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Abstract

We develop an analytic and a simulation model for a job shop with unreliable work
stations and production constraints. In the complex batch manufacturing operation
of the factory, smooth production of each work station is required. In the previous
work the Tactical Planning Model was proposed for this purpose. In that model, the
production of each work station should be proportional to the queueing level of the
input work flow. In this paper, the model is extended to the work station with
production constraints and with given unreliability of its operation, because in the
real world situation, the work stations cannot be operated perfectly without any
trouble nor infinite productivity. For the analysis of multiple unreliable work
stations, we develop an analytical model and solution. The break down of the work
station is modeled as a Bernoulli process. For the analysis with the production
constraints with or without the unreliable work station model, we develop a dynamic
simulation model. We show some examples of this problem, and show the effect of
production constraints and unreliable work stations.

Thesis Supervisor: Dr. Stephen C. Graves
Title: Professor of Management Science
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Chapter 1. Introduction

The purpose of this work is to extend an analytical model and to develop a
simulation model of a job shop problem. The focus is on the extension of the Tactical

Planning modell to the unreliable multiple work stations with production

constraints.

A job shop is a very flexible production facility composed of several machines or
work stations. Unlike the assembly line facility, different jobs with various kinds of
work flow and completion times are managed in a job shop2. An analytical model of
job shop problem was proposed by Stephen C. Graves in his "A Tactical Planning
Model for a Job Shop" (1985) 1. He modeled this job shop problem as a network of
queues. The work flow was modeled as the discrete-time, continuous-flow of the
tasks. The task units were not expressed in terms of the number of parts to be
produced but were expressed as the necessary service time to complete the job. The
control law for production of each work station was modeled as proportional to the
queueing level of the input work flow and as inversely proportional to the planned
lead time. The model provides the steady state distribution of the production levels at
each work station, the distribution of queue lengths and the distribution of backlogs.
In the Tactical Planning Model, Graves took into account the production capability,

the inherent variability and uncertainty of the production requirements.

For the production capability, the production constraints were treated implicitly.
When the expected level of the production exceeded the capacity of one facility, he
increased the number of the facility to satisfy the requirement. For example if the
capacity is 2 units of production by one facility and the requirement of the

production is 5, he assumed that there should be three facilities, in parallel, at the



work station. In order to make the variation of the production requirements be
within the constraints of the production capability, the planned lead time of the
heavily-loaded work station was increased, because the increase of the planned lead
time will reduce the variation of the production requirements.

In order to analyze more precisely the situation of the job shop, the saturation of the
production without sufficient production capacity should be taken into account. One
of the purposes of our research is to investigate this point. We allow the model of
héavily-loaded work station if the average requirement of the production is within

the capability.

The inherent variation of the production was modeled as an additional independent
random input to the work station. But the production itself was assumed to operate
properly. For the purpose of the extensive analysis of the job shop problem, we have
to consider not only the input variation but also the break down of work stations. In
the real world situation, the work station cannot be operated perfectly without any
trouble nor infinite productivity. Sometime the work station has to stop its operation
because of maintenance, even if it has high reliability. When the work station is
stopped, the incoming tasks will be delayed and may result in some backlog. For
this problem, the case with single input and single output for the single work station
was also analyzed by Graves3. He showed that the effect of the work station break
down causes a longer expected length of queue and a larger variation in the queue

length. In this paper, we extend the unreliable job shop problem to the multiple work

stations model with production constraints.

In Chapter 2, we review the outline of the Tactical Planning Model proposed by

Graves, and show the model with unreliable multiple work stations and capacity

constraints.



In Chapter 3, we demonstrate the dynamic simulation model to examine the
performance of the system. For the analysis of the complicated net work of queues, a
simulation is the only way to solve this problem without any simplification, because
of complicated interactions between work stations and nonlinear constraints. In this
paper, we use the software named STELLA™+ to model and carry out the
simulation. STELLA was designed to make it possible to simulate a System
Dynamics model on the personal computer4. With the application of the software to
this problem, the analysis of the complicated network queue problem is completed
without the use of the large computer.

In Chapter 4, we show the result of the simulation and analysis. At first we show the
validation of the simulation model with no production constraints and perfectly
reliable work stations. We compare the result of the simulation to the result of the
analytical work. The same job shop model is used as was used in the Graves' paper.
It is the ten work stations job shop model for the production of components for
grinding machines. After that we show the example of the simulation of the
unreliable work stations with the production constraints.

In Chapter 5, we show the conclusion of this analysis and simulation.

+ STELLA is a trademark licensed to High Performance Systems, Inc.



Chapter 2. Tactical Planning Model and extension

2.1 The Tactical Planning Model

A job shop is a very flexible production facility that consists of a set of versatile
machine centers or work stations and is capable of producing a wide variety of jobs.
Because of its inherent complexity, it is often difficult to manage the production
control in a sophisticated manner. In 1985 Graves! proposed a Tactical Planning
Model to help address this problem. He developed the problem by making use of the
planned lead time for its production.

In this section we would like to describe briefly about the Tactical Planning Model.

At first we would like to note the basic assumption of the model.
(1) The job shop works as discrete time model.

Every transaction is carried out at the specified time, and production is completed
within the given period of time.
(2) The work flow is continuous.

At each work station, the arriving jobs to the station, the queue of work at the
station, and the production by the station are expressed in terms of the work load on
the station. This differs from the usual queueing model in which these variables
would be expressed in terms of number of jobs.

(3) The work station does not break down.

100% reliability was assumed.

(4) There are no explicit capacity constraints.

Constraints were considered implicitly.

(5) The arrival stream to a work station contains some degree of uncertainty.



The arrival stream to a work station contains two types of input. One consists of the
work flow from the other work stations. The other consists of the random noise

which simulates the production variation of the system, and includes new work

which enters the shop.

Fig 2.1-1 Example of multiple work stations (Work flow)
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The above drawing is the example of the multiple work stations model shown in the
Graves article. Jobs arrive to work station # 1, and leave from work station # 10.

The processing of a job may entail visits to several different work stations.

Second, we would like to describe the relationship and steady state analytical solution

of the performance of the model.
In the Tactical Planning model, the production of a work station is set to equal a

fraction of the work-in-process (WIP) queue. The control rule is described as

follows.

Pi=0; 0



where P; ¢ is the production level of the work station i, during the time period of ¢,
Qj ¢ is the WIP queue level, and «;is the control parameter of the Tactical Planning
model. «jis the inverse of the planned lead time and is restricted to O<a< 1. For
example if a planned lead time is 4 periods of time then ¢jis 0.25. The balance
equation is

Qir= Qir-1- Pi,r-1+Ai
where A; ¢ is the amount of work that arrives at work station i at the start of time
périod t. These arrivals may come from many other sectors, and the flow from work
station j to work station i is modeled by
Ajj= 0ijPje-1 + Eijt

where ¢;; is the expected number of hours of work generated for work station i by
every hour of work completed by work station j, and &; j; is a random variable with
zero mean. The term g; j ; is a noise term which simulates the uncertainty in the
arrival stream. It is assumed that the terms of the time series { Eijt } are i.i.d. The
total arrivals to a work station i are the sum over all preceding sectors of equation

above.
n
A=, O; P+ &
J=1
where

n
&, = Nij, + ZgiJ,z
=1

n
A, = zAiJ,t + Ny,
1

where Nj ;1s a random variable that represents the work load from new jobs that
enter the shop at time t directly from outside. The elements of each time series {N; ;}

are assumed to be 1.1.d. Thus &; ¢ represents those arrivals that are not predictable



from the previous history and it consists of random noise and new arrivals. By
substituting these equations the following vector-matrix equation can be derived.
Pi= (I-D+D® )Pi.1+DE¢
where Pt is the vector of elements P; ¢, € ¢ is the vector of elements € ; ¢, D is the
diagonal matrix with the control parameter a; on the diagonal, and @ 1is the matrix
whose elements are ¢; j, I is the identity matrix. By successively substituting the
above formula, the equation can be rewritten as the geometric series
P,= ) (I-D+D®) De,
s=0

The expectation of production vector, p'={py, p2, ... p,}1s given by

E(P)= p =>.(1-D+D®) Dy
s=0

where WL is the expected value of the vector € ¢. It was shown that the geometric

series converges, provided that the spectral radius (maximal absolute eigenvalue) of
the matrix @ is less than 1, which is necessary and sufficient for the spectral radius
of (I-D +D®) tobe less than 1. Then the above equation can be written as the
following form.
E(Pp=p=(I-®)ylp
The covariance matrix of Py is
Var(P)= iBSD ~DB"
s=0
where B=(I-D + D® ) and X is the covariance matrix of the vector € . The
expected queue vector and covariance matrix can be written down as follows.
Q =D-IPy
E(Qu)=D-Ip
Var (Q )=D-1[ Var(P) ] D -1



The queue at each work station is assumed to be served as first in, first out. The
oldest input is processed first. The backlog is defined as the portion of the queue that

has waited for m periods. Thus, the backlog can be written as the following equation.
m m-1
Qir= Qi1 -Pisy
m
= Qi,t-m - EPi,t-s
s=1

where Q;r,l<0 means that paticular backlog is zero, and Q?:= Q;,for m=0. The first

term indicates the queueing level at the period of ¢-m and the second summation is
the total production from the time period of #-m up to the last production. Then in

matrix notation , we have

m -1 m
Qt =D Py - ZPI-S
s=1
and expected backlog is as follows.

Q) )=(D -mD)(I-®) L

m
The covariance of @ can also be found from the previous results.



2.2 Unreliable work station

In the previous section, we discussed the model of multiple work stations. There
were assumptions that no work station would fail to work, nor would trouble
develop. But in the real woyld situation, the machines in the factory sometimes fail to
work, and for some period of time the machines have to be inoperable because of
maintenance. The original analysis of the problem was conducted by Graves3 for a
single work station model. In this section, we would like to extend the concept of the

unreliable work station to this Tactical Planning Model for multiple work stations.

The definition of work station break down is the condition in which the work station
produces nothing for a given period of time. The in-coming material consists of

queue in the input side of the work station. The break down of a work station occurs

as a Bernoulli process, with the probability p;. That is, each period work station i
fails with probability p;. When a work station fails, its production for that time
period is zero. The state of the work station does not provide any influcice on the

other work stations, neither at its production level nor at the stage of the production.

Let i be the subscript indicating the work station i. The work station i has the

following relations.
Qir=Qir-1- Pir-1+Ai
Apr= GilP1 -1+ 0i2P2 p- 1+ + Ginlrr-1+ Eit
P; =0 Q;; ---withprobability I-p;
=0.0 --- with probability  p;
=12, n
Let Dpy be the diagonal matrix with ajz, which is defined as the random variable

ajr = 0 ---With probability (1-p;)
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= (0 --- Withprobability p;

-al,,O - O1
0612’ -0
Do - T
0 0 O0a,,

p; denotes the probability of work station break down. This random variable has
following characteristics.

E(ajr) = o4 (I-pj)

E(aj? )= 042 (I-pj)

Var (ajr ) = o4 pj (I-pi)

E(ajrajr) = o o (Ipy) (I-pj) ;i#
E(ajrajr.s) = 052 (1-p)2 ;570
E(aj; Xit) = o4 (1-pi)E(Xjp) ; Xj¢ is independent from a;;

[ a(1p) O - 0

o] O o
L 0 0 - Otn(l-pn)_
=D (I- P;)

P} denotes a diagonal matrix with elements, {p1 p; ... p,}, and D denotes a diagonal
matrix with its elements being the of inverse of planned lead time, {o; @ ... o).
Now the job shop system can be analyzed by the following set of equations:
The control rule 1S now

Pr=Dpt Qt

The balance equation 1s then



Q=Q¢-1-Pr-1 +A¢
= Q1 - Dpt-1 Q-1 + @ Dpr-1Q-1 +€ ¢
= E€¢ +{I-(1-®)Dp-1 } Qt-1

-¢11¢12 - ¢1n-
o 21922 - 92p

L¢n1 ¢’n2 - d’nn

2.2.1 The average and variance of queue
The expectation of queue can be derived by taking expectation of both sides.
E(Q¢)= E(€ )+ {I-(I-®) EMpt-1) } EQ¢-1)
At the steady state condition, the expectations of Q¢ and Q.1 are the
same. { E(Q¢ )= E(Q¢-1 )} Therefore
E(Q¢)={ (I-®)EDp.1) )1 E(E )
={(I-0)D(I-Pp) }lp

The covariance matrix can be obtained by the following manner. At first a quadratic

form of Q¢ should be taken. The form consists of NxN matrix.

0.0, 0102 - 010w ]
Q0= Qz,z_Ql,: Q2,1-Q2,z ' Q2,t_Qn,t
_Qn,le,t Qn,tQ2,t - Qn,th,t i

which is expressed as following form.
Q QT = (& +{ I-(-®)Dpr1 1QuD) (€ ¢ +{ L-(I-®)Dp 1 JQr T
=g &T+ {1 (I-0) Dpy1 ) Q1 &T+€ Q1 T{ I-(-®)Dpyp }T
+ { I (I-0) Dp.1 } Q1 Qet T (I (1-0) Dy } T
= Qp-1 Qu1T-( 1) Doy Qo1 Q-1 T-Qe1 Qe Thpy Tl-a)T

11



+(1-@) Dpt-1 Q-1 Q1T Dpe .1 T @-0)T
+ & &T+ (-(-®) Dpy 1 } Qe1 &T + € Qe T{ I-(1-@)Dp.1 } T
The expectation of this quadratic form is following.
EQ: Q1) =E@Qt-1Qt1T) + E(&t&T)
-(1-® ) EDpt-1 Q-1Q-1T) -EQe-1Qe- 1T Dpro1 T) T-)T
+(1-® ) E(Dpg-1 Q-1 Q1T Dp 1) @-@) T+ E( Q-1 &)
-(1-® ) E(Dpt-1 Qe-1&T #+EEQe-1T) - E€Qe-1T Dpi-1 T)a-o)T
As €t,Qt-1 and Dpt. are mutually independent, the expectation of mutual
products are the products of mutual expectation.
E(Q: QD) =EQ1-1Qe-1T) + E(€c &)
(1-® ) EDpt-1) E(Qt-1Q-1T) -EQ1-1Q1-1T) E(Dpr-1 1) (1-0)T
+(1-0) E( Dpt-1 Qe-1 Qe-1T Dpt -1 D (1-0)T+EQr- DEET) +E(€D E@Qt-1D)
-(1-® ) E(Dpt -1 ) B(Qt-1) E(&D) - E€) B(Qe-1T) E(Dpp-1 T)(1-@)T

On the other hand E(Q¢ ) E( QtT) is as follows.

