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ABSTRACT

The Fourier analysis method, developed primarily by Bijlaard, modelled
pressure vessels as continuous simply-connected surfaces with central patch
loads. Through the use of superposition, my work has extended the technique
to include solutions for loads placed at any position along the cylinder. The
technique allows placement of tractions with combinations of radial, shear, and
axial components. In addition, the stiffness and enhanced load carrying
capacity that internal pressure gives to thin vessels can be simulated.
Numerical convergence problems encountered in this method are reduced by an
improved displacement-load algorithm, and by using load sites that allow the
circular functions to be compactly grouped.

Using this approach, a variety of loading distributions are analyzed
including large and small nozzles near and away from centerlines. Both
rectangular and circular attachments are simulated. When large attachments are
involved, local lateral loads are modelled as a combination of tractions along
the intersecting boundaries. Stiff attachments are simulated through a set of
loads along the vessel/attachment intersection determined by colocation. These
loads are chosen so that a rigid body displacement field is produced within
that boundary. Through this same technique, multiple attachments with their
own loads may be examined. The attachments to the vessel may be either rigid
or soft.

In comparison with experimental results, the calculated values are in
generally good agreement. Variations between experimental and calculated
results are primarily caused by assuming a simply-supported base in the
calculation, whereas in the experimental test, the base is more nearly fixed.
The stiffening effect of the welds on an attachment was also shown to cause
discrepancies between experimental and calculated values.

Thesis Supervisor: Dr. John E. Meyer

Title: Professor of Nuclear Engineering
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1. INTRODUCTION

1.1 SCOPE

This thesis describes a method to calculate vessel stresses and

flexibilities for attachments on cylindrical vessels. Determining

deformations, stresses, and flexibilities in vessels due to external loadings

has not been an easy task. In some cases, finite element analysis may be used,

but it is neither convenient nor economical. It has primarily been used for

geometries beyond the scope of the Welding Research Council method (Ref. 1),

which is the most commonly used approach.

The method presented here extends and advances Bijlaard's technique

(Ref. 2 and 3) for determining stresses at attachment-shell junctions through

double-sum Fourier analysis. These Fourier series are constructed so that they

fulfill the boundary conditions of simple support and the equilibrium equations

of thin-shell theory. The major features include:

- Ability to place attachments anywhere on the cylindrical shell, even
near the end;

- Interaction between multiple attachments;

- Incorporation of any combination of external forces and moments, as
well as internal pressure;

- Incorporation of rectangular and circular attachments, both solid and
tubular;

- Designation of large or small attachments, as well as rigid or soft
ones; and

- Evaluation of stress at more than the four cardinal points on
intersection provided by finite element analysis and the Welding
Research Council method.

The method employs the following assumptions:

- Vessel is a right circular cylinder of constant thickness;

- Cylindrical surface is simply-connected (i.e. there is a continuous
shell at all attachments);



- Vessel circumference is simply supported at each end (i.e. zero
radial and circumferential deflection, zero shell axial moment and
axial normal force); and

- No thermal expansions are considered

By specifying shell dimensions and loading conditions, the method is able to

compute deflections and stresses in the cylindrical shell.

1.2 BACKGROUND

1.2.1 BIJLAARD'S WORK

Two of Bijlaard's papers (Ref. 2 and 3) were used extensively to

develop the background theory for this project. "Stresses Fom Local Loadings

in Cylindrical Pressure Vessels" presents the basic theory for analyzing

stresses at attachment-shell intersections through Fourier analysis. By

starting with the partial differential equations of thin-shell theory, which

govern the displacements in the X, YC), and Z directions for a given pad load

P, Bijlaard reduces this system of three partial differential equations into a

single eigth-order equation. This single eighth-order differential equation is

known as Donnell's equation. However, in deriving Donnell's equation, Bijlaard

neglected terms that contained t2/12a 2 , because in considering terms of t/a

(thickness-to-radius) smaller than 0.1, these t2/12a 2 terms are less than

0.001. As a result of this approximation, Bijlaard says that results may be up

to 25 per cent too small. Greater discrepancies occur for shells with larger

thickness-to-radius ratios.

Bijlaard now proceeds to express the displacements and loads as

double-sum Fourier series that are functions of the axial coordinate, x, and

the circumferential coordinate, 0. Having employed this solution technique,

Bijlaard solves the equation for several loading conditions which include

external radial forces and longitudinal and circumferential moments.



In his second paper, "Stresses From Radial Load and External Moments In

Cylindrical Pressure Vessels," Bijlaard presents some numerical data for his

solution for many load cases due to radial loads and external moments,

including the effects of internal pressure.

There are two essential shortcomings in Bijlaard work: the omission of

higher order terms in the governing differential equation and the restricted

positions of load application. As mentioned earlier, the omission of higher

order terms in the differential equation will lead to discrepancies in results,

unless shells are sufficiently thin. Bijlaard's solution was also restricted

to locations that were far removed from the ends of the cylinder. As a result,

large discrepancies will occur as one moves the location of the attachment

toward the end of a finite cylinder. The thesis work includes provisions to

eliminate these inaccuracies.

1.2.2 WELDING RESEARCH COUNCIL BULLETIN 107

To solve attachment-shell problems, industry presently employs a

technique that is based on Welding Research Council Bulletin 107, "Local

Stresses in Spherical and Cylindrical Shells due to External Loadings," by

Wichman, Hopper, and Mershon (Ref. 1). This bulletin contains a "lookup

graph" method for calculating these stresses due to external loadings. It

contains Bijlaard's curves for these stresses, which have been plotted with a

given set of dimensionless parameters.

In short, the method that Bulletin 107 presents is quite straight-

forward. Given an initial set of parameters of a shell problem with external

loadings, one can look up the values for the bending and membrane forces, M

and N respectively. One also needs to look up the values of two stress

concentration factors, Kn and Kb, which are a function of the attachment

dimensions. Once these values are known, the stresses are calculated through



a typical compound stress formula:

ti = Kn (N/T) + Kb ( 6M/T2 )

The procedure in the WRC Bulletin 107 contains the same shortcomings

as Bijlaard's original work. In addition, no provision is made for obtaining

deflections. As a result, one cannot use this method for calculating -

stiffnesses. It also has no capability to analyze interaction between

multiple attachments. Because the curves in this bulletin have been plotted

for only a given set of initial parameters, any data which does not lie on

these curves must be interpolated or extrapolated to the nearest curve.

The thesis addresses the pitfalls in Bulletin 107. Since the thesis

work does calculate deflections, stiffnesses as well as stresses are

obtained. In addition, because the thesis uses a closed-form solution,

interpolation and extrapolation is not necessary.



2. SOLUTION FUNDAMENTALS

2.1 GEOMETRY

Coordinate System

The vessel is modeled as a right-circular-cylindrical shell (See

Figure 2.1). A conventional orthogonal coordinate system is used to define

the cylindrical geometry (cylinder has radius a, thickness t, and length L):

- Coordinates:

x = axial coordinate 0 < x g L

O = circumferential coordinate 0 < 0 2w

- Displacements:

axial displacement

circumferential displacement

radial displacement (positive in the
negative r-direction)

- Surface loadings (force per unit area):

PX = axial loading (shear)

Po = circumferential loading (shear)

Pr = radial loading (positive radially inward)

Boundary Conditions

The cylinder is assumed to be

for simple support are:

At x = 0 and L

simply-supported. The boundary conditions

w =0

v =0

Moment MX = 0

Membrane force NX = 0



w

Cylindrical
Element

Figure 2.1 Cylindrical Geometry and Coordinate
Definition



Equilibrium Equations

The governing equations for the displacements in thin-walled circular

cylindrical shells under general loading are (Ref. 4):

_2u + 1 - v 2_u + 1 + v a2 v - v 8w = -P (1 - v2)
ax 2  2a2  a02 2a ax a# a ax Et

1 + v a2 u + 1 - v y2v + 1 82 v - 1 8w + tz a3w

2a Bx BO 2 x 2 a 1 x

+ 1 a 3 w + t2 Cl - v)a 2 v + 1 D2 = -P0 (l - v2 )

at aO3 12a X a2a0 Et

v Bu + 1 av - w - t2 [ 4w + 2 a4w + 1 a4w
a 8x a2aO a2 12 [x4 a2 ax2 a02 a4 ]

+ 1 83 v = Pr (1 - v
2 )

az aO3 IEt

(2.la)

(2.lb)

(2. 1c)

Attachment Geometry

The area of intersection between the attachment and the cylindrical

shell is modeled as an area partitioned into rectangular and triangular

elements.

Xb' 0 b

- 20

Rectangular Element

Xa' 0 a Xa' b

Triangular Element

Figure 2.2 Rectangular and Triangular Elements for the

Area of Intersection Between Attachment and
Cylindrical Shell

X

-2 a$3 v

12az Wx2Dg



Through a combination of rectangular elements, a solid or hollow rectangular

attachment may be modeled. Through a combination of rectangular and triangular

elements, a circular pipe or solid may be simulated.

2.2 ELEMENT PARTITIONING OF ATTACHMENT

Rectangular Attachments

For rectangular attachments, the area of intersection between the

attachment and cylindrical shell is split into four regions. The partitioning

of the this area is determined by the initial dimensions of the attachment.

Region 3 Region 1

Region 4

To r

Figure 2.3 Patch Area Partition of a General Rectangular
Tube.

Region 2



A solid rectangular attachment may be modelled when To = Ly/2 and

T= LX/4. This partition is shown in Figure 2.4.

Region 2

Region 3 Region 1

Region 4

Figure 2.4 Partition of a Solid Rectangular Attachment

These four patch areas are further divided into elements. The maximum

subdivision of elements is a 4 x 4 partition in each region, and the minimum

partition is 1 x 1. Figure 2.5 illustrates the element subdivision for a 3 x

3 partition. The surface loadings are applied on these individual elements to

simulate a uniform radial force, longitudinal and circumferential moments, and

a rigid plug displacement.



Figure 2.5 3 x 3 Element
Attachment

Region 2

Region 4

Partitioning of a Hollow Rectangular

Circular Attachments

For circular attachments, the area of intersection between the

attachment and cylindrical shell is split into four quadrants. Each quadrant

is then split into rectangles and triangles to approximate one quarter of a

circle (See Figures 2.6 and 2.7). Each circular solid is split into 12

elements, and each circular tube is split into 28 elements.

C1,1) (1,2) C1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3) (1,1) (1,2) (1,3)

(2,1) ( 2,2) (2,3) (2,1) (2,2) (2,3)

(3,1) (3,2) (3,3) (3,1) (3,2) (3,3)

(1,1) (1,2) C1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

-



F

FIGURE 2.6 ELEMENT PARTITION OF CIRCULAR SOLID



r

FIOURE 2.7 ELEMENT PRRTITION OF CIRCULRR TUBE



3. LOADS AND MOMENTS

3.1 RADIAL LOADS

A radial load is simulated so that all elements of force are parallel

to the centerline of the attachment. The user-specified force on the attachment

is divided by the attachment area to give a pressure; this pressure is then

applied uniformly over all elements in the attachment-shell intersection. This

loading is decomposed into Fourier harmonics. The analysis unrolls the

cylindrical surface, and then applies the Pr and Pg everywhere inside the

individual elements.

If the attachment-shell intersecting area is large compared to the

total circumference of the cylinder, then shear loads are added to ensure that

the applied loads are parallel to the attachment centerline.

Since all the loads are represented as Fourier series, superposing

loads only requires adding the specified series together before the

displacement solution is found.

3.2 EXTERNAL BENDING MOMENTS

A bending moment is represented as a series of radial loads

distributed over the patch area. The magnitude of these loads varies as a

linear function of their distance from the neutral axis. The magnitude of the

loads is zero at the neutral axis, and increases linearly farther from the

neutral axis. A longitudinal moment acts along the axis of the attachment and

varies linearly in the x-direction of the shell. A circumferential moment also

acts along the axis of the attachment, but varies linearly in the #-direction

of the shell.

For a longitudinal moment, the pressure loads assume the function

a = Mx'

IX



Where, x' = Axial distance of an element to
the neutral axis

Ix = Moment of inertia of the actual attachment
about the 0-axis

M = Externally applied longitudinal moment

For a circumferential moment, the pressure loads assume the function

Ig

Where, 0' = Circumferential distance of an element
to the neutral axis. Since this distance
must be projected onto a flat surface,
it reads as a function of the angle as

0' = Rsin(angular distance from neutral axis)

I0 = Moment of inertia of the actual attachment
about the x-axis

M = Externally applied circumferential moment

Figures 3.2A and 3.2B illustrate the interpretation of a moment.

3.3 MULTIPLE ATTACHMENTS

Multiple attachment can be easily simulated with Fourier analysis.

Since the displacements over the entire cylinder may be determined from any

given loading condition, multiple attachments involve superposing a given

number of loading conditions. The Fourier series for each independent loading

condition is developed. Then, these individual Fourier series are superposed

on one another. Since the origins of these Fourier series are the same,

superposing these series only involves adding the series together term by term.

This produces a new Fourier series that contains multiple loading conditions.

It is this new Fourier series that is used in determining the displacements

over the cylindrical surface. The displacements that result will reflect the



NEUTRAL AXIS

FIGURE 3.2A EXTERNAL LONGITUDINAL MOMENT



NEUTRAL AXIS
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EXTERNAL CIRCUMFERENTIAL MOMENTFIGURE 3.2B



original multiple loading conditions. This approach allows one to construct the

multiple loading-conditions, and then designate the flexibility of the

attachment.



4. FOURIER ANALYSIS

4.1 EVEN AND ODD FOURIER SOLUTIONS

A double-sum Fourier series is constructed that satifies both the

boundary conditions of simple-support and the equilibrium equations (2.la -

2.1c). If one constructs the double-sum Fourier series for the radial

displacement first, then the double-sum Fourier series for the shear and axial

displacements are also determined. The total Fourier solution will be the sum

of an even and an odd series in 0. A solution is said to be even if it

corresponds to the even solution in O, cos(mo), of the radial displacement.

A solution is said to be odd if it corresponds to the odd solution in 0,

sinCmO), of the radial displacement. The even and odd series in the axial

direction are embedded in the terms sin(nrx/L) and cos(nvx/L), which each

contain both even and odd solutions. The loading functions in the general

equilibrium equations, P1, P0, and Pr are also represented by double-sum

Fourier series to be consistent with the displacement solutions.

The double-sum Fourier series for the radial displacement which

satisfies the boundary conditions and the equations of equilibrium is:

Co o0
e 0

w w cos(mO) + w sin(mO) sin(nnx/L) (4.1a)
2 n=1 m m,n m,n

Having designated the radial displacement solution, the v and u displacement

solutions must be:

y v e sin(md) + v 0 cos(mO) sin(nvx/L) (4.1b)
- m, n ' m, n2 n=1 m=0

u = 1 2 [ u cos(mO) + u sin(mO) cos(nnx/L) (4.1c)
2- m,n m,n

where the superscript e denotes an even term and o, an odd term.



Having determined the Fourier series of the displacement solutions,

the loading functions which would allow the equilibrium equations to be

solved by Fourier analysis are:

Pr 2 =r e cOs(m#) + Pr0 sin(ms) sin(nrx/L) (4.1d)
-m,n m,n

2 n=1 m=0

r e o
P0 =0 [P sin(m#) + P cos(mO) sin(n x/L) (4.1e)

P0 -L2 Pm,n q, n2 n=1 m=0

m o
-Px =[ P cos(mp) + P? sin(m0) cos(nrx/L) (4.lf)

2 n=1 m=0 mn

4.2 FOURIER COEFFICIENTS

4.2.1 FOURIER COEFFICIENTS FOR LOADING FUNCTIONS OF

RECTANGULAR AREAS

To determine the Fourier coefficients of the loading functions P,, P0, and

Pr , these functions are separated into even and odd solutions.

EVEN ODD

co o CO o
Pr = 2 2 Pr cos(m0)sin(nnx/L) Pr = 2 2 Pr0  sin(m#)sin(nvx/L)

n=1 m=0 m,n n=1 m=O m,n

P = P sintmo)sin(nrx/L) P0 = P cos(m0)sin(nvx/L)

n=1 m=O n=1 m=O

P = P cos(m#)cos(nnx/L) PX = Px0 sin(md)cos(nvx/L)

n=1 m=O mn n=1 m=O

Through the use of orthogonality, expressions for the Fourier coefficients

P , P0 , and Pr can found. This analysis is shown for Pr as an
m,n m,n m,n

example. Multiplying by cos(m'O)sin(n'wx/L) and integrating,

27r L e
I Pr cos(mp)cosCm'o)sin(nx/L)sin(n'1Tx/L) dx do

0 0 m, 27r L e (x,0) cos(m'O)sin(n'lx/L) dx do

0 0

Using orthogonality (Appendix B),



Pr e 1 + 6 'L/2=r Cx,0) cos(m'0)sinn'lx/L) dx dO
m,n 00m, r

Let
Pr(X,o) = Pr for x0- b < x < x0+ b and #0- < 0 < 00+

= 0 otherwise

Now integrate over attachment area (Figure 2.2) using integral formulas in

Appendix B,

re - x+b d
Pr = 2Pr costm'#) do 0 sin(n'7x/L) dx

m,n LCl + 6 m,) 0 0 -0 x0 -b

Let m =m' and n =n'

Pr = 8Pr cos(mO)sin(mS)sin(nwx/L)sin(nrb/L)
m,n TO LM1 + 6 )mn

m,O

This solution must be doubled to account for the mirror value of -0; that is,

to account for the integral with limits x0- b < x < x + b and

-00 0 0 < -00 + 0.

Then finally,

Pr = 16P e cos(mp)sin(m$)sin(nx/L)sin(nrb/L)
m,n mnr 2 LCl + 6 3

A similar analysis is followed for all even and odd loading functions.

The following Fourier loading coefficients result:

EVEN

e Pe
PrM = 16 Pr cos(m#)sinCm$)sin(nrx/L)sin(nb/L)

mnr 2 LC1 + 6m0 )

P0 = 16Pe_ sin(ms)sin(m$)sin(nrx/L)sin(nb/L)
m,n mnir2

e= 16P ecos(m)sin(mS)cos(nrx/L)sinnrb/L)

m,n mnr 2 (1 + 6 0) (1 + 6 n,)

ODD

0 0
Pr = 16r sin(m#)sin(m$)sin(nux/L)sin(nrb/L)

m,n mnTr2

Po= 16P c cos(mO)sin(mP)sin(nTx/L)sin(nrb/L)
m,n mnir2 L(1 + (,0

P = 16PX sin(mp)sinCmO)cos(nx/L)sin(nb/L)
m,n mnr 2 L(1 + 'n,0'



4.2.2. FOURIER COEFFICIENTS FOR LOADING FUNCTIONS OF
TRIANGULAR AREAS

The Fourier coefficients that correspond to loading functions in triangular

areas are determined through a procedure similar to the coefficients in

rectangular areas. It is after the use of orthogonality that the procedures

differ. For example, in determining the Fourier loading coefficient Pr, one

must now evaluate this integral over a triangular element (Figure 2.2):

'b A5+B
r 2Pr I I cos(mo)sin(nrx/L) dx do
m,nTLCl + 6rn, 0) Na Xa

where,
A = xh~ Xa and B = xa b -xb 0

Ob - Oa b - Oa

Now, integrating with respect to x first,

e'b A$+B
cosCmO)sin(nvx/L) dx do =

Oa Xa LI
L tb cos(ms) cos(nvxa/L) - cos(n(AO + B)/L) do

nr a

Using the identity for cos(X + Y) in Appendix B,

= L cos(mO) cos(nurxa/L) - cos(nwAO/L)cos(nwB/L) + sin(nvAO/L)sin(nwB/L) do
nW ea

Integrating with respect to 0, setting k = nWA/L, and using trignometric

integrals in Appendix B,

cos(mO) do = 1/m sin(mO)

ea Oa

cos(mO)cos(kO) do = 1 sin(m + k)O + sin(m - k)o b
2 m + k m - k

-Oa

cos(mO)sin(k0) do = 1 cos(m + k)O + cos(m - k)O

- Oa



Finally,

e e
Pr = 4 Pr cos(nx /L) 1 sin(ms) - 1 cosCnnB/L) sinm + k)O

nTr2 (1 + 6 ) m 2 m + k

+ sin(m - k)O
mr-k 

+ 1 sin(nvB/L) cos(m + k)O +
m + k

cos(m - k)O

m -k

A similar process is followed for all even and odd loading functions.

The following Fourier coefficients for loadings in triangular areas result:

EVEN

ePr = 4Pre cos(nvxa/L) 1. sin(mp)
m,n n 2(1 + 6 ) m

+ sin(m - k)O + 1 sin~nwB/L)
m -k 2

PeO = [P - cos(nwxa/L) 1 cos(ms)
,n nr2 m

- cosCm - k)O + 1 sin(nTB/L)
mr-k J

P = 4Pe - si
m,n nTr2(1 + 6MO(1 + on,0

- 1 cosCnirB/L) sin(m + k)O
2 m + k

- cosCm + k)O + cos(m - k)O

m + k m -k

-1
2

cos(nvB/L)

Oa

- cos(m + k)O
m + k

sin(m + k)O + sin(m - k)O
m + k m k

n(nwxa/L) 1 sin(mO)

m

+ 1 cos(nvB/L) - cos(m + k)O + cos(m - k)O
2 m+k -m k

+ 1 sintnrB/L) sinm + k)O + sin(m 1k)O

2 m + k m - k

-0a

0 b

Ia

-



ODD

Pr = [Pr - cos(nvxa/L) 1 cos(ms) - 1 cosnirB/L) - cosm + k)O
m,n n1 m 2m + k

- cos(m - k)O
m-k

0 0
P = 4PU _
m,n nr 2 C1 + 0

+ 1 sin~nTrB/L) -sin~m + k)O+ sin(m - k)O
2 m+k m-k

;a

cos(nvxa/L) 1 sin(mO) - 1 cos(nrB/L) sin(m + k)O
m 2 m + k

+ sin(m - k)O

m - k
+ 1 sin(nvB/L) cos(m + k)O

m + k
+ cos(m - k)O

m - k

0 0
P = 4Px

m,n nTr2 c1 + 6n,0)

+ sin(m - k)O
, m - k

sin(nxa/L) 1 cos(mO) - 1 cos(nTrB/L)[
m 2

+ 1 sin(nwB/L)
2

- sin(m + k)O

m + k

- cos(m + k)o - cos(m - k)o

m + k m - k ]a

I Ob
- a



4.3 DISPLACEMENT SOLUTION

To obtain the displacement solutions, one first separates the

double-sum Fourier series for both displacements and loads into even and odd

components. The even solutions are then substituted into equations 2.1a -

2.1c. A matrix equation results that gives the Fourier displacement

coefficients umf vmn' wmn ,in terms of the Fourier loading coefficients P xmn'

P0 m, and Pr . The procedure is repeated for the odd coefficients,
m,n m,n

which will produce a matrix that determines the odd Fourier displacement

coefficients. This procedure is shown for the even solutions as an example.

