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Abstract

In recent years, there is a trend in most fields toward more environmentally friendly

products and processes. This trend toward sustainable living is often dubbed the "Green

Revolution". Because the Green Revolution is concerned with environmentally friendly ways of

energy production, and structural engineering often has the task of controlling and dissipating

energy, the logical step would be to unite the two concepts. This study investigates the use of

the electromagnetic damper as an energy harvesting device in multiple damping schemes. It is

shown that the use of the electromagnetic damper in a tuned mass damper scheme produces

the most available energy to be harvested.
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1 Introduction

1.1 Motivation

A major part of the field of structural engineering is motion control; buildings, bridges,

and nearly every other structure must be designed to certain deflection limits under normal

and extraordinary loadings. Some of these loadings are dynamic forces such as wind loads, and

earthquake loads. These loads impart energy to the structure, which is stored as strain energy,

potential energy, and kinetic energy. Unless this energy is dissipated somehow, the structure

will continue to gain more energy and would eventually exceed its deflection limits. A well

known example of this is the original Tacoma Narrows Bridge which collapsed in 1940 due to

dynamic response caused by wind. It then becomes a structural engineering problem to

understand the dynamics of these systems, and to control the structure's response. A common

way of achieving this is to use devices called dampers; these devices dissipate energy to their

surroundings.

In recent years, there is a trend in most fields toward more environmentally friendly

products and processes. This trend toward sustainable living is often dubbed the "Green

Revolution". The field of structural engineering has been greatly affected by this revolution;

with the major areas of innovation in material use and construction processes. There is,

however, one more area that is less developed: energy recapture.

Because the green revolution is concerned with environmentally friendly ways of energy

production, and structural engineering often has the problem of having too much energy, the

logical step would be to unite the two concepts. Ideally there would be some kind of system

that could capture the energy of a structure and convert it into useable energy in the form of

electricity.

1.2 Framework and Scope

The basic approach to this research is twofold. Firstly, types of energy harvesting

devices will be examined, namely piezoelectric devices and electromagnetic devices. These will



be discussed, and one will be taken for further examination. Secondly, schemes for installing

these devices will be investigated. Based on the properties of the chosen damper a scheme will

be decided as the more optimal way for capturing energy. Some further exploration will be

done on this scheme.

The technology employed in these energy harvesting schemes will be more expensive

that traditional dampers, but the goal of this work is to show that these devices may be more

feasible if properly installed in an energy harvesting scheme. The energy will provide a

payback on a higher initial investment. The immediate goal of this work is to provide a stepping

stone for more research; research that will show the optimal use of these devices in energy

harvesting schemes. This may, ultimately, prove the financial feasibility of these devices.



2 Energy Harvesting Damping Devices

2.1 Introduction

As previously stated, structures are imparted energy through external sources and must

carry this energy. They do so my means of strain (deflection) energy, potential energy and

kinetic (motion) energy. The goal of the preceding energy harvesting damping devices is to

convert these energy types to something useable, such as electricity. The two devices

discussed use different sources for the energy conversions. Piezoelectric devices are able to

convert strain energy to electricity, and electromagnetic devices are able to convert kinetic

energy to electricity. Each has its advantages and disadvantages.

2.2 Piezoelectric Devices

Piezoelectric materials are ones that efficiently convert strain energy into electricity.

These special materials create a voltage under an applied strain; they also strain under an

applied voltage. A general schematic of this type of material is shown in Figure 1. In this figure

a current is applied to both top and bottom surfaces and as a result the material shrinks (in the

x2 and x3 directions).

AX3

Applied current, r stress, TDeformed shape

4, ~ 3  -!i~ - -WEI -li - . - -- -- - -

Poling direction
A ppe fild2E

Figure 1: Geometry of a typical piezoelectric material with the top and bottom surfaces electroded

and x3 aligned with poling direction (1)



Piezoelectric materials have been used in a wide range of applications from sensors and

actuators in smart structures to active vibration suppression systems and even as structural

damping devices (1). However, the work done on piezoelectric damping has come mainly in the

form of passive electrical damping through use of electrical circuits, such as the work of Hagood

and Flotow (1).

