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Abstract

We develop an analytic and a simulation model for a job shop with unreliable work
stations and production constraints. In the complex batch manufacturing operation
of the factory, smooth production of each work station is required. In the previous
work the Tactical Planning Model was proposed for this purpose. In that model, the
production of each work station should be proportional to the queueing level of the
input work flow. In this paper, the model is extended to the work station with
production constraints and with given unreliability of its operation, because in the
real world situation, the work stations cannot be operated perfectly without any
trouble nor infinite productivity. For the analysis of multiple unreliable work
stations, we develop an analytical model and solution. The break down of the work
station is modeled as a Bernoulli process. For the analysis with the production
constraints with or without the unreliable work station model, we develop a dynamic
simulation model. We show some examples of this problem, and show the effect of
production constraints and unreliable work stations.

Thesis Supervisor: Dr. Stephen C. Graves
Title: Professor of Management Science
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Chapter 1. Introduction

The purpose of this work is to extend an analytical model and to develop a

simulation model of a job shop problem. The focus is on the extension of the Tactical

Planning modell to the unreliable multiple work stations with production

constraints.

A job shop is a very flexible production facility composed of several machines or

work stations. Unlike the assembly line facility, different jobs with various kinds of

work flow and completion times are managed in a job shop 2 . An analytical model of

job shop problem was proposed by Stephen C. Graves in his "A Tactical Planning

Model for a Job Shop" (1985) 1. He modeled this job shop problem as a network of

queues. The work flow was modeled as the discrete-time, continuous-flow of the

tasks. The task units were not expressed in terms of the number of parts to be

produced but were expressed as the necessary service time to complete the job. The

control law for production of each work station was modeled as proportional to the

queueing level of the input work flow and as inversely proportional to the planned

lead time. The model provides the steady state distribution of the production levels at

each work station, the distribution of queue lengths and the distribution of backlogs.

In the Tactical Planning Model, Graves took into account the production capability,

the inherent variability and uncertainty of the production requirements.

For the production capability, the production constraints were treated implicitly.

When the expected level of the production exceeded the capacity of one facility, he

increased the number of the facility to satisfy the requirement. For example if the

capacity is 2 units of production by one facility and the requirement of the

production is 5, he assumed that there should be three facilities, in parallel, at the



work station. In order to make the variation of the production requirements be

within the constraints of the production capability, the planned lead time of the

heavily-loaded work station was increased, because the increase of the planned lead

time will reduce the variation of the production requirements.

In order to analyze more precisely the situation of the job shop, the saturation of the

production without sufficient production capacity should be taken into account. One

of the purposes of our research is to investigate this point. We allow the model of

heavily-loaded work station if the average requirement of the production is within

the capability.

The inherent variation of the production was modeled as an additional independent

random input to the work station. But the production itself was assumed to operate

properly. For the purpose of the extensive analysis of the job shop problem, we have

to consider not only the input variation but also the break down of work stations. In

the real world situation, the work station cannot be operated perfectly without any

trouble nor infinite productivity. Sometime the work station has to stop its operation

because of maintenance, even if it has high reliability. When the work station is

stopped, the incoming tasks will be delayed and may result in some backlog. For

this problem, the case with single input and single output for the single work station

was also analyzed by Graves 3 . He showed that the effect of the work station break

down causes a longer expected length of queue and a larger variation in the queue

length. In this paper, we extend the unreliable job shop problem to the multiple work

stations model with production constraints.

In Chapter 2, we review the outline of the Tactical Planning Model proposed by

Graves, and show the model with unreliable multiple work stations and capacity

constraints.



In Chapter 3, we demonstrate the dynamic simulation model to examine the

performance of the system. For the analysis of the complicated net work of queues, a

simulation is the only way to solve this problem without any simplification, because

of complicated interactions between work stations and nonlinear constraints. In this

paper, we use the software named STELLATm+ to model and carry out the

simulation. STELLA was designed to make it possible to simulate a System

Dynamics model on the personal computer 4 . With the application of the software to

this problem, the analysis of the complicated network queue problem is completed

without the use of the large computer.

In Chapter 4, we show the result of the simulation and analysis. At first we show the

validation of the simulation model with no production constraints and perfectly

reliable work stations. We compare the result of the simulation to the result of the

analytical work. The same job shop model is used as was used in the Graves' paper.

It is the ten work stations job shop model for the production of components for

grinding machines. After that we show the example of the simulation of the

unreliable work stations with the production constraints.

In Chapter 5, we show the conclusion of this analysis and simulation.

+ STELLA is a trademark licensed to High Performance Systems, Inc.



Chapter 2. Tactical Planning Model and extension

2.1 The Tactical Planning Model

A job shop is a very flexible production facility that consists of a set of versatile

machine centers or work stations and is capable of producing a wide variety of jobs.

Because of its inherent complexity, it is often difficult to manage the production

control in a sophisticated manner. In 1985 Gravesl proposed a Tactical Planning

Model to help address this problem. He developed the problem by making use of the

planned lead time for its production.

In this section we would like to describe briefly about the Tactical Planning Model.

At first we would like to note the basic assumption of the model.

(1) The job shop works as discrete time model.

Every transaction is carried out at the specified time, and production is completed

within the given period of time.

(2) The work flow is continuous.

At each work station, the arriving jobs to the station, the queue of work at the

station, and the production by the station are expressed in terms of the work load on

the station. This differs from the usual queueing model in which these variables

would be expressed in terms of number of jobs.

(3) The work station does not break down.

100% reliability was assumed.

(4) There are no explicit capacity constraints.

Constraints were considered implicitly.

(5) The arrival stream to a work station contains some degree of uncertainty.



The arrival stream to a work station contains two types of input. One consists of the

work flow from the other work stations. The other consists of the random noise

which simulates the production variation of the system, and includes new work

which enters the shop.

Fig 2.1-1 Example of multiple work stations (Work flow)

The above drawing is the example of the multiple work stations model shown in the

Graves article. Jobs arrive to work station # 1, and leave from work station # 10.

The processing of a job may entail visits to several different work stations.

Second, we would like to describe the relationship and steady state analytical solution

of the performance of the model.

In the Tactical Planning model, the production of a work station is set to equal a

fraction of the work-in-process (WIP) queue. The control rule is described as

follows.

Pi,t= ai Gi,t



where Pi,t is the production level of the work station i, during the time period of t,

Qi,t is the WIP queue level, and aj is the control parameter of the Tactical Planning

model. aj is the inverse of the planned lead time and is restricted to 0<aj 1. For

example if a planned lead time is 4 periods of time then aj is 0.25. The balance

equation is

Gi,t= Qi,t-1 - Pi,t-1 +Ai,t

where Ai,t is the amount of work that arrives at work station i at the start of time

period t. These arrivals may come from many other sectors, and the flow from work

station j to work station i is modeled by

Ai ,j,t= @ijPj,t-l + Ei,j,t

where $ij is the expected number of hours of work generated for work station i by

every hour of work completed by work station j, and eij,t is a random variable with

zero mean. The term Eij,t is a noise term which simulates the uncertainty in the

arrival stream. It is assumed that the terms of the time series { Eij,t } are i.i.d. The

total arrivals to a work station i are the sum over all preceding sectors of equation

above.
n

A P ~,

where

1,1t

j=1
n

i, = A i-,, + Ni,
j=1

where Ni,t is a random variable that represents the work oad from new jobs that

enter the shop at time t directly from outside. The elements of each time series {Nit}

are assumed to be i.i.d. Thus Ei,t represents those arrivals that are not predictable

n



from the previous history and it consists of random noise and new arrivals. By

substituting these equations the following vector-matrix equation can be derived.

Pt= ( I - D + D )Pt-1 + DEt

where Pt is the vector of elements Pi,t , E t is the vector of elements E it , D is the

diagonal matrix with the control parameter ai on the diagonal, and CD is the matrix

whose elements are #ij, I is the identity matrix. By successively substituting the

above formula, the equation can be rewritten as the geometric series
00

Pt= (I - D+ DG)sDet-
s=O

The expectation of production vector, p'={pl, p2, - pn} is given by
00

E(P)= p =(I - D+ DD) DL
s=O

where A is the expected value of the vector E t. It was shown that the geometric

series converges, provided that the spectral radius (maximal absolute eigenvalue) of

the matrix D is less than 1, which is necessary and sufficient for the spectral radius

of ( I - D + DO ) to be less than 1. Then the above equation can be written as the

following form.

E(Pt) = p=(I -D)~l g

The covariance matrix of Pt is

Var(Pt)= IB D DB'S
s=O

where B = (I - D + DO ) and I is the covariance matrix of the vector 9 t. The

expected queue vector and covariance matrix can be written down as follows.

Qt = D -1 Pt

E(Qt)= D -lp

Var (Qt )= D -1 [ Var(Pt) ] D-



The queue at each work station is assumed to be served as first in, first out. The

oldest input is processed first. The backlog is defined as the portion of the queue that

has waited for m periods. Thus, the backlog can be written as the following equation.

Qjt= Q 1-i - Pit-i

= Qi,t-m - Y i,t-s
s=1

m m
where Qi<O means that paticular backlog is zero, and Qi,= Qitfor m=O. The first

term indicates the queueing level at the period of t-m and the second summation is

the total production from the time period of t-m up to the last production. Then in

matrix notation , we have

m -1 m
t= D Pt-m - Pt-s

s=1

and expected backlog is as follows.

E m -1 -1
E(Q t )=(D -mI)( I-CD)

The covariance of Qit can also be found from the previous results.



2.2 Unreliable work station

In the previous section, we discussed the model of multiple work stations. There

were assumptions that no work station would fail to work, nor would trouble

develop. But in the real world situation, the machines in the factory sometimes fail to

work, and for some period of time the machines have to be inoperable because of

maintenance. The original analysis of the problem was conducted by Graves 3 for a

single work station model. In this section, we would like to extend the concept of the

unreliable work station to this Tactical Planning Model for multiple work stations.

The definition of work station break down is the condition in which the work station

produces nothing for a given period of time. The in-coming material consists of

queue in the input side of the work station. The break down of a work station occurs

as a Bernoulli process, with the probability pi. That is, each period work station i

fails with probability pi. When a work station fails, its production for that time

period is zero. The state of the work station dues not provide any influence on the

other work stations, neither at its production level nor at the stage of the production.

Let i be the subscript indicating the work station i. The work station i has the

following relations.

(2i,t= Q2i,t-1 - Pi,t-1 +Ai,t

Ai,t= i]P],t-]+Oi2P2,t-]+... + pin n,t-1+ Eit

Pi,t= ai Qi,t --- with probability 1-pi

= 0.0 --- with probability pi

i= 1,2, -- ,.n

Let Dpt be the diagonal matrix with ait, which is defined as the random variable

aij,t = ci --- With probability (I-Ni)



1 0

= 0 --- With probability pi

ai,t0 - 0
0 a2,t - 0
--- 0
o o 0 an I

pi denotes the probability of work station break down. This random variable has

following characteristics.

ai (-pi)

E( ait2 ) = ai2 (I -pg)

Var ( ait ) = ci2 pi ( J-pi)

E( ait ajt ) = ai aj (I-pi) (I-pj) ; itj

E( ait ait-s) = ci 2 (1 -pg) 2 ;s 0

E( ait Xit) = i (]-pi)E(Xit) ; Xit is independent from ait

ai(1-p 1) 0
0 a 2(1-p2)

=D ( I- Pr)

Pr denotes a diagonal matrix with elements, {P1P2,...p}, and D denotes a diagonal

matrix with its elements being the of inverse of planned lead time, (a;,a2,...an.

Now the job shop system can be analyzed by the following set of equations:

The control rule is now

Pt= Dpt Qt

The balance equation is then

E(a it) =



Qt = Qt-1 - Pt-1 + At

= Qt-1 - Dpt-I Qt-I + CD Dpt-1Qt-1 + E t

= t +{ I - (I-D) Dpt-I }Q t-1

$11$12 - $1n

CD 021$22 - $2n

$n1$ n2 - $nn

2.2.1 The average and variance of queue

The expectation of queue can be derived by taking expectation of both sides.

E(Qt )= E( E t)+ { -(ID) E(Dpt- I) I E(Qt-1)

At the steady state condition, the expectations of Qt and Qt-1 are the

same. { E(Qt )= E(Qt-I )} Therefore

E(Qt ) = PD(I- ) E(Dpt-1 ) 1~1 E( E, t )

= { (I )D(I- Pr) }1 

The covariance matrix can be obtained by the following manner. At first a quadratic

form of Qt should be taken. The form consists of NxN matrix.

ltQ it Ql,Q 2,t - 1,i, n,t

T_ 2,iQQ 1 , Q2,iQ2,t - 2,9n,t

Qn,t1,r Qn,Q2,t - Qn,Qn,t

which is expressed as following form.

Qt QtT = ( Ct +{ I-(I-CD) )Dpt-1 )Qt- 1) (C t +{ I -(I-CD )Dpt-1 })Qt-1I)T

= Ct EtT + { I- ( I-(D) Dpt-1 ) Qt-l EtT+Et Qt-1Tt I-(I-CD)Dpt-1 IT

+ t I- ( I-CD ) Dpt- I I Qt-1 tt-1 T t I- ( I-D) Dpt-1 T

=Qt-1 Ot-1T-( I-(D.) Dpt-1 Ot-lQt-IT-Qt-1 Ot-1TDpt-1 T(I-(I)T
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+( I-CD ) Dpt-1 Qt-1 Qt-IT Dpt -1 T (1-CD)T

+ Et EtT + { I-(-D) Dpt -1 1 Qt-1 EtT + at Qt-IT{ I-(I-CD )Dpt- )T

The expectation of this quadratic form is following.

E(Qt QtT) = E(Qt-lQt-1T ) + E( Et EtT )

-( I-CD ) E(Dpt-1 Qt-1Qt-1T) -E(Qt-1Qt- 1T Dpt-i T) (I-CD)T

+( I-<D ) E( Dpt-1 Qt-1 St-1T Dpt -I1T) (I-CD)T+ E(Qt-1 DtT )

-( I-CD ) E( Dpt-1 Qt-1E'tT )+E(E~tQt-1T) - E(EtQt-1T Dpt-1 T)(I-CD )T

As at, Qt-1 and Dpt-1 are mutually independent, the expectation

products are the products of mutual expectation.

E(Qt QtT) = E(Qt-lQt-1T) + E( at EtT)

of mutual

-( 1- ) E(Dpt-1 ) E( Qt-1Qt-1T) -E(Qt-1Qt-1T) E( Dpt-1 T) (I-CD )T

+( 1-<D ) E( Dpt-1 Qt-1 Qt-1T Dpt -1 T) ( I-D )T+E(Qt-l)E(EtT) +E(Et E(Qt-1T)

-( I-CD ) E( Dpt -1) E( Qt-i ) E( EtT) - E(Et) E( Qt-1T) E( Dpt- T )( I-CD )T

On the other hand E(Qt ) E( QtT) is as follows.