E(Qr) E(Q(D =EQe1)E(Qu1T) + E(& E(&T)

( I-®) EMDp-1 Qe-1) E( Q1D -E(Q-1) E(Qe-1T Dt TH(I-0)T

+( I-® ) EDpt-1 Q-1 EQe-1T Dpe-1 1) (1-0)T+ EQr-1) EED)

-(1-®) E( Dpg-1 Qt-1) E(€T) +E(€¢) EQe1T) -E(€p) EQt-1T Dpe-1 H(L-0)T
=E(Q-1)E(Qu1T) + E(&)E(E (D)

-(1-®) EDpt-1) E(Qe-1) EQe-1D) -EQe-1) E(Qe-1T) EDpr-1 D) (1) T

+(1-®) E(Dpt-1 ) EQe-1) BQe-1 D EMpe -1 D (L) T

+EQe-1) EET) ~(I-®) E(Dpr1) E(Qr-1) E(& 1) +E(€) E(Q-1 D)
E(€) E(Qu1T) E(Dprt Ty )T

12
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The covariance matrix of Q¢ can be calculated as the difference between E(Q; QD)
and E(Q¢ ) E( Q(T). The diagonal elements of the matrix consist of variance of Qit
and the other elements consist of covariance of Q;¢ and Qjt-
Var (Q¢)=E(Q; QD- EQ¢) E(Q(D)
= EQr1Qu1T) + E€ &)

“( @) EDp.1) B(Q-1Qe-1T) -E@Qe-1Qe-1T) E(Dpe-1 T) (10 )T
+( @) E(Dpt-1 Qe-1 Q-1T Dpr1 T) (1-0)T+ E(Qy1 ) E(g(T)
-(1-®) E(Dpt-1) E( Q-1 ) E€T) +E(&) E(Q.1T)
-E(€) E(Qe-1T) E(Dpy.1 T)(1-0)T
{EQe-1)E(Q1T) + E€) EET)
“(I-®) EDpt-1 ) EQe-1) EQe-1T) -EQ¢-1) BQe-1T) EMpr1 T) (-0 )T
+(1-®) E(Dpt-1) EQt-1) E(Qt-1 1) EMpr-1 T) (10 )T + E@Q¢.1) Eg(T)
-(1-@ ) E(Dpt -1 ) E(Qt-1 ) E(&T) +E(€r) E(Q.1T)
-E(€) E(Qe-1T) E(Dp-1 T)(1-0)T)

=Var(Qt-1)+ Var( €p) -(1-0 )EDpy-1 JVar(Qt-1) -Var(Qe-1EDpg-1 T )(I-0 )T
+(I-0){EMpt-1Qt-1Qe-1 TDpe- 1 T)-EDpe- DEQe- DEQr-1 TEMpr.1 1)) (10 )T

The product of DptQt and QtTDptT is expressed by using the following formula.
DptQiQ¢ TDp¢ =

2 2 -I
Q14a;, 01,0201 a3, - 01,041 a,,
2 2
0, 01.a 4y, Qs a7, - 020,42 4a,,
2 2
Qn,lQ l,tan,tal,t Qn,zQZ,tan,zaZ,t - Qn,tan,t

Then the expectation of Dpt-1Qt-1Q¢- 1TDpt_1T is
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E(Dpt-1Qt-1Qt-1TDp-1T)=

o

*
0101001101001,

2 2 * —_— *
01,1119 14 01,102,10¢109P 1,

—— * 2 2 * *
02,1.1Q01,1-10201P 07 1-109P 9 - 02,410n 11020 9

J * % 2 2 *
Qn,t-lQl,t-lanalpnl Qn,t-1Q2,t-lana2pn2 - Qn,t-larpnn

where the probability p; j* denotes the joint probability that the pair of work stations
is not broken down.

pii =(1pi)

pif =(I-py) (1pj) ; i#
Let ejj be matrix of only the (i,j) element has value 1,and all other elements are 0.

For example, e,3 means

0000
e 0010
23710000
0000

Then the third term is as follows

E(Dpt-1 Qt-1Qe-1TDpt-1 T-EDp-1 JEQe-DEQt-1DEMDpe-1 T)

L 2
=N (1 p)0rr(1p) Cigiless

i=1

+2 2 sz'%(l-Pi)(l-Pj){Qi,z-le,z-rQ’,z-@j,t-l}eu

=1 j=1,j#i

n
2 _2
=205ipz(1'p D{Var(Q;,)+0; 1le
i=1
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+> {i(1p) VarQu e D, 0(1-p)(1-p)Cov(Q;1.0juDesi)

i=1 J=Lj#i
- 2 —2 T
=2aipz(1'Pi) {(Var(Q;,. P+0;1le;+ EMD pt) Var(Q.pEMD pt )
i=1
=D D (I-Pp)P; Eo( Qr.1 ) + DA-Pp) Var(Qy.1) (DA-PY)T
E7( Qq.1 ) denotes diagonal matrix consists of the expectation of square of Qjt-1.
C{ENQu1) Vi =E(Qip1?) =Var( Qip1) + E( Qi1

The covariance matrix of Q is expressed as the following form.
Var(Q¢) = Var( € p)
+{ I- (I-®) D (I-Py) } Var(Q;.1) { I (I-@) D (I-Pp) } T
+(1-@)D D (I-P)P; Ep( Q1 ) (1-0)T

In order to get the steady state solution, let Var(Q¢K) be the k-th asymptotical
solution. The first approximate solution is
Var(Q)) = Var(g )+ (1-0) DD (LP )P EQ)) (1-®)
where E2(Q10) is expressed as
[EaQ) )~ E@;)’
The k-th asymptotical solution is as follows.
Var(QK) = Var( &)
+{ I- (I-® ) D (I-Py) } Var(Qk-1) ( I- (1-®) D (I-Py) } T
+(1-®) D D (I-PPr Ep( Qik-1) (I-0)T
(Ex(Q&D)}ii=E((QK1)2 ) = Var( Q%) + E( Qi
The aymptotical solution will converge if it can be shown that a finite K such that
I Var(Qk) - Var(Q-1) li<ll Var(Q-1) - Var(Q&-2) I
for all k>K.



2.2.2. The average and variance of production
As described above, the relationship between production and queue is defined in the
Tactical Planning Model. It is
Pit=o0; Qi  ---with probability I-p;
= 0.0 --- with probability p;
Therefore the average and the square average are calculated without any difficulty.
E(Pi)=(1-pi) i E( Qi)
E(Pi2)=(1pi) ( o)? E(( Qi) )
Var( Pjig)= (1-pi) ( o) [Var (Qii,) -piE( Qi ]

Using the result of the previous section, expectation of production can be written as
E(Py ) = EDpy { (1-0) EDpy) }-1 E( &)
=D (I Pp) ((F®)D(I-Pr) }1
= (L)1}
This equation shows that the expectation of the production does not depend on the

unreliability of the work station for the long run.

16



2.3 Capacity Constraints

In the original Tactical Planning Model, the effect of the production constraints
were treated as an implicit factor. It can be avoided by setting appropriate planned
lead time and resource reallocation. But in the model discussed in the previous
section, the explicit involvement of the production control should be taken into
account, because after the work station break down, the queue of the station will
increase, and it is likely that the production will exceed the production capacity.

Therefore we apply the following production capacity constraint in each work

station.
Pizmin{ QP i)

In this case P ;; is the production capability at work center i in time period ¢. This

type of rule was tested by simulation by Cruickshanks, Drescher and Graves (1984)5
for a simpler case with one production stage. We apply this rule in the multiple work

station case and see the effect by the use of dynamic simulation.

17



Chapter 3. Simulation model.

3.1 Systems dynamics simulation

In this paper, we use a personal computer in order to carry out the analytical
calculation and Monte Carlo simulation, because the development of the personal
computer has made it possible for the manager to have his/her own tool to evaluate
the management problems. As for the analytical approach described in the chapter
2/, we use BASIC to model and implement the problem. The detail of the program is
described in Appendix B. In this analytical approach, we model the unreliable job
shop without the explicit production constraints. Because it is very difficult to apply
analytical approach to the model with explicit constraints, we apply the dynamic
simulation model to solve this problem.

There are several software packages available to carry out a simulation. For
example, Banks and Carson describe GASP, SIMSCRIPT, GPSS, and SLAM as the
special purpose simulation language. In this paper, we select the STELLA program
to do simulation on the personal computer.

The STELLA, designed by Barry Richmond3, is a software to simulate the
dynamics of social and physical systems. It stands for Structural Thinking,
Experiential Learning Laboratory with Animation. It solves systems of differential
or difference equations using the following operaters; Stock, Flow & Flow
Regulator, Input Link and Converter.

The first operator, Stock, is the variable to be differentiated by time. Let the
differential equation be
dx

—=aqay -bz

dt

where the stock should be x. When we want to represent a difference equation, such

as a balance equation
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Xj=Xj-] +A; -Bj
the stock represents Xj.

The second operator, Flow and Flow Regulater, has two varieties. One is Source
and Logic Receptacle. It represents "ay " of the above differential equation and can
be interpretted as the "arrival" rate to the stock. The other is Sink and Logic
Receptacle. It represents "bz" and corresponds to the "departure rate" from the
stock. The Logic Receptacle works as a control valve of the flow, and we can
process the signal to the form of arrival and departure of the differential equations.
An infinite amount of flow is assumed in the source. The sink is also assumed to have
an infinite capability.

The third operater is Input Link which is the directed arc of the signal flow. In the
above differential equation, Input Link brings the output of some other equation "y"
and "z" to the Flow and Flow Regulator. In general it indicates signal flow
relationship between one operator to another.

The fourth operator is a Converter. It converts several inputs into another form.
Mathematical function, some logical operation, random variable generation can be

used in this operator.

We can use these operators to make a simulation model of this problem.

Fig3.1.1
Stock Flow & Flow Regulator - Input Link Converter

= F8 — O

Source & Sink &
Logic Logic
Receptacle Receptacle
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3.2 STELLA model

3.2.1 Multiple work stations model
In this section, we would like to show the multiple work stations simulation model
in the Tactical Planning model. The following chart shows the example of work flow

between the work stations.

Fig 3.2.1-1 Work Flow example

Work station Work station £
Work Flow 82_> > 3

#2 | #3
81+ ‘e4

l
!

»| Work station
T Work station F > 4
#1 =
o v ¥Es
Work station »{ Work station
Out ¢— —
#10 € 10 4— #5
T
4 [ —v " v€
Work station ‘ 6
»{ Work station
—p #9
€9 yl L » #6
Work station Work station
—P - 4—
€g #8 #7 €4

As described in Chapter 2, the balance equatién of the each work station, in this case
the # 1 work station, is as follows
Qir=Qir-1-Pir-1+Aj
Apr= GilP1 - 1+902P2 -1+ + Ginlp -1+ €t
Pi=0; Oy --- withprobability [I-p;
=0.0 --- with probability  p;
=12, n



Each work station has multiple inputs from the other work stations, A; ;, and then
its output(production: P; ;) goes to several work stations.
The station receives the input flow with uncertain random inputs.
In this example, work station #1 is the first work station which receives the initial
material from the outside of the system. It also receives the work flow from work
stations #3 and #5. The work flow goes to the other stations, work stations #2, #3,
#4, #5 and #8. After several stages, some of the work load goes back to the work
station #1 again.

The following shows the example of the work station model described by the
STELLA operators. The noise term of the flow, & 5, is modeled as the combination
of gaussian normal noise and constant term.

Fig3.2.1-2
To work
Multiple work station simulation model (STELLA) Stations

Output @

DEE™

Product
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3.2.2 Work station break down and the production constraints model
As discussed in Chapter 2 the unreliability of the work station is the pro‘t;ability of
work station break down. When the work station breaks down, the productive
activity will stop. The work in process inventory will be increased. The inverse of
planned lead time, o is modeled as a Bernoulli random variable aj; as discussed in
2.2.
Pit=0; Qj¢ --- with probability I-p;

=0.0 --- with probability p;

& Pir=ajt0;
aj 1= 04 --- with probability  I-p;
=0.0 --- with probability p;

Fig 3.2.2.-1 unreliable work station

Work station

#1 .| Production
1-p1
i Queue Capacity Pi max
WiP Pt No production

The production constraint is modeled as the simple constraint. If the level of the
production given by the control rule exceeds the maximum capacity of the work

station, the actual production is set to the maximum capacity.

P\

Pl-le')’l{alQ it

i



where P j; is the maximam capacity of production of work station # i.

