values may

increase if the number of chains considered is increased). The amorphous domains are

semi-extended, and the average lateral length per residue for both structures emerges

to be around 2 to 3 A, which is shorter than fully extended structures that would

require more than 3 A length. Larger folds, where sheets are formed by polypeptide

strands with self-interactions are not observed here, but such morphologies cannot be

ruled out considering that actual spider silk sequences are much longer and therefore

more flexible than the short segments studied in this work. This study sets the stage

now to explore the mechanical properties of both the MaSp1 and MaSp2 structures

using ultra-large-scale molecular dynamics simulations, which is discussed in the next

section.

6.3.2 Molecular mechanics of dragline silk protein assemblies

This section summarizes findings from constant loading rate mechanical shear sim-

ulations on the selected structures, where randomly selected strands are pulled in

opposite directions to mimic the relevant lateral (shear) loading conditions of small

crystals in spider silk. The resulting force-displacement curves from these simula-

tions are shown in Figure 6-4(a-b). Both MaSpi and MaSp2 show a characteristic

smooth curve with three regimes, where the relative moduli of these regimes depend

on the secondary structure content. . For molecules with high turn ratio and low

beta-sheet content (see MaSp1-IV and MaSp2-II), an initial stiff regime, followed by
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Figure 6-3: Secondary structure distribution of selected replicas. Representative replicas,
selected according to clustering method, and the ratio of different common secondary struc-
tures are presented here. Panels I-V indicate the five most likely structures selected for
each sequence. Panel (a): The majority of the structures are observed to be in beta-sheet
or beta-turn conformation, where for MaSp1 beta-sheet content is higher due to the lack
of proline residues that reduce chain aggregation in sheet form. The relative content of
secondary structure controls the mechanical properties of protein materials; where greater
crystallinity typically means greater strength and turn structures provide hidden length re-
quired for extensibility and toughness. Panel (b) illustrates representative structures from
replica exchange simulations. Percentages of different secondary structures are illustrated
in each sub-panel (I-V). The coloring is based on structural configuration, where yellow rep-
resents beta-sheet and extended structures. Insets illustrate the stacking formation of the
beta-sheets in the poly-Ala regions. The results consistently illustrate that poly-Ala regions
form highly orderly beta-sheet crystals whereas the Gly rich repeat units are less-orderly,
forming more amorphous domains.
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a softer regime, followed by a very stiff regime leading to failure are observed. On

the other hand, systems with very high beta-sheet content (MaSpl-I, MaSp2-I) show

a monotonically stiffening force-extension response. This suggests that the charac-

teristic yielding behavior at the molecular level of the hierarchy of silk is controlled

by the ratio of turn to beta-sheet structures, where a higher turn ratio leads to the

emergence of the yielding phenomenon. This is an alternative means of achieving

high initial stiffness in comparison with for instance MaSp1-I structure, which has

more beta-sheet content and therefore exhibits higher initial stiffness but much less

extensibility. MaSpi also exhibits a larger deviation in the initial end-to-end length,

owing to the wider secondary structure distribution. The effect of this is evident

from the analysis displayed in Figure 6-4(c), which illustrates the yielding behavior

of both structures and much larger variation in response in MaSp1, where increasing

the turn content and inter-chain hydrogen bonding increases the initial stiffness and

extensibility of the assembly, thereby improving the toughness as well. The failure

strength of MaSpI and MaSp2 seem to be similar in these simulations, as shown in

Figure 6-4(d).

The force extension curves obtained here also show minor deviations from the

inextensible chain models commonly used for polymer materials. At low forces, this

is due to the rearrangement and rupture of bonds in the amorphous domains. At

high force, the crystal morphology can change due to large shear stresses as well as

transverse compression, where the latter causes buckling and the collapse of the sheet

into a smaller, more compact formation.

Some of the structural transformations and failure mechanisms can be observed

from the trajectories obtained from stretching simulations of the spider silk assemblies.

Figure 6-5(a-b) show snapshots of deformation from MaSp1 and MaSp2 simulations.

As evident from the snapshots, amorphous domains stretch significantly with applied

force, and a transition from turn to beta-sheet structures are observed for both MaSp1

and MaSp2 (regime just before the point marked by a red arrow in Figure 7). The

percent change seems to be larger for MaSp2, since in their unstretched configuration,

proline residues act as beta-sheet breakers. A key observation is that failure of the
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Figure 6-4: Force-displacement curves for selected structures. Figure shown illustrates
the response of selected structures to shear forces applied to alternating strands. Force
values shown are force applied per polypeptide strand. Panels (a-b) illustrate curves ob-
tained from MaSp1 and MaSp2. The forces cause tensile stretching of the strands, where
a strain stiffening behavior is evident once the chain reaches a certain length, independent
of the chain's initial stretch state. The responses are similar for MaSp1 and MaSp2, how-
ever, it depends on the secondary structure content of the system. As shown in panel (c),
MaSp1 structures have a large variation on beta-sheet vs. turn content, which leads to
distinctly different mechanical responses. Solid lines shown cases having the largest turn
content, whereas dashed lines illustrates structures with more beta-sheets. As the turn
ratio increases, an initial stiff regime is observed followed by softening, followed by stiff
bond stretching regime. For extended structures, the initial stiff regime disappears, and
the typical strain stiffening behavior of polymer chains can be observed. The source of this
difference is the existence of denser hydrogen bonding in amorphous regions due to turn
formation, which leads to higher stiffness and energy dissipation for structures containing
more turns. Lower variation of turn and beta-sheet content in MaSp2 leads to the reduced
variation of the mechanical response for this structure. As can be inferred from panel (d),
the failure strength of both structures is similar. Since the failure strength is controlled
largely by the crystals, which have almost identical sequence in both cases, the morphology
of the crystal plays most likely the key role in determining the failure strength.
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(a) MaSp1 (b) MaSp2

Figure 6-5: Stretching and structural transformation of the proteins. The figure illustrates
the stretching behavior of the amorphous domains and crystals under shear forces for MaSp1
(panel (a)) and MaSp2 (panel (b)). Panels (i-v) illustrate the time sequence of events
during the stretching simulations. As evident from the time sequence of snapshots (i-
v, notation different here to differentiate time sequence and predicted structures shown
in Figure 6-3), amorphous domains stretch significantly, and a transition from turn to
beta-sheet structures are observed. The GGX repeats in MaSp1 are capable of forming
beta-sheets during stretching, whereas this is observed to a lesser extent in MaSp2. A
key observation is that failure of the system happens by sliding of strands with respect to
each other upon breaking of the hydrogen bonds and side-chain contacts in the crystalline
domain. This typically occurs at the interface region with solvent at the boundary of the
crystal, leaving part of the crystal intact even after failure of the structure.
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system happens by sliding of strands with respect to each other, which can occur

only upon breaking of the hydrogen bonds in the crystalline domain. In the MD

simulations, failure occurs at the interface region with solvent at the boundary of the

crystal, leaving part of the crystal intact even after failure.

