EPJ Web of Conferences 214, 04036 (2019) https://doi.org/10.1051/epjconf/201921404036
CHEP 2018

The ATLAS Wide-Range Database and
Application Monitoring

Petya Vasileval"*, Andrea Formica®**, and Gancho Dimitrov!"*** on behalf of the ATLAS
Collaboration ****

'European Organization for Nuclear Research (CERN)
2Université Paris-Saclay, IRFU/CEA (FR)

Abstract. In HEP experiments at LHC the database applications often become
complex, reflecting the increasingly demanding requirements of the researchers.
The ATLAS experiment has several Oracle DB clusters with over 216 database
schemes each with its own set of database objects. To effectively monitor them,
we designed a modern and portable application with exceptionally good char-
acteristics. Some of them include: A concise view of the most important DB
metrics; a list of top SQL statements based on CPU, executions, block reads,
etc.; volume growth plots per schema and DB object type; a database jobs sec-
tion with signalization for failures; and in-depth analysis in case of row-lock
contention or DB sessions.

This contribution also describes the technical aspects of the implementation.
The project can be separated into three independent layers. The first layer con-
sists in highly-optimized database objects hiding all complicated calculations.
The second layer represents a server providing REST access to the underlying
database backend. The third layer is a JavaScript/Angular]S web interface. In
addition, we will summarize the continuous integration cycle of the application,
which uses GitLab-ci pipelines for basic testing, containerization and deploy-
ment on the CERN Openshift infrastructure.

1 Introduction

In the ATLAS experiment[1] we have a wide spectrum of database applications dealing with
data processing and bookkeeping as well as data, such as event meta-data, detector calibra-
tion constants, and detector geometry description. The data are hosted in several Oracle
databases[2]. We can identify three production databases with different purposes: one related
to the detector data (accessible from the network in the ATLAS experimental area), one for
the offline related data and one for distributed computing data. In addition, there are two full
copies of the online and distributed databases and two test databases dedicated to applications
developments.

*e-mail: petya.vasileva@cern.ch
**e-mail: andrea.formica@cern.ch
***e-mail: gancho.dimitrov@cern.ch
###%Copyright 2018 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is
allowed as specified in the CC-BY-4.0 license

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 214, 04036 (2019)

CHEP 2018

Over 100 unique applications exist in the ATLAS databases. Some of those are spread
among several database schemas, others own thousands of database objects and some execute
hundreds of parallel processes per second. Specific applications such as PanDA[4], Rucio[3],
WinCC[5], are of significant importance for the scientific community and any disturbance in
serving their DB workload has to be avoided. Moreover, early detection of potential database
issues might be important for smooth operation of the databases.

In order to perform monitoring and provide efficient support for the database schemas, a
dedicated Web application was developed. The ATLAS Database & Application Monitoring
(DBMon)[6] is a custom Oracle DB monitoring tool created for the needs of the ATLAS
application developers and the Oracle database administrators. Its goal are to:

e present an overview of the current state of the database clusters
e provide detailed information about a selected database cluster

e produce reports based on specific database schema name

2 Architecture

The project has three independent layers, shown in Figure 1 as a Database component on the
left; a Java Application component in the centre; and a web application component shown
on the right. The first layer consists of highly-optimized database objects fed by sophisti-
cated calculations in PL/SQL functions and procedures. The second layer represents a Java
application providing REST access to the underlying database back-end. The third layer is a
JavaScript/Angular]S web interface visualizing the data.

Database JavaScript Application

Tables/Views DBMon Module

1
I PL/SQL Objects Config
Scheduler Jobs !
3 Java Application URL + Parameters Routes

Procedures Functions m —
REST Services JSON Objects
E Views Controllers

o $scope
Databases under monitoring

~ &~ B
DB Cluster DB Cluster DB Cluster

Directives Factories/Services

Figure 1: Database & Application Monitoring Architecture.

2.1 Database setup

The DBMon application resides at one of the ATLAS databases (the offline cluster), where a
couple of scheduler jobs run regularly to collect information for the current database as well
as the additional clusters. The jobs call various PL/SQL[7] procedures, which read data from
multiple DB view objects (such as vsql, vsessions, v$dba_objects, etc.). Then the data are
inserted into a dedicated set of tables.

https://doi.org/10.1051/epjconf/201921404036

EPJ Web of Conferences 214, 04036 (2019) https://doi.org/10.1051/epjcont/201921404036
CHEP 2018

The information is primarily statistical, such as the number of sessions and their dis-
tribution across the database instances; details about running/failed/succeeded jobs; a full
log of currently running queries and number of executions; a list of used CPU resources;
etc. The automation of the process boosts the administrators productivity and improves their
efficiency. In addition, it provides valuable information to developers who work on their
application database layer.