In the STELLA simulation model, the unreliable work station is modeled by
comparing a uniformly distributed random variable to a threshold level to decide
working(1) or not working(0). If the random variable is more than pj, the
production is decided to be normal. This process is modeled in the node
"Conversion". The production constraint is modeled as an "if" sentence. (IF
required Production level is greater than the maximam value, let P be the maximum

production.)
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Fig3.2.2-2 STELLA model of work station break down and Production constrains

Queue

Output @
& Product

Work station break down Production constraints

Random Number
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\ Out=1
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3.2.3 Backlog model
The backlog is defined as the amount of the queue that has waited m or more

periods, for m=0,1,2,-n. For a given m units of time, then the backlog is defined by

the following equation.

m m-1
Qi=0ir1-Pis

m
= Qi,t-m - zPi,t-s
s=1

For example, when the planned lead time m is 3, the equation can be written as the

following flow chart. It needs Q; ;.3 , and the past three periods of production level.
Fig.3.2.3-1

Backlog model
Example m=3

Qi ¢ :D Lag :> Lag =D Lag ——-n’

Qit-1 Q-2 Q-3

m 0 m
Qi,t = Qi,t-rri 2 Pi,t-s

A A =
Lag:DLag:DLag——-PT

Pitc1 Pito Pii3

In the STELLA model, the lag element can be modeled by applying a STACK
element. As the output of the lag element in time period of t should be the input of
the lag element at time ¢/, the relation can be modeled as follows.

Qlag(n),it= Llag(n)it-1 + (Qlag(n-1),i,t-1 - Clag(n),is-1)

Qlag(1),i,t= Qlag(1),it-1 +( Qi1 - Qlag(1),i-1)



Plag(n),i,t= Plag(n),it-1 + ( Plag(n-1),i,t-1 - Plag(n),i,t-1)
Plag(1),it= Plag(l),i,t-1 + (Pit-1- Plag(l),it-1)
Then the flow diagram of the back log is represented as in the next figure.
Fig.3.2.3-2

Q; ¢ Qit-1 Qit-2 %Qi,td

it-1 Pit-2 %{Pi,m

3.2.4 Output process

In order to evaluate the performance of the work station, it is necessary to take
expectation and variance of the production and queue. Let x be either production or

queue, then E(x), the expectation of x , and Var(x), the variance of x , are

Ew=13x,
=1

Var(x)=

112":<x,--E<x>>2
“Li=1

n

=" (E)-E®)
n-1

where n denotes the number of data. Taking a sample every unit of time, n is

equivalent to time of the observation. Let i, be the expectation of x up to x,, U2
be the expectation of x2 up to x,2 and 0,2 be the sample variance up to xy. The

above equation can be modeled as the following difference equations.
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1
,U,, =A"Ln-1 +;l-(x n #n—l )
1, 2
M2 =L p. 1'*';1{)6 W Hop1)

2
O-n=;r_zT(‘u2,n-l' Hp1 )

The flow diagram of STELLA is following figure.

Fig 3.2.4- 1 Expectation and variance

e

Hn

u 2.n

The full flow diagrams and equations are shown in Appendix A. And we also show

some examples of outputs.
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Chapter 4, The result of the analysis and simulation

In this chapter, we show the result of the analysis and simulation. The analysis is

based upon the equations derived in Chapter 2. We carry out our calculation using a
BASIC program on the personal computer. The detail flow chart and program are
described in Appéndix A. The simulation is carried out using STELLA as described
in Chapter 3. In each simulation, the duration of simulation is 2000 units of time, and
the result is obtained from six simulation runs for each case. The full program and
operation manual are described in Appendix B.

The applied model in this paper is based upon the examples in Graves's paper. The
job shop consists of ten work stations and its work flow is described in Chapter 2 and
3. The flow matrix between each work station, average inputs p and covariance
matrix X are in table 4-1.

Table 4-1

To work station (#)

12 3 4 5 6 7 8 9 10

From work
station (#)

1 0.15 0.04 0.01 0.03 0.24 0.01

2 0.01 0.04 0.37

3 0.11 1.36

4 0.71

5 0.68 0.15 0.01

6 0.06 . 0.22

7 1.00

8 3.43

9 0.07 0.13 1.16
10

pw 40 0 O O O O O O O O
2 4.00 0.01 0.01 0.01 0.04 0.04 0 0.01 0.04 0.04

The work is assumed to flow from one work station to another in two hour periods.

The capacities of work stations are 2 units of work, except work station #1 and #10.
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As there are there machines are available in #1, the capacity is assumed to be six
units of work. Also it is assumed that there are 2.5 units of work capability at work

station #10. ( One unit of work needs one hour of machine operation. )

4.1 The validation of the simulation model

In this section, we would like to validate the simulation model by comparing its
result to the result of Graves's paper. In order to compare the result, we select Case
D of his paper. In this case, the planned lead times are given by the following table.

Table 4.1.-1 Planned lead time of case D
W.s. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
n(A) 8 1 1 1 2 3 1 2 4 5

At the following tables, "Original model" is the data of Graves's, and "95% High
(Low)" is the upper (lower) confidence level of the expected value.

(1) Work station #1 (Planned lead time = 8)
EP) o, EQ EQD

1.Original model 5.01 0.55 40.070 1.050

2.Simualtion (mean) 5.031 0.547 40.312 1.028
95% High 5.074 - 40.702 1.052
95%Low 4.988 - 39921 1.004
Evaluation ok ok ok ok

This result shows that the obtained expected production, expected queue and
expected backlog are equivalent to the result of the Graves's model with the 95%
confidence level6. And the standard deviation is effectively equivalent. The
evaluation is the same on the following work stations. Therefore we can use the

simulation model with confidence”.
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(2) Work station #2 (Planned lead time = 1)

1.Original model

2.Simualtion (mean)
95% High
95%Low

Evaluation

EP) o, EQ EQM
0.75 0.13 075 0.0
0.754 0.128 0.755 0.000
0.762 - 0.764 0.000
0.746 - 0.746 0.000
ok ok ok ok

(3) Work station #3 (Planned lead time = 1)

1.Original model

2.Simualtion (mean)
95% High
95%Low

Evaluation

EP) o, EQ EQM
0.69 0.14 0.69 0.0
0.697 0.143 0.697 0.000
0.705 - 0.706 0.000
0.688 - 0.688 0.000
ok ok ok ok

(4) Work station #4 (Planned lead time = 1)

1.0riginal model

2.Simualtion (mean)
95% High
95%Low

Evaluation

EP) o, EQ EQM
0.36 0.11 0.36 0.0
0.359 0.115 0.359 0.000
0.364 - 0.363 0.000
0.355 - 0.355 0.000
ok ok ok ok



(5) Work station #5 (Planned lead time = 2)

EP) o, EQ EQ"

1.0riginal model 1.37 0.20 2.74 0.06
2.Simualtion (mean) 1.377 0.200 2.753 0.061
95% High 1.393 - 2.786 0.062
95%Low 1360 - 2.720 0.061
Evaluation ok ok ok ok

(6) Work station #6 (Planned lead time = 3)
EP) o, EQ EQM

1.Original model 1.65 0.18 4.97 0.07

2.Simualtion (mean) 1.659 0.170 4.987 0.066
95% High 1.672 - 5.034 0.067
95%Low 1.646 - 4.940 0.065
Evaluation ok ok ok ok

(7) Work station #7 (Planned lead time = 1)
EP) o, EQ EQM

1.0Original model 0.14 0.02 0.14 0.0

2.Simualtion (mean) 0.138 0.020 0.138 0.000
95% High 0.140 - 0.140 0.000
95%Low 0.136 - 0.136 0.000

Evaluation ok ok ok ok
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(8) work station #8 (Planned lead time = 2)

1.Original model

2.Simualtion (mean)
95% High
95%Low

Evaluation

EP) o, EQ EQM
0.55 0.08 1.10 0.02
0.554 0.079 1.110 0.024
0.558 1.120 0.024
0.550 1.099 0.023

ok ok ok

ok

(9) Work station #9 (Planned lead time=4)

1.Original model

2.Simualtion (mean)
95% High
95%Low

Evaluation

EP) o, EQ EQM
1.89 0.22 7.56 0.12
1.897 0.214 7.594 0.118

)

1.909 - 7.649 0.121
1.885 - 7.539 0.116
ok ok ok ok

(10) Work station #10 (Planned lead time = 5)

1.Original model

2.Simualtion (mean)
95% High
95%Low

Evaluation

E(P) Cp
2.19  0.23
2.200 0.226 11.016 0.129
2.212 -
2.188 -
ok ok ok

EQ EQM
1096 0.13

11.087 0.131
10.944 0.127



4.2 Analysis of the unreliable work station model

In 4.1, we validated the simulation model with reliable work stations by comparing
the simulation results with the analytic results. In this section, first we validate the
simulation of the unreliable work station model with the analytical model discussed
in Chapter 2 by comparing both results. Next we show the result of the analysis of

unreliable work station without production constraints.

4.2.1 The validation of the analytical model

We choose case D to compare results. The probabilities of break down are set to 0.1
for each work station, except work station #9 whose probability is set to 0.05. In the
Table 4.2.1.-1, "work S." denotes work station, "P.L.T." denotes planning lead time,
"P(B,d)" denotes probability of break down, "95% H" denotes upper bound of 95%
confidence level and "95% L" denotes lower bound of 95% confidence level.
Evaluation is based upon whether the result of the analysis is within the 95%
confidence level of the result of the simulation. These results show that the
analytical solution is within 95% confidence level of the estimated solution derived
by the result of the simulation. From the above results, we can conclude that it is

appropriate to apply both simulation model and analytical model to evaluate the

performance of unreliable work stations.
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Table 4.2.1-1

Work S. 1 2 3 4 5
P.L.T. 8 1 1 1 2
P(B.4) 0.1 0.1 0.1 0.1 0.1

Method Ana. Sim. Ana. Sim. Ana. Sim. Ana. Sim. Ana. Sim.
E(P)m 5.009 4.981 0.751 0.747 0.694 0.69 0.358 0.357 1.372 1.364
95% H - 5.064 - 0.759 - 0.701 - 0.364 - 1.385
95% L - 4.897 - 0.734 - 0.679 - 0.349 - 1.343
o, 1.805 1.853 0.457 0.462 0.403 0.4000 0.269 0.269 0.617 0.622
E(Q m. 44.525 44.557 0.835 0.816 0.771 0.766 0.398 0.396 3.048 3.043

95% H. - 45.715 - 0.865 - 0.777 - 0.406 - 3.097
95% L. - 43.399 - 0.766 - 0.756 - 0.385 - 2.988
Eval. ok ok ok ok ok
Work S. 6 7 8 9 10
P.L.T. 3 1 2 4 5
P(B.d) 0.1 0.1 0.1 0.05 0.1
Method Ana. Sim. Ana. Sim. Ana. Sim. Ana. Sim. Ana. Sim.
E(P)m 1.654 1.640 0.137 0.137 0.551 0.546 1.890 1.872 2.193 2.171 L
95% H - 1.668 - 0.138 - 0.555 - 1.900 - 2.206
95% L - 1.611 - 0.135 - 0.538 - 1.844 - 2.137

o, 0.650 0.635 0.089 0.089 0.242 0.237 0.556 0.557 0.823 0.799

EQm. 5.512 5.444 0.152 0.151 1.225 1.209 7.958 7.898 12.181 12.002

95% H. - 5.544 - 0.154 - 1.226 - 8.024 - 12.234
95% L. - 5.343 - 0.149 - 1.191 - 7.771 - 11.770
Eval. ok ok ok ok ok

4.2.2. The result of analysis
(1) The expectation of production and queue

In Chapter 2, we have shown that the expectation of production and queue can be

written as following form .
E(Py) =(1-®)-1 1
E(Qiy) ={(1-p) o} T E(Pyy)

From these two equations, the following facts can be derived.



(a) The unreliability of the work station does not have any influence on the

expectation of production. ' -

(b) The expected queueing level of the each work station depends on the planning
lead time ( o -1) and the probability of break down of its own work station. The
break down of the other work stations do not affect the expectation of the queue.

These results aré based on the fact that because there are infinite capability of the
production and queue, the effect of the break down is compensated by large
production after recovering from the break down. Thus it is possible to catch up

with the production requirement of the system.

(2) The variance of production and queue

The effect of the break down of the work station increases the variance of the
production and queue. As we have shown in Chapter 2, there are mutual and
complicated interactions on the variance of production and queue. In order to show
the effect of the unreliable work stations, we show the results of the calculation by
the analytical model. The model shows the relationship due to increasing the
unreliability at work station #1 on the standard deviation of each work station. At
first, this is shown as the ratio (Sr-1;) of the standard deviation and the expected
production in Fig. 4.2.2.-1 and Fig. 4.2.2.-2. Second, this is shown as the ratio
(Sr—2;) of standard deviation with unreliable work station and reliable work station
in Fig 4.2.2-3 and Fig 4.2.2-4. In order to check the effect of planned lead time, the
case A and case D of Graves's example are calculated. The difference between case A

and case D is the planned lead time of each work station, as shown in the Table
4.2.2.-2.
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Table 4.2.2.-2 Planned lead time i
W.s. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
n(A) 1 1 1 1 1 1 1 1 1 1
n® 8§ 1 1 1 2 3 1 2 4 5

In the following figures, the data of the work stations are shown by the following

symbols.

s (OO XA OHS MV

#of WS #1 #2 #3  #4 #5 #6  #7 #10

The following table is the example of numerical output of the analytical model.