Representative plots are shown from MaSp1 and MaSp2 structures with highest

turn content are shown in Figure 6-6. A comparison of Figure 6-6(a) and Figure 6-

6(b) shows the strain softening behavior that occurs when the turn/beta-sheet ratio

is high in both structures. Upon initial yielding, number of hydrogen bonds in the

system and also the turn content decreases, as shown in Figure 6-6(a) and Figure

6-6(b) respectively for MaSp1 and MaSp2 proteins. Further stretching leads to a

much stiffer regime due to stretching of the covalent backbone (regime after the point

marked by a red arrow in Figure 6-6), which initiates rapid rupture of many hydrogen

bonds in the amorphous domains. The system fails upon breaking of hydrogen bonds

in the crystal, and the subsequent sliding of strands. The constitutive sigmoidal

behavior of the force-displacement graphs observed here for both structures agrees

qualitatively with the micro-scale response of spider silk.

6.4 Development of a constitutive law

This section focuses on the development of a constitutive law for spider silk's building

blocks based on atomistic simulation results presented. The goal with this approach

is to provide a fundamental description of spider silk mechanics using a bottom-up

perspective, and thereby elucidate the design strategy behind the making of silks. For

this reason, a simple coarse-grained model whose parameters are directly informed

from atomistic results can be utilized to extend the findings from atomistic simulation.

A combination of beta-sheet nanocrystals and semi-amorphous regions is modeled by

two nonlinear springs in serial arrangement. Each constituent has a mechanical sig-

nature informed from full atomistic simulation (see Section 6.3) [135, 127, 132], as

shown in Figure 6-7. This model, albeit simple, is capable of describing the key

features of the nanomechanics of spider silk, without the introduction of any exper-
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Figure 6-6: Representative plots are shown from MaSp1 and MaSp2 structures with the
highest turn content. Comparison of panel (a) and panel (b) shows the strain softening
behavior that occurs when the turn/beta-sheet ratio is high in both structures. Upon
initial yielding, the number of hydrogen bonds in the system and also the turn content
decreases. Further stretching leads to a much stiffer regime, which corresponds to rapid
rupture of many hydrogen bonds (shown with a red arrow) in the non-crystalline domains.
The system fails upon breaking of hydrogen bonds in the crystal, and sliding of beta-strands.
The characteristic sigmoidal force-extension behavior observed here for both structures
shows resemblance to the macroscale response of spider silk.
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imental parameters. The serial spring assumption is reasonable at the nano-scale,

since in the sequence of spider silk, crystalline domains are followed immediately by

the glycine-rich repeats that form the semi-amorphous regions, forming a serial consti-

tutive unit that is the fundamental building block of more complex hierarchies [214].

Since the basis of the model is atomistic simulation, the spring constants developed

take into account the effects of solvent and molecular friction directly, and additional

parameters for viscosity and other effects are therefore not considered in this work.

The constitutive relationship of the two domains in silk, derived from molecular

dynamics simulations, is highly non-linear [135, 127, 132]. It is approximated here

with a multi-linear function, where different spring constants are used to describe the

strain dependent effective stiffness of the protein domains. Similar approaches have

been taken in other atomistic fracture mechanics studies [40, 31].

The stiffness of the system under tensile stretch is given by a serial spring combi-

nation and given as

kT = klik 2i/(kii + k2i), (6.1)

where k1i and k2i are the strain-dependent spring constants of semi-amorphous and

crystalline domains, respectively. This results in the following expression for the force

of the system as a function of deformation:

FT = kTALT, (6.2)

where the total deformation is ALT = AL 1 + AL 2, in which case AL1 and AL 2

are the deformations of the semi-amorphous and beta-sheet nanocrystal domains,

respectively. The parametersALi are defined as

ALj = rxi- ro,i, (6.3)

where rx,i, ro,j are the length of the domains at a given strain, and their initial

length, respectively. The following sections explain how the spring constants of the

semi-amorphous and beta-sheet nanocrystal domains are obtained and implemented
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in the model.

Atomistic simulations of the mechanical properties of the semi-amorphous region

of spider silk have been presented in Section 6.3 [135, 127, 132]. A representative

volume element containing 15 polypeptide chains was considered in deriving the con-

stitutive mechanical law, in order to obtain good statistics and an accurate account

of the secondary structure distribution of the domain. The effective force-extension

behavior derived from the large molecular assembly was then normalized for the force,

area and length per single polypeptide chain, to develop an appropriate constitutive

law. The length of the amorphous domain is taken here as 60 A based on the atom-

istic simulation model. The results from these analyses are used directly to determine

the parameters of the present coarse-grained model representing a single amorphous

domain and a single beta-sheet nanocrystal. These simulations revealed a character-

istic three-stage deformation pattern, where an initial stiff regime is followed by a

yielding point and a long plateau, and eventual significant stiffening as the polypep-

tide's backbone is being stretched [135, 127, 132]. This behavior is associated to the

presence and the breaking of secondary structures such as 31-helices and beta-turns,

which is rich in intra-chain and inter-chain hydrogen bonding [233, 240, 185]. At

larger strains, the structure enters a final high-stiffness regime, characterized by the

stretching of covalent bonds along the protein backbone.

Values for the stiffness of the three different regimes of the semi-amorphous domain

are extracted from atomistic simulation data [135, 127, 132]. Fitting the simulation

curve with a tri-linear function, the following regimes of stiffness are obtained as a

function of deformation:

kui if AL 1 <ALu1

k = k1 if ALI, < AL1 < AL12  (6.4)

k1 if AL 1 >ALI2

where the values for k1j, as well as the transition deformations ALI, and AL12 are

summarized in Table 6.1. The resulting force-deformation law is shown in Figure

6-7(a).
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Figure 6-7: Constitutive behavior of the two elements represented in the coarse-grained
model of silk (obtained from full atomistic molecular dynamics simulation). Panel (a) shows
the behavior of the glycine rich semi-amorphous domain. Panel (b) depicts the behavior
of beta-sheet nanocrystals under lateral loading. The smallest beta-sheet nanocrystal size
shows the characteristic stick-slip phenomenon due to repeated breaking and reformation
of H-bonds (modeled here as an elastic-plastic yielding behavior).

Model parameter Value
ku, (pN/A) - Initial regime 9.9
k12 (pN/A) - Intermediate regime 3.96
k13 (pN/A) - Final regime 103.84
AL 11 ( A ) First transition point 12.0
AL 12 (A ) - Second transition point 43.8

Table 6.1: Parameters for the semi-amorphous region in the mesoscale model.
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The beta-sheet nanocrystal is also modeled as a nonlinear spring, where the force-

displacement characteristic is informed from atomistic simulation results [135, 127,

132]. The beta-sheet nanocrystal dimension in the fibril direction is approximated

to be 30 A for all beta-sheet nanocrystal sizes (since it is defined by a fixed number

of alanine residues in the beta-strand length direction that does not change). From

atomistic simulations [135, 127, 132], it is observed that the properties of the beta-

sheet nanocrystals vary as a function of crystal size, where small crystals are stiffer,

dissipate more energy through a stick-slip mechanism and fail at higher force. The

model presented here considers the effect of the variation of the size of beta-sheet

nanocrystals on the mechanical behavior, by scaling the stiffness, strength and energy

dissipation capacity of the beta-sheet nanocrystals according to size-effects observed

in explicit water atomistic simulations.