These devices, such as the ones explored in the work of Czarnecki (2), are made up of a

few piezoelectric tiles mounted onto a member that will act in bending. This bending causes

strain in the piezoelectric tiles which are in turn connected to an electrical circuit. In most cases

this circuit consists of simply resistors that dissipate the electricity as heat. Theoretically this

electricity could be captured and saved. The overall effect of the piezoelectric device on the

bending member is one of passive damping.

Use of such piezoelectric schemes has many benefits. The piezoelectric devices could

theoretically be placed anywhere on a structure, as long as that member will be strained.

Because of this, these devices are very easy to put into existing structures. The devices are also

easily attached to electric circuits, and offer very efficient conversion of energy.

Unfortunately there are also many drawbacks to this technology. In order to make the

most of piezoelectrics they must be placed in places of higher strain, but in normal structures

strains are very small. This limits the amount of energy that can be taken per each device.

Also, the voltage produced by piezoelectric materials has a decay time, which makes the

devices dependant on the rate of strain as well as the strain itself. As a result slow vibrations

will provide little to no current in the circuit.

2.3 Electromagnetic Devices

Electromagnetic devices involve the conversion of kinetic energy into electrical energy.

A voltage is produced between two ends by the movement of a magnetic field. Figure 2 shows

the simplified scheme of an electromagnetic damper. B is the magnetic field. I and R are the

circuit current and resistance, respectively.
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Figure 2: Simplified Linear Electromagnetic Damper (3)

The important things to note in this figure are that the force applied to the mover (with velocity

v) is in the opposite direction of its velocity. This movement also creates a current I in the

circuit. The underlying physics behind this type of device is outlined below.

Using Faraday's law of induction, the induced electromotive force (voltage E) is proportional to

the derivative of the magnetic flux (C0m) through the circuit with respect to time.

dPm
E dt

where

(PM = - d

And where B=magnetic field through the surface; and dA=vector perpendicular to the surface

whose magnitude=area element dA.

The force F generated on a conductor segment of length dl in the presence of a magnetic field

B is quantified by Lorentz law:

dF = Idl x B (4)

If a constant velocity is taken, the resulting current (I) and force (F) are both linear scalings of

that velocity. The magnitudes of these scaling factors are dependent on the geometry and

materials of the machine.



The physics and construction of these electromagnetic devices is well developed, and

has been a developing area of research. Most often they are used as actuation or as

regenerative devices. The regenerative devices are most often found in automotive

applications such as the regenerative braking systems in new hybrid vehicles (5), but they can

also be found in applications such as powering offshore weather buoys (6). Application of

structural regenerative dampers is, however, currently limited to theoretical studies, numerical

simulations, and small scale tests (3).

The most critical advantage to this kind of damper is that so much has been done with it

already. The idea has been substantially more refined than that of the piezoelectric scheme.

Conversely, the size of the electromagnetic devices are much larger than that of the

piezoelectric devices, this may in turn be a limiting factor of the design of large scale

electromagnetic dampers.

2.4 Discussion and Selection

Both of these technologies will be more expensive than the standard viscous dampers

(the industry standard), but further advances and development may change that fact. The

electromagnetic damper is pursued further in this study because it is definitely more feasible in

this application. Though the piezoelectric devices are convenient in installation, they lack the

scale needed in large structures. Electromagnetic dampers are much more feasible on large

scale apparatus; they have already been put into automotive scale, while the piezoelectrics lack

any large scale developments. Based on these reasons electromagnetic dampers will be

focused on for the remainder of this report.



3 Motion Control of Structures

3.1 Introduction

In recent years design of structures based on motion, or deflections, has become more

popular. In many cases structures are limited by these deflection limits rather than strength

constraints. Countries such as Japan have been on the forefront of this motion based design,

due mainly to high seismic activity.

High slenderness and sizeable loadings makes tall buildings some of the most concerned

with this motion based design. Because of the height of these buildings and large windward

areas, wind loading is usually the driving force in design of tall buildings. This study will focus

primarily on tall buildings under wind loading. Furthermore, it will focus on two specific

methods of motion control: traditional inter-story damping, and tuned mass dampers.