2.2 Java/REST application

The REST application is based on Spring[8] and Jersey[9], providing a number of HTTP
endpoints for feeding the Web application with data. The code is minimalistic. All query
calls are wrapped into PL/SQL functions, which allows easy changes when necessary. For
example:

sql = "SELECT * FROM TABLE(atlas_dbmon.get_blocking_sessions(:db, :fromDate, :toDate))";

Behind get_blocking_sessions function there is a complex hierarchical query which uses
dynamic parameters. The result is sent in the form of a simple table, whereas the logic
remains hidden. Moreover, refining the query does not require a person to become familiar
with the Java[10] project.

2.3 Web application

The front-end of the application is built with the AngularJS[11] framework. The technology
is JavaScript-based and provides Model-View-Controller[12] design, which makes it suitable
for implementing the database monitoring.

The concept behind AngularJS gives us tools for creating a well structured application,
works well with the popular JavasScript[13] libraries and allows two-way data binding be-
tween the Model and the View. The "scope" is one of the building blocks of Angular]S.
It forms the Model and allows the View and the Controller to access all variables in their
specific scope.

Since the monitoring application is developed with the idea of being constantly extend-
able, we took advantage of another Angular]S feature - the directives. They let us create
reusable components that could be called with a custom HTML tag and different parameters.
For example, a bar-chart can be rendered by adding the following line:

<‘hc—bar”id="cpu{{$index+1}}':‘items="chVaIues.cpu"'l container="cpu{{$index+1}}'l'>
T T T T
Custom HTML tag Unique ID Model/Data HTML container

For the creation of interactive charts we use Highcharts[14]. The monitoring is dependant
also on Bootstrap[15], Angular Material[16] and TreeGrid[17]. All of the libraries are open
source and actively supported.

3 Features

The presented application is a tool that allows developers to explore and tune the appli-
cation’s database performance. As such, it provides various data representations through
graphical components, which also help in detecting database issues and abnormal application
behaviour. The key features are listed below:

EPJ Web of Conferences 214, 04036 (2019)
CHEP 2018

https://doi.org/10.1051/epjconf/201921404036

e Historical plots of database activity - DBMon provides a set of 10 plots describing the

state of the different database instances over specified period. This helps in identification
of problematic database or application behaviour by narrowing down to start, end and DB
instance.

Top resource consumers (Fig. 2) - When a database experiences high load, it is crucial to
efficiently understand the root cause for that. DBMon machinery captures all DB requests
(among thousands per second), having longer than 3 sec execution time and stores their
most important metrics. Then the SQL statements are ranked and the top 10 of them are
displayed in charts as seen bellow.

Top SQLs by disk_reads Top SQLs by rows_processed

Top SQLs by executions Top SQLs by elapsed_time

Top SQLs by activity

A
<@

Top SQLs by cpu

Figure 2: Top SQL queries by different criteria.

e Monitoring of increased values for basic DB metrics - It is important to keep track of a
number of basic DB metrics such as "CPU Utilization", "Current OS Load", "Logons Per
Sec", etc. in real time. Thus, the DBMon application provides a view of those metrics and
refreshes the data periodically.

e DB volume growth per schema (Fig. 3) - ATLAS databases host several applications which
data volume is growing fast and needs to be closely monitored. Furthermore, developers
benefit from the fact that DBMon provides a way of plotting the size of their DB schemes.

o Tracking the number of active/inactive sessions per DB user (Fig. 4) - A common reason
for increased database activity is the high number of active sessions for a specific appli-
cation. Therefore, DBMon gives the number of active/inactive sessions spread among the
DB cluster machines. Moreover, the monitoring provides additional in-depth details per
session (e.g. SQL ID, service name, reason for waiting, etc.).

AL | 2016 | 2017 IO Session statistics Reset | From: 201810101000 To: 20181001601 ®

ATLAS_RUCIO 0

Database volume = NODE2

Number of sessions for ATLAS_PANDA WRITER

300718 303144

297024
28944 //"\ o149
527
N ‘/\z\nl't/.w 42781

267649

256096 257227 256502

> Table = Index

Figure 4: Number of sessions for PanDA
writer account.

Figure 3: Rucio data volume growth for
the current year.