In this regard, beta-sheet nanocrystals of different size are prescribed distinct

mechanical features [181, 173, 143] in this model. In particular, the model includes a

final stick-slip regime, which is observed only in the small-crystal case (3nm), whose

stiffness is modeled as follows:

k = k21 if AL 2<AL 21  (6.5)
k22 if AL 2 > AL 21

where AL 21 is the beta-sheet nanocrystal transition point (as a function of deforma-

tion) as defined in Table 6.2 and shown in Figure 6-7(b). In this sense, the crystal

behavior is elastic-plastic, to take into account the additional energy dissipated by

the stick-slip behavior. In the case of large crystals, the spring constant is the same

over the whole regime of deformations and the mechanical behavior is elastic and

brittle until rupture. In all cases, the force applied to the system drops to zero when

AL 2 > AL 22 , that is, when the maximum strength is reached and the crystal breaks.

The spring constants are calculated by dividing the maximum tensile strength by the

softening point for the 3 nm case, and by the breaking point for the large-crystal

cases. The second softer regime for the small-crystal case is assumed to have a con-

stant stiffness equal to 1% of the initial one, approximating the stick-slip behavior
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observed in atomistic simulations [135]. The calculation of the breaking point is done

by maintaining the dissipated-energy proportion between beta-sheet nanocrystals of

different size. Explicit simulations suggest that a 3nm crystal is approximately three

times tougher than a 6.5 nm-crystal. In the context of the bilinear spring model [135],

this gives a breaking point value of 5.8 A. It should be noted here that the atomistic

calculations on strength and effective stiffness are based on the pullout force required

to separate a single strand from the crystal, to be consistent with the normalization

for a single polypeptide strand.

Model parameter Beta-sheet nanocrystal size
3 nm 6.5 nm 10 nm

k2 1 ( pN/A ) - Initial stiffness 576 205.5 99.5
k22 ( pN/A ) - Second-regime stiffness 5.76 N/A N/A
AL 2 1 (A) - Softening point 2.36 N/A N/A
AL 22 (A) - Breaking point 5.8 4.5 4.5
Fmax (pN) - Maximum tensile strength 1360 925 448

Table 6.2: Parameters for the beta-sheet nanocrystal in the mesoscale model.

The ratio of the maximum tensile strength between beta-sheet nanocrystals of

different size [135] is derived directly from atomistic simulation for the 3 nm and 6.5

nm beta-sheet nanocrystals [135], while it is extrapolated for the 10 nm case. To

be consistent with the force values of the semi-amorphous domain, the maximum

strength is directly calculated from simulations in implicit solvent for a 3 nm-crystal

system; and the large beta-sheet nanocrystal strengths are then determined using the

strength ratio from explicit simulations. The softening point for the 3 nm beta-sheet

nanocrystal is extracted from explicit simulation results, as well as the breaking point

for the 6.5 nm beta-sheet nanocrystal. In the 10 nm case, the breaking point is instead

assumed to be the same as the 6.5 nm case, given the fact that with increasing beta-

sheet nanocrystal dimension the breaking point does not vary significantly as shown

in [135].

Stress values are calculated by considering a constant radius of 5 A along the

whole system length and for the three cases of beta-sheet nanocrystal size, such that
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o = F/A, where o is the computed stress, F is the force per chain and A is the

area of a chain. This cross-sectional area is is an approximation for the effective

area of a single silk polypeptide chain. Accordingly, all other calculations have been

normalized for a single-chain system.

A MATLAB script provided in Appendix A is used for calculating the stress-

strain behavior of the serial spring model discussed in this work. Strain is applied

at constant steps to the overall structure and the deformation on single elements is

computed. Mechanical toughness is calculated measuring the area under the force-

extension curve (until structural failure) by means of a trapezoidal numerical inte-

gration. Data postprocessing is also performed using MATLAB scripts.

6.5 Implications of nanostructure on micromechan-

ics

The model can now be used to simulate the mechanical deformation of silk according

to the tensile loading condition shown in the inlay of Figure 6-8(a), focusing first

on the system with a beta-sheet nanocrystal size of 3 nm that reflects natural silks.

The resulting stress-strain curves display the characteristic shape observed in silks,

that is, it displays an early yield point, leading to a significant softening that is

followed by a severe stiffening effect. A detailed analysis reveals four distinct regimes

of deformation, where each of them associated with specific atomistic mechanisms.

The initial regime is characterized by a relatively high tangent modulus (1.07 GPa),

owing to the stretching of semi-amorphous regions rich in H-bonds, in the form of

31-helices and beta-turns [233, 240, 185].

Rupture of the hydrogen bonds in the semi-amorphous domains leads to yielding

at strain values of around 13%. The tangent modulus of this softer regime is lower,

around 0.4 GPa. During this plateau regime, protein chains gradually align along the

pulling direction [68, 200]. At a strain value of 48%, the stress-strain curve enters

a high-stiffness regime (with a much higher tangent stiffness of around 10 GPa);
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Figure 6-8: Stress-strain response of a silk fibril under tensile loading, for varying beta-

sheet nanocrystal size, and analysis of strength and toughness dependence on crystal size.

In panel (a), the plot depicts the stress-strain response of spider silk based on different
beta-sheet nanocrystal sizes, ranging from 3 to 10 nm. The behavior after rupture is dis-

played with dotted lines. The results reveal dependence of the stress-strain response on

the beta-sheet nanocrystal size. Panel (b) shows the variation of strength with beta-sheet

nanocrystal size. The plot illustrates that silk fibers employing larger beta-sheet nanocrys-

tals have a diminished strength of 1,178 and 570 MPa for the 6.5 and 10 nm crystal cases,

compared with the small-crystal (3nm) system, which breaks at 1,757 MPa. Panel (c) de-

picts the variation in the toughness (toughness modulus) of the silk constitutive unit as a

function of beta-sheet nanocrystal size. Enhanced mechanical properties of small beta-sheet

nanocrystals play a governing role in the overall behavior. An increase in the toughness

(modulus) from 115 MPa to 175 MPa and 307 MPa is observed when beta-sheet nanocrystal

size is reduced from 10 nm to 6.5 nm and 3 nm.
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at this point the semi-amorphous region has been completely stretched out and the

beta-sheet nanocrystals sustain larger strains. This data shows that the beta-sheet

nanocrystals play a significant role in defining the mechanical behavior of silk only at

high-deformation levels, while the initial behavior is mainly governed by deformation

of the semi-amorphous phase.

An interesting event observed in the stress-strain plot is the brief softening regime

immediately prior to failure, which occurs at around 63% strain and is due to the

stick-slip failure mechanism of the beta-sheet nanocrystals [1351. This final high-

stress regime contributes to the overall toughness as it accounts for approximately

23% of the total energy dissipated. When the applied force reaches the maximum

tensile strength, at strain values of 66.7%, beta-strands completely slide out at a

failure stress of 1,757 MPa. This results in a drop of stress-levels, characterizing the

ultimate failure of the material via molecular mechanisms activated at the nano-scale

level.