One begins with the even displacement solutions:

u = ue cos(mO)cos(nrx/L)
n=1 m=0 m,n

ye ye sin(mO)sin(nvx/L)

n=1 m=0 m,n
co o0

w e w cosCmo)sinnvx/L)
m,n

n=1 m=0

Now these solutions are substituted into the equilibrium equation (2.1a):

a2 u = - nzr 2  ue cos(mo)cos(nurx/L)

ax2  L2

Cl - v) a2 u = - m2 (1 - v) u cos(mO)cos(nwx/L)

2a2  aO2 2a2  m,n

(1 + v) a2v = (1 + v) mnv v e cos(mO)cos(nvx/L)

2a ax0 2a L m,n

v Sw = - v nr we cos(ms)cos(nvx/L)

a x a L_ m,n

Assume that the external loading can be represented by a Fourier series,

QC co
e =

P, = PX m~cosCmo)cos(nvx/L)

n=1 m=O

Collecting terms,

S 2 + m2 (1-v) u + (1 + v) mnv ve - vni we = - 1 - V2 p em, 2aL - m,n L m,n Et m,n



e e e
Similarly, the even solutions of umd e , and w

M'rf m~n , n
are substituted into the

equations for PO and Pr- The result is a system of three equations which may

be written in matrix form.

e
C (1,1)

e
C (2,1)

eC (1,1)

Ce(1,2)

C e(1,3)

C e (1,2) C e (1,3)

e e
C (2,2) C (2,3)

C e(3,2 ) C e(3,3)

= - Ln22 + m
L2

= (1 + v)mnn

2aL

= - vnv

aL

= (1 + v)mnr

2aL

e
U m, n
e

v
m,n

we
m,n,

De (1)

e
D (2)

De (3)

2(1- v)]

(1 - v)n 2 r2

2L2

C e(2, 3) = tm

C (3', 1) =

+ m2 +
5a2

t2 (1 - v)n 2 
TO

12a 2 L2

+ mn2iT2 t 2 + m

12a 2L2 a2

- nlTv

aL

er
C (3,2) = t2m 3

12a 4
tzmn2i 2 + m

12a 2 L2 a2

1 + t2n4y r4 + 2t 2 m2 n2 I 2

a 12L0 12a2 L2

Where,

Ce(3,3) + t 2 m]
12a4

+ t2 m2

12a"



De (1) = - (1 - V2)
Et

D (2) = - (1 - v2)

Et

e
D (3) - (1 - v 2 )

Et

A similar set of matrix

odd solutions for LP ,
m,n

co
0u

n=1

VO =

n=1

0 *
w =2

n=1

equations are also calculated by using the following

yo , and wo . The odd solutions are:
m,n m,n

2u 0 sin(ms)cos(nTx/L)

M=O m,n

v0 cos(ms)sin(nx/L)

m=0
0
wm sin(m0)sin(nrx/L)

m=0

FOURIER COEFFICIENTS FOR DISPLACEMENT SOLUTIONS

Through the use of Fourier analysis, two sets of 3 x 3 matrix equations

result, one for even and one for odd solutions. These matrices may now be

solved individually for the even and odd Fourier displacement coefficients.

Once these coefficients have been determined, the total displacement, u, v, and

w, may be computed from equations 2.1d - 2.1f.

A conventional row-manipulation technique is employed to solved for

Fourier displacement coefficients. For example, consider the even matrix

equation:

C( 1,1) C,(1,2)

C'(2 ,1) C (2 ,2 )

CeC3 ,1) C (3,2)

C (1,3)

C (2,3)

C (3,3)

m,nv e

v
m,n

we
m,n

De C1)

e
= D (2)

De (3)

p~e
m,n

e
m,n

m,n



e e e
To solve for the even displacement coefficients, u , v , and w , the

m,n m,n m,n

coefficient matrix is converted into an upper-triangular matrix.

C'(1,3) u e
m, n

C'C2,3) u
m,nC'(3,3) w

C (3,m3) n
i L m, n

D'Cl)

= D'(2)

D' (3)

The displacement coefficients may then computed for by simply "back

substituting."

C'(1,1)

0

0

C'(1,2)

C'(2,2)

0



4.4 STRESS SOLUTION

Once the displacements of the shell have been determined, the bending

and membrane forces, M and N, can be computed. The stress-resultant

displacement relations are:

NX = Et au
1- v 2 ax

+ v

N= Et 1 av -i
1-v 2 a O

N = Et
2(1 + v)

Mx = -Dr
= - x

+

1 av - w
a aO a

w + vaua ax

1 au_
a aO

+ av+a2w 1
2 a2 T a O2

+ $_ W

Mxg = -DC1 - v)1[
a

+ v2w]

ax2

av +
ax ax a0

D= Et3

12(1 + v)

The compound stresses in the shell may be calculated next:

x= N + 12MXz

tE t3

x= Nxy + 12Mxoz

t7 t3

Co = No + 12Moz

t t3

t < z < t
2 2

28

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

(4.4f)



4.5 INTERNAL PRESSURE

To solve for the Fourier series that represents internal pressure,

which contains no axial component, one starts with the original radial loading

series. Beginning with the even series,

e e
Pr Pr cos(m0)sin(nwx/L)

n=1 m=0 m, n

Using orthogonality,

e~ 27r L
Pr V(1 + 6  0)L = Pr(x,O) cos(m'O)sinCn'wx/L) dx do (4.5a)
m,n m,0 0 0

Now let

Pr(x,o) = Pr for 0 < x < L
0 < 0 < 2v

Evaluating the double integral for m =0,

Pre = 4 Pr[ 1 - cos(nr) ]
m,fn nir

4Pr= 1 - (-1)n

nr

for m = 0 and n > 0

Similarly for the odd solution,

Pr 0  = Pr sinCmO)sin(nvx/L)

n=1 rn-C m,n

Evaluating the double integral over the same limits produces,

Pr0 = 2Pr[1-cos(n)][1-cos(2mTr)]
7r2 n

0 for all m and n

Thus, in general,

= 1 2 2 Pr e cos(mo) + Pr0 sin~m) sin(nrx/L)
2 n=1 m=0 m,n m,n

Since Pro is 0 for all m, n,
mr,n

00

Pr 1 Pr sin(nrx/L) for m = 0 (4.5b)

2 n=1 m,n



Finally,

00 n
Pr = 2P[ 1 - (-1) nsin(nwx/L)

n=1 n

This Fourier series represents a uniform radially outward pressure

over the entire surface of the cylinder. In order to account for the effect of

internal pressure, this outward radial pressure is superposed on the external

forces and moments. Mathematically, this is accomplished by merely adding the

above Fourier series to the Fourier series representing the external loads.

Hydrostatic Pressure

To account for hydrostatic pressure, in a tank with the x-direction

vertically upward, one integrates equation 4.5a, but does not assume that

Pr(X,0) is constant for x from 0 to L. Instead, the following expression is

used:

Pr CX,#) = Pg(x 0 - x) for 0 < x < x0
and Pr(X30) = 0 for xo< x < L

where x 0 = Fluid fill level from vessel bottom
p = Fluid density

Now, evaluating equation 4.5a for m = 0,

p = 4P9 X 1 - cos(fxo) ]1 sin(fxo) .cosffxo)
L nur f2f

where,

f = nrx
L

Like the uniform, radial outward pressure, the odd terms of this series are

ealso zero. Thus, substituting this new expression for Pr into equation 4.5b,
m,n

the Fourier series becomes:

Pr = 2pg xoL 1 - cos(fxo) - 1 sin(fx) - xfcos(fx) sin(nrx/L)
n=1 L nf ff



4.6 SUMMARY

In this chapter, the loading Fourier coefficients, P, , P , and
m,n m,n

Prmn for both even and odd solutions have been determined by orthgonality.

Once these coefficients have been found, equations 4.1d - 4.1f may be used to

determine the loads, PX , Po, and Pr at any location on the cylindrical

surface. Using equations 4.1a - 4.1c, the displacements u, v, and w can also

be expressed as Fourier series. The Fourier series for the displacements and

the loadings may now be substituted into the general equilibrium equations 2.1a -

2.1c. Equations 2.la - 2.1c may now be written as two matrix equations, one

for even solutions and one for odd solutions. These matrix equations are then

used to obtain the displacement Fourier coefficients um,r vn,n' and w . Once

the displacement Fourier coefficients have been computed, the displacement

solutions, equations 4.1a - 4.1c, may be used to determine the deflection of

the shell at any location on the cylinder. Using these displacement solutions,

the bending and membrane forces may be calculated from equations 4.4a - 4.4f.

The compound and shear stresses may then be computed.

Section 4.5 developed the Fourier loading series that would simulate

internal and hydrostatic pressure. To account for internal or hydrostatic

pressure, these series would be added to the existing Fourier series which

represent the external loads.

Since the Fourier series for displacements and loadings were developed

so that they fulfill the boundary conditions of simple-support, we now have a

solution to the equilibrium equations for a simply-supported cylindrical shell.



5. THE METHOD OF COLOCATION

5.1 BASIC THEORY

The method of colocation is a technique that is used to solve for

forces that produce a specified displacement field for a designated patch area.

To accomplish this, a two step process is involved. First, using the

previously mentioned Fourier analysis with unit loadings, one can obtain

displacements. These displacements are effectively the elements of a

flexibility matrix. Consider an n x n subdivision of elements, the

displacements are found to be:

= C(1,1)PCl)

= C(2,1)PCl)

= C(3,1)PC1)

+ C(1,2)PC2)

+ C(2,2)P(2)

+ C(3,2)P(2)

+ C(1,3)PC3) + ... + C(1,4n2')P(4n2 )

+ C(2,3)P(3) + ... + C(2,4n2 )P(4nZ)

+ C(3,3)PC3) + ... + C(3,4n2 )P(4n2 )

wC4n 2 ) = C(4nz ,)P(1) + C(4n 2 ,2)P(2) + CC4nz ,3)PC3) + ... + C(4n 2 ,4n2 )P(4nz )

To obtain the values of the

is applied for PU1) and all

w(1)

w(2)

w(3)

coefficient (or flexibility) matrix, a unit loading

other loadings are zero. Thus,

= C(1,1)PC1)

= C(2,1)P(l)

= C(3,1)P(1)

w(4n 2 ) = C(4n
2 ,l)P(l)

But, since P(1) is a unit loading, the coefficients are just equal to the

displacements.

wl)

w(2)

w(3)



C(ll) = w(i)

CC2,1) = w(2)

C(3,1) = wC3)

C(4n2 ,1) = w(4n2 )

To obtain the next set of coefficents, P(2) becomes a unit loading and all

other loadings are zero. This process is repeated iteratively for all loadings

in all directions. Thus, the final matrix is comprised of four types of

coefficients: from radial displacements due to radial loadings, radial

displacements due to shear loadings, shear displacements due to radial

loadings, and shear displacements due to shear loadings.

The final matrix equation for colocation takes the form of

-Wr( 11) -.. Wr(1, 4 n2)

.wr(4n2 ,1) ... Wr (4n2 ,4n)

vr(1,1) ... vr(1,4n )

vr(4n2 ,l) ... vr(4n2,4n2 )

wg(1 ,1) ... w C(1,4n2 )

wg(4n2 ,1) ... wg(4n2 ,4n2)y

v 1, ) ... vo(1,4n2 )

vo (4n2 , 1) ... vo(4nz ,4n2 )

elements of the flexibility matrix are:

wr(n,n) = The coefficients of a radial displacement due to
a radial loading.

wo(n,n) = The coefficients of a radial displacement due to
a shear loading.

vr(n,n) = The coefficients of a shear displacement due to
a radial loading.

vo(nn) = The coefficients of a shear displacement due to
a shear loading.

wC 1)

w(4n 2)

v(1)

vC4n2 )

Where, the

pr (1)

pr (4n 2 )

PO (1)

Po(4n2)

(5.1)



If the displacements are specified on the left-hand side of this matrix

equation, the coefficient matrix can be inverted to obtain a stiffness matrix,

and the loadings that will produce the specified displacment field may be

solved.

5.2 UNIFORM DISPLACEMENTS

In order to allow the plug to move uniformly as a rigid body, w(n) and

v(n) must be determined to ensure this motion. From Figure 5.1, one can see

that a uniform unit lateral-displacement, parallel to O = 0, is guaranteed if

w(n) and v(n) satisfy the following:

w(n)sins = vCn)coss

w(n)coso + v(n)sins = 1

Solving for w(n) and v(n):

w(n) = coss

v(n) = sinO

These expressions for w(n) and v(n) are substituted into the general matrix

equation 5.1, and then this equation is solved for the corresponding loadings

that will produce a uniform, rigid body displacement. Having solved for the

required forces from a known set of displacements, the stiffness may be

computed.



Cylindrical Shell

Detail-of b:

v v cos$

w sin$ w

Conditions for uniform displacment:

w sin$ = v cos#

w cos$ + v sin$ = 1

Solving for w and v:

w = cos$

v = sin$

Conditions For Uniform DisplacementFigure 5. 1



5.3 AN EXAMPLE OF COLOCATION

As an example, the colocation method was used to calculate the required

forces necessary for a unit radially inward displacement of a rectangular

attachment. The cylinder used in this example had the following parameters:

Radius = 1.0 in.

Length = 8.0 in.

Thickness = 0.01 in.
E = 1.0 psi.

v = 0.3

The rectangular attachment had the following dimensions:

Lx = 0.5 in.

Lo = 0.5 in.

TX = 0.125 in.

To = 0.25 in.

The attachment was placed two inches from the bottom of the cylinder.

The calculated radial and shear forces that were required to produce a

unit radially inward displacement of the rectangular attachment are shown in

Figure 5.2. It is interesting to note that very large shear forces (twice as

large as radial forces) are necessary in regions 1 and 3 to obtain a unit

displacement. These large shear forces are expected, because in simulating the

uniform displacement of a rigid attachment, the curvature of the

shell-attachment intersection must be maintained. This is not true for a soft

attachment in which the curvature of the shell-attachment intersection would

tend to flatten. Since the attachment is located near the bottom of the

cylinder, the radial force is inward in region 4 and outward in region 2. This

combination of forces was expected because it would ensure a uniform

displacement for an attachment near the bottom of a simply-supported cylinder,

since the shell becomes stiffer near the ends.

By loading each the four regions with the corresponding radial and

shear forces in Figure 5.2, one may calculate the membrane and bending stresses

for this rigid attachment in the usual manner.



Figure 5.2 Calculated Radial And Shear Forces That
Produce A Unit Radially Inward Displacement
Of The Rectangular Attachment
(10-4 lbs.)



6. DISCUSSION OF RESULTS

6.1 COMPARISON WITH BIJLAARD'S WORK

In his paper "Stresses From Radial Loads And External Moments In

Cylindrical Pressure Vessels" (Ref. 3), Bijlaard includes tabulated results of

calculations. As a first comparison, the method presented here is used to

calculate the same problems examined by Bijlaard. The geometry and properties

of the cylinder are chosen to aid in non-dimensionalizing the results, since

all of Bijlaard's tables are non-dimensionalized. The parameters of the

cylinder are:

Radius = 1.0

Length = 8.0

v = 0.3

The tables included the following values:

M x N = Number of terms in the Fourier series
t = Thickness of shell
W = Radial displacement
My = Circumferential bending moment per unit length
MX = Longitudinal bending moment per unit length

-No = Circumferential membrane force per unit length
-N1 = Longitudinal membrane force per unit length
P = Surface loading

= One-half the length of the attachment-
cylinder intersecting area in the x and

0 directions

All attachments were of square geometry. Bijlaard usually used a 41 x 61 term

Fourier series. However, as the shell became thinner, his value of N exceeded

100.

Radial Loads

Tables A, B, and C reference Table 9 in Bijlaard's paper. The three

tables display the non-dimensionalized deflections, membrane forces per unit

length, and bending moments per unit length using a varying number of terms in

the Fourier series.



TABLE A - Radial Loading

and $ = 1/4

with t = 1/15

M X N t 0 W/(P/EA) My/P MX/P -Ng/(P/A) -Nx/(P/A)

Bijlaard 1/15 1/4 423 0.077 0.0485 1.820 2.23

10 x 10 1/15 1/4 437 0.072 0.0324 0.993 2.09

25 x 25 1/15 1/4 457 0.084 0.0530 1.754 2.30

50 x 50 1/15 1/4 457 0.084 0.0517 1.749 2.30

75 x 75 1/15 1/4 457 0.084 0.0511 1.746 2.30

100 x 100 1/15 1/4 457 0.084 0.0515 1.746 2.30

TABLE B - Radial Loading with t = 0.01

and 0 = 1/8

M X N t ' W/(P/EA) MO/P MX/P -N6/(P/A) -NX/(P/A)

Bijlaard .01 1/8 30,136 0.0716 0.0394 9.792 14.192

10 x 10 .01 1/8 26,675 0.0391 0.0138 2.006 9.791

25 x 25 .01 1/8 29,396 0.0675 0.0291 6.380 13.372

50 x 50 .01 1/8 29,889 0.0707 0.0379 9.478 14.141

75 x 75 .01 1/8 29,913 0.0718 0.0389 9.640 14.163

100 x 100 .01 1/8 29,896 0.0709 0.0370 9.485 14.155



Radial Loading with t =

and $ = 1/16

One can see that our results are in good agreement with Bijlaard's. As

expected, more terms in the Fourier series are needed for convergence when t

and $ become small. In this situation, about 75 x 75 terms are required for

good convergence. For larger values of t and 0, approximately 50 x 50 terms

are required for good convergence. Since Bijlaard truncated the governing

equilibrium equation, our results are not expected to match Bijlaard's exactly.

External Moments

Table D references Tables 2 and 5 in Bijlaard's paper. The geometry

and properties of the cylinder were the same as for the radial loadings. The

thickness was t = 0.01. Our number of patch divisions varied to allow greater

refinement within the patch area.

M X N t 0 W/(P/EA) Mg/P MX/P -Ng/(P/A) -Nx/(P/A)

Bijlaard 0.003 1/16 370,000 0.095 0.0455 34.5 47.0

10,x 10 0.003 1/16 296,550 0.023 0.0076 2.7 21.8

25 x 25 0.003 1/16 354,310 0.059 0.0217 10.6 36.4

50 x 50 0.003 1/16 367,760 0.079 0.0348 22.3 43.3

75 x 75 0.003 1/16 371,670 0.083 0.0429 30.1 45.3

100 x 100 0.003 1/16 372,730 0.084 0.0469 32.7 45.7

TABLE C - 0.003



TABLE D - External Moment Loading with
t = 0.01 and 0 = 1/8

In regard to moment loadings, our results are in good agreement with

Bijlaard's. It is quite evident that as more elements in the attachment-

cylinder intersection are used, the agreement becomes better. When more

elements are used, there are more elements on either side of the neutral axis.

As a result, the moment that is applied may be simulated more accurately.

Since t and $ are small, approximately 75 x 75 terms are needed for good

convergence.

PATCH
TYPE M x N DIVISION MO MX -No -NX

Longitud-

inal
Bijlaard 0.199 0.270 85.28 32.8

50 x 50 1 x 1 0.157 0.205 67.18 27.1

75 x 75 1 x 1 0.177 0.219 70.18 27.4

75 x 75 3 x 3 0.198 0.258 82.54 32.1

Circum-
ferential

Bijlaard 0.629 0.306 32.72 60.08

50 x 50 1 x 1 0.255 0.146 16.60 25.97

75 x 75 3 x 3 0.611 0.314 31.55 56.29



6.2 COMPARISON WITH AN API-650 "LOW TYPE" NOZZLE ON A STORAGE TANK

Ref. 5 contains results that were obtained by applying separate

external moments and radial forces on an API-650 "Low Type" 24-in.-dia nozzle.

The applied loads were:

Longitudinal Moment = 1800 x 103 in-lbs.
Circumferential Moment = 2724 x 103 in-lbs.

Radial Thrust = 40.8 x 103 lbs.

To simulate the presence of a reinforcing pad on the tank, the loads were

distributed over a reinforcing pad which had dimensions:

Inner Radius = 12.0 in.

Outer Radius = 27.0 in.

The locations of the dial gauges are shown in Figure 6.1. The shell

deflections due to various loadings are shown in Table E. The calculations

used 50 x 50 Fourier series, except where indicated. The parameters that were

used to calculate shell deflections and stiffnesses were:

Radius = 2070 in. (172.5 ft.)

Height = 576 in. (48 ft.)
Tank Thickness = 1.345 in.

E = 30 x 106 psi.

v = 0.3



Reinforcing Pad #5

2'-9 3/8"

Bottom of Tank

Figure 6.1 Location of Dial Gauges on Reinforcing Pad
(From Reference 5)



TABLE E - Shell Deflections (in.) near an API-650
Nozzle Due to Various External Loads

Dial Gauges

LOAD NO. 2 NO. 3 NO. 4 NO. 5 NO. 7 NO. 8 NO. 10 NO. 11

Longitudinal

Moment

Experiment 0.020 0.099 0.409 0.471 0.246 0.222 0.223 0.231

Calculated 0.033 0.128 0.432 0.504 0.278 0.267 0.278 0.267

Circumfer.
Moment

Experiment 0.012 0.028 0.041 0.033 0.170 0.210 -0.093 -0.137

Calculated 0.0 0.0 0.0 0.0 0.068 0.141 -0.068 -0.141

Calculated 0.0 0.0 0.0 0.0 0.153 0.249 -0.153 -0.249
(75 x 75)

Radial

Thrust

Experiment 0.078 0.152 0.350 0.380 0.250 0.222 0.235 0.229

Calculated 0.086 0.246 0.427 0.432 0.359 0.345 0.363 0.351

The calculations for the shell deflections are larger than the experimental

values, because the cylindrical model is simply-supported, and the actual tank

is fixed at the base.

The Fourier series of 50 x 50 terms provided good convergence for the

calculated values. However, when a circumferential moment was applied, a

series of 75 x 75 terms was necessary to ensure good convergence.



Using the above data, stiffness coefficients may be determined (Ref.5).

A comparison of calculated and experimental values is shown in Table F.

TABLE F - Comparison of Stiffness

Coefficients

The calculated stiffness coefficients are in good agreement with the

experimental values. Since the calculated shell deflections are generally

larger that the experimentally measured values, this discrepancy will cause

smaller values for stiffness coefficients.

Hydrostatic Pressure

Ref. 5 also contains measured deflections due to hydrostatic pressure.

A comparison of calculated and experimental values is shown in Table G.



TABLE G - Shell Deflections Due to
Hydrostatic Pressure

Dial Gauges

The calculated deflections are larger by a factor of two, when the

tank is only half full. However, the calculated values are in better agreement

with the measured deflections when the tank is filled to near capacity. Two

reasons account for this discrepancy. First, calculations are based on the

assumption that the shell-to-bottom junction is free to rotate. In reality,

the bottom of the tank is fixed. As a result, calculated values can be

expected to differ reatly from measured deflections near the bottom of the

tank. Second, when the tank is nearly full, the hydrostatic load becomes

predominant over the rigidity of the bottom-to-shell junction. This is not

the case when the filling level in the tank is low. Thus, better calculated

deflections can be expected when the filling level is high and the attachment

is near the bottom.



6.3 COMPARISON WITH THE PRESSURE VESSEL ATTACHMENTS OF WELDING
RESEARCH COUNCIL BULLETIN NO. 60

In Welding Research Council Bulletin No. 60 (Ref. 6), Cranch presents

experimental data that was obtained by independently loading five attachments

on a pressure vessel. Only two of the five attachments were used for this

comparison (Difficulties were encountered in accurately simulating a third

attachment, see Appendix E). Due to the many ambiguities of the Bulletin's

presentation of the experiment, it should be kept in mind that this comparison

should not treated as numerically exact one. Rather, it should reflect the

general trend of the solution presented in this thesis.

In attempting to accurately simulate the Bulletin's experiments on the

attachments, some major ambiguities of and inconsistencies in the tests are

causes for discrepancies between experimental and calculated values. The

Bulletin does not describe the method in which the vessel is supported. As

seen in the last comparison, the boundary conditions at the ends of the

cylinder are very important. The welds that connect the attachments to the

vessel are inconsistent, because the width of the weld changes as one moves

around the circumference of the attachment. The treatment in the Bulletin of

deflections is incomplete, because one cannot tell what deflections were

measured with respect to. Taken together, these factors are most likely to

affect the agreement between calculated and experimental values.

The Bulletin also presents a theoretical value for every experimental

value. These theoretical values were based on Bijlaard's original method for

determining stresses at attachment-shell intersections. However, the Bulletin

does not explain how circular attachments were simulated, since Bijlaard's

method only accounted for rectangular attachment-shell intersections.



The parameters of the pressure vessel used in simulating the

experiments were (See Figure 6.2):

Radius = 24.0 in.
Length = 104.0 in.
Vessel thickness = 0.625 in.
E = 29.5 x 106 psi.
v = 0.3

The dimensions used to simulate the attachments were (See Figures 6.3 and

6.4):

TABLE H - Summary of Attachment

Dimensions (in.)

To be consistent with the methods in the Bulletin, the loading area on

the cylinder included the thickness of the welds. For Attachment 3, the load

was applied over the reinforcing pad and its welds. The bending and membrane

stresses were then calculated at the edge of each attachment. For Attachment 3,

the stresses were calculated at the edge of the reinforcing pad. The

experimental values in the Bulletin were obtained by extrapolating the

experimentally determined stresses to the edge of the attachments. As in the

Bulletin, values along the meridian were those along the circumferential axis,

and values along the generator were those along the longitudinal axis.

Inner Outer Weld
Attachment Radius Radius Thickness

No. 1 3.033 3.844 17/32

No. 3 3.033 5.810 9/16
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6.3.1 BENDING AND MEMBRANE STRESSES

Tables I and J contain bending and membrane stress per unit force for a

radial load. My calculated values are shown along with the Bulletin's

experimental and theoretical values. For Attachment 1, the calculated values

are in good agreement with the Bulletin's theoretical results. This agreement

is expected since the theoretical values are based on Bijlaard's method for

determining stresses in cylindrical shells. The agreement between experimental

and calculated stresses is consistent and within the same order of magnitude.