3.2 Traditional Inter-Story Damping

In Traditional inter-story damping, dampers are placed between each (or selected)

floors of tall buildings. These dampers reduce the motion between the two floors in which they

act; and jointly reduce the total deflection of the building. These dampers reduce total

deflections by dissipating energy.

Often in structural dynamics, the effect of similar dampers on a system is shown

through a transfer function, plotted against the excitation frequency. This transfer function is

so named because it shows the relationship between the amount of force input into a system

and the response of the system (i.e. how much of the force is transferred to motion). Figure 3

shows the relevant transfer function for excitation by wind which can be expressed as:

H, = 1 where p is the ratio of forcing frequency (0) to the natural frequency of

the structure (w) and k is related to the amount of damping in the structure.
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Figure 3: Transfer Function for Wind Excitation (7)

Things to note in this figure are the following:

e When damping (noted here as ) is zero, the response is infinite under excitation at the

structure's natural frequency (O/w=1)

* When damping is added the response decreases everywhere

* The effect of damping is most notable at the natural frequency of the building

Transfer functions of this sort are useful in motion based design; they enable designers to

adjust damping and other factors to produce a system that has a desired response.

3.3 The Tuned Mass Damper

More recently there has been other suggested ways of controlling motion; one of which

is a tuned mass damper. A tuned mass damper (TMD) is a device made up of a mass, a spring,

and a damper that is attached to a structure resulting in a reduced dynamic response of the

structure. The TMD is tuned to a specific frequency so that when that frequency is excited, the

damper will resonate out of phase with the structure's motion. (7) Implicit in this definition is

the fact that this damper will only be effective for a certain frequency range; this is why the



damper must be tuned. Outside this range the response will be nearly unaffected. Figure 4

shows an example of the effect a tuned mass damper can have on a system.

Spectrum Response (steady state)

I-
//
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TMD

V I
1.2 1.4 1.6 1.8
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Figure 4: Effect of Tuned Mass Damper on Single Degree of Freedom System

The exact mechanics of the tuning process are beyond the scope of this paper, but in

further modeling and analysis the tuned mass dampers are designed to the optimum

specifications (given a certain mass ratio) as outlined in (7).

0.4 0.6 0.8



4 Model

4.1 The Electromagnetic Damper

Ferromagnetic Stator Armature Non-Magnetic End Support
Copper Coli

Permanent Axial Magnet
Ferromagnetic Pole Shoe

Mover Shaft:

Figure 5: Prototype Magnetic Damper (4)

The electromagnetic damper used in this study is an extension of the prototype model

posed by Palomera-Arias (3) which is shown here in Figure 5 through Figure 7. These figures

illustrate the parameters necessary for the analysis of this prototype damper.

H H H H H H )~ H H )-( H H H H )l

Figure 6: Dimensional Parameters of Electromagnetic Damper (4)



Name Symbol Description
Pole pitch

Magnet length

Pole shoe width

Air gap thickness

Number of poles

Coil height

Coil width

Wire radius

Coil turns

Active coil turns

Mover radius

Armature radius

Stator yoke radius

Machine radius

Yoke thickness

Permeability

Relative permeability

Recoil permeability

Remanence

The distance between adjacent pole shoes or radial magnets

Actual length of the magnets

The width of the pole shoes: T,=T,-T

The distance between the mover and the armature windings

Even number of poles in the machine

Height of the coils in the armature

Width of each coil in the armature

Radius of the coil wire

Number of turns on each coil

Turns on each coil intercepted by the pole shoe flux

Radius to the outside surface of the magnets or pole pieces

Radius to the inside surface of the armature

Radius to the inside surface of the stator yoke or shell

Radius to the outer surface of the armature or stator yoke

The thickness of the armature shell

Permeability of free space, a constant

Relative permeability of iron used

Magnet hysteresis loop slope approximation

Magnet residual flux density

Figure 7: Dimensional and Magnetic Parameters of Electromagnetic Damper (4)

The paper also derives a few equations that are of particular interest to this study.