The model can be used to carry out a systematic variation of the beta-sheet

nanocrystal size, in order to quantify the dependence of the overall mechanical be-

havior on the crystal size. The motivation for this analysis is to validate whether

earlier hypotheses that show that small changes in the crystal size translates to alto-

gether different overall mechanical response in spider silk [135, 68]. The results of the

mechanical analysis are shown in Figure 6-8(a), illustrating the stress-strain curves

for varying beta-sheet nanocrystal sizes. The most important finding is the obser-

vation that the size of beta-sheet nanocrystals - at otherwise completely identical

conditions - severely affects the mechanical response. The analysis shown in Figure

6-8(a) reveals that larger-crystal systems (6.5 nm and 10 nm beta-sheet nanocrys-

tals) have a behavior that deviates significantly from the reference small-crystal case,

especially at high levels of deformation. Silk fibrils with larger beta-sheet nanocrys-

tals break at significantly lower stress values, and also show a shorter (60% and 55%

strain, respectively) and softer third regime, with a tangent modulus of 8 GPa and

5.7 GPa, respectively. The initial and intermediate regimes, however, are comparable

to the case with the smallest beta-sheet nanocrystal, where the transition points and
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stiffness values do not vary substantially between the two systems.

As a result of these changes, even a slight increase in beta-sheet nanocrystal size

leads to a significant loss of strength and toughness of the system (Figure 6-8(b-c)).

With a value of 1,178 MPa, the 6.5 nm-crystal case shows a decrease of approximately

33% with respect to the reference system. The drop is even larger for the 10 nm-

crystal case, which breaks at 570 MPa, at 67% less than the reference case. The drop

in maximum stress and the absence of a high-stress final stick-slip regime further lead

to toughness values that are considerably lower than the reference small-crystal case

(see Figure 6-8(c)). A decrease of 43% and 63% are measured for the 6.5 nm and the

10 nm case, in comparison to the toughness value for the reference small beta-sheet

nanocrystal case.

Measurement of the relative strains in both domains shed light on the deforma-

tion mechanisms linked to beta-sheet nanocrystal size. The analysis reveals that the

contribution of the beta-sheet nanocrystals to deformation tends to decrease signifi-

cantly as the size of beta-sheet nanocrystals is increased. In the small-crystal system,

beta-sheet nanocrystals start to play a significant role once the semi-amorphous region

begins to stiffen at around 50% strain, and dominates deformation when the stick-slip

mechanisms of beta-sheet nanocrystal deformation is triggered. In the larger-crystal

case, the beta-sheet nanocrystal contribution increases more gradually, and reaches

a maximum just before the system breaks, that is, shortly after the semi-amorphous

region enters the covalent hard-stretching regime. The breaking point is reached ear-

lier in large-crystal systems, when semi-amorphous regions are less stretched (around

75%, compared to 92%). This observation suggests that the change of the beta-sheet

nanocrystal size prevents the material to take full advantage of the entire potential of

the semi-amorphous regions in terms of extensibility and energy dissipation capacity.

The results of this study are overall in good agreement with experimental data,

where a similar variation of the beta-sheet nanocrystal size and its impact on larger-

scale mechanical properties was reported recently [68], showing a drastic drop in

toughness when the reeling speed decreases and beta-sheet nanocrystal size increases

accordingly. The strain values in the three systems investigated here are higher than
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those found in experimental studies (between 40% and 60%). This phenomenon can

be explained based on two observations. First, the model considers an ideal and rather

simplified structure that completely lacks the statistical variability and structural

defects, and is perfectly aligned with the fiber axis. This generally results in enhanced

strength and extensibility in comparison to experimental results. Second, it must be

underlined that physiologically spun silks (i.e., the small-crystal case) undergo a

substantial pre-stretching at the orifice [68, 175]. However, the current model does

not include this effect and consequently, an overestimation of the stretching capacity

is expected. Future models could directly include variability of structure and defects

in silk, and model the effect of pre-stretching to allow for a better comparison with

experimental data (this could, for example, be achieved by the development of a

two-dimensional model).

6.6 Discussion and conclusion

The results from atomistic simulations on MaSp1 and MaSp2 protein segments of the

spider dragline silk from N. Clavipes have been reported in this Chapter. This study

illustrates that the REMD simulation method establishes an atomistic basis for a wide

variety of findings from experimental approaches of studies of the silk nanostructure.

Key finding from secondary structure and dihedral angle analysis have shown that

poly-Ala regions in MaSpi and MaSp2 form beta-sheet crystals, whereas the glycine

rich regions form semi-extended 31-helix type structures as well as beta-turns (Figure

6-2). No evidence for alpha-helix or beta-helix structure formation is observed in the

simulations for both MaSpi and MaSp2.

These results confirm that MaSpi and MaSp2 form different nanostructures.

MaSpi tends to form more orderly extended structures with beta-sheet domains,

whereas turn structures and a greater level of amorphousness are observed in MaSp2,

due to the natural twist of the proline segments, which limits the crystalline fraction

of the protein assemblies. The existence of semi-extended domains in the so-called

amorphous matrix may be the molecular source of the large semi-crystalline fraction

172



observed in silks, and also form the basis of the so-called "pre-stretched" molecular

configuration. The presence of less-dense hydrogen bonding in glycine-rich regions

compared with alanine-rich regions indicates at least a two-phase system with com-

plementary mechanical functions: extensibility and fracture strength. This is more

evident in MaSp2, which has apparent features resulting from the proline rich se-

quence, such as higher disorder and well-defined crystal regions. Of particular impor-

tance for this effect is the lack of amide bonds and the torsional twisting at proline

sites, which controls morphology development as the proline residues have varying

capacity to form hydrogen bonding at different extension states. In the actual mor-

phology of dragline silk, both proteins can be observed at varying amounts depending

on the species. The current study focused on isolated systems of MaSp1 and MaSp2,

but the same simulation protocol can be applied to understand the structure and be-

havior of mixed systems, and the possible role of proline in controlling intermolecular

contacts between MaSp1 and MaSp2. Overall, the results reported here are strongly

supportive of experimental findings on the spider dragline silk that suggest similar

structural characteristics [234, 240].

The mechanical stretching simulations hint towards a sigmoidal constitutive be-

havior as observed in the macroscale response of spider silk, as shown in Figure 6-4(c).

More analysis and upscaling of these results will have to be done to make a rigor-

ous link between the nanoscale simulation results and macroscale experiments. Yet,

these findings provide insight into the nanoscale deformation mechanisms, as shown

in the simulation snapshots in Figure 6-5 and the detailed analysis in Figure 6-6.

The initial softening of the system is evidently linked to the hydrogen bond break-

ing in the amorphous domain. Strain stiffening is observed once the covalent chains

are highly extended after rupture of a large number of hydrogen bonds in the non-

crystalline domains. The eventual failure of the system occurs when strands begin

to slide across each other due to severed hydrogen bonds and side-chain interactions

in the crystal. The failure strength of the molecular assembly shows less variation

between sequences; rather, it is observed to depend more on the morphology of the

crystal and the amorphous structures. Based on these simulations, it is evident that
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mechanical stretching of the strands may play a role in controlling crystal size, where

compression in the transverse direction causes collapse of the crystals into a more

compact formation. This may be an important consideration for the influence of

mechanical strain on the morphology of the silk crystals [96].

