A PERFORMANCE MEASURE OF PAGE MODE DRAM AS A SECOND LEVEL CACHE IN MICROPROCESSORS

by
David R Shoemaker
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF
BACHELOR OF SCIENCE
and
MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1992

Copyright © David R Shoemaker, 1992. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute copies of thic thacic in whnola $n r^{i} \eta$ part.

$$
1
$$

Signature of Author \qquad
Department of Ēlectrical Engineering and Computer Science June 1, 1992

Certified by \qquad

Certified by \qquad

Accepted by
Campı IIL. Searle cнаи, шераинин cunmиисе on Graduate Students
ARCHIVES

A PERFORMANCE MEASURE OF PAGE MODE DRAM AS A SECOND LEVEL CACHE IN MICROPROCESSORS

by

David R Shoemaker

Abstract

Submitted to the Department of Electrical Engineering and Computer Science on June 1, 1992 in partial fulfillment of the requirements for the degrees of Bachelor of Science and Master of Science.

Abstract

An intensive study on three different types of page mode DRAM configurations was conducted to determine the effect of each on a microprocessor. Pure page mode schemes involve holding RAS lines down after an access to main memory in order to cache an entire row. Register-based cache DRAMs utilize a row of registers by the sense amplifiers to create a slightly more flexible cache. Cache DRAMs with embedded SRAMs allow for a fully-functional small SRAM cache to be included inside each DRAM chip. The advantages and disadvantages of each scheme are discussed.

A microprocessor simulator was created to model the performance of each page mode scheme. By incorporating time, this simulator modeled the interaction of microprocessor resources as well the miss rates for the various second level caches. While the performance results are somewhat specific to the particular microprocessor modeled, the second level miss rates will not change as resources are modified. The simulator modeled a floating point unit, integer unit, and a store buffer, as well as a memory system that included first and second level caches, and main memory.

Over two trillion instructions were simulated from the SPEC Benchmarks. A variety of first and second level cache sizes were swept to give comprehensive data on the performance of the page mode configurations. A total of forty-two sweeps were completed across the ten SPEC Benchmarks. Surprisingly, second level miss rates slightly improved as first level cache sizes were increased.

Thesis Supervisor: Professor Steve Ward
Title:
Thesis Supervisor:
Title:
Professor of Electrical Engineering and Computer Science
Dr. Patrick Bosshart, TI Fellow
Integrated Systems Laboratory

Dedication

I have enjoyed having the opportunity to work under Pat Bosshart for the duration of this thesis, and his patience, insight, and understanding helped make this all possible. He was truly an inspiring force, both on and off the hockey rink ice.

I would also like to thank Steve Ward for overseeing my thesis from the MIT end, particularly for providing background material and resources when needed.

I am indebted to the members of TI, Integrated Systems Lab for allowing my use of their SPARCstations for background jobs.

I would like also to thank Sun Microsystems, especially Robert Cmelick for the use of the Shadow tracing program.

Finally, I would like to thank my parents for supporting me during my school years. My ambition and drive is a reflection of the encouragement they have given me over the years. I also thank God for giving me the ability to complete this thesis and helping me to keep a proper perspective on the important things in life.

Table of Contents

Abstract 2
Dedication 3
Table of Contents 4

1. Introduction 6
2. Simulations 8
2.1 Shadow 8
2.2 Microprocessor Simulator 8
2.2.1 Integer Unit 9
2.2.2 Floating Point Unit 9
2.2.3 Memory System 10
2.3 Microprocessor Simulator Statistics 13
2.4 Range of Simulations 17
2.5 SPEC Benchmark 18
3. Memory System 21
3.1 Pure Page Mode DRAM 21
3.1.1 Pure Page Mode Model 22
3.1.2 Trade-offs 24
3.2 Register-Based Cache DRAMs 24
3.2.1 Register Based Cache DRAM Model 25
3.2.2 Trade-offs 25
3.3 Embedded SRAMS 25
3.3.1 Embedded SRAM Model 26
3.3.2 Trade-offs 26
3.4 Simulations 26
4. Measurements 28
4.1 First Level Cache Results 28
4.2 First Sweep Miss Rates 29
4.2.1 Integer Benchmarks 29
4.2.2 Floating Point Benchmarks 30
4.3 First Sweep Performance 31
4.3.1 Integer Benchmarks 32
4.3.2 Floating Point Benchmarks 33
4.4 Second Sweep Miss Rates 34
4.4.1 Integer Benchmarks 35
4.4.2 Floating Point Benchmarks 35
4.5 Second Sweep Performance 36
4.5.1 Integer Benchmarks 36
4.5.2 Floating Point Benchmarks 37
5. Conclusions 38
Appendix A. First Level Miss rates 41
Appendix B. CPI breakdown 43
Appendix C. 1st Sweep Miss Rates 48
Appendix D. 1st Sweep Performance Impact 55
Appendix E. 2nd Sweep Miss Rates 68
Appendix F. 2nd Sweep Performance Impact 79
Appendix G. Sample Raw Data 91

Chapter 1

Introduction

As microprocessors are clocked at increasingly faster rates, cache performance becomes continually more important. Second level caches have been shown to improve performance, but the cost sometimes prevents designers from including them in a microprocessor. Because memory systems prove to be more of a bottleneck with each new generation of microprocessors, the development of an economical, but effective second level cache becomes more important to the designer.

This thesis explores the performance impact of using various schemes in main memory to create a physically mapped, second level, unified cache. Three categories of page mode schemes are compared. Pure page mode DRAMs can cache rows of data in the sense amps by holding RAS lines down after memory accesses. Register-based cache DRAMs are special purpose DRAMs which allow a very long row to be split up into multiple blocks. Cache DRAM architectures with embedded SRAMs contain a complete SRAM cache on chip with the DRAM. While many such page mode or cache DRAM systems have been proposed, no large scale performance studies have been completed on them. While a successful page mode scheme can save a significant number of cycles, a poor performing system can actually degrade overall performance. A simulator to model microprocessor resources and execution time was created to evaluate the effect of these page mode schemes on both the memory system and the overall microprocessor performance.

The SPEC Benchmark Suite [Dixit 91], release 1, was used for the simulations. While no benchmarks can accurately predict an overall performance for a microprocessor, SPEC seems to be the most comprehensive benchmark suite broadly available today. The

SPEC benchmark suite consists of approximately 45 billion instructions. A series of simulations were completed over different first level cache sizes, second level cache sizes, and second level block sizes. In addition, a performance penalty charge was considered for those page mode schemes that degraded performance on a miss. Result data for this project was compiled by simulating over two trillion instructions.

All graphs for this thesis are included in the appendices. Appendices A and B include information on first level miss rates and clocks per instruction (CPI), respectively. Appendices C and D represent a sweep of second level total cache sizes and second level block sizes while the first level instruction and data caches are held constant. Appendix C shows miss rates for the benchmarks, while Appendix D shows the total performance impact as well as the memory impact of the second level caches on the microprocessor. Appendices E and F represent a second sweep of cache parameters. Two optimal second level block sizes were chosen and the total sizes for both the first and second level cache sizes were increased. Appendix E represents miss rates and Appendix F shows performance impacts. Appendix G includes a partial listing of the raw data collected during the various simulator runs.

The microprocessor resources modeled for this project were from a low-end SPARC processor. While numerous performance indicators are represented in this thesis, one should realize that performance results are somewhat particular to the processor implemented. However, since relatively simple integer and floating point units were implemented, one might expect that if better performing units were used, the impact of the page mode systems would be even greater, since the memory system would be more of a bottleneck to the entire system. The graphs for performance impact could be looked upon as a pessimistic indication of the effect of page mode systems. The graphs for miss rates will be accurate regardless of the performance of the integer and floating point units.

Chapter 2

Simulations

2.1 Shadow

The Shadow [Hsu 89] program from Sun Microsystems was used to gather traces. Shadow is a traceless routine which executes a program while filling up a trace buffer with structures that contain information such as the instruction word, effective address, etc., for each instruction. When the buffer fills up, it calls the simulation program which runs a virtual processor to gather performance results. Once the simulator has executed all the instructions in the trace buffer, it is emptied and the original benchmark program continues while Shadow refills the trace buffer. This scheme allows the simulation of large programs without needing prohibitive amounts of memory. The simulations are all based on programs running on the SPARC architecture.

2.2 Microprocessor Simulator

The simulator created for this project was written in standard C, and modeled all of the major resources of a microprocessor including the integer unit, floating point unit, first and second level caches, store buffer, and main memory. It measured performance by counting clock cycles using an event-driven timing mechanism. Each of these resources contributed to the overall CPI of the system, and the simulator determined how much of the CPI was charged to each resource.

-9-

2.2.1 Integer Unit

The integer unit was modeled by updating the time counter an appropriate number of clock cycles for each instruction executed. While most integer instructions took one cycle, store instructions took two cycles, while multiplies and divides took eight and sixteen respectively. Conditional traps took five instructions. All loads including double words were accomplished in one cycle. These clock cycles were also stored in a separate counter which allowed the calculation of an instruction CPI. For an optimal RISC processor, this number should approach one, as should the overall CPI.

2.2.2 Floating Point Unit

The floating point unit was modeled by creating a linked list of floating point structures with a length equal to the length of the floating point queue. Each time a floating point operate instruction was executed, an element was added to the linked list. In the structure, six pieces of information were kept. First, the time was recorded at which the instruction entered the floating point queue. Then three 32 bit register masks were created for the two source registers and the destination register that the instruction used. For these masks, a one in a particular bit number indicated that the corresponding register was used. Next a bit was kept to determine whether the instruction was a floating point compare, which needed to be handled as a special case. Finally, the total amount of time required to complete the instruction was also kept. The floating point queue length could be set to an arbitrary number in the program, but the microprocessor implemented had a queue length of one, so all simulations reflect this length.

When a floating point entry was sent to the queue, the processor was able to continue with other operations provided that some sort of stall was not necessary. These stalls could occur in a number of ways. If the queue were full, and another floating point operation occurred, the processor had to wait for an item to leave the queue. Each time a floating
point load occurred, the source and destination registers of instructions in the queue had to be checked against the source and destination registers of the load to see if a collision occurred. This check could be completed very quickly through a logical AND of the load register masks and the floating point operate register masks. If the destination register of the load matched any of the source or destination registers of pending operations in the queue, then the processor had to wait for the queue to finish the conflicting operation before the load occurred. Similarly, when a floating point store occurred, the destination register of the store had to be compared against the destination registers of each pending instruction in the queue, and a stall would occur on such a collision. A different stall could occur if a floating point branch were executed while there was a pending compare statement in the queue. A floating point branch required the processor to stall until all compares were completed. Finally, a state load or store required the processor to stall until the queue was empty. These processor stall cycles were kept in a separate counter and comprised the floating point CPI. If collisions were avoided, floating point instructions could be executed in parallel with other resources, so no "time" would be charged to the system.

The simulator handled the floating point queue by putting every operation in the queue, and constantly checking for one of the above collisions. If a collision occurred, the completion time of the offending operate instruction was calculated and compared to "current" time. If current time was greater then the completion time, then presumably the floating point instruction had time to complete and no actual collision occurred. If not, current time was updated to equal the completion time of the instruction in order to simulate the stall.

2.2.3 Memory System

The simulator had the ability to model multiple levels of caches, complete with write-back/write-through capability, set associativity, LRU replacement, and variable block size
options. The different page mode schemes were modeled as second level caches. To do this accurately, a few changes were needed. Since the caches were modeled as virtual caches and the page mode schemes created physical caches, the page number bits were scrambled to simulate a random mapping. To simulate this random mapping, the following algorithm was used. First, the bottom twelve bits of the address were changed to zero. These were the offset bits for the page. Then the XOR of the top sixteen bits of the address and the bottom sixteen bits of the address was calculated. The resulting sixteen bits were again split and an XOR was performed on the two sets of eight bits. The resulting eight bits were divided into a top and bottom half for a final XOR. The resulting four bits replaced bits twelve through fifteen of the original address to simulate a random bank and page number for the physical address. Only accesses to the second level, physical DRAM caches received this address.

Additionally, second level block sizes were not allowed to be larger than the 4 K byte page size of the operating system. Any larger physical block size would have resulted in two unrelated virtual pages being cached in the same block. The chances of accesses jumping from one virtual page to the other one in the same block would have been extremely small.

The caches were set up as large arrays that contained only the tag since the simulator never needed the actual data. There was no array set up for main memory since all data not found in the caches was assumed to be in main memory. There were a variety of time penalties associated with the different caches. A first level Icache or Dcache miss had a latency charge required to get the first word out. This charge was unavoidable, since the processor had to wait while this occurred. In addition, there was also a possible throughput charge as the Icache or Dcache was busy filling the rest of the block. Once the first word was returned, the processor could begin subsequent operations, but the Icache or Dcache, and the DRAM would be marked busy for the time it took to fill the rest of the block. Any
subsequent request to these resources would have to check the busy counter to see if the block fill was completed. If not, then the processor had to stall. The exception to this case was an Icache collision that resulted from the PC counter being increased by one. The processor avoided the stall for this case. The latency and throughput charges were part of the memory CPI, and consequently the total CPI since the processor could do nothing else during these periods. A second level miss added an additional penalty to the memory system, but was strictly a latency charge since the second level caches were actually specialized main memory DRAM chips. The second level penalties will be discussed more thoroughly when the page mode configurations are discussed.

The store buffer in the microprocessor contained two entries. If a dirty miss occurred, then the block needing to be written back to main memory would be kept in the store buffer. If the store buffer had an entry in it, then the simulator checked each cycle for the DRAM to be marked free to allow the store buffer entry to be written to DRAM. Once the DRAM was free, the store buffer entry was deleted and the DRAM marked busy with the write. If two entries were already in the store buffer and another dirty miss occurred, then the processor stalled to allow one of the entries to be written to main memory. These penalties were included in the memory CPI.

The final component of the CPI came from a load-use stall that occurred in the SPARC Architecture [Sun 89] whenever an instruction tried to use the result of a load that occurred on the previous cycle. The four parts of the CPI give an idea of not only the performance of the microprocessor, but the relative impact an improvement to the memory system might have on the entire system. The graphs in Appendix B show the CPI components for each of the SPEC Benchmarks, as well as the averages for the integer and floating point benchmarks. The first two pages (pp 44-45) show the CPI for a memory system using a simple page mode scheme with 32 M bytes of main memory. The memory system accounts for an average of 22 percent of the CPI for the integer benchmarks and 44
percent of the CPI for the floating point benchmarks. The last two pages (pp 46-47) of Appendix B show the CPI breakdown for the largest memory configuration tested, consisting of 32 K bytes instruction and data caches, and a 1 M bytes second level cache. For this case the memory only accounts for 7 percent of the CPI for the integer benchmarks and 16 percent for the floating point benchmarks.

2.3 Microprocessor Simulator Statistics

The simulator collected a wide variety of miss ratio statistics including miss ratios for reads, writes, data accesses, instruction accesses, and different length data accesses, all for both the first and second levels. Percentages of write backs and read modify writes for the first level caches were also included. A number of performance statistics were also kept, including clocks per instruction (CPI) for each program, broken down by microprocessor resource as discussed earlier. Additionally, DRAM utilization was calculated, as well as percentage of floating point operate instructions.

In order to compare the three page mode schemes, the simulator also returned the number of clock cycles that the page mode systems saved, and gave a percentage performance increase of using a page mode scheme versus a traditional single level caching scheme that uses page mode only for block fills. Finally the simulator returned the number of 2 nd level dirty misses that would have occurred if the page mode schemes had somehow been made into write back caches. The total SPECmark performance rating for a benchmark execution was given as well.

For the memory system, the simulator kept two additional sets of statistics. The first set determined the number of cycles the Icache, Dcache, and store buffer caused the microprocessor to stall due to throughput charges. If an Icache request had to wait for an Icache fill from DRAM, then an appropriate counter was increased. Nine such counters were kept to account for each dependency. The second set of statistics tried to determine
patterns that caused the second level to miss. If a second level Dcache access was followed by a second level Dcache miss, then the " d after d " counter was updated. The reasoning behind this was to detect cases for which page mode would most likely fail.

A complete example of one of the simulation files is included in the following two pages.
-15-
Shadow: version 1.1 (10/Jan/90)
Analyzer: /nfs/ray/u3/shadow/cache5lru: version 3.1 (16/August/90)
Application: fpppp
Hostname: gladstone
Date: Wed Dec 25 05:23:03 1991
Speed: 3 IPS
Status: final

```
1448153371 instructions (including annulled)
1443743811 instructions (excluding annulled)
    34.7 SPECmarks for fpppp
```

level	size	block	subblk	assoc	write miss
1st I	8 KB	32 B		2 -way	write back write allocate
1st D	8 KB	16 B		2 -way	write back write allocate
2nd I+D	128 KB	1 KB		direct	write thru write allocate

1st Level:

\#	\%instrs	\% I + Drefs	\% Irefs	\%Drefs		
143134607	9.9142\%	6.606\%			I+D	misses
115073764	7.9706%	5.311\%	7.947%		I	misses
28060843	1.9437\%	1.296\%		3.905\%	D	misses
2166745975	150.0783\%	100.000\%			I+D	references
1448153371	100.3055\%	66.836%	100.000\%		I	references
718592604	49.7729\%	33.165\%		100.000\%	D	references
588879185	40.7884\%	27.179%		81.949\%	D	reads
17710303	1.2267\%	0.818\%		2.465%	D	read misses
129713419	8.9846\%	5.987\%		18.052\%	D	writes
10350540	0.7170%	0.478\%		1.441\%	D	write misses
13892891	0.9623%	0.642%		1.934\%	D	write backs
3542351	0.2454%	0.164%		0.493%	D	read mod writes
1779	0.0002%	0.001%		0.001%	1 B	D reads
86	0.0001%	0.001%		0.001%	1 B .	D read misses
1782	0.0002%	0.001%		0.001\%	1 B	D writes
57	0.0001%	0.001%		0.001%	1 B	D write misses
282	0.0001%	0.001%		0.001\%	2 B	D reads
33	0.0001%	0.001%		0.001%	2 B	D read misses
71	0.0001%	0.001%		0.001%	2 B	D writes
2	0.0001%	0.001%		0.001%	2 B	D write misses
30170797	2.0898\%	1.393\%		4.199\%	4 B	D reads
1487436	0.1031%	0.069%		0.207%	4 B	D read misses
9149360	0.6338%	0.423%		1.274%	4 B	D writes
514343	0.0357%	0.024%		0.072\%	4 B	D write misses
558706327	38.6985\%	25.786%		77.751\%	8 B	D reads
16222748	1.1237\%	0.749%		2.258%	8 B	D read misses
120562206	8.3507\%	5.565\%		16.778\%	8 B	D writes
9836138	0.6813%	0.454\%		1.369\%	8 B	D write misses

2nd Level:

$\#$	\%instrs	\%I+Drefs
2889423	0.2002%	1.841%
1278312	0.0886%	0.815%
1611111	0.1116%	1.027%

\%Irefs	\%Drefs	
		$I+D$ misses
1.111%		Imisses 3.841% D misses

-16-

	157027251	10.8764\%	\% 100.000\%			$I+D$	references
	115073764	7.9706%	73.283\%	100.000\%			references
	41953487	2.9059\%	\% 26.718\%		100.000\%	D	references
	17710303	1.2267\%	\% 11.279\%		42.215%	D	reads
	1056492	0.0732\%	\% 0.673%		2.519\%	D	read misses
	10350540	0.7170%	\% 6.592\%		24.672\%	D	writes
	481390	0.0334%	\% 0.307\%		1.148\%	D	write misses
	374254388	i for i (i	(icache busy)				
	7155157	i for d (D	(DRAM busy)				
	7369803	i for stor	ore (DRAM bus				
	26585091	d for d (${ }^{\text {d }}$	(dcache busy)				
	28876442	d for i (D	(DRAM busy)				
	9942228	d for stor	ore (DRAM bus	S)			
	0	store for	r d (DRAM bus	sy)			
	83040	store for	i (DRAM bus	()			
	0	store for	r store (DRAM	M busy)			
	4171935848	total tick	cks of fpu	71.333\%	of total t	icks	
	591747328	fpop instr	tructions	40.988\%	of total		
	2010531268	total dram	am ticks	DRAM busy	34.377\%		
	2365572338	float for	float queue	fpu CPI=	1.639		
	1648494372	memory tick	icks	mem CPI=	1.142		
	1579515991	instructio	ion ticks	raw $\mathrm{CPI}=$	1.095		
	254989434	load penal	alties	load CPI	$=0.177$		
	5848572135	total tick	cks	$\mathrm{CPI}=$	4.051		
i	reads after	i 96	96258012,	misses	628817		1\%
\# d	reads after	i 103	10353389,	misses	776263		8\%
\# d	writes after	i	6343199, \#	misses	397426		7\%
\# i	reads after	d 10	10975281, \#	misses	328651		3\%
\# d	reads after	d	3893838, \#	misses	182247		5\%
\# d	writes after	d	2151821, \#	misses	26715		2\%
\# st	writes after		2119164, \#	misses	73109		4\%
\# i	reads after		7840471, \#	misses	320844		5\%
\# st	writes after	d 11	11039903, \#	misses	120		1\%
\# d	reads after	st	3463076, \#	misses	97982		3\%
\# d	writes after		1855520, \#	misses	57249		4\%
\# st	write after	st	733577, \#	misses	0		0\%
	453736166	\# of tick	ks saved =	7.76 perce	ent of tot		
	1239614	\# of 2nd	level dirty	misses			

2.4 Range of Simulations

Over two trillion instructions were simulated for this project by utilizing twenty SPARCstations with low priority background jobs for a period of about two months. Each run of the SPEC benchmarks, which contained 45 billion instructions, took about two machine weeks on a SPARCstation 2.

Two groups of simulations were run. In the first group, a range of second level block sizes and second level total cache sizes were swept, while the first level caches were held constant at roughly typical values for today's microprocessors. These simulations helped determine optimal block sizes. Total second level cache sizes were kept near values attainable using page mode DRAM in typical memory systems.

There had been some concern that the larger first level cache sizes of future microprocessors could render page mode caches ineffective. Therefore the second group of simulations focused on increasing both the first and second level cache sizes. To reduce simulation time, only two of the best second level block sizes (1 K bytes and 512 bytes) were used for these ranges. Additionally, since one run of the Spice Benchmark took as long as the other nine benchmarks combined, some of those runs were eliminated from this sweep. Table 2-I shows a list of all simulations.

Table 2-I: Parameter sweeps of Cache Sizes in Bytes

1st Lvl	2nd Lvl	BlockSize	Sweep
$\mathrm{I}=8 \mathrm{~K} \mathrm{D}=4 \mathrm{~K}$	$16 \mathrm{~K}-64 \mathrm{~K}$	$128-4 \mathrm{~K}$	First
$\mathrm{I}=8 \mathrm{~K} \mathrm{D}=8 \mathrm{~K}$	$128 \mathrm{~K}-1 \mathrm{M}$	$512-1 \mathrm{~K}$	Second
$\mathrm{I}=16 \mathrm{~K} \mathrm{D}=16 \mathrm{~K}$	$128 \mathrm{~K}-1 \mathrm{M}$	$512-1 \mathrm{~K}$	
$\mathrm{I}=32 \mathrm{~K} \mathrm{D}=32 \mathrm{~K}$	$128 \mathrm{~K}-1 \mathrm{M}$	$512-1 \mathrm{~K}$	

2.5 SPEC Benchmark

The SPEC benchmark is composed of ten individual benchmarks that perform minimal I/O and are designed to be CPU intensive. The programs are large enough to avoid fitting into most first level caches. Four of the programs are integer benchmarks, while six are floating point. The following is a brief description of each of the ten programs [Dixit 91].
$001 . g c c 1.35$ - This is a Gnu C compiler, Version 1.35 that measures the time for the compilation of nineteen source files. This program was chosen to test caches, and exhibits a load/store percentage of about 25%. This program is an integer benchmark written in C. 1.2 billion instructions are executed, making it the smallest benchmark.
008.espresso - This is a tool from the University of Califomia at Berkeley that generates and optimizes PLAs. Four input models are run on espresso for this benchmark. The program is relatively small, spending a reasonable amount of time looping. 30% of the instructions are load/store. The benchmark executes a total of 2.9 billion instructions and is an integer benchmark written in C .
013.spice2g6 - Another tool from Berkeley, this is the standard analog circuit simulator widely used in industry. Five copies of a grey code counter are simulated for this benchmark. Although considered a floating-point benchmark, this benchmark only executes about 4% floating point operate instructions, and another 4% floating point load/store. Written in fortran, this program executed by far the most instructions with a total of 22.8 billion.
015.doduc - This is another floating point benchmark that completes a Monte Carlo simulation of the time evolution of a thermohydraulic model for a nuclear reactor's components. Many subroutines are executed, causing the code to jump around quite often. 26% of the instructions are floating point operations while another 24% are floating point
load/store. Most loads are double words. A total of 1.3 billion instructions are run for this benchmark.
020.nasa7 - This benchmark is a collection of seven kernels that test common scientific computations. Written in fortran, this floating point program executes 30% floating point operations, and another 44% floating point load/store instructions. A total of 6.8 billion instructions are executed for this benchmark.
022.1i - The third of the integer benchmarks, this is a LISP interpreter written in C. The performance is measured in the time it takes li to solve the Nine Queens problem. A total of 4.9 billion instructions are executed, with about 25% being load/store operations.
023.eqntott - The fourth and last of the integer benchmarks, eqntott translates a logical representation of a Boolean equation into a truth table. About 32% of the instructions are load/store. Although the program will fit in some instruction caches, the data cache is significantly thrashed. This program executes 1.3 billion instructions.
030.matrix 300 - This a double-precision floating point intensive benchmark that runs operations on 300 by 300 matrices. 38% of the instructions are floating point load/store and another 25% are floating point operations. 1.44 Megabytes of data accesses can cause significant data cache problems. 1.7 billion instructions are executed for this program.
042.fpppp - This double-precision floating point benchmark measures performance of the two electron integral derivative computation that occurs in a Gaussian series of programs. (I don't know what this means either). 41% of the instructions are floating point operations and another 44% are floating point load/store. A total of 1.4 billion instructions are executed.
047.tomcatv - The sixth floating point benchmark, this benchmark is a mesh generation program. 31% of the instructions are floating point operations and 26% are floating point load/store instructions. A total of 1.6 billion instructions are executed. This program was included because it thrashes the data cache.