Firstly, a variable known as the machine constant (Kt) is defined.

F = Kticirc

where F is the force produced by the machine and icirc is the current in the circuit of the

machine. Kt is developed as:

wrcr NaBremTm

TmTJ + rM Pr ( T I L + -+
Io Tm 2pe

Te Tf

IlFehy (ri + r'))

and is a function of the geometric and magnetic parameters of the prototype machine.

4.1.1 Equivalent Damping and Pseudo Stiffness
Secondly, Palomera-Arias develops further an equation for the force on the damper. If a

harmonic velocity profile of v = V cos(wt) is assumed then

(Rcoil + Rioad)2 + (W LCOi) 2
V cos(wt +<p)F( eoil+Rload 

+
F = #Ktee~ LcoulA~ +

Name Symbol Dekscription



where 1 depends on the initial conditions and cp = tan-' (- "L). Rcoi is the total
\Rcoil+Rload

resistance of the coil of the solenoid in the prototype (this value is fixed in a given machine).

Rload is the external resistance that is added to the circuit, in this study this would be the energy

capture apparatus. Leoi is the inductance of the coil.

The transient term will be neglected in further development of this equation.

The displacement profile is assumed: u = sin(ot) = Q sin(wt) . Now, if the cosine

term is expanded and total circuit resistance (Rcirc) is taken as Rload + Rcoi it follows that

F - ( [Rcirc cos(wt) + wLecoi sin(wt)]
(Rcirc )2 + (w)Lc 0 j1 )2

Next this equation is put into the familiar form F = ceqv + kequ, which gives

KtRcirc
Ceq = (Rcirc) 2 + (OwLcoi)2

and

K 2 L2 t
eq~~ (D 

2 -L )2
eq = Rcirc)2 + (ocoli)2

where ceq and keq are the equivalent damping and equivalent pseudo stiffness, respectively.

This value of ceq will be used as the damping values in the design of both the tuned mass

damper and traditional schemes.

4.1.2 Available Energy
The goal of this study is in determining which of two motion control schemes allows for

the greater amount of energy to be harvested from the structure. For the purposes of this

study it will be sufficient to look at the energy dissipated over Rload. This resistance would be

the equivalent resistance of connecting the circuit to an energy storage medium; therefore, the

energy across this resistance would be the upper bound of the energy that could be captured

(henceforth referred to as available energy).



From Ohm's law it can be found that P1oad = Rloadicirc. And Palomera-Arias (3) derives

for an instantaneous velocity v

. Kev
t
circ = Rcirc

Which leads to

Pload = R oaa R Kt )

circ

The integral of this power over time is the available energy, but for the purposes of this study

the available power will be a sufficient indicator of the amount of available energy.

0 0

a.5

0.4

0.3

Power Dissipation vs. Load Resistance

2.5

R codp ul

Figure 8: Damper Power Dissipation as a Function of Load Resistance (3)

Figure 8 shows the amount of power dissipated over the two resistances given a

constant velocity and varying Rload. Henceforth the ratio of RIoad/Rcoli shall be referred to as a.

Because the focus of this study is on available power over Rioad, an a value of 1 is used in

simulations to maximize Pload.



4.2 Toy Structure

To model the structure that these devices will work on, certain simplifications were

made. Firstly, a single degree of freedom system was used, this is valid assuming that the

response of the structure is mainly in the fundamental mode (i.e. higher modes are neglected in

this study). Secondly, the structure is assumed to have no damping of its own, so all damping

would come from the electromagnetic damper.

Figure 9 shows the idealization of the traditional inter-story damping scheme. This

scheme also assumes proportional damping and so all damping can be idealized as a single

damper.

EM damper

Figure 9: Idealization of Traditional Inter-Story Damping

Here M is the mass of the structure, k is the stiffness of the structure, p is the forcing function

which will take the form of p = p cos(flt).

EM damper

Figure 10: Idealization of Tuned Mass Damper

............ .... .... . ..... ..



Figure 10 shows the idealized tuned mass damper scheme; md is the mass of the

damping mass, and kd is the stiffness of the tuned mass damper.