In summary, a framework for predicting the nanostructure of spider silk using

atomistic principles is proposed with this study. The method can be widely appli-

cable not only to different types of silks but could also to other biopolymers, and

thereby provide a link between genetics and material properties. This materiomics

framework provides a powerful tool to explore fundamental structure-property rela-

tionships of complex biological materials such as spider silk. Atomistic calculations

resolve some of the controversies regarding the structure of the amorphous domains

in silk, by shedding light on the semi-extended, well-oriented and more sparsely hy-

drogen bonded structures in amorphous domains. The results reported here, com-

bining REMD structure identification with experimental validation and a subsequent

nanomechanical analysis of fundamental deformation mechanisms, is the first of its

kind for spider silk, and only the beginning. Future studies could be focused on

improved structure prediction and a wide variation of conditions during mechanical

analysis.

The most important question answered by the serial spring model derived from

atomistics is that the severe change in mechanical properties of spider silk under

relatively small variations of the size of beta-sheet nanocrystals can be explained solely

based on structural effects (Figure 6-8). These results show that the confinement

of beta-sheet nanocrystals to the nanoscale is essential for the superior mechanical

properties of silks, as this is crucial to reach high extensibility and high levels of stress.

These findings also relate the characteristic yielding point in the stress-strain curve,

observed universally for many silks, to the onset of failure of semi-amorphous regions

(see Figure 6-7(a)). As an overall result, these results show how small-crystal systems

are more efficient in guaranteeing the required cross-linking strength, necessary for the

semi-amorphous chains to fully extend and to enter a high-stiffness covalent regime.

The capacity to sustain large tensile force as well as extension enhances the strength
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and energy dissipation ability of the material.

These findings may set the stage for more extensive full-atomistic mechanics stud-

ies on silk domains that will contribute towards an improved understanding of the

source of the strength and toughness of this biological superfiber, where the struc-

tures identified here could be subjected to mechanical loading under varying condi-

tions, such as changes in solvent or pH, and even under variations of the amino acid

sequence of the constituting protein domains. Future investigations could also focus

on much larger, mixed MaSp1/MaSp2 systems in a variety of conditions or on the

impact of mechanical constraints on the assembly and initial structure formation.
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Chapter 7

Conclusion

This chapter summarizes key findings of this thesis, and discusses the significance

of the results obtained from theoretical considerations and molecular dynamics sim-

ulations on beta-structures in protein materials. An overview of the capabilities of

the beta-sheet strength model, presented in Chapter 3, is provided. The predicted

size-scaling of the strength of H-bond clusters is reiterated, and implications for ma-

terials design are further discussed. Results from the beta-solenoid structures with a

triangular core are summarized, and directions for future research are recommended

in the second part of this Chapter. Emphasis is given for impact and the outlook of

computational research on spider silk nanostructure, based on the results presented

in Chapter 5 and 6 of this thesis.

7.1 Summary of key findings and significance

Beta-structures discussed in this thesis show great promise for the future of materials

design. Self-assembly is the hallmark of how materials are synthesized in biology, in

particular in the context of proteins, which form spontaneously at room or body tem-

perature. Beta-structures have the capacity to form very orderly, fibril and nanotube

structures through edge-to-edge aggregation, forming arrays of H-bonds with con-

trolled orientation and size [257]. This structure is the basis of rigid amyloid fibrils,

viral structures such as the cell-puncture device needle, and reinforcing nanocrystals
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found in spider silk [120]. Mechanical context of the beta-structures was evident from

some of the earlier studies at very small model systems [72, 23, 156, 194], but a rigor-

ous study looking into effects of size, geometry and rate at hierarchical length-scales

had been missing in literature. This thesis aimed to address this point, and thereby

bridge the gap between the biophysical studies of beta-structures and a a generic,

macro-level continuum description of the mechanics of biopolymers.

Protein materials such as spider silk nanocrystals, the cell-puncture device needle

of T4,or amyloids point towards unique opportunities for creating strong materials

that have structural and mechanical properties defined by weak bonds. Chapter 4 fo-

cused on the niche application of beta-solenoids used for generating compressive forces

in the biological context. The unique triangular core, maximizing rigidity per cross-

sectional area, and the tightly intertwined beta-helix topology of the cell-puncture

needle suggests that exceptional mechanical properties such as stiffness and failure

strength can be obtained from molecules that self-assemble at room temperature.

Decades of research on climate change suggests that replacing our current energy

intensive infrastructure and building materials with more sustainable, biodegradable

substitutes inspired from natural systems will be extremely important to solve future

problems in energy and sustainability. Lessons learned from fundamental research

on physical biology will play a major role in understanding how to create structural

materials from simple, reliable, and generally available polymeric building blocks.

Chapter 3 summarized findings on the size-scaling of the strength of H-bond clus-

ter in polymers and proteins. A new theoretical framework (beta-sheet strength

model), that takes into account only two parameters, namely H-bond strength and

persistence length of chains, was proposed. The basic framework combined the frac-

ture mechanics concept of energy balance to estimate strength, and worm-like chain

model for elasticity to describe a constitutive law at the single molecule level. Several

general predictions emerged as a result of this theory, which can be summarized as

follows:

* Strength of key domains in proteins composed of H-bond assemblies at near

equilibrium rates can reach a few hundred picoNewtons, but cannot exceed this
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value without the presence of hierarchical structures. This is due to the fact

that application of forces in the hundreds of picoNewtons leads to change in

free-energy of the system that is adequate to cause rupture of a few hydrogen

bonds, which leads to an instability that leads to the rupture of the entire

domain, regardless of the number of bonds in the cluster.

* This local failure criterion immediately restrains the size of the H-bond cluster

that will achieve this maximum strength, which appears to be in the order of

3 to 4 hydrogen bonds. This finding is in line with proteomics data suggesting

that longer beta-sheets are strongly disfavored in biology due to their thermo-

dynamical and mechanical instability. The prediction of strength and cluster

size varies according to loading rate, loading geometry, as well as strength of

bonding (according for instance to solvent conditions [66]).

" Beta-sheet strength model is capable of describing individual rupture events in

a complex protein domain. This has been validated on the 127 domain in titin,

where force peaks of rupture have been shown to depend on the size of H-bond

clusters. Most importantly, the beta-sheet strength model (Chapter 3) suggests

that there is a strength limit to entropic elasticity predicted by the WLC theory.

In AFM experiments, this has typically been observed as deviations from the

WLC curve described by a single set of parameters, however, the theoretical

explanation for quantifying these key events had not been adequately addressed

in the literature. The beta-sheet strength model is capable of predicting these

deviations with a minimal number of input parameters, eliminating the need to

map out the complete energy landscape via experiment or simulation solely for

this purpose.