Tabel 4.2.2.-3 Example of numerical output of case D

“** A Tactical Planning Model for a Job Shop “** A Tactical Planning Model for a Job Shop *
"**  With Unreliable Work Station “**  With Unreliable Work Station *
W N P-BD E(Q S(Q) E(P) S(P) W N P-BD E(Q S(Q) E(Py S(P)
1 8 0.020 40.890 4.678 5.009 0.920 1 8 0.800 200.362 36.785 5.009 10.227
2 1 0.000 0.751 0.170 0.751 0.170 2 1 0000 0751 1.537 0.751 1.537
3 1 0.000 0.694 0.148 0.694 0.148 3 1 0.000 0.694 0.649 0.694 0.649
4 1 0.000 0.358 0.123 0.358 0.123 4 1 0.000 0.358 0.644 0.358 0.644
5 2 0.000 2.743 0.419 1.372 0.209 5 2 0.000 2743 1.950 1.372 0.975
6 3 0.000 4961 0.565 1.654 0.188 6 3 0.000 4.961 3.342 1.654 1.114
7 1 0.000 0.137 0.021 0.137 0.021 7 1 0.000 0.137 0.097 0.137 0.097
8 2 0.000 1.102 0.161 0.551 0.080 8 - 2 0.000 1.102 0.590 0.551 0.295
9 4 0.000 7.561 0.882 1.890 0.221 9 4 0.000 7.561 3.237 1.890 0.809
10 5 0.000 10.8963 1.127 2.193 0.225 10 5 0.000 10.963 3.858 2193 0.772
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Sr-1 __Standard deviation of production at work station #i : #1 unreliable
1 Expected production of work station #i

Fig 4.2.2.-1 Sr-1 case A

Probability of break down at work station #1

Fig 4.2.2.-2 Sr-1 case D
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Probability of break down at work station #1



Sr-2;

Standard deviation of production at work station #i : #1 unreliable
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Fig 4.2.2-3 Sr-2 (Case A)

1_Standard deviation of production (case A) at work station #1i : #1 reliable
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These graphs show the robustness of the case D on the variance of the production. If
an appropriate planned lead time is applied to the unreliable job shop, it can make the
production smooth. As for the variance of queue, we can derive the relationship

from Chapter 2.
Var (Qji )={( 1-p;) ( ap2}-1[Var( P; 1) +p; ( 1-p;)-1E(P; ;2]
Thus in the reliable work station, the standard deviation of queue is just proportional

to the standard deviation of production and planned lead time.
E(Qiy) ={(1-pi) o} "L E(Pjy)

From the above result, we can conclude following.

(1) If it is required to smooth the level the production, it is necessary to increase the
planned lead time for the appropriate work station. This method will work when
there are unreliable work stations.

(2) If the work station is unreliable and planned lead time is applied, then the work in
process inventory (queue to be produced) will increase and its variation will also
increase.

(3) The average production of the work station does not change even if the work
station is unreliable.

(4) The average queue of the work station is not affected by the other unreliable

work stations. It is affected by the unreliability of the own work station.

We should mention that these conclusions are based upon having no capacity
constraints at each work station.
In the following sections, we show the effect of production capacity constraints to

this problem.
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4.3 Simulation of the capacity constraints

In this section, we would like to show the example of the capacity constraints with
reliable work stations. For the infinite capacity case, we applied the analytical
approach. But for the finite capacity case, it is necessary to analyze the system with a
help of the simulation. In order to show the characteristics of the capacity
constraints we apply the model of the Graves where he applied implicit
consideration about the constraints. The capacity constraints are shown in the
following table.

Table 4.3.-1 Capacity constraints of work stations
Ws# 1 2 3 4 5 6 7 8 9 10
Const 6 2 2 2 2 2 2 2 2 2.5
E(P) 5.01 0.75 0.69 0.36 1.37 1.65 0.14 0.55 1.89 2.19
p 0.835 0.375 0.345 0.18 0.685 0.825 0.07 0.275 0.945 0.876
n(A) 1 1 1 1 1 1 1 1 1 1
nD) 8 1 1 1 2 3 1 2 4 5

where p denotes the utilization load factor which is the ratio of expectation of
production and capacity constraints. Capacity is defined as the production in the unit
time period. At work station #1, it is possible to produce 6 units per time period, and
at #10, it is possible to produce 2.5 units per time period. The other work station can
produce or process 2 units per time period. E(P) is expected production of work in
each work station. If the load factor is greater than one, the work station cannot
complete its job within a given period of time. This table shows that work stations
#1, #5, #6, #9 and #10 are heavily loaded, especially at work station #9, where the
utilization load factor is 0.945. The queueing theory tells us, that there will be large
amount of queue at the heavily loaded work station. The planned lead time of the
example, case D, was applied mainly for these work stations. In the table above, n(A)

and n(D) are planned lead time of simulation case A and case D.
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The simulation was carried out and we show the result of the simulation in Fig 4.3.-
1 and Table 4.3.-2. Fig 4.3.-1 shows the relationship between load factor and the

effect of capacity constraints, and Table 4.3.-2 shows the result of simulation.

Fig 4.3.-1 The effect of the constraints on production variance of reliable
work stations
o {constrained}/ ¢ {unconstrained}
p P

Case D

1.0

0.8

0.6

041

0.2

1 2 3 4 5 6 7 8 9 10
# of work stations

Fig 4.3-1 shows that the capacity constraints give large effect on the case A which
uses a planned lead time of one for every work station. The capacity constraints give
a smaller effect on the case D. When the appropriate planned lead time is applied, the
variance of the production is decreased as shown on the table 4.3.-2. But at the work
station #9, the change of the variance of production becomes the most significant,
because the load factor at the work station #9 is the heaviest. This work station is the

most saturated. On the other hand, there are no significant differences in the other
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work stations when the case D is applied. Thus it is not necessary to calculate with

constraints in these work stations.
Therefore if proper planned lead time and the capacity are selected, it is possible to

avoid the use of a complicated full scale simulation.

Tabel 4.3.-2-A Simulation result of Case A

Work S. 1 2 3 4 5
P.LT. 1 1 1 1 1
P(B.d) 0 0 0 0 0
Const. oo 6 oo 2 ) 2 oo 2 ) 6
E(P)m 5.01 4982 0.75 0.747 0.69 0.69 036 0.357 1.37 1.365
95% H - 5.067 - 0.760 - 0.703 - 0.364 - 1.386
95% L - 4.896 - 0.735 - 0.678 - 0.349 - 1.343

S, 2.02 1397 0.32 0.234 0.19 0.166 0.17 0.142 0.39 0.340

EQm. 5.01 6.206 0.75 0.747 0.69 0.690 0.36 0.357 1.37 1.368

95% H. - 6.446 - 0.760 - 0.703 - 0.364 - 1.390
95% L. - 5.965 - 0.735 - 0.678 - 0.349 - 1.346
E(Qn)m. 0 1.224 0 0 0 0 0 0 0 0.003
95% H. - 1.418 - 0 - 0 - 0 - 0.004
95% L. - 1.031 - 0 - 0 - 0 - 0.003
Work S. 6 7 8 9 10

P.LT. 1 1 1 1 1

P(B.d) 0 0 0 0 0

Const. oo 2 oo 2 ) 2 oo 2 oa 2.5
EPPm 1.65 1.641 0.14 0.137 0.55 0.546 1.89 1.876 2.19 2.175
95% H - 1.670 - 0.139 - 0.555 - 1.905 - 2.212
95% L - 1.612 - 0.135 - 0.537 - 1.846 - 2.138

c 0.54 0378 0.04 0.034 0.17 0.144 0.61 0.292 0.74 0.381
EQm. 1.65 1.685 0.14 0.137 0.55 0.546 1.89 4.830 2.19 2.199

95%H. - 1718 - 0139 - 0555 - 6172 -  2.239
95%L. - 1.651 - 0135 - 0537 - 3487 - 2159
EQym. 0  0.043 0 0 0 0 0 2957 0  0.024
95% H. -  0.051 - 0 - 0 - 4286 - 0.029

95% L. - 0.036 - 0 - 0 - 2.159 - 0.020



Work S.
P.L.T.
P(B.d)
Const.
E(P) m
95% H
95% L

Sp

EQ) m.
95% H.
95% L.
E(Qr)m.
95% H.
95% L.

Tabel 4.3.-2-D Simulation result of Case D

1

8

0

oo 6
5.01 4.982

- 5.066

- 4.897
0.55 0.554
40.07 39.977

- 40.682

- 39.271
1.05  1.127

- 1.213

- 1.041

6

3

0

oo 2
1.65  1.641

- 1.670

- 1.613
0.18 0.167
4.97 4.726

- 5.012

- 4.840
0.07 0.067

- 0.068

- 0.066

2
1
0

L=

0.75

0.13
0.75

0.747
0.760
0.734
0.131
0.747
0.760
0.734

0.137
0.138
0.135
0.020
0.137
0.138
0.135

3
1
0

[

0.69

0.14
0.69

2
0.69
0.702
0.679
0.140
0.690
0.702
0.679
0
0
0

0.546
0.555
0.537
0.078
1.093
1.110
1.075
0.023
0.024
0.023

4
1
0
0.36

0.11
0.36

0

0.357
0.364
0.349
0.116
0.357
0.364
0.349

1.876
1.905
1.846
0.166
9.472
10.633
8.310
2.039
3.144
0.934

10

oo

2.19

0.23
10.96

0.13

1.365
1.386
1.344
0.197
2.730
2.772
2.687
0.061
0.063
0.059

2.5
2.175
2.212
2.139
0.181
10.878
11.061
10.695
0.107
0.111
0.103
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4.4 Simulation of unreliable work stations and capacity constraints

In the previous sections, we have shown the individual effect of the unreliable work
station and of the capacity constraint. In this section, we show an example of the
simulation with both unreliable work stations and capacity constraints. We carry out
the simulation for following eight cases which are denoted as A/D(u/c,r/u). A/D
indicates case A or case D, u/c indicates whether the capacity is unconstrained or

constrained and r/u indicates whether it has reliable work stations or not.

Unconstrained Constrained
Case A Case D Case A Case D
Reliable Au,r) D(u,r) Alc,n) D(c,r)
Unreliable A(uu) D(u,u) A(c,u) D(c,u)

The parameters in these simulations are the same as that of previous sections. The
unreliable work stations are modeled as having 10% of unreliablity for all but #9
work station. #9 work station is modeled as having 5% of unreliability. The load

factor of the unreliable work station is modeled as
___E®)
p -~ 7
(1-Py) Cp

where Pp denotes the probability of break down, and Cp denotes production

capacity. The next table shows the data of unreliable work station model and load

factor. We select Py, of #9 work station as 0.05 in order to keep the load factor below
1.0.

Table 4.4-1
W.s # 1 2 3 4 5 6 7 8 9 10

Comst 6 2 2 2 2 2 2 2 2 25
E(P) 5.01 0.75 0.69 0.36 1.37 1.65 0.14 0.55 1.89 2.19
P, 01 01 01 01 01 01 01 01 005 0.1
nAd 1 1 1 1 1 1 1 11 1
) 8§ 1 1 1 2 3 1 2 4 5
p 0.928 0.417 0.383 0.200 0.761 0.917 0.078 0.306 0.995 0.973



Table 4.4-2-A,-D and following figures show the results of these simulation. In

order to see the relationship, we choose E(P); expectation of production, op;
standard deviation of production, E(Q); expectation of queue, E(Qn): backlog of the
production.

Fig 4.4-1-A,D shbw the standard deviation of production of each work station. The
results are normalized by the standard deviation from the unconstrained and reliable
céses, that is case A(u,r) or case D(u,r). The figures show that the case with
appropriate planned lead time (case D) is insensitive to the capacity constraint. It also
provides a smaller standard deviation for both reliable and unreliable work station.
Fig 4.4-2-A,D show the expectation of queue of each work station. The results are
normalized by the expectation of queue from the reliable and unconstrained case of
case A or case D. Increasing the planned lead time always leads to longer queue. But
the longer queue provides a benefit by smoothing the stochastic variation of the input
flow. Therefore when we use the planned lead time, we have to trade off the benefit

of the smooth production versus the increase in work-in-process inventory.
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Fig 4.4-1-A op/op(Case A(u,r)): Standard deviation of the production

A(u,r)
A(c,r)
A(u,u)
A(c,u)

MoOO

Illlllllllllll

1 2 3 4 5 6 7 8 9 10
# of work station

Fig 4.4-1-D op/op(Case D(u,r)): Standard deviation of the production

D(u,r)
D(c,r)
D(u,u)
D(c,u)
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1 2 3 4 5 6 7 8 9 10
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Fig4.4-2-A  E(Q)/E(Q; A(u,r) ): Expected queue
8

7 5_ ®) A(u,r)
6 E O A,
5 - < A(u,u) A(c,u)
- X Acw) AQu,u),Adcn) N\
: é_ A(u,r),A(c,r)
1 z— =
0 = | I I | | l | | I

1 2 3 4 5 6 7 8 9 10
# of work stastion '

Fig 4.4-2-D E(Q)/E(Q; D(u,r)): Expected queue

8 £
7E
6 E- O D(u,r)

E O D(.r)
5 E ¢ D@,

= X
4 D(c,u) D(u,u),D(c,u) D(c,u)
3 ;— {— D(u,r),D(c,r)
2
| B =
S 1 | | 1 1 1 1 |

1 2 3 4 5 6 7 8 9 10

# of work station
Fig 4.4-3 shows the expectation of the backlog of each work stations. The figure
suggests that when the work stations are heavily loaded, the expectation of the back

log is large. And when the work stations are unreliable, the back log will be larger.
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Fig 4.4-3-A E(Qn) : Expected backlog
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Fig 4.4-3-D E(Qn) : Expected backlog
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Table 4.4-2-A Simulation result: Unreliable work station Case A

Work S.
P.LT.
P(B.d)
Const.
E(P) m
95% H
95% L

ol’

E(Q) m.
95% H.
95% L.
E(Qum.
95% H.
95% L.

Work S.

P.L.T.
P(B.d)
Const.
E(P) m
95% H
95% L

E(Q) m.
95% H.
95% L.
E(Qn)m.
95% H.
95% L.