When calculating the SPECmark rating for a microprocessor, the time it takes each of the benchmarks to complete on a VAX-11/780 is divided by the completion time on the microprocessor. The geometric mean of these ten ratios is considered the SPECmark rating for the microprocessor. Since each of the benchmarks is given equal consideration in the SPECmak rating, when completing the average floating point and integer graphs for miss rates and performance, the arithmetic mean of the benchmarks is used.

-21-

Chapter 3

Memory System

The main memory system modeled by the simulator is shown in figure 3-1. The total main memory size was 32 M bytes, divided into four independent banks, each configured with 161 Mx 4 bit DRAMs for a bank configuration of 1 Mx 64 bits. The banks were square with a row consisting of 1 Kx 64 bits, or 8 K Bytes. A normal DRAM access consists of driving the row address and dropping RAS, and then driving the column address and dropping CAS. Immediately after the read is finished, the RAS and CAS lines are precharged high for the next access. For the processor implemented, the DRAMs had an access time of 80 ns while the clock period was 15 ns . For such a memory system, three ways to design a page mode cache will be presented.

3.1 Pure Page Mode DRAM

Pure page mode DRAMs can cache a row of data in the sense amps by not precharging the RAS lines after an access to main memory. If a subsequent access is in the same row, then only the shorter CAS access need occur. A miss causes the normal RAS access to occur, but must also first precharge the RAS lines. As a result, a miss in a page mode cache is actually slower than a normal DRAM access. This additional time will be referred to as the precharge penalty. If a page mode DRAM cache has too high a miss rate, the added penalty of precharging the RAS lines can decrease overall performance of the memory system.

Pure page mode DRAMs have the limitation of utilizing a small number of very large blocks. The memory configuration discussed earlier consisted of rows 8 K bytes long. A four bank main memory allows page mode DRAM to cache only four blocks, each with a size equal to one row. This is illustrated in figure 3-1.

Memory System With Page Mode

Figure 3-1: Typical SPARC Memory System

3.1.1 Pure Page Mode Model

Although the memory system modeled created rows that were 8 K bytes in length, in practice, half of the 8 K byte block size is lost. The virtual page size for the SPARC architecture is 4 K bytes. Since the mapping from virtual addresses to physical addresses is essentially random, each 8 K byte block in a page mode DRAM caches two distinct and unrelated physical pages. Therefore, the simulator assumed that the extra 4 K byte page was useless, and limited the effective block size to a maximum of 4 K bytes.

Once the virtual address bits were scrambled, and the page size of the operating
system was taken into account, the page mode systems behaved similarly to a second level cache. A second level cache hit saved the system the RAS access time, which for the processor modeled equaled three clock cycles. For a pure page mode system, a second level miss required not only the three clocks of the RAS access, but cost five additional cycles due to the precharge penalty.

When comparing systems with page mode to a single level caching system, the simulator determined the number of clocks saved by using page mode. For a pure page mode system that included the precharge penalty, the simulator determined exactly how many cycles were lost on a second level miss. While the maximum loss in such a case was five cycles, there were two cases during which a portion of this penalty was not suffered, relative to the single level caching system.

In a single level caching system, whenever a DRAM access is finished, the RAS lines are immediately precharged. However, if an access to a particular DRAM bank was immediately followed by an access to the same bank, the precharge would not be finished in time for the access to complete so the processor would stall. A portion of the precharge penalty assigned to the pure page mode scheme would also be suffered by the single level caching system. The simulator modeled this case when calculating the number of clocks saved by a pure page mode system. Accesses to the same bank were noted, and the time between DRAM requests was calculated. If this time was less than five, then the number of clocks saved by page mode was adjusted accordingly.

The second case was unique to the processor implemented. If the DRAM was busy filling a block, and then another access came for the DRAM, the processor was able to utilize a second bus to look ahead and check for a second level hit if the access was to a different bank. If a miss was detected from the address on the second bus, the bank could begin its precharging process, thereby reducing the precharge penalty suffered. The simulator took this case into account, although it proved to be a fairly rare case.

3.1.2 Trade-offs

The biggest drawback to the pure page mode DRAMs comes from the very large block sizes. As future DRAMs get bigger, rows will get longer and page mode DRAM schemes will merely cache more unrelated physical pages causing even more cached bytes to be wasted. In addition, the total cache size is limited since only one block can be cached per DRAM bank.

A useful side benefit of even this simple page mode scheme comes from the significant power savings of not having to decode the RAS address on a hit. Also, since page mode DRAMs are a commodity item, implementation of this scheme would be relatively simple. However, the precharge penalty can become significant and even degrade overall performance. For the microprocessor implemented, a second level hit saved three clock cycles while a second level miss cost as many as five additional cycles, indicating that a miss rate of more than forty percent in the second level cache would start to cause a degradation of performance.

3.2 Register-Based Cache DRAMs

Special purpose cache DRAMs have been proposed which try and split up the large blocks of page mode DRAMs into smaller, more workable blocks [Arimoto 90], [Asukura 89]. Register-based cache DRAMs solve this problem by placing a row of registers near the sense amps of a conventional DRAM [Goodman 84], [Ward 88], [Ward 90]. These registers can be loaded in blocks of an arbitrary size whenever a RAS access occurs. In addition to allowing smaller block sizes, this scheme also avoids the precharge penalty of page mode DRAMs since the registers now act as the cache and allow the RAS lines to be precharged immediately after the reference.

3.2.1 Register Based Cache DRAM Model

The simulator did not have to worry about special cases when handling register-based cache DRAMs. Since the precharge penalty was eliminated for these second level caches, the number of saved cycles over a single level caching system was three times the number of second level hits. The only modeling difference the simulator took into account was the elimination of this precharge penalty.

3.2.2 Trade-offs

While solving the page mode DRAM problem of huge block sizes, register-based cache DRAMs do not address the issue of total second level cache size. Still one row is typically cached per DRAM bank. Also, since cache DRAMs are not currently commodity parts, their additional cost must be weighed against the benefits gained over pure page mode DRAM.

However, the elimination of the precharge penalty insures that this scheme will never degrade performance. In addition, the power savings can still be significant, since the RAS lines will not have to be dropped on a second level hit.

3.3 Embedded SRAMS

The most extreme form of main memory caching being introduced [Dosaka 92] involves putting a small SRAM memory along with each DRAM chip. This SRAM functions as a complete second level cache and can be designed with an arbitrary total size, block size, and set number. While the design of the previous two page mode schemes leads to a direct-mapped cache, embedded SRAMs have the flexibility of adding multiple sets. This page mode scheme solves both the problem of total cache size for the second level cache, and the problem of block sizes. Like the previous cache DRAM architecture, it also avoids the precharge penalty.

3.3.1 Embedded SRAM Model

There was no modeling difference between this case and the register-based cache DRAMs. The only difference lies in the number of graphs that are applicable to this scheme, since a greater flexibility is attained for DRAMs with embedded SRAMs. As an additional feature, the simulator calculated the number of second level misses that would have occurred if the embedded SRAM had been implemented with a write back scheme. Presumably, this may give a designer some feel for the gain that implementing these embedded SRAMs as write back caches might yield. Once again the number of cycles saved over a single level caching system was simply three times the number of second level hits.

3.3.2 Trade-offs

This system gives maximum flexibility by avoiding all of the penalties the other two systems incurred. There is no precharge penalty, block size limitation, or total cache size limitation. However, these DRAMs are new and very far from becoming common chips. While yielding the most flexibility, they will presumably be the most expensive to implement.

3.4 Simulations

The simulations for this project sweep across many second level block sizes and total sizes. The graphs shown do not differentiate between the three page mode schemes, other than including graphs of second level caches with and without the precharge penalty. However, each page mode scheme merely translates to a second level cache with a different total cache size and block size. When analyzing the memory system of the processor implemented (32 MB total), the pure page mode system correlates to 16 K bytes for the total cache size, and a block size of 4 K bytes. The register-based cache DRAMs correspond to a

32 K total cache size (since the entire row can now be used) and any of the different block sizes. Finally DRAMs with embedded SRAMs can correlate to virtually any of the points for different total cache and block sizes. For the pure page mode systems, those graphs that include the precharge penalty should be observed, while the graphs without the penalty should be used for the other two schemes. Graphs with and without the penalty were included for sweeps of all the parameters. By varying the block sizes and the total cache sizes, and deciding whether to include the total precharge penalty, information about all three types of page mode schemes was gathered from the data collected for this project.

Chapter 4

Measurements

Graphs for both miss rates and performance impact are included in the appendices. While the miss ratio statistics gathered are valid for any architecture implementation, the performance impact of the page mode schemes are strictly applicable only to the specific microprocessor implemented. Care must be taken when making generalizations to other systems.

4.1 First Level Cache Results

The miss rates of the first level caches determined the number and frequency of the accesses to the second level page mode caches. Four first level configurations were swept. The first group of simulations kept the first level cache sizes constant with an 8 K Icache and a 4 K Dcache. The second group of simulations increased these sizes, first increasing the Dcache to 8 K bytes, and then increasing both to 16 K bytes and then 32 K bytes. The block sizes for all configurations were 32 bytes and 16 bytes for the instruction and data caches, respectively. Both caches were two-way set associative and used an LRU replacement scheme. First level miss rates for the different configurations are included in Appendix A. The top graph indicates the total miss rate of each benchmark. The middle graph gives the number of instruction misses divided by instruction references, and the bottom graph works the same way for data references. The columns marked integer and floating point give the arithmetic mean of the miss rates for the appropriate benchmarks.

The total miss rates indicate a miss rate range between one and two percent for the integer benchmarks, and between four and ten for the floating point benchmarks. These miss rates indicate that the benchmarks used were reasonable and that a significant number
of references were reaching the second level. Also, the graphs indicate that more can be gained by increasing the Dcache rather than the Icache. If the benchmarks are assumed to have forty percent load/store operations, then a 1% miss rate drop in the Icache is equivalent to a 2.5% drop in the miss rate of the Dcache. By comparing the benefits of doubling the Icache and the Dcache, it can readily be observed that the Dcache benefits much more, even when taking the above ratio into account. One of the reasons for this is that even with a small Icache, the miss rates are extremely low. For a similarly sized Dcache, the miss rate is a lot higher causing a subsequent doubling to have much more room for improvement.

4.2 First Sweep Miss Rates

The first wave of measurements used constant first level cache sizes of 8 K bytes for the instruction cache and 4 K bytes for the data cache. Six block sizes were swept, ranging from 128 bytes to 4 K bytes, incremented by multiples of two. Additionally, three total cache sizes from 16 K bytes to 64 K bytes were simulated. A total of eighteen different settings were swept. Appendix C shows a plot of these miss rates. As block sizes are changed, one would expect to see a U-shaped curve of miss rates since very large or very small block sizes should yield higher miss rates [Hennessy 90].

4.2.1 Integer Benchmarks

The graphs for the integer benchmarks in Appendix C show a standard U-shaped curve. The optimal block sizes are 512 bytes and 1 K bytes. As the total cache sizes are increased, the curves are shifted down since miss rates improve. The page mode DRAM cache corresponds to a block size of 4 K bytes since an entire row of DRAM effectively caches 4 K bytes of data. For a four bank main memory scheme (16K Bytes cache total) a page mode DRAM scheme has a miss rate from nine percent for 008.espresso, to about
thirty-two percent for 023.eqntott. The average integer benchmark miss rate is around twenty-two percent for pure page mode DRAM. The break even miss rate for implementing pure page mode DRAM is around forty percent for the processor implemented. The register-based cache DRAMs give the ability to break large blocks into smaller blocks. For a four bank main memory scheme, they can take advantage of an entire row of DRAM giving a total cache size of 32 K Bytes. The ability to break large blocks into smaller blocks improves the miss rate between five and ten percent for these benchmarks. The effect is more pronounced on the smaller cache sizes. The ability to increase total cache size yields improvement of about six percent per doubling.

The added flexibility of smaller block sizes and larger total cache sizes of the register-based cache DRAMs and DRAMs with Embedded SRAMs could improve the miss rate by a maximum of about fifteen percent. The optimal case tested is for a DRAM with embedded SRAMs that resulted in a total cache size of 64 K and a block size of 1 K bytes. The miss rate for such a case is about 8.5%.

4.2.2 Floating Point Benchmarks

The graphs for the floating point benchmarks are much more irregular. While most of the graphs show the standard U-shape, the graphs for 030 matrix 300 and $020 . n a s a 7$ (p 52)exhibit bizarre behavior. For these two benchmarks, very large and very small block sizes perform the best, causing the extreme block sizes to exhibit the best miss rates. In addition, these two benchmarks change the most when parameters are swept, causing the graph of the average floating point benchmark to be nearly flat.

The configuration for the pure page mode shows an average floating point miss rate of about 37%, just slightly better than the 40% break even point. However, only two of the six floating point benchmarks have a miss rate above 40%. 013 .spice 2 g 6 gives a miss rate of 62% while 047 .tomcatv gives a miss rate of 45%. Both miss rates go significantly down if the block size is decreased or if the total cache size is increased.

The average floating point miss rate does not change much when block sizes are altered, due primarily to the odd behavior of a couple of the benchmarks. Increasing the total cache size decreases the miss rate by eight percent per doubling. All points on the average floating point graph graph lie under the forty percent mark indicating that any page mode scheme will help, with or without the precharge penalty. The floating point graphs indicate the wide variety of performance that caches can have. Not all benchmarks will behave in an intuitive manner.

4.3 First Sweep Performance

One might expect the performance impact curves to look roughly like the inverse of the cache miss rates curves. The magnitude of the performance gains depend on the implementation of the rest of the system. Performance gains were reduced if an improvement to the memory system caused the processor to be bound by some other resource: for example, an improved memory system performance could make a processor more bound by the floating point execution time. Also, if the CPI of a program is dominated by some resource other than the memory, then no matter how much the memory system is improved, the overall performance will not dramatically increase. The performance graphs are located in Appendix D. For each benchmark, as well as the average integer and floating point benchmarks, four graphs are shown. Performance impact with and without the precharge penalty are considered, as well as the memory impact with and without the precharge penalty. When comparing the impact with and without the RAS precharge penalty, the three lines representing total cache size get bunched together and each line varied over block size gets flattened out when the penalty is eliminated. Since a better performing benchmark with a bigger performance gain must have a better miss rate, the elimination of the RAS precharge penalty will not help it as much as the penalty elimination helps a smaller gain from a poorer performing benchmark. Similarly, the lines
get flattened out over block size, since the poor performing block sizes have more to gain from the elimination of the precharge penalty.

The performance impact is calculated by dividing the number of clocks saved by the page mode scheme by the total number of cycles. The memory impact divides the number of clocks saved by the total number of clocks that contributed to the memory CPI. The memory CPI includes only those clocks charged to the processor for a first level miss. A program that had a zero percent first level miss rate would have a zero memory CPI. The graphs of the memory impact are the same as the graphs for the total impact, with an appropriate scaling factor that models how much of the total CPI is devoted to the memory system. The graphs with the penalty charge assume a pure page mode scheme, while those without the precharge penalty assume either a register-based cache DRAM or a DRAM with embedded SRAMs.

4.3.1 Integer Benchmarks

The overall performance impact for pure page mode DRAM schemes on the integer benchmarks averages to between three and six percent. These graphs include the penalty of the additional RAS precharge time needed on a miss. The ability to change block sizes can gain about one percent while increasing the total cache size from 16 K bytes to 64 K bytes gains roughly two percent. In general, the first level miss rates are small enough that not much total performance can be gained by improvements to the second level cache. The individual benchmarks do not stray much from the average.

The average integer memory impact for the graphs with the precharge penalty is between fifteen and twenty percent. The ability to change block sizes can give about a seven percent swing, while increasing the total cache size gives an eight percent memory performance increase for each factor of two increase. The ratio of these two graphs show that the memory CPI is roughly one-fifth of the total CPI on average.

By eliminating the precharge penalty and using either register-based DRAMs or DRAMs with embedded SRAMs, the average total performance impact goes up by about two percent, and the memory impact goes up by about ten percent. Changing the block size now only gains a fraction of a percent for the total system, and about four percent for the memory impact. Doubling the cache size gains about five percent on average. Each of the individual integer benchmarks performs similarly. The ratios between the total impact and the memory impact still shows the memory CPI to be about one-fifth of the total CPI.

4.3.2 Floating Point Benchmarks

The performance of the floating point benchmarks is much more erratic. The graph for the average floating point benchmark shows an overall performance gain between two and seven percent and a memory performance gain between five and twenty-five percent when the precharge penalty is included. The ratio between these two numbers indicates that the memory CPI is roughly one-third of the total CPI. Changing the block size gives a small and inconsistent percentage swing while increasing the total cache size shows an overall performance gain of three percent per doubling, and a memory gain of about six percent per doubling. Analyzing any individual benchmark can give wildly different results. 030.matrix 300 (p 63) yields negative performance gains for all block sizes other than the maximum, or 4 K byte size. Increasing the total cache size does not significantly help the middle block sizes for this benchmark. However, the average of the floating point benchmarks never yields a negative performance for any combination of block size and total cache size.

When the precharge penalty is removed, the difference in performance impact is significant. Since the floating point benchmarks tended to have higher miss rates, the elimination of the precharge penalty impacted these graphs much more than the integer benchmark graphs. The average floating point benchmark without the precharge penalty
yielded overall performance gains between nine and twelve percent and memory improvement between twenty and thirty percent. Changing block sizes still had little and unpredictable affects, while an increase in total cache size gained an additional four percent of both overall and memory performance per doubling. Eliminating the precharge penalty also tended to make all the individual floating point benchmarks behave much closer to the average.

4.4 Second Sweep Miss Rates

The second sweep of simulations increased the first and second level total cache sizes while keeping the second level block sizes constant. Ignoring the 030.matrix 300 benchmark, block sizes of 512 Bytes and 1 Kilobyte performed the best and were used for these simulations. Since each new generation of microprocessors will yield higher on-chip first level cache sizes, this group of simulations was aimed at determining whether page mode schemes will be applicable for future processors. First level caches were swept from 8 K bytes for both the Icache and the Dcache to 32 K bytes. The performance of those first level caches is shown in Appendix A. Second level cache sizes were swept from 128 K bytes to 1 M bytes by successive powers of two.

Since bigger first level caches would lead to fewer and less frequent second level accesses, one might believe that second level performance would significantly decrease as first level sizes increase. The graphs in Appendix E show that the miss rates actually improve slightly as first level caches get bigger for both the integer and floating point benchmarks. This was a very interesting and somewhat unexpected phenomenon that speaks well for the future of page mode systems. The result is that small second level caches perform better than expected with the larger first level caches. Additionally, as the total size of the second level cache increases, the miss rate continues to drop. For the largest second level cache size tested (1M bytes), the miss rate for all graphs is less than three percent.

4.4.1 Integer Benchmarks

For each of the first level configurations, increasing the total second level cache size significantly reduces the miss rate of the average integer benchmark from five percent (128 K total) to about one percent (1 M total). Increasing the first level sizes slightly reduces the miss rate for the smaller second level total sizes, while for the larger total cache sizes the miss rate stays constant. For $022.1 i(\mathrm{p} 71)$, each time the first level cache is doubled, the second level miss rate goes down more than a factor of two. The shape of each of the individual integer benchmark graphs is similar, although the actual values of the miss rates are significantly different. 023.eqntott has a miss rate range from fifteen to five percent, while 008.espresso has a range from one to nearly zero percent.

4.4.2 Floating Point Benchmarks

Once again, the floating point benchmarks exhibit higher average miss rates yielding average values around fifteen percent for the 128 K total size to about three percent for the 1 M total cache size. Again, the average miss rates slightly decrease as the first level cache sizes are increased. The higher average miss rates for the floating point benchmarks are largely due to 030 matrix 300 , since the 512 bytes and 1 K bytes block sizes were shown to be non-optimal block sizes for this benchmark. Miss rates for this benchmark start at about 45 percent (128 K bytes total) but end up around two percent (1 M bytes total). For these benchmarks, the second level miss rate of 042.fpppp (p 76) decreases the most as first level cache sizes are doubled.

4.5 Second Sweep Performance

The graphs in Appendix F indicate diminishing yields on the overall performance impact as the first level sizes increase. Since the raw number of accesses to the second level cache is going down, even an improved miss rate will have a lesser impact on the processor because the memory CPI will be a smaller percentage of the total CPI. The graphs in Appendix B indicate how the CPI breakdown changes from the worst case configuration (16 K total, 4 K blocks) to the largest configuration (1 M total, 1 K blocks). The memory CPI percentage goes from 22 percent to 7 percent for the integer benchmarks and from 44 percent to 16 percent for the floating point benchmarks. Since the simulator still models the original microprocessor, the simulations for the largest configuration correspond to a processor with relatively weak integer and floating point units, but an extremely powerful memory system. If one assumes that the processor itself will improve as memory systems get larger, then the impact of these page mode schemes would become significantly greater. When comparing the performance with and without the precharge penalty, the difference is almost not noticeable since the miss rates are too small for the precharge elimination to make any significant contribution to performance.

4.5.1 Integer Benchmarks

Since the miss rates were so small for all of the second level total cache sizes, the performance impact remains fairly constant as this parameter is varied. As first level sizes increase, the overall performance gain drops by two percent per doubling. The smallest first level configuration (8 K Icache 8 K Dcache) yields an almost constant performance gain of six percent over varying second level cache sizes. This decreases to two percent as the first level cache sizes are quadrupled. The memory impact slightly increases as the first level cache sizes are increased. Since the miss rates were getting slightly better with each first level increase, the memory performance impact also gets slightly better. Also, the
increase in total cache size has a more pronounced effect on the memory impact. Memory improvement lies between 33 and 40 percent for the smallest first level size, and increases an additional four percent for the largest first level size. The elimination of the precharge penalty shows little difference since the integer miss rates were so small.

4.5.2 Floating Point Benchmarks

The average floating point benchmark overall performance gain shows a steady increase as second level total cache size is increased, since the miss rate was significantly changing for each doubling. Also, the difference between the lines with the precharge penalty and without are much more significant since the average miss rates were higher for these benchmarks. For the smallest first level sizes, the overall performance gain was between six and twelve percent, going up by roughly two percent for each second level doubling. Each doubling of the first level cache sizes resulted in a halving of this performance gain. The elimination of the precharge penalty gave an additional gain of about two percent for the smallest second level cache size but gave no additional gain for the largest, since the miss rate approached zero.

The memory impact was fairly constant as the first level sizes were increased, indicating a second level miss rate that was largely independent of first level size. With the precharge penalty included, increasing the second level size change the memory impact from 23 percent to about 35 percent. Without the precharge penalty, this change was from 28 to 36 percent.

Chapter 5

Conclusions

A first sweep of cache parameters showed that page mode DRAM could indeed improve the performance of a system. With a constant first level cache size, a sweep of second level block sizes indicated that performance was gained by allowing smaller blocks. In addition, increasing the size of the second level cache continued to increase the performance of the page mode DRAM. Increasing total second level cache size was much more effective than changing the block size.