It should be noted that during analysis of these models the true physics of the

electromagnetic damper is modeled (not simply as a spring and dashpot system). The keq and

ceq values are only used for the design of the dampers (in order to optimize the tuned mass

damper and achieve a certain fraction of critical damping), but not in the dynamic simulation of

the structure. Other assumptions made in the model are provided in Appendix A.



5 Results

5.1 Validation of Model

To show the validity of the model two tests were done. A model with the

electromagnetic damper was compared to a model with a viscous damper. A viscous damper is

used as a comparison because it is the industry standard and has been well studied. Figure 11

shows the comparison of a tuned mass damper scheme with the electromagnetic damper, and

the same system with a viscous damper replacing it. The c value of the viscous damper is set

equal to the ceq of the electromagnetic damper. As expected, there little to no difference

between the two plots; this validates the use of ceq in design. Also note: 1) is the forcing

frequency and w is the natural frequency of the structure alone.

1.4

1.2

1

0.8

0.6

0.4

Spectrum Response (steady state)

0.4 0.6 0.8 1
Q/O

1.2 1.4 1.6 1.8

Figure 11: Validation of Response of EM Damper

The next validation test confirms the use of the power dissipation equation previously

derived for the electromagnetic damper. This power dissipation is compared to the power

0.2

0.2



dissipated in a standard viscous damper which is known to be P = cv 2 . Figure 12 illustrates

these results, and once again the curves coincide.

Note: The total power dissipation is shown for the electromagnetic damper (i.e. the power

dissipated over Rcoil and RIoad)

Power Dissipation (max)

0.2

1

Q /Io)

Figure 12: Validation of Power Dissipation Equations

5.2 Available Power Comparisons

In order to compare the two damping schemes (tuned mass damper and inter-story

damping) it is first necessary to decide how they will be designed. In this study the two

schemes were designed in order to have the same maximum response (i.e. they were designed

using motion based design) and optimized from there. Figure 13 illustrates the response of the

two schemes; note that the two schemes have the same maximum response.



Spectrum Response (steady state)

Inter-Story Damping
0.9 TMD
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Figure 13: Relative Response of Inter-Story damping and TMD Schemes

Based on these two schemes the maximum power of each scheme can be compared. The

results of this are shown in Figure 14. The tuned mass damping scheme provides on the order

of double the amount of power of the inter-story damping scheme. This difference in available

power is further emphasized by the fact that more damping is required for the inter-story

scheme. Figure 15 shows the same available power but normalized by the amount of damping;

therefore, a relative 'damping per device is shown'. This shows that the available energy from

the tuned mass damper scheme is more than an order of magnitude greater than that the other

scheme. The tuned mass damper scheme is undoubtedly more efficient in energy harvesting

using the electromagnetic damper than the traditional inter-story damping.
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5.3 Further Exploration

Because the tuned mass damper was so much more efficient in energy harvesting, it

was pursued further in order aid future research. Because the electromagnetic damper can be

so easily manipulated with the addition of load resistance, this section is devoted to the

exploration of the effects this has on both the response of the tuned mass damper and the

available power.

As can be recalled from Figure 8, if a constant velocity is assumed the optimal a value is

1, but as Figure 16 shows the response of the tuned mass damper is changed as a varies. This

has the implication of changing the velocity of the tuned mass damper which means the

constant velocity previously assumed is no longer valid.

a,
C,,
0
a-
C,,

Ca
a)

0-
0.2

Spectrum Response (steady state)

=.5

a= 2

=3

0.4 0.6 0.8 1 1.2 1.4 1.6

K2/o

Figure 16: Response of Tuned Mass Damper with Varying a
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Now if the experiment run in Figure 8 is repeated but with the variable velocity shown in Figure

16 new plots can be obtained. A few of these plots are shown in Figure 17 through Figure 19.

These plots are the power dissipations as a function of a at given frequency ratios (Q/w).