E(Qt) E( QtT) = E(Qt-I ) E( Qt-1T) + E( Et) E( EtT )

-( 1- ) E(Dpt-1 Qt-i ) E( Qt-1T) -E(Qt-1) E( Qt-iT Dpt-1 T)( I-C)T

+( 1-CD) E(Dpt-I Qt-i) E(Qt-1T Dpt-1 T) (I-D )T+ E(Qt-1) E(EtT)

-(I-CD) E( Dpt-1 Qt-I) E(atT) +E(Et) E(Qt-1T) -E(at) E(Qt-1T Dpt-1T)( I-D)T

+ E(Et) E( tT)

-( I-D) E(Dpt-I ) E(Qt-1) E(Qt-1T) -E(Qt-l) E(Qt- 1T) E(Dpt-1 T) (I-<)T

T) E(Dpt -1 T) ( 1-D )T

+ E(Qt-l) E(EtT) -( I-CD ) E( Dpt-1 ) E( Qt-i ) E( EtT) +E(Et) E( Qt-1T)

-E(Et ) E( Qt-IT ) E( Dpt-1 T )( I-<F )T

= E(Qt-1 ) E( Qt-1T )

+( I-CD) E(Dpt-1 ) E(Qt-1) E(Qt-1
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The covariance matrix of Qt can be calculated as the difference between E(Qt QtT)
and E(Qt ) E( QtT). The diagonal elements of the matrix consist of variance of Qit
and the other elements consist of covariance of Qit and Qjt-
Var ( Qt )= E(Qt QtT)- E(Qt ) E( QtT)

= E(Qt-lQt-1T) + E(EtEtT)

-( 1- ) E(Dpt-1 ) E( Qt-1Qt-1T) -E(Qt-1Qt-1T) E( Dpt-1 T) (14 )T

+( 1-(D) E( Dpt-1 Qt-1 Qt-1T Dpt-1 T ) ( 1-e )T+ E( Qt-1 ) E(EtT )
-( I-D ) E( Dpt-1 ) E( Qt-1 ) E(EtT) +E(Et ) E( Qt-1T)

- E(Et) E( Qt-lT) E( Dpt-1 T )( I4 )T

-{ E(Qt-1 ) E( Qt-lT) + E(Et) E(EtT)

-( I- ) E(Dpt-I ) E(Qt-1) E(Qt-1I T) -E(Qt-1) E(Qt-1T) E(Dpt-1 T) (I..0 )T

+( 1- ) E(Dpt-1 ) E(Qt-1) E(Qt-1I.T) E(Dpt-1 T) ( 1-.. )T + E(Qt-1) E(EtT)

-( I4) E( Dpt -1 ) E( Qt-I ) E( EtT ) +E(Et ) E( Qt-1T)

-E(Et) E( Qt-1T ) E( Dpt-1 T )( I-()T)

=Var(Qt-1)+ Var( Et) -( I-o )E(Dpt-I )Var(Qt-1) -Var(Qt-i)E(Dpt-I T )( I. )T
+(I-4){E(Dpt-1Qt-1Qt-1TDpt-1T)-E(Dpt-1)E(Qt-i)E(Qt-1T)E(Dpt- 1T)}(14(D )T

The product of DptQt and QtTDptT is expressed by using the following formula.
DptQtQtTDptT

2 2
Q1,91,t Q 1,tO2,,a1,P2,t -Q ,~,1#~

2 2
2, 1, 1 2,92,t -2,t n, 2, n,t

Qn,i l,anI1,t Qn,Q 2,Pn,a 2,t ~n,-nt

Then the expectation of Dpt-1Qt-1Qt-1TDpt-1T is



E(Dpt-19t-19t-1TDpt-1T)=

2 2* *

1i,t-1 1P11 Q1,t-1(22,t-i(Xla2P12

2 2 *

Q2 ,t-1Q1,t-1la21P 2 1 Q2 ,t- 1 a2P2 2

*n,t-1Q1,t-1an(1Pn1 *n,t-1Q2,t-l(nn2Pn2

Q1,t-1Qn,t- 1ala,PIn

Q2,t-1Qn,t-1a2aP 2 n

2 2 *
Qn,t- 1arnp

where the probability pij* denotes the joint probability that the pair of work stations

is not broken down.

Pii =(]-Pi)

Pi =(1-pi) (1-Pj) ; itj

Let eij be matrix of only the (ij) element has value 1,and all other elements are 0.

For example, e23means
0000
0010
0000
00001

Then the third term is as follows

E(Dpt-1 Qt-1Qt-1TDpt-1 T)-E(Dpt-1 )E(Qt-1)E(Qt-1T)E(Dpt-1 T)
n 2=Xat (1

i=1

2
-p )Q i,t-1-(

2-2
1-pi) Qi,t_1}eii

n n

+1 a-a'(1-pi)(1-p'){Q, 1 I,- Qi,,-1Nj,,-1}eij
1 1,j i

=a1p(1-pi){Var(Qi,t-1)+Qi,t-1}eii
i=1

14
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n 2 2n
+I { ai(1-p) Var(Q it,- Dc+ I aga,(1-p )(1-pj)Cov(Q i,t-,,Qj,-,1)eij}

i=1 j=1,j#i

2 -2 T
=jajp,(1-p) {Var(Qi,t-1)+Qi, 1-j}eii+ E(D,) Var(Q t-)E(D ptT)

i=1

= D D (I-Pr)Pr E2 ( Qt-1 ) + D(I-Pr) Var(Qt-1) (D(I-Pr) )T

E2 ( Qt- 1) denotes diagonal matrix consists of the expectation of square of Qi,t- 1.

{ E2( Qt-I ) ) ii = E ( Qi,t-12) = Var( Qi,t-1) + E ( Qi,t-i )2

The covariance matrix of Qt is expressed as the following form.

Var(Qt) = Var( E t)

+{ I- ( I-) D (-Pr) I Var(Qt-1) { 1- ( I- )) D (-Pr) }T

+ ( 1-4 ) D D (I-Pr)Pr E2( Qt-1 ) (I. )T

In order to get the steady state solution, let Var(Qtk) be the k-th asymptotical

solution. The first approximate solution is

Var(Q t) = Var(EF,)+ ( I-(D ) D D (I-Pr)Pr E2(Q ) (-4)

where E2(Qt0 ) is expressed as

E2( t-1) i E(Q gj)

The k-th asymptotical solution is as follows.

Var(Qtk) = Var( Et)

+{ I- ( 1-4 ) D (-Pr) I Var(Qtk-1) { I- ( 1-4) D (I-Pr) }T

+ ( I- 4) D D (I-Pr)Pr E2 ( Qtk-1 ) ( 1- )T

{ E2 ( Qtk-1 ) I ii = E (( Qik-1)2 ) = Var( Qik-1) + E ( Qi,t )2

The aymptotical solution will converge if it can be shown that a finite K such that

il Var(Qtk) - Var(Qtk-1) 11<11 Var(Qtk-1) - Var(Qtk-2 ) 1|

for all k>K.
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2.2.2. The average and variance of production

As described above, the relationship between production and queue is defined in the

Tactical Planning Model. It is

Pi,t= ai Qit --- with probability 1-pi

= 0.0 --- with probability pi

Therefore the average and the square average are calculated without any difficulty.

E( Pi,t)= 1 -pi) aj E( Qi,t)
E( Pi,t2 )=( ]-pi) ( ai)2 E( (Qi,t)2 )

Var( Pi,t)= I -pi) ( ai)2 [Var (Qii,t) -PiE( Qi't )2]

Using the result of the previous section, expectation of production can be written as

E(Pt = E(Dpt) { ( I-D) E(Dpt) }~1 E( Et)

= D (I- Pr) { (1-CD) D (I- Pr) }1

=(1I-CD ) -1

This equation shows that the expectation of the production does not depend on the

unreliability of the work station for the long run.
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2.3 Capacity Constraints

In the original Tactical Planning Model, the effect of the production constraints

were treated as an implicit factor. It can be avoided by setting appropriate planned

lead time and resource reallocation. But in the model discussed in the previous

section, the explicit involvement of the production control should be taken into

account, because after the work station break down, the queue of the station will

increase, and it is likely that the production will exceed the production capacity.

Therefore we apply the following production capacity constraint in each work

station.

Pii=min{ aQjtPf

In this case Pc,it is the production capability at work center i in time period t. This

type of rule was tested by simulation by Cruickshanks, Drescher and Graves (1984)5

for a simpler case with one production stage. We apply this rule in the multiple work

station case and see the effect by the use of dynamic simulation.
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Chapter 3. Simulation model.

3.1 Systems dynamics simulation

In this paper, we use a personal computer in order to carry out the analytical

calculation and Monte Carlo simulation, because the development of the personal

computer has made it possible for the manager to have his/her own tool to evaluate

the management problems. As for the analytical approach described in the chapter

2, we use BASIC to model and implement the problem. The detail of the program is

described in Appendix B. In this analytical approach, we model the unreliable job

shop without the explicit production constraints. Because it is very difficult to apply

analytical approach to the model with explicit constraints, we apply the dynamic

simulation model to solve this problem.

There are several software packages available to carry out a simulation. For

example, Banks and Carson 5 describe GASP, SIMSCRIPT, GPSS, and SLAM as the

special purpose simulation language. In this paper, we select the STELLA program

to do simulation on the personal computer.

The STELLA, designed by Barry Richmond 3, is a software to simulate the

dynamics of social and physical systems. It stands for Structural Thinking,

Experiential Learning Laboratory with Animation. It solves systems of differential

or difference equations using the following operaters; Stock, Flow & Flow

Regulator, Input Link and Converter.

The first operator, Stock, is the variable to be differentiated by time. Let the

differential equation be

-- = ay -bz
dt

where the stock should be x. When we want to represent a difference equation, such

as a balance equation
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Xi= Xi-j +Ai -Bi

the stock represents Xi.

The second operator, Flow and Flow Regulater, has two varieties. One is Source

and Logic Receptacle. It represents "ay " of the above differential equation and can

be interpretted as the "arrival" rate to the stock. The other is Sink and Logic

Receptacle. It represents "bz" and corresponds to the "departure rate" from the

stock. The Logic Receptacle works as a control valve of the flow, and we can

process the signal to the form of arrival and departure of the differential equations.

An infinite amount of flow is assumed in the source. The sink is also assumed to have

an infinite capability.

The third operater is Input Link which is the directed arc of the signal flow. In the

above differential equation, Input Link brings the output of some other equation "y"

and "z" to the Flow and Flow Regulator. In general it indicates signal flow

relationship between one operator to another.

The fourth operator is a Converter. It converts several inputs into another form.

Mathematical function, some logical operation, random variable generation can be

used in this operator.

We can use these operators to make a simulation model of this problem.

Fig 3.1.1
Flow & Flow Regulator Input Link Converter

0

Source &
Logic
Receptacle

Sink &
Logic
Receptacle

Stock

LIZ
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3.2 STELLA model

3.2.1 Multiple work stations model

In this section, we would like to show the multiple work stations simulation model

in the Tactical Planning model. The following chart shows the example of work flow

between the work stations.

Fig 3.2.1-1 Work Flow example

As described in Chapter 2, the balance equation of the each work station, in this case

the # i work station, is as follows

Qi,t= Qi,t- - Pi,t-I +Ai,t

Ai,t= i+,t-+pi22,t-++... +ii,t

Pi,t= ai Qi,t --- with probability 1 -pi

= 0.0 --- with probability pi

i=1,2, ... ,n
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Each work station has multiple inputs from the other work stations, Ai,t, and then

its output(production: Pi,t) goes to several work stations.

The station receives the input flow with uncertain random inputs.

In this example, work station #1 is the first work station which receives the initial

material from the outside of the system. It also receives the work flow from work

stations #3 and #5. The work flow goes to the other stations, work stations #2, #3,
#4, #5 and #8. After several stages, some of the work load goes back to the work

station #1 again.

The following shows the example of the work station model described by the

STELLA operators. The noise term of the flow, ei,t, is modeled as the combination

of gaussian normal noise and constant term.

Fig 3.2.1-2
To work

Multiple work station simulation model (STELLA) Stations
Input Output

Input
Queue4

From Work Stations

Product
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3.2.2 Work station break down and the production constraints model

As discussed in Chapter 2 the unreliability of the work station is the probability of

work station break down. When the work station breaks down, the productive

activity will stop. The work in process inventory will be increased. The inverse of

planned lead time, xi, is modeled as a Bernoulli random variable ait as discussed in

2.2.

Pi,t= ai Qi,t --- with probability 1-pi

= 0.0 --- with probability pi

Pi,t= ai,t!Gi,t

ai,t= ai --- with probability 1-pi

= 0.0 --- with probability pi

Fig 3.2.2.-i unreliable work station

Work stationOutput
#i Production

1-pi
Queue Capacity Pi max

No production

The production constraint is modeled as the simple constraint. If the level of the

production given by the control rule exceeds the maximum capacity of the work

station, the actual production is set to the maximum capacity.

Pi-min a ,P
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where Pc,it is the maximam capacity of production of work station # i.

In the STELLA simulation model, the unreliable work station is modeled by

comparing a uniformly distributed random variable to a threshold level to decide

working(1) or not working(O). If the random variable is more than pi, the

production is decided to be normal. This process is modeled in the node

"Conversion". The production constraint is modeled as an "if" sentence. (IF

required Production level is greater than the maximam value, let P be the maximum

production.)
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Fig3.2.2-2 STELLA model of work station break down and Production constrains
! Output

Product

Work station break down Production constraints
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3.2.3 Backlog model

The backlog is defined as the amount of the queue that has waited m or more

periods, for m=0,l,2,---n. For a given m units of time, then the backlog is defined by
the following equation.

m m-1
Qit= Qit-l - Pi,t-1

Qi,t-m - i,t-s
s=1

For example, when the planned lead time m is 3, the equation can be written as the
following flow chart. It needs Qi,t-3, and the past three periods of production level.

Fig. 3.2.3-1

Backlog model
Example m=3

In the STELLA model, the lag element can be modeled by applying a STACK

element. As the output of the lag element in time period of t should be the input of

the lag element at time t-1, the relation can be modeled as follows.

Qlag(n),i,t= Qlag(n),i,t-1 + ( Qlag(n-1),i,t-1 - Qlag(n),i,t-1)

Qlag(1),i,t= Qlag(1),i,t-1 + ( Qi,t- -

Pi~t-1 Pi~t-2 Pi~t-3

Q1ag(1)j't-1 )
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Plag(n),i,t= Plag(n),i,t-] + ( Plag(n-1),i,t-] - Plag(n),i,t-1)

Then the flow diagram of the back log is represented as in the next figure.