Since Attachment 3 involves a configuration for which no detailed theory

exists, the theoretical values in the Bulletin were determined from certain

recommendations that Bijlaard made using spherical shell theory. As a result,

my calculated values, which were based on cylindrical shell theory, will tend

to disagree with the theoretical values. However, the calculated values are

consistent in many respects to the experimental values, and the stresses are

within the correct order of magnitude.



TABLE I - Attachment No. 1, Radial Load, Bending and

Unit Force (psi./lbs.), P = 16,600 lbs.
Membrane Stress per

Method NX/Pt 6Mx/Ptz NO/Pt 6My/Ptz

,Meridian:

Experiment -0.21 -0.81 -0.43 -1.80

Calculated -0.42 -0.67 -0.33 -1.26

Theoretical -0.38 -1.01 -0.33 -1.49

Generator:

Experiment -0.27 -0.71 -0.07 -0.49

Calculated -0.45 -0.85 -0.27 -1.34

Theoretical -0.38 -1.01 -0.33 -1.49

TABLE J - Attachment No. 3, Radial Load, Bending and Membrane Stress per
Unit Force (psi./lbs.), P = 19,500 lbs.

Method NX/Pt 6MX/Pt 2  Ny/Pt 6My/Pt 2

Meridian:

Experiment -0.19 -0.47 -0.30 -1.20

Calculated -0.23 -0.25 -0.17 -0.45

Theoretical -0.30 -0.53 -0.23 -0.96

Generator:

Experiment -0.23 -0.59 +0.01 -0.39

Calculated -0.29 -0.40 -0.12 -0.76

Theoretical -0.30 -0.53 -0.23 -0.91



Tables K and L contain bending and membrane stress per unit couple for

longitudinal and circumferential couples. Unlike the case involving radial

loads, the Bulletin's theoretical values for both attachments were obtained

using Bijlaard's method for determining stresses with cylindrical shell theory.

Examining the stresses due to a longitudinal couple, my calculated

values are in good agreement with the theoretical values. This agreement was

expected. The calculated values are also very consistent with the experimental

results, and in certain cases, the calculated stresses are closer to the

experimental results than the theoretical values.

For the circumferential couple, calculated stresses are in good

agreement with the theoretical values, as they should be. As before, the

calculated results are consistent with experimental values, and in some cases,

the calculated values represent a better estimate of the experimental stresses

than the theoretical values.

Thus, although there were ambiguities in simulating the experimental

procedure in this Bulletin, my calculated values were in consistent and in good

agreement with the experimental and theoretical values. The discrepancies

arose primarily because of ambiguities in the treatment of the welds of the

attachments and in the method of support for the vessel.



TABLE K - Longitudinal Couple, Bending and Membrane Stress per Unit Couple
(psi./in-lbs)

Method NX/Pt 6MX/Pt2  Ng/Pt 6M/PtI

(P = in-lbs.)

Attachment No. 1
(P = 1.344 x 105)

Generator:

Experiment 0.019 0.27 0.036 0.15

Calculated 0.039 0.37 0.113 0.24

Theoretical 0.029 0.35 0.098 0.22

Attachment No. 3

(P = 1.296 x 105)

Generator:

Experiment 0.028 0.14 0.017 0.074

Calculated 0.025 0.12 0.053 0.104

Theoretical 0.023 0.14 0.066 0.094



TABLE L - Circumferential Couple, Bending and Membrane Stress per Unit

Couple (psi./in-lbs.) at Edge of Attachment

Method NX/Pt 6MX/Pt 2  Ng/Pt 6Mg/Pt 2

Attachment No. 1
(P = 59,520 in-lbs.)

Meridian:

Experiment 0.015 0.24 0.079 0.53

Calculated 0.060 0.32 0.038 0.60

Theoretical 0.045 0.27 0.031 0.50

Attachment No. 3

(P = 87,340 in-lbs.)

Meridian:

Experiment 0.024 0.16 0.091 0.41

Calculated 0.042 0.14 0.027 0.25

Theoretical 0.044 0.15 0.023 0.29



6.3.2 DEFLECTIONS

Comparisons between the calculated and experimentally measured

deflections per unit radial load for Attachments 1 and 3 are shown in Figures

6.5 and 6.6. In examining Figure 6.5, one see that the calculated deflections

per unit radial load are much larger than those experimentally determined.

This discrepancy is caused by the stiffening of the shell near the attachment

due to the welds. Since the weld thickness is larger than the attachment

thickness, this stiffening-effect is very pronounced. A better calculated

solution may be obtained by using the colocation technique.

In Figure 6.6, the calculated deflections per unit radial load are

lower than the experimentally determined values. However, the slope of the

calculated solution is in good agreement with the experimental results. Here

the welds are not a major factor, since the thickness of the reinforcing pad is

much larger than the thickness of the welds. The constant discrepancy between

calculated and experimental results, leads one to infer that the dial gauges in

the experiment are measuring the total deflection of the shell, including that

due to the bending of the vessel as a whole. Since the method in the thesis

calculates local deflection of the shell, it would not reflect the displacement

resulting from the bending of the vessel, whose bending as a whole is analogous

to that of a beam. As expected, the calculated solution approaches zero at the

ends of the vessel. On the other hand, the experimental results do not

approach zero. This leads one to believe that the actual supports of the

pressure vessel do not reflect a simply-supported boundary condition.
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7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE IMPROVEMENTS

7.1 SUMMARY AND CONCLUSIONS

The objective of this thesis was to extend the Fourier method of

modelling pressure vessels as continuous simply-connected surfaces with central

patch loads. This work has resulted in a closed-form solution for determining

stresses and flexibities of pressure vessel attachments. The method's

capabilities include placing loads or load combinations anywhere on the

cylindrical surface, designating rectangular or circular attachments, examining

displacements and stresses resulting from multiple attachments, and simulating

rigid or soft attachments.

In comparing the calculations of the thesis with experimental tests in

existing literature, there was generally good agreement between my calculated

values and those determined from experiments. In comparing the calculations

with Bijlaard's results, the calculated values are in good agreement with

Bijlaard's values, as they should be.

In simulating experimental tests on an API-650 nozzle located on a

storage tank, the discrepancy in the boundary condition primarily accounted for

inaccuracies between experimental and calculated data. The calculations

assumed a simply-supported base, when in reality, it is fixed. However, the

effect of the fixed boundary condition may be lessened by locating the

attachment farther from the base or by including a hydrostatic load. For the

hydrostatic load, I found the calculated deflections were in good agreement

with experimental values, especially when the tank was full. When the tank is

full, the hydrostatic load is predominant over the base rigidity.

Despite ambiguities in interpreting the experimental procedure of tests

performed on pressure vessel attachments in Welding Research Council Bulletin

60, there was generally good agreement between my calculated stresses and the

Bulletin's experimental and theoretical results. The agreement between my
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calculated values and the Bulletin's theoretical stresses was expected, since

both were based on Bijlaard's work in cylindrical shell theory. Because the

method in the thesis does not truncate the partial differential equations which

govern equilibrium, the calculated stresses were at times closer to the

experimental values than were the previous theoretical predictions. Variations

between my calculated values and the Bulletin's experimental results were

largely due to the stiffening effect of the welds on the attachments and the

ambiguity in the method of support for the vessel.

In attempting to compare the method of the thesis with tests in

existing literature, one problem that was often encountered was the fact that

not many comprehensive tests have been performed. As seen in the Welding

Research Council Bulletin 60, many ambiguities arose while trying to accurately

simulate the experiments. As a result, one should use these comparisons to

evaluate the general trend of the solution, rather than use them for numerical

exactness.

7.2 RECOMMENDATIONS FOR FUTURE IMPROVEMENTS

A few recommendations can be made to enhance the method presented in

this thesis. An effective convergence algorithm could be incorporated to

ensure that the Fourier series has converged. The convergence of the Fourier

series is an important factor for thin vessels and attachments with small

annular cross sections.

A torsional moment could easily be incorporated into the method. To

simulate a torsional moment, one would load each of the elements in the

attachment-shell intersection with forces that represent a torsional vector.

The displacements and stresses would then be calculated in the usual manner.

Torsion could also be included in colocation. As a result, a torsional moment



could be applied to a rigid attachment.

The simulation of an external moment could be more accurately

represented. The method in the thesis does not account for the linearly

varying stress field across the face of an element. It distributes a uniform

stress field over the face of each element, whose magnitude is determined by

the distance that the center of the element is from the neutral axis. The

difference between the linearly varying and uniform stress field for a

particular element is a couple. Adding this couple would simulate the moment

more accurately. However, using the present approach in the thesis, one would use

more elements above and below the neutral axis to obtain a reasonable

represetation of the moment. This is an improvement over Bijlaard's method

which only used one element above and below the neutral axis.

Finally, a method to simulate a fixed boundary condition would be

useful in analyzing tanks or vessels with fixed ends.



APPENDIX A

NOMENCLATURE

Description

D

E

Ix, 1#

L

MX, M0

Myy

NX, No

NyX

PX , P0 , Pr

Units

Defining
Equation
or Page

p. 7

p. 7

p. 14

p. 6

(4.4d,e)

psi.

in. 4

in.

lb.

Symbol

Flexural rigidity [ D = Et!/12(1 - v2)

Modulus of elasticity

Moments of inertia

Length of cylinder

Radial and tangential moments per
unit distance

Twisting moment per unit distance
on radial plane

Radial and tangential forces per
unit distance

Shearing force per unit distance
on axial plane and parallel to

0-axis of cylinder

Surface loadings in axial, tangential,
and radial directions

Radius of cylinder

Dimensions of rectangular element

Acceleration of gravity

integers, Fourier indices

Thickness of cylindrical shell

Displacements in axial, tangential,

and radial directions

Cylindrical coordinates

U, v, w

x, o, r

lb. (4.4f)

lb/ft

lb/ft

psi

in.

in.

ft/s 2

in.

in.

(4.4a,b)

(4.4c)

p. 5

p. 6

p. 7

p. 30

(4.1)

p. 5

p. 5

p. 5



Poisson's ratio

Density

Radial, tangential, and axial

normal stress

Shear stress

v

p

ax , a , ar

lbs/in 3

psi

(2.1)

p. 30

p. 28

p. 28psi



APPENDIX B : MATHEMATICAL DETAILS

SUMMARY OF ORTHOGONAL FUNCTIONS

2 sin(m'o)sin(ms) do =
0
27r cos(m'O)cos(ms) do =
0

sin(n'x/L)sin(nvx/L)
0

L cos$n'wx/L)cosnvx/L)

m'= m

m' = m

0 m' = m
ir(1 + 6m,0) m' = m

dx = 0 n' = n

L/2 n'= n

dx = 0 n' = n

LU1 + 6n,0/2 n' = n

6io= Kronecker Delta

INTEGRALS USED TO DETERMINE FOURIER
COEFFICIENTS FOR RECTANGULAR AREAS

cos(nrx/L) dx

sin(nTx/L) dx

= 2L cos(nvx/L)sin(nvb/L)
nfT

= 2L sin(nvx/L)sin(nvb/L)

nfT

cos(ms) do

sin(mp) do =

= 2 cos(mO)sin(mo)

2 sin(ms)sin(m$)
m

USEFUL TRIGONOMETRIC IDENTITIES

sin(A + B) = sinA cosB
sinCA - B) = sinA cosB

cos(A + B) = cosA cosB

cos(A - B) = cosA cosB

cos(Ax)cos(Bx) = 1/2
sinCAx)sin(Bx) = 1/2 1

sin(Ax)cos(Bx) = 1/2 [

+ cosA sinB
- cosA sinB

- sinA sinB

+ sinA sinB

cosCA + B)x + cos(A - B)x

cos(A - B)x - cos(A + B)x ]
sin(A - B)x + sin(A + B)x I

x + bS0

x0- b

x+ b

x0- b



INTEGRALS USED TO DETERMINE FOURIER
COEFFICIENTS FOR TRIANGULAR AREAS

b Ob
cosCms)cos(kO) dO = 1/2 $ [ cos(m + k)O + cos(m - k)O ] do

Oa Oa

sin(m + k)O
m + k

+ sin(m - k)O
m - k

. a

b cos(mo)sin(kO) dO

Oa

= 1/2 b[ sin(m + k)O

Oa

- cos(m + k)O
m + k

- sin(m - k)O ] do

+ cos(m - k)O
m - k

b sin(mO)cos(kO) do

Oa

=21
$sin~rn0)sinck0) do

Oa

=1/2 1 Ob [sin(m + k)0

Oa

- cos(m + k)0

m + k

1/2 :[ - cos(m +

+ sin(m - k)0 I do

cos(m - k)o b
m - k

k)O + cosCm - k)O ] do

- sin(m + k)O
m + k

+ sin(m - k)o b
m - k

b



APPENDIX C

ATTACHMENT NO. 5 OF WELDING RESEARCH COUNCIL BULLETIN 60

Attachment No. 5 of Welding Research Council Bulletin 60 consisted of a

solid circular steel rod inserted through a hole in the vessel and welded to

the surface. The radius of the rod was 1.75 inches and the average weld size

was 17/32 inches. This attachment was located 65 inches from the left hand

side of the vessel or at the same longitundinal location as Attachment 1 (See

Figure 6.1). The major difficulty in simulating Attachment 5 is that it is a

true rigid body. Stresses on Attachments 1 and 3 were calculated in the usual

manner, as soft attachments. This procedure assumes that the attachment-shell

junction is flexible. However, to accurately model Attachment 5, this junction

is must be rigid. As a result, the method of colocation would be well suited

to this application. The data presented here is the result of simulating

Attachment 5 as a soft attachment and is included for completeness.

Tables M shows the bending and membrane stresses at the edge of the

attachment due to a radial load. While at times the calculated values are

within the same order of magnitude as the experimental results, they are

usually lower than the experimentally determined stresses. This discrepancy is

primarily caused by rigidity of the attachment. If the colocation method was

employed, then one would expect the stresses to become higher near edge of the

attachment, since the attachment-shell junction would be rigid. Table N shows

the bending and membrane stresses at the edge of the attachment due to

longitudinal and circumferential couples. As before, due to the discrepancy in

simulating the rigidity of the attachment, the calculated stresses are usually

lower than experimental values.

The deflection per unit radial load of Attachment 5 is shown in Figure

C.l. The calculated deflections are lower than the experimentally determined



values. However, the slope of the both curves is consistent. Since the cross

section of the attachment-shell intersection is large compared to the size of

the welds, the welds are not a significant consideration in the discrepancy

between calculated and experimental results. Rather, as seen in the deflection

of Attachment 3, the difference between the two curves is due to the fact that

the experimental data reflects the total deflection of the vessel as a whole.

The method in this thesis only calculates the local deflection in the shell.

TABLE M - Attachment No. 5, Radial Load, Bending and Membrane Stress per
Unit Force (psi./lbs.), P = 10,300 lbs.

Method NX/Pt 6M /Pt2  Ng/Pt 6Mg/Pt 2

Meridian:

Experiment -0.26 -1.35 -0.55 -2.96

Calculated -0.29 -0.94 -0.30 -1.11

Bijlaard -0.44 -1.80 -0.46 -2.32

Generator:

Experiment -0.44 -1.49 -0.17 -1.01

Calculated -0.30 -0.83 -0.24 -1.46

Bijlaard -0.44 -1.80 -0.46 -2.32



TABLE N - Attachment 5, Longitudinal and Circumferential Couples, Bending and
Membrane Stress per Unit Couple (psi./in-lbs)

Method NX/Pt 6Mx/Pt 2  Ng/Pt 6Mg/Pt2

Longitudinal
Moment

(P = 5.412 x 104)

Generator:

Experiment 0.098 0.82 0.10 0.44

Calculated 0.003 0.10 0.01 0.05

Bijlaard 0.031 0.93 0.12 0.55

Circumferential
Moment

(P = 35,520 iA-lbs.)

Meridian:

Experiment 0.039 0.57 0.032 1.05

Calculated 0.000 0.39 0.065 0.12

Bijlaard 0.040 0.60 0.063 1.05
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APPENDIX D

COMPUTER PROGRAM LISTINGS



PROGRAM BIJLAARD
C
C DRIVER PROGRAM TO CALCULATE LOADS, DEFLECTIONS, AND STRESSES
C OF CYLINDERS DUE TO RADIAL LOADS

C
C CREATED 15-JUL-83 BY: W. CRAFT
C DIVIDED INTO SUBROUTINES 18-JUL-83 BY: F.M.G. WONG
C INTERNAL PRESSURE INCLUDED : 10-AUG-83 BY: F.M.G. WONG
C EXTERNAL MOMENTS INCLUDED : 02-SEP-83 BY: F.M.G. WONG
C COLOCATION INCLUDED : 07-OCT-83 BY: F.M.G. WONG
C MULTIPLE NOZZLES INCLUDED : 12-NOV-83 BY: F.M.G. WONG

C TRIANGULAR PATCHES INCLUDED : 22-NOV-83 BY: F.M.G. WONG
C HYDROSTATIC PRESS. INCLUDED : 14-DEC-83 BY: F.M.G. WONG

C
C
C LATEST REVISION : 19-JAN-84
C
C

C
REAL L, NU,LPHI,LX
CHARACTER*9 CDATE
CHARACTER*8 CTIME
DIMENSION PLAT(4,4), FOR(3), NDIR(3)

COMMON / CONSTANTS / A, E, L, NU, PI, T

COMMON / INDEXES / M, N

COMMON / LOADS / PREC100,100), PRO(100,100), PXE(100,100),
1 PXO(100,100), PPHIE(100,100), PPHIO(100,100)
COMMON / DISPL / UE(100,100), UO(100,100), VE(100,100), VO(100,100),

1 WE(100,100), WO(100,100)

COMMON / INTPRS / PRESS(100), QPRES
COMMON / CENTELM / CNTXEL(4,4,4), CNTPHIEL(4,4,4)
COMMON / CIRCTB / CIRCX(7,4), CIRCPHI(7,4)
COMMON / CIRCSD / CIRCSX(3,4), CIRCSP(3,4)
COMMON / STIFMAT / STIFFA(3,8), STIFFBC32,32), STIFFC(72,72),

1 STIFFDC128,128)

C
DATA PRE/10000*0/,PRO/10000*0/,PXE/10000*0/,PXO/10000*0/

DATA PPHIE/10000*0/,PPHIO/10000*0/
C

PI=3.14159265359

C
OPEN(UNIT=1,FILE='BIJLRD.DAT',CARRIAGECONTROL='LIST',

1 STATUS='NEW')
OPEN CUNIT=4, FILE='AUTOZ.DAT', STATUS = 'OLD')

C
CALL DATE(CDATE)

CALL TIME(CTIME)

C

C

C

C THIS ROUTINE ROLLS CYLINDER INTO A FLAT SURFACE OF SIZE L*(2PI*A) OR

C SMALLER AND CHECKS LOAD INTENSITY DUE TO A COMBINATION OF AXIAL,

C SHEAR, RADIAL LOADS OF ANY INTENSITY AND LOCATION.

C
C A = CYLINDER RADIUS (INCHES)
C L = CYLINDER LENGTH (INCHES)



C M = SUMMATION LIMIT PHI HARMONICS
C N = SUMMATION LIMIT X HARMONICS
C T = CYLINDER WALL THICKNESS (INCHES)
C E = YOUNGS MODULUS FOR CYLINDER (PSI)
C NU = POISSONS RATIO FOR CYLINDER (DIM'LESS)
C
C X AND PHI ARE CYLINDER COORDINATES (X INCHES, PHI INPUT IN DEGREES)
C (XC,PHIC) IS CENTER OF TUBE CONNECTION TO CYLINDER
C
C TAUX = TUBE WALL THICKNESS IN THE X DIRECTION (INCHES)
C TAUPHI = TUBE WALL THICKNESS IN THE HOOP DIRECTION (INCHES)
C

C CCORX,CORPHI) ARE OUTER DIMENSIONS OF TUBE IN THE
C AXIAL AND HOOP DIRECTIONS (EACH IN INCHES)
C

C MTUB = THE NUMBER OF LOADING PATCH ELEMENTS IN ONE QUARTER OF
C THE TUBE WALL IN THE HOOP DIRECTION
C

C NTUB = THE NUMBER OF LOADING PATCH ELEMENTS IN ONE QUARTER OF
C THE TUBE WALL IN THE AXIAL DIRECTION
C
C F = THE LATERAL FORCE IMPOSED ON THE CYLINDER BY THE ATTACHMENT
C TUBE (LBS.)

C
C QPRES = INTERNAL PRESSURE OF CYLINDER (PSI)
C
C RMOM = EXTERNAL APPLIED MOMENT

C

C
C
C

WRITE(1,40) CDATE,CTIME

40 FORMATC15X,'OUTPUT FILE FOR PROGRAM BIJLAARD',2X,A9,2X,A8,/)

C
C
C ::::::: INITIAL CYLINDER PARAMETERS

C ::.
C

WRITE(6,13)
WRITE(1,13)

13 FORMAT(1X,'INPUT CYLINDER PARAMETERS: A,L,M,N,T,E,NU WHERE',/,
1 1X,'A = RADIUS, L = LENGTH, M,N<=100,100: AS SERIES SUMS,',/,
2 1X,'T = THICKNESS, E = MODULUS OF ELASTICITY,',/,
3 1X,'NU = POISSON''S RATIO :',/)

C
READC4,10) A, L, M, N, T, E, NU

10 FORMAT (1X,2E11.4,2I4,3E11.4)

WRITE(1,42) A, L, M, N, T, E, NU

42 FORMAT(1X,'A, L, M, N, T, E, NU=',2E11.4,2I4,3E11.4)

C

C ::.

C ::::::: INITIAL ATTACHMENT DIMENSIONS

C ::.

C
WRITE (6,61)

WRITE (1,61)



61 FORMAT (/,1X,'MULTIPLE NOZZLES: YES = 1, NO = 0')

READ (4,201) MULNZ
WRITE (6,63) MULNZ
WRITE (1,63) MULNZ

63 FORMAT (1X,'MULTIPLE NOZZLES = ',I1)
IF ( MULNZ .EQ. 1 ) THEN

CALL MULTNOZ
GO TO 49

ENDIF
C

WRITE (6,65)
WRITE (1,65)

65 FORMAT (/,1X,'DESIGNATION OF CIRCULAR ATTACHMENTS: YES=1, NO=0')
READ (4,201) ICIRC
WRITE (6,66) ICIRC
WRITE (1,66) ICIRC

66 FORMAT (1X,'ICIRC = ',I1)
IF ( ICIRC .NE. 1 ) GO TO 50

WRITE (6,67)
WRITE (1,67)

67 FORMAT C/,1X,'ENTER CIRCULAR PARAMETERS: XC, PHIC, R1, R2, NFOR')
READ (4,68) XC, PHIC, R1, R2, NFOR

68 FORMAT (1X,4E11.4,1X,Ii)
WRITE (6,68) XC, PHIC, R1, R2 ,NFOR

WRITE (1,68) XC, PHIC, R1, R2 ,NFOR

DO 69 K = 1, NFOR
WRITE (6,70) K

WRITE (1,70) K

70 FORMAT (/,'ENTER FORCE: ',I1,' MAGNITUDE & DIRECTION ')

READ (4,71) FORCK), NDIRCK)

71 FORMAT(1X,E11.4,1X,I1)

WRITE (6,71) FOR(K), NDIR(K)

WRITE (1,71) FOR(K), NDIR(K)

69 CONTINUE
GO TO 200

C
50 WRITE(6,18)

WRITE(1,18)
18 FORMAT(/,1X,'INPUT TUBE CENTER (XC,PHIC), WALL THICKNESSES,',/,

1 1X,'TAUX, TAUPHI, THEN TUBE SECTIONS, LX, LPHI',/,
2 1X,'THEN NO. OF QUARTER-TUBE ELEMENTS, MTUB, NTUB, AND LATERAL',

3 1X,'FORCE, F, IN POUNDS',/)

C
WRITE(6,15)
WRITE(1,15)

15 FORMAT(1X,'INPUT XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F',/,

1 1X,'PHIC IN DEGREES.',/)

READ(4,11) XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F

11 FORMAT (1X,6E11.4,2I3,E11.4)
WRITE(6,44) XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F

WRITE(1,44) XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F

44 FORMAT(1X,'XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F =',/,

1 1X,6E11.4,2I3,E11.4,/)

C
PHIC=PI*PHIC/180.