A second sweep of cache parameters studied the value of page mode schemes for future microprocessors. While two optimal second level block sizes were held constant, the total sizes of the first and second level caches were increased to model the increasing memory system sizes of future processors. The page mode schemes showed improved miss rates for both larger first level cache sizes and larger second level cache sizes. The performance impact on the microprocessor went down as first level cache sizes increased, due to the smaller number of second level cache accesses.

Using pure page mode DRAMs limits both the total cache size and the number of blocks allowed in the second level cache. By not being able to break up rows of DRAM into smaller blocks, 4 K bytes were wasted for each cached block. Larger DRAMs would cause even more waste since the rows would get even longer. The total effective cache size could only be increased by adding more banks of main memory DRAM since only 4 K bytes per DRAM row can effectively be cached. A four bank main memory system with a total of 32 M bytes of memory could be configured with page mode DRAM to create only a 16 K bytes second level cache, which is probably too small to be very effective. In addition, as the miss rate got worse, the RAS precharge penalty started to significantly degrade performance.

Register-based cache DRAMs solve the problems of wasted bytes and large blocks. Allowing smaller block sizes helped the miss rates, but not tremendously. Cache DRAMs make effective use of the entire DRAM row, but also could get no bigger than the size of a row multiplied by the number of banks. 32 M bytes of main memory translate into 32 K bytes of second level cache for a four bank scheme. Simulations showed that this performs reasonably well, but could get even better if the total cache size could somehow be increased. Additionally, register-based cache DRAMS avoid the problem of the RAS precharge penalty, which becomes significant when the second level cache miss rate is marginal.

Cache DRAMs with embedded SRAMs allow arbitrary sizes for both second level blocks and total cache sizes, and eliminate the RAS precharge penalty. Additionally, the designer may consider design issues such as set associativity or write-back caching. This increased flexibility could dramatically increase a memory system's performance since larger second level cache sizes showed increased effectiveness for each doubling. Achieving a large enough total size is the main problem with page mode caches, and only the SRAM-based cache DRAM solves it.

The integer benchmarks showed a very regular second level cache behavior, and second level miss rates were very low. The floating point benchmarks exhibited higher miss rates and responded to parameter changes erratically. For the largest cache sizes, all benchmarks exhibited very small miss rates and significant memory performance improvement.

All three schemes improved the performance of a microprocessor. While page mode DRAMs showed the least improvement, they are the most readily available. Register-based cache DRAMS and cache DRAMs with embedded SRAMs were significantly better, but they are not yet commodity parts. Perhaps the most interesting result shown by the simulations was that the second level miss rate did not degrade with increasing first level
-40-
cache sizes. Based on this result, the interaction between first and second level cache sizes merits further investigation. Additionally, with the low miss rates shown in the simulations, page mode caches can provide substantial power savings in the memory system.
-41-

Appendix A

First Level Miss rates

1st Level Miss Rates

-43-

Appendix B

CPI breakdown

Integer CPI Components for Worst Case Configuration

Total $\mathrm{CPI}=1.768$

84.65\%

Total $\mathrm{CPI}=1.316$

Average CPI for Integer Benchmarks

79.91%
Total $\mathrm{CPI}=1.493$
023. eqntott
11.08\%

88.92\%

Total $\mathrm{CPI}=1.193$

Floating Point CPI Components for Worst Case Configuration

Total $\mathrm{CPI}=3.751$

58.77%
Total $\mathrm{CPI}=4.038$

36.63\%

Total $\mathrm{CPI}=4.517$

Floating Point CPI Components for Largest Memory Configuration

Appendix C

1st Sweep Miss Rates

2nd Level Miss Rates
for 022.li
(8K Icache 4K Dcache)

2nd Level Miss Rates for 023.eqntott
 (8 K Icache 4K Dcache)

$\begin{array}{ll}-0- & 64 K \text { Total } \\ -\square & 32 K \text { Total } \\ -\square & 16 K \text { Total }\end{array}$

Integer Benchmarks

2nd Level Miss Rates for 013.spice2g6

2nd Level Miss Rates for 015.doduc

$\rightarrow \quad 64 K$ Total

Floating Point Benchmarks

2nd Level Miss Rates
for 020.nasa7
(8K Icache 4K Dcache)
64 K Total
32 K Total
16 K Total

Floating Point Benchmarks

2nd Level Miss Rates for 042.fpppp (8K Icache 4K Dcache)

2nd Level Miss Rates
 for 047.tomcatv
 (8K Icache 4K Dcache)

Floating Point Benchmarks

2nd Level Miss Rates for Integer Benchmarks

(8K Icache 4K Dcache)

2nd Level Miss Rates for
Floating Point Benchmarks
(8K Icache 4K Dcache)

Appendix D
 1st Sweep Performance Impact

Performance Impact of 2nd Level
 for 001.gcc1.35
 (8 K Icache 4 K Dcache)

Memory Impact With Penalty

$$
\begin{array}{ll}
\square-0- & 64 K \text { Total Cache Size } \\
\square & 32 K \text { Total Cache Size } \\
\square & 16 K \text { Total Cache Size }
\end{array}
$$

Total Impact Without Penalty

Memory Impact Without Penalty

Integer Benchmark

Performance Impact of 2nd Level for 008.espresso (8K Icache 4K Dcache)

Total Impact With Penalty

Memory Impact With Penalty

$$
\begin{array}{ll}
\square & 64 K \text { Total Cache Size } \\
\square & 32 K \text { Total Cache Size } \\
\square & 16 K \text { Total Cache Size }
\end{array}
$$

Integer Benchmark

Performance Impact of 2nd Level for 022.li
 (8K Icache 4K Dcache)

Performance Impact of 2nd Level
 for 023.eqntott
 (8K Icache 4K Dcache)

Memory Impact With Penalty
(

Integer-Benchmark

Performance Impact of 2nd Level for 013.spice2g6
 (8 K Icache 4K Dcache)

Performance Impact of 2nd Level for 015.doduc (8K Icache 4K Dcache)

$\begin{array}{ll}\square-6 & 64 K \text { Total Cache Size } \\ \square & 32 K \text { Total Cache Slize } \\ \square & 16 K \text { Total Cache Size }\end{array}$

Floating Point Benchmark

Performance Impact of 2nd Level for 020.nasa7
 (8K Icache 4K Dcache)

$$
\begin{array}{ll}
\square- & 64 K \text { Total Cache Size } \\
\square- & 32 K \text { Total Cache Size } \\
\square- & 16 K \text { Total Cache Size }
\end{array}
$$

Performance Impact of 2nd Level

for 030.matrix300 (8K Icache 4K Dcache)

Floating Point Benchmark

Performance Impact of 2nd Level for 042.fpppp
 (8K Icache 4K Dcache)

Floating Point Benchmark

Performance Impact of 2nd Level

 for 047.tomeatv(8K Icache 4K Dcache)

Memory Impact With Penalty

-an $64 K$ Total Cache Size
-a- $16 K$ Total Cache Size
Total Cache Size

Floating Point Benchmark

Performance Impact of 2nd level for Integer Benchmarks
 (8K Icache 4K Dcache)

- 0 64K Total Cache Size
$-\triangle$ 32K Total Cache Size
- - 16K Total Cache Size

Performance Impact of 2nd level for Floating Point Benchmarks (8K Icache 4K Dcache)

Memory Impact With Penalty

- 0 64K Total Cache Size
$-\quad 32 K$ Total Cache Size
$\square 16 K$ Total Cache Size

Total Impact Without Penalty

Memory Impact Without Penalty

Appendix E
2nd Sweep Miss Rates

(32K Icache 32K Dcache)

-70-

2nd Level Miss Rates

for 008.espresso
(8K Icache 8K Dcache)

(16K Icache 16K Dcache)

(32K Icache 32K Dcache)

-71-

(32K Icache 32K Dcache)

2nd Level Miss Rates

 for 023.eqntott (8K Icache 8K Dcache)

-73-
2nd Level Miss Rates for 015.doduc
(8K Icache 8K Dcache)

(32K Icache 32K Dcache)

-74-

(16K Icache 16 K Dcache)

(16K Icache 16 K Dcache)

(32K Icache 32 K Dcache)

2nd Level Miss Rates

for 047.tomcatv
(8K Icache 8K Dcache)

512 Bytes Block Size

(32K Icache 32K Dcache)

2nd Level Miss Rates for Integer Benchmarks

Total Cache Size (KBytes)

2nd Level Miss Rates for Floating Point Benchmarks

Appendix F
 2nd Sweep Performance Impact

-83-

-84-

Memory Impact of

-91-

Appendix G

Sample Raw Data

-92-

Application: 001. gcc1. 35

Application: doduc

1316441137 instructions (including annulled)
 1304567925 instructions (excluding annulled)
 29.8 SPECmarks for doduc

leve	1 size	block	subblk	assoc	write miss		
1st	I 8 KB	32 B		2-way	write back	write	allocate
1 st	D 4 KB	16 B		2-way	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} \quad 16 \mathrm{~KB}$	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	79526491	6.0961\%	4.677\%			I+D	misses
	32267170	2.4734%	1.898\%	2.452\%		I	misses
	47259321	3.6227\%	2.780\%		12.305\%	D	misses
	1700517998	130.3511\%	100.000\%			I + D	references
	1316441137	100.9102\%	77.415%	100.000\%		I	references
	384076861	29.4410\%	22.586\%		100.000\%	D	references
	298852886	22.9082%	17.575\%		77.811%	D	reads
	29072774	2.2286%	1.710\%		7.570%	D	read misses
	85223975	6.5328\%	5.012\%		22.190%	D	writes
	18186547	1.3941\%	1.070\%		4.736\%	D	write misses
	19846441	1.5214\%	1.168\%		5.168\%	D	write backs
	1659894	0.1273\%	0.098%		0.433\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%ItDrefs	\% Irefs	\%Drefs		
	21148249	1.6211\%	21.282\%			I+D	misses
	5399990	0.4140\%	5.435\%	16.736\%		I	misses
	15748259	1.2072\%	15.848\%		23.468\%	D	misses
	99372844	7.6173\%	100.000\%			I+D	references
	32267170	2.4734\%	32.471\%	100.000\%		I	references
	67105674	5.1440\%	67.530\%		100.000\%	D	references
	29072774	2.2286%	29.257\%		43.324\%	D	reads
	9870202	0.7566%	9.933\%		14.709%	D	read misses
	18186547	1.3941\%	18.302\%		27.102\%	D	writes
	5796598	0.4444\%	5.834\%		8.639\%	D	write misses
76127944 i for i (icache busy)							
3804530 i for d (DRAM busy)							
5610157 i for store (DRAM busy)							
30762008 d for d (dcache busy)							
28424993 d for i (DRAM busy)							
8792833 d for store (DRAM busy)							
	0	store for d (DRAM busy)					
	52814	store for i (DRAM busy)					
	0	store for store (DRAM busy)					
	2752142075	total ticks of fpu 66.010% of total ticks					
	338148549	fpop instructions 26.159\% of total					
	1209094627	total dram ticks DRAM busy 29.001\%					
	1712397711	float for float queuememory ticks		e fpu CPI	$=1.313$		
	967749864			mem $\mathrm{CPI}=0.742$			
	1408495477	instruction ticks		raw CPI $=1.080$load $C P I=0.062$			
	80643507	load penalties					
	4169286559	total ticks		$\mathrm{CPI}=\quad 3.196$			
	159611912	\# of ticks	saved =	3.83 per	cent of tot	tal	

Application: dnasa7

```
6 8 0 0 2 7 4 1 8 7 ~ i n s t r u c t i o n s ~ ( i n c l u d i n g ~ a n n u l l e d ) ~
6784406507 instructions (excluding annulled)
44.4 SPECmarks for nasa7
```

leve	1 size	block	subblk	assoc	write miss		
1 st	$\mathrm{I} \quad 8 \mathrm{~KB}$	32 B		2-way	write back	write	allocate
1st	D $\quad 4 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	I+D 16 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\% ItDrefs	\%Irefs	\%Drefs		
	1237399865	18.2389\%	13.140\%			I+D	misses
	5979542	0.0882\%	0.064%	0.088\%		I	misses
	1231420323	18.1508\%	13.076\%		47.052\%	D	misses
	9417438191	138.8101\%	100.000\%			I+D	references
	6800274187	100.2339\%	72.210%	100.000\%		I	references
	2617164004	38.5762\%	27.791\%		100.000\%	D	references
	1879496668	27.7032\%	19.958\%		71.815\%	D	reads
	1145483039	16.8841%	12.164%		43.769\%	D	read misses
	737667336	10.8730\%	7.833\%		28.186\%	D	writes
	85937284	1.2667\%	0.913\%		3.284\%	D	write misses
	502549919	7.4075\%	5.337\%		19.203\%	D	write backs
	416612635	6.1408\%	4.424\%		15.919\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	477625540	7.0401\%	27.451\%			$I+D$	misses
	1026763	0.0152%	0.060\%	17.172\%		I	misses
	476598777	7.0250%	27.392\%		27.486\%	D	misses
	1739949718	25.6464%	100.000\%			I+D	references
	5979542	0.0882\%	0.344%	100.000\%		I	references
	1733970176	25.5582\%	99.657\%		100.000\%	D	references
	1145483039	16.8841\%	65.835\%		66.062\%	D	reads
	444026754	6.5449\%	25.520%		25.608\%	D	read misses
	85937284	1.2667\%	4.940\%		4.957\%	D	writes
	16957069	0.2500\%	0.975\%		0.978%	D	write misses
18770062 i for i (icache busy)							
98973 i for d (DRAM busy)							
97368 i for store (DRAM busy)							
875701431 d for d (dcache busy)							
797585 d for i (DRAM busy)							
519574010 d for store (DRAM busy)							
	0	store for d (DRAM busy)					
	16372	store for i (DRAM busy)					
	0	store for store (DRAM busy)					
	15079121076	total ticks of fpu 49.978\% of total ticks					
	2075466939	fpOP instructions 30.592% of total					
	19068876884	total dram ticks DRAM busy 63.202\%					
	6690330973	float for float queue		e fpu CPI	$=0.987$		
	15246144905	memory ticks		mem CPI $=2.248$			
	7549415866	instruction ticks		raw $\mathrm{CPI}=1.113$			
	685812709			load CPI $=0.102$			
	30171704453	total ticks		$\mathrm{CPI}=\quad 4.448$			
	1963375393	\# of ticks	saved =	6.51 percer	cent of tot	tal	

```
Application: xlisp li-input.lsp
    4962043458 instructions (including annulled)
4661592279 instructions (excluding annulled)
```

 60.4 SPECmarks for li
 | leve | 1 size | block | subblk | assoc | write miss | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ist | I 8 KB | 32 B | | 2-way | write back | write | allocate |
| 1st | D $\quad 4 \mathrm{~KB}$ | 16 B | | 2-way | write back | write | allocate |
| 2nd | I+D 16 KB | 512 B | | direct | write thru | write | allocate |
| 1st Level: | | | | | | | |
| | \# | \%instrs | \%ItDrefs | \%Irefs | s \%Drefs | | |
| | 104944241 | 2.2513\% | 1.612\% | | | I + D | misses |
| | 22411850 | 0.4808\% | 0.345% | 0.452% | | I | misses |
| | 82532391 | 1.7705\% | 1.268\% | | 5.322\% | D | misses |
| | 6512926989 | 139.7147\% | 100.000\% | | | I+D | references |
| | 4962043458 | 106.4453\% | 76.188% | 100.000\% | | I | references |
| | 1550883531 | 33.2694% | 23.813% | | 100.000\% | D | references |
| | 1068396583 | 22.9192\% | 16.405\% | | 68.890\% | D | reads |
| | 54583526 | 1.1710\% | 0.839\% | | 3.520\% | D | read misses |
| | 482486948 | 10.3503\% | 7.409% | | 31.111\% | D | writes |
| | 27948865 | 0.5996% | 0.430\% | | 1.803\% | D | write misses |
| | 54109450 | 1.1608\% | 0.831% | | 3.489\% | D | write backs |
| | 26160585 | 0.5612\% | 0.402\% | | 1.687\% | D | read mod writes |
| 2nd Level: | | | | | | | |
| | \# | \%instrs | \%I+Drefs | \%Irefs | s \%Drefs | | |
| | 21918273 | 0.4702% | 13.781\% | | | I+D | misses |
| | 7903684 | 0.1696% | 4.970% | 35.266% | | I | misses |
| | 14014589 | 0.3007% | 8.812\% | | 10.257\% | D | misses |
| | 159053576 | 3.4121\% | 100.000\% | | | | references |
| | 22411850 | 0.4808\% | 14.091\% | 100.000\% | | I | references |
| | 136641726 | 2.9313\% | 85.910\% | | 100.000\% | D | references |
| | 54583526 | 1.1710\% | 34.318\% | | 39.947\% | D | reads |
| | 9720978 | 0.2086% | 6.112\% | | 7.115\% | D | read misses |
| | 27948865 | 0.5996\% | 17.572\% | | 20.455\% | D | writes |
| | 4215102 | 0.0905% | 2.651\% | | 3.085\% | D | write misses |
| 76425863 i for i (icache busy) | | | | | | | |
| 449428 i for d (DRAM busy) | | | | | | | |
| 1946165 i for store (DRAM busy) | | | | | | | |
| 36818503 d for d (dcache busy) | | | | | | | |
| 6510120 d for i (DRAM busy) | | | | | | | |
| 3667293 d for store (DRAM busy) | | | | | | | |
| 0 store for d (DRAM busy) | | | | | | | |
| 5937 store for i (DRAM busy) | | | | | | | |
| 0 store for store (DRAM busy) | | | | | | | |
| 0 total ticks of fpu 0.000% of total ticks | | | | | | | |
| | 0 | fpop instructions | | 0.000% of total | | | |
| | 1713310838 | total dram ticks | | DRAM busy 24.991\% | | | |
| | 0 | float for float queue | | fpu CPI= 0.000 | | | |
| | 1294737869 | memory ticks | | mem CPI $=0.278$ | | | |
| | 5561136309 | instruction ticksload penalties | | raw $\mathrm{CPI}=1.193$ | | | |
| | 0 | | | load $C P I=0.000$ | | | |
| | 6855874178 | total ticks | | $\mathrm{CPI}=1.471$ | | | |
| | 310412461 | \# of ticks saved $=4.53$ percent of total | | | | | |
| | 11990588 | \# of 2nd l | vel dirty | misses | | | |

-98-

Application: eqntott -s -.ioplte int_pri_3.eqn
1376907962 instructions (including annulled)
1326073659 instructions (excluding annulled)
46.8 SPECmarks for eqntott

leve	l size	block	subblk	assoc	ite miss		
Ist	I $\quad 8 \mathrm{~KB}$	32 B		2-way	rite back	write	allocate
1 st	D $\quad 4 \mathrm{~KB}$	16 B		2-way	rite back	write	allocate
2nd	I+D 16 KB	512 B		direct	wite thru	write	allocate
1st	Level:						
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	17032852	1.2845\%	1.066\%			I+D	misses
	7623	0.0006%	0.001%	0.001\%		I	misses
	17025229	1.2839\%	1.066\%		7.689\%	D	misses
	1598339434	120.5318\%	100.000\%			I + D	references
	1376907962	103.8335\%	86.147%	100.000\%		I	references
	221431472	16.6983\%	13.854%		100.000\%	D	references
	202396631	15.2629\%	12.663\%		91.404\%	D	reads
	16756051	1.2636\%	1.049\%		7.568%	D	read misses
	19034841	1.4355\%	1.191\%		8.597\%	D	writes
	269178	0.0203%	0.017%		0.122\%	D	write misses
	376005	0.0284%	0.024\%		0.170%	D	write backs
	106827	0.0081\%	0.007%		0.049\%	D	read mod writes
2nd	Level:						
	\#	\%instrs	\% $1+$ Drefs	\%Irefs	\%Drefs		
	3983894	0.3005%	22.885\%				misses
	1633	0.0002%	0.010\%	21.423\%		I	misses
	3982261	0.3004%	22.876%		22.886\%	D	misses
	17408782	1.3129\%	100.000\%			I+D	references
	7623	0.0006%	0.044%	100.000\%		I	references
	17401159	1.3123\%	99.957\%		100.000\%	D	references
	16756051	1. 2636%	96.251\%		96.293\%	D	reads
	3956063	0.2984%	22.725%		22.735\%	D	read misses
	269178	0.0203%	1.547%		1.547%	D	writes
	25533	0.0020\%	0.147%		0.147%	D	write misses

 21310 i for i (icache busy)
 104 i for d (DRAM busy)
 240 i for store (DRAM busy)
 26089775 d for d (dcache busy)
 1111 d for i (DRAM busy)
 35206 d for store (DRAM busy)
 0 store for d (DRAM busy)
 0 store for i (DRAM busy)
 0 store for store (DRAM busy)
 | 0 | total ticks of fpu | 0.000\% of total ticks |
| :---: | :---: | :---: |
| 0 | fpop instructions | 0.000\% of total |
| 188367021 | total dram ticks | DRAM busy 12.004\% |
| 0 | float for float queue | fpu CPI= 0.000 |
| 162265552 | memory ticks | mem $\mathrm{CPI}=0.123$ |
| 1403832293 | instruction ticks | raw CPI= 1.059 |
| 3149652 | load penalties | load CPI $=0.003$ |
| 1569247497 | total ticks | $\mathrm{CPI}=1.184$ |
| 23227366 | \# of ticks saved = | 1.49 percent of total |

-99.