The importance of this size-effect was discussed in greater detail in Chapter 5,

in the context of silk mechanics. Silk is one of the toughest and strongest materials

known, which is directly related to the size of the beta-sheet nanocrystals that exist

within the fibrils making up silk. These crystals form rigid cross-linking regions in the

ultrastructure of the fibril through dense H-bonding. Yet, as shown through theory
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and simulation, the cooperation of these bonds under mechanical force only occurs if

the size of the crystal is, in both strand and H-bonding directions, limited to a few

nm. This is due to the fact that longer strands suffer from the localized failure of

H-bonds, and larger crystals are prone to bending under thermal and mechanical per-

turbation, which severely disrupts H-bond cooperation. The transition from bending

to uniform shear governed deformation occurs to be very sharp in simulation; less

than 1 nm change in size leads to large differences in strength and energy dissipation.

Furthermore, smaller crystals can exhibit stick-slip failure, which increases energy

dissipation through subsequent formation and breaking of H-bonds. Silk therefore

benefits from toughening mechanisms similar to those observed in other biological

materials (e.g. wood or bone), and in metals in the form of dislocations that provide

ductility [122, 84, 148, 128, 131, 129, 102].The implication of this size-effect on the

macro-scale is validated by tensile tests in silk, which also show a strong dependence

of the fiber strength and toughness on nanocrystal size [150, 68, 135]. The work pre-

sented in this thesis provides a theoretical explanation for this phenomenon, which

had remained elusive primarily due to the challenges of experimentally probing such

small-scale features in silk. An interesting aspect of this study is the finding that silk-

worms and spiders have developed techniques for creating very tough nanocrystals

from two of the most common, chemically simple amino acids (Glycine and Ala-

nine) that can be procured or synthesized easily in most ecological and physiological

settings.

Chapter 6 built on this size-effect concept by looking into the overall mechanical

behavior of spider silk protein assemblies. The REMD method was utilized here to

come up with coarse predictions of the nanostructure of silk proteins, in order to

establish a constitutive law for silk at the nano and micro-scale. This is the first

molecular level structure prediction attempt for silk, based entirely on simulation.

The findings support a number of experimental findings on the link between the se-

quence and morphology of proteins that make up this outstanding fibrous material.

Particularly, it is observed through simulation that poly-Alanine and poly-Glycine-

Alanine domains form very orderly, densely H-bonded crystalline domains that, as
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predicted in Chapter 5, control the fracture and large deformation mechanics of silk.

Semi-amorphous domains consisting of GGX and GPGQQGPGGY repeats form wide

range of sparsely H-bonded structures that provide extensibility to the silk. In par-

ticular, GGX repeats form semi-extended structures resembling the characteristics of

31-helices observed in poly-Glycines [59]. Proline-rich regions serve the role of beta-

sheet breakers, limiting the size of nanocrystals in the strand direction. Both of these

glycine-rich domains govern the yielding behavior of silk, which occurs due to rup-

ture of H-bonds in the amorphous regions at less than 10% strain. The mechanical

behavior is typically a trilinear behavior, where it is either monotonically stiffening

(similar to WLC behavior) or stiff-soft-stiff, determined by rapid breaking of the H-

bonds and presence of turn regions in the system. A very simplistic model consisting

of multi-linear springs, with constants derived from atomistic results, was successful

in qualitatively describing the macro-scale behavior observed in silk.

This thesis established a first step in understanding size-effects on mechanical

strength of protein materials. It also presents a new direction in spider silk research,

where large-scale full-atomistic and multi-scale modeling approaches complemented

with experimental data will enable the discovery of Nature's secret recipe for ultra-

strong and tough fibers.

7.2 Opportunities for future research

The previous section discussed the success of the theoretical model developed and

size-effect predictions for beta-structures in protein materials, with relevance in par-

ticular to the mechanics of spider silk. The purpose of this section is to illustrate

the shortcomings of the current work and propose directions for future research on

beta-structures in protein materials.

The beta-sheet strength model, presented in Chapter 3 was very successful in de-

scribing a range of experimental observations using two simple parameters. The model

is however developed for uniform, cooperative shear loading scenarios as explained

in Chapter 3. This is a suitable assumption for explaining the maximum strength of
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proteins, but naturally falls short of explaining all aspects of the protein unfolding

problem. It should be noted,however, that the model could be modified for several

other loading scenarios and geometries. This has already been done for alpha-helices

and double-strand shear loading condition in beta-sheets (see Appendix B). Another

consideration is that the worm-like chain model, while being widely accepted for poly-

mer chain elasticity, is not the only model that could be used for this purpose. WLC

model's main shortcoming is that it's an inextensible chain model, and predictions

at very high force values diverge. The beta-sheet strength model is general and basic

enough that any other elasticity model could be used for this purpose. Additional

parameters can also be used to separately take into account solvation free energy of

the strand, as well as the stochastic nature of bond breaking.

With regards to the modeling efforts in beta-solenoids, a systematic study on

the size-dependent compressive strength of self-assembling triple-helices would be of

great interest. A study, focusing on different length specimens, would validate the

length-dependence of failure mechanisms predicted in Chapter 4. A careful analysis

of the vibrational modes and failure mechanisms would be extremely beneficial for not

only beta-solenoid proteins but also amyloids. While extremely challenging, it would

be particularly interesting to identify and isolate the source of the size-dependent

behavior in beta-sheets and beta-solenoids under tension and compression. Possible

sources of these effects, some of which are discussed in detail in this thesis, could be

variation of entropic contributions to elasticity, length dependent fundamental modes

of vibration, or emergence of local vs. non-local failure of hydrogen bonds mediated

by water and thermal motion. The development of a coarse-grained, Go-model type

system that has high fidelity to atomistic results would be very beneficial for eluci-

dating these mechanisms. Such a model could also shed light on the significance of

the twist and triangular cross-section of the solenoids.

Most importantly, there is great potential for future work in understanding the

nanostructure and mechanics of spider silk using atomistic simulation. The work

presented in Chapters 3, 5, and 6 are a good starting point for this type of systematic

characterization. Future work should particularly focus on understanding how silk
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protein constituents self-assemble into particular folds that depend on sequence, and

how this influences the initial modulus, yielding and ultimate fracture strength of

silk. While the EEF1 model had the advantage of much faster sampling, enabling

studying large-scale silk systems, more accurate all-atom models in explicit solvent

could reveal more further insight into these systems, in particular on understanding

the role of hydration, pH as well as other factors that control self-assembly and silk

mechanics.

Another recommendation for future research is to find example generic polymers

that could potentially utilize the size-effects predicted here for H-bonds. Simple

coarse-grained models, representing crystalline and amorphous regions in a silk-like

materials could be starting point for understanding what kind of intermolecular inter-

actions are needed to control and form nanostructures that resemble those in silk. It

should be noted, however, that such an approach is extremely challenging for several

reasons. First, treatment of solvent is not straightforward for effective interaction en-

ergy based models, as opposed to hierarchical, structural models that already consider

these effects implicitly in the constitutive relationships. Second, simple Go-type mod-

els greatly reduce the complexity of H-bond mechanics, as a result, distance based

non-bonded interactions (e.g. Lennard-Jones) suffer from inadequate treatment of

charge interactions and angular dependence of H-bond strength. A third issue is

the classification of the strength of intermolecular interactions, simple coarse-grained

models typically require some knowledge of the contact points in the native structure

of the protein building blocks, which for the case of amorphous complex materials

such as silk are obscure. Still, there is a great need for description of the mechanics of

silks and other complex polymer materials at the meso-scale, and efforts to address

this issue would nicely complement the work presented in this thesis.
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Appendix A

Script library

Post-processing and setup scripts used for the research presented in this thesis are

provided here for the reader's convenience.