1
1
0.1

4.981
5.066
4.896
3.219
5.568
5.724
5.412
0.587
0.687
0.487

0.1

1.640
1.669
1.611
1.107
1.817
1.856
1.777
0.177
0.195
0.158

4.983
5.065
4.901
1.968
15.038
19.221
10855
10.057
14.174
5.941

1.640
1.668
1.612
0.650
3.097
3.535
2.659
1.457
1.887
1.027

0.1
0.747
0.759
0.734
0.601
0.835
0.853
0.816
0.088
0.095
0.081

0.1

0.137
0.139
0.135
0.112
0.152
0.154
0.149
0.015
0.016
0.014

0.747
0.759
0.735
0.460
0.841
0.858
0.823
0.093
0.100
0.086

0.137
0.138
0.135
0.092
0.152
0.153
0.150
0.015
0.015
0.014

0.1
0.690
0.702
0.678
0.430
0.766
0.777
0.755
0.076
0.079
0.073

0.1

0.547
0.555
0.538
0.387
0.605
0.616
0.595
0.059
0.066
0.052

0.690
0.701
0.679
0.392
0.769
0.779
0.759
0.079
0.085
0.073

2
0.546
0.555
0.538
0.321
0.607
0.617
0.597
0.058
0.063
0.053

0.1
0.357
0.364
0.349
0.306
0.395
0.406
0.384
0.039
0.044
0.034

9

1
0.05
1.873
1.903
1.843
1.466
1.983
2.014
1.953
0.110
0.119
0.101

0.357
0.364
0.350
0.270
0.395
0.406
0.385
0.039
0.044
0.034

2
1.871
1.893
1.850
0.471
14.775
20.085
9.466
12.902
18.191
7.613

0.1
1.364
1.386
1.343
0.944
1.526
1.561
1.490
0.161
0.186
0.136

10
1
0.1
2.172
2.210
2.133
1.925
2.392
2.442
2.342
0.222
0.247
0.197

1.364
1.384
1.344
0.675
1.864
1.959
1.769
0.499
0.586
0.412

2.5
2.173
2.200
2.145
0.780
6.816
8.865
4.766
4.646
6.685
2.606
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Table 4.4-2-D Simulation result: Unreliable work station Case D

Work S. 1
P.L.T. 8
PB.d) 0.1
Const. oo
EP)m 4.981
95% H 5.064
95% L 4.897

o, 1.853

E(Q m. 44.557
95% H. 45.715
95% L. 43.399
E(Qm)m. 4.963
95% H. 5.614
95% L. 4.312

Work S.
P.L.T. 3
P(B.d) 0.1
const. oo
E(P)m 1.640
95% H 1.668
95% L 1.611
S, 0.635
EQ m. 5.444
95% H. 5.544
95% L. 5.343
E(Qn)m. 0.591
95% H. 0.631
95% L. 0.550

4.978
5.023
4.933
1.730
47.969
49.488
46.450
8.323
9.585
7.062

1.642
1.661
1.623
0.576
6.719
7.449
5.988
1.842
2.529
1.156

0.1
0.747
0.759
0.734
0.462
0.816
0.865
0.766
0.086
0.092
0.080

0.1

0.137
0.138
0.135
0.089
0.151
0.154
0.149
0.015
0.016
0.014

0.746
0.754
0.739
0.435
0.831
0.848
0.814
0.086
0.100
0.071

0.136
0.138
0.135
0.087
0.152
0.154
0.150
0.016
0.017
0.014

0.1
0.690
0.701
0.679
0.400
0.766
0.777
0.756
0.076
0.081
0.072

0.1

0.546
0.555
0.538
0.237
1.209
1.226
1.191
0.145
0.153
0.137

0.689
0.697
0.681
0.394
0.773
0.783
0.764
0.085
0.090
0.080

0.546
0.552
0.540
0.239
1.215
1.234
1.197
0.150
0.159
0.140

0.1
0.357
0.364
0.349
0.269
0.396
0.406
0.385
0.039
0.044
0.035

0.05

1.872
1.900
1.844
0.557
7.898

'8.024
7771
0.599
0.623
0.575

0.357
0.360
0.354
0.265
0.400
0.402
0.397
0.043
0.048
0.038

2
1.866
1.885
1.847
0.449

22.978
37.077
8.879
15.529
29.542
1.517

0.1
1.364
1.385
1.343
0.622
3.043
3.097
2.988
0.412
0.444
0.379

10
5
0.1
2.171
2.206
2.137
0.799
12.002
12.234
11.770
1.251
1.355
1.147

1.364
1.378
1.350
0.571
3.205
3.313
3.096
0.562
0.643
0.481

2.5
2.163
2.192
2.133
0.731
15.711
17.980
13.442
4.929
7.089
2.768
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Chapter § Conclusion

The purpose of this work was to extend an analytical model and to develop a
simulation model for a job shop planning problem. The focus was on the extension
of the Tactical Planning Modell to permit unreliable multiple work stations with
production constraints.

The analytical model provides the steady state distribution of the production levels
and the work in process inventory at each work station without capacity constraints.
The simulation model also provides the steady state distribution of the production
levels and the work in process inventory and steady state expectation of backlogs

with capacity constraints.

In Chapter 2, we reviewed the Tactical Planning Model proposed by Graves, and
extended the analysis to allow unreliable multiple work stations.

In Chapter 3, we showed the dynamic simulation model to examine the performance
of the system.

In Chapter 4, we showed the result of the simulation and analysis. We showed the
validation of the simulation model and analytical model. After the validation we

showed the example of the simulation and analysis of the model with unreliable work

stations and with capacity constraints.

We have obtained following results:

(1) If the work station is unreliable, the steady state of the work station will become
as follows.
(a) The average production of each work station does not change even if there are

unreliable work stations, provided that the load factor of the work station does not
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exceed one. If the load factor is more than one the system cannot satisfy the
requirement.

(b) The variance of production will be larger with the increase of the unreliability.
(c) The variance and expectation of the work in process inventory or queue will
increase. The average queue of the work station is not affected by the other
unreliable work stations. It is affected by the unreliability of the own work station.
(d) The expectation of the back log will be large. And at the heavily loaded work
station, the back log will be larger.

(2) The capacity constraints of the work station makes the variance of the production
smaller, especially when the work station is heavily loaded and/or the variance of
production is large. Therefore simulation with capacity constraint is essential tool
for analysis, when there are some heavily loaded work stations without an

appropriate planned lead time and/or high unreliability.

(3) Applying a larger planned lead time makes it possible to analyze the system

without the help of complicated and time consuming simulation.

(4) If it is required to make the level the production smooth in case of unreliable
work stations, it is necessary to apply appropriate planned lead time especially for
the heavily loaded work stations. Larger planned lead time makes the work station

insensitive to the variance of input work flow.

(5) If the job shop is highly reliable and the work in process inventory is very costly,

tactics like "Just-in-time" system will work because of its low level of queue.
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Therefore when we use the planned lead time, we have to trade off the benefit of the

smooth production and the cost of the work-in-process inventory.
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Appendix A. The analytical calculation program

A.1 Flow Chart

This program is desinged to calculate expectation and variance of production and
queue of unreliable work station problem without production constraints.

The inputs are stored by the form of DATA sentence of the main program and the
file form of outside the program. In order to avoid the time consuming calculation
of (I-®)-1, it is stored in the outside data file. Therefore this matrix should be
calculated at the first time when the new transient matrix ® comes in. The algorithm
of the matrix inversion and determinant are from M.R. Rosenthal8 (1966).

The outputs are obtained as the display form and data file form. The display form is
on the screen of the personal computer, and the data file is on the "CLIP BOARD".
The latter form makes it possible to use the output in the word processing software.
But these output devices can be changed with ease by changing the assignment

sentences.
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Define
dimention

v

Display

<4—— Input <

Is there (I-®)
in the file ?

Data

-1
File {I-D)

Store

-1
Calculate (I-P)

v

!

Calc. loop
Var(Q)

!

Calc. Var(P)

!

Calc. E(Q), E(P) <

-1
Get (I-®)

Write and display
results

Display

End

Data file
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A.2 Operation manual
(1) Data
The following data sets are in the main program. They should be changed in case of
need.
a.Planned lead time
This term is inverse of aj and the input order is from work station one to ten. For
example if it is the case D of Chapter 4, then
DATA 8,1,1,1,2,3,1,24,5

b. Probability of the work center break down
This term is the probabilities of break down of each workstation. For example if py
is 0.8 and the others are 0 then

DATA 0.80,0,0,0,0,0,0,0,0,0

c.Average input noise

This term is the average input noise. For example
DATA 4,0,0,0,0,0,0,0,0,0

d. Transition matrix

This term is the transition matrix of the work flow. In this paper it was described as
@ (Phai). This matrix is described by ten data sentenses. For example,
DATA 0,0,0.11,0,0.68,0,0,0,0,0

*

%

DATA 0,0,0,0,0,0,0,0,1.16,0
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e. Variance of input noise
This term is the diagonal elements of the Covariance matrix of the input noise. For
example,

DATA 4.00,0.01,0.01,0.01,0.04,0.04,0,0.01,0.04,0.04

f. Flag for matrix output
This flag is used to command whether matrix elements in the calculation be printed

out or not. When it is set as one, the print out of the matrix will come out. For

example, when it is unnecessary to print out,
DATAO

g.Flag for calculate inverse transition matrix.

This flag is used to command whether it is necessary to calculate the inverse of the
transition matrix (I-®)-1. When the matrix of @ is changed this matrix has to be
recalculated. This flag should be one when calculation is required, else it should be

zero. When it is zero stored matrix (I-®)-1 can be obtained. For example,
DATAO

h. Number of iteration of the calculation of Var(Q)
This term command the number of iteration of the calculation block of variance of

queue. If it is necessary to calculate 16 times to get the convergence, it should be
DATA 16

(2) Output devices

The outputs of this program is assigned to the screen and data file.



Followings are sentences of the assignment. The first assigns CRT of personal
computer, and the second assigns "Clipboard” as a output data file.

OPEN "SCRN:" FOR OUTPUT AS #1

OPEN "CLIP:" FOR OUTPUT AS #5

A.3 Program list (BASIC)
The applied personal computer is Macintosh ™@

% % k k % k Kk k k k &k & * % k% d k k k k k k ok hkk kkdkhkhk kdkdkhkdkk khkhkdkkkkhkhkkdkhkkkdhkokhk

1% % % &k

A Tactical Planning Model for a Job Shop *****r##ssxesssss
wkrr With Unreliable Work Station ialalaieiholaielelolalaeol

I E EEEEEEEEEEEZEEEEEEEEEEERE R E RN B XIS RS SIS

F3k gk Kk

This program was designed to calculate expected value and *

fahll standard deviation of the production and the queue. ¥
fah The work stations were modeled to break down by Bernoulli*
thkkkd process. sk ok k

alalials This work is a part on the master thesis of the writer. ****

*

el November 12, 1987 © Shoichiro Mihara *
' Qutput port select. Select clipboard as a out put file.
OPEN "SCRN:" FOR OUTPUT AS #1

OPEN "CLIP:" FOR OUTPUT AS #5

'Declare of double precision
DEFDBL A-H,0-Z
Definition of dimention of vectors and matrixes
' Dim : Input variables
DIM XNV(10),PV(10),XMUIV(10),PHI(10,10),SIGV(10)

' Dim : for convinuence
DIM EI(10,10),EIMPHI(10,10),REIMPH(10,10),XCHECK(10,10)
DIM ALPHA(10,10),PHISQ(10,10),EIPPHS(10,10),PMAT(10,10),C(10,10)

DIM EIMPMT(10,10),EMPTTD(10,10),REMPTD(10,10),REPDEP(10,10)
DIM QMEAN(10),RALPHA(10,10),PMEAN(10)

DIM EIPSPH(10,10),EPSPHD(10,10),SIGMAT(10,10), SQMEAN(10)
DIM EI2(10,10) ,E2MEPD(10,10), R2MEPD(10,10),RPDRPH(10,10)

@ Macintosh is a trademark licensed to Apple Computer,Inc.
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DIM ESPDPD(10,10),ESPPPP(10,10),RPDPPP(10,10),RPPSEQ(10)

DIM R2MVAS(10),VARQUE(10),STAQUE(10),STAPRO(10)

DIM EMPDD(10,10),EMPDDP(10,10),EPDPSQ(10),PDDVAQ(10),VARPRO(10)
DIM EIPHPD(10,10),BBEPDP(10,10), TRBBED(10,10)

DIM SIGMA(10,10),BN(10,10), TBN(10,10)

DIM WR1(10,10),WR2(10,10),WR3(10,10)

DIM SBN(10,10),APEIP(10),ADDSIG(10,10), TREPHI(10,10), ADDVAR(10,10)
DIM ADDWR1(10,10)

Tk d ok ok ko kkokodkododkdkok kokohkokhkok ok ok k ok hkhk ok ok ok ok ok ok ok

Input (1) Planned lead time
FOR I=1 TO 10

READ XNV(I)

NEXT |

" Input (2): Probabilities of break down of work centers
FOR J=1TO 10
READ PV(J)
APEIP(J)=PV(J)*(1-PV(J))/XNV(J)/XNV(J)
NEXT J
'Input (3): Expected value of inputs into the work centers from outside
' source. Muiu
FOR J=1 TO 10
READ XMUIV(J)
NEXT J
‘Input (4): Work flow matrix
FOR K=1 TO 10
FOR L=1 TO 10
READ PHI(K,L)

NEXT L
NEXT K

'Input (5): Covariance of inputs into the work centers from outside
' source. Sigma
FOR J=1 TO 10
READ SIGV(J)
NEXT J

' Debug mode or not/ if Drbug=1 then print many parameters
READ IDBUG
If Flag is zero output (1-phi)-1 to data file after calculation.



else input data and not calculate.
READ Flag
PRINT Flag

IF Flag=1 THEN  OPEN "InvEmPhi.Data" FOR OUTPUT AS #2
IF Flag=0 THEN OPEN "InvEmphi.Data" FOR INPUT AS #2

' Definition of the size of matrixes
N=10:N1=1
" Input data and title
GOSUB Titlepage

' Unit matrix
CALL UNIT(EI(),N)

'‘Equations; (1) Basic matrix
' (1-phi) , (1-phi)-1
' If Flag is 1 output (1-phi)-1 to data file after calculation.
0 input data and not calculate.