Application: matrix300
1695008913 instructions (including annulled) 1693559295 instructions (excluding annulled)
42.0 SPECmarks for matrix300

leve	1 size	block	subblk	assoc	write miss		
1 st	I 8 KB	32 B		2-way	write back	write	allocate
1st	D $\quad 4 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	I+D 16 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	295277276	17.4354%	12.577\%			I + D	misses
	1162	0.0001%	0.001%	0.001\%		I	misses
	295276114	17.4353%	12.577\%		45.235\%	D	misses
	2347769860	138.6294%	100.000\%			I + D	references
	1695008913	100.0856\%	72.197\%	100.000\%		I	references
	652760947	38.5438\%	27.804\%		100.000\%	D	references
	435650797	25.7240\%	18.556\%		66.740\%	D	reads
	294562295	17.3931\%	12.547\%		45.126\%	D	read misses
	217110150	12.8198\%	9.248\%		33.261\%	D	writes
	713819	0.0422 \%	0.031%		0.110\%	D	write misses
	129972785	7.6746%	5.537\%		19.912\%	D	write backs
	129258966	7.6324\%	5.506\%		19.802\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\% I+Drefs	\% Irefs	\%Drefs		
	218055680	12.8756\%	51.278%			I + D	misses
	261	0.0001%	0.001\%	22.462%		I	misses
	218055419	12.8756\%	51.277\%		51.278\%	D	misses
	425249958	25.1099\%	100.000\%			I + D	references
	1162	0.0001\%	0.001%	100.000\%		I	references
	425248796	25.1098\%	100.000\%		100.000\%	D	references
	294562295	17.3931%	69.269\%		69.269\%	D	reads
	217520276	12.8440 \%	51.152\%		51.152\%	D	read misses
	713819	0.0422\%	0.168%		0.168%	D	writes
	411264	0.0243%	0.097%		0.097%	D	write misses
3282 i for i (icache busy)							
77 i for d (DRAM busy)							
234 i for store (DRAM busy)							
188773310 d for d (dcache busy)							
583 d for i (DRAM busy)							
126625890 d for store (DRAM busy)							
0 store for d (DRAM busy)							
8 store for i (DRAM busy)							
0 store for store (DRAM busy)							
	3024001625	total ticks of fpu 42.029% of total ticks					
	432000323	fpop instructions 25.509% of total					
	5336784370	total dram ticks DRAM busy 74.172\%					
	690591267	float for float queue fpu CPI= 0.408					
	4376434394	memory ticks mem CPI $=2.585$					
	1912122435	instruction ticks raw $\mathrm{CPI}=1.130$					
	216000307	load penalties		load CPI $=0.128$			
	7195148403	total ticks		$C P I=\quad 4.249$			
	-207427041	\# of ticks saved $=-2.89$ percent of total					

-100-

Application: fpppp

```
1448153391 instructions (including annulled)
1443743830 instructions (excluding annulled)
32.1 SPECmarks for fpppp
```

level	size	block	subblk	assoc	write miss
lst I	8 KB	32 B		2-way	write back write allocate
lst D	4 KB	16 B		2-way	write back write allocate
2nd I+D	16 KB	512 B		direct	write thru write allocate

\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
178506365	12.3642\%	8.239\%			I+D	misses
115073763	7.9706%	5.311\%	7.947\%		I	misses
63432602	4.3937\%	2.928\%		8.828\%	D	misses
2166746002	150.0783\%	100.000\%			ItD	references
1448153391	100.3055\%	66.836\%	100.000\%		I	references
718592611	49.7729\%	33.165\%		100.000\%	D	references
588879193	40.7884\%	27.179\%		81.949\%	D	reads
37985931	2.6311\%	1.754%		5.287\%	D	read misses
129713418	8.9846%	5.987\%		18.052\%	D	writes
25446671	1.7626\%	1.175\%		3.542\%	D	write misses
31101650	2.1543%	1.436\%		4.329\%	D	write backs
5654979	0.3917\%	0.261%		0.787%	D	read mod writes
2nd Level:						
\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
25646460	1.7764\%	12.236%			I+D	misses
10080063	0.6982%	4.810%	8.760\%		I	misses
15566397	1.0782\%	7.427\%		16.467\%	D	misses
209607923	14.5184%	100.000\%			I+D	references
115073763	7.9706%	54.900%	100.000\%		I	references
94534160	6.5479\%	45.101\%		100.000\%	D	references
37985931	2.6311\%	18.123%		40.183\%	D	reads
10553883	0.7311%	5.036\%		11.165\%	D	read misses
25446671	1.7626\%	12.141%		26.918\%	D	writes
4500912	0.3118\%	2.148%		4.762\%	D	write misses

-101-

Application: tomcatv

$$
\begin{aligned}
& 1626566071 \text { instructions (including annulled) } \\
& 1626346379 \text { instructions (excluding annulled) } \\
& 27.7 \text { SPECmarks for tomcatv }
\end{aligned}
$$

leve	1 size	block	subblk	assoc	rite miss		
1 st	$\mathrm{I} \quad 8 \mathrm{~KB}$	32 B		2-way	rite back	write	allocate
1 st	D $\quad 4 \mathrm{~KB}$	16 B		2-way	rite back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} 16 \mathrm{~KB}$	512 B		direct	rite thru	write	allocate
1st	Level:						
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	234111935	14.3950\%	10.189\%			I + D	misses
	42481	0.0027%	0.002\%	0.003\%		I	misses
	234069454	14.3924\%	10.187\%		34.873\%	D	misses
	2297780457	141.2849\%	100.000\%			I+D	references
	1626566071	100.0136\%	70.789\%	100.000\%		I	references
	671214386	41.2714\%	29.212\%		100.000\%	D	references
	482161503	29.6470\%	20.984\%		71.835\%	D	reads
	204045768	12.5463\%	8.881\%		30.400\%	D	read misses
	189052883	11.6244%	8.228\%		28.166\%	D	writes
	30023686	1.8461%	1.307\%		4.474\%	D	write misses
	59903900	3.6834\%	2.608\%		8.925\%	D	write backs
	29880214	1.8373\%	1.301\%		4.452%	D	read mod writes
2nd	Level:						
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	115017082	7.0722\%	39.120\%			I + D	misses
	9920	0.0007%	0.004\%	23.352\%		I	misses
	115007162	7.0716\%	39.116\%		39.122\%	D	misses
	294015730	18.0783\%	100.000\%			$I+D$	references
	42481	0.0027%	0.015%	100.000\%		I	references
	293973249	18.0757\%	99.986\%		100.000\%	D	references
	204045768	12.5463\%	69.400%		69.410\%	D	reads
	89125568	5.4802%	30.314\%		30.318\%	D	read misses
	30023686	1.8461\%	10.212\%		10.214%	D	writes
	25835288	1.5886\%	8.788\%		8.789\%	D	write misses

107292	i for i (icache busy)
3622	i for d (DRAM busy)
8661	i for store (DRAM busy)
204037833	d for d (dcache busy)
27122	d for i (DRAM busy)
48672709	d for store (DRAM busy)
0	store for d (DRAM busy)
1006	store for i (DRAM busy)
0	store for store (DRAM busy)
3297778423	total ticks of fpu 51.692\% of total ticks
500809316	fpop instructions 30.798\% of total
3473346487	total dram ticks DRAM busy 54.444\%
1531395750	float for float queue fpu CPI= 0.942
2844030099	memory ticks mem CPI= 1.749
1815652734	instruction ticks raw $\mathrm{CPI}=1.116$
188602852	load penalties load CPI $=0.116$
6379681435	total ticks $\mathrm{CPI}=\quad 3.923$
59248151	\# of ticks saved $=0.93$ percent of total

-102-

Application: 001.gcc1.35

```
1258987043 instructions (including annulled)
1217217202 instructions (excluding annulled)
46.7 SPECmarks for gcc
```

leve	size	block	subblk	assoc	write miss		
1 st	I 8 KB	32 B		2-way	write back	write	allocate
1 st	D $\quad 4 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	I+D 32 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	61617708	5.0622\%	3.892\%			$I+D$	misses
	34597540	2.8423\%	2.185%	2.748\%		I	misses
	27020168	2.2198\%	1.707\%		8.335\%	D	misses
	1583156354	130.0636\%	100.000\%			I+D	references
	1258987043	103.4316\%	79.524\%	100.000\%		I	references
	324169311	26.6320%	20.476\%		100.000\%	D	references
	225256901	18.5059\%	14.228\%		69.487\%	D	reads
	16561090	1.3606\%	1.046\%		5.109\%	D	read misses
	98912410	8.1261\%	6.248%		30.513\%	D	writes
	10459078	0.8593%	0.661%		3.226\%	D	write misses
	12805520	1.0520\%	0.809%		3.950\%	D	write backs
	2346442	0.1928\%	0.148%		0.724%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	12349325	1.0146\%	16.594\%			I + D	misses
	6619462	0.5438%	8.894\%	19.133\%		I	misses
	5729863	0.4707%	7.699\%		14.388\%	D	misses
	74422520	6.1142\%	100.000\%			It +	references
	34597540	2.8423\%	46.488 \%	100.000\%		I	references
	39824980	3.2718\%	53.512\%		100.000\%	D	references
	16561090	1. 3606%	22.253\%		5.109\%	D	reads
	4569805	0.3754%	6.140%		1.410\%	D	read misses
	10459078	0.8593%	14.054\%		3.226\%	D	writes
	1146262	0.0942\%	1.540\%		0.354%	D	write misses
104449139 i for i (icache busy)							
1594755 i for d (DRAM busy)							
7571102 d for d (dcache busy)							
10357552 d for i (DRAM busy)							
4078919 d for store (DRAM busy)							
	0	store for d (DRAM busy)					
	13683	store for i (DRAM busy)					
	0	store for store (DRAM busy)					
	1419650	total ticks of fpu 0.067% of total ticks					
	120384	fpop instructions 0.010% of total					
	932393187	total dram ticks DRAM busy 44.129\%					
	1096908	float for float queue		e fpu CPI=	$=0.001$		
	735382560	memory ticks		mem $\mathrm{CPI}=0.604$			
	1376244428	instruction ticks		raw $\mathrm{CPI}=1.131$			
	143779	load penalties		load $\mathrm{CPI}=0.000$			
	2112867675	total ticks		$\mathrm{CPI}=\quad 1.736$			
141228315 \# of ticks saved $=6.68$ percent of total							
	3631043	\# of 2nd 1	evel dirty	misses			

-103-

Application: 008.espresso						
3102930952 instructions (including annulled)						
2930507476		(excludi	ng annull	ed)		
39.5 SPECmarks for espresso						
level size	block	subblk	assoc	write miss		
1st I 8 KB	32 B		2-way	write back	write	allocate
1st D 4 KB	16 B		2-way	write back	write	allocate
2nd I+D 32 KB	512 B		direct	write thru	write	allocate
1st Level:						
\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
59135836	2.0179\%	1.505\%				misses
5417408	0.1849\%	0.138%	0.175%		I	misses
53718428	1.8331\%	1.367\%		6.505\%	D	misses
3928686273	134.0616%	100.000\%			I+D	references
3102930952	105.8837\%	78.981\%	100.000\%		I	references
825755321	28.1779%	21.019\%		100.000\%	D	references
681401797	23.2520\%	17.344\%		82.519\%	D	reads
48714100	1.6623\%	1.240\%		5.899\%	D	read misses
144353524	4.9259\%	3.674\%		17.481\%	D	writes
5004328	0.1708\%	0.127%		0.606%	D	write misses
17837452	0.6087%	0.454%		2.160\%	D	write backs
12833124	0.4379\%	0.327%		1.554\%	D	read mod writes
2nd Level:						
\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
2840428	0.0969%	3.690\%			I+D	misses
698701	0.0238%	0.908%	12.897\%		I	misses
2141727	0.0731\%	2.782\%		2.993\%	D	misses
76972954	2.6266\%	100.000\%			I+D	references
5417408	0.1849%	7.038%	100.000\%		I	references
71555546	2.4417\%	92.962\%		100.000\%	D	references
48714100	1. 6623%	63.287%		5.899\%	D	reads
1786855	0.0610\%	2.321%		0.216%	D	read misses
5004328	0.1708%	6.501%		0.606\%	D	writes
353338	0.0121%	0.459%		0.043%	D	write misses
16304066 i for i (icache busy)						
207738 i for d (DRAM busy)						
177838 i for store (DRAM busy)						
42591663 d for d (dcache busy)						
1410574 d for i (DRAM busy)						
1222983 d for store (DRAM busy)						
0 store for d (DRAM busy)						
1967 store for i (DRAM busy)						
108223 total ticks of fpu 0.003\% of total ticks	total ticks of fpu 0.003% of total ticks					
8755	fpop instructions 0.000% of total					
741769983	total dram ticks DRAM busy 19.409\%					
52963	float for float queue fpu CPI= 0.000					
556515726	memory ticks mem CPI = 0.190					
3265169566	instruction ticks raw CPI= 1.114					
2355	load penalties load CPI $=0.000$					
3821740610	total ticks CPI= 1.304					
209650154 \# of ticks saved = 5.49 percent of total						
1342476	\# of 2nd le	vel dirty	misses			

-104-

Application: spice2g6
23810783700 instructions (including annulled)
22775128234 instructions (excluding annulled)
33.1 SPECmarks for spice2g6

lev	l size	block	subblk	assoc	write miss		
1 st	I 8 KB	32 B		2-way	write back	write	allocate
1 st	$\mathrm{D} \quad 4 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	ItD 32 KB	512 B		direct	write thru	write	allocate
1 st	Level:						
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	1957916626	8.5968\%	6.635\%			I+D	misses
	79734588	0.3501%	0.271%	0.335%		I	misses
	1878182038	8.2467\%	6.365\%		32.956\%	D	misses
	29509960940	129.5710\%	100.000\%			I+D	references
	23810783700	104.5474\%	80.688\%	100.000\%		I	references
	5699177240	25.0237%	19.313\%		100.000\%	D	references
	4792611768	21.0432%	16.241\%		84.094\%	D	reads
	1803111961	7.9171%	6.111\%		31.639\%	D	read misses
	906565472	3.9806\%	3.073\%		15.907\%	D	writes
	75070077	0.3297%	0.255%		1.318\%	D	write misses
	171696762	0.7539%	0.582%		3.013\%	D	write backs
	96626685	0.4243\%	0.328%		1.696\%	D	read mod writes
2nd	Level:						
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	726457848	3.1897\%	34.113\%			I+D	misses
	8725459	0.0384\%	0.410%	10.944\%		I	misses
	717732389	3.1514\%	33.703\%		35.014\%	D	misses
	2129613277	9.3507\%	100.000\%			I + D	references
	79734588	0.3501%	3.745\%	100.000%		I	references
	2049878689	9.0006\%	96.256\%		100.000\%	D	references
	1803111961	7.9171\%	84.669\%		87.962\%	D	reads
	710761785	3.1208\%	33.376\%		34.674\%	D	read misses
	75070077	0.3297%	3.526\%		3.663\%	D	writes
	6938333	0.0305%	0.326%		0.339\%	D	write misses
	238566350	i for i (i	cache busy				
	5363383	i for d (D	RAM busy)				
	6302776	i for stor	(DRAM busy	sy)			
	275963134	d for d (d	cache busy)				
	53633583	d for i (D	RAM busy)				
	70035618	d for stor	(DRAM busy	sy)			
	0	store for	d (DRAM busy	sy)			
	5457	store for	i (DRAM busy	sy)			
	0	store for	store (DRAM	M busy)			
	7841192173	total tick	of fpu	16.222\%	of total t	icks	
	962369533	fpop instr	uctions	4.226% o	of total		
	25256616926	total dram	ticks	DRAM bus	52.251\%		
	3676856610	float for	float queue	e fpu CPI=	$=0.162$		
	19278443632	memory tic	ks	mem CPI=	$=0.847$		
	24784595920	instructio	ticks	raw CPI=	$=1.089$		
	597255631	load penal	ies	load CPI	$I=0.027$		
	48337151793	total tick		CPI=	2.123		
	1027890272	\# of ticks	saved =	2.13 perc	cent of tot		

-105-

Application: doduc

```
1316441095 instructions (including annulled)
1304567885 instructions (excluding annulled)
30.3 SPECmarks for doduc
```

leve	1 size	block	subblk	assoc w	write miss		
1 st	I $\quad 8 \mathrm{~KB}$	32 B		2-way w	write back	write	allocate
1st	D $\quad 4 \mathrm{~KB}$	16 B		2-way w	write back	write	allocate
2nd	I+D 32 KB	512 B		direct w	write thru	write	allocate
Ist Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	79201288	6.0711\%	4.658\%			I+D	misses
	32267170	2.4734\%	1.898\%	2.452%		I	misses
	46934118	3.5977\%	2.760%		12.220\%	D	misses
	1700517946	130.3511\%	100.000\%			I+D	references
	1316441095	100.9102%	77.415%	100.000\%		I	references
	384076851	29.4410%	22.586%		100.003\%	D	references
	298852876	22.9082\%	17.575\%		77.811%	D	reads
	28989483	2.2222\%	1.705\%		7.548\%	D	read misses
	85223975	6.5328\%	5.012\%		22.190\%	D	writes
	17944635	1.3756\%	1.056%		4.673%	D	write misses
	19416837	1.4884\%	1.142\%		5.056\%	D	write backs
	1472202	0.1129\%	0.087%		0.384%	D	read mod writes
2nd Level:							
	\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
	11861036	0.9092%	12.028\%			I + D	misses
	3634634	0.2787%	3.686\%	11.265\%			misses
	8226402	0.6306%	8.342\%		12.399\%	D	misses
	98618037	7.5595%	100.000\%			$I+D$	references
	32267170	2.4734%	32.720\%	100.000\%		I	references
	66350867	5.0861\%	67.281\%		100.000\%	D	references
	28989483	2.2222\%	29.396\%		43.692\%	D	reads
	5607319	0.4299\%	5.686\%		8.452\%	D	read misses
	17944635	1.3756\%	18.197\%		27.046\%	D	writes
	2547767	0.1953\%	2.584\%		3.840\%	D	write misses
75242130 i for i (icache busy)							
3946926 i for d (DRAM busy)							
5451468 i for store (DRAM busy)							
30429776 d for d (dcache busy)							
29239514 d for i (DRAM busy)							
7767834 d for store (DRAM busy)							
	0	store for d (DRAM busy)					
	63848	store for i (DRAM busy)					
	0	store for store (DRAM busy)					
	2752142075	total ticks of fpu 67.133\% of total ticks					
	338148549	fpOP instructions 25.921\% of total					
	1134563107	total dram ticks DRAM busy 27.676%					
	1716396426	float for float queuememory ticks		DRAM busy 27.676%fpu CPI= 1.316			
	894048982			mem CPI $=0.686$			
	1408495433	instruction ticks			raw CPI $=1.080$		
	80643507	load penalties		load CPI	$I=0.062$		
	4099584348	total ticks		$C P I=\quad 3.143$			
	220044568	\# of ticks saved $=5.37$ percent of total					

-106-

Application: dnasa7
6800274207 instructions (including annulled)
6784406515 instructions (excluding annulled)
45.2 SPECmarks for nasa7

leve	l size	block	subblk	assoc	write miss		
1st	I $\quad 8 \mathrm{~KB}$	32 B		2-way	write back	write	allocate
1st	$\mathrm{D} \quad 4 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	ItD 32 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	욷+Drefs	\%Irefs	\%Drefs		
	1237326330	18.2378\%	13.139\%			I+D	misses
	5979543	0.0882\%	0.064%	0.088%		I	misses
	1231346787	18.1497\%	13.076\%		47.049\%	D	misses
	9417438218	138.8101\%	100.000\%			I+D	references
	6800274207	100.2339\%	72.210\%	100.000\%		I	references
	2617164011	38.5762\%	27.791\%		100.000\%	D	references
	1879496667	27.7032\%	19.958\%		71.815\%	D	reads
	1145421758	16.8832\%	12.163%		43.766%	D	read misses
	737667344	10.8730%	7.833\%		28.186\%	D	writes
	85925029	1.2666\%	0.913%		3.284\%	D	write misses
	502511001	7.4069\%	5.336\%		19.201\%	D	write backs
	416585972	6.1404\%	4.424\%		15.918\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	396529757	5.8448\%	22.792%			I+D	misses
	61620	0.0010\%	0.004\%	1.031\%		I	misses
	396468137	5.8439\%	22.788%		22.867\%	D	misses
	1739837264	25.6447\%	100.000\%			I + D	references
	5979543	0.0882\%	0.344%	100.000\%		I	references
	1733857721	25.5566%	99.657%		100.000\%	D	references
	1145421758	16.8832\%	65.835\%		66.063\%	D	reads
	385384256	5.6805\%	22.151\%		22.227%	D	read misses
	85925029	1.2666\%	4.939\%		4.956\%	D	writes
	7445625	0.1098%	0.428%		0.430%	D	write misses
18848451 i for i (icache busy)							
	63664	i for d (D	RAM busy)				
94110 i for store (DRAM busy)							
875610365 d for d (dcache busy)							
680402 d for i (DRAM busy)							
519438606 d for store (DRAM busy)							
	0	store for d (DRAM busy)					
	16372	store for i (DRAM busy)					
	0	store for	tore (DRAM	M busy)			
	15079121076	total ticks of fpu 50.771\% of total ticks					
	2075466939	fpOp instructions 30.592% of total					
	18592222530	total dram ticks DRAM busy 62.599\%					
	6695873694	float for float queue fpu CPI $=0.987$					
	14769524079	memory ticks		mem CPI $=2.177$			
	7549415897	instruction ticks		raw $\mathrm{CPI}=1.113$			
	685812709			load CPI $=0.102$			
	29700626379	total ticks		$\mathrm{CPI}=\quad 4.378$			
	2684779125	\# of ticks saved $=9.04$ percent of total					

-107-

Application: eqntott -s -.ioplte int_pri_3.eqn

```
        1376907962 instructions (including annulled)
        1326073659 instructions (excluding annulled)
            46.9 SPECmarks for eqntott
```

leve	1 size	block	subblk	assoc	write miss		
1 st	I 8 KB	32 B		2-way	write back	write	allocate
1 st	$\mathrm{D} \quad 4 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	I+D 32 KB	512 B		direct	write thru	write	allocate
$1 s t$	Level:						
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	17032852	1.2845\%	1.066\%			I+D	misses
	7623	0.0006%	0.001%	0.001\%		I	misses
	17025229	1.2839\%	1.066\%		7.689\%	D	misses
	1598339434	120.5318\%	100.000\%				references
	1376907962	103.8335\%	86.147\%	100.000\%		I	references
	221431472	16.6983\%	13.854\%		100.000\%	D	references
	202396631	15.2629\%	12.663\%		91.404\%	D	reads
	16756051	1.2636\%	1.049%		7.568%	D	read misses
	19034841	1.4355\%	1.191\%		8.597\%	D	writes
	269178	0.0203\%	0.017%		0.122%	D	write misses
	376005	0.0284%	0.024%		0.170%	D	write backs
	106827	0.0081\%	0.007\%		0.049%	D	read mod writes
2nd	Level:						
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	3475761	0.2622\%	19.966\%			I + D	misses
	561	0.0001%	0.004%	7.360%		I	misses
	3475200	0.2621%	19.963\%		19.972\%	D	misses
	17408782	1.3129\%	100.000\%			I +D	references
	7623	0.0006%	0.044%	100.000\%		I	references
	17401159	1.3123\%	99.957\%		100.000\%	D	references
	16756051	1.2636\%	96.251\%		96.293\%	D	reads
	3455795	0.2607%	19.851\%		19.860\%	D	read misses
	269178	0.0203%	1.547\%		1. 547%	D	writes
	19073	0.0015%	0.110%		0.110\%	D	write misses

 21310 i for i (icache busy)
 104 i for d (DRAM busy)
 240 i for store (DRAM busy)
 26089775 d for \(d\) (dcache busy)
 1111 d for i (DRAM busy)
 35206 d for store (DRAM busy)
 0 store for d (DRAM busy)
 0 store for i (DRAM busy)
 0 store for store (DRAM busy)
 total ticks of fpu 0.000 of total ticks
 fpop instructions \(0.000 \%\) of total
 184353811 total dram ticks DRAM busy \(11.779 \%\)
 0 float for float queue fpu CPI= 0.000
 158252342 memory ticks mem CPI= 0.120
 1403832293 instruction ticks raw \(\mathrm{CPI}=1.059\)
 3149652 load penalties load CPI \(=0.003\)
 1565234287 total ticks CPI= 1.181
 26549482 \# of ticks saved \(=1.70\) percent of total
 89084 \# of 2nd level dirty misses
 -109-
Application: matrix300

$$
\begin{aligned}
& 1695008913 \text { instructions (including annulled) } \\
& 1693559295 \text { instructions (excluding annulled) } \\
& 42.1 \text { SPECmarks for matrix300 }
\end{aligned}
$$

3282	i for i (icache busy)
77	i for d (DRAM busy)
234	i for store (DRAM busy)
188773310	d for d (dcache busy)
583	d for i (DRAM busy)
126625890	d for store (DRAM busy)
0	store for d (DRAM busy)
8	store for i (DRAM busy)
0	store for store (DRAM busy)
3024001625	total ticks of fpu 42.104\% of total ticks
432000323	fpOP instructions 25.509 of total
5323864992	total dram ticks DRAM busy 74.126%
690591267	float for float queue fpu CPI= 0.408
4363515016	memory ticks mem CPI= 2.577
1912122435	instruction ticks raw CPI= 1.130
216000307	load penalties load CPI= 0.128
7182229025	total ticks CPI= 4.241
-158787020	\# of ticks saved $=-2.22$ percent of total

-110-

Application: fpppp							
1448153391 instructions (including annulled)							
1443743830 instructions (excluding annulled)							
32.4 SPECmarks for fpppp							
leve	1 size	block	subblk	assoc	write miss		
1st	I 8 KB	32 B		2-way	write back	write	allocate
Ist	D , 4 KB	16 B		2-way	write back	write	allocate
2nd	I+D 32 KB	512 B		direct	write thru	write	allocate
Ist Level:							
	\#	\%instrs	\% I + Drefs	\%Irefs	\%Drefs		
	179674151	12.4451%	8.293\%			$I+D$	misses
	115073763	7.9706%	5.311\%	7.947%		I	misses
	64600388	4.4746%	2.982%		8.990%	D	misses
	2166746002	150.0783%	100.000%			$I+D$	references
	1448153391	100.3055\%	66.836%	100.000%		I	references
	718592611	49.7729 \%	33.165%		100.000%	D	references
	588879193	40.7884%	27.179%		81.949\%	D	reads
	39255681	2.7191%	1. 812%		5.463%	D	read misses
	129713418	8.9846\%	5.987%		18.052%	D	writes
	25344707	1. 7555%	1.170%		3.527 웅	D	write misses
	30961775	2.1446%	1. 429%		4.309\%	D	write backs
	5617068	0.3891%	0.260%		0.782%	D	read mod writes
2nd Level:							
	\#	\%instrs	\% ItDrefs	\%Irefs	\%Drefs		
	17286127	1.1974%	8.207 웅			$I+D$	misses
	5603971	0.3882%	2.661%	4.870%		I	misses
	11682156	0.8092%	5.547%		12.225\%	D	misses
	210635841	14.5896\%	100.000\%			$I+D$	references
	115073763	7.9706%	54.632%	100.000\%		I	references
	95562078	6.6191%	45.369%		100.000%	D	references
	39255681	2.7191%	18.637%		41.079%	D	reads
	8494393	0.5884%	4.033\%		8.889\%	D	read misses
	25344707	1.7555\%	12.033%		26.522 \%	D	writes
	3061521	0.2121%	1.454%		3. 204%	D	write misses
355912566 i for i (icache busy)							
14197551 i for d (DRAM busy)							
14882105 i for store (DRAM busy)							
57995645 d for d (dcache busy)							
53501600 d for i (DRAM busy)							
18376129 d for store (DRAM busy)							
0 store for d (DRAM busy)							
683691 store for i (DRAM busy)							
0 store for store (DRAM busy)							
4171935848		total ticks of fpu 66.614\% of total ticks					
591747328		fpop instructions 40.988% of total					
2596762365		total dram ticks DRAM busy 41.463\%					
2293202776		float for float queue fpu CPI= 1.589					
2135182840		memory ticks mem CPI= 1.479					
1579516012		instruction ticks raw $C P I=1.095$					
254989434		load penalties		load CPI $=0.177$			
6262891062		total ticks		$\mathrm{CPI}=4.338$			
523933622 \# of ticks saved $=8.37$ percent of total							