A.1 .tcl scripts

A.1.1 Script to calculate H-bonds in VMD

set mol [molinfo top]

set prot [atomselect $mol "protein and

set nf [molinfo $mol get numframes]

set log [open hbonds.txt w]

for {set i 0} {$i < $nf} {incr

$prot frame $i

(name N or name 0)"]

i} {

set nhb [llength [lindex [measure hbonds

puts $log " $i \t $nhb"

puts "$i \t $nhb"

flush $log

}

A.1.2 Script to calculate phi-psi angles in VMD
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A.1.3 Script to calculate secondary structure ratios in VMD

set TT [format "%5.2f"

]]
set HL [format "%5.2f"

get resname ]]]

set BS [format "%5.2f"

"] get resname] ]]

set RC [format "%5.2f"

get resname ]]]

set TR [format "%5.2f"

get resname ]] ]

[llength [[ atomselect

[llength [[ atomselect

[llength [[ atomselect

[llength [[atomselect

[llength [[atomselect

top "name CA"] get resname

top "helix and name CA"]

top "betasheet and name CA

top "coil and name CA" ]

top "turn and name CA"

set HLP [format "%5.2f" [expr 100*$HL/$TT]]
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set BSP [format "%5.2f" [expr 100*$BS/$TT]]

set RCP [format "%5.2f" [expr 100*$RC/$TT]]

set TRP [format "%5.2f" [expr 100*$TR/$TT]]

puts [format "HELIX: %5.2f " $HLP)

puts [format "BS : %5.2f " $BSP]

puts [format "COIL %5.2f " $RCP]

puts [format "TURN %5.2 f " $TRP]

#puts [format "PERCENT IL: %.2f BS: %.2f RC: " $HLP $BSP $RCP]

A.2 MATLAB scripts

A.2.1 Code for averaging force-extension curves from NAMD

function [t ,F,R] = forcebin2 (input , bin) ;

% input format: use the following awk commands to get input:

% more log . txt I grep SMD|. / no-velocities .awk > data. q;

% awk 'NR > 7' data.q > input .q

% scp input.q username~clustername. mit. edu: /home/username/... "copy file

% load input .q in matlab

% Input Format: Same as SMD TITLE

% 1. TS

% 2,3,4 CURRENT POSITION (CM of pulled atoms)

% 5,6,7 FORCE (Force on SMD Spring)

% # of bins automatically implemented in code depending on max extension

% binA = 1; % number of bins per Angstrom extension. default is 1.

I=mean(input (1:10 ,:) ,1) % Values for timestep = 0;

N-size (input ,1) ; % Number of data points

% for j=1:N;

% RAW(j ) =norm(input (j ,2:4)-I (2:4)); % raw extension data
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end

Emax = fl o o r (max(RAW)

bin = binA*Emax;

wind=floor (N/bin); %

) % maximum extension value , rounded down

Size of bins , remainder of data will be omitted

for i = 1:length(input);

Xi (i) = norm(input (i ,2:4)-I (2:4))

Fi (i) = norm(input (i ,5:7))

end

for i=1:bin;

ini=(i -1)*wind+2;

fin=i *wind+1;

t ( i )=mean(input ( i

R(i )=mean(Xi(ini :

F( i)=mean(Fi (ini :

ni:

fin

fin

end

%add the zero point that

tF

R =

F =

wasn't taken into the averaging scheme

F];

%figure settings , changes defaults but will be reset when you quit

(0,

(0,

(0,

(0,

(0,

(0,

(0 ,

defaultaxesfontsize ',20)

defaulttextfontsize ',20)

defaultaxesfontweight ' , 'demi')

defaulttextfontweight ', 'demi')

defaultaxeslinewidth ' ,4)

defaultlinelinewidth ' ,4)

defaultlinemarkersize ' ,6)

figure (1)

plot (R,F, '-ok')
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bin pt.

bin point

,1) ;

%first

%last

:fin ,1)

L)) ;

L)) ;

set

set

set

set

set

set

set



title([ 'Force vs. Extension - # of bins = ',num2str(bin)])

xlabel ('Extension (A) ') ,ylabel ( 'Force (pN) ')

figure (2)

plot (t*1E-6,F,'-ok')

title (['Time vs. Extension - # of bins ',num2str(bin)])

xlabel('Time (ns) '),ylabel('Force (pN)')

figure (3)

plot (t ,R,' -ok ')

title (['Time vs. Extension - # of bins ',num2str(bin)])

xlabel ('Time (ns) ') , ylabel ('Extension (A) ')

A.2.2 Serial spring model for spider silk

%Andrea Nova and Sinan Keten

%all lengths are in A

function monodimensional(type , cola

(large)

npoints=5000; %how many points I

strain =0.7; %how much i strain

crlength=30; %initial length of

amlength=60; %initial length of

/2 [using MaSp2]

length=crlength+amlength;

%type can be s (small) or 1

%l (large)

have in the plot

the whole structure

the crystal

the amorphous region = 60 = (150-30)

if type=='s';

k11=576; %all stiffnesses in pN/A

k12=0.01*kI11;

r11=2.36; %value in A

r12 =5.8;

elseif type =='l ';

k11=205.5;

k12=205.5;
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r1 =4.5;

r12 =4.5;

elseif type =='xl';

k1l =99.5;

k12 =99.5;

r1l =4.5;

r12 =4.5;

end

length=crlength+amlength;

k21 =9.9;

k22 =3.96;

k23 =103.84;

r21 =0.2;

r22 =0.73;

%fraction of initial length

%fraction of initial length

k2=k21; %need to specify this for the first step of the cycle

k1=k11;

for i=1:npoints+1;

dl (i , 1) =(i -1) /npoints *st rain *1er

function of step

if i==1; %only for first step

dl1(i,1)=k2/(kl+k2)*dl(i,1);

function of total length

dl2(i,1)=k1/(k1+k2)*dl(i1);

else

% total deformation as a

% deformation of each spring as a

dl1(i,1)=dl1(i-1,1)+k2/(k1+k2)*(dl(i,1)-dl(i-1,1));

dl2(i,1)=dl2(i-1,1)+k1/(k1+k2)*(dl(i,1)-dl(i-1,1));

end
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if dl2(i ,1)>=r21*amlength;

transition point

if d12(i ,1)>=r22*amlength

transition point

k2=k23; %assigment of thE

else

k2=k22;

end

%sigmoidal spring reaches 1st

L; %sigmoidal spring reaches 2nd

end

if dl (i ,1)>=r11;

k1=k12;