Fig. 3.2.3-2

3.2.4 Output process

In order to evaluate the performance of the work station, it is necessary to take

expectation and variance of the production and queue. Let x be either production or

queue, then E(x), the expectation of x , and Var(x), the variance of x , are
I n

E(x)= -Xx 1
ni=1

Var(x)=-I (x- E(x))
n-1i= 1

y 2 2
- (E(x )-E(x))

n-i

where n denotes the number of data. Taking a sample every unit of time, n is

equivalent to time of the observation. Let yn be the expectation of x up to xn, #2,n

be the expectation of x2 up to xn 2 and U, 2 be the sample variance up to xn. The

above equation can be modeled as the following difference equations.

Plag(1),i,t=-- Plag(1),ij-1 + ( Pit-1 - Plag(1),i,t-1 )
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I
Yn n-1 ++n~ Yn-1)n

1 2
Y2,n M2,n-1++Xn Y2,n-1)n

2 n
Un ~-1 -Y 2,n-1~ Yn-1)n-1

The flow diagram of STELLA is following figure.

Fig 3.2.4- 1 Expectation and variance

The full flow diagrams and equations are shown in Appendix A. And we also show

some examples of outputs.
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Chapter 4.The result of the analysis and simulation

In this chapter, we show the result of the analysis and simulation. The analysis is

based upon the equations derived in Chapter 2. We carry out our calculation using a

BASIC program on the personal computer. The detail flow chart and program are

described in Appendix A. The simulation is carried out using STELLA as described

in Chapter 3. In each simulation, the duration of simulation is 2000 units of time, and

the result is obtained from six simulation runs for each case. The full program and

operation manual are described in Appendix B.

The applied model in this paper is based upon the examples in Graves's paper. The

job shop consists of ten work stations and its work flow is described in Chapter 2 and

3. The flow matrix between each work station, average inputs p and covariance

matrix I are in table 4-1.

Table 4-1
From work To work station (#)station (#)

1 2 3 4 5 6 7 8 9 10
1 0.15 0.04 0.01 0.03 0.24 0.01
2 0.01 0.04 0.37
3 0.11 1.36
4 0.71
5 0.68 0.15 0.01
6 0.06 0.22
7 1.00
8 3.43
9 0.07 0.13 1.16
10
.t 4.0 0 0 0 0 0 0 0 0 0
E 4.00 0.01 0.01 0.01 0.04 0.04 0 0.01 0.04 0.04

The work is assumed to flow from one work station to another in two hour periods.

The capacities of work stations are 2 units of work, except work station #1 and #10.
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As there are there machines are available in #1, the capacity is assumed to be six

units of work. Also it is assumed that there are 2.5 units of work capability at work

station #10. ( One unit of work needs one hour of machine operation.)

4.1 The validation of the simulation model

In this section, we would like to validate the simulation model by comparing its

result to the result of Graves's paper. In order to compare the result, we select Case

D of his paper. In this case, the planned lead times are given by the following table.

Table 4.1.-i Planned lead time of case D
W.s.#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
n(A) 8 1 1 1 2 3 1 2 4 5

At the following tables, "Original model" is the data of Graves's, and "95% High

(Low)" is the upper (lower) confidence level of the expected value.

(1) Work station #1 (Planned lead time = 8)

E(P) G-, E(Q) E(Qn)
1.Original model 5.01 0.55 40.070 1.050

2.Simualtion (mean) 5.031 0.547 40.312 1.028

95% High 5.074 - 40.702 1.052

95%Low 4.988 - 39.921 1.004

Evaluadon ok ok ok ok

This result shows that the obtained expected production, expected queue and

expected backlog are equivalent to the result of the Graves's model with the 95%

confidence level 6 . And the standard deviation is effectively equivalent. The

evaluation is the same on the following work stations. Therefore we can use the

simulation model with confidence 7 .



(2) Work station #2 (Planned ]

1.Original model 0

2.Simualtion (mean) 0

95% High 0

95%Low 0

Evaluation

(3) Work station #3 (Planned]

E(P)

1.Original model 0.69

2.Simualtion (mean) 0.69'7

95% High 0.705

95%Low 0.688

Evaluation

(4) Work station #4

1.Original model

2.Simualtion (mean)

95% High

95%Low

Evaluation

ead time = 1)

E(P) 0p E(Q) E(Q

.75 0.13 0.75 0.0

.754 0.128 0.755 0.000

.762 - 0.764 0.000

.746 - 0.746 0.000

ok ok ok ok

lead time = 1)

up E(Q) E(Qm)

0.14 0.69 0.0

0.143 0.697 0.000

- 0.706 0.000

- 0.688 0.000

ok ok ok ok

(Planned lead time = 1

E(P) Tp E(Q)

0.36 0.11 0.36

0.359 0.115 0.359

0.364 - 0.363

0.355 - 0.355

)
E(Qm)

0.0

0.000

0.000

0.000

ok ok ok ok

30
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(5) Work station #5 (Planned lead time = 2)

E(P) up E(Q) E(Q'

1.Original model 1.37 0.20 2.74 0.06

2.Simualtion (mean) 1.377 0.200 2.753 0.061

95% High 1.393 - 2.786 0.062

95%Low 1.360 - 2.720 0.061

Evaluation

(6) Work station #6 (

1.Original model

2.Simualtion (mean)

95% High

95%Low

Evaluation

(7) Work station #7 (

1.Original model

2.Simualtion (mean)

95% High

95%Low

ok ok ok ok

Planned lead time = 3)

E(P) aP E(Q) E(Qm)

1.65 0.18 4.97 0.07

1.659 0.170 4.987 0.066

1.672 - 5.034 0.067

1.646 - 4.940 0.065

ok ok ok ok

Planned lead time = 1

E(P) a, E(Q)

0.14 0.02 0.14

0.138 0.020 0.138

0.140 - 0.140

0.136 - 0.136

)
E(Qn)

0.0

0.000

0.000

0.000

ok ok ok okEvaluation
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(8) work station #8 (Planned lead time = 2)

1.Original model

2.Simualtion (mean)

95% High

95%Low

Evaluation

(9) Work station #9 (

1.Original model

2.Simualtion (mean)

95% High

95%Low

Evaluation

E(P)

0.55

0.554

0.558

0.550

aop E(Q)

0.08 1.10

0.079 1.110

- 1.120

- 1.099

ok ok ok

Planned lead time=4)

E(P) T p E(Q)

1.89 0.22 7.56

1.897 0.214 7.594

1.909 - 7.649

1.885 - 7.539

E(Qn)

0.02

0.024

0.024

0.023

ok

E(Qr)

0.12

0.118

0.121

0.116

ok ok ok ok

(10) Work station #10 (Planned lead time = 5)

E(P) G

1.Original model

2.Simualtion (mean)

95% High

95%Low

2.19

2.200

2.212

2.188

0.

0.

E(Q)
I-

23 10.96

226 11.016

- 11.087

- 10.944

ok ok ok ok

E(Qn

0.13

0.129

0.131

0.127

Evaluadion
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4.2 Analysis of the unreliable work station model

In 4.1, we validated the simulation model with reliable work stations by comparing

the simulation results with the analytic results. In this section, first we validate the

simulation of the unreliable work station model with the analytical model discussed

in Chapter 2 by comparing both results. Next we show the result of the analysis of

unreliable work station without production constraints.

4.2.1 The validation of the analytical model

We choose case D to compare results. The probabilities of break down are set to 0.1

for each work station, except work station #9 whose probability is set to 0.05. In the

Table 4.2.1.-i, "work S." denotes work station, "P.L.T." denotes planning lead time,

"P(B,d)" denotes probability of break down, "95% H" denotes upper bound of 95%

confidence level and "95% U denotes lower bound of 95% confidence level.

Evaluation is based upon whether the result of the analysis is within the 95%

confidence level of the result of the simulation. These results show that the

analytical solution is within 95% confidence level of the estimated solution derived

by the result of the simulation. From the above results, we can conclude that it is

appropriate to apply both simulation model and analytical model to evaluate the

performance of unreliable work stations.



1

8

0.1

Ana. Sim.

5.009 4.981

- 5.064

- 4.897

1.805 1.853

44.525 44.557

- 45.715

- 43.399

2

1

0.1

A

0.

0.

0.

na.

751 0

Table 4.2.1-1
3

1

0.1

Sim.

.747

Work S.

P.L.T.

P(B.d)

Method

E(P) m

95% H

95% L

a,
E(Q) m.

95% H.

95% L.

Eval.

Ana. Sim.

0.694 0.69

- 0.701

- 0.679

0.403 0.4000

0.771 0.766

- 0.777

- 0.756

ok

7

1

0.1

Ana. Sim.

0.137 0.137

- 0.138

- 0.135

0.089 0.089

0.152 0.151

- 0.154

- 0.149

ok

8

2

0.1

A

0.

0.

1.

na. Sim.

551 0.546

- 0.555

- 0.538

242 0.237

225 1.209

- 1.226

- 1.191

9

4

0.05

Ana. Sim.

1.890 1.872

- 1.900

- 1.844

0.556 0.557

7.958 7.898

- 8.024

- 7.771

4.2.2. The result of analysis

(1) The expectation of production and queue

In Chapter 2, we have shown that the expectation of production and queue can be
written as following form .

E(Pt) =((-D ) - 1 -

E(Qi,t )(({I -P~i) ai) ~1 E( Pi't)

From these two equations, the following facts can be derived.
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4

1

0.1

- 0.759

- 0.734

457 0.462

835 0.816

- 0.865

- 0.766

5

2

0.1

Ana.

1.372

0.617

3.048

A

0.

0.

0.

na. Sim.

358 0.357

- 0.364

- 0.349

269 0.269

398 0.396

- 0.406

- 0.385

Sim.

1.364

1.385

1.343

0.622

3.043

3.097

2.988

6

3

0.1

Ana.

1.654

0.650

5.512

Work S.

P.L.T.

P(B.d)

Method

E(P) m

95% H

95% L

a,
E(Q) m.

95% H.

95% L.

Eval.

Sim.

1.640

1.668

1.611

0.635

5.444

5.544

5.343

10

5

0.1

Ana.

2.193

0.823

12.181

Sim.

2.171

2.206

2.137

0.799

12.002

12.234

11.770



35

(a) The unreliability of the work station does not have any influence on the

expectation of production.

(b) The expected queueing level of the each work station depends on the planning
lead time ( ai -1) and the probability of break down of its own work station. The

break down of the other work stations do not affect the expectation of the queue.

These results are based on the fact that because there are infinite capability of the

production and queue, the effect of the break down is compensated by large

production after recovering from the break down. Thus it is possible to catch up

with the production requirement of the system.

(2) The variance of production and queue

The effect of the break down of the work station increases the variance of the

production and queue. As we have shown in Chapter 2, there are mutual and

complicated interactions on the variance of production and queue. In order to show

the effect of the unreliable work stations, we show the results of the calculation by

the analytical model. The model shows the relationship due to increasing the

unreliability at work station #1 on the standard deviation of each work station. At
first, this is shown as the ratio (Sr-li) of the standard deviation and the expected

production in Fig. 4.2.2.-1 and Fig. 4.2.2.-2. Second, this is shown as the ratio
(Sr- 2 i) of standard deviation with unreliable work station and reliable work station

in Fig 4.2.2-3 and Fig 4.2.2-4. In order to check the effect of planned lead time, the

case A and case D of Graves's example are calculated. The difference between case A

and case D is the planned lead time of each work station, as shown in the Table

4.2.2.-2.
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Table 4.2.2.-2 Planned lead time
W.s.#1 #2 #3 #4 #5
n(A) 1
n(D) 8

#6 #7 #8 #9 #10
1 1 1 1 1 1 1 1 1
1 1 1 2 3 1 2 4 5

In the following figures, the data of the work stations are shown by the following

symbols.

Symbols O LQ X GE V
#ofWS #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

The following table is the example of numerical output of the analytical model.

Tabel 4.2.2.-3 Example of numerical output of case D

A Tactical Planning M
*** With Unreliable Work S

N P -BD E(Q)
8 0.800 200

1 0.000 0.75
1 0.000 0.69
1 0.000 0.35
2 0.000 2.74
3 0.000 4.9E
1 0.000 0.1C
2 0.000 1.1C
4 0.000 7.5(

.362
1
4
8
3
61
37
02
61

odel for a Job Shop *

tation *

S(Q) E(P) S(P)
36.785 5.009 10.227
1.537 0.751 1.537
0.649 0.694 0.649
0.644 0.358 0.644
1.950 1.372 0.975
3.342 1.654 1.114
0.097 0.137 0.097
0.590 0.551 0.295
3.237 1.890 0.809

10 5 0.000 10.963 3.858 2.193 0.772

A Tactical Planning Model for a Job Shop *

With Unreliable Work Station *
* ** * ** * ** ** * * *** * ** * ** * * * ** * * ** *

W N P -BD E(Q) S(Q) E(P) S(P)
1 8 0.020 40.890 4.678 5.009 0.920
2 1 0.000 0.751 0.170 0.751 0.170
3 1 0.000 0.694 0.148 0.694 0.148
4 1 0.000 0.358 0.123 0.358 0.123
5 2 0.000 2.743 0.419 1.372 0.209
6 3 0.000 4.961 0.565 1.654 0.188
7 1 0.000 0.137 0.021 0.137 0.021
8 2 0.000 1.102 0.161 0.551 0.080
9 4 0.000 7.561 0.882 1.890 0.221

10 5 0.000 10.963 1.127 2.193 0.225



Sr1 - Standard deviation of production at work station #i : #1 unreliable
Sr Expected production of work station #i

Fig 4.2.2.-i Sr-1 case A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Probability of break down at work station #1

Fig 4.2.2.-2 Sr-i case D

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Probability of break down at work station #1
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Standard deviation of Droduction at work station #i : #1 unreliable
F Standard deviation of production (case A) at work

Fig 4.2.2-3 Sr-2 (Case A)

station #i: #1 reliable

#1
#2

#6
#4

#8,#3
#7,#5
#9,# 10

Sr-2

8

6

4

2

0

Probability of break down at work station #1

Fig 4.2.2-4 Sr-2 (Case D)

#1
#2

#4
#3

#7,#5
#6,#8
#9,# 10

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Probability of break down at work station #1
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These graphs show the robustness of the case D on the variance of the production. If

an appropriate planned lead time is applied to the unreliable job shop, it can make the

production smooth. As for the variance of queue, we can derive the relationship

from Chapter 2.

Var (Qii,t)=f( I-pi) ( a)2 }-I[Var( Pi,t) +pi ( I-pi)- E(Pit)2]

Thus in the reliable work station, the standard deviation of queue is just proportional

to the standard deviation of production and planned lead time.

E(Qi,t ) =[( I -pi) ad -1 E( Pilt)

From the above result, we can conclude following.

(1) If it is required to smooth the level the production, it is necessary to increase the

planned lead time for the appropriate work station. This method will work when

there are unreliable work stations.