-111-

Application: tomcatv							
1626566072 instructions (including annulled)							
1626346391 instructions (excluding annulled)							
28.5 SPECmarks for tomcatv							
leve	1 size	block	subblk	assoc w	write miss		
1st	$\mathrm{I} \quad 8 \mathrm{~KB}$	32 B		2-way w	write back	write	allocate
1 st	$\mathrm{D} \quad 4 \mathrm{~KB}$	16 B		2-way wr	write back	write	allocate
2nd	ItD 32 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\% ItDrefs	\% Irefs	\%Drefs		
	234671046	14.4294\%	10.213\%				misses
	42480	0.0027%	0.002%	0.003%		I	misses
	234628566	14.4268\%	10.212\%		34.956\%	D	misses
	2297780456	141.2849\%	100.000\%				references
	1626566072	100.0136\%	70.789%	100.000\%			references
	671214384	41.2714%	29.212\%		100.000\%	D	references
	482161509	29.6470%	20.984\%		71.835\%	D	reads
	204553491	12.5775\%	8.903%		30.476%	D	read misses
	189052875	11.6244%	8.228\%		28.166%	D	writes
	30075075	1.8493\%	1.309\%		4.481\%	D	write misses
	59878691	3.6818\%	2.606%		8.921\%	D	write backs
	29803616	1.8326\%	1.298\%		4.441\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\% I + Drefs	\%Irefs	\%Drefs		
	87332340	5.3699\%	29.650\%				misses
	8851	0.0006\%	0.004%	20.836\%		I	misses
	87323489	5.3694\%	29.647\%		29.651\%	D	misses
	294549629	18.1112\%	100.000\%			I+D	references
	42480	0.0027%	0.015%	100.000\%		I	references
	294507149	18.1086\%	99.986\%		100.000\%	D	references
	204553491	12.5775\%	69.447\%		69.457\%	D	reads
	69958965	4.3017\%	23.752\%		23.755\%	D	read misses
	30075075	1.8493\%	10.211\%		10.213\%	D	writes
	17346638	1.0667\%	5.890\%		5.891\%	D	write misses
105498 i for i (icache busy)							
3551 i for d (DRAM busy)							
9682 i for store (DRAM busy)							
204620494 d for d (dcache busy)							
30235 d for i (DRAM busy)							
48112327 d for store (DRAM busy)							
0 store for d (DRAM busy)							
600 store for i (DRAM busy)							
0 store for store (DRAM busy)							
	3297778423	total ticks of fpu 53.043\% of total ticks					
	500809316	fpOP instructions 30.794\% of total					
	3301143846	total dram	ticks	DRAM bus	usy 53.097\%		
	1542710928	float for	float queue	e fpu CPI=	$=0.949$		
	2670249906	memory tic	ks	mem CPI	$=1.642$		
	1815652725	instructio	n ticks	raw CPI	$=1.117$		
	188602852	load penal	ties	load CPI	$I=0.116$		
	6217216411	total tick		$\mathrm{CPI}=$	3.823		
286418493 \# of ticks saved $=4.61$ percent of total							

Application: 001.gcc1.35
1259060745 instructions (including annulled)
1217290497 instructions (excluding annulled) 47.4 SPECmarks for gCC

leve	1 size	block	subblk	assoc	write miss		
1st	I $\quad 8 \mathrm{~KB}$	32 B		2-way	write back	write	allocate
1st	D $\quad 4 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	I+D 64 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\% I + Drefs	\%Irefs	s \%Drefs		
	61392801	5.0434\%	3.878\%			I+D	misses
	34594333	2.8419%	2.185\%	2.748\%		I	misses
	26798468	2.2015\%	1.693\%		8.267\%	D	misses
	1583229821	130.0618\%	100.000\%			I+D	references
	1259060745	103.4314\%	79.525\%	100.000\%		I	references
	324169076	26.6304%	20.475\%		100.000\%	D	references
	225257129	18.5048\%	14.228%		69.488\%	D	reads
	16431934	1.3499\%	1.038\%		5.069\%	D	read misses
	98911947	8.1256\%	6.247\%		30.512\%	D	writes
	10366534	0.8516\%	0.655%		3.198\%	D	write misses
	12738857	1.0465\%	0.805\%		3.930\%	D	write backs
	2372323	0.1949\%	0.150%		0.732\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	846305.6	0.6952\%	11.416%			I+D	misses
	4578982	0.3762%	6.177%	13.236\%		I	misses
	3884074	0.3191%	5.239\%		9.824%	D	misses
	74130979	6.0898\%	100.000\%			I+D	references
	34594333	2.8419\%	46.666%	100.000\%		I	references
	39536646	3.2479\%	53.334\%		100.000\%	D	references
	16431934	1.3499\%	22.166%		5.069\%	D	reads
	3118746	0.2562%	4.207\%		0.962%	D	read misses
	10366534	0.8516%	13.984%		3.198\%	D	writes
	752887	0.0618%	1.016\%		0.232\%	D	write misses
104497364 i for i (icache busy)							
1591390 i for d (DRAM busy)							
2015226 i for store (DRAM busy)							
7310436 d for d (dcache busy)							
	10267932	d for i (D	RAM busy)				
4059832 d for store (DRAM busy)							
0 store for d (DRAM busy)							
	13876	store for	i (DRAM busy				
0 store for store (DRAM busy)							
	1419650	total ticks of fpu 0.068% of total ticks					
	120384	fpop instructions 0.010% of total					
	901547269	total dram ticks DRAM busy 43.288%					
	1096964	float for float queue fpu CPI $=0.001$					
	705127389	memory ticks mem CPI= 0.579					
	1376317463	instruction ticks raw $\mathrm{CPI}=1.131$					
	143716	load penalties		load CPI $=0.000$			
	2082685532	total ticks		$\mathrm{CPI}=1.711$			
167540448 \# of ticks saved $=8.04$ percent of total							
	2529101	\# of 2nd 1	vel dirty	misses			

-113-

Application: 008.espresso

```
3 1 0 2 9 3 0 7 8 6 ~ i n s t r u c t i o n s ~ ( i n c l u d i n g ~ a n n u l l e d )
2930507314 instructions (excluding annulled)
39.7 SPECmarks for espresso
```

leve	1 size	block	subblk	assoc w	write miss		
1st	I $\quad 8 \mathrm{~KB}$	32 B		2-way w	write back	write	allocate
1 st	D 4 KB	16 B		2-way	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} \quad 64 \mathrm{~KB}$	512 B		direct	write thru	write	allocate
1st	Level:						
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	58868398	2.0088 \%	1.498%			I+D	misses
	5417375	0.1849%	0.138%	0.175%		I	misses
	53451023	1.8240\%	1.361\%		6.473\%	D	misses
	3928686124	134.0616%	100.000\%			I + D	references
	3102930786	105.8837\%	78.981%	100.000\%		I	references
	825755338	28.1779\%	21.019%		100.000\%	D	references
	681401825	23.2520%	17.344\%		82.519\%	D	reads
	48545015	1. 6565%	1. 236%		5.879\%	D	read misses
	144353513	4.9259\%	3.674\%		17.481\%	D	writes
	4906008	0.1674%	0.125\%		0.594%	D	write misses
	17705834	0.6042%	0.451%		2.144%	D	write backs
	12799826	0.4368%	0.326%		1.550\%	D	read mod writes
2nd	Level:						
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	1548092	0.0528%	2.022%			I+D	misses
	513975	0.0175%	0.671\%	9.488\%		I	misses
	1034117	0.0353\%	1.350\%		1.453\%	D	misses
	76573904	2. 6130\%	100.000\%			I + D	references
	5417375	0.1849\%	7.075%	100.000\%		I	references
	71156529	2.4281\%	92.925\%		100.000\%	D	references
	48545015	1.6565\%	63.396\%		5.879\%	D	reads
	871713	0.0297 웅	1.138%		0.106%	D	read misses
	4906008	0.1674%	6.407\%		0.594%	D	writes
	161752	0.0055%	0.211%		0.020\%	D	write misses
	16308807	i for i (i	cache busy)				
	207248	i for d (D	RAM busy)				
	177561	i for stor	e (DRAM busy)	sy)			
	42478588	d for d (d	cache busy)				
	1402189	d for i (D)	RAM busy)				
	1206249	d for stor	(DRAM busy)	sy)			
	0	store for	d (DRAM busy)				
	1828	store for	i (DRAM busy)				
	0	store for	store (DRAM	M busy)			
	108223	total tick	s of fpu	0.003%	of total ti	cks	
	8755	fpop instr	uctions	0.0008 o	of total		
	728254412	total dram	ticks	DRAM bus	sy 19.118\%		
	52935	float for	float queue	e fpu CPI=	$=0.000$		
	544063045	memory tic	s	mem CPI=	$=0.186$		
	3265169389	instructio	ticks	raw CPI=	$=1.114$		
	2355	load penal	ies	load CPI	$I=0.000$		
	3809287724	total tick		$\mathrm{CPI}=$	1.300		
	218274840	\# of ticks	saved $=$	5.73 perc	cent of tot		
	649461	\# of 2nd 1	evel dirty	misses			

-114-

23810783660 instructions (including annulled) 22775128206 instructions (excluding annulled) 33.9 SPECmarks for spice2g6						
level size	block	subblk	assoc w	write miss		
1st I 8 KB	32 в		2-way w	write back	write	allocate
1 st D 4 KB	16 B		2-way w	write back	write	allocate
2nd ItD 64 KB	512 B		direct wr	write thru	write	allocate
st Level:						
\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
1958630368	8.5999\%	6.638\%				misses
79734583	0.3501\%	0.271%	0.335%		I	misses
1878895785	8.2498\%	6.367\%		32.968\%	D	misses
29509960888	129.5710\%	100.000\%			I+D	references
23810783660	104.5474\%	80.688\%	100.000\%			references
5699177228	25.0237\%	19.313\%		100.000\%	D	references
4792611764	21.0432\%	16.241\%		84.094\%	D	reads
1803511822	7.9188\%	6.112\%		31.646\%	D	read misses
906565464	3.9806\%	3.073\%		15.907\%	D	writes
75383963	0.3310\%	0.256\%		1.323\%	D	write misses
171994487	0.7552%	0.583%		3.018\%	D	write backs
96610524	0.4242%	0.328%		1.696\%		read mod writes
2nd Level:						
\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
568111268	2.4945\%	26.665\%				misses
366076.4	0.0161\%	0.172%	4.592\%			misses
564450504	2.4784%	26.493\%		27.523\%	D	misses
2130624742	9.3551\%	100.000\%			I+D	references
79734583	0.3501%	3.743\%	100.000\%			references
2050890159	9.0050\%	96.258\%		100.000\%	D	references
1803511822	7.9188\%	84.648\%		87.939\%	D	reads
559032796	2.4546\%	26.238\%		27.259\%	D	read misses
75383963	0.3310%	3.539\%		3.676\%	D	writes
5402190	0.0238\%	0.254%		0.264%	D	write misses
239039725 i for i (icache busy)						
$\begin{array}{ll}5356032 & \text { i for d (DRAM busy) } \\ 6250388 \\ \text { i for store (DRAM busy) }\end{array}$						
	276029959 d for d (dcache busy)					
5284710569788214d for for it (DRAM busy)fore (DRAM busy)						
	store for d (DRAM busy)					
5657	store for i (DRAM busy)					
0						
7841192173	total ticks of fpu 16.645\% of total ticks					
962369533	fpop instructions		4.226% of total			
24032444907	total dram ticks		DRAM busy 51.014\%			
3677085511	float for float queuememory ticks		fpu CPI= 0.162			
18050684012			mem CPI=	$=0.793$		
24784595868	instruction ticks		raw CPI= 1.089			
597255631			load CPI $=0.027$			
47109621022	total ticks \quad CPI= 2.069					
2257854075	\# of ticks	saved =	4.80 perce	cent of tot		

-115-

Application: doduc
1316441129 instructions (including annulled) 1304567915 instructions (excluding annulled) 30.6 SPECmarks for doduc

75242142 i for i (icache busy)
3946925 i for d (DRAM busy)
5451464 i for store (DRAM busy)
30429774 d for d (dcache busy)
29239507 d for i (DRAM busy)
7767834 d for store (DRAM busy)
0 store for d (DRAM busy)
63848 store for i (DRAM busy)
0 store for store (DRAM busy)

2752142075	total ticks of fpu	67.663% of total ticks
338148549	fpoP instructions	25.921% of total
1100530753	total dram ticks	DRAM busy 27.057%
1718325192	float for float queue fpu CPI $=1.318$	
860016617	memory ticks	mem CPI $=0.660$
1408495471	instruction ticks	raw CPI $=1.080$
80643507	load penalties	load CPI $=0.062$
4067480787	total ticks	CPI=
		3.118
251353780	$\#$ of ticks saved $=6.18$ percent of total	

-116-

Application: dnasa7
6800274171 instructions (including annulled)
6784406481 instructions (excluding annulled)
45.6 SPECmarks for nasa7

leve	1 size	block	subblk	assoc	write miss		
1st	8 KB	32 B		2-way	write back	write	allocate
1st	$\mathrm{D} \quad 4 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} \quad 64 \mathrm{~KB}$	512 B		direct	write thru	write	allocate
$1 s t$	Level:						
	\#	\%instrs	\% ItDrefs	\%Irefs	\%Drefs		
	1237498291	18.2404%	13.141%				misses
	5979544	0.0882\%	0.064%	0.088\%		I	misses
	1231518747	18.1522\%	13.078\%		47.056\%	D	misses
	9417438173	138.8101\%	100.000\%				references
	6800274171	100.2339\%	72.210\%	100.000\%		I	references
	2617164002	38.5762\%	27.791\%		100.000\%	D	references
	1879496657	27.7032%	19.958\%		71.815\%	D	reads
	1145289417	16.8813\%	12.162\%		43.761\%	D	read misses
	737667345	10.8730\%	7.833\%		28.186\%	D	writes
	86229330	1.2710\%	0.916%		3.295\%	D	write misses
	502715354	7.4099\%	5.339\%		19.209\%	D	write backs
	416486024	6.1389\%	4.423\%		15.914\%	D	read mod writes
2nd	Level:						
	\#	\%instrs	\%I+Drefs	\%Irefs	\% ${ }^{\text {\% Drefs }}$		
	351764912	5.1850\%	20.214\%				misses
	5281.7	0.0008%	0.004%	0.884\%		I	misses
	351712095	5.1842\%	20.211\%		20.281\%	D	misses
	1740213565	25.6502%	100.000\%				references
	5979544	0.0882 \%	0.344%	100.000\%		I	references
	1734234021	25.5621%	99.657%		100.000\%	D	references
	1145289417	16.8813%	65.814%		66.041%	D	reads
	346682676	5.1100\%	19.922 \%		19.991\%	D	read misses
	86229330	1.2710\%	4.956%		4.973\%	D	writes
	4717544	0.0696\%	0.272%		0.273\%	D	write misses
	18829463	i for i (i	cache busy)				
	97487	i for d (D	RAM busy)				
	49989	i for stor	(DRAM bus	sy)			
	875864445	d for d (d	cache busy)				
	709528	d for i (D	RAM busy)				
	519347490	d for stor	(DRAM busy				
	0	store for	d (DRAM busy				
	16372	store for	i (DRAM bus	sy)			
	0	store for	store (DRAM	M busy)			
	15079121076	total tick	of fpu	51.255\%	of total t	icks	
	2075466939	fpop instr	uctions	30.592\%	of total		
	18312531848	total dram	ticks	DRAM bus	sy 62.245\%		
	6696078395	float for	float queue	e fpu CRI	$=0.987$		
	14488867295	memory tic	s	mem CPI	$=2.136$		
	7549415860	instructio	ticks	raw CPI	$=1.113$		
	685812709	load penal	ies	load CP	$I=0.102$		
	29420174259	total tick		$\mathrm{CPI}=$	4.337		
	3028858443	\# of ticks	saved = 10	10.30 perc	cent of tot		

Application: xlisp li-input.lsp
4962043458 instructions (including annulled) 4661592279 instructions (éxcluding annulled) 61.6 SPECmarks for li

leve	1 size	block	subblk	assoc	write miss		
1 st	I 8 KB	32 B		2-way	write back	write	allocate
1st	D 4 KB	16 B		2-way	write back	write	allocate
2nd	I+D 64 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%I+Drefs	\% Irefs	\%Drefs		
	104976462	2.2520\%	1.612\%			$\mathrm{I}+\mathrm{D}$	misses
	22411850	0.4808%	0.345%	0.452\%		I	misses
	82564612	1.7712\%	1.268\%		5.324\%	D	misses
	6512926989	139.7147\%	100.000\%			I + D	references
	4962043458	106.4453%	76.188%	100.000\%		I	references
	1550883531	33.2694%	23.813%		100.000\%	D	references
	1068396583	22.9192\%	16.405%		68.890\%	D	reads
	54729156	1.1741%	0.841%		3.529\%	D	read misses
	482486948	10.3503\%	7.409%		31.111\%	D	writes
	27835456	0.5972\%	0.428%		1.795\%	D	write misses
	53707948	1.1522\%	0.825\%		3.464\%	D	write backs
	25872492	0.5551%	0.398\%		1.669\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	5671969	0.1217%	3.575%			I+D	misses
	2240611	0.0481%	1.412\%	9.998\%		I	misses
	3431358	0.0737%	2.163%		2.519\%	D	misses
	158684297	3.4041\%	100.000\%			I+D	references
	22411850	0.4808\%	14.124\%	100.000\%		I	references
	136272447	2.9234\%	85.877\%		100.000\%	D	references
	54729156	1.1741\%	34.490\%		40.162\%	D	reads
	1397362	0.0300%	0.881\%		1.026\%	D	read misses
	27835456	0.5972%	17.542\%		20.427\%	D	writes
	1966805	0.0422\%	1.240%		1.444\%	D	write misses
76547532 i for i (icache busy)							
481828 i for d (DRAM busy)							
1924279 i for store (DRAM busy)							
35944209 d for d (dcache busy)							
6366737 d for i (DRAM busy)							
2824693 d for store (DRAM busy)							
0 store for d (DRAM busy)							
5933 store for i (DRAM busy)							
0 store for store (DRAM busy)							
total ticks of fpu 0.000% of total ticks							
	0	fpop instructions 0.000\% of total					
	1584548062	total dram ticks DRAM busy 23.557\%					
	0	float for float queue fpu $\mathrm{CPI}=0.000$					
	1165354832	memory ticks mem CPI $=0.250$					
	5561136309	instruction ticks raw $\mathrm{CPI}=1.193$					
	0	load penalties		load CPI $=0.000$			
	6726491141	total ticks		$\mathrm{CPI}=\quad 1.443$			
	432884982	\# of ticks saved $=6.44$ percent of total					
3213768 \# of 2nd level dirty misses							

-118-

Application: eqntott -s -.ioplte int_pri_3.eqn

```
1376907962 instructions (including annulled)
1326073659 instructions (excluding annulled)
            47.1 SPECmarks for eqntott
```

level	size	block	subblk	assoc	write miss
1st I	8 KB	32 B		$2-$ way	write back write allocate
1st D	4 KB	16 B		$2-$ way	write back write allocate
2nd I+D	64 KB	512 B		direct	write thru write allocate

lst Level:

\#	\%instrs	\%ItDrefs	\%Irefs	$\%$ Drefs	
17032547	1.2845%	1.066%			I+D misses
7623	0.0006%	0.001%	0.001%		I misses
17024924	1.2839%	1.066%		7.689%	D misses

1598339434	120.5318%	100.000%			I+D references
1376907962	103.8335%	86.147%	100.000%		I
221431472	16.6983%	13.854%		100.000%	D
references					
references					

202396631	15.2629%	12.663%	91.404%	D
16755884	1.2636%	1.049%	7.568%	reads
19034841	1.4355%	1.191%	8.597%	read misses
269040	0.0203%	0.017%	0.122%	writes
			write misses	
375856	0.0284%	0.024%	0.170%	D
write backs				

 1068
 2nd Level:

\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs	
2949016	0.2224%	16.941%			I+
45.1	0.0001%	0.003\%	5.917%	16.946\%	I
2948565	0.2224%	16.938\%			D
17408330	1.3128\%	100.000\%	100.000\%	100.000\% D	
7623	0.0006%	0.044%			
17400707	1.3122\%	99.957\%			
16755884	1.2636\%	96.253\%		96.295\%	D
2934556	0.2213%	16.858%		16.865\%	D
269040	0.0203\%	1.546\%		1.547\%	D
13865	0.0011%	0.080\%		0.080\%	D
21320	i for i (icache busy)				
105	i for d (DRAM busy)				
242	i for store (DRAM busy)				
26089682	d for d (dcache busy)				
1099	d for i (DRAM busy)				
35199	d for store (DRAM busy)				
0	store for d (DRAM busy)				
0	store for i (DRAM busy)				
0	store for store (DRAM busy)				
0	total ticks of fpu 0.000% of total ticks				
0	fpOP instructions 0.000% of total				
180174537	total dram ticks		0.000\% of total DRAM busy 11.542%		
0	float for float queuememory ticks		fpu CPI=	0.000	
154074325			mem CPI=	0.117	
1403832293	instruction ticks		raw CPI=	1.059	
3149652	load penalties		load CPI=	0.003	
1561056270	total ticks		$\mathrm{CPI}=$	1.178	
30142570	\# of tick	saved =	1.94 perce	nt of to	al

-119-

Application: matrix300
1695008957 instructions (including annulled)
1693559338 instructions (excluding annulled)
42.5 SPECmarks for matrix300

level	size	block subblk	assoc	write miss	
lst I	8 KB	32 B		-way	write back write allocate
lst D	4 KB	16 B		$2-$ way	write back write allocate
2nd I+D	64 KB	512 B		direct	write thru write allocate

\# \%instrs \%I+Drefs \%Irefs \%Drefs

295281420	17.4356\%	12.578\%			$\mathrm{I}+\mathrm{D}$	misses
1157	0.0001%	0.001%	0.001%		I	misses
295280263	17.4355%	12.578%		45.236%	D	misses
2347769916	138.6294	100.000\%			$I+D$	references
1695008957	100.0856%	72.197%	100.000%		I	references
652760959	38.5438%	27.804%		100.000\%	D	references
435650808	25.7240%	18.556\%		66.740\%	D	reads
294566887	17.3934%	12.547%		45.127%	D	read misses
217110151	12.8198\%	9.248\%		33.261%	D	writes
713376	0.0422%	0.031%		0.110%	D	write misses
129975797	7.6748%	5.537%		19.912\%	D	write backs
129262421	7.6326%	5.506%		19.803%	D	read mod writes
Level:						
\#	\%instrs	\% Itobrefs	\%Irefs	\%Drefs		
206336555	12.1837%	48.521%			I+D	misses
212	0.0001%	0.001%	18.324%		I	misses
206336343	12.1836%	48.521%		48.521%	D	misses
425257117	25.1103%	100.000\%			I+D	references
1157	0.0001%	0.001%	100.000\%		I	references
425255960	25.1102%	100.000\%		100.000\%	D	references
294566887	17.3934\%	69.268%		69.269%	D	reads
205949628	12.1608%	48.430%		48.430%	D	read misses
713376	0.0422%	0.168 \%		0.168%	D	writes
360163	0.0213%	0.085%		0.085%	D	write misses

3235 i for i (icache busy)
84 i for d (DRAM busy)
237 i for store (DRAM busy)
188771206 d for d (dcache busy)
620 d for i (DRAM busy)
126529121 d for store (DRAM busy)
0 store for d (DRAM busy)
8 store for i (DRAM busy)
0 store for store (DRAM busy)

3024001625	total ticks of fpu	$42.546 \frac{0}{3}$ of total ticks
432000323	fpop instructions	25.509\% of total
5249434418	total dram ticks	DRAM busy 73.857%
690538846	float for float queue	fpu CPI= 0.408
4288964107	memory ticks	mem CPI $=2.533$
1912122482	instruction ticks	raw $\mathrm{CPI}=1.130$
216000307	load penalties	load CPI $=0.128$
7107625742	total ticks	$\mathrm{CPI}=4.197$
-106793300	\# of ticks saved =	. 51 percent of total

-120-

Application: fpppp

-121-

-122-

Application: 001.gcc1.35

$$
\begin{aligned}
& 1258997667 \text { instructions (including annulled) } \\
& 1217227427 \text { instructions (excluding annulled) } \\
& 49.4 \text { SpECmarks for gcc }
\end{aligned}
$$

2nd Level:

-123.