Power Across Resistors l/(y= 1.2

Figure 17: Power Dissipation vs. a at fl/w =1.2

Power Across Resistors l/ey= 1

Figure 18: Power Dissipation vs. a at O/w =1.0

Power Across Resistors Q/ff- 1.1

0 1 2 3 4 5 6 7 8

Figure 18: Power Dissipation vs. a at fl/w =1.1

Power Across Resistors W/e)= 0.9

Figure 19: Power Dissipation vs. a at Cl/w =0.9

These figures show that there is indeed a difference between these variable velocity

models and the constant velocity model used previously. The optimum a for maximum

available power (highest Pload) varies depending on the frequency ratio of the excitation. Figure

20 shows the optimal a as a function of frequency ratio. The optimum a approaches 1 in

W - - ................... . . . ...... .. ...... .. .. - - - - - -- - - - . ,e



frequency ratios far from the resonant frequencies of the system; in these areas the variable

velocity model approaches the constant velocity model. Near frequencies of resonance the

optimum a skyrockets, meaning that letting the damping mass move more will produce higher

available power.

Variation of Optimum x Based with £2/o

1 1 /1 1

0.2 0.4 0.6 0.8 1
Q/0

1.2 1.4 1.6 1.8

Figure 20: Optimum a as a Function of Forcing Frequency Ratio



6 Discussion

As previously mentioned, the purpose of this study is to provide a stepping stone for

future work. The ultimate goal would be to prove the feasibility of the electromagnetic damper

as a way of harvesting energy from tall buildings. What can be taken from this study is that

using an electromagnetic damper in conjunction with a tuned mass damper is an effective way

of harvesting energy; however, this idea must be pursued further in order to show feasibility.

A study providing the quantification of this energy is the next logical step. As shown in

Palomera-Arias's paper (4) the electromagnetic damper is substantially more expensive than

the viscous dampers used today, but if this initial investment can be offset by an income from

energy retrieval it may, indeed, prove to be a viable investment. As an extension of this energy

capture scheme, a semi-active control scheme is also proposed. This scheme could maximize

the amount of energy capture by adjusting the load resistance; this would also affect the

response but this can be controlled as well. The semi-active scheme would increase the

amount of energy harvesting with minimal investment and effort, further increasing the

financial worth of the machines.

Finally, because the most expensive parts of these machines are the permanent

magnets, a study is proposed that investigates the use of electromagnets instead of permanent

magnets. The electromagnets would have to be powered by electricity, so a life cycle study

must be done to quantify the energy needed and the financial benefit of using the cheaper

electromagnets. These electromagnets may prove an even better investment if the energy

harvesting scheme can provide a portion of the energy required to power the magnets.

As time passes and technology progresses, these electromagnetic dampers may

eventually become financially competitive with other dampers; however, with motivation from

the green revolution, coupled with the proposed energy harvesting schemes, the

electromagnetic damper may rise in popularity at an even faster rate.
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8 Appendix A: Other Assumptions Made in the MATLAB Model

In order to accurately describe the values of Leon, Kt, and Rcojj values used in the model a

scaling of the prototype device created by Palomera-Arias was used. This is valid since the

ratios of these values are of the most importance. The prototype is described in the figure

below which is taken from (3).

Group

Overall Dimensions
per Pole

Air-Gap

Coil Parameters

Magnet

Stator
Pole Shoes

Electrical

Damping per Pole
Dampg Density

cost

Resulting ?Aachine

Parameter (unit)

Diameter (mm)
Length (mm)
Volume (mi)

'1ickness (mm)
Layers
Wire Diameter (AWG)
Turns
Coil Height (mm)
Length(min)
Radis (mm)
Thickness (mm)
Width (mm)
Circuit Resistance (D1)
Inutance (mH)
Machine Constant (N/A)
(kN-s/m)

(kN-m~s/m3 )
Per Pole
Damping
Required Poles
Required Vohne (m)
Effective Damping (kN-s/m)
Machine Cost

Value
k=V.L5

131
55.2

7.43x10 4

1.0
5
15

195
6.5
25
51
7

15.1
0.422 0

5.1
1735

.231

0.652 1.30
871.5 1743

$103.66
$159.10 $79.55

322 161
0.24 0.12

0.242 209.8
$33,382 $16,691