(2) If the work station is unreliable and planned lead time is applied, then the work in

process inventory (queue to be produced) will increase and its variation will also

increase.

(3) The average production of the work station does not change even if the work

station is unreliable.

(4) The average queue of the work station is not affected by the other unreliable

work stations. It is affected by the unreliability of the own work station.

We should mention that these conclusions are based upon having no capacity

constraints at each work station.

In the following sections, we show the effect of production capacity constraints to

this problem.
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4.3 Simulation of the capacity constraints

In this section, we would like to show the example of the capacity constraints with

reliable work stations. For the infinite capacity case, we applied the analytical

approach. But for the finite capacity case, it is necessary to analyze the system with a

help of the simulation. In order to show the characteristics of the capacity

constraints we apply the model of the Graves where he applied implicit

consideration about the constraints. The capacity constraints are shown in the

following table.

Table 4.3.-1 Capacity constraints of work stations
W.s# 1 2 3 4 5 6 7 8 9 10
Const 6 2 2 2 2 2 2 2 2 2.5
E(P) 5.01 0.75 0.69 0.36 1.37 1.65 0.14 0.55 1.89 2.19

p 0.835 0.375 0.345 0.18 0.685 0.825 0.07 0.275 0.945 0.876
n(A) 1 1 1 1 1 1 1 1 1 1
n(D) 8 1 1 1 2 3 1 2 4 5

where p denotes the utilization load factor which is the ratio of expectation of

production and capacity constraints. Capacity is defined as the production in the unit

time period. At work station #1, it is possible to produce 6 units per time period, and

at #10, it is possible to produce 2.5 units per time period. The other work station can

produce or process 2 units per time period. E(P) is expected production of work in

each work station. If the load factor is greater than one, the work station cannot

complete its job within a given period of time. This table shows that work stations

#1, #5, #6, #9 and #10 are heavily loaded, especially at work station #9, where the

utilization load factor is 0.945. The queueing theory tells us, that there will be large

amount of queue at the heavily loaded work station. The planned lead time of the

example, case D, was applied mainly for these work stations. In the table above, n(A)

and n(D) are planned lead time of simulation case A and case D.



The simulation was carried out and we show the result of the simulation in Fig 4.3.-

1 and Table 4.3.-2. Fig 4.3.-1 shows the relationship between load factor and the

effect of capacity constraints, and Table 4.3.-2 shows the result of simulation.

Fig 4.3.-1 The effect of the constraints on production variance of reliable
work stations

a (constrained)/ a (unconstrained}

1.0

0.8

0.6

0.4

0.2

0
1 2 3 4 5 6

# of work stations
7 8 9 10

Fig 4.3-1 shows that the capacity constraints give large effect on the case A which

uses a planned lead time of one for every work station. The capacity constraints give

a smaller effect on the case D. When the appropriate planned lead time is applied, the

variance of the production is decreased as shown on the table 4.3.-2. But at the work

station #9, the change of the variance of production becomes the most significant,

because the load factor at the work station #9 is the heaviest. This work station is the

most saturated. On the other hand, there are no significant differences in the other
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work stations when the case D is applied. Thus it is not necessary to calculate with

constraints in these work stations.

Therefore if proper planned lead time and the capacity are selected, it is possible to

avoid the use of a complicated full scale simulation.

Tabel 4.3.-2-A Simulation result of Case A
Work S. 1 2 3 4

P.L.T.

P(B.d)

Const.

E(P) m

95% H

95% L

a,
E(Q)m.

95% H.

95% L.

E(Qn)m.

95% H.

95% L.

1

0

5

2

5

00 6

.01 4.982

- 5.067

- 4.896

.02 1.397

.01 6.206

- 6.446

- 5.965

0 1.224

- 1.418

- 1.031

1

0

0.75

0.32

0.75

0

2

0.747

0.760

0.735

0.234

0.747

0.760

0.735

0

0

0

1

0

0.69

0.19

0.69

0

2

0.69

0.703

0.678

0.166

0.690

0.703

0.678

0

0

0

1

0

0.36

0.17

0.36

0

2

0.357

0.364

0.349

0.142

0.357

0.364

0.349

0

0

0

1

0

1.37

0.39

1.37

0

6

1.365

1.386

1.343

0.340

1.368

1.390

1.346

0.003

0.004

0.003

6

1

0

CO 2

1.65 1.641

- 1.670

- 1.612

0.54 0.378

1.65 1.685

- 1.718

- 1.651

0 0.043

- 0.051

- 0.036

7

1

0

0o 2

0.14 0.137

- 0.139

- 0.135

0.04 0.034

0.14 0.137

- 0.139

- 0.135

0 0
- 0

- 0

8

1

0

oW 2

0.55 0.546

- 0.555

- 0.537

0.17 0.144

0.55 0.546

- 0.555

- 0.537

0 0

- 0

- 0

9

1

0

1.89

0.61

1.89

0

2

1.876

1.905

1.846

0.292

4.830

6.172

3.487

2.957

4.286

2.159

10

1

0

0O 2.5

2.19 2.175

- 2.212

- 2.138

0.74 0.381

2.19 2.199

- 2.239

- 2.159

0 0.024

- 0.029

- 0.020

Work S.

P.L.T.

P(B.d)

Const.

E(P) m

95% H

95% L

u,
E(Q)m.

95% H.

95% L.

E(Qn)m.

95% H.

95% L.



Tabel 4.3.-2-D Simulation result of
1 2 3

8 I 1

0 0 0
00 6 o0 2 c0 2

5.01 4.982 0.75 0.747 0.69 0.69

- 5.066 - 0.760 - 0.702

- 4.897 - 0.734 - 0.679

0.55 0.554 0.13 0.131 0.14 0.140

40.07 39.977 0.75 0.747 0.69 0.690
- 40.682 - 0.760 - 0702

Work S.

P.L.T.

P(B.d)

Const.

E(P) m

95% H

95% L

ap

E(Q) m.

95% H.

95% L.

E(Qn)m.

95% H.

95% L.

39.271

1.127

1.213

1.041

0

0.734

0

0

0

- 0.679

0 0

- 0

- 0

Case D
4

1

0

CO 2

0.36 0.357

- 0.364

- 0.349

0.11 0.116

0.36 0.357

- 0.364

- 0.349

0 0

- 0

- 0

5

2

0

00 6

1.37 1.365

- 1.386

- 1.344

0.20 0.197

2.74 2.730

- 2.772

- 2.687

0.06 0.061

- 0.063

- 0.059

6

3

0

oo 2

1.65 1.641

- 1.670

- 1.613

0.18 0.167

4.97 4.726

- 5.012

- 4.840

0.07 0.067

- 0.068

- 0.066

7

1

0

0o 2
0.14 0.137

- 0.138

- 0.135

0.02 0.020

0.14 0.137

- 0.138

- 0.135

0 0

- 0

- 0

8

2

0

oc 2

0.55 0.546

- 0.555

- 0.537

0.08 0.078

1.10 1.093

- 1.110

- 1.075

0.02 0.023

- 0.024

- 0.023

9

4

0

C 2

1.89 1.876

- 1.905

- 1.846

0.22 0.166

7.56 9.472

- 10.633

- 8.310

0.12 2.039

- 3.144

- 0.934

43

1.05

Work S.

P.L.T.

P(B.d)

const.

E(P) m

95% H

95% L

a(Yp

E(Q) m.

95% H.

95% L.

E(Qn)m.

95% H.

95% L.

10

5

0

2.19

0.23

10.96

0.13

2.5

2.175

2.212

2.139

0.181

10.878

11.061

10.695

0.107

0.111

0.103
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4.4 Simulation of unreliable work stations and capacity constraints

In the previous sections, we have shown the individual effect of the unreliable work

station and of the capacity constraint. In this section, we show an example of the

simulation with both unreliable work stations and capacity constraints. We carry out

the simulation for following eight cases which are denoted as A/D(u/c,r/u). A/D

indicates case A or case D, u/c indicates whether the capacity is unconstrained or

constrained and r/u indicates whether it has reliable work stations or not.
Unconstrained Constrained

Case A Case D Case A Case D
Reliable A(u,r) D(u,r) A(c,r) D(c,r)

Unreliable A(u,u) D(u,u) A(c,u) D(c,u)

The parameters in these simulations are the same as that of previous sections. The

unreliable work stations are modeled as having 10% of unreliablity for all but #9

work station. #9 work station is modeled as having 5% of unreliability. The load

factor of the unreliable work station is modeled as
E(P)

(i-P) Cp
where Pb denotes the probability of break down, and Cp denotes production

capacity. The next table shows the data of unreliable work station model and load

factor. We select Pb of #9 work station as 0.05 in order to keep the load factor below

1.0.

Table 4.4-1
W.s# 1 2 3 4 5 6 7 8 9 10
Const 6 2 2 2 2 2 2 2 2 2.5
E(P) 5.01 0.75 0.69 0.36 1.37 1.65 0.14 0.55 1.89 2.19

Pb 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.1
n(A) 1 1 1 1 1 1 1 1 1 1
n(D) 8 1 1 1 2 3 1 2 4 5

p 0.928 0.417 0.383 0.200 0.761 0.917 0.078 0.306 0.995 0.973
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Table 4.4-2-A,-D and following figures show the results of these simulation. In
order to see the relationship, we choose E(P); expectation of production, up;

standard deviation of production, E(Q); expectation of queue, E(Qn); backlog of the

production.

Fig 4.4-1-A,D show the standard deviation of production of each work station. The

results are normalized by the standard deviation from the unconstrained and reliable

cases, that is case A(u,r) or case D(u,r). The figures show that the case with

appropriate planned lead time (case D) is insensitive to the capacity constraint. It also

provides a smaller standard deviation for both reliable and unreliable work station.

Fig 4.4-2-A,D show the expectation of queue of each work station. The results are

normalized by the expectation of queue from the reliable and unconstrained case of

case A or case D. Increasing the planned lead time always leads to longer queue. But

the longer queue provides a benefit by smoothing the stochastic variation of the input

flow. Therefore when we use the planned lead time, we have to trade off the benefit

of the smooth production versus the increase in work-in-process inventory.



Fig 4.4-1-A ap/ap(Case A(u,r)): Standard deviation of the production

1 2 3 4 5 6 7 8 9 10
# of work station

Fig 4.4-1-D Standard deviation of the production

1 2 3 4 5
# of work station

6 7 8 9 10
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ayp/aTp(Case D(u,r)):
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1 2 3 4 5 6 7 8 9 10
# of work stastion

Fig 4.4-2-D E(Q)/E(Q; D(u,r)): Expected queue

1 2 3 4 5 6 7
# of work station

8 9 10

Fig 4.4-3 shows the expectation of the backlog of each work stations. The figure

suggests that when the work stations are heavily loaded, the expectation of the back

log is large. And when the work stations are unreliable, the back log will be larger.

U D(u,r)
E D(c,r)
O D(u,u)
X D(c,u) D(u,u),D(c,u)

-- D(u,r),D(c,r)

D(c,u)

2D c,r)
m -= - - if- "a - -

I I I I I I I

:cr)
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1 2 3 4 5
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6 7 8 9 10

6 7 8 9 10
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1 2 3 4 5
# of work station

15

10

5

0
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Table 4.4-2-A Simulation result: Unreliable work station Case A

Work S. 1

P.L.T. 1

P(B.d) 0.1

Const. 00 6

E(P) m 4.981 4.983

95% H 5.066 5.065

95% L 4.896 4.901

O, 3.219 1.968

E(Q) m. 5.568 15.038

95% H. 5.724 19.221

95% L. 5.412 10855

E(Qn)m. 0.587 10.057

95% H. 0.687 14.174

95% L. 0.487 5.941

Work S. 6

P.L.T. 1

P(B.d) 0.1

Const. 00

E(P) m 1.640

95% H 1.669

95% L 1.611

UP 1.107

E(Q) m. 1.817

95% H. 1.856

95% L. 1.777

E(Qn)m. 0.177

95% H. 0.195

95% L. 0.158

2

1.640

1.668

1.612

0.650

3.097

3.535

2.659

1.457

1.887

1.027

2

1

0.1

COo

0.747

0.759

0.734

0.601

0.835

0.853

0.816

0.088

0.095

0.081

7

1

0.1

013

0.137

0.139

0.135

0.112

0.152

0.154

0.149

0.015

0.016

0.014

2

0.747

0.759

0.735

0.460

0.841

0.858

0.823

0.093

0.100

0.086

3 4

1 1

0.1 0.1

00 2 00

0.690 0.690 0.357

0.702 0.701 0.364

0.678 0.679 0.349

0.430 0.392 0.306

0.766 0.769 0.395

0.777 0.779 0.406

0.755 0.759 0.384

0.076 0.079 0.039

0.079 0.085 0.044

0.073 0.073 0.034

8

1

0.1

2 00

0.137 0.547

0.138 0.555

0.135 0.538

0.092 0.387

0.152 0.605

0.153 0.616

0.150 0.595

0.015 0.059

0.015 0.066

0.014 0.052

2

0.546

0.555

0.538

0.321

0.607

0.617

0.597

0.058

0.063

0.053

9

1

0.05

1.873

1.903

1.843

1.466

1.983

2.014

1.953

0.110

0.119

0.101

5

1

0.1

1.364

1.386

1.343

0.944

1.526

1.561

1.490

0.161

0.186

0.136

10

1

0.1

2.172

2.210

2.133

1.925

2.392

2.442

2.342

0.222

0.247

0.197

2

0.357

0.364

0.350

0.270

0.395

0.406

0.385

0.039

0.044

0.034

2

1.871

1.893

1.850

0.471

14.775

20.085

9.466

12.902

18.191

7.613

6

1.364

1.384

1.344

0.675

1.864

1.959

1.769

0.499

0.586

0.412

2.5

2.173

2.200

2.145

0.780

6.816

8.865

4.766

4.646

6.685

2.606



50

Table 4.4-2-D Simulation result: Unreliable work station Case D

Work S. 1 2 3 4 5
P.L.T. 8 1 1 1 2
P(B.d) 0.1 0.1 0.1 0.1 0.1
Const. 00 6 00 2 00 2 00 2 00 6

E(P) m 4.981 4.978 0.747 0.746 0.690 0.689 0.357 0.357 1.364 1.364
95% H 5.064 5.023 0.759 0.754 0.701 0.697 0.364 0.360 1.385 1.378
95% L 4.897 4.933 0.734 0.739 0.679 0.681 0.349 0.354 1.343 1.350

a, 1.853 1.730 0.462 0.435 0.400 0.394 0.269 0.265 0.622 0.571
E(Q) m. 44.557 47.969 0.816 0.831 0.766 0.773 0.396 0.400 3.043 3.205
95% H. 45.715 49.488 0.865 0.848 0.777 0.783 0.406 0.402 3.097 3.313
95% L. 43.399 46.450 0.766 0.814 0.756 0.764 0.385 0.397 2.988 3.096
E(Qn)m. 4.963 8.323 0.086 0.086 0.076 0.085 0.039 0.043 0.412 0.562
95% H. 5.614 9.585 0.092 0.100 0.081 0.090 0.044 0.048 0.444 0.643

95% L. 4.312 7.062 0.080 0.071 0.072 0.080 0.035 0.038 0.379 0.481

Work S. 6 7 8 9 10
P.L.T. 3 1 2 4 5
P(B.d) 0.1 0.1 0.1 0.05 0.1
const. 0 2 00 2 00 2 0 2 00 2.5

E(P) m 1.640 1.642 0.137 0.136 0.546 0.546 1.872 1.866 2.171 2.163
95% H 1.668 1.661 0.138 0.138 0.555 0.552 1.900 1.885 2.206 2.192
95% L 1.611 1.623 0.135 0.135 0.538 0.540 1.844 1.847 2.137 2.133

O, 0.635 0.576 0.089 0.087 0.237 0.239 0.557 0.449 0.799 0.731
E(Q) m. 5.444 6.719 0.151 0.152 1.209 1.215 7.898 22.978 12.002 15.711
95% H. 5.544 7.449 0.154 0.154 1.226 1.234 8.024 37.077 12.234 17.980
95% L. 5.343 5.988 0.149 0.150 1.191 1.197 7.771 8.879 11.770 13.442
E(Qn)m. 0.591 1.842 0.015 0.016 0.145 0.150 0.599 15.529 1.251 4.929
95% H. 0.631 2.529 0.016 0.017 0.153 0.159 0.623 29.542 1.355 7.089
95% L. 0.550 1.156 0.014 0.014 0.137 0.140 0.575 1.517 1.147 2.768



Chapter 5. Conclusion

The purpose of this work was to extend an analytical model and to develop a

simulation model for a job shop planning problem. The focus was on the extension

of the Tactical Planning Modell to permit unreliable multiple work stations with

production constraints.