EPJ Web of Conferences 214, 04036 (2019) https://doi.org/10.1051/epjcont/201921404036
CHEP 2018

e Database jobs’ state - Although, database jobs are not widely used by the ATLAS applica-
tions, there is number of those that run regularly on the ATLAS databases. Some of them
gather statistics, others make calculations or feed other tables. It is important to have a tool
that observes the state of the Oracle jobs and notify administrators when there are failures.

e Blocking/blocked sessions and potential reasons for the blocking (Fig. 5) - The ATLAS
production databases serve transactional workload by hundreds of concurrent processes.
In certain circumstances that might lead to row(s) lock contention or high concurrency on
table or index blocks ("hot blocks"). In those cases, DBMon provides valuable informa-
tion by displaying an hierarchical tree which shows unambiguously the blocker session as
well as details about it. This is one of the ATLAS DBMon features that excels compared
to the other monitoring tools. Moreover, blocking/blocked sessions information is stored
historically for subsequent analysis.

Blocking sessions ADGR 8 From: | 2018-1015 1542 Tor| 201810151612 Run | Reset

SessionID Logon Time User Name. OSUser Program Machine Wait Class ~ SQL 1D Time Walt Lock Owner Lok Table Row Address

+ 2068 1610-2018 160457 ATLAS RUCIO_R ‘damusro1 ddmoo1 User /0

- 2631 16-10-2018 1557:00 ATLAS PANDABIGMON R atipan vivg) Cluster 1q7

4120 16-10-2018 155501 ATLAS PANDABIGMON R atipan vivg)

ATLAS PANDA JEDI EVENTS PK ABNTWTAASAAOIDPAAA
- 3200 16-10-2018 154053 ATLAS PANDABIGMON R atipan hitpd@aipandal07.cemch (INSVIV3) apandalO7.cemch Ciuster

4353 16-10-2018 155053 ATLAS PANDABIGMON R atipan vivg)

ATLAS PANDA JEDI EVENTS PK ABNTWTAAGAAKSXSAAA

+ 3891 16-10-2018 145202 ATLAS_RUCIO_R damusro1 ddmoo1 User 110

Figure 5: Blocking sessions tree view.

e SQL statement heat map (Fig. 6) - Whenever a SQL statement uses bind variables it keeps
the same ID for all executions. Thus, for each SQL ID Oracle stores performance statistics
in the Automatic Workload Repository (AWR). Our monitoring provides a heat map that
highlights the values increased with more than 20% in comparison with the preceding AWR
statistics period.

SQL History Statistics.

Figure 6: SQL statement heat map.

e SQL execution plan(s) - The Oracle CBO (Cost-Based Optimizer) might decide to change
the execution plan of any query in the database based on consideration of various parame-
ters and data distribution within the tables. DBMon retrieves a list of current and previous
execution plan(s), which is useful for understanding why and when a SQL execution plan
had been changed.

e Storing monitoring data - All monitoring data is stored historically, which is extremely
beneficial in situations when DB issues occurred outside the working hours.

EPJ Web of Conferences 214, 04036 (2019) https://doi.org/10.1051/epjconf/201921404036
CHEP 2018

4 Deployment

ATLAS DBMon uses GitLab CI (Continuous Integration) [18] pipelines for basic testing,
containerization and deployment on the CERN Openshift[19] infrastructure. A Docker[20]
image of the application is created during the process and deployed via the OpenShift client
whenever there is a commit in the Master on GitLab.

The Web-page is protected via CERN SSO (Single Sign-on) and restricted to be accessi-
ble only by ATLAS members.

5 Future development

The next step of the ATLAS Database and Application Monitoring development is to replace
the Java REST application with the Oracle REST Data Services (ORDS)[21]. This is the
Oracle build-in RESTful application which is easy to configure and maintain. Moreover,
since the purpose of DBMon is to monitor Oracle databases, another dependency on Oracle
technology does not introduce additional problems.

References

[1] ATLAS Experiment: atlas.cern, ATLAS Collaboration, JINST 3, S08003 (2008)

[2] Oracle: oracle.com

[3] RUCIO Project: rucio.cern.ch,

[4] PanDA Project: news.pandawms.org,

[5] WinCC Project: etm.at

[6] ATLAS Database and Application Monitoring: atlas-dbmon.web.cern.ch (available only
for ATLAS members)

[7] PL/SQL: oracle.com

[8] Spring Framework: spring.io

[9] Jersey: jersey.github.io

[10] Java: java.com

[11] Angular]S: angularjs.org

[12] Gamma, Erich et al. (1994) Design Patterns

[13] JavaScript: JavaScript

[14] HighCharts Project: highcharts.com

[15] Bootstrap: getbootstrap.com

[16] AngularMaterial: material.angularjs.org

[17] TreeGrid Project: github.com/khan4019/tree-grid-directive

[18] GitLab: gitlab.com, GitLab.

[19] OpenShift: openshift.com

[20] Docker: docker.com

[21] ORDS: oracle.com