end

%crystal spring reaches transition point

k(i ,1)=k1*k2/(kl+k2) ; %overall system stiffness in a series of

springs

if dl1(i,1)<=r12;

if i==1; %particular only for first step

f (i,1) = k(i,1) *dl(i,1);

else

f(i ,1) = f(i-1,1)+k(i ,1)*(dl(i ,1)-dl(i-1,1)); %force

incremental value

end

else f(i ,1)=O; %if crystal

defined as

is broken the total force goes to zero

end

end

%conversion to stress; radius 5A; number in MPa:

sigma = f*1.2738853;

top=max(sigma)

maxstress=top;

location=find (sigma (:)=top);

i ni t ial=sigma (1: location) ;
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dl5=dl (1: location);

sigma5=sigma (1: location);

plot ( dl/length

hold on;

sigma, [ ': ' , color] , 'HandleVisibility ' ,

plot(dl5/length , initial , color);

set(gca, 'XTick', [0.1 0.3 0.5 0.7])

xlabel ('Strain ') ;

ylabel ( ' Stress [MPa] ');

toughness=trapz ( dl5 /length , sigma5)

A.3 Shell scripts

A.3.1 Basic shell script for setting up REMD with EEF1 on

Teragrid Abe cluster

#!/bin/tesh

#PBS -l walltime=00:10:00

#PBS -1 nodes=6:ppn=4

#PBS -V

#PBS -N testjob

cd /cfs /scratch/users/keten/silk -REX3res

mvapich2-st art -mpd

###setenv NP 'wc -l ${PBS-ODEFILE} | cut -d'/' fl I

#cat $PBSNODEFILE I sort -u I awk ' { print $1, "8 ",dirh

/scratch/users/keten/silk -REX3res > hosts. abe

awk '{printf("%s 4 /cfs/scratch/users/keten/silk -REX3res \n",$1);}' <

$PBSNODEFILE| sort -u > hosts . abe
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setenv MV2_SRQSIZE 4000

aarex. pl -n 20000 -hosts hosts . abe -charmmlog charmm. log -log server . log

-par archive , psf=out . psf , emout . crd \

-mdpar prnlev=3,nogb, shake=1,shakemode='hyd' ,param=19x, eef1file

=/cfs /scratch/users/keten/silk -REX3res/solvpar . inp \

-mdpar lang=1,langfbeta=1.0,xpar=/cfs /scratch/users/keten/silk -

REX3res/param19_eef . 1. inp \

-mdpar echeck=99999999.0,xtop=/cfs /scratch/users/keten/silk -

REX3res/toph19_eef1 .1. inp \

-mdpar explicit=0,ewald=0,cuton=7,cutoff=9,cutnb=10,dielec=rdie

,trunc=switch , dynupdimg=10, dynoutfrq=100, dynsteps=250 \
-temp 24:300:700 final.*.pdb

mpdallexit
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Appendix B

Extension of the beta-sheet

strength model

This section focuses on extensions of the beta-sheet strength model presented in

Chapter 3. Here, modifications of the theory for a different application is presented.

In particular, application of the theory to alpha-helical structures will be briefly

discussed.

B.1 Application to alpha-helices

The beta-sheet strength model was originally developed for beta-sheets, however,

since the theory is based on energy balance concepts, it can be applied to a variety

of loading conditions and geometries. This sections summarizes how the theory may

apply to alpha-helical structures. The aim here is to find the critical force that will

initiate rupture of H-bonds in an alpha-helix at quasi-equilibrium deformation rates.

Starting again from the Griffith condition used to predict the onset of fracture[95], the

free energy released by freeing polypeptide chains from their geometric confinement

in helical convolutions must equal the energy required to break these H-bonds. The

free energy balance condition at the onset of fracture requires that G = -(A 2 - A1 -

F6)/dA = ,Ys where 7, denotes energy released by rupture of H-bonds per unit crack

advance, F6 is the work done by the external force on the system, and A1 and A2
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Figure B-1: Panel (a) depicts the atomistic-scale protein structure of a single alpha
helix from a vimentin coiled-coil dimer. The helical backbone is stabilized by parallel
arrangements of hydrogen bonds (yellow dashed lines). Panels (b) and (c) show a schematic
model system of an alpha-helix strained by an external force before and after onset of
rupture, showing the process of releasing a segment of backbone polypeptide due to the

rupture of H-bonds, thereby increasing the contour length of the free end entropic chain by
dA
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are the initial and final free energies of the protein backbone as determined from

the worm-like chain elasticity theory. The free energy of the system before and after

rupture is given as:

A 1 = AAWLC - -ysL + LAFOLD (B.1)

and

A 2 = (A + dA)AWLC - 1s(L - dA) + (L - dA)AFOLD, (B.2)

whereAWLC = fo FWLC(a)da is the free energy state (energy per length) of the

already unfolded free segments of the protein and AFOLD = FWLC(a)da is the free

energy state of the folded segment of the chain. The additional term arises from the

fact that in the original beta-sheet strength model formulation, the bonded region of

the chain was assumed to be relaxed, similar to the free chain. However, since the

chain is folded into a helix, it is in a semi-extended state, and entropic contribution

due to this effect needs to be taken into account. Hereby a equals to the ratio of

the end-to-end length of the free chain to its contour length a = x/A, equivalent

to mechanical stretch, and the parameter s = A/L that denotes the ratio of the

end-to-end length of the alpha-helix to its contour length, L (the physical meaning

of this parameter is that it describes how much contour length is stored per unit

length alpha-helix). Figure B-I illustrates the geometry and variables used in the

formulation. The energy contribution from the external force is given as:

6WF= -F(a - s)dA. (B.3)

Hence the critical condition for HB rupture can be given as:

AWLC(acr) + F(s - ac) + ys - AFOLD(S) = 0, (B.4)

where acr is the critical stretch level that initiates rupture. The strength at the

asymptotic regime (AR), then found by the WLC model, through fAR = FWLC (ac),

leading to:
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fAR = kT [(1 - acr )- 2 + 4acr - 1] . (B.5)

The parameter -y, describes the HB energy stored per unit length of AH and can

be obtained from

EO
7T = (B.6)

Lo

where E's is the dissociation energy of a single bond and Lo = 0.33 nm is the distance

between adjacent H-bonds along the length of the helix. The parameter s = 0.45

can be estimated from atomistic simulations of the deformation mechanics of alpha-

helices, where the unfolded length of the molecule can easily be calculated to find

the ratio with initial end-to-end distance. These values are also in excellent agree-

ment with the well-established alpha-helix pitch of 5.4 A per convolution. It should

be noted that the fracture model is independent of the size of the macromolecule

and the helical domain. This is because the initial unfolded contour length does

not influence the strength prediction. E0 can be estimated from the MD simula-

tion results, where the 3.6 H-bonds in one convolution break simultaneously, thus

Eb'=E SDM /3.6 = 3.1 kcal/mol, and therefore 7y = 0.91 kcal/mol/A. Based on these

two parameters, EO and (p, the asympotic strength of alpha-helix domains can be

estimated as approximately 189 pN. This finding is in agreement with experimental

results on alpha-helices [145, 119].
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