Application: 008.espresso
3102930952 instructions (including annulled)
2930507476 instructions (excluding annulled)
41.0 SPECmarks for espresso

level		ize	block	subblk	assoc	write miss	
1st I	8	KB	32 B		2-way	write back	write allocate
1st D	8	KB	16 B		2-way	write back	write allocate
2nd I+D	128	KB	512 B		direct	write thru	write allocate

1st Level:

\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
44467253	1.5174\%	1.132\%			I+D	misses
5417408	0.1849\%	0.138%	0.175%		I	misses
39049845	1.3325\%	0.994%		4.729\%	D	misses
3928686273	134.0616%	100.000\%			I+D	references
3102930952	105.8837\%	78.981\%	100.000\%		I	references
825755321	28.1779\%	21.019\%		100.000\%	D	references
681401797	23.2520\%	17.344\%		82.519\%	D	reads
35842942	1.2231\%	0.912\%		4.341\%	D	read misses
144353524	4.9259\%	3.674%		17.481\%	D	writes
3206903	0.1094%	0.082%		0.388%	D	write misses
14547660	0.4964%	0.370%		1.762\%	D	write backs
11340757	0.3870\%	0.289\%		1.373\%	D	read mod writes

2nd Level:

\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
544274	0.0186\%	0.922%			I+D	misses
332979	0.0114%	0.564%	6.146\%		I	misses
211295	0.0072\%	0.358%		0.394%	D	misses
59014234	2.0138\%	100.000\%			I+D	references
5417408	0.1849\%	9.180\%	100.000\%		I	references
53596826	1.8289\%	90.820\%		100.000\%	D	references
35842942	1.2231\%	60.736%		4.341\%	D	reads
175458	0.0060%	0.297%		0.021\%	D	read misses
3206903	0.1094%	5.434\%		0.388%	D	writes
35750	0.0012\%	0.061%		0.004%	D	write misses
16676474	i for i (i	cache busy)				
128406	i for d (DR	RAM busy)				
111445	i for stor	(DRAM bus				
27850150	d for d (d	cache busy)				
910154	d for i (D	Ram busy)				
764898	d for stor	(DRAM bus				
0	store for	(DRAM bus				
358	store for	(DRAM bus				
0	store for	tore (DRAM	busy)			
108223	total tick	of fpu	0.003% of	total ti	ks	
8755	fpop instr	uctions	0.000\% of	total		
562414373	total dram	ticks	DRAM busy	15.280\%		
52805	float for	float queue	fpu CPI=	0.000		
415561332	memory tick	s	mem CPI=	0.142		
3265169566	instructio	ticks	raw CPI=	1.114		
2355	load penal	ies	load CPI=	$=0.000$		
3680786058	total tick		CPI=	1.256		
173009550	\# of ticks	saved =	4.70 perce	nt of tot		
145604	\# of 2 nd 1	vel dirty	misses			

-124-

Application: spice26						
23810783680 instructions (including annulled)						
22775128214 instructions (excluding annulled)						
38.0 SPECmarks for spice2g6						
level size	block	subblk	assoc w	rite miss		
1st I 1st I	8 KB	32 B	2-way w	rite back	write	e allocate
1 st D 8 KB	16 B		2 -way	rite back	write	e allocate
2nd ItD 128 KB	512 B		direct	rite thru	write	e allocate
1st Level:						
\#	\%instrs	\%I+Drefs	응refs	\%Drefs		
1482298083	6.5084\%	5.023\%				misses
79734784	0.3501\%	0.270\%	0.335\%			misses
1402563299	6.1583\%	4.753\%		24.610\%	D	misses
29509960877	129.5710\%	100.000\%			I + D	references
23810783651	104.5473\%	80.687\%	100.000\%			references
5699177226	25.0237%	19.313\%		100.000\%	D	references
4792611764	21.0432%	16.241\%		84.093\%	D	reads
1341752460	5.8913\%	4.547\%		23.543\%	D	read misses
906565462	3.9805\%	3.072\%		15.907\%	D	writes
60810839	0.2670\%	0.206%		1.067\%	D	write misses
148434719	0.6517%	0.503%		2.604%	D	write backs
87624093	0.3847%	0.297%		1. 537%	D	read mod writes
2nd Level:						
\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
321453964	1.4114\%	19.712\%				misses
1283814	0.0056\%	0.079\%	1.610\%			misses
320170150	1.4058\%	19.634%		20.643\%	D	misses
1630732521	7.1601\%	100.000\%				references
79734784	0.3501%	4.890\%	100.000\%			references
1550997737	6.8101\%	95.110\%		100.000\%	D	references
1341752460	5.8913\%	82.279\%		23.543\%	D	reads
316423004	1.3893\%	19.404\%		5.552%	D	read misses
60810839	0.2670%	3.729\%		1.067%	D	writes
3742281	0.0164%	0.229\%		0.066%	D	write misses
242703899 i for i (icache busy)						
2048073 i for d (DRAM busy)						
5980742 i for store (DRAM busy)						
217843410 d for d (dcache busy)						
47899058 d for i (DRAM busy)						
49658327 d for store (DRAM busy)						
0 store for d (DRAM busy)						
104 store for i (DRAM busy)						
0 store for store (DRAM busy)						
7841192173 total ticks of fpu 18.603\% of total ticks						
962369533 fpop instructions 4.226\% of total						
17599089357 total dram ticks DRAM busy 41.754\%						
3734015262 float for float queue fpu CPI= 0.164						
13033821055 memory ticks mern CPI= 0.572						
24784595856 instruction ticks raw CPI $=1.088$						
597255614 load penalties load CPI $=0.026$						
42149687787 total ticks $\mathrm{CPI}=\quad 1.851$						
2575181654 \# of ticks saved $=6.11$ percent of total						
45855343	\# of 2nd 1	vel dirty	misses			

-125-

Application: doduc

1316441149 instructions (including annulled) 1304567934 instructions (excluding annulled) 31.7 SPECmarks for doduc							
leve	l size	block	subblk	assoc	write miss		
1st	$\mathrm{I} \quad 8 \mathrm{~KB}$	32 B		2-way w	write back	writ	e allocate
1st	$\mathrm{D} \quad 8 \mathrm{~KB}$	16 B		2-way w	write back	writ	e allocate
2nd	$\mathrm{I}+\mathrm{D} 128 \mathrm{~KB}$	512 B		direct	write thr	writ	e allocate
Ist Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	63145612	4.8404\%	3.714\%			I+D	misses
	32267169	2.4734\%	1.898\%	2.452%		I	misses
	30878443	2.3670\%	1.816\%		8.040\%	D	misses
	1700518013	130.3511\%	100.000\%			I + D	references
	1316441149	100.9102\%	77.415\%	100.000\%			references
	384076864	29.4410%	22.586%		100.000\%	D	references
	298852887	22.9082\%	17.575\%		77.811%	D	reads
	17053863	1.3073\%	1.003\%		4.441\%	D	read misses
	85223977	6.5328\%	5.012\%		22.190%	D	writes
	13824580	1.0598\%	0.813%		3.600\%	D	write misses
	14681059	1.1254\%	0.864%		3.823\%	D	write backs
	856479	0.0657%	0.051 \%		0.223%	D	read mod writes
2nd Level:							
		\%instrs	\% $1+$ Drefs	\%Irefs	\%Drefs		
	2601828	0.1995%	3.344%			I + D	misses
	1071083	0.0822\%	1.377\%	3.320\%			misses
	1530745	0.1174%	1.967\%		3.360\%	D	misses
	77826477	5.9657\%	100.000\%				references
	32267169	2.4734%	41.461%	100.000\%		I	references
	45559308	3.4923\%	58.540\%		100.000\%	D	references
	17053863	1.3073\%	21.913\%		37.433\%	D	reads
	1009839	0.0775%	1.298\%		2.217\%	D	read misses
	13824580	1.0598\%	17.764%		30.345\%	D	writes
	493822	0.0379\%	0.635%		1.084\%	D	write misses
81481445 i for i (icache busy)							
2887850 i for d (DRAM busy)							
4001369 i for store (DRAM busy)							
20205646 d for d (dcache busy)							
21285943 d for i (DRAM busy)							
5879124 d for store (DRAM busy)							
0 store for d (DRAM busy)							
52435 store for i (DRAM busy)							
0 store for store (DRAM busy)							
2752142075 total ticks of fpu 70.130\% of total ticks							
338148549 fpop instructions 25.921\% of total							
880851845 total dram ticks DRAM busy 22.446%							
1748875208 float for float queue fpu CPI= 1.341							
686364719 memory ticks mem CPI $=0.527$							
1408495492 instruction ticks raw CPI= 1.080							
80643507 load penalties load CPI $=0.062$							
3924378926 total ticks CPI= 3.009							
217381130 \# of ticks saved $=5.54$ percent of total							
	1216417	\# of 2nd le	vel dirty	misses			

Application：dnasa7							
6800274227 instructions（including annulled）							
6784406530 instructions（excluding annulled）							
48.1 SPECmarks for nasa7							
leve	1 size	block	subblk	assoc	write miss		
1st	I 8 KB	32 B		2－way	write back	write	allocate
1st	$\mathrm{D} \quad 8 \mathrm{~KB}$	16 B		2－way	write back	write	allocate
2r．d	ItD 128 KB	512 B		direct	write thru	write	allocate
1st Level：							
	\＃	号instrs	亏it－Drefs	\％Irefs	亏Drefs		
	1033205313	$15.2292 \frac{3}{3}$	10.972%			$I+D$	misses
	5979543	0.0882 知	$0.064 \frac{3}{3}$	$0.088 \frac{7}{3}$		I	misses
	1027225775	$15.1410 \frac{7}{5}$	10.908 雰		39.2503	D	misses
	9417438243	$138.8101 \frac{2}{3}$	$100.000 \frac{7}{7}$			$I+D$	references
	6300274227	100．2339	$72.210 \frac{5}{7}$	100．000\％		I	references
	2517164016	38.5752 需	$27.791 \frac{7}{3}$		$100.000 \frac{3}{3}$	D	references
	1879436558	$27.7032 \frac{5}{3}$	$19.958 \frac{7}{5}$		$71.815 \frac{}{5}$	D	reads
	942257014	$13.8883 \frac{3}{5}$	$10.006 \frac{3}{3}$		$36.004 \frac{7}{\circ}$	D	read misses
	737657343	$10.8730 \frac{7}{3}$	7.833%		$28.186 \frac{5}{5}$	D	writes
	84958761	1． $2523 \frac{5}{7}$	$0.903 \frac{5}{5}$		$3.247 \frac{3}{3}$	D	write misses
	491051675	$7.2381 \frac{\%}{3}$	$5.215 \frac{5}{3}$		$18.764 \frac{\square}{5}$	D	write backs
	406102914	5.9859 号	$4.313 \frac{5}{5}$		15.517%	D	read mod writes
2nd Level：							
	\＃	\％instrs	\％It Drefs	\％Irefs	\％Drefs		
	296935371	$4.3768 \frac{1}{3}$	$19.481 \frac{5}{3}$			$I+D$	misses
	4923	$0.0001 \frac{7}{3}$	$0.001 \frac{7}{3}$	0.083%		I	misses
	295930448	4.3767%	19.481 \％		19.557%	D	misses
	1524266894	$22.4673 \frac{7}{3}$	100．000\％			$I+D$	references
	5979543	$0.0882 \frac{3}{5}$	0.393%	100．000\％		I	references
	1518287351	22.3791%	$99.608 \frac{5}{5}$		100．000\％	D	references
	942267014	$13.8888 \frac{3}{3}$	$61.818 \frac{1}{\circ}$		62.062%	D	reads
	294019897	4．3338\％	$19.290 \frac{5}{3}$		19.366%	D	read misses
	84958761	1．2523\％	5.574 훙		5.596%	D	writes
	2789790	0.0412%	$0.184 \frac{3}{5}$		$0.184 \frac{7}{\circ}$	D	writ ${ }^{\text {misses }}$
19182542 i for i（icache busy）							
28717 i for d（DRAM busy）							
34031 i for store（DRAM busy）							
738811944 d for d（dcache busy）							
265671 d for i（DRAM busy）							
428613755 d for store（DRAM busy）							
0 store for d（DRAM busy）							
45 store for i（DRAM busy）							
0 store for store（DRAM busy）							
15079121076 total ticks of fpu 54.118% of total ticks							
2075466939 fpOP instructions 30.592% of total							
15991934353 total dram ticks DRAM busy 57．394\％							
7040252699 float for float queue fpu CPI＝ 1.038							
12588131747 memory ticks mem CPI＝ 1.856							
7549415923 instruction ticks raw CPI＝ 1.113							
685812709 load penalties load CPI＝ 0.102							
27863613078 total ticks CPI＝4．108							
2768768231 \＃of ticks saved $=9.94$ percent of total							
	177082961	\＃of 2 nd 1	vel dirt	misses			

Application: xlisp li-input.lsp							
4962043458 instructions (including annulled)							
4661592279 instructions (excluding annulled)							
63.7 SPECmarks for li							
leve	el size	block	subblk	assoc w	ite miss		
1st	I 8 KB	32 B		2-way	ite back	write	allocate
1 st	D 88 KB	16 B		2-way	ite back	write	allocate
2nd	I+D 128 KB	512 B		direct	ite thru	write	allocate
1st Level:							
	\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
	80635512	1.7298\%	1.239\%			I+D	misses
	22411850	0.4808\%	0.345%	0.452%		I	misses
	58223662	1.2491\%	0.894%		3.755\%	D	misses
	6512926989	139.7147\%	100.000\%			I + D	references
	4962043458	106.4453%	76.188%	100.000\%		I	references
	1550883531	33.2694\%	23.813\%		100.000\%	D	references
	1068396583	22.9192\%	16.405\%		68.890\%	D	reads
	37515443	0.8048\%	0.577%		2.419\%	D	read misses
	482486948	10.3503\%	7.409%		31.111\%	D	writes
	20708219	0.4443\%	0.318\%		1.336\%	D	write misses
	45510094	0.9763%	0.699\%		2.935\%	D	write backs
	24801875	0.5321\%	0.381%		1.600\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
	2680302	0.0575%	2.125%			I+D	misses
	1376322	0.0296%	1.092\%	6.142\%		I	misses
	1303980	0.0280\%	1.034\%		1.258\%	D	misses
	126145307	2.7061\%	100.000\%			I+D	references
	22411850	0.4808\%	17.767\%	100.000\%		I	references
	103733457	2.2253\%	82.234\%		100.000\%	D	references
	37515443	0.8048%	29.740\%		36.166%	D	reads
	488104	0.0105%	0.387%		0.471\%	D	read misses
	20708219	0.4443%	16.417\%		19.963\%	D	writes
	815876	0.0176\%	0.647%		0.787%	D	write misses
78581420 i for i (icache busy)							
206679 i for d (DRAM busy)							
984865 i for store (DRAM busy)							
26850476 d for d (dcache busy)							
3503117 d for i (DRAM busy)							
2284609 d for store (DRAM busy)							
	0	store for	d (DRAM bus				
6001 store for i (DRAM busy)							
0 store for store (DRAM busy)							
0 total ticks of fpu 0.000% of total ticks							
	0	fpop instr	uctions	0.000%	total		
1268444806		total dram ticks		DRAM busy 19.526\%			
0 float for float queue fpu CPI $=0.000$							
935190502		memory tic	s	mem CPI=	0.201		
5561136309		instructio	ticks	raw CPI=	1.193		
		load penal	ies	load CPI	0.000		
6496326811		total tick		$\mathrm{CPI}=$	1.394		
357768849		\# of ticks saved $=5.51$ percent of total					
1257483 \# of 2nd level dirty misses							

-128-

1376907962 instructions (including annulled)							
1326073659		instructions (exclud		$n g$ annulled)			
47.3 SPECmarks for eqntott							
leve	l size	block	subblk	assoc	write miss		
1 st	I $\quad 8 \mathrm{~KB}$	32 B		2-way	write back	write	allocate
1st	$\mathrm{D} \quad 8 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} \quad 128 \mathrm{~KB}$	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\% I + Drefs	\%Irefs	\%Drefs		
	16564949	1.2492%	1.037%			I+D	misses
	7623	0.0006%	0.001%	0.001%		I	misses
	16557326	1. 2486%	1.036\%		7.478%	D	misses
	1598339434	120.5318%	100.000\%			I + D	references
	1376907962	103.8335%	86.147%	100.000%		I	references
	221431472	16.6983%	13.854%		100.000%	D	references
	202396631	15.2629\%	12.663%		91.404\%	D	reads
	16298941	1.2292\%	1.020%		7.361%	D	read misses
	19034841	1. 4355%	1.191\%		8. 597%	D	writes
	258385	0.0195%	0.017%		0.117%	D	write misses
	360626	0.0272%	0.023%		0.163%	D	write backs
	102241	0.0078%	0.007%		0.047%	D	read mod writes
2nd Level:							
	\#	\%instrs	\% I+Drefs	\%Irefs	으아ef		
	2393109	0.1805%	14.140\%			$I+D$	misses
	380	0.0001%	0.003%	4.985\%		I	misses
	2392729	0.1805 \%	14.137%		14.144%	D	misses
	16925406	1.2764\%	100.000\%			I+D	references
	7623	0.0006%	0.046%	100.000%		I	references
	16917783	1.2758%	99.955\%		100.000\%	D	references
	16298941	1.2292\%	96.299%		96.343%	D	reads
	2383333	0.1798%	14.082%		14.088%	D	read misses
	258385	0.0195%	1.527 웋		1. 528\%	D	writes
	9343	0.0008%	0.056 웅		0.056%	D	write misses
21504 i for i (icache busy)							
87 i for d (DRAM busy)							
165 i for store (DRAM busy)							
25540390 d for d (dcache busy)							
8856 d for i (DRAM busy)		d for i (DRAM busy)					
	28803	d for stor	(DRAM bu				
	0	store for d (DRAM busy)					
	0	store for i (DRAM busy)					
	0	store for store (DRAM busy)					
	0	total ticks of fpu 0.000% of total ticks					
	0	fpop instructions 0.000\% of total					
	171448125	total dram ticks DRAM busy 11.039%					
	0	float for float queue fpu CPI $=0.000$					
	146240843	memory ticks mem CPI = 0.111					
	1403832293	instruction ticks raw $\mathrm{CPI}=1.059$					
	3149652	load penalties load $\mathrm{CPI}=0.003$					
	1553222788	total ticks \quad CPI $=\quad 1.172$					
32017425		\# of ticks saved $=2.07$ percent of total					
49863 \# of 2nd level dirty misses							

-129.

Application: matrix300							
1695008871 instructions (including annulled)							
1693559255 instructions (excluding annulled)							
52.8 SPECmarks for matrix300							
leve	1 size	block	subblk	assoc	write miss		
1st	$\mathrm{I} \quad 8 \mathrm{~KB}$	32 B		2-way w	write back	write	e allocate
1 st	$\mathrm{D} \quad 8 \mathrm{~KB}$	16 B		2-way w	write back	write	e allocate
2nd	$\mathrm{I}+\mathrm{D} \quad 128 \mathrm{~KB}$	512 B		direct	write thru	write	e allocate
1st Level:							
	\#	\%instrs	\% It Drefs	\%Irefs	\%Drefs		
	204608877	12.0816%	8.716\%			$I+D$	misses
	1162	0.0001%	0.001%	0.001%		I	misses
	204607715	12.0816%	8.715\%		31.345%	D	misses
	2347769808	138.6294\%	100.000%			I + D	references
	1695008871	100.0856%	72.197%	100.000\%		I	references
	652760937	38.5438%	27.804%		100.000%	D	references
	435650787	25.7240%	18.556%		66.740%	D	reads
	204026212	12.0472%	8.691\%		31.256%	D	read misses
	217110150	12.8198%	9.248\%		33.261%	D	writes
	581503	0.0344%	0.025%		0.090%	D	write misses
	46540513	2.7481%	1.983\%		7.130%	D	write backs
	45959010	2.7138%	1.958%		7.041%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	109324465	6.4554%	43.530%			$I+D$	misses
	198	0.0001%	0.001%	17.040%		I	misses
	109324267	6.4553%	43.530%		43.530%	D	misses
	251149061	14.8297%	100.000\%			$I+D$	references
	1162	0.0001%	0.001%	100.000%		I	references
	251147899	14.8296\%	100.000%		100.000\%	D	references
	204026212	12.0472\%	81.238\%		81. 238%	D	reads
	109120924	6.4433%	43.449%		43.449%	D	read misses
	581503	0.0344%	0.232%		0.232%	D	writes
	203011	0.0120%	0.081%		0.081%	D	write misses
3278 i for i (icache busy)							
79 i for d (DRAM busy)							
228 i for store (DRAM busy)							
165323297 d for d (dcache busy)							
594 d for i (DRAM busy)							
39247512 d for store (DRAM busy)							
0 store for d (DRAM busy)							
8 store for i (DRAM busy)							
0 store for store (DRAM busy)							
3024001625		total ticks of fpu 52.916\% of total ticks					
432000323		fpop instructions 25.509\% of total		25.509% of total			
3076330086 total dram ticks DRAM busy 53.832%							
1059206625 float for float queue fpu CPI= 0.626							
2527454413 memory ticks mem CPI $=1.493$							
1912122391 instruction ticks raw CPI= 1.130							
216000307		load penalties		load CPI $=0.128$			
	5714783736	total tick		$C P I=\quad 3.375$			
-6606058 \# of ticks saved $=-0.12$ percent of total							
	33773923	\# of 2nd 1	vel dirty	misses			

-130-

Application: fpppp
1448153349 instructions (including annulled)
1443743790 instructions (excluding annulled)
34.7 SPECmarks for fpppp

leve	1 size	block	subblk	assoc	write miss		
1st	I 8 KB	32 B		2-way	write back	write	allocate
1st	D 8 KB	16 B		2-way	write back	write	allocate
2nd	I+D 128 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	143134606	9.9142\%	6.606\%			I + D	misses
	115073763	7.9706\%	5.311\%	7.947\%		I	misses
	28060843	1.9437\%	1.296%		3.905\%	D	misses
	2166745950	150.0783\%	100.000\%			I+D	references
	1448153349	100.3055%	66.836\%	100.000\%		I	references
	718592601	49.7729\%	33.165\%		100.000\%	D	references
	588879183	40.7884\%	27.179\%		81.949\%	D	reads
	17710303	1.2267\%	0.818%		2.465\%	D	read misses
	129713418	8.9846\%	5.987%		18.052\%	D	writes
	10350540	0.7170\%	0.478\%		1.441\%	D	write misses
	13892891	0.9623%	0.642%		1.934\%	D	write backs
	3542351	0.2454%	0.164%		0.493\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\% ${ }^{\text {D }}$ (refs		
	2673134	0.1852\%	1.703\%			I+D	misses
	1225368	0.0849\%	0.781%	1.065\%		I	misses
	1447766	0.1003\%	0.922\%		3.451\%	D	misses
	157027250	10.8764%	100.000\%			I+D	references
	115073763	7.9706\%	73.283\%	100.000\%		I	references
	41953487	2.9059\%	26.718%		100.000\%	D	references
	17710303	1.2267\%	11.279\%		42.215\%	D	reads
	947336	0.0657%	0.604%		2.259\%	D	read misses
	10350540	0.7170%	6.592\%		24.672\%	D	writes
	498470	0.0346%	0.318\%		1.189\%	D	write misses
374254394 i for i (icache busy)							
	7155157	i for d (D	RAM busy)				
7369803 i for store (DRAM busy)							
26585093 d for d (dcache busy)							
28876443 d for i (DRAM busy)							
9941892 d for store (DRAM busy)							
	0	store for d (DRAM busy)					
83040 store for i (DRAM busy)							
0 store for store (DRAM busy)							
	4171935848	total ticks of fpu 71.352% of total ticks					
	591747328	fpop instructions 40.988% of total					
	2008969988	total dram ticks DRAM busy 34.360\%					
	2365550486	float for float queue fpu CPI= 1.639					
	1646932771	memory ticks mem CPI= 1.141					
	1579515968	instruction ticks raw $\mathrm{CPI}=1.095$					
	254989434	load penalties		load CPI $=0.177$			
	5846988659	total ticks		$\mathrm{CPI}=\quad 4.050$			
	454009051	\# of ticks saved $=7.77$ percent of total					
1121184 \# of 2nd level dirty misses							