The analytical model provides the steady state distribution of the production levels

and the work in process inventory at each work station without capacity constraints.

The simulation model also provides the steady state distribution of the production

levels and the work in process inventory and steady state expectation of backlogs

with capacity constraints.

In Chapter 2, we reviewed the Tactical Planning Model proposed by Graves, and

extended the analysis to allow unreliable multiple work stations.

In Chapter 3, we showed the dynamic simulation model to examine the performance

of the system.

In Chapter 4, we showed the result of the simulation and analysis. We showed the

validation of the simulation model and analytical model. After the validation we

showed the example of the simulation and analysis of the model with unreliable work

stations and with capacity constraints.

We have obtained following results:

(1) If the work station is unreliable, the steady state of the work station will become

as follows.

(a) The average production of each work station does not change even if there are

unreliable work stations, provided that the load factor of the work station does not
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exceed one. If the load factor is more than one the system cannot satisfy the

requirement.

(b) The variance of production will be larger with the increase of the unreliability.

(c) The variance and expectation of the work in process inventory or queue will

increase. The average queue of the work station is not affected by the other

unreliable work stations. It is affected by the unreliability of the own work station.

(d) The expectation of the back log will be large. And at the heavily loaded work

station, the back log will be larger.

(2) The capacity constraints of the work station makes the variance of the production

smaller, especially when the work station is heavily loaded and/or the variance of

production is large. Therefore simulation with capacity constraint is essential tool

for analysis, when there are some heavily loaded work stations without an

appropriate planned lead time and/or high unreliability.

(3) Applying a larger planned lead time makes it possible to analyze the system

without the help of complicated and time consuming simulation.

(4) If it is required to make the level the production smooth in case of unreliable

work stations, it is necessary to apply appropriate planned lead time especially for

the heavily loaded work stations. Larger planned lead time makes the work station

insensitive to the variance of input work flow.

(5) If the job shop is highly reliable and the work in process inventory is very costly,

tactics like "Just-in-time" system will work because of its low level of queue.
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Therefore when we use the planned lead time, we have to trade off the benefit of the

smooth production and the cost of the work-in-process inventory.
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Appendix A. The analytical calculation program

A.1 Flow Chart

This program is desinged to calculate expectation and variance of production and

queue of unreliable work station problem without production constraints.

The inputs are stored by the form of DATA sentence of the main program and the

file form of outside the program. In order to avoid the time consuming calculation

of (I-4)-1, it is stored in the outside data file. Therefore this matrix should be

calculated at the first time when the new transient matrix D comes in. The algorithm

of the matrix inversion and determinant are from M.R. Rosenthal 8 (1966).

The outputs are obtained as the display form and data file form. The display form is

on the screen of the personal computer, and the data file is on the "CLIP BOARD".

The latter form makes it possible to use the output in the word processing software.

But these output devices can be changed with ease by changing the assignment

sentences.
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-1
(I-<D)
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A.2 Operation manual

(1) Data

The following data sets are in the main program. They should be changed in case of

need.

a.Planned lead time

This term is inverse of ai and the input order is from work station one to ten. For

example if it is the case D of Chapter 4, then

DATA 8,1,1,1,2,3,1,2,4,5

b. Probability of the work center break down

This term is the probabilities of break down of each workstation. For example if pi

is 0.8 and the others are 0 then

DATA 0.80,0,0,0,0,0,0,0,0,0

c.Average input noise

This term is the average input noise. For example

DATA 4,0,0,0,0,0,0,0,0,0

d. Transition matrix

This term is the transition matrix of the work flow. In this paper it was described as

<D (Phai). This matrix is described by ten data sentenses. For example,

DATA 0,0,0.11,0,0.68,0,0,0,0,0

*

DATA 0,0,0,0,0,0,0,0,1.16,0
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e. Variance of input noise

This term is the diagonal elements of the Covariance matrix of the input noise. For

example,

DATA 4.00,0.01,0.01,0.01,0.04,0.04,0,0.01,0.04,0.04

f. Flag for matrix output

This flag is used to command whether matrix elements in the calculation be printed

out or not. When it is set as one, the print out of the matrix will come out. For

example, when it is unnecessary to print out,

DATA 0

g.Flag for calculate inverse transition matrix.

This flag is used to command whether it is necessary to calculate the inverse of the

transition matrix (I-<D)-1. When the matrix of <D is changed this matrix has to be

recalculated. This flag should be one when calculation is required, else it should be

zero. When it is zero stored matrix (I-<D)-1 can be obtained. For example,
DATA 0

h. Number of iteration of the calculation of Var(Q)

This term command the number of iteration of the calculation block of variance of

queue. If it is necessary to calculate 16 times to get the convergence, it should be

DATA 16

(2) Output devices

The outputs of this program is assigned to the screen and data file.
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Followings are sentences of the assignment. The first assigns CRT of personal

computer, and the second assigns "Clipboard" as a output data file.

OPEN "SCRN:" FOR OUTPUT AS #1

OPEN "CLIP:" FOR OUTPUT AS #5

A.3 Program list (BASIC)
The applied personal computer is Macintosh "@

A Tactical Planning Model for a Job Shop
With Unreliable Work Station

This program was designed to calculate expected value and *

standard deviation of the production and the queue. *

The work stations were modeled to break down by Bernoulli*
process.

This work is a part on the master thesis of the writer.
*

November 12, 1987 @ Shoichiro Mihara *

Output port select. Select clipboard as a out put file.
OPEN "SCRN:" FOR OUTPUT AS #1
OPEN "CLIP:" FOR OUTPUT AS #5

'Declare of double precision
DEFDBL A-H,O-Z

Definition of dimention of vectors and matrixes
Dim : Input variables

DIM XNV(10),PV(10),XMUIV(10),PHI(10,10),SIGV(10)

Dim : for convinuence
DIM EI(1 0,10),EIMPHI(10,10),REIMPH(1 0,1 0),XCHECK(10,10)
DIM ALPHA(10,10),PHISQ(10,10),EIPPHS(10,10),PMAT(10,10),C(10,10)

DIM EIMPMT(1 0,10),EMPTTD(1 0,10),REMPTD(10,1 0),REPDEP(1 0,10)
DIM QMEAN(10),RALPHA(10,10),PMEAN(10)

DIM EIPSPH(10,10),EPSPHD(10,10),SIGMAT(10,10),SQMEAN(10)
DIM E12(10,10) ,E2MEPD(10,10), R2MEPD(10,10),RPDRPH(10,10)

@ Macintosh is a trademark licensed to Apple Computer,Inc.
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DIM ESPDPD(10,10),ESPPPP(10,10),RPDPPP(10,10),RPPSEQ(10)
DIM R2MVAS(10),VARQUE(10),STAQUE(10),STAPRO(10)
DIM EMPDD(1 0,1 0),EMPDDP(1 0,1 0),EPDPSQ(1 0),PDDVAQ(1 0),VARPRO(1 0)
DIM EIPHPD(10,10),BBEPDP(10,10),TRBBED(10,10)
DIM SIGMA(10,10),BN(10,10),TBN(10,10)
DIM WR1(10,10),WR2(10,10),WR3(10,10)
DIM SBN(10,10),APEIP(10),ADDSIG(10,10),TREPHI(10,10),ADDVAR(10,10)
DIM ADDWR1(10,10)

Input (1) Planned lead time
FOR 1=1 TO 10

READ XNV(I)
NEXT I

Input (2): Probabilities of break down of work centers
FOR J=1 TO 10

READ PV(J)
APEIP(J)=PV(J)*(1 -PV(J))/XNV(J)/XNV(J)

NEXTJ
'Input (3): Expected value of inputs into the work centers from outside

source. Muiu
FOR J=1 TO 10

READ XMUIV(J)
NEXTJ

'Input (4): Work flow matrix
FOR K=1 TO 10
FOR L=1 TO 10

READ PHI(K,L)

NEXT L
NEXT K

'Input (5): Covariance of inputs into the work centers from outside
source. Sigma

FOR J=1 TO10
READ SIGV(J)

NEXTJ

Debug mode or not/ if Drbug=1 then print many parameters
READ IDBUG

If Flag is zero output (1-phi)-1 to data file after calculation.
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else input data and not calculate.
READ Flag
PRINT Flag

IF Flag=1 THEN OPEN "InvEmPhi.Data" FOR OUTPUT AS #2
IF Flag=O THEN OPEN "InvEmphi.Data" FOR INPUT AS #2

Definition of the size of matrixes
N=10:N1=1
Input data and title
GOSUB Titlepage

' Unit
CALL

matrix
UNIT(El(),N)

'Equations; (1) Basic matrix
'(1-phi) , (1-phi)-1

' If Flag is 1 output (1-phi)-1 to data
0 input data and not calculate.

CALL MINUS(EI(),PHI(),EIMPHI(),N,N) :'
IF Flag = 0 GOTO jumpinv

CALL INVERS(REIMPH(,EIMPHI(),C(,N)
FOR j1=1 TON

FOR i1=1 TON
WRITE #2,REIMPH (jl,il)

NEXT i1
NEXT j1
GOTO outofinv

file after calculation.

EIMPHI=1-PHI

:' REIMPH=EIMPHIA-1

jumpinv:

FOR j1=1 TO N
FOR il=1 TON

INPUT #2,REIMPH(jl,il)
NEXT i1

NEXT j1
outofinv:

CLOSE #2
'XCHECK=REIMPH*EIMPHI

'CALL MULTI (REIMPH(,N,N,EIMPHI(),N,N,XCHECKO)
CALL DIAG(XNV(,RALPHA(,N) :' Trans from vec to diag matrix
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CALL DIAINV(ALPHA(,RALPHA(,N) : 'Alpha = 1/ planned lead time
CALL DIAG(SIGV(,SIGMAT(,N) :' Trans v to d-mat --- noise var.
CALL DIAG(PV(,PMAT(,N) :' Trans v to d-mat --- prob. break

CALL MINUS(EI(),PMAT(,EIMPMT(,N,N) :' Eipmt=Ei-Pmat
'Empttd=Eimpmt*Alpha
CALL MULTI (EIMPMTo,N,N,ALPHAo,NN,EMPTTDo)

Eiphpd=(Ei-phi)*D*(1-p)
CALL MULTI(EIMPHI(),N,N,EMPTTDON,NEIPHPDO)

'Bbepdp=Ei-Eiphpd
CALL MINUS(El(),EIPHPDo,BBEPDPo,N,N)
CALL TRANS(BBEPDPo,N,N,TRBBEDo)
CALL TRANS(EIMPHI(),N,N,TREPHI())

'calculation of expectation( Production and Queue )
'Remptd=EmpttdA-1

CALL DIAINV(REMPTDO,EMPTTD(,N)
'Repdep=Remptd* Reimph

CALL MULTI(REMPTDON,N,REIMPHo,N,N,REPDEPo)
'E(Q)=Repdep*Xmuiv
CALL MULTIV(REPDEPo,N,N,XMUIVo,N,QMEANo)
'E(P)=Empttd*E(Q)

CALL MULTIV(EMPTTDo,N,N,QMEANo,N,PMEANo)

Outputl
GOSUB Printoutputl

'Print for debug
IF IDBUG=1 THEN GOSUB Printdebugl

calculation of variance of queue.
FOR J=1 TO 10

SQMEAN(J)=QMEAN(J)*QMEAN(J) :' Sqmean(i)= E(Q (i) )A2

NEXT J

XX=1#
CALL KMULTMAT(XX,SIGMAT(,SIGMA(),N,N) :' Sigma=Sigmat
CALL KMULTMAT(XX,BBEPDPO,BNo,NN) :' Bn=Bbepdp
CALL KMULTMAT(XX,TRBBEDO,TBNO,N,N) :' Tbn= transpose (Bn)

loop of the approximation
READ Ite

FOR 1=1 TO Ite
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PRINT USING " I= ##";I
FOR J=1 TO 10

ADDSIG(J,J)=APEIP(J)*(SIGMA(J,J)+SQMEAN(J))
NEXT J

' Addvarl =(1-phi)*addsig
CALL MULTI(EIMPHI(),N,N,ADDSIGo,N,N,ADDWR1()

'Addvar=Addvarl *(1 -phi)T=(l -phi)*addsig*(l -phi)T
CALL MULTI(ADDWR1 (),N,N,TREPHI(),N,N,ADDVARo)

' Wrl=Bn*Sigma
CALL MULTI(BNo,N,N,SIGMAo,N,N,WR1())

'Wr2=Wrl *Tbn=Bn*Sigma*Tbn
CALL MULTI(WR1 (),N,N,TBNo,N,N,WR2())

'Wr3= Bn*Sigma*Tbn+Addvar
CALL PLUS (ADDVARo,WR2(),WR3(),N,N)

'Sigma=Wr3+Sigmat
CALL PLUS(SIGMATo,WR3(),SIGMAo,N,N)