C



C :::::: EXTERNALLY APPLIED MOMENTS

C
200 WRITE (6,20)

WRITE (1,20)
20 FORMAT (1X,'EXTERNALLY APPLIED MOMENTS: YES = 1, NO = 0')

READ (4,201) MOMRPY
201 FORMAT (1X,I1)

WRITE (6,21) MOMRPY

WRITE (1,21) MOMRPY
21 FORMAT (1X,'RESPONSE TO MOMENT PROMPT = ',I,/)

IF ( MOMRPY .EQ. 0 ) GO TO 49
WRITE (6,22)

WRITE (1,22)
22 FORMAT (1X,'TYPE OF MOMENT: LONG. = 1, CIRCUM. 2, TORSION = 3')

READ (4,201) MOMTYP

- WRITE (6,23) MOMTYP

WRITE (1,23) MOMTYP

23 FORMAT (1X,'TYPE OF MOMENT = ',I,/)
WRITE (6,24)
WRITE (1,24)

24 FORMAT (1X,'ENTER EXTERNALLY APPLIED MOMENT (IN.-LBS.):')
READ (4,25) RMOM

25 FORMAT (1X,E11.4)
IF (MOMTYP .EQ. 3 ) TMOM = RMOM
WRITE (6,26) RMOM

WRITE (1,26) RMOM

26 FORMAT (1X,'EXTERNALLY APPLIED MOMENT (IN.-LBS.) = ',E11.4,/)

C

C ::::::: INTERNAL PRESSURE PARAMETER

C
49 WRITE (6,491)

WRITE (1,491)

491 FORMAT (1X,'ENTER TYPE OF INTERNAL PRESS. 1=RAD; 2=HYDRO.; O=NONE')

READ (4,201) INPRTYP
WRITE (6,490) INPRTYP
WRITE (1,490) INPRTYP

490 FORMAT (1X,'INTERNAL PRESSURE TYPE = ',I1)
IF ( INPRTYP .EQ. 1 ) THEN

WRITE (6,14)
WRITE (1,14)

14 FORMAT (1X,'ENTER VALUE OF INTERNAL PRESSURE (PSI) :)

READ (4,12) QPRES

12 FORMAT (1X,F7.2)
WRITE (6,48) QPRES
WRITE (1,48) QPRES

48 FORMAT (1X,'INTERNAL PRESSURE =',F7.2,/)

ENDIF

IF C INPRTYP .EQ. 2 ) THEN

WRITE (6,481)

WRITE (1,481)

481 FORMAT (1X,'ENTER VALUES FOR RHOG, XO :')

READ (4,482) RHOG, XO

482 FORMAT (1X,E11.4,1X,E11.4)

WRITE (6,483) RHOG, XO

WRITE (1,483) RHOG, XO

483 FORMAT (1X,'RHOG = ',E11.4,' XO = ',E11.4,/)

74



ENDIF
C
C ::::::: COLOCATION METHOD FOR RIGID PLUG
C

WRITE (6,31)
WRITE (1,31)

31 FORMAT (1X,'WISH TO USE COLOCATION METHODS? YES = 1, NO = 0')
READ (4,201) ICOLC
WRITE (6,32) ICOLC
WRITE (1,32) ICOLC

32 FORMAT (1X,'ICOLC = ',I1,/)

C
IF ( ICOLC .EQ. 1 ) THEN

IF ( ICIRC .EQ. 1 ) THEN
CALL COLOCATE (XC, PHIC, R2, 0.0, 0.0, 0.0, 0, 0, 2)
GO TO 99

ENDIF

CALL COLOCATE (XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, 1)
GO TO 99

ENDIF
C
C ::::::: DISPLACEMENT SOLUTION TYPE

C

WRITE (6,80)

WRITE (1,80)

80 FORMAT(/,1X,'ENTER DISPLACEMENT SOLUTION TYPE:')
READ (4,201) IDIS

WRITE (6,201) IDIS

WRITE (1,201) IDIS

C
C ::::::: CALCULATE LATERAL PRESSURES

C
IF ( INPRTYP .NE. 0 ) CALL INTPRES (INPRTYP, RHOG, XO)

C
IF ( (ICIRC .EQ. 1) .AND. (NFOR .NE. 0) ) THEN

DO 85 K = 1, NFOR

PRS = FOR(K)/(CR2*R2 - R1*R1)*PI)

PHIC = PHIC*PI/180.

CALL CIRCSPLIT (XC, PHIC, R1, R2, PRS, NDIRCK))
85 CONTINUE

GO TO 89

ENDIF
C

IF ( F .NE. 0. ) THEN
PL = F/( (LX*LPHI) -(LX - 2.*TAUX)*(LPHI - 2.*TAUPHI) )
PRINT *, ' PL =',PL

CALL RECTUBE (PL, XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, IKP)

IF C IKP .EQ. 1 ) GO TO 50

ENDIF

C

89 IF ( MOMRPY .EQ. 1 ) THEN
IF C ICIRC .EQ. 1 ) THEN

PHIC = PHIC*PI/180.
IF ( MOMTYP .EQ. 3 ) THEN

CALL TORSION (XC, PHIC, R1, R2, TMOM)



GO TO 90
ENDIF
CALL CIRCSET (XC, PHIC, R1, R2, RMOM, MOMTYP)
GO TO 90

ENDIF
CALL MOMENTSET (RMOM, XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB,

1 NTUB, IKP, MOMTYP)
IF ( IKP .EQ. 1 ) GO TO 50

ENDIF
C
C

C CALCULATE LOAD MAP FOR THIS PATCH
C

90 CALL LOADMAP (MAP, Ni)
IF (MAP.NE.3) GO TO 50
IF ( INPRTYP .NE. 0.0 ) CALL MERGPRES

C

C CALCULATE DISPLACEMENTS AND DISPLACEMENT MAP FOR THIS PATCH
C

CALL DISPLACE (IDIS)
CALL DISPMAP

C

C CALCULATE STRESSES AND STRESS MAP FOR THIS PATCH
C

CALL STRESS
C

99 STOP
END

C
C



SUBROUTINE PATCH (XO, PHIO, B, BETA, F, Ni)

CALCULATES THE LOADS OF A RECTANGULAR PATCH

CREATED: 26-JUL-83 BY: W. CRAFT

REAL L, NU, LXEL, LPHIEL
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / LOADS / PRE(100,100), PRO(100,100), PXE(100,100),

PXO(100,100), PPHIE(100,100), PPHIO(100,100)

PHIOD=180.*PHIO/PI
BETAD=180.*BETA/PI

LXEL=2.*B

LPHIEL=2.*BETAD
IF CF.EQ.0) GOTO 99
P12=PI*PI

= 0, M-1

IF (MT.EQ.0) GO TO 5

XMT=FLOAT(MT)

SBETA=SIN(XMT*BETA)

CPHIO=COS(XMT*PHI0)
SPHIO=SIN(XMT*PHIO)

CONTINUE

DO 2 NT = 1, N
XNT=FLOAT(NT)
SB=SINCXNT*PI*B/L)

IF ((N1.EQ.1).OR.(N1.EQ.2)) SXO=SIN(XNT*PI*XO/L)
IF (N1.EQ.3) CXO=COSCXNT*PI*XO/L)
IF (MT.GT.0) GO TO 4
D=8./CXNT*P12)
PHI=D*F*BETA
IF (N1.EQ.1) PRE(MT+1,NT)=PRECMT+1,NT)+PHI*SXO*SB

IF (N1.EQ.2) PPHIO(MT+1,NT)=PPHIO(MT+1,NT)+PHI*SXO*SB
IF (N1.EQ.3) PXE(MT+1,NT)=PXECMT+1,NT)+PHI*CXO*SB
GO TO 2
C=16./(XMT*XNT*PI2)
IF (N1.GT.1) GO TO 20
PRECMT+1,NT)=PRECMT+1,NT)+C*F*CPHIO*SBETA*SXO*SB
PRO(MT+1,NT)=PRO(MT+1,NT)+C*F*SPHIO*SBETA*SXO*SB
GO TO 2
IF (N1.GT.2) GO TO 30
PPHIECMT+1,NT)=PPHIECMT+1,NT)+C*F*SPHIO*SBETA*SXO*SB

PPHIO(MT+1,NT)=PPHIO(MT+1,NT)+C*F*CPHIO*SBETA*SXO*SB

GO TO 2

PXECMT+1,NT)=PXE(MT+1,NT)+C*F*CPHIO*SBETA*CXO*SB

PXO(MT+1,NT)=PXO(MT+1,NT)+C*F*SPHIO*SBETA*CXO*SB

CONTINUE

CONTINUE

RETURN
END

DO 3 MT



C
SUBROUTINE LOADMAP (MAP, Ni)

C
C WRITES THE LOAD MAP
C
C CREATED: 18-JUL-83 BY: W. CRAFT
C
C

C
REAL L, NU
DIMENSION XMAT(11),PHIMAT(11),INT(11,11), RINT(11,11)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / LOADS / PRE(100,100), PRO(100,100), PXE(100,100),

1 PXO(100,100), PPHIEC100,100), PPHIO(100,100)
COMMON / INTPRS / PRESS(100), QPRES

C
C

11 WRITE(6,25)
WRITEC1,25)

25 FORMAT(/,1X,'DO YOU WANT A NEW LOAD MAP? 1=YES, 2=NO, 3=END')

READC4,26) MAP
26 FORMAT (1X,I1)

WRITEC1,46) MAP

46 FORMAT(1X,'MAP=',I1,/)
IF (MAP.NE.1) GO TO 100

WRITE(6,14)

WRITEC1,14)
14 FORMAT(1X,'INPUT XST, DXST, PHIST, DPHIST, Ni (ANGLES/DEG)',/)

READ(4,15) XST, DXST, PHIST, DPHIST, Ni

15 FORMAT (1X,4E11.4,I2)

WRITEC1,47) XST, DXST, PHIST, DPHIST, Ni
47 FORMAT(1X,'XST, DXST, PHIST, DPHIST, N1=',4E11.4,I2,/)

C
PHIST=PI*PHIST/180.
DPHIST=PI*DPHIST/180.

C
CALL TIMESTAT (1)

C
DO 10 I=1,11

XCO=XST+DXST*FLOAT(I-6)/10.
XMAT(I)=XCO

DO 12 J=1,11
PHICO=PHIST+DPHIST*FLOATCJ-6)/10.

IF (I.EQ.1) PHIMAT(J)=PHICO*180./PI

C
C ::::::: NOW COMPUTE THE LOADS ON THE SURFACE MAP AND PRESENT THE

C ::::::: RESULTS AS 0 TO 100% OF F AT EACH GRID POINT AND PLOT.

C
XINT=0.

PRSINT = 0.

DO 6 MT=0,M-1
SPHI=SINCFLOAT(MT)*PHICO)

CPHI=COS(FLOATCMT)*PHICO)



DO 6 NT=1,N
IF ( (QPRES .NE. 0.0) .AND. (MT .EQ. 0) )

1 PRSINT = 2.*PRESS(NT)*SINCFLOAT(NT)*PI*XCO/L)
IF (N1.EQ.1) XINC=(PRECMT+1,NT)*CPHI+PROCMT+1,NT)

1 *SPHI)*SIN(FLOAT(NT)*PI*XCO/L)
IF (Ni.EQ.2) XINC=(PPHIECMT+1,NT)*SPHI+PPHICMT+1,NT)

1 *CPHI)*SIN(FLOAT(NT)*PI*XCO/L)
IF (N1.EQ.3) XINC=(PXECMT+1,NT)*CPHI+PXO(MT+1,NT)

1 *SPHI)*COSCFLOATCNT)*PI*XCO/L)
XINT=XINT+XINC
IF C (QPRES .NE. 0.0) .AND. (MT .EQ. 0) )

1 XINT = XINT - PRSINT

6 CONTINUE

XINT=XINT*.5
INT(I,J) = NINT(XINT)
RINT(I,J) = XINT

12 CONTINUE

C
CALL TIMESTAT (2)

10 CONTINUE
CALL TIMESTAT (3)

C
CALL FINDMIN (RINT, RMIN, RMAX)

C

CALL DIVTEN (RINT, RMIN, RMAX, EXPT)
IF C EXPT .EQ. 0.0 ) EXPT = 1.0

C
C NOW THE INTEGER ARRAY IS SETUP FOR LOADS

C
IF C LOG10CEXPT) .GT. 4.0 .OR. LOG1O(EXPT) .LT. 0.0 ) THEN

WRITE (6,18) EXPT
WRITE (1,18) EXPT

18 FORMAT (15X,'---> VALUES IN MAP SCALED AS ',E9.2,/)
ENDIF

WRITE(6,17) (PHIMAT(K),K=1,11)
WRITEC1,17) (PHIMAT(K),K=1,11)

17 FORMAT(1X,'OUTPUT OF LOADING ON GRID IS:',/,7X,11F6.1,/)

C
DO 9 NN=1,11

IF C LOG10(EXPT) .GT. 4.0 .OR. LOG10CEXPT) .LT. 0.0 ) THEN
WRITE(6,19) XMAT(12-NN),(RINT(12-NN,K),K=1,11)
WRITE(1,19) XMAT(12-NN),(RINT(12-NN,K),K=1,11)

19 FORMAT(1XF6.2,l1F8.4)
ELSE

WRITE(6,191) XMAT(12-NN),(INTC12-NN,K),K=1,11)
WRITEC1,191) XMAT(12-NN),(INT(1.2-NN,K),K=1,11)

191 FORMAT(1XF6.2,11I6)
ENDIF

9 CONTINUE

GO TO 11

C

100 RETURN

END

C
C



C
C

C
SUBROUTINE RECTUBE (PL, XC, PHIC, TAUX, TAUPHI, LX, LPHI, M, N, IKP)

C

C RECTUBE IS A SUBROUTINE THAT PREPARES A RECTANGULAR LOAD
C THROUGH 4 CALLS TO PATCHLAT
C

C PLAT = LATERAL PRESSURE AT EACH ELEMENT (PSI)
C XC = X-COORDINATE OF TUBE CENTER (INCHES)
C PHIC = PHI-COORDINATE OF TUBE CENTER (RADIANS)
C TAUX = THICKNESS OF ATTACHMENT TUBE ALONG X (INCHES)
C TAUPHI = THICKNESS OF ATTACHMENT TUBE ALONG PHI (INCHES)
C LPHI = OUTER HORIZONTAL DIMENSION (INCHES) OF ATTACHMENT TUBE
C LX = OUTER VERTICAL DIMENSION (INCHES) OF ATTACHMENT TUBE
C
C M,N ARE ELEMENT MEMBERS OF PATCH IN PHI AND X DIRECTIONS, RESP.
C

C CREATED : 26-JUL-83 BY: W. CRAFT
C LATEST REVISION : 19-AUG-83
C

C
C

REAL L,NU,LPHI,LX
DIMENSION PLAT(4,4)
COMMON / CONSTANTS / A, E, L, NU, PI, T

C
C

ALPO = ASINCLPHI/(2.*A))
ALPI = ASIN(CLPHI - 2.*TAUPHI)/(2.*A))
V1 = .5*(ALPO + ALPI)
V2 = LX-2.*TAUX
V3 = .5*(LX - TAUX)

C

DO 1 I = 1,M

DO 1 J = 1,N

1 PLATCI,J) = PL

C
ANG = ALPO - ALPI

V4 = 2.*ALPO

C
CALL PATCHLAT CM, N, XC, PHIC, 0, V1, V2, ANG, PLAT, IKP)
CALL PATCHLAT CM, N, XC, PHIC, V3, 0, TAUX, V4, PLAT, IKP)
CALL PATCHLAT CM, N, XC, PHIC, 0, -VI, V2, ANG, PLAT, IKP)
CALL PATCHLAT (M, N, XC, PHIC, -V3, 0, TAUX, V4, PLAT, IKP)

C
RETURN

END

C



SUBROUTINE PATCHLAT (M, N, XC, PHIC, XL, PHIL, THX, THPHI, PLAT, IKP)

PATCHLAT ALLOWS PARTITIONING OF LOADS IN LOCAL COORDINATES TO MATCH
LATERAL COMPONENTS

M

N
XC

PHIC
CXC, PH IC)
XL
PHIL

= NO. OF PHI DIRECTION ELEMENTS IN PATCH
= NO. OF X DIRECTION ELEMENTS IN PATCH
= LOCAL PATCH REFERENCE X COORDINATE
= LOCAL PATCH REFERENCE PHI COORDINATE
DEFINE DIRECTION OF LATERAL LOAD AXIS ON CYLINDER
= X COOR DISTANCE FROM XC TO PATCH CENTROID
= PHICANGLE) DISTANCE FROM PHIC TO PATCH PHI CENTROID

THX = PATCH DIMENSION ALONG X - AXIS

THPHI = PATCH ARCLENGTH (RADIANS) ALONG PHI - AXIS
PLAT(M,N) = THE APPLIED PRESSURE ACROSS (THX)XCA*THPHI) OF PATCH CM,N)

ALONG NORMAL TO CYLINDER AT XC,PHIC + INWARD

THIS SUBROUTINE CREATES PR AND PPHI LOAD HARMONICS FOR SUCH LATERAL

LOADS IKP IS AN ERROR CHECK IF IKP .NE. 0 GO TO END OF PROGRAM

CREATED
LATEST REVISION

27-JUL-83
30-SEP-83

BY: W. CRAFT

BY: F.M.G. WONG

***~***********************~(**********************~ ********************

REAL L,NU
DIMENSION PLAT(4,4)
COMMON / CONSTANTS / A, E, L, NU, PI, T

IKP = 0
IF C (M .GT. 4) .OR. (N .GT. 4) ) IKP = 1
IF C CM .LT. 1) .OR. (N .LT. 1) ) IKP = 1
IF ( IKP .EQ. 1 ) GO TO 98

XM = FLOAT(M)
XN = FLOAT(N)

DO 1 I = 1, M
XI = FLOAT(I)

PHIEL = PHIC + PHIL + THPHI*C2.*XI - 1. - XM)/(2.*XM)

PSI = PHIEL - PHIC

DO 1 J = 1, N

XJ = FLOAT(J)

XEL = XC + XL + THX*(2.*XJ - 1. - XN)/C2.*XN)

::::::: NOW PHI AND X COORDINATES OF ELEMENT M,N ARE KNOWN

PR = PLAT(I,J)*(COS(PSI))**2
PPHI = .5*PLATCI,J)*SIN(2.*PSI)
THXT = THX/C2.*XN)
THPHIT = THPHI/(2.*XM)

CALL PATCH (XEL, PHIEL, THXT, THPHIT, PR, 1)



CALL PATCH (XEL, PHIEL, THXT, THPHIT, PPHI, 2)
C
1 CONTINUE
C

GO TO 99
C

98 WRITE(6,2) M, N
2 FORMAT(1X,'ERROR DETECTED IN ELEMENTS - NO LOAD CREATES,M,N = ',213)

WRITE(1,2)

C

C
99 RETURN

END
C



SUBROUTINE ELMCNTCM, N, XC, PHIC, XL, PHIL, THX, THPHI, IND, IKP)

COMPUTES THE ELEMENT CENTERS FOR ALL PATCHES AND STORES THEM
IN THE COMMON BLOCK "CENTELM"

IND = CODE FOR DESIGNATING THE PATCH AREA (1, 2, 3, OR 4)

CREATED : 06-OCT-83 BY: F.M.G. WONG
LATEST REVISION : 24-OCT-83 BY: F.M.G. WONG

REAL L,NU
COMMON / CONSTANTS / A, E, L, NU,
COMMON / CENTELM / CNTXELC4,4,4),

IKP = 0

IF C CM .GT. 4) .OR. (N .GT. 4) )

IF C CM .LT. 1) .OR. (N .LT. 1) )
IF C IKP .EQ. 1 ) GO TO 98
XM = FLOAT(M)
XN = FLOAT(N)

PI, T
CNTPHIELC4,4,4)

IKP = 1
IKP = 1

DO 20 I = 1, N

DO 10 J = 1, M

XI = FLOAT(I)

CNTPHIELCI,J,IND) =PHIC+PHIL + THPHI*(2.*XI - 1. - XM)/C2.*XM)

XJ = FLOAT(J)

CNTXELCI,J,IND) = XC + XL + THX*(2.*XJ - 1. - XN)/C2.*XN)

PRINT *,'PHIC = ',PHIC,' PHIL = ',PHIL,' THPHI = ',THPHI

PRINT *, 'CENTER: ',IND,CNTXELCI,J,IND), CNTPHIELCI,J,IND)
PRINT *

CONTINUE
CONTINUE

GO TO 99

WRITE(6,2) M, N

FORMAT(1X,'ERROR DETECTED IN ELEMENTS - NO LOAD CREATES,MN = ',213)
WRITE(1,2)

RETURN

END



SUBROUTINE DISPLACE (INDEX)

CALCULATES THE U, V, AND W DISPLACEMENTS

INDEX : 1 = W, 2 = V, 3 = U, 4 = W & V, 5 = W & U, 6 = W, V, & U

CREATED 18-JUL-83 BY: F.M.G. WONG
LATEST REVISION : 19-JAN-84

REAL*4 L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / LOADS / PRE(100,100), PROC100,100), PXEC100,100),

PXO(100,100), PPHIE(100,100), PPHIO(100,100)
COMMON / DISPL / UE(100,100), UO(100,100), VE(100,100), VO(100,100),

WE(100,100), WOC100,100)
DIMENSION EVENC3), ODD(3), COEFF(3,3)

DATA EVEN / 3*0 /, ODD / 3*0 /

::::::: SET UP VALUES OF THE COEFFICIENT MATRIX

A2 = A*A

A4 = A2*A2
RL2 = L*L

P12 = PI*PI
T2 = T*T

CALL TIMESTAT (1)

DO 20 I = 0, M-1

RM = FLOAT(I)

RM2 = RM*RM

DO 10 J = 1, N

RN = FLOAT(J)

RN2 = RN*RN

COEFF(1,1) =
COEFF(1,2),=

COEFF(1,3) =
COEFF(2,1) =
COEFF(2,2) =

COEFF(2,3) =
COEFF(3,1) =
COEFF(3,2) =
COEFF(3,3) =

-( (RN2*PI2)/RL2 + (RM2*(1. - NU))/(2.*A2) )
((1. + NU)*RM*RN*PI)/(2.*A*L)
-(NU*RN*PI)/(A*L)

COEFF(1,2)

-( ((1. - NU)*RN2*PI2)/(2.*RL2) + RM2/A2 +
(T2*(1. - NU)*RN2*PI2)/(12.*RL2*A2) +
CRM2*T2)/(12.*A4) )
(T2*RM**3)/(12.*A4) + (RM*RN2*PI2*T2)/(12.*A2*RL2)+RM/A2
COEFF(1,3)

COEFFC2,3)
-(1./A2 + (T2*RN2*RN2*PI2*PI2)/(12.*RL2*RL2) +
(2.*T2*RM2*RN2*PI2)/(12.*A2*RL2) +



1 (RM2*RM2*T2)/(12.*A4))
C
C ::::::: SET UP VALUES FOR LOADING COLUMN MATRIX
C

CONST = (1. - NU*NU)/(E*T)

C
IF ((INDEX.EQ.1).OR.(INDEX.EQ.4).OR.(INDEX.EQ.5).OR.(INDEX.EQ.6)) THEN

EVEN(3) = -PRE(I+1,J)*CONST
ODDC3) = -PRO(I+1,J)*CONST

ENDIF
IF C (INDEX .EQ. 2) .OR. (INDEX .EQ. 4) .OR. (INDEX .EQ. 6) ) THEN

EVEN(2) = -PPHIECI+1,J)*CONST
ODD(2) = -PPHIO(I+1,J)*CONST

ENDIF

IF C (INDEX .EQ. 3) .OR. (INDEX .EQ. 5) .OR. (INDEX .EQ. 6) ) THEN
EVEN(1) = -PXECI+1,J)*CONST
ODD(1) = -PXO(I+1,J)*CONST

ENDIF
C

C SOLVE FOR EVEN U, V, AND W DISPLACEMENTS
C

CALL MATRIX (U, V, W, EVEN, COEFF)
C

UECI+1,J) = U

VE(I+1,J) = V

WE(I+1,J) = W

C
C SOLVE FOR ODD U, V, AND W DISPLACEMENTS
C

COEFF(1,2) = -COEFF(1,2)
COEFF(2,1) = -COEFF(2,1)
COEFF(2,3) = -COEFF(2,3)
COEFF(3,2) = -COEFF(3,2)