-131-

Application: tomcatv
1626566091 instructions (including annulled)
1626346394 instructions (excluding annulled)
33.2 SPECmarks for tomcatv

leve	1 size	block	subblk	assoc	rite miss		
1st	$\mathrm{I} \quad 8 \mathrm{~KB}$	32 B		2-way	rite back	write	allocate
1st	$\mathrm{D} \quad 8 \mathrm{~KB}$	16 B		2-way	rite back	write	allocate
2nd	ItD 128 kB	512 B		direct	rite thru	write	allocate
1st	Level:						
	\#	\%instrs	\%ItDrefs	\% Irefs	\%Drefs		
	175741703	10.8060%	7.649\%			I + D	misses
	42479	0.0027\%	0.002 \%	0.003\%		I	misses
	175699224	10.8034\%	7.647\%		26.177\%	D	misses
	2297780482	141.2849\%	100.000\%			I+D	references
	1626566091	100.0136\%	70.789\%	100.000\%		I	references
	671214391	41.2714\%	29.212\%		100.000\%	D	references
	482161504	29.6470%	20.984\%		71.835%	D	reads
	146013109	8.9780\%	6.355\%		21.754\%	D	read misses
	189052887	11.6244%	8.228\%		28.166\%	D	writes
	29686115	1.8254\%	1.292\%		4.423\%	D	write misses
	53009079	3.2594\%	2.307%		7.898\%	D	write backs
	23322964	1.4341\%	1.016\%		3.475\%	D	read mod writes
2nd	Level:						
	\#	\%instrs	\% I+Drefs	\%Irefs	\% Drefs		
	12762288	0.7848%	5.580\%			I+D	misses
	6236	0.0004%	0.003\%	14.681\%		I	misses
	12756052	0.7844%	5.577\%		5.578\%	D	misses
	228750570	14.0654\%	100.000\%			I+D	references
	42479	0.0027\%	0.019\%	100.000\%		I	references
	228708091	14.0627\%	99.982%		100.000\%	D	references
	146013109	8.9780\%	63.831\%		63.843%	D	reads
	7347310	0.4518\%	3.212\%		3.213\%	D	read misses
	29686115	1.8254\%	12.978%		12.980\%	D	writes
	5403112	0.3323%	2.363%		2.363%	D	write misses

108345	i for i (icache busy)
3521	i for d (DRAM busy)
5248	i for store (DRAM busy)
155742912	d for d (dcache busy)
26342	d for i (DRAM busy)
27978912	d for store (DRAM busy)
0	store for d (DRAM busy)
398	store for i (DRAM busy)
0	store for store (DRAM busy)
3297778423	total ticks of fpu 61.924\% of total ticks
500809316	fpOP instructions 30.794\% of total
2159129815	total dram ticks DRAM busy 40.543\%
1664695752	float for float queue fpu CPI= 1.024
1656616346	memory ticks mem CPI= 1.019
1815652760	instruction ticks raw $\mathrm{CPI}=1.117$
188602852	load penalties load $\mathrm{CPI}=0.116$
5325567710	total ticks $\mathrm{CPI}=\quad 3.275$
588287056	\# of ticks saved $=11.05$ percent of total
11066031	\# of 2nd level dirty misses

-132-

Application: 001.gcc1.35							
1259003629 instructions (including annulled)							
1217233775 instructions (excluding annulled)							
56.6 SPECmarks for gcc							
leve	1 size	block	subblk	assoc	write miss		
1st	I $\quad 16 \mathrm{~KB}$	32 B		2-way	write back	write	allocate
1st	$\mathrm{D} \quad 16 \mathrm{~KB}$	16 B		2-way	write back	write	e allocate
2nd	$\mathrm{I}+\mathrm{D} \quad 128 \mathrm{~KB}$	512 B		direct	write thru	write	e allocate
1st Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	32474667	2.6679%	2.051%			$I+D$	misses
	17231963	1. 4157%	1.088%	1.369\%		I	misses
	15242704	1. 2522%	0.963%		4.702%	D	misses
	1583172929	130.0632\%	100.000\%			$I+D$	references
	1259003629	103.4315\%	79.524%	100.000%		I	references
	324169300	26.6316%	20.476\%		100.000\%	D	references
	225256896	18.5056%	14.228\%		69.487%	D	reads
	7797169	0.6406%	0.493%		2.405%	D	read misses
	98912404	8. 1260%	6.248%		30.513%	D	writes
	7445535	0.6117%	0.470%		2.297%	D	write misses
	8724629	0.7168%	0.551%		2.691%	D	write backs
	1279094	0.1051%	0.081 웅		0.395%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	3017670	0.2479%	7.325%			I+D	misses
	1724012	0.1416%	4.185%	10.005\%		I	misses
	1293658	0.1063%	3.140%		5.399\%	D	misses
	41194644	3.3843\%	100.000\%			I+D	references
	17231963	1.4157%	41.831%	100.000%		I	references
	23962681	1.9686%	58.169%		100.000%	D	references
	7797169	0.6406%	18.928%		2.405%	D	reads
	941356	0.0773%	2.285%		0.290%	D	read misses
	7445535	0.6117%	18.074%		2.297%	D	writes
	350849	0.0288%	0.852%		0.108%	D	write misses
53782728 i for i (icache busy)							
364879 i for d (DPAM busy)							
689440 i for stor (DRAM busy)							
3544711 d for d (ciache busy							
2500225 d for i (DRAM busy)							
2551321 d for store (DRAM busy)							
0 store for d (DRAM busy)							
2915 store for i (DRAM busy)							
0 store for store (DRAM busy)							
1419650 total ticks of fpu 0.081\% of total ticks							
120384 fpop instructions 0.010% of total							
479295539 total dram ticks DRAM busy 27.458\%							
1096690 float for float queue fpu CPI= 0.001							
367451937 memory ticks mem CPI= 0.302							
1376261004 instruction ticks raw CPI= 1.131							
143792 load penalties load CPI $=0.000$							
1744953423 total ticks CPI= 1.434							
103738742 \# of ticks saved $=5.95$ percent of total							
	980513	\# of 2nd 1	vel dirty	misses			

-133-

Application: 008.espresso

-134-

-135-

Application: doduc

```
1316441149 instructions (including annulled)
1304567934 instructions (excluding annulled)
33.9 SPECmarks for doduc
```

leve	l size	block	subblk	assoc w	write miss		
1 st	I 16 KB	32 B		2-way w	write back	write	allocate
1st	D 16 KB	16 B		2-way w	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} 128 \mathrm{~KB}$	512 B		direct w	write thru	write	allocate
Ist Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	32407547	2.4842\%	1.906%			I + D	misses
	14313771	1.0973\%	0.842%	1.088\%		I	misses
	18093776	1.3870\%	1.065\%		4.711\%	D	misses
	1700518013	130.3511\%	100.000\%			I+D	references
	1316441149	100.9102\%	77.415\%	100.000\%		I	references
	384076864	29.4410\%	22.586%		100.000\%	D	references
	298852887	22.9082\%	17.575%		77.811%	D	reads
	8972653	0.6878%	0.528%		2.337%	D	read misses
	85223977	6.5328\%	5.012\%		22.190%	D	writes
	9121123	0.6992\%	0.537%		2.375\%	D	write misses
	10169438	0.7796%	0.599\%		2.648%	D	write backs
	1048315	0.0804\%	0.062%		0.273\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	2046323	0.1569\%	4.807\%				misses
	896441	0.0688%	2.106\%	6.263\%		I	misses
	1149882	0.0882\%	2.701\%		4.069\%	D	misses
	42576495	3.2637\%	100.000\%			I+D	references
	14313771	1.0973\%	33.619\%	100.000\%		I	references
	28262724	2.1665\%	66.382\%		100.000\%	D	references
	8972653	0.6878%	21.075\%		31.748\%	D	reads
	733707	0.0563%	1.724\%		2.597%	D	read misses
	9121123	0.6992%	21.423\%		32.273\%	D	writes
	395084	0.0303%	0.928%		1.398%	D	write misses
1296173 i for d (DRAM busy)							
12536873 d for d (dcache busy)							
10031793 d for i (DRAM busy)							
4396462 d for store (DRAM busy)							
0 store for d (DRAM busy)							
	55534		(DRAM bu				
0 store for store (DRAM busy)							
	2752142075	total ticks of fpu 74.972% of total ticks					
	338148549	fpop instructions 25.921% of total					
	469563079	total dram ticks DRAM busy 12.792\%					
	1813775378	float for float queue fpu $\mathrm{CPI}=1.391$					
	366878189	memory ticks mem $\mathrm{CPI}=0.282$					
	1408495492	instruction ticks raw $\mathrm{CPI}=1.080$					
	81790283	load penalties		load CPI $=0.063$			
	3670939342	total ticks		$\mathrm{CPI}=\quad 2.814$			
	114858769	\# of ticks saved $=3.13$ percent of total					
	996036	\# of 2nd le	vel dirty	misses			

-136-

Application: dnasa7
6800274227 instructions (including annulled)
6784406530 instructions (excluding annulled) 52.9 SPECmarks for nasa7

leve	1 size	block	subblk	assoc	write miss		
1st	I 16 KB	32 B		2-way	write back	write	allocate
1st	D 16 KB	16 B		2-way	write back	write	allocate
2nd	I+D 128 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	727709708	10.7263\%	7.728%			I+D	misses
	5978143	0.0882\%	0.064%	0.088\%		I	misses
	721731565	10.6381\%	7.664\%		27.577\%	D	misses
	9417438243	138.8101\%	100.000\%			I+D	references
	6800274227	100.2339\%	72.210%	100.000\%		I	references
	2617164016	38.5762%	27.791\%		100.000\%	D	references
	1879496668	27.7032\%	19.958\%		71.815%	D	reads
	666429339	9.8230\%	7.077%		25.464%	D	read misses
	737667348	10.8730\%	7.833%		28.186\%	D	writes
	55302226	0.8152%	0.588\%		2.114%	D	write misses
	432854903	6.3802%	4.597%		16.540\%	D	write backs
	377552677	5.5651\%	4.010\%		14.427\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	227792060	3.3576\%	19.628\%			I + D	misses
	4820	0.0001%	0.001%	0.081%		I	misses
	227787240	3.3576\%	19.628\%		19.729\%	D	misses
	1160564487	17.1064\%	100.000\%			I+D	references
	5978143	0.0882%	0.516\%	100.000\%		I	references
	1154586344	17.0183\%	99.485\%		100.000\%	D	references
	666429339	9.8230\%	57.423\%		57.721\%	D	reads
	225620747	3.3256\%	19.441\%		19.542\%	D	read misses
	55302226	0.8152%	4.766%		4.790%	D	writes
	2037350	0.0301%	0.176%		0.177\%	D	write misses

19247418	i for i (icache busy)
28114	i for d (DRAM busy)
11643	i for store (DRAM busy)
495178784	d for d (dcache busy)
178286	d for i (DRAM busy)
319799671	d for store (DRAM busy)
0	store for d (DRAM busy)
136	store for i (DRAM busy)
0	store for store (DRAM busy)
15079121076	total ticks of fpu 59.545\% of total ticks
2075466939	fpop instructions 30.592\% of total
12174603603	total dram ticks DRAM busy 48.076\%
7579511915	float for float queue fpu CPI= 1.118
9509419765	memory ticks mem CPI= 1.402
7549415923	instruction ticks raw $\mathrm{CPI}=1.113$
685812766	load penalties load CPI= 0.102
25324160369	total ticks CPI= 3.733
2045613180	\# of ticks saved $=8.08$ percent of total
148905641	\# of 2nd level dirty misses

4962043458 instructions (including annulled) 4661592279 instructions (excluding annulled) 68.0 SPECmarks for li							
leve	1 size	block	subblk	assoc w	write miss		
1 st	I 16 KB	32 B		2-way	write back	write	allocate
1st	$\mathrm{D} \quad 16 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	ItD 128 KB	512 B		direct w	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%ItDrefs	\% Irefs	\%Drefs		
	43672563	0.9369\%	0.671%			I+D	misses
	2581210	0.0554%	0.040%	0.053%		I	misses
	41091353	0.8815\%	0.631%		2.650\%	D	misses
	6512926989	139.7147\%	100.000\%			I + D	references
	4962043458	106.4453\%	76.188%	100.000\%		I	references
	1550883531	33.2694\%	23.813\%		100.000\%	D	references
	1068396583	22.9192\%	16.405\%		68.890\%	D	reads
	25987194	0.5575%	0.400%		1.676\%	D	read misses
	482486948	10.3503\%	7.409\%		31.111\%	D	writes
	15104159	0.3241%	0.232%		0.974%	D	write misses
	37316750	0.8006%	0.573%		2.407\%	D	write backs
	22212591	0.4766\%	0.342%		1.433\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	764014	0.0164%	0.944%				misses
	419883	0.0091%	0.519%	16.267\%		I	misses
	344131	0.0074%	0.425%		0.439%	D	misses
	80988485	1.7374\%	100.000\%			I+D	references
	2581210	0.0554%	3.188\%	100.000\%		I	references
	78407275	1.6820\%	96.813\%		100.000\%	D	references
	25987194	0.5575%	32.088\%		33.144%	D	reads
	156149	0.0034%	0.193%		0.200%	D	read misses
	15104159	0.3241%	18.650\%		19.264\%	D	writes
	187982	0.0041%	0.233%		0.240\%	D	write misses
7481885 i for i (icache busy)							
2366 i for d (DRAM busy)							
57098 i for store (DRAM busy)							
19873047 d for d (dcache busy)							
418196 d for i (DRAM busy)							
1110070 d for store (DRAM busy)							
0 store for d (DRAM busy)							
0 store for i (DRAM busy)							
0 store for store (DRAM busy)							
0 total ticks of fpu 0.000% of total ticks							
	0	fpop instructions		0.000\% of total			
747868380		total dram ticks					
	0	float for float queue		DRAM busy 12.286%fpu CPI= 0.000			
	526101957	memory ticks		mem $C P I=0.113$			
	5561136309	instruction ticks		raw $\mathrm{CPI}=1.193$			
	0			load CPI $=0.000$			
	6087238266	total ticks		$\mathrm{CPI}=1.306$			
236888912 \# of ticks saved $=3.90$ percent of total							
	349179	\# of 2nd 1	evel dirty	misses			

-138-

Application: eqntott -s -.ioplte int_pri_3.eqn							
1376907962 instructions (including annulled)							
1326073659 instructions (excluding annulled)							
47.4 SPECmarks for eqntott							
leve	l size	block	subblk	assoc	write miss		
1st	I 16 KB	32 B		2-way	write back	write	e allocate
1 st	$\mathrm{D} \quad 16 \mathrm{~KB}$	16 B		2-way	write back	write	e allocate
2 nd	I+D 128 KB	512 B		direct	write thru	write	e allocate
1st Level:							
	\#	\%instrs	\% ItDrefs	\%Irefs	\%Drefs		
	15978750	1.2050\%	1.000%			$I+D$	misses
	1803	0.0002%	0.001%	0.001%		I	misses
	15976947	1.2049\%	1.000\%		7.216\%	D	misses
	1598339434	120.5318%	100.000\%			$I+D$	references
	1376907962	103.8335%	86.147%	100.000%		I	references
	221431472	16.6983%	13.854%		100.000%	D	references
	202396631	15.2629\%	12.663%		91.404\%	D	reads
	15739936	1.1870%	0.985%		7.109%	D	read misses
	19034841	1. 4355%	1.191%		8.597%	D	writes
	237011	0.0179%	0.015%		$0.108 \frac{\circ}{\circ}$	D	write misses
	334338	0.0253%	0.021%		0.151%	D	write backs
	97327	0.0074%	0.007%		0.044%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	응refs		
	2369545	0.1787%	14.526\%			$\mathrm{I}+\mathrm{D}$	misses
	120	0.0001%	0.001%	6.656 웅		I	misses
	2369425	0.1787%	14.525%		14.527%	D	misses
	16312747	1.2302\%	100.000\%			$\mathrm{I}+\mathrm{D}$	references
	1803	0.0002%	0.012%	100.000%		I	references
	16310944	1.2301%	99.989%		100.000%	D	references
	15739936	1.1870%	96.489%		96.500%	D	reads
	2360576	0.1781%	14.471%		14.473%	D	read misses
	237011	0.0179%	1.453\%		1. 4.44%	D	writes
	8811	0.0007%	0.055%		0.055%	D	write misses
4974 i for i (icache busy)							
43 i for d (DRAM busy)							
49 i for store (DRAM busy)							
24798161 d for d (dcache busy)							
332 d for i (DRAM busy)							
23091 d for store (DRAM busy)							
0 store for d (DRAM busy)							
0 store for i (DRAM busy)							
0 store for store (DRAM busy)							
	0	total tick	of fpu	0.000%	of total ti	cks	
	0	fpop instr	ctions	0.000%	of total		
	165733298	total dram	ticks	DRAM bus	sy 10.703\%		
	0	float for	loat queu	e fpu CPI=	$=0.000$		
	141616298	memory tic		mem CPI=	$=0.107$		
	1403832293	instruction	ticks	raw CPI=	$=1.059$		
	3149659	load penal	ies	load CPI	$I=0.003$		
	1548598250	total tick		CPI=	1.168		
30351541 \# of ticks saved $=1.96$ percent of total							
45813 \# of 2nd level dirty misses							

-139-

Application: matrix300							
1695008934 instructions (including annulled)							
1693559315 instructions (excluding annulled)							
64.2 SPECmarks for matrix300							
leve	l size	block	subblk	assoc	write miss		
1 st	I 16 KB	32 B		2-way	write back	write	allocate
1st	D 16 KB	16 B		2-way	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} 128 \mathrm{~KB}$	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	121491883	7.1738\%	5.175\%			I+D	misses
	1001	0.0001%	0.001%	0.001\%		I	misses
	121490882	7.1738\%	5.175\%		18.612\%	D	misses
	2347769886	138.6294\%	100.000\%			I+D	references
	1695008934	100.0856%	72.197\%	100.000\%		I	references
	652760952	38.5438\%	27.804\%		100.000\%	D	references
	435650802	25.7240%	18.556\%		66.740\%	D	reads
	120936999	7.1410\%	5.152\%		18.527\%	D	read misses
	217110150	12.8198\%	9.248\%		33.261%	D	writes
	553883	0.0328\%	0.024%		0.085%	D	write misses
	5129131	0.3029%	0.219\%		0.786%	D	write backs
	4575248	0.2702\%	0.195\%		0.701%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	50318109	2.9712\%	39.740%			I+D	misses
	190	0.0001\%	0.001\%	18.982\%		I	misses
	50317919	2.9712\%	39.740\%		39.740\%	D	misses
	126620181	7.4766\%	100.000\%			I+D	references
	1001	0.0001%	0.001%	100.000\%		I	references
	126619180	7.4766\%	100.000\%		100.000\%	D	references
	120936999	7.1410\%	95.512\%		95.513\%	D	reads
	50111438	2.9590\%	39.577\%		39.577\%	D	read misses
	553883	0.0328%	0.438%		0.438\%	D	writes
	206200	0.0122\%	0.163%		0.163%	D	write misses
2801 i for i (icache busy)							
71 i for d (DRAM busy)							
166 i for store (DRAM busy)							
116382561 d for d (dcache busy)							
547 d for i (DRAM busy)							
2032968 d for store (DRAM busy)							
0 store for d (DRAM busy)							
8 store for i (DRAM busy)							
0 store for store (DRAM busy)							
3024001625 total ticks of fpu 64.270% of total ticks							
432000323 fpop instructions 25.509% of total							
	1298358757	float for	float queue	e fpu CPI=	$=0.767$		
1278681468 memory ticks mem CPI $=0.756$		memory tic	ks	mem CPI=	$=0.756$		
1912122457 instruction ticks raw CPI= 1.130							
216000307 load penalties load CPI $=0.128$							
4705162989 total ticks \quad CPI $=\quad 2.779$							
9960652 \# of ticks saved $=0.22$ percent of total							
	3998486	\# of 2nd 1	evel dirty	misses			

-140-

Application: fpppp							
1448153349 instructions (including annulled)							
1443743790 instructions (excluding annulled)							
37.5 SPECmarks for fpppp							
leve	l size	block	subblk	assoc	write miss		
1st	I 16 KB	32 B		2-way	write back	write	allocate
1 st	D $\quad 16 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	I+D 128 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	97260892	6.7368\%	4.489%			I+D	misses
	93425965	6.4711\%	4.312\%	6.452%		I	misses
	3834927	0.2657%	0.177%		0.534%	D	misses
	2166745950	150.0783\%	100.000\%			I+D	references
	1448153349	100.3055\%	66.836\%	100.000\%		I	references
	718592601	49.7729\%	33.165\%		100.000\%	D	references
	588879183	40.7884%	27.179\%		81.949\%	D	reads
	2919439	0.2023\%	0.135%		0.407\%	D	read misses
	129713418	8.9846\%	5.987%		18.052\%	D	writes
	915488	0.0635\%	0.043%		0.128%	D	write misses
	1073532	0.0744%	0.050\%		0.150%	D	write backs
	158044	0.0110\%	0.008\%		0.022%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	972788	0.0674%	0.990%				misses
	488702	0.0339\%	0.497%	0.524%		I	misses
	484086	0.0336%	0.493%		9.864\%	D	misses
	98333953	6.8111%	100.000\%			$I+D$	references
	93425965	6.4711%	95.009\%	100.000\%		I	references
	4907988	0.3400%	4.992\%		100.000\%	D	references
	2919439	0.2023%	2.969%		59.484%	D	reads
	358203	0.0249%	0.365%		7.299\%	D	read misses
	915488	0.0635%	0.931%		18.654\%	D	writes
	125882	0.0088%	0.129%		2.565\%	D	write misses
322894180 i for i (icache busy)							
477846 i for d (DRAM busy)							
387563 i for store (DRAM busy)							
2461773 d for d (dcache busy)							
2722345 d for i (DRAM busy)							
432150 d for store (DRAM busy)							
0 store for d (DRAM busy)							
23 store for i (DRAM busy)							
0 store for store (DRAM busy)							
4171935848 total ticks of fpu 77.127% of total ticks							
591747328 fpop instructions 40.988\% of total							
1359569696 total dram ticks DRAM busy 25.135\%							
2458039485 float for float queue fpu CPI $=1.703$							
1113665822 memory ticks mem $\mathrm{CPI}=0.772$							
1579515968 instruction ticks raw $\mathrm{CPI}=1.095$							
257966785 load penalties load CPI $=0.179$							
5409188060 total ticks \quad CPI $=\quad 3.747$							
288156908 \# of ticks saved $=5.33$ percent of total							
	360336	\# of 2nd 1	evel dirty	misses			

-141-

Application: tomcatv

```
        1626566113 instructions (including annulled)
        1626346426 instructions (excluding annulled)
            37.7 SPECmarks for tomcatv
```

level	size	block	subblk	assoc	write miss
lst I	16 KB	32 B		$2-$ way	write back write allocate
lst D	16 KB	16 B		$2-$ way	write back write allocate
2nd I+D	128 KB	512 B		direct	write thru write allocate

st Level:

\#	\%instrs	\%I+Drefs	\%Irefs	$\%$ Drefs	
83516279	5.1353%	3.635%			I+D misses
19062	0.0012%	0.001%	0.002%		I misses
83497217	5.1341%	3.634%		12.440%	D misses

2297780507	141.2849%	100.000%			I + D references
1626566113	100.0136%	70.789%	100.000%		I references
671214394	41.2714%	29.212%		100.000%	D

482161515	29.6470\%	20.984\%	71.835%	D	reads
66811736	4.1081\%	2.908%	9.954\%	D	read misses
189052879	11.6244%	8.228\%	28.166%	D	writes
16685481	1.0260\%	0.727%	2.486%	D	write misses
36455368	2.2416	1.	5.432%		

 19769887 1.2157\% \(0.861 \%\) 2.94\% D read mod writes
 2nd Level:

\#	\%instrs	\% ItDrefs	\%Irefs	\%Drefs	
7534657	0.4633%	6.281\%			I
3825	0.0003%	0.004%	20.067%	6.279\%	I
7530832	0.4631%	6.278\%			D
119971189	7.3768%	100.000\%		100.000\%	I+D
19062	0.0012\%	0.016%	100.000\%		I
119952127	7.3756%	99.985\%			D
66811736	4.1081%	55.690%		55.699\%	D
4531668	0.2787%	3.778\%		3.778\%	D
16685481	1.0260\%	13.908%		13.911\%	D
2995861	0.1843%	2.498\%		2.498\%	D
46614	i for i (icache busy)				
1160	i for d (DRAM busy)				
1267	i for store (DRAM busy)				
60699100	d for d (dcache busy)				
16122	d for i (DRAM busy)				
8140441	d for store (DRAM busy)				
0	store for d (DRAM busy)				
6	store for i (DRAM busy)				
0	store for store (DRAM busy)				
3297778423	total ticks of fpu 70.341\% of total ticks				
500809316	fpop instructions 30.794\% of total				
1139005755	total dram ticks DRAM busy 24.295%				
1836097354			fpu CPI=	1.129	
847939712			mem CPI $=0.522$		
1815652773	memory ticks instruction ticks		raw CPI=	1.117	
188603050	load penalties		load CPI $=0.116$		
4688292889	total ticks		load $C P I=$0.116 CPI $=$ 2.883		
301313158	\# of ticks saved $=6.43$ percent of total				