NEXT I

FOR 1=1 TO 10
VARQUE(I)=SIGMA(I,) :' Var(Q)=SIGMA
STAQUE(I)=SQR(VARQUE(I)) :' Stand. Dev (Q)= Root (Var(Q))

NEXT I
'End of the calculation 1

Variance of production and standard deviation
Empdd=Empttd*Alpha
CALL MULTI (EMPTTDo,N,N,ALPHAo,N,N,EMPDDo)

'Empddp=Empdd*Pmat
CALL MULTI (EMPDD(,N,N,PMAT(,N,N,EMPDDP()

'Epdpsq=Empddp*Sqmean
CALL MULTIV(EMPDDPo,N,N,SQMEANo,N,EPDPSQo)

'Pddvaq=Empdd*Varque
CALL MULTIV(EMPDD(,N,N,VARQUE(,N,PDDVAQo)

FOR 1=1 TO 10
VARPRO(I)=EPDPSQ(I)+PDDVAQ(I) :'Var(p)=Epdpsq+Pddvaq
STAPRO(I)=SQR(VARPRO()) :' Stand. dev. of p= Root(Var(p))

NEXT I

output
GOSUB Printoutput2
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GOSUB Printoutput3

CLOSE #1
CLOSE # 5

BEEP:BEEP:BEEP
END

Planned lead time
DATA 8,1,1,1,2,3,1,2,4,5

'DATA 1,1,1,1,1,1,1,1,1,1
Probability of the work center break down
DATA 0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.05,0.1

DATA 0.80,0,0,0,0,0,0,0,0,0
Average input noise
DATA 4,0,0,0,0,0,0,0,0,0
' Phi -- Work flow matrix
DATA 0,0,0.11,0,0.68,0,0,0,0,0
DATA 0.15,0,0,0,0,0,0,0,0,0
DATA 0.04,0.01,0,0.71,0,0.06,0,0,0.07,0
DATA 0.01,0.41,0,0,0,0,0,020,0
DATA 0.03,0.37,1.36,0,0,0,0,0,0,0
DATA 0.24,0,0,0,0.15,0,0,0,0.13,0
DATA 0,0,0,0,0.1,0,0,0,0,0
DATA 0.01 ,0,0,0,0,0.22,1,0,0,0
DATA 0,0,0,0,0,0,0,3.43,0,0
DATA 0,0,0,0,0,0,0,0,1.16,0

'Variance of input noise
DATA 4.00,0.01,0.01,0.01,0.04,0.04,0,0.01,0.04,0.04

'Debug or not (1--- print, else none)
DATA 0
' calculate inverse of (1-phi) flag =1 calculate flag=0 no
DATA 0
# of iterations

DATA 32

SUB DIAINV(A(2),B(2),N) STATIC
FOR J=1 TO N

A(J,J)=1/B(J,J)
NEXT J
END SUB
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SUB INVERS(A(2),B(2),C(2),N) STATIC
FOR 1=1 TO N
FOR J=1 TO N

C(I,J)=B(I,J)
NEXT J

NEXT I
CALL DETM(Co,N,E)
IF E=0 THEN PRINT #1," NO INVERSE FOR THIS MATRIX" ELSE GOTO 10

GOTO 20
10 M=N-1

FOR 1=1 TO N
FOR J=1 TO N

FOR K=l TO N
FOR L=1 TO N

C(K,L)=B(K,L)
NEXT L

NEXT K
H=1
FOR L=1 TO N

C(I,L)=C(N,L)
NEXT L
FOR K=1 TO N

C(K,J)=C(K,N)
NEXT K

IF NOT ((N=J AND N=I) OR (N<>J AND N<>I) ) THEN H=-1 ELSE H=1
CALL DETM(Co,M,DET)

A(J,I)=DET/E*H
NEXT J

NEXT I
20 END SUB

SUB DETM(A(2),K,DET) STATIC
Z=1

FOR M=2 TO K
IF A(M-1,M-1) <> 0! THEN GOTO 50
FOR I=M TO K
IF A(M-1,I) <>0 THEN GOTO 40

NEXT I

DET=0!
GOTO endreturn

40 13=M-1
FOR 12=13 TO K
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TEMP=A(12,13)
A(12,13)=A(12,1)

A(12,1)=TEMP
NEXT 12
Z=Z*(-1!)

50 FOR I=M TO K
R=A(I,M-1)/A(M-1,M-1)

FOR J=M TO K
A(I,J)=A(I,J)-A(M-1,J)*R

NEXT J
NEXT I
NEXT M
DET=1

FOR 1=1 TO K
DET=DET*A(I,I)

NEXT I
DET=DET*Z
endreturn:

ENDSUB

SUB MULTI(A(2),IA,KA,B(2),KB,JB,C(2)) STATIC
IF KA<> KB THEN PRINT #1,"ARGUMENT ERROR" ELSE GOTO LOOPSTART
GOTO LOOPEND

LOOPSTART: FOR 1=1 TO IA
FOR J=1 TO JB

S=0
FOR K=1 TO KA

S=S+A(I,K)*B(K,J)
NEXT K
C(I,J)=S

NEXTJ
NEXT I
LOOPEND:

END SUB
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SUB MULTIV(A(2),IA,KA,B(1),KB,C(1)) STATIC
IF KA<>KB THEN PRINT #1, "ARGUMENT ERROR"

LOOPSTART:
FOR 1=1 TO IA

S=0
FOR K=1 TO KA

S=S+A(I,K)*B(K)
NEXT K
C(I)=S

NEXT I
LOOPEND:

END SUB

SUB KMULTMAT(XK,B(2),C(2),N,M) STATIC
FOR 1=1 TO N

FOR J=1 TO M
C(I,J)=XK*B(I,J)

NEXTJ
NEXT I

END SUB

SUB PLUS(A(2),B(2),C(2),N,M) STATIC
FOR 1=1 TO N

FOR J=1 TO M
C(I,J)=A(I,J)+B(I,J)

NEXTJ
NEXT I

END SUB

SUB MINUS(A(2),B(2),C(2),N,M) STATIC
FOR 1=1 TO N
FOR J=1 TO M

C(I,J)=A(I,J)-B(I,J)
NEXTJ

NEXT I
END SUB
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SUB CLMAT(A(2),N,M) STATIC
FOR 1=1 TO N

FOR J=1 TO M
C(I,J)=O!

NEXT J
NEXT I

END SUB

SUB UNIT(C(2),N)
FOR 1=1 TO N

C(1,1)=1#
NEXT I

END SUB

STATIC

SUB DIAG(V(1),A(2),N) STATIC
FOR 1=1 TO N

A(I,1)=V(I)
NEXT I

END SUB

SUB TRANS (A(2),N
FOR 1=1 TO N

FOR J=1 TO M
ATR(J,I)=A(I,J

NEXT J
NEXT I

END SUB

SUB PRINTMAT(A(
FOR 1=1 TO N

L=1
loopprint:

IF L>10 THEN GC
PRINT #1, US

L=L+1
GOTO loopprin1

endloop:
PRINT #1

NEXT I
PRINT #1, :PRINT
END SUB

,M,ATR(2)) STATIC

1)

2),N,M) STATIC

)TO ENDLOOP
ING "##.### " ;A(I,L)
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SUB PRINTVEC(A(1),N)STATIC
FOR 1=1 TO N

PRINT #1, USING "##.### " ;A(l);
NEXT I
PRINT #1,:PRINT #1,

END SUB

SUB SQELM(A(2),N,M,SA(2)) STATIC
FOR 1=1 TO N

FOR J=1 TO M
SA(I,J)=A(l,J)*A(l,J)

NEXT J
NEXT I

END SUB

Titlepage:
PRINT #

PRINT #1, "***
PRINT

PRINT #1
PRINT #1,

1, **** ***************************************tt

Macintosh version of Tactical Planning Model
#1,

A Tactical Planning Model for a Job Shop
With Unreliable Work Station

PRINT #1,
PRINT #1, PRINT #1,
PRINT #1, " 1. Input value" :PRINT #1,
PRINT #1, " a. Planned lead time"

CALL PRINTVEC(XNVO,N)
PRINT #1, " b. Probability of break do

CALL PRINTVEC(PV(,N)
PRINT #1, " c. Average input noise"

CALL PRINTVEC(XMUIV(,N)
PRINT #1, " d.Covariance of input noi

CALL PRINTVEC(SIGV(,N)
RETURN

Printoutputl:
PRINT #1, : PRINT #1,

PRINT #1, " 2. Output value" :PRINT #1,
PRINT #1, " a. Average of queue E(Q)"

CALL PRINTVEC(QMEAN(,N)
PRINT #1, " b. Average of production E(P)"

CALL PRINTVEC(PMEAN(,N)
RETURN

*** ***********************"i

vn"

se (diagonal element)"
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Printdebugl:
PRINT #1, "MATRIX (1-PHI)"

CALL PRINTMAT(EIMPHI(),N,N)
PRINT #1, "MATRIX (1 -PHI)A1*(1 -PHI)"

CALL PRINTMAT(XCHECK(,N,N)
PRINT #1, "MATRIX PMAT"

CALL PRINTMAT(PMATo,N,N)
PRINT #1, "MATRIX PHI"

CALL PRINTMAT(PHI(),N,N)
PRINT #1,

PRINT #1,
RETURN

Printoutput2:
PRINT #1, " c. Variance of queue
CALL PRINTVEC(VARQUE(,N)

Var(Q)"

PRINT #1, " d.Standard deviation of queue"
CALL PRINTVEC(STAQUE(,N)

PRINT #1, " e. Variance of production Var(P)"
CALL PRINTVEC(VARPRO(),N)

PRINT #1, " f.Standard deviation of production"
CALL PRINTVEC(STAPRO(),N)
RETURN

Printoutput3:
PRINT #5,

PRINT #5, "*** A Tactical Planning Model for a Job Shop
PRINT #5, " With Unreliable Work Station

P RIN T #5, "**************** ****"
PRINT #5, -

PRINT #5,USING"
PRINT #5," W.S. ";" N

FOR 1=1 TO 10
PRINT #5,USING" ##

##.###";I;XNV(I);PV(I);QMEA
NEXT I

RETURN

Ite=##" ;Ite
";" P -BD";" E(Q) ";" S(Q) ";" E(P) ";" S(P) "

## ##.### ##.### ##.### ##.###
;STAQUE(I) ;PMEAN(I) ;STAPRO(I)



Appendix B. The complete STELLA Model

B.1 Flow Diagram
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- Produ a
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AveQ_2
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Sq_Pro3 Pro3_av xs

Product_1 -SETMAX ProductMax_5

Q u e u e 
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73

Pro7_av xs

Sigma_8
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'-'Avexs_10
Prol0_avxs

\ NJ '-- Sigma_8
Sigma_3 Sigma5 Sigma_10 Sigma_9

05_CV_2

Q1_CV_5 Q_10_CV_3Q10 CV_4

Sq_Prol0

Q1_CV_.4
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Q8-LAG-1 Q8-LAG-2 OUT-BL-1 OUT-BL OUT-BL-2

AVE-BL-9 AVE-BL-1 0 AVE-BL-8

AVE-BL-2 AVE-BL-4AVE-BL-3
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Queue_8 - 8 CV 2-Q8-CV1 QC

P1 CV 7 P1CV 8

L-2

Time ave Queue_2
ProP2

ProP 1
Time-ave
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B.2 Equations

AVE BL 1=AVE BL 1+ProP1_av
INIT(AVEBL_1)=O

AVE BL 2=AVE BL 2+Pro P2 av
INIT(AVE_BL_2)=O

AVE BL 3=AVE BL 3+ProP3_av
INIT(AVEBL_1)=O

AVEBL 4=AVEBL_4+ProP4_av
INIT(AVEBL_4)=O

AVE BL 5=AVEBL_5+ProP5_av
INIT(AVEBL_5)=0

AVE BL 6=AVE BL 6+Pro P6 av
INIT(AVEBL_6)=O

AVE BL 7=AVE BL 7+Pro P7 av
INIT(AVEBL_7)=O

AVE BL 8=AVE BL 8+ProP8_av
INIT(AVEBL_8)=O

AVE BL 9=AVEBL_9+ProP9_av
INIT(AVEBL_9)=0

AVE BL 10=AVEBL 10+ProPlOav
INIT(AVEBL_10)=O

AveQ_1=Ave_Q_1+Q_1_av
INIT(AveQ_1)=INIT(Queuel)

Ave_Q_2=Ave_Q_2+Q_2_av
INIT(Ave_Q_2)=INIT(Queue_2)

AveQ_3=Ave_Q_3+Q_3_av
INIT(Ave_Q_3)=INIT(Queue_3)

AveQ_4=Ave_Q_4+Q-4av
INIT(AveQ_4)=INIT(Queue_4)

AveQ 5=Ave_Q_5+Q_5_av
INIT(Ave_Q_5)=INIT(Queue_5)

Ave_Q_6=Ave_Q_6+Q_6_av
INIT(Ave_Q_6)=INIT(Queue_6)

Ave_Q_7=Ave_Q_7+Q_7_av
INIT(Ave_Q_7)=INIT(Queue_7)

Ave_Q_8=Ave_Q_8+Q_8_av
INIT(Ave_Q_8)=INIT(Queue_8)

Ave_Q_9=Ave_Q_9+Q_9_av
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INIT(Ave_Q_9)=INIT(Queue_9)
Ave_Q_10=Ave_Q_10+Q_10_av

INIT(Ave_Q_10)=INIT(Queuel0)

Ave xs_1=Ave xs_1+Prol av xs
INIT(Avexs_1)=INIT(Queue_1)*INIT(Queue_1)*Alpha 1*Alpha_1

Ave xs 2=Ave xs_2+Pro2_av xs
INIT(Avexs_2)=INIT(Queue_2)*INIT(Queue_2)*Alpha 2*Alpha_2

Ave xs_3=Ave xs 3+Pro3 av xs
INIT(Avexs_3)=INIT(Queue_3)*INIT(Queue_3)*Alpha_3*Alpha_3

Ave xs_4=Ave xs_4+Pro4_av xs
INIT(Avexs_4)=INIT(Queue_4)*INIT(Queue_4)*Alpha_4*Alpha_4

Ave xs 5=Ave xs_5+Pro5_av xs
INIT(Avexs_5)=INIT(Queue_5)*INIT(Queue_5)*Alpha_5*Alpha_5

Ave xs 6=Ave xs 6+Pro6 av xs
INIT(Avexs_6)=INIT(Queue_6)*INIT(Queue_6)*Alpha_6*Alpha_6

Ave xs_7=Ave xs_7+Pro7_av xs
INIT(Avexs_7)=INIT(Queue 7)*INIT(Queue_7)*Alpha_7*Alpha_7

Ave xs_8=Ave xs 8+Pro8_av xs
INIT(Ave_xs_8)=INIT(Queue_8)*INIT(Queue_8)*Alpha_8*Alpha_8