C
CALL MATRIX (U, V, W, ODD, COEFF)

C
UO(I+1,J) = U

VO(I+1,J) = V

WO(I+1,J) = W
C
C
10 CONTINUE
C

IF C 1/2 .EQ. INT(I/2) ) CALL TIMESTAT (2)
20 CONTINUE

CALL TIMESTAT (3)
C

C
RETURN

END

C
C

C

C
SUBROUTINE MATRIX (U, V, W, RLOAD, COEFF)

C



C SOLVES FOR THE U, V, AND W DISPLACMENTS FROM A 3 X 3 MATRIX
C EQUATION
C

C U = U DISPLACEMENTS
C V = V DISPLACEMENTS
C W = W DISPLACEMENTS
C RLOAD = 1 X 3 COLUMN MATRIX OF EVEN OR ODD LOADING COEFFICIENTS
C COEFF = 3 X 3 COEFFICIENT MATRIX
C
C CREATED: 18-JUL-83 BY: F.M.G. WONG
C
C

C
C

DIMENSION RLOADC3), SLOAD(3), DOEFF(3,3), COEFF(3,3)
C

C

C

C ::::::: MAKE FIRST COLUMN IN MATRIX ALL 1'S
C

DOEFF(1,2) = COEFF(1,2)/COEFF(1,1)
DOEFF(1,3) = COEFF(1,3)/COEFF(1,1)
SLOAD(1) = RLOAD(1)/COEFFC1,1)

DOEFF(1,1) = 1.0

C
IF C COEFFC2,1) .EQ. 0.00 ) GOTO 15
DOEFF(2,2) = COEFF(2,2)/COEFFC2,1)
DOEFF(2,3) = COEFF(2,3)/COEFF(2,1)
SLOAD(2) = RLOAD(2)/COEFF(2,1)
DOEFF(2,1) = 1.0

C

15 DOEFF(3,2) = COEFF(3,2)/COEFFC3,1)
DOEFF(3,3) = COEFF(3,3)/COEFF(3,1)
SLOAD(3) = RLOADC3)/COEFF(3,1)
DOEFF(3,1) = 1.0

C

C ::::::: MAKE FIRST ELEMENT IN 2ND AND 3RD ROWS ZERO

C
IF ( COEFF(2,1)-.EQ. 0.00 ) GOTO 25
DOEFF(2,1) = DOEFF(1,1) - DOEFF(2,1)

DOEFFC2,2) = DOEFFC1,2) - DOEFFC2,2)

DOEFF(2,3) = DOEFF(1,3) - DOEFFC2,3)

SLOADC2) = SLOADC1) - SLOADC2)

C
25 DOEFF(3,1) = DOEFF(1,1) - DOEFFC3,1)

DOEFF(3,2).= DOEFF(1,2) - DOEFF(3,2)

DOEFF(3,3) = DOEFF(1,3) - DOEFF(3,3)

SLOADC3) = SLOADC1) - SLOAD(3)

C

C ::::::: MAKE DOEFF(3,2) ZERO TO COMPLETE UPPER TRIANGULAR MATRIX

C
IF ( DOEFF(3,2) .EQ. 0.00 ) GOTO 30

DOEFF(2,3) = DOEFF(2,3)/DOEFF(2,2)
SLOAD(2) = SLOADC2)/DOEFF(2,2)
DOEFF(2,2) = 1.0

C



DOEFF(3,3) = DOEFF(3,3)/DOEFF(3,2)
SLOAD(3) = SLOADC3)/DOEFF(3,2)
DOEFF(3,2) = 1.0

C

DOEFF(3,2) = DOEFF(3,2) - DOEFFC2,2)

DOEFF(3,3) = DOEFF(3,3) - DOEFF(2,3)

SLOADC3) = SLOAD(3) - SLOAD(2)

C
C
C :::::: SOLVE FOR U, V, AND W: DISPLACEMENTS
C
30 W = SLOAD(3)/DOEFF(3,3)

V - SLOAD(2) - DOEFF(2,3)*W

U = SLOADC1) - DOEFF(1,2)*V - DOEFFC1,3)*W

C
C PRINT *, ' U =',U,' V =',V,' W =',W

C
RETURN

END
C

C

C
C
C

SUBROUTINE DISPMAP

C
C WRITES THE DISPLACEMENT MAP
C
C CREATED: 20-JUL-83 BY: F.M.G. WONG
C
C

C
REAL L, NU

DIMENSION XMATC11),PHIMAT(11),RINT(11,11)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / DISPL / UE(100,100), UOC100,100), VE(100,100), VO(100,100),

1 WE(100,100), WO(100,100)
C
C
11 WRITE(6,25)

WRITE(1,25)
25 FORMAT(/,1X,'DO YOU WANT A NEW DISPLACEMENT MAP? 1=YES, 2=NO, 3=END')

READC4,26) MAP
26 FORMAT (1X,I1)

WRITE(1,46) MAP

46 FORMAT(lX,'MAP=',Il,/)

IF (MAP.NE.1) GOTO 100
WRITE (6,13)
WRITE (1,13)

13 FORMAT (1X,'INPUT DESIRED DISPLACEMENT MAP: W = 1, V = 2, U = 3')
READ (4,26) INDEX

WRITE (1,45) INDEX

45 FORMAT (1X,'INDEX =',II,/)
WRITE(6,14)

WRITE(1,14)



14 FORMAT(1X,'INPUT XST, DXST, PHIST, DPHIST (ANGLES/DEG)',/)
READ(4,27) XST, DXST, PHIST, DPHIST

27 FORMAT (1X,4F11.4)
WRITE(1,47) XST, DXST, PHIST, DPHIST

47 FORMAT(1X,'XST, DXST, PHIST, DPHIST =',4F11.4,/)
C

PHIST=PI*PHIST/180.
DPHIST=PI*DPHIST/180.

C

CALL TIMESTAT (1)
C

DO 10 I=1,11
XCO=XST+DXST*FLOAT(I-6)/10.
XMATCI)=XCO

DO 12 J=1,11
PHICO=PHIST+DPHIST*FLOAT(J-6)/10.
IF (I.EQ.1) PHIMAT(J)=PHICO*180./PI

C
C NOW COMPUTE THE DISPLACEMENTS ON THE SURFACE MAP AND PRESENT
C .::::: THE RESULTS AS 0 TO 100% OF F AT EACH GRID POINT AND PLOT.
C

XINT=0
DO 6 MT=O,M-1
SPHI=SIN(FLOAT(MT)*PHICO)
CPHI=COS(FLOATCMT)*PHICO)
DO 6 NT=1,N
IF C INDEX .EQ. 1 ) XINC=(WE(MT+1,NT)*CPHI+WOMT+1,NT)

1 *SPHI)*SIN(FLOATCNT)*PI*XCO/L)
IF C INDEX .EQ. 2 ) XINC=(VECMT+1,NT)*SPHI+VO(MT+1,NT)

1 *CPHI)*SINCFLOATCNT)*PI*XCO/L)
IF ( INDEX .EQ. 3 ) XINC=(UECMT+1,NT)*CPHI+UO(MT+1,NT)

1 *SPHI)*COSCFLOAT(NT)*PI*XCO/L)
XINT=XINT+XINC

6 CONTINUE
XINT=XINT*.5
RINTCI,J)=XINT

12 CONTINUE
CALL TIMESTAT (2)

10 CONTINUE -
CALL TIMESTAT (3)

C
CALL FINDMIN (RINT, RMIN, RMAX)

C
CALL DIVTEN (RINT, RMIN, RMAX, EXPT)

C
C NOW THE ARRAY IS SETUP THAT HAS PERCENTAGES OF DISPLACEMENTS
C

IF ( EXPT .NE. 0.0 ) THEN
WRITE (6,18) EXPT

WRITE (1,18) EXPT
18 FORMAT C15X,'---> VALUES IN MAP SCALED AS ',E9.2,/)

ENDIF

IF ( INDEX .EQ. 1 ) THEN
WRITE (6,1801)
WRITE (1,1801)

1801 FORMAT (26X,'DISPLACEMENT MAP OF W COMPONENT',/)



1802

1803

ENDIF
IF C INDEX .EQ. 2 ) THEN

WRITE (6,1802)
WRITE (1,1802)
FORMAT (26X,'DISPLACEMENT MAP OF V COMPONENT',/)

ENDIF
IF ( INDEX .EQ. 3 ) THEN

WRITE (6,1803)
WRITE (1,1803)
FORMAT (26X,'DISPLACEMENT MAP OF U COMPONENT',/)

ENDIF
C

WRITE(6,17) (PHIMAT(K),K=1,11)
WRITE(1,17) (PHIMATCK),K=1,11)

17 FORMAT(1X,'OUTPUT OF DISPLACEMENTS ON GRID IS:',/,8X,11(F6.1,2X),/)
C

DO 9 NN=1,11
WRITE(6,19) XMAT(12-NN),(RINT(12-NN,K),K=1,11)
WRITE(1,19) XMAT(12-NN),(RINTC12-NN,K),K=1,11)

19 FORMATC1X,F6.2,11F8.4)
9 CONTINUE

GO TO 11

100 RETURN
END

SUBROUTINE FINDMIN (DISP, RMIN, RMAX)

FINDS THE MININUM AND MAXIMUM VALUE IN THE ARRAY 'DISP' AND
RETURNS MINIMUM VALUE IN 'RMIN' AND MAXIMUM VALUE IN 'RMAX.'

CREATED: 21-JUL-83 BY: F.M.G. WONG

DIMENSION DISPC11,11)

RMIN = DISP(1,1)

RMAX = DISP(1,1)

DO 20 1 = 1, 11

DO 10 J = 1,11

RMIN = MIN(ABS(RMIN), ABS(DISP(I,J)))
RMAX = MAXCABS(RMAX), ABS(DISPCI,J)))

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE DIVTEN (DISP, RMIN, RMAX, EXPT)

89



C SCALES THE VALUES OF THE 'DISP' ARRAY ACCORDING TO THE LOWEST
C POWER OF TEN
C

C CREATED : 21-JUL-83 BY: F.M.G. WONG
C LAST REVISED 06-SEP-83
C
C
C

DIMENSION DISP(11,11)
C

EXPT = 0.0

IF ( CABS(RMIN) .GT. 0.001) .AND. (ABSCRMAX) .LT. 10.0) ) RETURN
IF C (ABSCRMIN) .LT. 0.001) .AND. (ABS(RMAX) .GT. 10.0) ) RMIN = 1.0
IF ( (ABS(RMIN) .LT. 0.001) .AND. (ABSCRMAX) .GT. 1.0) ) RMIN = 1.0

C I~

IF C RMIN .LE. 0.0 ) RMIN = 1.0
IF ( RMAX .LE. 0.0 ) RMAX = 1.0

EXMIN = LOG10(RMIN)
EXMAX = LOG10(RMAX)

EXBIG = MAX( ABS(EXMIN),ABSCEXMAX) )
IF C EXMIN .LT. 0.0 .AND. EXMAX .LT. 0.0 ) EXBIG = ABSCEXMAX)
IF ( (EXMAX - EXMIN) .GT. 4.0 ) EXBIG = ABSCEXMAX)

C

TEN = 10.00

IF C EXBIG .EQ. ABSCEXMIN) ) EXPT = TEN**NINT(EXMIN)
IF C EXBIG .EQ. ABSCEXMAX) ) EXPT = TEN**NINT(EXMAX)

C
C PRINT *, 'MAX =',RMAX,' MIN =',RMIN,' EXPT =',EXPT

DO 40 I = 1, 11
DO 30 J = 1, 11

DISP(I,J) = DISPCI,J)/EXPT
IF ( ABS(DISPCI,J)) .LT. 0.0001 ) DISP(I,J) = 0.0

C PRINT *, DISP(I,J)

30 CONTINUE

40 CONTINUE

C
RETURN
END

C
C
C

SUBROUTINE MATPRT (COEFF, RLOAD)

C
DIMENSION COEFFC3,3), RLOAD(3)

C

PRINT *
PRINT *, COEFFC1,1), COEFFC1,2), COEFF(1,3), ':', RLOADC1)

PRINT *, COEFF(2,1), COEFFC2,2), COEFFC2,3), ':', RLOADC2)

PRINT *, COEFF(3,1), COEFF(3,2), COEFF(3,3), ':', RLOAD(3)

PRINT *
C

RETURN

END



SUBROUTINE MOMENTSET(RMOM, XC, PHIC, TAUX, TAUPHI, LX, LPHI, M, N, IKP,
MOMTYP)

SETS UP THE CALLS TO "MOMENTLAT" WHICH DECOMPOSES THE SPECIFIED
MOMENT INTO DISCRETE RADIAL FORCES

XC
PHIC
TAUX
TAUPHI

LPHI
LX

RMOM
MOMTYP

= X-COORDINATE OF TUBE CENTER (INCHES)
= PHI-COORDINATE OF TUBE CENTER (RADIANS)
= THICKNESS OF ATTACHMENT TUBE ALONG X (INCHES)
= THICKNESS OF ATTACHMENT TUBE ALONG PHI (INCHES)
= OUTER HORIZONTAL DIMENSION (INCHES) OF ATTACHMENT TUBE
= OUTER VERTICAL DIMENSION (INCHES) OF ATTACHMENT TUBE

= EXTERNALLY APPLIED MOMENT
= DIRECTION OF MOMENT

C M,N ARE ELEMENT MEMBERS OF PATCH IN PHI AND X DIRECTIONS, RESP.
C

CREATED
LATEST REVISION

02-SEP-83
29-SEP-83

BY: F.M.G. WONG

*******************************~ ***************************************

REAL L,NU,LPHI,LX
COMMON / CONSTANTS / A, E, L, NU, PI, T

ALPO = ASINCLPHI/C2.*A))
ALPI = ASINC(LPHI - 2.*TAUPHI)/(2.*A))
V1 = .5*(ALPO + ALPI)
V2 = LX-2.*TAUX

V3 = .5*(LX - TAUX)

ANG = ALPO - ALPI

V4 = 2.*ALPO

IF C MOMTYP .EQ. 1 )

IF C MOMTYP .EQ. 2 )
WRITE (1,10) E

10 FORMAT (1X,'MOMENT OF

CALL MOMENTLAT (M,
CALL MOMENTLAT CM,

CALL MOMENTLAT (M,

CALL MOMENTLAT (M,

CALL MOMINERT CE, LX, LPHI, TAUX, TAUPHI)
CALL MOMINERT CE, LPHI, LX, TAUPHI, TAUX)

INERTIA: ',F10.5)

XC, PHIC, 0., V1, V2, ANG, IKP, RMOM, MOMTYP, E)
XC, PHIC, V3, 0., TAUX, V4, IKP, RMOM, MOMTYP, E)
XC, PHIC, D., -V1, V2, ANG, IKP, RMOM, MOMTYP, E)
XC, PHIC, -V3, 0., TAUX, V4, IKP, RMOM, MOMTYP,E)

RETURN

END

C

C
SUBROUTINE MOMINERT (ERTIA, LX, LPHI, TAUX, TAUPHI)

C

C CALCULATES THE MOMENT OF INERTIA OF A RECTANGULAR ATTACHMENT.



MOMENT OF INERTIA RETURNED
PATCH AXIAL LENGTH
PATCH CIRCUMFERENTIAL LENGTH

PATCH AXIAL THICKNESS
PATCH CIRCUMFERENTIAL THICKNESS

CREATED

LATEST REVISION
: 09-SEP-83
: 09-SEP-83

BY : F.M.G. WONG

REAL LX, LPHI

ENTIRE = (LPHI*LX**3)/12.
HOLE = ((LPHI - 2.*TAUPHI)*CLX - 2.*TAUX)**3)/12.

ERTIA = ENTIRE - HOLE

RETURN
END

ERTIA
LX
LPH I
TAUX
TAUPHI

a& ww I*



C
C
C

SUBROUTINE MOMENTLAT CM, N, XC, PHIC, XL, PHIL, THX, THPHI, IKP,
1 RMOM, MOMTYP, ERTIA)

C
C MOMENTLAT ALLOWS PARTITIONING OF LOADS IN LOCAL COORDINATES TO MATCH
C LATERAL COMPONENTS
C
C M = NO. OF PHI DIRECTION ELEMENTS IN PATCH
C N = NO. OF X DIRECTION ELEMENTS IN PATCH
C XC = LOCAL PATCH REFERENCE X COORDINATE

C PHIC = LOCAL PATCH REFERENCE PHI COORDINATE
C (XC,PHIC) DEFINE DIRECTION OF LATERAL LOAD AXIS ON CYLINDER
C XL = X COOR DISTANCE FROM XC TO PATCH CENTROID
C PHIL = PHICANGLE) DISTANCE FROM PHIC TO PATCH PHI CENTROID
C THX = PATCH DIMENSION ALONG X - AXIS

C THPHI = PATCH ARCLENGTH (RADIANS) ALONG PHI - AXIS
C RMOM = EXTERNALLY APPLIED MOMENT (IN.-LBS.)
C MOMTYP = DIRECTION OF MOMENT

C ERTIA = MOMENT OF INERTIA
C

C THIS SUBROUTINE CREATES PR AND PPHI LOAD HARMONICS FOR SUCH LATERAL
C LOADS.
C IKP IS AN ERROR CHECK IF IKP .NE. 0 GO TO END OF PROGRAM
C
C CREATED : 01-SEP-83 BY: F.M.G. WONG
C LATEST REVISION : 06-DEC-83

C

C
C

REAL L,NU

DIMENSION PLAT(4,4), PHINTL(4,4), XNTL(4,4), XEL(4,4), PHIELC4,4),
1 PSI(4,4)

COMMON / CONSTANTS / A, E, L, NU, PI, T

C
C

IKP = 0
IF ( (M .GT. 4) .OR. (N .GT. 4) ) IKP = 1
IF ( CM .LT. 1) .OR. (N .LT. 1) ) IKP = 1
IF C IKP .EQ. 1 ) GO TO 98
XM = FLOAT(M)

XN = FLOATCN)

C
DO 20 I = 1, N

C
DO 10 J = 1, M

XJ = FLOAT(I)

XI = FLOAT(J)

C
PHIELCI,J) = PHIC+PHIL+ THPHI*(2.*XI - 1. - XM)/(2.*XM)

PSI(I,J) = PHIELCI,J) - PHIC

C
XEL(I,J) = XC + XL - THX*(2.*XJ - 1. - XN)/C2.*XN)

C
XNTL(I,J) = XELCItJ) - XC

PHINTLCI,J) = A*SIN( PHIELCI,J) - PHIC )



CONTINUE
CONTINUE

DO 50 I = 1, N

DO 40 J = 1, M

IF ( MOMTYP .EQ. 1 ) ELD = XNTLCI,J)
IF C MOMTYP .EQ. 2 ) ELD = PHINTLCI,J)

PLAT(I,J) = RMOM*ELD/ERTIA

::::::: NOW PHI AND X COORDINATES OF ELEMENT M,N ARE KNOWN

PR = PLAT(I,J)*(COSCPSICI,J)))**2
PPHI = .5*PLATCI,J)*SINC2.*PSICI,J))
THXT = THX/(2.*XN)

THPHIT = THPHI/C2.*XM)

CALL PATCH (XEL(I,J), PHIELCI,J), THXT, THPHIT, PR, 1)

CALL PATCH (XEL(I,J), PHIELCI,J), THXT, THPHIT, PPHI,2)

C
40 CONTINUE

50 CONTINUE
C

GO TO 99-

C
98 WRITE(6,2) M, N

2 FORMAT(1X,'ERROR DETECTED IN ELEMENTS - NO LOAD CREATES,M,N = ',213)
WRITE(1,2)

RETURN
END



C
SUBROUTINE STRESS

C

C CALCULATES THE BENDING AND MEMBRANE STRESS

C
C CREATED : 27-JUL-83 BY: F.M.G. WONG

C LATEST REVISION : 25-AUG-83
C
C

C

CHARACTER*5 TYPE(12)
REAL L, NU
DIMENSION RMAP(11,11), XMATC11), PHIMATC11)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N

COMMON / DISPL / UE(100,100), UO(100,100), VE(100,100), VO(100,100),

1 WE(100,100), WO(100,100)
C
C

DATA TYPE/ 'NX ','NPHI ','NXP ','MX ','MPHI ','MXP ',

1 'SIGX-','SIGX+','SIGP-','SIGP+','TAU -','TAU +' /

11 WRITE(6,25)
WRITE(1,25)

25 FORMATC/,1X,'DO YOU WANT A NEW STRESS MAP? 1=YES, 2=NO, 3=END')
READ(4,26) MAP

26 FORMAT (1X,12)

WRITEC1,46) MAP
46 FORMAT(1X,'MAP=',I1,/)

IF CMAP.NE.1) GOTO 100

WRITE (6,13)
WRITE (1,13)

13 FORMAT(1X,'INPUT DESIRED STRESS MAP: NX = 1, NP = 2, NXP = 3,v,
1 /,1X,' MX = 4, MP = 5, MXP = 6,',/,
1 1X,' SIGX- = 7, SIGX+ = 8, SIGP- = 9,',/,

1 1X,' SIGP+ = 10, TAU- = 11, TAU+ = 12')

READ (4,26) INDEX
WRITE (1,45) INDEX

45 FORMAT (1X,'INDEX =',12,/)
WRITE(6,14)
WRITE(1,14)

14 FORMAT(1X,'INPUT XST, DXST, PHIST, DPHIST (ANGLES/DEG)',/)

READC4,48) XST, DXST, PHIST, DPHIST

48 FORMAT (1X,4F11.4)
WRITE(1,47) XST, DXST, PHIST, DPHIST

47 FORMAT(1X,'XST, DXST, PHIST, DPHIST =',4F11.4,/)

C

PHIST=PI*PHIST/180.

DPHIST=PI*DPHIST/180.

A2 = A*A

T2 = T*T

CALL TIMESTAT (1)

DO 10 I = 1, 11



XCO = XST + DXST*FLOATCI-6)/1O.
XMAT(I) = XCO
DO 12 J = 1, 11

PHICO = PHIST + DPHIST*FLOAT(J-6)/10.
IF ( I .EQ. 1 ) PHIMAT(J) = PHICO*180./PI

COMPUTE DERIVATIVES OF DISPLACEMENTS

CALL DERIVDSP (XCO, PHICO, W, DWXXS, DWPPS, DWXPS,
DVXS, DVPS, DUXS, DUPS)

RNX = E*T/C1. - NU*NU)*CDUXS + NU*CDVPS - W)/A)

RNP = E*T/(1. - NU*NU)*(DVPS/A - W/A +NU*DUXS)
RNXP = E*T/(2.*(1. + NU))*(DVXS +DUPS/A)

D = E*T**3/C12*(1. - NU*NU))

RMX = -D*(DWXXS + NU*CDVPS + DWPPS)/A2)
RMP = -D*(CDVPS + DWPPS)/A2 + NU*DWXXS)
RMXP = -D*C1. - NU)/A*(DVXS + DWXPS)

C COMPUTE X AND PHI STRESS, AND SHEAR
C

C
SIGXN = RNX/T - 6.*RMX/T2

SIGXP = RNX/T + 6.*RMX/T2

SIGPN = RNP/T - 6.*RMP/T2

SIGPP = RNP/T + 6.*RMP/T2

TAXPN = RNXP/T - 6.*RMXP/T2

TAXPP = RNXP/T + 6.*RMXP/T2

INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX
INDEX

.EQ.
.EQ.
.EQ.
.EQ.
. EQ.
.EQ.
.EQ.
.EQ.
.EQ.
.EQ.
.EQ.
.EQ.