-142-

Application: 001.gccl. 35							
1258990785 instructions (including annulled)							
1217220271 instructions (excluding annulled)							
61.8 SPECmarks for gcc							
lev	l size	block	subblk	assoc w	write miss		
1st	I $\quad 32 \mathrm{~KB}$	32 B		2-way w	write back	write	allocate
1 st	$\mathrm{D} \quad 32 \mathrm{~KB}$	16 B		2-way w	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} \quad 128 \mathrm{~KB}$	512 B		direct w	write thru	write	allocate
1st Level:							
	\#	\%instrs	\% ItDrefs	\%Irefs	\%Drefs		
	19332820	1.5883%	1.221\%			$I+D$	misses
	8242653	0.6772%	0.521%	0.655%		I	misses
	11090167	0.9111%	0.701%		3.421%	D	misses
	1583160061	130.0636%	100.000%			$I+D$	references
	1258990785	103.4316%	79.524%	100.000%		I	references
	324169276	26.6319 \%	20.476%		100.000%	D	references
	225256882	18.5058%	14.228%		69.487%	D	reads
	5051281	0.4150%	0.319%		1. 558\%	D	read misses
	98912394	8.1261%	6.248%		30.513%	D	writes
	6038886	0.4961%	0.381%		1.863%	D	write misses
	6965851	0.5723%	0.440%		2.149%	D	write backs
	926965	0.0762%	0.059%		0.286%	D	read mod writes
2nd Level:							
	\#	\%instrs	\% ItDrefs	\%Irefs	\%Drefs		
	1927711	0.1584%	7.335%			$I+D$	misses
	1046688	0.0860%	3.982\%	12.698\%		I	misses
	881023	0.0724%	3. 352%		4.884%	D	misses
	26282535	2.1592%	100.000%			$I+D$	references
	8242653	0.6772%	31.362%	100.000%		I	references
	18039882	1. 4821%	68.638%		100.000%	D	references
	5051281	0.4150%	19.219\%		1.558%	D	reads
	599722	0.0493%	2.282%		0.185%	D	read misses
	6038886	0.4961%	22.977%		1.863%	D	writes
	280503	0.0230%	1.067%		0.087%	D	write misses
26279390 i for i (icache busy)							
150361 i for d (DRAM busy)							
	329374	i for store (DRAM busy)					
	2320333	d for d (dcache busy)					
	1013628	d for i (DRAM busy)					
	2230364	d for store (DRAM busy)					
	0	store for d (DRAM busy)					
	2034	store for i (DRAM busy)					
	0	store for store (DRAM busy)					
	1419650	total ticks of fpu 0.089% of total ticks					
	120384	fpop instructions 0.010% of total					
	292322908	total dram ticks DRAM busy 18.287%					
	1097308	float for float queue fpu CPI= 0.001					
	221072828	memory ticks mem CPI = 0.182					
	1376248132	instruction ticks raw $\mathrm{CPI}=1.131$					
	144678	load penalties		load CPI $=0.000$			
	1598562946	total ticks		$C P I=\quad 1.313$			
66060946		\# of ticks saved $=4.13$ percent of total					
723922 \# of 2nd level dirty misses							

-143-

Application: 008.espresso							
3102930952 instructions (including annulled)							
2930507476 instructions (excluding annulled)							
45.0 SPECmarks for espresso							
leve	el size	block	subblk	assoc	write miss		
1st	I $\quad 32 \mathrm{~KB}$	32 B		2-way	write back	write	allocate
1st	$\mathrm{D} \quad 32 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	ItD 128 KB	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	10540288	0.3597%	0.268%			I+D	misses
	155944	0.0053\%	0.004%	0.005\%		I	misses
	10384344	0.3544%	0.264%		1.258\%	D	misses
	3928686273	134.0616%	100.000\%			$I+D$	references
	3102930952	105.8837\%	78.981\%	100.000\%		I	references
	825755321	28.1779\%	21.019%		100.000\%	D	references
	681401797	23.2520%	17.344\%		82.519\%	D	reads
	9515064	0.3247%	0.242%		1.152\%	D	read misses
	144353524	4.9259\%	3.674\%		17.481\%	D	writes
	869280	0.0297\%	0.022\%		0.105%	D	write misses
	4160680	0.1420%	0.106%		0.504\%	D	write backs
	3291400	0.1123\%	0.084%		0.399\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\% Irefs	\%Drefs		
	116083	0.0040%	0.790%			I+D	misses
	7085	0.0002\%	0.048\%	4.543\%		I	misses
	108998	0.0037%	0.742%		0.750\%	D	misses
	14695390	0.5015%	100.000\%			I+D	references
	155944	0.0053%	1.061\%	100.000\%		I	references
	14539446	0.4961%	98.939%		100.000\%	D	references
	9515064	0.3247%	64.749%		1.152\%	D	reads
	88863	0.0030%	0.605%		0.011\%	D	read misses
	869280	0.0297%	5.915\%		0.105%	D	writes
	20107	0.0007%	0.137%		0.002\%	D	write misses
461836 i for i (icache busy)							
2256 i for d (DRAM busy)							
4000 i for store (DRAM busy)							
5281418 d for d (dcache busy)							
	14214	d for i (D	RAM busy)				
	180379	d for store (DRAM busy)					
	0	store for d (DRAM busy)					
	39	store for i (DRAM busy)					
0 store for store (DRAM busy)							
	108223	total ticks of fpu 0.003% of total ticks					
	8755	fpop instructions 0.000% of total					
	133941649	total dram ticks DRAM busy 3.986\%					
	55715	float for float queue fpu CPI= 0.000					
	95331789	memory ticks mem CPI = 0.033					
	3265169566	instruction ticks raw $\mathrm{CPI}=1.114$					
	2355	load penalties load $\mathrm{CPI}=0.000$					
	3360559425	total ticks CPI= 1.147					
43236030 \# of ticks saved $=1.29$ percent of total							
83043 \# of 2nd level dirty misses							

-144-

Application: doduc

```
1316441191 instructions (including annulled)
1304567974 instructions (excluding annulled)
35.3 SPECmarks for doduc
```


20400719	i for i (icache busy)
383132	i for d (DRAM busy)
892918	i for store (DRAM busy)
5894224	d for d (dcache busy)
2870226	d for i (DRAM busy)
1618511	d for store (DRAM busy)
0	store for d (DRAM busy)
36	store for i (DRAM busy)
0	store for store (DRAM busy)
2752142075	total ticks of fpu
338148549	fpop instructions
235309303	total dram ticks
1851398189	float for float queue
182089080	memory ticks
1408495536	instruction ticks
82236280	load penalties

-145-

Application: dnasa7						
6800274207 instructions (including annulled)						
6784406522 instructions (excluding annulled)						
55.9 SPECmarks for nasa7						
level size	block	subblk	assoc	rite miss		
1st I 32 KB	32 B		2-way	rite back	write	allocate
1st D 32 KB	16 B		2-way	ite back	write	allocate
2nd I+D 128 KB	512 B		direct	ite thru	write	allocate
1st Level:						
\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
599946973	8.8431\%	6.371%			I+D	misses
7633	0.0002\%	0.001%	0.001%		I	misses
599939340	8.8430\%	6.371\%		22.924\%	D	misses
9417438216	138.8101\%	100.000\%			I+D	references
6800274207	100.2339\%	72.210%	100.000\%		I	references
2617164009	38.5762\%	27.791\%		100.000\%	D	references
1879496669	27.7032\%	19.958%		71.815\%	D	reads
553085669	8.1524\%	5.873\%		21.134\%	D	read misses
737667340	10.8730%	7.833%		28.186\%	D	writes
46853671	0.6907%	0.498\%		1.791\%	D	write misses
384510045	5.6676%	4.083\%		14.692\%	D	write backs
337656374	4.9770\%	3.586\%		12.902\%	D	read mod writes
2nd Level:						
\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
179008425	2.6386\%	18.184\%				misses
660	0.0001\%	0.001%	8.647\%		I	misses
179007765	2.6386\%	18.184\%		18.184\%	D	misses
984456869	14.5106\%	100.000\%			I + D	references
7633	0.0002\%	0.001%	100.000\%		I	references
984449236	14.5105\%	100.000\%		100.000\%	D	references
553085669	8.1524\%	56.182%		56.183\%	D	reads
177490200	2.6162%	18.030\%		18.030\%	D	read misses
46853671	0.6907%	4.760\%		4.760%	D	writes
1458040	0.0215%	0.149%		0.149%	D	write misses
30174 i for i (icache busy)						
246 i for d (DRAM busy)						
334 i for store (DRAM busy)						
382721725 d for d (dcache busy)						
2182 d for i (DRAM busy)						
275156852 d for store (DRAM busy)						
0 store for d (DRAM busy)						
47 store for i (DRAM busy)						
0 store for store (DRAM busy)						
15079121076 total ticks of fpu 62.909\% of total ticks						
2075466939 fpop instructions 30.592% of total						
10177190256 total dram ticks DRAM busy 42.459\%						
7852949694	float for f	loat queue	fpu CPI=	1.158		
7881708310 memory ticks mem CPI= 1.162						
7549415892 instruction ticks raw CPI= 1.113						
685931116 load penalties load CPI= 0.102						
23970005012 total ticks CPI= 3.534						
1763570219 \# of ticks saved $=7.36$ percent of total						
128368864	\# of 2nd le	vel dirty	misses			

Application: xlisp li-input.lsp							
4962043458 instructions (including annulled)							
4661592279 instructions (excluding annulled)							
71.2 SPECmarks for li							
leve	l size	block	subblk	assoc w	write miss		
1st	I $\quad 32 \mathrm{~KB}$	32 B		2-way w	write back	write	allocate
1st	D $\quad 32 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} 128 \mathrm{~KB}$	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\%ItDrefs	\% Irefs	\%Drefs		
	21130402	0.4533%	0.325%			I + D	misses
	140530	0.0031%	0.003%	0.003\%		I	misses
	20989872	0.4503\%	0.323%		1.354\%	D	misses
	6512926989	139.7147%	100.000\%			I+D	references
	4962043458	106.4453%	76.188%	100.000\%		I	references
	1550883531	33.2694%	23.813%		100.000\%	D	references
	1068396583	22.9192\%	16.405\%		68.890\%	D	reads
	13453668	0.2887%	0.207%		0.868\%	D	read misses
	482486948	10.3503%	7.409\%		31.111%	D	writes
	7536204	0.1617%	0.116%		0.486%	D	write misses
	19949249	0.4280\%	0.307%		1.287\%	D	write backs
	12413045	0.2663\%	0.191%		0.801%	D	read mod writes
2nd Level:							
	\#	\%instrs	\% I+Drefs	\% Irefs	\%Drefs		
	79042	0.0017%	0.193%			I+D	misses
	32048	0.0007%	0.079%	22.806%		I	misses
	46994	0.0011\%	0.115%		0.115%	D	misses
	41077761	0.8812\%	100.000\%			I+D	references
	140530	0.0031%	0.343%	100.000\%		I	references
	40937231	0.8782\%	99.658\%		100.000\%	D	references
	13453668	0.2887%	32.752\%		32.865\%	D	reads
	21480	0.0005%	0.053%		0.053%	D	read misses
	7536204	0.1617%	18.347\%		18.410\%	D	writes
	25514	0.0006%	0.063%		0.063%	D	write misses
412327 i for i (icache busy)							
753 i for d (DRAM busy)							
34652 i for store (DRAM busy)							
9314990 d for d (dcache busy)							
104898 d for i (DRAM busy)							
501208 d for store (DRAM busy)							
0 store for d (DRAM busy)							
0 store for i (DRAM busy)							
0 store for store (DRAM busy)							
0 total ticks of fpu 0.000\% of total ticks							
371034611		fpop instructions 0.000% of total					
		total dram	ticks	DRAM bus	sy 6.377%		
0 float for float queue fpu CPI= 0.000							
257748566 memory ticks mem CPI $=0.056$							
5561136309 instruction ticks raw CPI $=1.193$							
	0	load penalties total ticks		load CPI $=0.000$			
5818884875				CPI $=$	1.249		
122606217 \# of ticks saved $=2.11$ percent of total							
54265 \# of 2nd level dirty misses							

-147-

Application: eqntott -s -.ioplte int_pri_3.eqn

```
1376907962 instructions (including annulled)
1326073659 instructions (excluding annulled)
47.7 SPECmarks for eqntott
```

level	size	block	subblk	assoc	write miss
1st I	32 KB	32 B		$2-$ way	write back write allocate
1st D	32 KB	16 B		2-way	write back write allocate
2nd I+D	128 KB	512 B		direct	write thru write allocate

1st Level:

\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
1.1327\%	0.940\%			I+D	misses
0.0002\%	0.001\%	0.001%		I	misses
1.1325 \%	0.940%		6.783\%	D	misses
120.5318\%	100.000\%			I+D	references
103.8335\%	86.147\%	100.000\%		I	references
16.6983\%	13.854\%		100.000\%	D	references
15.2629\%	12.663\%		91.404\%	D	reads
1.1164\%	0.927%		6.686\%	D	read misses
1.4355\%	1.191\%		8.597\%	D	writes
0.0161%	0.014%		0.097%	D	write misses
0.0230\%	0.019\%		0.138%	D	write backs
0.0069%	0.006\%		0.041%	D	read mod writes
\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
0.1745\%	15.094\%			I+D	misses
0.0001%	0.001\%	6.177\%		I	misses
0.1744%	15.093\%		15.095\%	D	misses
1.1555\%	100.000\%			I+D	references
0.0002%	0.012\%	100.000\%		I	references
1.1554\%	99.989\%		100.000\%	D	references
1.1164\%	96.617%		96.629\%	D	reads
0.1738%	15.039\%		15.041\%	D	read misses
0.0161%	1.393%		1.393\%	D	writes
0.0007\%	0.055%		0.055\%	D	write misses

-148-

Application: matrix300							
1695008872 instructions (including annulled)							
1693559267 instructions (excluding annulled)							
65.8 SPECmarks for matrix300							
lev	l size	block	subblk	assoc	write miss		
1 st	I $\quad 32 \mathrm{~KB}$	32 B		2-way w	write back	write	allocate
1 st	$\mathrm{D} \quad 32 \mathrm{~KB}$	16 B		2-way	write back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} 128 \mathrm{~KB}$	512 B		direct	write thru	write	allocate
1st Level:							
	\#	\%instrs	\% I+Drefs	\%Irefs	\%Drefs		
	109475916	6.4643%	4.663\%			I+D	misses
	901	0.0001%	0.001%	0.001\%		I	misses
	109475015	6.4642\%	4.663\%		16.772\%	D	misses
	2347769807	138.6294\%	100.000\%			I+D	references
	1695008872	100.0856\%	72.197\%	100.000\%		I	references
	652760935	38.5438\%	27.804\%		100.000\%	D	references
	435650793	25.7240%	18.556%		66.740%	D	reads
	108923279	6.4317\%	4.640\%		16.687\%	D	read misses
	217110142	12.8198\%	9.248\%		33.261\%	D	writes
	551736	0.0326\%	0.024%		0.085%	D	write misses
	727624	0.0430%	0.031\%		0.112%	D	write backs
	175888	0.0104%	0.008%		0.027\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\% Irefs	\%Drefs		
	44533706	2.6296\%	40.412\%			I+D	misses
	178	0.0001%	0.001\%	19.756\%		I	misses
	44533528	2.6296\%	40.411\%		40.412\%	D	misses
	110201684	6.5072\%	100.000\%			I+D	references
	901	0.0001\%	0.001\%	100.000\%		I	references
	110200783	6.5071\%	100.000\%		100.000\%	D	references
	108923279	6.4317\%	98.840\%		98.841\%	D	reads
	44308551	2.6163%	40.207\%		40.208\%	D	read misses
	551736	0.0326\%	0.501%		0.501%	D	writes
	224695	0.0133%	0.204%		0.204%	D	write misses
2558 i for i (icache busy)							
57 i for d (DRAM busy)							
151 i for store (DRAM busy)							
108265276 d for d (dcache busy)							
468 d for i (DRAM busy)							
484558 d for store (DRAM busy)							
0 store for d (DRAM busy)							
8 store for i (DRAM busy)							
0 store for store (DRAM busy)							
3024001625 total ticks of fpu 65.891\% of total ticks							
432000323 fpop instructions 25.509\% of total							
	1335284565 float for float queue fpu CPI= 0.789	float for	float queue	e fpu CPI	$=0.789$		
1126044775 memory ticks mem CPI= 0.665		memory tic	ks	mem CPI=	$I=0.665$		
1912122382 instruction ticks raw $\mathrm{CPI}=1.130$							
216000307 load penalties load CPI $=0.128$							
4589452029 total ticks \quad CPI $=\quad 2.710$							
4918397 \# of ticks saved $=0.11$ percent of total							
	515755	\# of 2nd 1	evel dirty	misses			

-149-

Application: fpppp							
1448153371 instructions (including annulled)							
1443743822 instructions (excluding annulled)							
40.6 SPECmarks for fpppp							
leve	1 size	block	subblk	assoc	rite miss		
1st	I $\quad 32 \mathrm{~KB}$	32 B		2-way	rite back	write	allocate
1st	D 32 KB	16 B		2-way	rite back	write	allocate
2nd	$\mathrm{I}+\mathrm{D} 128 \mathrm{~KB}$	512 B		direct	rite thru	write	allocate
1st Level:							
	\#	\%instrs	\%ItDrefs	\%Irefs	\%Drefs		
	43879504	3.0393\%	2.026%			I + D	misses
	42420691	2.9383%	1.958\%	2.930%		I	misses
	1458813	0.1011%	0.068%		0.204%	D	misses
	2166745975	150.0783\%	100.000\%			I + D	references
	1448153371	100.3055\%	66.836\%	100.000\%		I	references
	718592604	49.7729\%	33.165\%		100.000\%	D	references
	588879194	40.7884\%	27.179\%		81.949\%	D	reads
	1297145	0.0899%	0.060%		0.181%	D	read misses
	129713410	8.9846\%	5.987%		18.052\%	D	writes
	161668	0.0112\%	0.008\%		0.023\%	D	write misses
	214853	0.0149\%	0.010\%		0.030%	D	write backs
	53185	0.0037%	0.003\%		0.008\%	D	read mod writes
2nd Level:							
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	182541	0.0127%	0.414%				misses
	92135	0.0064%	0.209%	0.218\%		I	misses
	90406	0.0063%	0.206%		5.404\%	D	misses
	44093717	3.0542\%	100.000\%				references
	42420691	2.9383\%	96.206%	100.000%		I	references
	1673026	0.1159\%	3.795\%		100.000\%	D	references
	1297145	0.0899%	2.942\%		77.533\%	D	reads
	69902	0.0049\%	0.159%		4.179\%	D	read misses
	161668	0.0112\%	0.367%		9.664\%	D	writes
	20503	0.0015%	0.047%		1.226\%	D	write misses
150864382 i for i (icache busy)							
102942 i for d (DRAM busy)							
17398 i for store (DRAM busy)							
756568 d for d (dcache busy)							
768621 d for i (DRAM busy)							
112530 d for store (DRAM busy)							
0 store for d (DRAM busy)							
21 store for i (DRAM busy)							
0 store for store (DRAM busy)							
4171935848 total ticks of fpu 83.577\% of total ticks							
591747328 fpop instructions 40.988% of total							
610364412 total dram ticks DRAM busy 12.228 \%							
2639741701 float for float queue fpu CPI= 1.829							
503443650 memory ticks mem CPI $=0.349$							
1579515981 instruction ticks raw $\mathrm{CPI}=1.095$							
269068181 load penalties load CPI $=0.187$							
4991769513 total ticks CPI= 3.458							
131045996 \# of ticks saved $=2.63$ percent of total							
	40112	\# of 2nd lever	evel dirty	misses			

-150-

Application: tomcatv
1626566133 instructions (including annulled)
1626346434 instructions (excluding annulled)
37.9 SPECmarks for tomcatv

leve	1 size	block	subblk	assoc	rite miss		
1 st	I $\quad 32 \mathrm{~KB}$	32 B		2-way	rite back	write	allocate
1 st	D 32 KB	16 B		2-way	rite back	write	allocate
2nd	I+D 128 KB	512 B		direct	rite thru	write	allocate
1st	Level:						
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	72351944	4.4488\%	3.149\%			I+D	misses
	3664	0.0003%	0.001%	0.001%		I	misses
	72348280	4.4486\%	3.149\%		10.779\%	D	misses
	2297780534	141.2849\%	100.000\%			I+D	references
	1626566133	100.0136\%	70.789\%	100.000\%		I	references
	671214401	41.2714\%	29.212\%		100.000\%	D	references
	482161514	29.6470\%	20.984\%		71.835%	D	reads
	55894116	3.4368\%	2.433\%		8.328\%	D	read misses
	189052887	11.6244\%	8.228\%		28.166%	D	writes
	16454164	1.0118\%	0.717%		2.452\%	D	write misses
	36029545	2.2154%	1.569\%		5.368%	D	write backs
	19575381	1.2037\%	0.852\%		2.917\%	D	read mod writes
2nd	Level:						
	\#	\%instrs	\%I+Drefs	\%Irefs	\%Drefs		
	6939399	0.4267%	6.403\%			I + D	misses
	633	0.0001%	0.001%	17.277\%		I	misses
	6938766	0.4267\%	6.403\%		6.403\%	D	misses
	108380584	6.6641%	100.000\%			I+D	references
	3664	0.0003%	0.004%	100.000\%		I	references
	108376920	6.6639\%	99.997\%		100.000\%	D	references
	55894116	3.4368\%	51.573%		51.574\%	D	reads
	4180239	0.2571%	3.857\%		3.858\%	D	read misses
	16454164	1.0118\%	15.182\%		15.183\%	D	writes
	2757225	0.1696%	2.545\%		2.545\%	D	write misses

8887 i for i (icache busy)
160 i for d (DRAM busy)
316 i for store (DRAM busy)
59243856 d for d (dcache busy)
1521 d for i (DRAM busy)
8304580 d for store (DRAM busy)
0 store for d (DRAM busy)
0 store for i (DRAM busy)
0 store for store (DRAM busy)

3297778423	total ticks of fpu	70.670% of total ticks
500809316	fpor instructions	30.794% of total
1029981245	total dram ticks	DRAM busy 22.072%
1889862004	float for float queue fpu CPI= 1.163	
772387821	memory ticks	mem CPI= 0.475
1815652804	instruction ticks	raw CPI= 1.117
188603248	load penalties	load CPI $=0.116$
4666505877	total ticks	CPI=
270875449	$\#$ of ticks saved $=$	5.81 percent of total
3804931	$\#$ of 2nd level dirty misses	

References

[Arimoto 90] Arimoto et al.
A Circuit Design of Intelligent CDRAM with Automatic Write Back Capability.
Symposium on VLSI Digest of Technical Papers , 1990.
[Asukura 89] Asujura et al.
An Experimental 1MB cache DRAM, Symposium on VLSI Digest of Technical Papers, 1989.
[Dixit 91] Dixit, Kaivalya.
SPECulations.
SunTech Journal , January, 1991.
[Dosaka 92] Dosaka, K., et al.
A 100 MHz 4 Mb Cache DRAM with Fast Copy-Back Scheme.
IEEE ISSCC Digest of Technical Papers , February, 1992.
[Goodman 84] Goodman, James and Chiang, Man-Chow.
The Use of Static Column RAM as Memory Architecture.
The 11th Annual Symposium on Computer Architecture , 1984.
[Hennessy 90] Hennessy, John and Patterson, David.
Computer Architecture: A Quantitative Approach.
Morgan Kaufman Publishers, 1990.
[Hsu 89] Hsu, Peter.
Introduction to SHADOW.
Technical Report, Sun Microsystems, Inc, July, 1989.
[Sun 89] Sun Microsystems, Inc.
The SPARC Architecture Manual.
Technical Report, Sun Microsystems, Inc, September, 1989.
[Ward 88] Ward, Steve and Zak, Robert.
Static-Column RAM as a Virtual Cache.
8th International Conference on Computer Science, July, 1988.
[Ward 90]
Ward, Steve and Zak, Robert.
Technical Report, Laboratory for Computer Science, May, 1990.