Ave xs 9=Ave xs_9+Pro9_av xs
INIT(Avexs_9)=INIT(Queue_9)*INIT(Queue_9)*Alpha_9*Alpha_9

Ave xs 10=Ave xs 10+ProlO av xs
INIT(Ave_xs_1 0)=INIT(Queue_10)*INIT(Queue_ 10)*Alpha 10*Alpha_ 10

Ave x_1=Ave x_1+Prol av x
INIT(Ave-x_1)=INIT(Queue_1)*Alpha_1

Ave x 2=Ave x_2+Pro2_av x
INIT(Ave-x_2)=INIT(Queue_2)*Alpha_2

Ave x 3=Ave x 3+Pro3 av x
INIT(Ave_x_3)=INIT(Queue_3)*Alpha_3

Ave x 4=Ave x 4+Pro4_av x
INIT(Ave_x_4)=INIT(Queue_4)*Alpha_4

Ave x 5=Ave x 5+Pro5_av x
INIT(Ave_x_5)=INIT(Queue_5)*Alpha_5

Ave x 6=Ave x 6+Pro6 av x
INIT(Ave_x_6)=INIT(Queue_6)*Alpha_6

Ave x 7=Ave x 7+Pro7 av x
INIT(Ave_x_7)=INIT(Queue_7)*Alpha_7

Ave_x_8=Ave x_8+Pro8_av x
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INIT(Ave-x-8)==(Queue-8)*Alpha-8
Ave-x-9=Ave-x-9+Pro9-av-x

INIT(Ave -x -9)=INIT(Queue-9)*Alpha-9
Ave-x-10=Ave-x-10+ProlO-av-x

INIT(Ave-x-10)=INIT(Queue_10)*Alpha-10

PIO-LAG-1=PlO-LAG-1+PlO-CV-1
INIT(PIO-LAG-1)=O
P10-LAG-2=PlO-LAG-2+PlO-CV-2

INIT(PlO-LAG-2)=O
P10-LAG-3=PlO-LAG-3+PlO-CV-3

INIT(PlO-LAG-3)=O
PIO-LAG-4=PIO-LAG-4+PlO-CV-4

INIT(PIO-LAG-4)=O
P10-LAG-5=PIO-LAG-5+PIO-CV-5

INIT(PlO-LAG-5)=O
Pl-LAG-1=Pl-LAG-1+Pl-CV-1

INIT(Pl-LAG-1)=O
Pl-LAG-2=Pl-LAG-2+Pl-CV-2

INIT(PI-LAG-2)=O
Pl-LAG-3=Pl-LAG-3+Pl-CV-3

INIT(Pl-LAG-3)=O
PI-LAG-4=Pl-LAG-4+Pl-CV-4

INIT(Pl-LAG-4)=O
Pl-LAG-5=Pl-LAG-5+Pl-CV-5

INIT(Pl-LAG-5)=O
PI-LAG-6=Pl-LAG-6+Pl-CV-6

INIT(Pl-LAG-6)=O
PI-LAG-7=PI-LAG-7+Pl-CV-7

INIT(Pl-LAG-7)=O
PI-LAG-8=Pl-LAG-8+Pl-CV-8

INIT(Pl-LAG-8)=O
P2-LAG-1=P2-LAG-1+P2-CV-1

INIT(P2-LAG-I)=O
P3-LAG-I=P3-LAG-I+P3-CV-1

INIT(P3-LAG-I)=O
P4-LAG-1=P4-LAG-1+P4-CV-1

INIT(P4-LAG-I)=O
P5-LAG-I=P5-LAG-I+P5-CV-1



0=(CDV-1-10),LINI
E AD 10+COV-1-10=CDV-1-10.

o=(Z-DV-I-TO)JINI
Z AD 10+Z-DV-1-10=Z-OV-1-10.

0=(T-DVI-T0),LINI
I AD

0=(g-DV-1-010),LINI
9 AD OTO+9-DV-I-OTO=9-DV-1-OTO.

0=(t-DV-1-010)JLINI
t AD 010+t-DVI-010=t-DVI-016.

0=(COV-1-OTO)JLINI
E AD OTO+CDVrl-010=CDV-1-OTO.

o=(Z-ovq-010)JINI
Z AD OTO+Z-DVI-010=Z-OVI-OIO.

0=(T-DVrl-OTO)JINI
T AD 010+T-DVI-OTO=T-DV-1-010.

0=(t-DV-1-6d)JIKI
t AD 6d+t OVI 6d=t, OVI 6d

0=(CDV-1-6d)JLINI
E AD 6d+E OV-F6d=COV!-6d

0=(Z-DVI-6d)JLINff
Z AD 6d+Z DVq-6d=Z-DVI-6d

O=Q OVrl 6d)JLIMI
T AD 6d+l OVI 6d=l OVI 6d.

0=(z-ov-i-sd)JLINI
Z AD 8d+Z OVrl Bd=Z OVI 8d

0=(T-DV-1-8d)JINff
I AD 8d+l DV!-8d=I-DVI-Sd.

0=(I-DV-1-Ld)JIM
T AD Ld+T OVI Ld=1 OVI-Ld

0=(COV-1-qd)JuNI
E AD 9d+E OVI 9d=E DVrl 9d

0=(Z-JDV-1-9d)JUM
Z AD 9d+Z DVq-9d=Z-DVI-9d

0=Q-Dv!-qd),LINff
T AD 9d+l DVq-9d=I-DVq-9d.

0=(Z-Dvq-gd)JLIM
Z AD 9d+C9Vq-9d=Z-OVI-9d.

o=(I-ov-l-gd)jlm

08



0=(t-0V-1-6b)11NI
t AD 6b+t-DV-1-60=V-DV-1-60.

0=(COV-1-6b)11NI
E AD 60+CDV-1-6b=CDV-1-60.

0=(Z-DV-1-60)11NI
Z AD 60+Z-DV-1-60=Z-DV-1-60.

0=(T-OV-1-66)IINI
I AD 60+T-DV-1-60=1-DV-1-60'.

0=(Z-OV-I-80),LINI
Z AD 80+Z-DV-1-S0=Z-DV-1-80.

0=Q-Dv-1-8b)JLINI
T AD 80+1-DVI-80=T-DV-F8O.

0=(T-OV-1-LO)IINI
I AD Lb+I-DV-I-Lb=l-DV-1-LO.

0=(COV-1-90)JLINI
E AD 90+COV-1-9'0=CDV-1-90.

0=(Z-D-VI79-O)IINI
Z AD 90+Z-9V-1-96=Z-DV-1-90.

0=(T-OV-1-90)JLINI
I AD 9b+1-DV-1-9-0=1-OV-1-90.

0=(Z-Dv!-go),LINI
Z AD 5O+Z-DVI-9O=z-ov-Fgo.

0=(T-IDV-FgO)JLINI
I AD 9O+T-DV-I-9b=T-OV-1-90.

T AD tO+T-OV-Ftb=T-OV-I-t'O.
0=(I-DV-I-WLINI

I AD Eb+I-OVq-EO=T-DV-I-Eo.
0=(T-OVq-Zb)JJM

T AD ZO+I-DVI-ZO=I-OVI-ZO.
0=(8-DV-rTO)JLINI

8 AD 1O+8-OVq-1O=S-OV!-TO.
0=(L-qvq7TO)JLINI

L AD Tb+L-9V-1-1b=L-DV-1-TO.

9 AD TO+9-DV-Flb=9-OV-FT-0.

9 AD TO+9-OVI-1b=g-ovq-To.
o=( -Dvq-lb)jjm

f--AD- I 0+ -DV-r 1'0= -DVI- TO .
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Q9_LAG_4=Q9_LAG_4+Q9_CV_4
INIT(Q9_LAG_4)=0

Queue_1=Queue-l+Arrival_1-Product_1
INIT(Queue_1)=5.01/Alpha_1*SETIN

Queue_2=Queue_2+Arrival_2-Product_2
INIT(Queue_2)=0.75/Alpha_2*SET_IN

Queue_3=Queue_3+Arrival_3-Product_3
INIT(Queue_3)=0.69/Alpha_3*SETIN

Queue_4=Queue_4+Arrival_4-Product_4
INIT(Queue_4)=0.36/Alpha_4*SETIN

Queue_5=Queue_5+Arrival_5-Product_5
INIT(Queue_5)=1.37/Alpha 5*SETIN

Queue_6=Queue_6+Arrival_6-Product_6
INIT(Queue_6)=1.65/Alpha 6*SETIN

Queue_7=Queue_7+Arrival_7-Product_7
INIT(Queue_7)=0.14/Alpha_7*SETIN

Queue_8=Queue_8+Arrival_8-Product_8
INIT(Queue_8)=0.55/Alpha_8*SETIN

Queue_9=Queue_9+Arrival_9-Product_9
INIT(Queue_9)=1.89/Alpha_9*SETIN

Queue_10=Queue_10+Arrival_10-Product_10
INIT(Queue_10)=2.19/Alpha_10*SETIN

Alpha_1=1/8
Alpha_2=1/1
Alpha_3=1/1
Alpha_4=1/1
Alpha_.5=1/2
Alpha_6=1/3
Alpha_7=1/1
Alpha_8=1/2
Alpha_9=1/4
Alpha_10=1/5

Arrival_1=Phy_31+Phy_51+Ran_1
Arrival_2=Phy_1 2+Ran_2
Arrival_3=Phy_13+Phy_23+Phy_43+Phy_63+Phy_93+Ran_3
Arrival_4=Phy_14+Phy_24+Ran_4
Arrival5 =Phy_1 5+Phy_25+Phy_3 5+Ran_5
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Arrival_6=Phy_16+Phy_56+Phy_96+Ran_6
Arrival_7=Phy_57+Ran_7
Arrival_8=Phy_18+Phy_68+Phy_78+Ran_8
Arrival_9=Phy_89+Ran_9
Arrival_10=Phy_910+Ran_10

BPro 1=0.1
BPro 2=0.1
BPro 3=0.1
BPro 4=0.1
BPro 5=0.1
BPro 6=0.1
BPro 7=0.1
BPro 8=0.1
BPro 9=0.05
BPro_10=0.1

Input=4

OUT BL=OUTBL_1+OUTBL_2
OUTBL_1= IF T=1 THEN AVEBL_1 ELSE IF T=5 THEN AVEBL_5

ELSE IF T=6 THEN AVE BL 6 ELSE IF T=8 THEN AVE BL 8
ELSE IF T=9 THEN AVEBL_9 ELSE IF T=10 THEN AVEBL_10
ELSE 0

OUTBL_2= IF T=2 THEN AVEBL_2 ELSE IF T=3 THEN AVEBL_3
ELSE IF T=4THEN AVEBL_4 ELSE IF T=7 THEN AVEBL_7
ELSE 0

OUT EP=OUTEP1+OUTEP2
OUTEP1= IF T=1 THEN Ave x_1 ELSE IF T=2 THEN Ave x 2

ELSE IF T=3 THEN Ave x 3 ELSE IF T=4 THEN Ave x_4
ELSE IF T=5 THEN Ave x 5 ELSE 0

OUTEP2= IF T=6 THEN Ave x_6 ELSE IF T=7 THEN Ave x 7
ELSE IF T=8 THEN Ave x 8 ELSE IF T=9 THEN Ave x_9
ELSE IF T=10 THEN Ave x 10 ELSE 0

OUTEQ=OUTEQ1+OUTEQ2
OUTEQ1= IF T=1 THEN Ave_Q_1 ELSE IF T=2 THEN Ave_Q_2

ELSE IF T=3 THEN Ave_Q_3 ELSE IF T=4 THEN AveQ_4
ELSE IF T=5 THEN AveQ_5 ELSE 0

OUTEQ2= IF T=6 THEN Ave_Q_6 ELSE IF T=7 THEN Ave_Q_7
ELSE IF T=8 THEN Ave_Q_8 ELSE IF T=9 THEN Ave_Q_9
ELSE IF T=10 THEN Ave_Q_10 ELSE 0

OUT S=OUT S1+OUT S2
OUT_S1= IF T=l THEN Sigma_I ELSE IF T=2 THEN Sig-ma_2
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ELSE IF T=3 THEN Sigma_3 ELSE IF T=4 THEN Sigma_4
ELSE IF T=5 THEN Sigma_5 ELSE 0

OUTS2= IF T=6 THEN Sigma_6 ELSE IF T=7 THEN Sigma_7
ELSE IF T=8 THEN Sigma_8 ELSE IF T=9 THEN Sigma_9
ELSE IF T=10 THEN Sigma_10 ELSE 0

P10_CV_1=Product_10-P1OLAG_1
P1ocv_2=P1OLAG-1-PlOLAG_2
P10_CV_3=P1OLAG_2-PlOLAG_3
PlOCV_4=P1OLAG_3-PlOLAG_4
P10_CV_5=P1OLAG_4-PlOLAG_5
P1_CV_1=Product_1-P1_LAG_1
P1_CV_2=P1_LAG_1-P1_LAG_2
P1_CV_3=P1_LAG_2-PILAG_3
P1_CV_4=P1_LAG_3-PILAG_4
P1_CV_5=P1_LAG_4-P1_LAG_5
P1_CV_6=P1_LAG_5-P1_LAG_6
P1_CV_7=P1_LAG_6-P1_LAG_7
P1_Cv_8=P1_LAG_7-P1_LAG_8
P2 Cv 1=Product_2-P2_LAG_1
P3_CV_1 =Product_3 -P3_LAG_1
P4_CV_1=Product_4-P4_LAG_1
P5_CV_1=Product_5-P5_LAG_1
P5-CV_2=P5_LAG_1-P5_LAG_2
P6 Cv 1=Product_6-P6_LAG_1
P6_CV_2=P6_LAG_1-P6_LAG_2
P6_CV_3=P6_LAG_2-P6_LAG_3
P7_Cv_1=Product_7-P7_LAG_1
P8_CV_1=Product_8-P8_LAG_1
P8 CV 2=P8 LAG_1-P8_LAG_2
P9 Cv 1=Product9-P9LAG_1
P9 Cv 2=P9 LAG 1-P9 LAG 2
P9_CV_3=P9_LAG_2-P9_LAG_3
P9_CV4=P9LAG3-P9_LAG_4

Phy_12=Product_1*0.15
Phy_ 3=Product_1*0.04
Phy_14=Product_1*0.01
Phy_15=Product_1*0.03
Phy_ 6=Product_1*0.24
Phy_18=Product_1*0.01
Phy_23=Product_2*0.01
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Phy_24=Product_2*0.41
Phy_25=Product_2*0.37
Phy3 1=Product_3*0.11
Phy_35=Product_3*1.36
Phy_43=Product_4*0.71
Phy_51=Product_5*0.68
Phy_56=Product_5*0.15
Phy_57=Product_5*0.1
Phy_63=Product_6*0.06
Phy_68=Product_6*0.22
Phy_78=Product_7*1.0
Phy_89=Product_8*3.43
Phy_91O=Product_9*1.16
Phy_93=Product_9*0.07
Phy_96=Product_9*0.13