CALL MINUS(EI(),PHI(),EIMPHI(),N,N) ' EIMPHI=1-PHI

IF Flag = 0 GOTO jumpinv
CALL INVERS(REIMPH(),EIMPHI(),C(),N) ' REIMPH=EIMPHI-1
FORj1=1 TON

FOR i1=1 TON

WRITE #2,REIMPH (j1,i1)

NEXT i1
NEXT j1
GOTO outofinv

jumpinv:

FORj1=1 TON
FOR i1=1 TON
INPUT #2,REIMPH(j1,i1)
NEXT i1
NEXT j1
outofinv:
CLOSE #2
' XCHECK=REIMPH*EIMPHI
'‘CALL MULTI (REIMPH(),N,N,EIMPHI(),N,N,XCHECK())
CALL DIAG(XNV(),RALPHA(),N) ' Trans from vec to diag matrix
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CALL DIAINV(ALPHA(),RALPHA(),N) : 'Alpha = 1/ planned lead time
CALL DIAG(SIGV(),SIGMAT(),N) ' Trans v to d-mat --- noise var.
CALL DIAG(PV(),PMAT(),N) ! Trans v to d-mat --- prob. break
CALL MINUS(EI(),PMAT(),EIMPMT(),N,N) :' Eipmt=Ei-Pmat
'Empttd=Eimpmt*Alpha
CALL MULTI (EIMPMT(),N,N,ALPHA(),N,N.EMPTTD())
' Eiphpd=(Ei-phi)*D*(1-p)
CALL MULTI(EIMPHI(),N,N,EMPTTD(),N,N,EIPHPD())
' Bbepdp=Ei-Eiphpd
CALL MINUS(E!(),EIPHPD(),BBEPDP(),N,N)
CALL TRANS(BBEPDP(),N,N,TRBBEDY))
CALL TRANS(EIMPHI(),N,N,TREPHI())

'calculation of expectation( Production and Queue )

'Remptd=Empttd?-1

CALL DIAINV(REMPTD(),EMPTTD(),N)
'Repdep=Remptd*Reimph

CALL MULTHREMPTD(),N,N,REIMPH(),N,N,REPDEP())
' E(Q)=Repdep*Xmuiv

CALL MULTIV(REPDEP(),N,N,XMUIV(),N,QMEAN())

' E(P)=Empttd*E(Q)

CALL MULTIV(EMPTTD(),N,N,QMEAN(),N,PMEAN())

" Qutputi
GOSUB Printoutputt

'Print for debug
IF IDBUG=1 THEN GOSUB Printdebug1

' calculation of variance of queue.
FOR J=1 TO 10 :
SQMEAN(J)=QMEAN(J)*QMEAN(J) ! Sgmean(i)= E(Q (i) )*2
NEXT J

XX=1#
CALL KMULTMAT(XX,SIGMAT(),SIGMA(),N,N) : ' Sigma=Sigmat
CALL KMULTMAT(XX,BBEPDP(),BN(),N,N) ' Bn=Bbepdp
CALL KMULTMAT(XX,TRBBED(), TBN(),N,N) ©' Tbn= transpose (Bn)

' loop of the approximation
READ lte
FOR I=1 TO lte
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PRINT USING * 1= ##":|

FOR J=1 TO 10
ADDSIG(J,J)=APEIP(J)*(SIGMA(J,J)+SQMEAN(J))

NEXT J

' Addvari1=(1-phi)*addsig
CALL MULTI(EIMPHI(),N,N,ADDSIG(),N,N,ADDWR1())
'Addvar=Addvar1*(1-phi)T=(1-phi)*addsig*(1-phi)T
CALL MULTI(ADDWR1(),N,N,TREPHI(),N,N,ADDVAR())
' Wr1=Bn*Sigma
CALL MULTI(BN(),N,N,SIGMA(),N,N,WR1())
'Wr2=Wr1*Tbn=Bn*Sigma*Tbn
CALL MULTI(WR1(),N,N,TBN(),N,N,WR2())
'Wr3= Bn*Sigma*Tbn+Addvar
CALL PLUS (ADDVAR(),WR2(), WR3(),N,N)
' Sigma=Wr3+Sigmat
CALL PLUS(SIGMAT(),WR3(),SIGMA(),N,N)

NEXT |
FOR I=1 TO 10
VARQUE(I)=SIGMA(l, ) * Var(Q)=SIGMA
STAQUE(l)=SQR(VARQUE(1)) * Stand. Dev (Q)= Root (Var(Q))
NEXT |

'End of the calculation 1

' Variance of production and standard deviation

" Empdd=Empttd*Alpha

CALL MULTI (EMPTTD(),N,N,ALPHA(),N,N,EMPDD())
'Empddp=Empdd*Pmat

CALL MULTI (EMPDD(),N,N,PMAT(),N,N,EMPDDP())
'Epdpsq=Empddp*Sgmean

CALL MULTIV(EMPDDP(),N,N,SQMEAN(),N,EPDPSQ())
'Pddvag=Empdd*Varque

CALL MULTIV(EMPDD(),N,N,VARQUE(),N,PDDVAQ())

FOR I=1 TO 10
VARPRO(l)=EPDPSQ(I)+PDDVAQ(!) :'Var(p)=Epdpsg+Pddvagq
STAPRO(1)=SQR(VARPRO(l)) :' Stand. dev. of p= Root(Var(p))
NEXT |
' output
GOSUB Printoutput2



GOSUB Printoutput3

CLOSE #1
CLOSE #5

BEEP:BEEP:BEEP
END

Planned lead time
DATA 8,1,1,1,2,3,1,2,4,5
'DATA 1,1,1,1,1,1,1,1,1,1

' Probability of the work center break down
' DATA 0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.05,0.1

DATA 0.80,0,0,0,0,0,0,0,0,0

' Average input noise

DATA 4,0,0,0,0,0,0,0,0,0

" Phi -- Work flow matrix
DATA 0,0,0.11,0,0.68,0,0,0,0,0
DATA 0.15,0,0,0,0,0,0,0,0,0

DATA 0.04,0.01,0,0.71,0,0.06,0,0,0.07,0

DATA 0.01,0.41,0,0,0,0,0,0,0,0
DATA 0.03,0.37,1.36,0,0,0,0,0,0,0
DATA 0.24,0,0,0,0.15,0,0,0,0.13,0
DATA 0,0,0,0,0.1,0,0,0,0,0

DATA 0.01,0,0,0,0,0.22,1,0,0,0
DATA 0,0,0,0,0,0,0,3.43,0,0
DATA 0,0,0,0,0,0,0,0,1.16,0
'Variance of input noise

DATA 4.00,0.01,0.01,0.01,0.04,0.04,0,0.01,0.04,0.04
'Debug or not  (1--- print, else none)

DATA O

' calculate inverse of (1-phi) flag =1
DATA O

' # of iterations

DATA 32

SUB DIAINV(A(2),B(2),N) STATIC
FOR J=1 TON
A(J,J)=1/B(J,J)
NEXT J
END SUB

calculate flag=0 no
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SUB INVERS(A(2),B(2),C(2),N) STATIC
FOR =1 TON
FOR J=1 TON
C(1,J)=B(1,J)
NEXT J
NEXT |
CALL DETM(C(),N,E)
IF E=0 THEN PRINT #1," NO INVERSE FOR THIS MATRIX" ELSE GOTO 10
GOTO 20
10 M=N-1
FOR I=1 TON
FOR J=1 TON
FOR K=1 TON
FORL=1 TON
C(K,L)=B(K,L)
NEXT L
NEXT K
H=1
FOR L=1 TON
C(I,L)=C(N,L)
NEXT L
FOR K=1 TON
C(K,J)=C(K,N)
NEXT K
IF NOT ((N=J AND N=I ) OR (N<>J AND N<>!) ) THEN H=-1 ELSE H=1
CALL DETM(C(),M,DET)
A(J,)=DET/E*H
NEXT J
NEXT |
20 END SUB

SUB DETM(A(2),K,DET) STATIC
Z-1
FOR M=2 TOK |
IF A(M-1,M-1) <> 0! THEN GOTO 50
FOR I=M TO K
IF A(M-1,) <>0 THEN GOTO 40
NEXT |

DET=0!
GOTO endreturn
40 13=M-1
FOR 12=I13 TO K



TEMP=A(12,13)
A(12,13)=A(12,1)
A(12,)=TEMP
NEXT 12
Z=Z*(-1)
50 FORI=M TO K
R=A(I,M-1)/A(M-1,M-1)
FOR J=M TO K
A(l,J)=A{l,J)-A(M-1,J)*R
NEXT J
NEXT |
NEXT M
DET=1
FORI=1 TOK
DET=DET*A(LI)
NEXT I
DET=DET*Z
endreturn:
END SUB

SUB MULTI(A(2),IA,KA,B(2),KB,JB,C(2)) STATIC
IF KA<> KB THEN PRINT #1,"ARGUMENT ERROR" ELSE GOTO LOOPSTART
GOTO LOOPEND

LOOPSTART: FOR I=1 TO IA
FOR J=1 TO JB
S=0
FOR K=1 TO KA
S=S+A(l,K)*B(K,J)
NEXT K
C(1,J)=S
NEXT J
NEXT |
LOOPEND:
END SUB



SUB MULTIV(A(2),IA,KA,B(1),KB,C(1)) STATIC
IF KA<>KB THEN PRINT #1, "ARGUMENT ERROR"
LOOPSTART:
FOR I=1 TO IA
S=0
FOR K=1 TO KA
S=S+A(l,K)*B(K)
NEXT K
C(l)=S
NEXT |
LOOPEND:
END SUB

SUB KMULTMAT(XK,B(2),C(2),N,M) STATIC
FOR I=1 TON
FORJ=1 TOM
C(1,J)=XK*B(1,J)
NEXT J
NEXT |
END SUB

SUB PLUS(A(2),B(2),C(2),N,M) STATIC
FOR I=1 TON
FORJ=1 TOM
C(1,J)=A(1,J)+B(1,J)
NEXT J
NEXT |
END SUB

SUB MINUS(A(2),B(2),C(2),N,M) STATIC
FORI=1 TON
FORJ=1 TOM
C(1,d)=A(1,J)-B(1,J)
NEXT J
NEXT |
END SUB
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SUB CLMAT(A(2),N,M) STATIC
FOR I=1 TON
FORJ=1 TOM
C(1,J)=0!
NEXT J
NEXT |
END SUB

SUB UNIT(C(2),N) STATIC
FOR I=1 TON
C(Ll)=1#
NEXT |
END SUB

SUB DIAG(V(1),A(2),N) STATIC
FOR I=1 TON
A(L1)=V(1)
NEXT |
END SUB

SUB TRANS (A(2),N,M,ATR(2)) STATIC
FOR I=1 TON
FOR J=1 TOM
ATR(J,)=A(1,J)
NEXT J
NEXT |
END SUB

SUB PRINTMAT(A(2),N,M) STATIC
FORI=1 TON
L=1
loopprint:
IF L>10 THEN GOTO ENDLOOP
PRINT #1, USING "##.### " A(lL) ;
L=L+1
GOTO loopprint
endloop:
PRINT #1
NEXT |
PRINT #1, :PRINT #1,
END SUB



SUB PRINTVEC(A(1),N)STATIC

FORI=1 TON
PRINT #1, USING "##.### " ;A(l);
NEXT I
PRINT #1,:PRINT #1,
END SUB
SUB SQELM(A(2),N,M,SA(2)) STATIC
FORI=1 TON
FORJ=1TOM
SA(LJ)=A(l,J)*A(1,J)
NEXT J
NEXT I
END SUB
Titlepage:
PR'NT #1’ R X R EZREEEE XSRS RSREXS SRR R Rl X R RS R RS R R X 2l
PRINT #1, "™** Maclintosh version of Tactical Planning Model *"
PRINT #1 , [EX X R R XXX EEZEZEEESETE RS EZRER XSS R RR R R R R X R X NI
PRINT #1, "™** A Tactical Planning Model for a Job Shop *"
PRINT #1, "** With Unreliable Work Station o

PRINT #1’ [[EEZEEEEEEREEEREEE SRR ERERE R RS EE SRR A RS EE X EREREE XN

PRINT #1, : PRINT #1,

PRINT #1, " 1. Input value" :PRINT #1,

PRINT #1, " a. Planned lead time"

CALL PRINTVEC(XNV(),N)

PRINT #1, " b. Probability of break down"

CALL PRINTVEC(PV(),N)

PRINT #1, " c. Average input noise"
CALL PRINTVEC(XMUIV(),N)

PRINT #1, " d.Covariance of input noise (diagonal element)"
CALL PRINTVEC(SIGV(),N) '
RETURN

Printoutputi:
PRINT #1, : PRINT #1,
PRINT #1, " 2. Output value" :PRINT #1,
PRINT #1, " a. Average of queue E(Q)"
CALL PRINTVEC(QMEAN(),N)
PRINT #1, " b. Average of production E(P)"

CALL PRINTVEC(PMEAN(),N)
RETURN
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Printdebug1:
PRINT #1, "MATRIX (1-PHI)"
CALL PRINTMAT(EIMPHI(),N,N)
PRINT #1, "MATRIX (1-PHI)*-1*(1-PHI)"
CALL PRINTMAT(XCHECK(),N,N)
PRINT #1, "MATRIX PMAT"
CALL PRINTMAT(PMAT(),N,N)
PRINT #1, "MATRIX PHI"
CALL PRINTMAT(PHI(),N,N)
PRINT #1,
PRINT #1,
RETURN

Printoutput2:
PRINT #1, " c. Variance of queue Var(Q)"
CALL PRINTVEC(VARQUE(),N)
PRINT #1, " d.Standard deviation of queue”
CALL PRINTVEC(STAQUE(),N)
PRINT #1, " e. Variance of production Var(P)"
CALL PRINTVEC(VARPRO(),N)
PRINT #1, " f.Standard deviation of production”
CALL PRINTVEC(STAPRO(),N)
RETURN

Printoutput3:

PRINT #5 [ E X SRR E RS R AR SR RREERERRERR R R XERRRRR R R X
H

PRINT #5, "™** A Tactical Planning Model for a Job Shop

*n

PRINT #5, "** With Unreliable Work Station o
PRINT #5’ [EXZEXIEEEZEEZESEEEREEEE R R X R E R X KRR PRI I TG I I T S T
PRINT #5,
PRINT #5,USING " Ite=##";lte
PRINT #5," W.S."" N ""P-BD"" E(Q) ™" S(Q) "" E(P) ";" S(P) "
FOR I=1 TO 10
PRINT #5,USING" ## Bt #H#tHHH B Y HH4 HHE #E B

s #8#° 1:XNV(1):PV(1);QMEAN();STAQUE(l);PMEAN(l);STAPRO(l)
NEXT |
RETURN
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Appendix B. The complete STELLA Model

B.1 Flow Diagram

Input

prodyct_2
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B.2 Equations

" AVE_BL_1=AVE_BL_1+Pro_P1_av
INIT(AVE_BL_1)=0

" AVE_BL_2=AVE_BL_2+Pro_P2_av
INIT(AVE_BL_2)=0

" AVE_BL_3=AVE_BL_3+Pro_P3_av
INIT(AVE_BL_1)=0

" AVE_BL_4=AVE_BL_4+Pro_P4_av
INIT(AVE_BL_4)=0

" AVE_BL_5=AVE_BL_5+Pro_P5_av
INIT(AVE_BL_5)=0

" AVE_BL_6=AVE_BL_6+Pro_P6_av
INIT(AVE_BL_6)=0

" AVE_BL_7=AVE_BL_7+Pro_P7_av
INIT(AVE_BL_7)=0

" AVE_BL_8=AVE_BL_8+Pro_P8_av
INIT(AVE_BL_8)=0

" AVE_BL_9=AVE_BL_9+Pro_P9_av
INIT(AVE_BL_9)=0

" AVE_BL_10=AVE_BL_10+Pro_P10_av
INIT(AVE_BL_10)=0

"Ave_Q_1=Ave_Q_1+Q_1_av
INIT(Ave_Q_1)=INIT(Queue_1)
" Ave_Q _2=Ave_Q_2+Q_2_av
INIT(Ave_Q_2)=INIT(Queue_2)
" Ave_Q _3=Ave_Q_3+Q_3_av
INIT(Ave_Q_3)=INIT(Queue_3)
" Ave_Q_4=Ave_Q_4+Q_4_av
INIT(Ave_Q_4)=INIT(Queue_4)
" Ave_Q_5S5=Ave_Q_5+Q_5_av
INIT(Ave_Q_5)=INIT(Queue_5)
"Ave_Q_6=Ave_Q_6+Q_6_av
INIT(Ave_Q_6)=INIT(Queue_6)
"Ave_Q 7=Ave_Q_7+Q_7_av
INIT(Ave_Q_7)=INIT(Queue_7)
" Ave_Q_8=Ave_Q_8+Q_8_av
INIT(Ave_Q_8)=INIT(Queue_8)
"Ave_Q_9=Ave_Q_9+Q_9_av
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INIT(Ave_Q_9)=INIT(Queue_9)
" Ave_Q_10=Ave_Q_10+Q_10_av
INIT(Ave_Q_10)=INIT(Queue_10)

" Ave_xs_l=Ave_xs_l+Prol_av_xs
INIT(Ave_xs_1)=INIT(Queue_1)*INIT(Queue_1)*Alpha_1*Alpha_1
" Ave_xs_2=Ave_xs_2+Pro2_av_xs
INIT(Ave_xs_2)=INIT(Queue_2)*INIT(Queue_2)*Alpha_2*Alpha_2
" Ave_xs_3=Ave_xs_3+Pro3_av_xs
INIT(Ave_xs_3)=INIT(Queue_3)*INIT(Queue_3)*Alpha_3*Alpha_3
" Ave_xs_4=Ave_xs_4+Prod4_av_xs
INIT(Ave_xs_4)=INIT(Queue_4)*INIT(Queue_4)*Alpha_4*Alpha_4
" Ave_xs_5=Ave_xs_5+Pro5_av_xs
INIT(Ave_xs_5)=INIT(Queue_5)*INIT(Queue_5)*Alpha_5*Alpha_5
" Ave_xs_6=Ave_xs_6+Pro6_av_xs
INIT(Ave_xs_6)=INIT(Queue_6)*INIT(Queue_6)*Alpha_6*Alpha_6
" Ave_xs_T7=Ave_xs_7+Pro7_av_xs
INIT(Ave_xs_7)=INIT(Queue_7)*INIT(Queue_7)*Alpha_7*Alpha_7
" Ave_xs_8=Ave_xs_8+Pro8 av_xs
INIT(Ave_xs_8)=INIT(Queue_8)*INIT(Queue_8)*Alpha_8*Alpha_8§
" Ave_xs_9=Ave_xs_9+Pro9_av_xs
INIT(Ave_xs_9)=INIT(Queue_9)*INIT(Queue_9)*Alpha_9*Alpha_9
" Ave_xs_10=Ave_xs_10+Prol0_av_xs
INIT(Ave_xs_10)=INIT(Queue_10)*INIT(Queue_10)*Alpha_10*Alpha_10

" Ave_x_1=Ave_x_1+Prol_av_x
INIT(Ave_x_1)=INIT(Queue_1)*Alpha_1
" Ave_x_2=Ave_x_2+Pro2_av_x
INIT(Ave_x_2)=INIT(Queue_2)*Alpha_2
" Ave_x_3=Ave_x_3+Pro3_av_x -
INIT(Ave_x_3)=INIT(Queue_3)*Alpha_3
" Ave_x_4=Ave_x_4+Pro4_av_x
INIT(Ave_x_4)=INIT(Queue_4)*Alpha_4
" Ave_x_S5=Ave_x_5+Pro5_av_x
INIT(Ave_x_5)=INIT(Queue_5)*Alpha_5
" Ave_x_6=Ave_x_6+Pro6_av_x
INIT(Ave_x_6)=INIT(Queue_6)*Alpha_6
" Ave_x_T=Ave_x_7+Pro7_av_x
INIT(Ave_x_7)=INIT(Queue_7)*Alpha_7
" Ave_x_8=Ave_x_8+Pro8 av_x
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INIT(Ave_x_8)=INIT(Queue_8)*Alpha_8

" Ave_x_9=Ave_x_9+Pro9 _av_x
INIT(Ave_x_9)=INIT(Queue_9)*Alpha_9

" Ave_x_10=Ave_x_10+Prol0_av_x
INIT(Ave_x_10)=INIT(Queue_10)*Alpha_10

"P10_LAG_1=P10_LAG_1+P10_CV_1
INIT(P10_LAG_1)=0

" P10_LAG_2=P10_LAG_2+P10_CV_2
INIT(P10_LAG_2)=0

" P10_LAG_3=P10_LAG_3+P10_CV_3
INIT(P10_LAG_3)=0
"P10_LAG_4=P10_LAG_4+P10_CV_4
INIT(P10_LAG_4)=0

" P10_LAG_5=P10_LAG_5+P10_CV_5
INIT(P10_LAG_5)=0
"P1_LAG_1=P1_LAG_1+P1_CV_1
INIT(P1_LAG_1)=0
"P1_LAG_2=P1_LAG_2+P1_CV_2
INIT(P1_LAG_2)=0
"P1_LAG_3=P1_LAG_3+P1_CV_3
INIT(P1_LAG_3)=0
"P1_LAG_4=P1_LAG_4+P1 _CV_4
INIT(P1_LAG_4)=0
"P1_LAG_5=P1_LAG_5+P1 _CV_5
INIT(P1_LAG_5)=0
"P1_LAG_6=P1_LAG_6+P1_CV_6
INIT(P1_LAG_6)=0
"P1_LAG_7=P1_LAG_7+P1_CV_7
INIT(P1_LAG_7)=0
"P1_LAG_8=P1_LAG_8+P1_CV_8
INIT(P1_LAG_8)=0

" P2_LAG_1=P2_LAG_1+P2_CV_1
INIT(P2_LAG_1)=0
"P3_LAG_1=P3_LAG_1+P3_CV_1
INIT(P3_LAG_1)=0

"P4_LAG_1=P4 LAG_1+P4_CV_1
INIT(P4_LAG_1)=0
"P5_LAG_1=P5_LAG_1+P5_CV_1
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"Q9_LAG_4=Q9_LAG_4+Q9_CV_4
INIT(Q9_LAG_4)=0

" Queue_1=Queue_l+Arrival_1-Product_1
INIT(Queue_1)=5.01/Alpha_1*SET_IN

" Queue_2=Queue_2+Arrival_2-Product_2
INIT(Queue_2)=0.75/Alpha_2*SET_IN

" Queue_3=Queue_3+Arrival_3-Product_3
INIT(Queue_3)=0.69/Alpha_3*SET_IN

" Queue_4=Queue_4+Arrival_4-Product_4
INIT(Queue_4)=0.36/Alpha_4*SET_IN

" Queue_5=Queue_5+Arrival_5-Product_5
INIT(Queue_5)=1.37/Alpha_5*SET_IN

" Queue_6=Queue_6+Arrival_6-Product_6
INIT(Queue_6)=1.65/Alpha_6*SET_IN

" Queue_7=Queue_7+Arrival_7-Product_7
INIT(Queue_7)=0.14/Alpha_7*SET_IN

" Queue_8=Queue_8+Arrival_8-Product_8
INIT(Queue_8)=0.55/Alpha_8*SET_IN

" Queue_9=Queue_9+Arrival_9-Product_9
INIT(Queue_9)=1.89/Alpha_9*SET_IN

" Queue_10=Queue_10+Arrival_10-Product_10
INIT(Queue_10)=2.19/Alpha_10*SET_IN

Alpha_1=1/8
Alpha_2=1/1
Alpha_3=1/1
Alpha_4=1/1
Alpha_5=1/2
Alpha_6=1/3
Alpha_7=1/1
Alpha_8=1/2
Alpha_9=1/4
Alpha_10=1/5

Arrival_1=Phy_31+Phy_S51+Ran_1
Arrival_2=Phy_12+Ran_2
Arrival_3=Phy_13+Phy_23+Phy_43+Phy_63+Phy_93+Ran_3
Arrival_4=Phy_14+Phy_24+Ran_4
Arrival_5=Phy_15+Phy_25+Phy_35+Ran_5



Arrival_6=Phy_16+Phy_56+Phy_96+Ran_6
Arrival_7=Phy_57+Ran_7 ,
Arrival_8=Phy_18+Phy_68+Phy_78+Ran_8
Arrival_9=Phy_89+Ran_9
Arrival_10=Phy_910+Ran_10

BPro_1=0.1

Input=4

OUT_BL=OUT_BL_1+OUT_BL_2
OUT_BL_1=1F T=1 THEN AVE_BL_1 ELSE IF T=5 THEN AVE_BL_5
ELSE IF T=6 THEN AVE_BL_6 ELSE IF T=8 THEN AVE_BL_8
ELSE IF T=9 THEN AVE_BL_9 ELSE IF T=10 THEN AVE_BL_10
ELSE O
OUT_BL_2=1F T=2 THEN AVE_BL_2 ELSE IF T=3 THEN AVE_BL_3
ELSE IF T=4THEN AVE_BL_4 ELSE IF T=7 THEN AVE_BL_7
ELSEO
OUT_EP=OUT_EP1+OUT_EP2
OUT_EP1=1F T=1 THEN Ave_x_1 ELSE IF T=2 THEN Ave_x_2
ELSE IF T=3 THEN Ave_x_3 ELSE IF T=4 THEN Ave_x_4
ELSE IF T=5 THEN Ave_x_5 ELSE O
OUT_EP2=IF T=6 THEN Ave_x_6 ELSE IF T=7 THEN Ave_x_7
ELSE IF T=8 THEN Ave_x_8 ELSE IF T=9 THEN Ave_x_9
ELSE IF T=10 THEN Ave_x_10 ELSE 0
OUT_EQ=OUT_EQ1+OUT_EQ2
OUT_EQ1=1F T=1 THEN Ave_Q_1 ELSE IF T=2 THEN Ave_Q_2
ELSE IF T=3 THEN Ave_Q_3 ELSE IF T=4 THEN Ave_Q_4
ELSE IF T=5 THEN Ave_Q_5 ELSE 0
OUT_EQ2=IF T=6 THEN Ave_Q_6 ELSE IF T=7 THEN Ave_Q_7
ELSE IF T=8 THEN Ave_Q_8 ELSE IF T=9 THEN Ave_Q_9
ELSE IF T=10 THEN Ave_Q_10ELSE 0
OUT_S=0OUT_S1+0OUT_S2
OUT_S1=1F T=1 THEN Sigma_1l ELSE IF T=2 THEN Sigma_2
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ELSE IF T=3 THEN Sigma_3 ELSE IF T=4 THEN Sigma_4
ELSE IF T=5 THEN Sigma_5 ELSE 0
OUT_S2=IF T=6 THEN Sigma_6 ELSE IF T=7 THEN Sigma_7
~ ELSE IF T=8 THEN Sigma_8 ELSE IF T=9 THEN Sigma_9
ELSE IF T=10 THEN Sigma_10 ELSE 0