1 )
2)

3)
4)
5 )

6)
7)
8)
9)
10 )
11 )
12 )

RMAPCI,J)
RMAP(I,J)
RMAPCI,J)
RMAP(I,J)
RMAP(I,J)
RMAP(I,J)
RMAP(I,J)
RMAPCI,J)
RMAPCI,J)
RMAPCI,J)
RMAPCI,J)
RMAP(I,J)

RNX
RNP
RNXP
RMX
RMP
RMXP
SIGXN
SIGXP
SIGPN
SIGPP
TAXPN
TAXPP

CONTINUE

CONTINUE
CALL TIMESTAT (3)

CALL FINDMIN (RMAP, RMIN, RMAX)

CALL DIVTEN (RMAP, RMIN, RMAX, EXPT)

IF ( EXPT .NE. 0.0 ) THEN



WRITE (6,18) EXPT
WRITE (1,18) EXPT

18 FORMAT (1X,'VALUES IN MAP SCALED AS ',E9.2,/)
ENDIF

C
WRITE (6,15) TYPECINDEX)
WRITE (1,15) TYPECINDEX)

15 FORMAT (26X,'M, N, OR STRESS MAP OF ',A5,/)
C

WRITE(6,17) (PHIMAT(K),K=1,11)
WRITE(1,17) (PHIMAT(K),K=1,11)

17 FORMAT(1X,'OUTPUT OF M, N, OR STRESS ON GRID IS:',/,8X,11(F6.1,2X),/)

DO 9 NN=1,11
WRITE(6,19).XMAT(12-NN),(RMAP(12-NN,K),K=1,11)
WRITE(1,19) XMAT(12-NN),(RMAP(12-NN,K),K=1,11)

19 FORMATC1X,F6.2,11F8.4)
9 CONTINUE

GO TO 11
C

100 RETURN
END

C

C
C
C
C
C

SUBROUTINE DERIVDSP (XCO, PHICO, WS, DWXXS, DWPPS, DWXPS,
1 DVXS, DVPS, DUXS, DUPS)

C
C CALCULATES THE DERIVATIVES OF THE DISPLACEMENTS U, V, AND W

C
C W = DISPLACEMENT W
C DWXXS = SECOND DERIV. OF W WITH RESP. TO X

DWPPS
DWXPS
DVXS
DVPS
DUXS
DUPS

SECOND DERIV.

MIXED PARTIAL
FIRST DERIV.
FIRST DERIV.
FIRST DERIV.

FIRST DERIV.

OF W
OF W
OF V
OF V
OF U
OF U

WITH
WITH
WITH
WITH
WITH
WITH

RESP.
RESP.
RESP.
RESP.
RESP.
RESP.

PHI
X THEN PHI
X
PHI
X
PHI

C CREATED: 27-JUL-83 BY: F.M.G. WONG

C
C

REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N

COMMON / DISPL / UE(100,100), UO(100,100), VE(100,100), VO(100,100),

1 WE(100,100), WO(100,100)

C

C ::::::: NOW COMPUTE THE DERIVATIVES OF THE DISPLACEMENTS

C
WS = 0.

DWXXS = 0.



DWPPS = 0.
DWXPS = 0.
DVXS = 0.
DVPS = 0.
DUXS = 0.
DUPS = 0.

C
DO 6 MT = 0, M-1

C
RMT = FLOAT(MT)

SPHI = SINCRMT*PHICO)
CPHI = COS(RMT*PHICO)

C
DO 6 NT = 1, N

C
RNT = FLOATCNT)

C
W = .5*(WE(MT+1,NT)*CPHI + WO(MT+1,NT)*SPHI)

1 *SIN(RNT*PI*XCO/L)

DWXX = -.5*(RNT*PI/L)*(RNT*PI/L)*(WECMT+1,NT)*CPHI +

1 WOCMT+1,NT)*SPHI)*SINCRNT*PI*XCO/L)

DWPP = -.5*RMT*RMT*(WE(MT+1,NT)*CPHI + WO(MT+1,NT)
1 *SPHI)*SINCRNT*PI*XCO/L)

DWXP = .5*RMT*(RNT*PI/L)*C-WE(MT+1,NT)*SPHI +

1 WO(MT+1,NT)*CPHI)*COSCRNT*PI*XCO/L)

C
DVX = .5*(RNT*PI/L)*(VEMT+1,NT)*SPHI + VO(MT+1,NT)

1 *CPHI)*COSCRNT*PI*XCO/L)
DVP = .5*RMT*(VECMT+1,NT)*CPHI - VO(MT+1,NT)

1 *SPHI)*SINCRNT*PI*XCO/L)

C
DUX = -.5*(RNT*PI/L)*(UE(MT+1,NT)*CPHI +

1 UOCMT+1,NT)*SPHI)*SINCRNT*PI*XCO/L)

DUP = .5*RMT*(-UECMT+1,NT)*SPHI + UO(MT+1,NT)
1 CPHI)*SIN(RNT*PI*XCO/L)

C
WS = WS + w

DWXXS = DWXXS + DWXX
-DWPPS = DWPPS + DWPP
DWXPS = DWXPS + DWXP
DVXS = DVXS + DVX
DVPS = DVPS + DVP
DUXS = DUXS + DUX

DUPS = DUPS + DUP

C
6 CONTINUE

CALL TIMESTAT (2)

C

C
RETURN

END

C

C



SUBROUTINE INTPRES (INDEX, RHOG, XO)

C ADDS INTERNAL PRESSURE TO THE RADIAL COMPONENT OF THE LOAD
C
C INDEX = 1: UNIFORM INTERNAL RADIAL PRESSURE; 2: HYDROSTATIC PRESSURE
C RHOG = DENSITY OF FLUID (LBS./IN**3)
C XO = FLUID LEVEL IN TANK (IN.)
C QPRES = INTERNAL PRESSURE (PSI)

CREATED

LATEST REVISION
: 10-AUG-83
: 14-DEC-83

BY: F.M.G. WONG

REAL L, NU

COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / INTPRS / PRESS(100), QPRES

IF ( INDEX .EQ. 1 ) THEN
DO 40 NT = 1, N, 2

XNT = FLOATCNT)

PRESS(NT) = 4.*QPRES/(PI*XNT)
CONTINUE

ENDIF

IF C INDEX .EQ. 2 ) THEN
DO 50 NT = 1, N

XNT = FLOAT(NT)
C = (XNT*PI)/L

ONE = (XO/C)*(1. - COS(C*XO))

F = 1./(C**2)
G = XO/C

TWO = F*SINCC*XO) - G*COS(C*XO)

VALPRS = 2.*RHOG*(ONE - TWO)/L

PRESS(NT) = VALPRS

50 CONTINUE
QPRES = 1.0

ENDIF
C
C
C

RETURN
END

C

C

C
C

C
SUBROUTINE MERGPRES

INTEGRATES THE INTERNAL PRESSURE COMPONENT INTO THE GENERAL

RADIAL LOAD.



C
C

C
C

COMMON / INDEXES / M, N
COMMON / LOADS / PRE(100,100), PRO(100,100), PXE(100,100),

1 PXO(100,100), PPHIE(100,100), PPHIO(100,100)
COMMON / INTPRS / PRESS(100), QPRES

C

DO 10 NT = 1, N

PRE(1,NT) = PRE(1,NT) - 2.*PRESSCNT)

10 CONTINUE

C
C RETURN

END

100

C CREATED: 22-AUG-83 BY: F.M.G. WONG



SUBROUTINE MULTNOZ

DRIVER MODULE FOR MULTIPLE NOZZLES/ATTACHMENTS CAPABILITY

CREATED : 12-NOV-83 BY : F.M.G. WONG
LAST REVISED 12-NOV-83

REAL LPHI, LX

WRITE (6,5)
WRITE (1,5)

5 FORMAT (/,1X,'ENTER TOTAL NUMBER OF NOZZLES: ')

READ (4,7) NOZ

7 FORMAT (1X,12)
WRITE (6,8) NOZ
WRITE (1,8) NOZ

8 FORMAT C1X,'TOTAL NUMBER OF NOZZLES = ',12)
C

DO 90 INOZ = 1, NOZ

WRITE (6,10) INOZ

WRITE (1,10) INOZ

10 FORMAT(/,1X,' - -- > ENTER DATA FOR NOZZLE',I2)

INITIAL ATTACHMENT DIMENSIONS WITH RADIAL FORCE

WRITE(6,11)

WRITE(1,11)

11 FORMAT(/,1X,'INPUT TUBE CENTER (XC,PHIC), WALL THICKNESSES,',/,
1 1X,'TAUX, TAUPHI, THEN TUBE SECTIONS, LX, LPHI',/,
2 1X,'THEN NO. OF QUARTER-TUBE ELEMENTS, MTUB, NTUB, AND LATERAL',
3 1X,'FORCE, F, IN POUNDS',/)

C
WRITE(6,15)
WRITE(1,15)

15 FORMAT(1X,'INPUT XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, Fl,/,
1 1X,'PHIC IN DEGREES.',/)

READC4,17) XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F
17 FORMAT (1X,6E11.4,213,E11.4)

WRITE(1,19) XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F

19 FORMAT(1X,'XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, F =',/,

1 1X,6E11.4,2I3,E11.4,/)

C
PHIC=PI*PHIC/180.

EXTERNAL MOMENT DATA

WRITE (6,20)

WRITE (1,20)
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20 FORMAT (1X,'EXTERNALLY APPLIED MOMENTS: YES = 1, NO = 0')
READ (4,201) MOMRPY

201 FORMAT (1X,I1)
WRITE (6,21) MOMRPY

WRITE (1,21) MOMRPY
21 FORMAT (1X,'RESPONSE TO MOMENT PROMPT = ',I,/)

IF ( MOMRPY .EQ. 0 ) GO TO 30
WRITE (6,22)
WRITE (1,22)

22 FORMAT (1X,'TYPE OF MOMENT: LONGITUDINAL = 1, CIRCUMFERENTIAL = 2')
READ (4,201) MOMTYP
WRITE (1,23) MOMTYP

23 FORMAT (1X,'TYPE OF MOMENT = ',I,/)
WRITE (6,24)
WRITE (1,24)

24- FORMAT (1X,'ENTER EXTERNALLY APPLIED MOMENT (IN.-LBS.):')

READ (4,25) RMOM
25 FORMAT (1X,F9.1)

WRITE (1,26) RMOM

26 FORMAT (1X,'EXTERNALLY APPLIED MOMENT (IN.-LBS.) = ',F9.1,/)
C
C
C ::::::: ASSEMBLE LOADING COEFFICIENTS -- > FORCES & MOMENTS

C :: :

C
IF C MOMRPY .EQ. 1 ) THEN

CALL MOMENTSET (RMOM, XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB,
1 NTUB, IKP, MOMTYP)

IF ( IKP .EQ. 1 ) GO TO 900

ENDIF

C
30 IF C F .NE. 0. ) THEN

PL = F/C (LX*LPHI) -(LX - 2.*TAUX)*(LPHI - 2.*TAUPHI) )

CALL RECTUBE (PL, XC, PHIC, TAUX, TAUPHI, LX, LPHI, MTUB, NTUB, IKP)

IF ( IKP .EQ. 1 ) GO TO 900

ENDIF

C
90 CONTINUE

WRITE (6,95)
WRITE (1,95)

95 FORMAT (/,1X,' --- > END MULTIPLE NOZZLE DATA',/)

C
GO TO 1000

C
900 WRITE (6,901)

WRITE (1,901)

901 FORMAT(1X,'ERROR DETECTED IN -- IKP -- ')

C
1000 RETURN

END
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SUBROUTINE CIRCSPLIT (XC, PHIC, R1, R2, PRS, NDIR)

SPLITS CIRCULAR ATTACHMENT INTO FOUR QUADRANTS THROUGH FOUR CALLS
TO "CIRCPART."

XC
PHIC
R1
R2

PRS
NDIR

= X-COORDINATE OF ATTACHMENT CENTER
= PHI-COORDINATE OF ATTACHMENT CENTER
= INNER RADIUS OF ATTACHMENT
= OUTER RADIUS OF ATTACHMENT
= LOADING

= LOADING DIRECTION

CREATED : 18-NOV-83
LAST REVISED : 06-DEC-83

REAL L, NU
COMMON / CONSTANTS

RADIAN = PI/180.
ANG1 = 45.*RADIAN

ANG2 = 135.*RADIAN

ANG3 = 225.*RADIAN
ANG4 = 315.*RADIAN

CALL CIRCPART

CALL CIRCPART

CALL CIRCPART
CALL CIRCPART

CALL CIRCPRES

CALL CIRCPRES
CALL CIRCPRES
CALL CIRCPRES

C CALL TRIPATCH
RETURN

END

(XC,
(XC,
(XC,
(XC,

CXC,
(XC,

CXC,
(XC,

BY: F.M.G. WONG

/ A, E, L, NU, PI, T

PHIC,
PHIC,
PHIC,

PHIC,

PHIC,

PHIC,
PHIC,

PHIC,

R1,
R1,
R1,
R1,

R1,
R1,
R1,
R1,

R2,
R2,
R2,
R2,

R2,
R2,
R2,
R2,

ANG1,
ANG2,
ANG3,
ANG4,

ANG1,
ANG2,
ANG3,
ANG4,

1.0, 1.0, 1)
1.0, -1.0, 2)

-1.0, -1.0, 3)

-1.0, 1.0, 4)

1.0, 1.0, 1, PRS, NDIR)

1.0, -1.0, 2, PRS, NDIR)

-1.0, -1.0, 3, PRS, NDIR)
-1.0, 1.0, 4, PRS, NDIR)

(XA, XB, PHIA, PHIB, PRS, IORIENT, 1)
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C

SUBROUTINE CIRCPART (XC, PHIC, R1, R2, ANG, XFACT, PFACT, INDEX)
C
C PARTITIONS A CIRCULAR ATTACHMENT INTO SEPARATE ELEMENTS
C

XC
PHIC
R1
R2
ANG
XFACT
PFACT
INDEX

X-COORDINATE OF ATTACHMENT CENTER
PHI-COORDINATE OF ATTACHMENT CENTER
INNER RADIUS OF ATTACHMENT
OUTER RADIUS OF ATTACHMENT
ANGLE=45, WHICH DEFINES THE QUADRANT
DETERMINES SIGN OF X-DIRECTION
DETERMINES SIGN OF PHI-DIRECTION
INTEGER DESIGNATION OF QUADRANT: 1, 2, 3, OR 4

CREATED : 18-NOV-83
LAST REVISED : 28-NOV-83

BY: F.M.G. WONG

C
REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CIRCTB / CIRCX(7,4), CIRCPHI(7,4)
COMMON / CIRCSD / CIRCSX(3,4), CIRCSPC3,4)

C
C ::::::: CALCULATE PROJECTED RADII IN PHI-DIRECTION
C

PR1 = ASIN(R1/A)

PR2 = ASINCR2/A)

ABSIN = ABS(SIN(ANG))
ABCOS = ABS(COSCANG))

THD1 = 1./3.
THD2 = 2./3.

::::::: ELEMENT PARTITION FOR A CIRCULAR TUBE

IF R1 .NE. 0.0 ) THEN

C ::::::: CALCULATION OF CENTERS FOR RECTANGULAR ELEMENTS
C

CIRCX(1,INDEX) = XC + 0.5*R1*SIN(ANG)
CIRCPHI(1,INDEX) = PHIC + PFACT*(PR1 + (PR2 - PRI)/2.)

C

CIRCX(2,INDEX) = XC + R1*SIN(ANG) + 0.5*(R2 - R1)*SINCANG)

CIRCPHI(2,INDEX) = PHIC + PR1*COSCANG)+0.5*(PR2 - PR1)*COSCANG)

CIRCX(3,INDEX) = XC + XFACT*(R1 + (R2 - R1)/2.)

CIRCPHI(3,INDEX) = PHIC + 0.5*PR1*COSCANG)

::::::: CALCULATION OF CENTERS FOR TRIANGULAR ELEMENTS

CIRCX(4,INDEX) = XC + THD2*R1*SIN(ANG)
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CIRCPHI(4,INDEX) = PHIC + PR1*COSCANG) + PFACT*THD2*(PR1 - PR1*ABCOS)

CIRCXC5,INDEX) = XC + R1*SIN(ANG) + THD1*(R2 - R1)*SINCANG)

CIRCPHI(5,INDEX) = PHIC+PR2*COSCANG)+PFACT*THD1*(PR2-PR2*ABCOS)

CIRCX(6,INDEX) = XC + R2*SINCANG) + XFACT*THD1*(R2 - R2*ABSIN)

CIRCPHI(6,INDEX) = PHIC + PR1*COSCANG) + THD1*(PR2 - PR1)*COS(ANG)

CIRCX(7,INDEX) = XC + R1*SINCANG) + XFACT*THD2*CR1 - R1*ABSIN)

CIRCPHI(7,INDEX) = PHIC + THD2*PR1*COSCANG)

ENDIF

ELEMENT PARTITION FOR A CIRCULAR SOLID

IF ( R1 .EQ. 0.0 ) THEN

CIRCSX(1,INDEX) = XC + 0.5*R2*SIN(ANG)
CIRCSP(1,INDEX) = PHIC + 0.5*PR2*COS(ANG)

CIRCSX(2,INDEX) = XC + R2*SINCANG) + XFACT*THD1*(R2 - R2*ABSIN)

CIRCSP(2,INDEX) = PHIC + THD1*R2*COSCANG)

CIRCSX(3,INDEX) = XC + THD1*R2*SIN(ANG)
CIRCSP(3,INDEX) = PHIC + R2*COSCANG) + PFACT*THD1*(R2 - R2*ABCOS)

ENDIF

RETURN
END
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C
C

SUBROUTINE CIRCPRES (XC, PHIC, R1, R2, ANG, XFACT, PFACT, IND, PRS,
1 NDIR)

C

C APPLIES PRESSURE LOADINGS TO CIRCULAR ATTACHMENT
C
C R1 = INNER RADIUS OF ATTACHMENT
C R2 = OUTER RADIUS OF ATTACHMENT
C ANG = ANGLE DESIGNATING THE QUADRANT
C XFACT = DETERMINES SIGN OF X-DIRECTION
C PFACT = DETERMINES SIGN OF PHI-DIRECTION
C IND = INTEGER DESIGNATING QUADRANT
C PRS = PRESSURE LOADING TO BE UNIFORMLY DISTRIBUTED
C NDIR = DIRECTION OF LOADING
C
C CREATED : 18-NOV-83 BY: F.M.G. WONG

C LAST REVISED : 08-DEC-83
C

C

C
REAL L, NU
DIMENSION THX(3,4), THP(3,4), TRIXA(4,4), TRIXB(4,4), TRIPA(4,4),

1 TRIPB(4,4), IORIENT(16), ITYPEC4)

DIMENSION KORIENTC4)

COMMON / CONSTANTS / A, E, L, NU, PI, T

COMMON / CIRCTB / CIRCX(7,4), CIRCPHI(7,4)
COMMON / CIRCSD / CIRCSX(3,4), CIRCSP(3,4)

C
DATA IORIENT / 2, 3, 3, 2, 4, 1, 1, 4, 3, 2, 2, 3, 4; 4, 1

DATA ITYPE / 1, 5, 9, 13 /

DATA KORIENT / 3, 1, 2, 4 /
C

ABTRIG = COSC45.*PI/180.)
PR1 = ASIN(R1/A)
PR2 = ASINCR2/A)

C
C ::::::: LOADINGS FOR CIRCULAR TUBES

C
IF C Rf .NE. 0.0 ) THEN

C
THXC1,IND) = 0.5*R1*ABTRIG
THPC1,IND) = 0.5*(PR2 - PRI)

C
THXC2,IND) = 0.5*(R2 - R1)*ABTRIG

THP(2,IND) = 0.5*(PR2 - PR1)*ABTRIG

C
THX(3,IND) = 0.5*(R2 - R1)

THPC3,IND) = 0.5*PR1*ABTRIG
C

PRINT *, ' RECTANGLES

DO 40 I = 1, 3

CIRX = CIRCX(I,IND)

CIRPHI = CIRCPHI(I,IND)
PSI = CIRPHI - PHIC

PR = PRS*(COS(PSI))**2

PPHI = 0.5*PRS*SINC2.*PSI)
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CALL PATCH (CIRX, CIRPHI, THX(I,IND), THPCI,IND), PR, 1)
CALL PATCH (CIRX, CIRPHI, THX(I,IND), THPCI,IND), PPHI, 2)
PRINT *, CIRX, CIRPHI, PR, I
PRINT *, CIRX, CIRPHI, PPHI, I

CONTINUE

TRIXA(1,IND)
TRIXB(1,IND)
TRIPA(1,IND)
TRIPB(1,IND)

TRIXA(2,IND)

TRIXBC2,IND)
TRIPA(2,IND)
TRIPB(2,IND)

TRIXA(3,IND)
TRIXB(3,IND)
TRIPA(3,IND)
TRIPB(3,IND)

TRIXA(4,IND)
TRIXB(4,IND)
TRIPA(4,IND)
TRIPBC4,IND)

XC +
XC
PHIC
PHIC

XC +
XC +
PHIC
PHIC

XC +
XC +
PHIC

PHIC

XC +
Xc +
PHIC
PHIC

Rl*SIN(ANG)

+ PR1*COS(ANG)

+ PR1*PFACT

R2*SINCANG)

R1*SINCANG)
+ PR2*COS(ANG)
+ PR2*PFACT

R2*XFACT
R2*SIN(ANG)
+ PR1*COSCANG)

+ PR2*COSCANG)

R1*XFACT
R1*SINCANG)

+ PR1*COS(ANG)

PRINT *, 'IND =',IND

IF ( (IND .EQ. 2) .OR. (IND .EQ. 3) )

DO 45 J = 1, 4

TEMPA = TRIXACJ,IND)
TEMPB = TRIXBCJ,IND)
TRIXB(J,IND) = TEMPA
TRIXA(J,IND) = TEMPB
TEMPC = TRIPA(J,IND)
TEMPD = TRIPBCJ,IND)
TRIPA(J,IND) = TEMPD
TRIPB(J,IND) = TEMPC

.CONTINUE
ENDIF -

THEN

KTYP = ITYPECIND)
DO 50 K = 1, 4

PSI = CIRCPHICK+3,IND) - PHIC

PR = PRS*(COS(PSI))**2
PPHI = 0.5*PRS*SIN(2.*PSI)

CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPACK,IND),

1 TRIPB(K,IND),PR,IORIENT(KTYP),1)

CALL TRIPATCH (TRIXACK,IND),TRIXB(K,IND),TRIPA(K,IND),

1 TRIPB(K,IND),PPHI,IORIENT(KTYP),2)

KTYP = KTYP + 1

CONTINUE
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ENDIF
C
C LOADINGS FOR SOLID CIRCULAR ATTACHMENTS
C

IF ( R1 .EQ. 0.0 ) THEN
C

THX(1,IND) = 0.5*R2*ABTRIG
THP(1,IND) = 0.5*PR2*ABTRIG

C
CIRX = CIRCSX(1,IND)
CIRPHI = CIRCSPC1,IND)
PSI = CIRPHI - PHIC

PR = PRS*CCOSCPSI))**2
PPHI = 0.5*PRS*SIN(2.*PSI)

C
CALL PATCH (CIRX, CIRPHI, THX(1,IND), THP(1,IND), PR, 1)
CALL PATCH (CIRX, CIRPHI, THXC1,IND), THPC1,IND), PPHI, 2)

C
TRIXA(1,IND) = XC + XFACT*R2
TRIXB(1,IND) = XC + R2*SINCANG)
TRIPA(1,IND) = PHIC

TRIPBC1,IND) = PHIC + PR2*COS(ANG)
C

TRIXA(2,IND) = XC + R2*SINCANG)
TRIXB(2,IND) = XC

TRIPA(2,IND) = PHIC + PR2*COSCANG)
TRIPB(2,IND) = PHIC + PFACT*PR2

C
PRINT *,'IND =',IND
IF C (IND .EQ. 2) .OR. (IND .EQ. 3) ) THEN

DO 55 J = 1, 4
TEMPA = TRIXACJ,IND)
TEMPB = TRIXBCJ,IND)
TRIXBCJ,IND) = TEMPA
TRIXA(J,IND) = TEMPB
TEMPC = TRIPA(J,IND)
TEMPD = TRIPBCJ,IND)
TRIPA(J,IND) = TEMPD
TRIPBCJ,IND) = TEMPC

55 CONTINUE
ENDIF

C
DO 60 K = 1, 2

C
PSI = CIRCSP(K+1,IND) - PHIC

PR = PRS*(COSCPSI))**2
PPHI = 0.5*PRS*SIN(2.*PSI)

C
CALL TRIPATCH CTRIXA(K,IND),TRIXB(K,IND),TRIPACK,IND),TRIPB(K,IND),

1 PR,KORIENTCIND),1)

CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPACK,IND),TRIPB(K,IND),

1 PPHI,KORIENT(IND),2)

C
60 CONTINUE
C

ENDIF
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RETURN
END
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C ********************************************************************

C
SUBROUTINE TRIPATCH (XA, XB, PHIA, PHIB, PRS, IORIENT, Ni)

C
C PERFORMS LOADING DISTIBUTION OF TRIANGULAR PATCH AREA WITH
C DIMENSIONS: XA, XB, PHIA, PHIB.
C

C PRS = LOADING TO BE DISTRIBUTED OVER TRIANGLE
C IORIENT = ORIENT OF VERTEX OF TRIANGLE:
C 1: 2: 3: 4:
C * ***** *

C *** * ** * *

C * * * *

C ***** * ***** *

C
C N =1 :W, 2 :V, 3 :X
C

C CREATED : 21-NOV-83 BY : F.M.G. WONG
C LAST REVISED 30-JAN-84
C

C ***********************************************************************

C
REAL L, NU

COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / LOADS / PRE(100,100), PRO(100,100), PXE(100,100),

1 PXO(100,100), PPHIE(100,100), PPHIO(100,100)
C
C IORIENT = 1

PRINT *,XA,XB,PHIA,PHIB,PRS,IORIENT,N1

ONE = 1.0

IF ( (IORIENT.EQ.2) .OR. (IORIENT.EQ.4) ) ONE = -1.0
THP = (PHIB - PHIA)/2.