ProlOav-x=(Product_10-Ave_x_10)/Timeave
Prol 0_avjxs=(Sq_.Pro_10-Avexs_10)/Time_ave
Prolav-x=(Product_1-Ave_x_1)/Time ave
Prolav xs=(SqPro_1-Avexs_1)/Timeave
Pro2_av x=(Product_2-Ave_x_2)/Time ave
Pro2_av xs=(SqPro_2-Avexs_2)/Timeave
Pro3_avx=(Product_3-Ave_x_3)/Time ave
Pro3_av xs=(SqPro_3-Avexs_3)/Timeave
Pro4_avx=(Product 4-Avex_4)/Time ave
Pro4_av xs=(SqPro_4-Avexs_4)/Time_ave
Pro5_avx=(Product_5-Avex_5)/Time ave
Pro5_av xs=(SqPro_5-Avexs_5)/Timeave
Pro6_avx=(Product_6-Ave_x_6)/Time ave
Pro6_av xs=(SqPro_6-Avexs_6)/Timeave
Pro7_avx=(Product_7-Ave_x_7)/Timeave
Pro7_av xs=(SqPro_7-Avexs_7)/Timeave
Pro8_avx=(Product_8-Ave_x_8)/Time ave
Pro8_av xs=(SqPro_8-Avexs_8)/Timeave
Pro9_avx=(Product_9-Ave_x_9)/Time ave
Pro9_avxs=(SqPro_9-Avexs_9)/Timeave

Product_1 =IF RANDOM>=BPro_1 THEN MIN(Alpha_1*Queuel,
ProductMax 1) ELSE 0

Product_10=IF RANDOM>=BPro_10 THEN MIN(Alpha_10*Queue_10,
ProductMax_10) ELSE 0

Product_2=IF RANDOM>=BPro_2 THEN MIN(Alpha_2*Queue_2,
ProductMax_2) ELSE 0
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Product_3=IF RANDOM>=BPro_3 THEN MIN(Alpha_3*Queue_3,
ProductMax 3) ELSE 0

Product_4=IF RANDOM>=BPro_4 THEN MIN(Alpha_4*Queue_4,
ProductMax_4) ELSE 0

-Product_5=IF RANDOM>=BPro_5 THEN MIN(Alpha_5*Queue_5,
Product_Max_5) ELSE 0

Product_6=IF RANDOM>=BPro_6 THEN MIN(Alpha_6*Queue_6,
ProductMax 6) ELSE 0

Product_7=F RANDOM>=BPro_7 THEN MIN(Alpha_7*Queue_7,
ProductMax_7) ELSE 0

Product_8=IF RANDOM>=BPro_8 THEN MIN(Alpha_8*Queue_8,
ProductMax_8) ELSE 0

Product_9=IF RANDOM>=BPro_9 THEN MIN(Alpha_9*Queue_9,
ProductMax_9) ELSE 0

ProductMax_1= IF SETMAX=1 THEN 6 ELSE 100
Product Max 10= IF SET MAX=1 THEN 2.5 ELSE 100
ProductMax_2= IF SETMAX=1 THEN 2 ELSE 100
ProductMax_3= IF SETMAX=1 THEN 2 ELSE 100
ProductMax_4= IF SETMAX=1 THEN 2 ELSE 100
ProductMax_5= IF SETMAX=1 THEN 2 ELSE 100
ProductMax_6= IF SETMAX=1 THEN 2 ELSE 100
ProductMax_7= IF SETMAX=1 THEN 2 ELSE 100
ProductMax_8= IF SETMAX=1 THEN 2 ELSE 100
ProductMax_9= IF SET_MAX=1 THEN 2 ELSE 100

Pro_P1 =( QlLAG_1-P1_LAG_1)*0+(Q1_LAG_8-P1_LAG_1-PiLAG_2
-P1_LAG_3-P1_LAG_4-PILAG_5-P1_LAG_6-P1_LAG_7
-P1_LAG_8)*1

{alpha=1 then 1,0 alpha= 1/8 then 0,1}
Pro_P1_av =IF Pro_P1>=0 THEN ( Pro_P1-AVE BL_4)/Time ave

ELSE (-AVEBL 1)/Timeave
Pro_PlO =( Q10_LAG_1-PlOLAG_1)*0+(Q1OLAG_5-PlOLAG_1

-PlOLAG_2-PlOLAG_3-PlOLAG_4-P10_LAG_5)*1
{alpha=1 then 1,0 alpha=1/5 then 0,1}

Pro_PlOav =IF Pro_P1O>=0 THEN ( Pro_P10-AVEBL_4)/Time_ave
ELSE (-AVEBL_10)/Time ave

ProP2 =( Q2_LAG_1-P2_LAG_1)
Pro_P2_av =IF ProP2>=0 THEN ( ProP2-AVE BL_4)/Timeave

ELSE (-AVE BL_2)/Timeave
ProP3 =( Q3_LAG_1-P3_LAG_1)
Pro_P3_av =IF ProP3>=0 THEN ( Pro_P3-AVE_BL_4)/Time_ave

ELSE (-AVEBL_3)/Time_ave
ProP4 =( Q4_LAG_l-P4_LAG_1)



I DVI 6-g-ononj
I DV-1 to-t-onono=I-AD-tO
I DV-1 Eo-E-onono=T-AD-E0
I DV-1 Zo-Z-onono=T-AD-ZO

8 OV-1 TO-L-DV-I-TO=8-AD-TO
L DV-1 TO-9-OV-1-10=L-AD-10
9 DV-1 T0-9-DV-I-T6=9-AD-T0
g DwFlo- -ov-1-10=9-AD-TO
t-DVrl-T0-CDV-1-10=t-AD-T0
E DVI TO-Z-DV-I-T0=CAD-10
Z DVq-T0-T-DV-1-10=Z-AD-Tb

I DVI 10-1-onono=I-AD-TO
g ov-i7oTb-v-Dvq-oib=5-AD-oT6
f-DVI-01b-CDVq-01b=t-AD-0Tb
E DVq-010-Z-DVI-010=CAD-0Tb
Z DVq-0T6-T-0Vq-0T6=Z-AD-0Tb

T DVrl OTO-OT zn;)no=T-AD-0T6

3Au MITUAC-ICHAV-) HS-IH
QAle QU-Hjj(V--jR-HAV-6d7O'd ) NHHJL 0=<6d-OJd dl=Au-6d-OJd

1 "0 u0tP WT =uqdp O'T uOIP T =UqdF
1*(f-DV-F6d-CDV-r6d-

Z DVI 6d-I OVI-6d- -DVI-60)+O*(I-DVI-6d-l-OV-1-60)= 6d-OJd
ZAU ZUI!JJ(8--j97aAV-) HS-IH

QAt-QUIff.JJ(t --Iq-HAV-8d7OJd ) NRHJL 0=<8d-OJd JI=Ae-8d7OJcl
I VO u0tP Z/T=UqdF O'T ug'-P T=EqdF I

T*(Z-DV-FSd-
T DVI Sd-Z DWI S0)+0*Q-DV-1-8d-T-DV!-80 )= Sd-OJd

;)AU QLUjjJ(C-ICHAV-) EIS-19
OAU OUITlj(t -JU HAV-Ld Old )NHHJO=<Ld-OJddl=A'B-Ld-OJd

(T-DVq-Ld- T -OV-1-LO )= Ld-OJd
0AV OURUM -ICaAV-) aS-Ia

;)AU ZUHJJ(t,--197aAV-9d7OJd ) NaHl 0=<9d-OJd ii=AL-9d-OJd
f 1 0 ug'P E/T=Uqdl'u O'T uXP T=Uqdlu I

T*(E-DVq-9d-
Z DV-1 9d-T DVI 9d-E DVI 90)+0*Q-DVI-9d-T-DV-1-90 9d-OJdZAU-ZUI!j&--ICaAV-) aS-Ia

ZAU QURJJ(t--Iq-aAV-gd7OJd ) NaHJL 0=<gd-OJd.4I=Au-gd7OJd
T"o uoql Z/I=uqdlu ol I uap I=uqdlu

1*(Z-DVI-gd-
T DVI gd-Z DV-I 9b)+0*(l-0V-I-9d-l-DV!-90 )= 9(:I-OJ(:l

QAU ;)LU!jj(t;---197aAV-) aS-la
ZAU OuRJJ(t,7 -lq-aAV-td7OJd ) NaHl 0=<tpd-OJd 4I=Au-td7OJd

1-8
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Q5_CV_2=Q5_LAG_1-Q5_LAG_2
Q6_CV_1=Queue_6-Q6_LAG_1
Q6_CV_2=Q6_LAG_1-Q6_LAG_2
Q6_CV_3=Q6_LAG_2-Q6_LAG_3
Q7_CV_1=Queue_7-Q7_LAG_1
Q8_CV_1=Queue_8-Q8_LAG_1
Q8_CV_2=Q8_LAG_1-Q8_LAG_2
Q9_CV_1=Queue_9-Q9_LAG_1
Q9_CV_2=Q9_LAG_1-Q9_LAG_2
Q9_CV_3=Q9_LAG_2-Q9_LAG_3
Q9_CV_4=Q9_LAG_3-Q9_LAG_4

Q_10_av=(Queue_10-AveQ_10)/Time-ave
Q_1_av=(Queue_1-Ave_Q_1)/Timeave
Q_2_av=(Queue_2-Ave_Q_2)/Timeave
Q_3_av=(Queue_3-Ave_Q_3)/Timeave
Q_4_av=(Queue_4-Ave_Q_4)/Timeave
Q_5_av=(Queue_5-AveQ_5)/Timeave
Q_6_- av=(Queue_6-Ave_Q_6)/Timeave
Q_7_av=(Queue_7-AveQ_7)/Time_ave
Q_8_av=(Queue_8-AveQ_8)/Timeave
Q_9_av=(Queue_9-Ave_Q_9)/Timeave

Ran 1 =NORMAL*2+INPUT
Ran 10=NORMAL*0.2
Ran 2=NORMAL*O.1
Ran 3 =NORMAL*0.1
Ran 4 =NORMAL*0.1
Ran 5=NORMAL*0.2
Ran 6 =NORMAL*0.2
Ran 7 =0
Ran 8 =NORMAL*O.1
Ran_9 =NORMAL*0.2

SETIN=1 {If it is one the simulation is for steady state. I
SET_ MAX=1 { If it is one the limiter will be applied. }
SET_T_MAX=2000 {Maximum simulation time should be set here in order to
control out put data. }

Sigma_1= IF Var_1>=0 THEN EXP(0.5*LOGN(Var_1) ELSE 0
Sigma_10= IEF Var_10>=0 THEN EXP(0.5*LOGN(Var_10) ELSE 0
Sigma_2= IF Var_2>=0 THEN EXP(0.5*LOGN(Var 2) ELSE 0
Sigma_3= IF Var_3>=0 THEN EXP(0.5*LOGN(Var_3) ELSE 0
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Sigma_4= IF Var_4>=0 THEN EXP(O.5*LOGN(Var_4) ELSE 0
Sigma_5= IF Var_5>=0 THEN EXP(0.5*LOGN(Var_5) ELSE 0
Sigma_6= IF Var_6>=0 THEN EXP(0.5*LOGN(Var_6) ELSE 0
Sigma_7= IF Var_7>=0 THEN EXP(0.5*LOGN(Var_7) ELSE 0
Sigma_8= IF Var_8>=0 THEN EXP(0.5*LOGN(Var_8) ELSE 0
Sigma_9= IF Var_9>=0 THEN EXP(0.5*LOGN(Var_9) ELSE 0

SqProl =Product_1 *Pro duct_1
SqProl0 =Product_10*Product_10
SqPro2 =Product_2*Product_2
SqPro3 =Product_3*Product_3
SqPro4 =Product_4*Product_4
SqPro5 =Product_5*Product_5
SqPro6 =Product_6*Product_6
SqPro7 =Product_7*Product_7
SqPro8 =Product_8*Product_8
SqPro9 =Product_9*Product_9

T=IF TIME,(SET_T_MAX-9) THEN 0 ELSE IF TIME>(SET_T_Max) THEN
0 ELSE TIME-(SET_T_Max-10)

Time ave= IF TIME<= 500 THEN 1 ELSE TIME-500

Var_1=IF Timeave>2 THEN (Avexs_1-Ave_x_1*Ave_xl )*
(Time ave/(Timeave-1)) ELSE 0
Var_10=IF Timeave>2 THEN (Avexs_10-Ave_x_10*Ave_x_10 )*
(Time ave/(Time_ave-1)) ELSE 0
Var_2=IF Timeave>2 THEN (Avexs_2-Ave_x_2*Ave_x_2 )*
(Time ave/(Timeave-1)) ELSE 0
Var_3=IF Timeave>2 THEN (Avexs_3-Ave_x_3*Ave_x_3 )*
(Time ave/(Timeave-1)) ELSE 0
Var_4=IF Timeave>2 THEN (Avexs_4-Ave_x_4*Ave_x4 )*
(Time ave/(Timeave-1)) ELSE 0
Var_5=IF Timeave>2 THEN (Avexs_5-Ave_x_5*Ave_x_5 )*
(Time ave/(Time_ave-1)) ELSE 0
Var_6=IF Timeave>2 THEN (Avexs_6-Ave_x_6*Ave_x_6 )*
(Time ave/(Timeave-1)) ELSE 0
Var_7=IF Timeave>2 THEN (Avexs_7-Ave_x_7*Ave_x_7 )*
(Time ave/(Timeave-1)) ELSE 0
Var_8=IF Timeave>2 THEN (Avexs_8-Ave_x_8*Ave_x_8 )*
(Time ave/(Timeave-1)) ELSE 0
Var_9=IF Timeave>2 THEN (Avexs_9-Ave_x_9*Ave_x_9 )*
(Time ave/(Timeave-1)) ELSE 0
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B.3 Example of output
(1) Numerical output

Time T OUT EP OUT S OUT EQ OUT BL
990.000 0.0 0.0 0.0 0.0 0.0
991.000 1.000 4.921 1.653 45.766 6.734
992.000 2.000 0.737 0.390 0.800 0.0637
993.000 3.000 0.683 0.387 0.764 0.0810
994.000 4.000 0.353 0.264 0.401 0.0483
995.000 5.000 1.351 0.577 3.138 0.520
996.000 6.000 1.624 0.545 5.981 1.163
997.000 7.000 0.135 0.0856 0.150 0.0148
998.000 8.000 0.540 0.238 1.201 0.146
999.000 9.000 1.861 0.426 14.194 6.821

!000.000 10.000 2.171 0.689 14.611 3.833
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(2) Graphical output

1 Product_5
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1 Product_6
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