P10_CV_1=Product_10-P10_LAG_1
P10_CV_2=P10_LAG_1-P10_LAG_2
P10_CV_3=P10_LAG_2-P10_LAG 3
P10_CV_4=P10_LAG_3-P10_LAG_4
P10_CV_5=P10_LAG_4-P10_LAG 5
P1_CV_1=Product_1-P1_1L.AG_1
P1_CV_2=P1_LAG_1-P1_LAG 2
P1_CV_3=P1_LAG_2-P1 1LAG 3
P1_CV_4=P1_LAG_3-P1 LAG 4
P1_CV_5=P1_LAG_4-P1_LAG_5
P1_CV_6=P1_LAG_5-P1_LAG_6
P1_CV_7=P1_LAG_6-P1_LAG_7
P1_CV_8=P1_LAG_7-P1_LAG 8
P2_CV_1=Product_2-P2_LLAG_1
P3_CV_1=Product_3-P3_LAG_1
P4_CV_1=Product_4-P4_L.AG_1
P5_CV_1=Product_5-P5_LAG_1
P5_CV_2=P5_LAG_1-P5_ LAG_ 2
P6_CV_1=Product_6-P6_LLAG_1
P6_CV_2=P6_LAG_1-P6_LAG_2
P6_CV_3=P6_LAG_2-P6_1LAG_3
P7_CV_1=Product_7-P7_LAG_1
P8_CV_I1=Product_8-P8_LAG_1
P8_CV_2=P8_LAG_1-P8_LAG_ 2
P9_CV_1=Product_9-P9 LLAG 1
P9_CV_2=P9_LAG_1-P9_LAG_2
P9_CV_3=P9_LAG_2-P9 LLAG 3
P9_CV_4=P9 _1LAG_3-P9_LAG 4

Phy_12=Product_1*0.15
Phy_13=Product_1*0.04
Phy_14=Product_1*0.01
Phy_15=Product_1%*0.03
Phy_16=Product_1*0.24
Phy_18=Product_1*0.01
Phy_23=Product_2*0.01



Phy_24=Product_2*0.41
Phy_25=Product_2%*0.37
Phy_31=Product_3*0.11
Phy_35=Product_3%*1.36
Phy_43=Product_4*0.71
Phy_51=Product_5*0.68
Phy_56=Product_5*0.15
Phy_57=Product_5*0.1
Phy_63=Product_6*0.06
Phy_68=Product_6*0.22
Phy_78=Product_7*1.0
Phy_89=Product_8%3.43
Phy_910=Product_9*1.16
Phy_93=Product_9*0.07
Phy_96=Product_9*0.13

Pro10_av_x=(Product_10-Ave_x_10)/Time_ave
Pro10_av_xs=(Sq_Pro_10-Ave_xs_10)/Time_ave
Prol_av_x=(Product_1-Ave_x_1)/Time_ave
Prol_av_xs=(Sq_Pro_1-Ave_xs_1)/Time_ave
Pro2_av_x=(Product_2-Ave_x_2)/Time_ave
Pro2_av_xs=(Sq_Pro_2-Ave_xs_2)/Time_ave
Pro3_av_x=(Product_3-Ave_x_3)/Time_ave
Pro3_av_xs=(Sq_Pro_3-Ave_xs_3)/Time_ave
Pro4_av_x=(Product_4-Ave_x_4)/Time_ave
Pro4_av_xs=(Sq_Pro_4-Ave_xs_4)/Time_ave
Pro5_av_x=(Product_5-Ave_x_5)/Time_ave
Pro5_av_xs=(Sq_Pro_5-Ave_xs_5)/Time_ave
Pro6_av_x=(Product_6-Ave_x_6)/Time_ave
Pro6_av_xs=(Sq_Pro_6-Ave_xs_6)/Time_ave
Pro7_av_x=(Product_7-Ave_x_7)/Time_ave
Pro7_av_xs=(Sq_Pro_7-Ave_xs_7)/Time_ave
Pro8_av_x=(Product_8-Ave_x_8)/Time_ave
Pro8_av_xs=(Sq_Pro_8-Ave_xs_8)/Time_ave
Pro9_av_x=(Product_9-Ave_x_9)/Time_ave
Pro9_av_xs=(Sq_Pro_9-Ave_xs_9)/Time_ave

Product_1=IF RANDOM>=BPro_1 THEN MIN(Alpha_1*Queue_1,
Product_Max_1) ELSEOQ

Product_10=IF RANDOM>=BPro_10 THEN MIN(Alpha_10*Queue_10,
Product_Max_10) ELSEO0

Product_2=IF RANDOM>=BPro_2 THEN MIN(Alpha_2*Queue 2,
Product_Max_2) ELSEO0



Product_3=IF RANDOM>=BPro_3 THEN MIN(Alpha_3*Queue_3,
Product_Max_3) ELSEO

Product_4=IF RANDOM>=BPro_4 THEN MIN(Alpha_4*Queue_4,
Product_Max_4) ELSEO

"Product_5=IF RANDOM>=BPro_5 THEN MIN(Alpha_5*Queue_5,
Product_Max_5) ELSEOQ

Product_6=IF RANDOM>=BPro_6 THEN MIN(Alpha_6*Queue_6,
Product_Max_6) ELSEO

Product_7=IF RANDOM>=BPro_7 THEN MIN(Alpha_7*Queue_7,
Product Max_7) ELSEO

Product_8=IF RANDOM>=BPro_8 THEN MIN(Alpha_8*Queue_8,
Product Max_8) ELSEO

Product_9=IF RANDOM>=BPro_9 THEN MIN(Alpha_9*Queue_9,
Product_Max_9) ELSEO

Product_Max_1=IF SET_MAX=1 THEN 6 ELSE 100

Product_Max_10=1IF SET_MAX=1 THEN 2.5 ELSE 100

Product_Max_2=1IF SET_MAX=1 THEN 2 ELSE 100

Product_Max_3=1IF SET_MAX=1 THEN 2 ELSE 100

Product_Max_4=1F SET_MAX=1 THEN 2 ELSE 100

Product_Max_5=IF SET_MAX=1 THEN 2 ELSE 100

Product_ Max_6=1IF SET_MAX=1 THEN 2 ELSE 100

Product_Max_7=1F SET_MAX=1 THEN 2 ELSE 100

Product_Max_8=IF SET_MAX=1 THEN 2 ELSE 100

Product Max_9=1IF SET_MAX=1 THEN 2 ELSE 100

Pro_P1 =( Q1_LAG_1-P1_LAG_1)*0+(Q1_LAG_8-P1_LAG_1-P1 LAG 2
-P1_LAG_3-P1_LAG_4-P1_LAG_5-P1_LAG_6-P1_LAG_7
-P1_LAG_8)*1
{alpha=1 then 1,0 alpha=1/8 then 0,1}
Pro_P1_av =IF Pro_P1>=0 THEN ( Pro_P1-AVE_BL_4)/Time_ave
ELSE (-AVE_BL _1)/Time_ave
Pro_P10 =( Q10_LAG_1-P10_LAG_1)*0+(Q10_LAG_5-P10_LAG_1
-P10_LAG_2-P10_LAG_3-P10_LAG_4-P10_LAG_5)*1
{alpha=1 then 1,0 alpha=1/5 then 0,1}
Pro_P10_av =IF Pro_P10>=0 THEN ( Pro_P10-AVE_BL_4)/Time_ave
ELSE (-AVE_BL_10)/Time_ave
Pro_P2 =( Q2_LAG_1-P2_LAG_1)
Pro_ P2 av =IF Pro_P2>=0 THEN ( Pro_P2-AVE_BL_4)/Time_ave
ELSE (-AVE_BL _2)/Time_ave
Pro_P3 =( Q3_LAG_1-P3_LAG_1)
Pro_P3_av =IF Pro_P3>=0 THEN ( Pro_P3-AVE_BL_4)/Time_ave
ELSE (-AVE_BL_3)/Time_ave
Pro_P4 =( Q4_LAG_1-P4_LAG_1)
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Q5_CV_2=Q5_LAG_1-Q5_LAG_2
Q6_CV_1=Queue_6-Q6_LAG_1
Q6_CV_2=Q6_LAG_1-Q6_LAG_2
Q6_CV_3=Q6_LAG_2-Q6_LAG_3
Q7_CV_1=Queue_7-Q7_LAG_1
Q8_CV_1=Queue_8-Q8_LAG_1
Q8_CV_2=Q8_LAG_1-Q8_LAG_2
Q9_CV_1=Queue_9-Q9_LAG_1
Q9_CV_2=Q9_LAG_1-Q9_LLAG_2
Q9_CV_3=Q9_LAG_2-Q9_LAG_3
Q9_CV_4=Q9_LAG_3-Q9_LAG_4

Q_10_av=(Queue_10-Ave_Q_10)/Time_ave
Q_1_av=(Queue_1-Ave_Q_1)/Time_ave
Q_2_av=(Queue_2-Ave_Q_2)/Time_ave
Q_3_av=(Queue_3-Ave_Q_3)/Time_ave
Q_4_av=(Queue_4-Ave_Q_4)/Time_ave
Q_5_av=(Queue_5-Ave_Q_5)/Time_ave
Q_6_av=(Queue_6-Ave_Q_6)/Time_ave
Q_7_av=(Queue_7-Ave_Q_7)/Time_ave
Q_8_av=(Queue_8-Ave_Q_8)/Time_ave
Q_9_av=(Queue_9-Ave_Q_9)/Time_ave

Ran_1 =NORMAL*2+INPUT
Ran_10=NORMAL*0.2
Ran_2=NORMAL*0.1

Ran_3 =ENORMAL*0.1
Ran_4 =NORMAL*0.1 .
Ran_5=NORMAL*0.2

Ran_6 =NORMAL*(.2
Ran_7 =0

Ran_8 =ENORMAL*(.1

Ran_9 =NORMAL*0.2

SET_IN=1 {If it is one the simulation is for steady state. }

SET_MAX=1 {If it is one the limiter will be applied. }

SET_T_MAX=2000 {Maximum simulation time should be set here in order to
control out put data. }

Sigma_1=IF Var_1>=0 THEN EXP(0.5*LOGN(Var_1) ELSE 0
Sigma_10=IF Var_10>=0 THEN EXP(0.5*LOGN(Var_10) ELSE 0
Sigma_2=IF Var_2>=0 THEN EXP(0.5*LOGN(Var_2) ELSE 0
Sigma_3=IF Var_3>=0 THEN EXP(0.5*LOGN(Var_3) ELSE 0
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Sigma_4= IF Var_4>=0 THEN EXP(0.5*LOGN(Var_4) ELSE 0
Sigma_5=IF Var_5>=0 THEN EXP(0.5*LOGN(Var_5) ELSE 0
Sigma_6= IF Var_6>=0 THEN EXP(0.5*LOGN(Var_6) ELSE 0
Sigma_7= IF Var_7>=0 THEN EXP(0.5*LOGN(Var_7) ELSE 0
Sigma_8= IF Var_8>=0 THEN EXP(0.5*LOGN(Var_8) ELSE 0
Sigma_9=IF Var_9>=0 THEN EXP(0.5*LOGN(Var_9) ELSE 0

Sq_Prol =Product_1*Product_1
Sq_Pro10 =Product_10*Product_10
Sq_Pro2 =Product_2*Product_2
Sq_Pro3 =Product_3*Product_3
Sq_Pro4 =Product_4*Product_4
Sq_Pro5 =Product_5*Product_5
Sq_Pro6 =Product_6*Product_6
Sq_Pro7 =Product_7*Product_7
Sq_Pro8 =Product_8*Product_8
Sq_Pro9 =Product_9*Product_9

T=IF TIME,(SET_T_MAX-9) THEN 0 ELSE IF TIME>(SET_T_Max) THEN
0 ELSE TIME-(SET_T_Max-10)
Time_ave= IF TIME<= 500 THEN 1 ELSE TIME-500

Var_1=IF Time_ave>2 THEN (Ave_xs_1-Ave_x_1*Ave_x_1)*
(Time_ave/(Time_ave-1)) ELSE 0

Var_10=IF Time_ave>2 THEN (Ave_xs_10-Ave_x_10*Ave_x_10 )*
(Time_ave/(Time_ave-1)) ELSE 0

Var_2=IF Time_ave>2 THEN (Ave_xs_2-Ave_x_2*Ave_x_2)*
(Time_ave/(Time_ave-1)) ELSE 0

Var_3=IF Time_ave>2 THEN (Ave_xs_3-Ave_x_3*Ave_x_3 )*
(Time_ave/(Time_ave-1)) ELSE 0

Var_4=IF Time_ave>2 THEN (Ave_xs_4-Ave_x_4*Ave_x_4 )*
(Time_ave/(Time_ave-1)) ELSE 0

Var_5=IF Time_ave>2 THEN (Ave_xs_5-Ave_x_5*Ave_x_5 )*
(Time_ave/(Time_ave-1)) ELSE 0

Var_6=IF Time_ave>2 THEN (Ave_xs_6-Ave_x_6*Ave_x_6 )*
(Time_ave/(Time_ave-1)) ELSE 0

Var_7=IF Time_ave>2 THEN (Ave_xs_7-Ave_x_T7*Ave_x_7 )*
(Time_ave/(Time_ave-1)) ELSE 0

Var_8=IF Time_ave>2 THEN (Ave_xs_8-Ave_x_8*Ave_x_8 )*
(Time_ave/(Time_ave-1)) ELSE 0

Var_9=IF Time_ave>2 THEN (Ave_xs_9-Ave_x_9*Ave_x_9 )*
(Time_ave/(Time_ave-1)) ELSE 0
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B.3 Example of output
(1) Numerical output
Time T OUT_EP OuUT S OUT EQ OUT BL
990.000 0.0 0.0 0.0 ~ 0.0 ~ 0.0
991.000 1.000 4.921 1.653 45.766 6.734
992.000 2.000 0.737 0.390 0.800 0.0637
993.000 3.000 0.683 0.387 0.764 0.0810
994.000 4.000 0.353 0.264 0.401 0.0483
995.000 5.000 1.351 0.577 3.138 0.520
996.000 6.000 1.624 0.545 5.981 1.163
997.000 7.000 0.135 0.0856 0.150 0.0148
998.000 8.000 0.540 0.238 1.201 0.146
999.000 9.000 1.861 0.426 14.194 6.821
’000.000 10.000 2.171 0.689 14.611 3.833
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(2) Graphical output
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