CNTP = PHIA + THP

IF ( IORIENT .EQ. 3 ) THEN
THX = (XA - XB)/2.

CNTX = XB + THX
CALL PATCH (CNTX,CNTP,THX,THP,PRS,N1)

ENDIF
IF ( IORIENT .EQ. 4 ) THEN

THX = (XB - XA)/2.

CNTX = XA + THX
CALL PATCH (CNTX,CNTP,THX,THP,PRS,N1)

ENDIF

C
C XA = 0.
C XB = 6.
C XB = 0.
C XA = 6.
C PHIA = 0.
C PHIB = 0.75038286

C
C XA = 68.
C XB = 62.
C XA = 62.
C XB = 68.
C PHIA = -0.137881
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PHIB = 0.137881
PRS = 10.

PRINT *,XA,XB,PHIA,PHIB,PRS

AA = (XB - XA)/CPHIB - PHIA)

B = (XA*PHIB - XB*PHIA)/(PHIB - PHIA)

P12 = PI*PI
PRINT *, ' AA = ',AA,' B =',B

DO 200 MT = 0, M-1

IF C MT .EQ. 0 ) GO TO 5
XMT = FLOATCMT)

CPHIO = COS(XMT*PHIO)
SPHIO = SIN(XMT*PHIO)
CONTINUE
DO 100 NT = 1, N

XNT = FLOAT(NT)
XK = XNT*PI*AA/L
SXO = SIN(XNT*PI*XO/L)
CXO = COS(XNT*PI*XO/L)
XMKPV = 1./CXMT + XK)
DUM = XMT - XK

IF C DUM .EQ. 0.0 ) PRINT*,DUM,XMT,XK,MT,NT
XMKNV = 1./(XMT - XK)

CSXA = COSCXNT*PI*XA/L)
SSXA = SIN(XNT*PI*XA/L)
CSB = 0.5*COSCXNT*PI*B/L)
SSB = 0.5*SIN(XNT*PI*B/L)
IF (MT .NE. 0) THEN
SMPA = (1./XMT)*SINCXMT*PHIA)
CMPA = (1./XMT)*COS(XMT*PHIA)
SMKPA = XMKPV*SIN(CXMT+XK)*PHIA)
SMKNA = XMKNV*SINCCXMT-XK)*PHIA)
CMKPA = XMKPV*COS((XMT+XK)*PHIA)
CMKNA = XMKNV*COSC(XMT-XK)*PHIA)
SMPB = (1./XMT)*SIN(XMT*PHIB)
CMPB = (1./XMT)*COSCXMT*PHIB)
-SMKPB = XMKPV*SIN((XMT+XK)*PHIB)
SMKNB = XMKNV*SINC(XMT-XK)*PHIB)
CMKPB = XMKPV*COS((XMT+XK)*PHIB)
CMKNB = XMKNV*COS((XMT-XK)*PHIB)
ENDIF

IF ( MT .EQ. 0 ) THEN

CKPA = COS(XK*PHIA)

SKPA = SIN(XK*PHIA)

CKPB = COS(XK*PHIB)

SKPB = SIN(XK*PHIB)

XKV = 1./XK

FUNA = PHIA*CSXA-XKV*2.*CSB*SKPA-XKV*2.*SSB*CKPA
FUNB = PHIB*CSXA-XKV*2.*CSB*SKPB-XKV*2.*SSB*CKPB
FUNC = FUNB - FUNA
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FUND = -PHIA*SSXA-XKV*2.*CSB*CKPA+XKV*2.*SSB*SKPA
FUNE = -PHIB*SSXA-XKV*2.*CSB*CKPB+XKV*2.*SSB*SKPB
FUNF = FUNE - FUND

C
CON = 2.*PRS*ONE/CXNT*PI2)

C
IF (Ni .EQ. 1) PRE(MT+1,NT) = PRE(MT+1,NT)+CON*FUNC
IF (N1.EQ.2) PPHIOCMT+1,NT)=PPHIO(MT+1,NT)+CON*FUNC
IF (Ni .EQ. 3) PXECMT+1,NT) = PXECMT+1,NT)+CON*FUNF

C PRINT *, ' M=0: ',IORIENT,CON*FUNC*ONE,NT

C

GO TO 100
ENDIF

C
IF ((Ni .EQ. 1).OR.(N1 .EQ. 2)) THEN

C
FUNA = CSXA*SMPA-CSB*(SMKPA+SMKNA)+SSB*(-CMKPA+CMKNA)
FUNB = CSXA*SMPB-CSB*(SMKPB+SMKNB)+SSB*(-CMKPB+CMKNB)
FUNC = FUNB - FUNA

C
FUND = -CSXA*CMPA-CSB*(-CMKPA-CMKNA)+SSB*C-SMKPA+SMKNA)
FUNE = -CSXA*CMPB-CSB*(-CMKPB-CMKNB)+SSB*(-SMKPB+SMKNB)
FUNF = FUNE - FUND

C
CON = 4.*PRS*ONE/(XNT*PI2)

C
IF (Ni EQ. 1) THEN

PRECMT+1,NT) = PRE(MT+1,NT) + CON*FUNC
PRO(MT+1,NT) = PROCMT+1,NT) + CON*FUNF

ENDIF
C PRINT *, IORIENT, CON*FUNC*ONE, CON*FUNF*ONE

IF (N1 .EQ. 2) THEN
PPHIECMT+1,NT)=PPHIE(MT+1,NT)+CON*FUNF
PPHIO(MT+1,NT)=PPHIO(MT+1,NT)+CON*FUNC

ENDIF
C

ENDIF
C

IF (Ni .EQ. 3) THEN
C

CXO = COS(XNT*PI*XO/L)
C

FUNA = -SSXA*SMPA+CSB*C-CMKPA+CMKNA)+SSB*(SMKPA+SMKNA)
FUNB = -SSXA*SMPB+CSB*(-CMKPB+CMKNB)+SSB*(SMKPB+SMKNB)
FUNC = FUNB - FUNA

C
FUND = SSXA*CMPA+CSB*(-SMKPA+SMKNA)+SSB*(-CMKPA-CMKNA)
FUNE = SSXA*CMPB+CSB*(-SMKPB+SMKNB)+SSB*(-CMKPB-CMKNB)

FUNF = FUNE - FUND

C
CON = 4.*PRS/CXNT*PI2)

C
PXE(MT+1,NT) = PXE(MT+1,NT) + CON*FUNC*ONE
PXO(MT+1,NT) = PXO(MT+1,NT) + CON*FUNF*ONE

C
ENDIF
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C
C
100 CONTINUE
200 CONTINUE

C
C

RETURN
END
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SUBROUTINE CIRCSET (XC, PHIC, R1, R2, RMOM, MOMTYP)

SPLITS CIRCULAR ATTACHMENT INTO FOUR QUADRANTS THROUGH FOUR CALLS
TO "CIRCPART."

XC = X-COORDINATE OF ATTACHMENT CENTER
PHIC = PHI-COORDINATE OF ATTACHMENT CENTER
R1 = INNER RADIUS OF ATTACHMENT
R2 = OUTER RADIUS OF ATTACHMENT
RMOM = EXTERNAL MOMENT
MOMTYP = TYPE OF MOMENT: LONG. = 1, CIRCUM = 2, NONE = 0

CREATED : 01-DEC-83
LAST REVISED : 01-DEC-83

REAL L, NU
COMMON / CONSTANTS

RADIAN = PI/180.

ANG1 = 45.*RADIAN
ANG2 = 135.*RADIAN
ANG3 = 225.*RADIAN
ANG4 = 315.*RADIAN

CALL
CALL
CALL
CALL

CIRCPART
CIRCPART
CIRCPART
CIRCPART

(XC,
cXC,
CXC,
(XC,

BY: F.M.G. WONG

/ A, E, L, NU, PI, T

PHIC,
PHIC,
PHIC,
PHIC,

R1,

R1,

R1,
R1,

R2,
R2,
R2,
R2,

ANG1,
ANG2,
ANG3,
ANG4,

1.0, 1.0, 1)
1.0, -1.0, 2)
-1.0, -1.0, 3)
-1.0, 1.0, 4)

CALL CIRCINERT CR1, R2, ERT)

CIRCMOM
CIRCMOM
CIRCMOM

CIRCMOM

cXC,
CXC,

CXC,

(XC,

PHIC,
PHIC,
PHIC,
PHIC,

R1,
R1,

R1,

R1,1

R2,
R2,
R2,
R2,

ANG1,
ANG2,
ANG3,
ANG4,

1.0, 1.0, 1, RMOM, ERT, MOMTYP)
1.0, -1.0, 2, RMOM, ERT, MOMTYP)

-1.0, -1.0, 3, RMOM, ERT, MOMTYP)

-1.0, 1.0, 4, RMOM, ERT, MOMTYP)

RETURN
END

C
C

SUBROUTINE CIRCINERT (R1, R2, ERT)

C

C CALCULATES THE MOMENT OF INERTIA FOR A CIRCULAR ATTACHMENT

C
C CREATED : 01-DEC-83 BY: F.M.G. WONG

COMMON / CONSTANTS / A, E, L, NU, PI, T

ERT = (R2**4 - R1**4)*PI/4.
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RETURN
END
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C
C

SUBROUTINE CIRCMOM (XC, PHIC, R1, R2, ANG, XFACT, PFACT, IND, RMOM,
1 ERTIA, MOMTYP)

C

C APPLIES PRESSURE LOADINGS TO CIRCULAR ATTACHMENT
C

C R1 = INNER RADIUS OF ATTACHMENT
C R2 = OUTER RADIUS OF ATTACHMENT
C ANG = ANGLE DESIGNATING THE QUADRANT
C XFACT = DETERMINES SIGN OF X-DIRECTION
C PFACT = DETERMINES SIGN OF PHI-DIRECTION
C IND = INTEGER DESIGNATING QUADRANT
C RMOM = EXTERNAL MOMENT TO BE APPLIED
C ERTIA = MOMENT OF INERTIA
C MOMTYP = MOMENT TYPE : LONGITUDINAL = 1, CIRCUMFERENTIAL = 2
C~

C CREATED : 01-DEC-83 BY: F.M.G. WONG
C LAST REVISED : 08-DEC-83
C
C
C

REAL L, NU
DIMENSION THX(3,4), THP(3,4), TRIXA(4,4), TRIXB(4,4), TRIPAC4,4),

1 TRIPB(4,4), IORIENT(16), ITYPE(4)
DIMENSION KORIENT(4)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CIRCTB / CIRCX(7,4), CIRCPHIC7,4)
COMMON / CIRCSD / CIRCSXC3,4), CIRCSP(3,4)

C

DATA IORIENT / 2, 3, 3, 2, 4, 1, 1, 4, 3, 2, 2, 3, 1, 4, 4, 1
DATA ITYPE / 1, 5, 9, 13 /
DATA KORIENT / 3, 1, 2, 4 /

C
ABTRIG = COS(45.*PI/180.)
PR1 = ASINCR1/A)
PR2 = ASIN(R2/A)

C
C ::::::r LOADINGS FOR CIRCULAR TUBES
C

IF ( R1 .NE. 0.0 ) THEN
C

THXC1,IND) = 0.5*R1*ABTRIG
THP(1,IND) = 0.5*(PR2 - PR1)

C

THX(2,IND) = 0.5*CR2 - R1)*ABTRIG

THPC2,IND) = 0.5*CPR2 - PR1)*ABTRIG

C
THXC3,IND) = 0.5*(R2 - R1)

THP(3,IND) = 0.5*PR1*ABTRIG
C

DO 40 I = 1, 3

CIRX = CIRCX(I,IND)

CIRPHI = CIRCPHI(I,IND)
PSI = CIRPHI - PHIC

IF C MOMTYP .EQ. 1 ) ELD = CIRX - XC

IF ( MOMTYP .EQ. 2 ) ELD = A*SIN( CIRPHI - PHIC )
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PRS = RMOM*ELD/ERTIA
PR =
PPHI
CALL
CALL

CONTINUE

TRIXA(1,IND)
TRIXB(1,IND)
TRIPA(1,IND)

TRIPB(1,IND)

TRIXAC2,IND)

TRIXBC2,IND)
TRIPA(2,IND)
TRIPB(2,IND)

TRIXA(3,IND)

TRIXBC3,IND)
TRIPA(3,IND)
TRIPB(3,IND)

TRIXA(4,IND)

TRIXB(4,IND)
TRIPA(4,IND)

TRIPB(4,IND)

PRS*(COS(PSI))**2
= O.5*PRS*SINC2.*PSI)
PATCH (CIRX, CIRPHI, THX(I,IND), THPCI,IND), PR, 1)
PATCH (CIRX, CIRPHI, THX(I,IND), THPCI,IND), PPHI, 2)

XC + R1*SIN(ANG)
XC
PHIC + PR1*COS(ANG)
PHIC + PR1*PFACT

XC + R2*SIN(ANG)
XC + R1*SIN(ANG)
PHIC-+ PR2*COS(ANG)

PHIC + PR2*PFACT

XC + R2*XFACT
XC + R2*SIN(ANG)
PHIC + PR1*COS(ANG)
PHIC + PR2*COS(ANG)

XC + R1*XFACT

XC + R1*SINCANG)
PHIC

PHIC + PR1*COS(ANG)

PRINT *, 'IND =',IND

IF C (IND .EQ. 2) .OR. (IND .EQ. 3) )
DO 45 J = 1, 4

TEMPA = TRIXA(J,IND)
TEMPB = TRIXBCJ,IND)
TRIXBCJ,IND) = TEMPA
TRIXA(J,IND) = TEMPB
TEMPC = TRIPA(J,IND)
TEMPD = TRIPB(J,IND)
TRIPA(J,IND) = TEMPD
TRIPB(J,IND) = TEMPC

CONTINUE
ENDIF

THEN

KTYP = ITYPECIND)

DO 50 K = 1, 4

PSI = CIRCPHICK+3,IND) - PHIC

IF C MOMTYP .EQ. 1 ) ELD = CIRCX(K+3,IND) - XC
IF C MOMTYP .EQ. 2 ) ELD = A*SIN( CIRCPHI(K+3,IND) - PHIC )
PRS = RMOM*ELD/ERTIA
PR = PRS*CCOSCPSI))**2

PPHI = O.5*PRS*SIN(2.*PSI)

CALL TRIPATCH (TRIXA(K,IND),TRIXBCK,IND),TRIPACK,IND),

1 TRIPB(K,IND),PR,IORIENT(KTYP),1)
CALL TRIPATCH (TRIXACK,IND),TRIXB(K,IND),TRIPACK,IND),

1 TRIPB(K,IND),PPHI,IORIENT(KTYP),2)
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KTYP = KTYP + 1
C
50 CONTINUE
C

ENDIF

C

C LOADINGS FOR SOLID CIRCULAR ATTACHMENTS
C

IF C R1 .EQ. 0.0 ) THEN

C

THXC1,IND) = 0.5*R2*ABTRIG
THP(1,IND) = 0.5*PR2*ABTRIG

C
CIRX = CIRCSX(1,IND)
CIRPHI = CIRCSP(1,IND)

C~

PSI = CIRPHI - PHIC

IF ( MOMTYP .EQ. 1 ) ELD = CIRX - XC

IF C MOMTYP .EQ. 2 ) ELD = A*SIN( CIRPHI - PHIC )
PRS = -RMOM*ELD/ERTIA
PR = PRS*CCOSCPSI))**2
PPHI = 0.5*PRS*SIN(2.*PSI)

C
CALL PATCH CCIRX, CIRPHI, THXC1,IND), THP(1,IND), PR, 1)
CALL PATCH (CIRX, CIRPHI, THX(1,IND), THP(1,IND), PPHI, 2)

C
TRIXA(1,IND) = XC + XFACT*R2
TRIXBC1,IND) = XC + R2*SIN(ANG)
TRIPA(1,IND) = PHIC
TRIPBC1,IND) = PHIC + PR2*COSCANG)

C
TRIXAC2,IND) = XC + R2*SIN(ANG)
TRIXBC2,IND) = XC
TRIPAC2,IND) = PHIC + PR2*COSCANG)
TRIPBC2,IND) = PHIC + PFACT*PR2

C
PRINT *,'IND =',IND
IF C CIND .EQ. 2) .OR. (IND .EQ. 3) ) THEN

DO 55 J-= 1, 4
TEMPA = TRIXACJ,IND)
TEMPB = TRIXBCJ,IND)
TRIXBCJ,IND) = TEMPA
TRIXACJ,IND) = TEMPB
TEMPC = TRIPACJ,IND)
TEMPD = TRIPBCJ,IND)
TRIPACJ,IND) = TEMPD
TRIPBCJ,IND) = TEMPC

55 CONTINUE

ENDIF

C

DO 60 K = 1, 2

C
PSI = CIRCSP(K+1,IND) - PHIC

IF C MOMTYP .EQ. 1 ) ELD = CIRCSX(K+1,IND) - XC

IF I MOMTYP .EQ. 2 ) ELD = A*SINC CIRCSP(K+1,IND) - PHIC )

PRS = RMOM*ELD/ERTIA
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PR = PRS*CCOSCPSI))**2
PPHI = 0.5*PRS*SINC2.*PSI)

C
CALL TRIPATCH CTRIXA(K,IND),TRIXBCK,IND),TRIPA(K,IND),TRIPBCK,IND),

1 PR,KORIENT(IND),1)
CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPACK,IND),TRIPBCK,IND),

1 PPHI,KORIENTCIND),1)
C
60 CONTINUE

C

ENDIF

C

C
RETURN
END
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C
C

SUBROUTINE COLOCATE CXC, PHIC, TAUX, TAUPHI, LX, LPHI, M, N, IGEOM)
C
C DRIVER MODULE FOR THE COLOCATION METHOD FOR RIGID PLUG PROBLEMS.
C

C IGEOM = TYPE OF ATTACHMENT GEOMETRY: RECTANGULAR = 1, CIRCULAR = 2
C
C CREATED : 05-OCT-83 BY : F.M.G. WONG
C LATEST REVISION : 02-DEC-83 BY : F.M.G. WONG
C
C

C
C

REAL LX, LPHI
DIMENSION TEMPA(8,8), TEMPBC32,32), TEMPC(72,72), TEMPDC128,128),

1 TEMPEC24,24), DISPLC64), FORC64)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CENTELM / CNTXELC4,4,4), CNTPHIEL(4,4,4)
COMMON / STIFMAT / STIFFAC8,8), STIFFB(32,32), STIFFCC72,72),

1 STIFFD(128,128), STIFFEC24,24)
COMMON / CIRCSD / CIRCSX(3,4), CIRCSP(3,4)

C
C ::::::: COMPUTE STIFFNESS MATRIX BY APPLYING UNIT PRESSURES
C ::::::: ON ATTACHMENT AREA AND SOLVING FOR THE DEFLECTIONS.
C

IF CIGEOM.EQ.1) CALL PATSPLIT CXC, PHIC, TAUX, TAUPHI, LX, LPHI, M, N)
IF CIGEOM.EQ.2) CALL CIRCOLSPLCXC, PHIC, 0.0, TAUX)

C
C ::::::: STIFFNESS MATRIX IS NOW DEFINED. PRESSURES MAY NOW
C ::::::: BE CALCULATED, GIVEN A KNOWN DISPLACEMENT.
C

IF C IGEOM .EQ. 1 ) ISIZE = M*N*4
IF C IGEOM .EQ. 2 ) ISIZE = 12

C
DO 10 I = 1, ISIZE*2

DO 5 J = 1, ISIZE*2

IF C ISIZE .EQ. 4 ) TEMPACI,J) = STIFFACIJ)
IF ( ISIZE .EQ. 16 ) TEMPBCI,J) = STIFFBCI,J)
-IF C ISIZE .EQ. 36 ) TEMPCCI,J) = STIFFCCI,J)
IF ( ISIZE .EQ. 64 ) TEMPDCI,J) = STIFFDCI,J)
IF ( ISIZE .EQ. 12 ) TEMPECI,J) = STIFFECI,J)

5 CONTINUE
10 CONTINUE
C
C ::::::: ASSEMBLE KNOWN DISPLACEMENT MATRIX
C

INC = 1

PRINT *

C
DO 40 J = 1, 4

C

IF C IGEOM .EQ. 1 ) THEN

DO 25 K = 1, N
DO 20 L = 1, M
DISPL(INC) = COSC CNTPHIELCK,L,J) - PHIC )
DISPL(INC+ISIZE) = SINC CNTPHIEL(K,LJ) - PHIC )
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INC = INC + 1
20 CONTINUE
25 CONTINUE

ENDIF

C
IF ( IGEOM .EQ. 2 ) THEN
DO 30 K = 1, 3

DISPL(INC) = COS( CIRCSP(K,J) - PHIC )
DISPLCINC+ISIZE) = SIN( CIRCSP(K,J) - PHIC )
PRINT *, 'DISPR =' ,DISPLCINC),' DISPP=',DISPL(INC+ISIZE)

INC = INC + 1

30 CONTINUE
ENDIF

C
40 CONTINUE

C

C SOLVE MATRIX EQUATION --
C

C [ STIFF ] X f PRESSURES I = [ DEFLECTION I
C
C FOR PRESSURES.
C

WRITE (1,100)
WRITE (6,100)

100 FORMAT (1X,'----> SOLVING MATRIX',/)

CALL TIMESTAT (1)

C
DO 300 K = 1, ISIZE*2

WRITE (1,200) TEMPE(K,1), TEMPE(K,13)!C TEMPECK,L), L=1,ISIZE*2 ), DISPLCK)
WRITE (6,200) TEMPE(K,1), TEMPE(K,13)!C TEMPE(K,L), L=1,ISIZE*2 ), DISPL(K)

200 FORMAT (1X,'TEMPE = ',E12.4,3X,'TEMPE13 = ',E12.4)
C200 FORMAT C<ISIZE*2>(E12.4,1X),2X,'DSP= ',E12.4)
300 CONTINUE

C
IF C ISIZE .EQ. 4 ) CALL SOLVE ( TEMPA, FOR, DISPL, 8, DET)
IF ( ISIZE .EQ. 16 ) CALL SOLVE C TEMPB, FOR, DISPL, 32, DET)

IF ( ISIZE .EQ. 36 ) CALL SOLVE C TEMPC, FOR, DISPL, 72, DET)
IF ( ISIZE .EQ. 64 ) CALL SOLVE C TEMPD, FOR, DISPL, 128, DET)
IF C ISIZE .EQ. 12 ) CALL SOLVE C TEMPE, FOR, DISPL, 24, DET)

C
CALL TIMESTAT (2)
WRITE (6,800)
WRITE (1,800)

800 FORMAT (/,1X,'THE COLOCATION FORCES ARE:',/)

C
DO 900 I = 1, ISIZE*2

WRITE (1,910) I, FORCI)
WRITE (6,910) I, FOR(I)

910 FORMAT (1X,'FOR(',I2,') = ',E12.4,/)
900 CONTINUE

C
RETURN

END
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SUBROUTINE PATSPLIT (XC, PHIC, TAUX, TAUPHI, LX, LPHI, M, N)

SPLITS AREA OF ATTACHMENT INTO 4 REGIONS.
SETS UP "ZEROED" PRESSURE MATRICES IN EACH REGION THROUGH 4
CALLS TO PATPRES.

XC
PHIC
TAUX
TAUPHI
LPH I
LX

X-COORDINATE OF TUBE CENTER (INCHES)
PHI-COORDINATE OF TUBE CENTER (RADIANS)
THICKNESS OF ATTACHMENT TUBE ALONG X (INCHES)
THICKNESS OF ATTACHMENT TUBE ALONG PHI (INCHES)
OUTER HORIZONTAL DIMENSION (INCHES) OF ATTACHMENT TUBE
OUTER VERTICAL DIMENSION (INCHES) OF ATTACHMENT TUBE

C
C MN ARE ELEMENT MEMBERS OF PATCH IN PHI AND X DIRECTIONS, RESP.

CREATED

LATEST REVISION
05-OCT-83
03-NOV-83

BY : F.M.G. WONG

BY : F.M.G. WONG

REAL L, NU, LPHI, LX

COMMON / CONSTANTS / A, E, L, NU, PI, T

ALPO = ASIN(LPHI/(2.*A))
ALPI = ASIN(CLPHI - 2.*TAUPHI)/(2.*A))
VI = .5*CALPO + ALPI)

V2 = LX-2.*TAUX

V3 = .5*(LX - TAUX)

ANG = ALPO - ALPI

V4 = 2.*ALPO

ISIZE = 4*M*N

WRITE (1,100)
WRITE (6,100)

100 FORMAT (1X,'----->
CALL TIMESTAT (1)

C
CALL ELMCNT (M, N,

CALL ELMCNT (M, N,
CALL ELMCNT (M, N,

CALL ELMCNT (M, N,

CALCULATING ELEMENT CENTERS',/)

XC, PHIC, 0, V1, V2, ANG, 1, IKP)

XC, PHIC, V3, 0, TAUX, V4, 2, IKP)

XC, PHIC, 0, -Vi, V2, ANG, 3, IKP)

XC, PHIC, -V3, 0, TAUX, V4, 4, IKP)

CALL TIMESTAT (3)

C

C ::::::: OBTAIN COEFFICIENTS FOR RADIAL UNIT LOAD

C
IGLOB = 1

IFOR = 1

C
CALL PATPRES (M, N, XC, PHIC, 0, VI, V2, ANG, 1, IGLOB, IFOR, IKP)
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C CALL PATPRES (M, N, XC, PHIC, V3, 0, TAUX, V4, 2, IGLOB, IFOR, IKP)
C CALL PATPRES (M, N, XC, PHIC, 0, -V1, V2, ANG, 3, IGLOB, IFOR, IKP)
C CALL PATPRES CM, N, XC, PHIC, -V3, 0, TAUX, V4, 4, IGLOB, IFOR, IKP)
C
C OBTAIN COFFICIENTS FOR SHEAR UNIT LOAD
C

IGLOB = ISIZE + 1

IFOR = 2
CALL INITIALIZE

C

C CALL PATPRES CM, N, XC, PHIC, 0, V1, V2, ANG, 1, IGLOB, IFOR, IKP)
C CALL PATPRES CM, N, XC, PHIC, V3, 0, TAUX, V4, 2, IGLOB, IFOR, IKP)
C CALL PATPRES CM, N, XC, PHIC, 0, -V1, V2, ANG, 3, IGLOB, IFOR, IKP)
C CALL PATPRES CM, N, XC, PHIC, -V3, 0, TAUX, V4, 4, IGLOB, IFOR, IKP)
C

RETURN
END
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C
C

C
SUBROUTINE PATPRES CM, N, XC, PHIC, XL, PHIL, THX, THPHI, IND, IGLOB,

1 IFOR, IKP)
C
C SETS UP "ZEROED" PRESSURE MATRICES, AND THEN SUPERPOSES THE
C UNIT PRESSURE AS REQUIRED BY COLOCATION.
C
C M = NO. OF PHI DIRECTION ELEMENTS IN PATCH
C N = NO. OF X DIRECTION ELEMENTS IN PATCH
C XC = LOCAL PATCH REFERENCE X COORDINATE
C PHIC = LOCAL PATCH REFERENCE PHI COORDINATE
C CXC,PHIC) DEFINE DIRECTION OF LATERAL LOAD AXIS ON CYLINDER
C XL = X COOR DISTANCE FROM XC TO PATCH CENTROID
C PHIL = PHICANGLE) DISTANCE FROM PHIC TO PATCH PHI CENTROID
C THX = PATCH DIMENSION ALONG X - AXIS

C THPHI = PATCH ARCLENGTH (RADIANS) ALONG PHI - AXIS
C IND = INTEGER DESIGNATION OF PATCH AREA ( 1, 2, 3, OR 4 )
C IGLOB = GLOBAL DESIGNATION OF ELEMENT IN ATTACHMENT AREA
C IFOR = DETERMINES TYPE OF FORCE, 1 = RADIAL, 2 = SHEAR
C

C THIS SUBROUTINE CREATES PR AND PPHI LOAD HARMONICS FOR SUCH LATERAL
C LOADS IKP IS AN ERROR CHECK IF IKP .NE. 0 GO TO END OF PROGRAM
C

C CREATED : 05-OCT-83 BY: F.M.G. WONG
C LATEST REVISION : 30-NOV-83 BY: F.M.G. WONG
C
C
C

REAL L,NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CENTELM / CNTXEL(4,4,4), CNTPHIELC4,4,4)

C
C

IKP = 0

IF C (M .GT. 4) .OR. (N .GT. 4) ) IKP = 1
IF ( (M .LT. 1) .OR. (N .LT. 1) ) IKP = 1
IF C IKP .EQ. 1 ) GO TO 98
XM = FLOAT(M)

XN = FLOAT(N)

C
WRITE (1,100) IND, IFOR
WRITE (6,100) IND, IFOR

100 FORMAT CIX,'-----> PERFORMING PRESS. DISTRIB.: ',I1,' FORCE: ',I1,/)
C

CALL TIMESTAT (1)

C

ISIZE = M*N*4

C
DO 1 I = 1, N

C
PSI = CNTPHIEL(I,J,IND) - PHIC

C
DO 1 J = 1, M

C
C ::::::: NOW PHI AND X COORDINATES OF ELEMENT M,N ARE KNOWN
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C
C

THXT = THX/(2.*XN)
THPHIT = THPHI/(2.*XM)
AREA = THXT*A*THPHIT*4.
FORCE = 1.0

C
PR = FORCE/AREA
PPHI = FORCE/AREA

C

IF C IND .NE. 1 ) CALL INITIALIZE
C

XFOR = CNTXEL(I,J,IND)
PHIFOR = CNTPHIELCI,J,IND)

C
C PRINT *

C PRINT *,'XFOR = ',XFOR,' PHIFOR = ',PHIFOR,IND
C PRINT *

C
IF ( IFOR .EQ. 1 ) CALL PATCH (XFOR, PHIFOR, THXT, THPHIT, PR, 1)
IF C IFOR .EQ. 2 ) CALL PATCH (XFOR, PHIFOR, THXT, THPHIT, PPHI, 2)

C
CALL TIMESTAT (2)

C

C CALCULATE STIFFNESS COEFFICIENTS FOR COLOCATION

C
CALL CALCMAT (M, N, IND, ISIZE, IGLOB, IFOR)

C
IGLOB = IGLOB + 1

C
1 CONTINUE

CALL TIMESTAT (3)

C
C

GO TO 99

C
98 WRITE(6,2) M, N
2 FORMAT(1X,'ERROR DETECTED IN ELEMENTS - NO LOAD CREATES,M,N ',213)

WRITE(1,2)
C

C
99 RETURN

END
C
C

C
C

SUBROUTINE INITIALIZE

C

C INTIALIZES ALL PRESSURE ARRAYS TO ZERO

C

C CREATED 19-OCT-83 BY F.M.G. WONG

C LAST REVISED 24-OCT-83

C
C

COMMON / LOADS / PRE(100,100), PRO(100,100), PXE(100,100),
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1 PXOC100,100), PPHIE(100,100), PPHIO(100,100)
C

DO 20 I = 1, 100

DO 10 J = 1, 100

C

PRECI,J) = 0.

PROCI,J) = 0.

PXE(I,J) = 0.

PXOCI,J) = 0.

PPHIECI,J) = 0.

PPHIOCI,J) = 0.

C
10 CONTINUE

CALL TIMESTAT (2)

20 CONTINUE
C

C
RETURN
END
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C
C

SUBROUTINE CALCMAT CM, N, IPATCH, ISIZE, IGLOB, IFOR)
C

C CALCULATES THE STIFFNESS MATRIX FOR COLOCATION.
C

C IPATCH = INTEGER DESIGNATION OF PATCH AREA ON WHICH FORCE IS
C APPLIED ( 1, 2, 3, OR 4 )
C ISIZE = TOTAL NUMBER OF ELEMENTS IN ATTACHMENT AREA ( M*N*4 )
C IGLOB = CURRENT GLOBAL COUNTER TO WHICH THE UNIT PRESSURE IS
C APPLIED
C

C IF M = N = 0, THEN COLOCATION IS PERFORMED FOR A CIRCLE
C
C CREATED : 05-OCT-83 BY : F.M.G. WONG
C LATEST REVISION : 02-DEC-83
C

C

C
COMMON / CENTELM / CNTXEL(4,4,4), CNTPHIEL(4,4,4)
COMMON / CIRCSD / CIRCSX(3,4), CIRCSP(3,4)
COMMON / STIFMAT / STIFFA(8,8), STIFFB(32,32), STIFFC(72,72),

1 STIFFD(128,128), STIFFEC24,24)
C

WRITE (1,800) IPATCH
WRITE (6,800) IPATCH

800 FORMAT (1X,'-----> CALCULATING DISPLACEMENTS: ',I1,/)
C

IF ( IFOR .EQ. 1 ) CALL DISPLACE (1)
IF C IFOR .EQ. 2 ) CALL DISPLACE (2)

C

WRITE (1,900) IPATCH
WRITE (6,900) IPATCH

900 FORMAT CX,'-----> SUMMING FOURIER DISPLACEMENT: ',I1,/)
CALL TIMESTAT Cl)

C
ILOC = 0

C
C ::::::: COLOCATION FOR RECTANGULAR ATTACHEMENTS
C

IF C (M .NE. 0) .AND. (N .NE. 0) ) THEN
C

DO 30 IND = 1, 4

DO 20 I = 1, M

DO 10 J = 1, N

C
XPOS = CNTXEL(I,J,IND)
PHIPOS = CNTPHIELCI,J,IND)

C
CALL SUMDISP C XPOS, PHIPOS, DEFLR, 1 )
CALL SUMDISP ( XPOS, PHIPOS, DEFLP, 2 )

C
ILOC = ILOC + 1

C
IF C ISIZE .EQ. 4 ) THEN

STIFFA(ILOC,IGLOB) = DEFLR
STIFFA(ILOC+ISIZE,IGLOB) = DEFLP
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ENDIF

IF ( ISIZE .EQ. 16 ) THEN
STIFFBCILOC,IGLOB) = DEFLR
STIFFB(ILOC+ISIZE,IGLOB) = DEFLP

ENDIF

IF C ISIZE .EQ. 36 ) THEN
STIFFC(ILOC,IGLOB) = DEFLR
STIFFCCILOC+ISIZE,IGLOB) = DEFLP

ENDIF

IF ( ISIZE .EQ. 64 ) THEN
STIFFDCILOC,IGLOB) = DEFLR
STIFFDCILOC+ISIZE,IGLOB) = DEFLP

ENDIF

CONTINUE

CONTINUE
CONTINUE

ENDIF

:::::: COLOCATION FOR CIRCULAR ATTACHMENTS

IF C (M..EQ. 0) .AND. (N .EQ. 0) ) THEN

DO 60 IND = 1, 4

DO 50 K = 1, 3

XPOS = CIRCSX(K,IND)
PHIPOS = CIRCSP(K,IND)

CALL SUMDISP C XPOS, PHIPOS, DEFLR, 1 )
CALL SUMDISP ( XPOS, PHIPOS, DEFLP, 2 )

ILOC = ILOC + 1

STIFFE(ILOC,IGLOB) = DEFLR
STIFFECILOC+ISIZE,IGLOB) = DEFLP

PRINT *,XPOS, PHIPOS
PRINT *,'DEFLR=',DEFLR,' DEFLP =',DEFLP
CONTINUE

CONTINUE

ENDIF

RETURN

END
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C
C

SUBROUTINE SUMDISP (XST, PHIST, DEFL, INDEX)
C
C SUMS UP THE FOURIER SERIES OF THE DISPLACEMENTS FOR A GIVEN
C X AND PHI ON THE CYLINDRICAL SURFACE
C

C XST = X-COORDINATE OF DEFLECTION
C PHIST = PHI-COORDINATE OF DEFLECTION
C DEFL = SUMMED UP DEFLECTION
C INDEX = TYPE OF DEFLECTION ( RADIAL, SHEAR, OR AXIAL )
C
C CREATED : 05-OCT-83 BY : F.M.G. WONG
C LATEST REVISION : 17-OCT-83 BY : F.M.G. WONG
C
C
C

C
REAL L, NU
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / INDEXES / M, N
COMMON / DISPL / UE(100,100), UO(100,100), VE(100,100), VO(100,100),

1 WE(100,100), WO(100,100)
C
C
C

C CALL TIMESTAT (1)

C
XCO=XST
PHICO=PHIST

C

C
XINT=0.
DO 6 MT=0,M-1

SPHI=SINCFLOAT(MT)*PHICO)

CPHI=COS(FLOAT(MT)*PHICO)
DO 6 NT=1,N

IF ( INDEX .EQ. 1 ) XINC=(WECMT+1,NT)*CPHI+WO(MT+1,NT)
1 *SPHI)*SINCFLOAT(NT)*PI*XCO/L)

IF ( INDEX .EQ. 2 ) XINC=CVECMT+1,NT)*SPHI+VOMT+I1,NT)
1 *CPHI)*SINCFLOAT(NT)*PI*XCO/L)

IF ( INDEX .EQ. 3 ) XINC=CUECMT+1,NT)*CPHI+UOMT+1,NT)
1 *SPHI)*COS(FLOAT(NT)*PI*XCO/L)

XINT=XINT+XINC
6 CONTINUE

XINT=XINT*.5

C
DEFL = XINT

C
C CALL TIMESTAT (2)

C

C CALL TIMESTAT (3)

C
RETURN
END
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C

C
SUBROUTINE SOLVE (A, X, B, N, DET)

C

C SOLVES AN N X N MATRIX EQUATION THROUGH GAUSS-JORDAN ELIMINATION
C
C A = N X N COEFFICIENT MATRIX
C X = 1 X N SOLUTION COLUMN MATRIX
C B = 1 X N RIGHT HAND SIDE MATRIX
C N = DIMENSION OF MATRICES
C DET = DETERMINANT OF 'A' MATRIX
C
C BY: W. CRAFT
C CONVERTED TO VAX 11/780 BY: F.M.G. WONG DATE: 10-AUG-83
C

C
C
C DOUBLE PRECISION A, X, B, Y, DET, TEMP, D, Dl, SIG

DIMENSION B(N), XCN), ACN,N), K(100), Y(100)
C
C PRINT *

C PRINT, ' N = ',N
C PRINT *

C DO 300 JA = 1, N
C WRITE (1,200) C A(JA,L), L=1,N )
C WRITE (6,200) ( ACJA,L), L=1,N )
C200 -FORMAT (<N*2>(E12.4,1X))
C300 CONTINUE
C

DO 16 I = 1, N

C
16 K(I) = I

NI = N - 1

C DET =1.

SIG = 1.

C
DO 8 L = 1, Ni

C
C ::::::: SEARCH FOR LARGEST ELEMENT

C
D = 0.

C
DO 1 Li = L, N

C
DO 1 L2 = L, N

C
IF ('ABSCA(L1,L2)) - ABS(D) ) 1, 1, 1550

1550 D = A(L1,L2)
ID = Li

JD = L2

1 CONTINUE

IF CD) 2, 99, 2

C

C ::::::: INTERCHANGE ROWS AND COLUMNS TO PUT LARGEST
C ::::::: ELEMENT ON DIAGONAL

C
2 IF C JD .EQ. L ) GO TO 14
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SIG = -SIG

IEMP = KCL)

K(L) = KCJD)
K(JD) = IEMP

C

DO 4 I = 1, N
C

TEMP = A(I,L)

A(I,L) = ACI,JD)
4 ACI,JD) = TEMP

14 IF ( ID .EQ. L ) GO TO 15
SIG = -SIG

C

DO 3 J = L, N

C
TEMP = ACL,J)

ACL,J) = ACID,J)
3 ACID,J) = TEMP

TEMP = BCL)
BCL) = BCID)
BCID) = TEMP

15 BCL) = B(L)/D
C
C ELIMINATE IN COLUMN UNDER LARGEST ELEMENT

C
Li = L + 1

C
DO 5 J = Li, N

C

5 A(L,J) = A(L,J)/D
DET = DET*D

C
DO 7 I = Li, N

C
IF C A(I,L) ) 1515, 7, 1515

1515 Di = ACIL)

C
DO 6 J = Li, N

C
6 ACI,J) = ACI,J) - Di*ACL,J)

B(I) = BCI) - D1*B(L)
7 CONTINUE
8 CONTINUE

IF C A(N,N) ) 9, 99, 9
C
C BACK SUBSTITUTE TO SOLVE

C

9 Y(N) = B(N)/A(N,N)
DET = DET*A(N,N)*SIG

C

DO 11 L = 1, NI

C
LL = N - L + 1

Di = BCLL-1)

C
DO 10 J = LL, N
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C
10 Dl = Dl A(LL-1,J)*Y(J)
11 Y(LL-1) = Dl
C

C RE-ORDER ANSWER
C

DO 12 I =1, N
C

J = K(I)
12 X(J) = Y(I)

GO TO 13
C
99 WRITE (6,100)

WRITE (1,100)
100 FORMAT (2X,'MATRIX IS SINGULAR NO SOLUTION GIVEN')

DET = 0.
C

13 RETURN
END

C
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SUBROUTINE CIRCOLSPL (XC, PHIC, R1, R2)

SPLITS CIRCULAR ATTACHMENT INTO FOUR QUADRANTS THROUGH FOUR CALLS
TO "CIRCPART." THEN FOUR CALLS TO "CIRCOLPRS" ARE USED TO INVOKE
THE METHOD OF COLOCATION FOR A CIRCULAR ATTACHMENT.

XC
PHIC
R1
R2

= X-COORDINATE OF ATTACHMENT CENTER
= PHI-COORDINATE OF ATTACHMENT CENTER
= INNER RADIUS OF ATTACHMENT = 0.0

= OUTER RADIUS OF ATTACHMENT

CREATED : 02-DEC-83
LAST REVISED : 03-DEC-83

REAL L, NU
COMMON / CONSTANTS

RADIAN = PI/180.
ANG1 = 45.*RADIAN
ANG2 = 135.*RADIAN

ANG3 = 225.*RADIAN
ANG4 = 315.*RADIAN

ISIZE = 12

CALL CIRCPART (XC,
CALL CIRCPART CXC,
CALL CIRCPART CXC,
CALL CIRCPART (XC,

BY: F.M.G. WONG

/ A, E, L, NU, PI, T

PHIC, R1, R2,
PHIC, R1, R2,
PHIC, R1, R2,
PHIC, R1, R2,

ANG1,
ANG2,
ANG3,
ANG4,

1.0, 1.0, 1)
1.0, -1.0, 2)
-1.0, -1.0, 3)
-1.0, 1.0, 4)

IGLOB = 1
IFOR = 1

CALL CIRCOLPRS (XC,
CALL CIRCOLPRS CXC,
CALL CIRCOLPRS (XC,
CALL CIRCOLPRS (XC,

IGLOB = ISIZE + 1

IFOR = 2
CALL INITIALIZE

CALL CIRCOLPRS (XC,
CALL CIRCOLPRS (XC,

CALL CIRCOLPRS (XC,

CALL CIRCOLPRS CXC,

PHIC, R1, R2,
PHIC, Ri, R2,
PHIC, R1, R2,
PHIC, R1, R2,

ANG1,
ANG2,
ANG3,
ANG4,

1.0, 1.0, 1, IGLOB, IFOR)
1.0, -1.0, 2, IGLOB, IFOR)

-1.0, -1.0, 3, IGLOB, IFOR)
-1.0, 1.0, 4, IGLOB, IFOR)

PHIC, R1, R2, ANG1, 1.0, 1.0, 1, IGLOB, IFOR)
PHIC, R1, R2, ANG2, 1.0, -1.0, 2, IGLOB, IFOR)
PHIC, R1, R2, ANG3, -1.0, -1.0, 3, IGLOB, IFOR)
PHIC, R1, R2, ANG4, -1.0, 1.0, 4, IGLOB, IFOR)

RETURN
END
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C
SUBROUTINE CIRCOLPRS (XC, PHIC, R1, R2, ANG, XFACT, PFACT, IND, IGLOB,

1 IFOR)
C

C APPLIES PRESSURE LOADINGS TO CIRCULAR ATTACHMENT
C
C R1 = INNER RADIUS OF ATTACHMENT
C R2 = OUTER RADIUS OF ATTACHMENT
C ANG = ANGLE DESIGNATING THE QUADRANT
C XFACT = DETERMINES SIGN OF X-DIRECTION
C PFACT = DETERMINES SIGN OF PHI-DIRECTION
C IND = INTEGER DESIGNATING QUADRANT
C IGLOB = GLOBAL DESIGNATION OF ELEMENT IN ATTACHMENT AREA
C IFOR = DETERMINES TYPE OF FORCE: 1 = RADIAL, 2 = SHEAR

C
C CREATED : 02-DEC-83 BY: F.M.G. WONG
C LAST REVISED : 03-DEC-83
C
C
C

REAL L, NU
DIMENSION THX(3,4), THP(3,4), TRIXAC4,4), TRIXB(4,4), TRIPA(4,4),

1 TRIPB(4,4), KORIENT(4)
COMMON / CONSTANTS / A, E, L, NU, PI, T
COMMON / CIRCSD / CIRCSXC3,4), CIRCSP(3,4)

C
DATA KORIENT / 3, 1, 2, 4 /

C
ABTRIG = COS(45.*PI/180.)
PR1 = ASIN(R1/A)
PR2 = ASIN(R2/A)
FORCE = 1.0

PRINT *,' WORKING ON QUADRANT :',IND

C
C ::::::: LOADINGS FOR SOLID CIRCULAR ATTACHMENTS
C

THXC1,IND) = 0.5*R2*ABTRIG
THPC1,IND) = 0.5*PR2*ABTRIG
AREA = R2*PR2*ABTRIG*ABTRIG
PRS = FORCE/AREA

C
CIRX = CIRCSXC1,IND)
CIRPHI = CIRCSP(1,IND)

C
IF C IND .NE. 1 ) CALL INITIALIZE

C
PRINT *

PRINT *, ' RECTANGLE -- ',IND,' PRS = ',PRS

CALL PATCH (CIRX, CIRPHI, THXC1,IND), THP(1,IND), PRS, IFOR)

CALL CALCMAT (0, 0, IND, 12, IGLOB, IFOR)

C
IGLOB = IGLOB + 1

C
TRIXA(1,IND) = XC + XFACT*R2
TRIXB(1,IND) = XC + R2*SIN(ANG)

TRIPA(I,IND) = PHIC
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TRIPBC1,IND) = PHIC + PR2*COSCANG)
C

TRIXA(2,IND) = XC + R2*SIN(ANG)

TRIXBC2,IND) = XC

TRIPA(2,IND) = PHIC + PR2*COSCANG)

TRIPB(2,IND) = PHIC + PFACT*PR2
C
C PRINT *,'IND =',IND

IF C (IND .EQ. 2) .OR. (IND .EQ. 3) ) THEN
DO 55 J = 1, 4

TEMPA = TRIXA(J,IND)
TEMPB = TRIXBCJ,IND)
TRIXBCJ,IND) = TEMPA
TRIXA(J,IND) = TEMPB
TEMPC = TRIPACJ,IND)
TEMPD = TRIPBCJ,IND)
TRIPA(J,IND) = TEMPD
TRIPBCJ,IND) = TEMPC

55 CONTINUE
ENDIF

C
DO 60 K = 1, 2

C
AREA = 0.5*(ABSC TRIXACK,IND) - TRIXB(K,IND) )*ABS( TRIPA(K,IND) -

1 TRIPBK,IND) ))
PRS = FORCE/AREA

C
CALL INITIALIZE

C
PRINT *,'TRIANGLE --- ',IND
CALL TRIPATCH (TRIXA(K,IND),TRIXB(K,IND),TRIPACK,IND),TRIPBCK,IND),

1 PRS,KORIENT(IND),IFOR)

CALL CALCMAT (0, 0, IND, 12, IGLOB, IFOR)
C

IGLOB = IGLOB + 1
C
60 CONTINUE

C
C

RETURN
END
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