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In the past decade, computational methods have been shown to be well suited to unraveling the
complex web of metabolic reactions in biological systems. Methods based on flux–balance analysis
(FBA) and bi-level optimization have been used to great effect in aiding metabolic engineering.
These methods predict the result of genetic manipulations and allow for the best set of
manipulations to be found computationally. Bi-level FBA is, however, limited in applicability
because the required computational time and resources scale poorly as the size of the metabolic
system and the number of genetic manipulations increase. To overcome these limitations, we have
developed Genetic Design through Local Search (GDLS), a scalable, heuristic, algorithmic method
that employs an approach based on local search with multiple search paths, which results in
effective, low-complexity search of the space of genetic manipulations. Thus, GDLS is able to find
genetic designs with greater in silico production of desired metabolites than can feasibly be found
using a globally optimal search and performs favorably in comparison with heuristic searches based
on evolutionary algorithms and simulated annealing.
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Introduction

In a number of separate studies, genome-scale flux–balance
analysis (FBA) modeling has been shown to be useful for the
in silico design of engineered strains of microbes that
overproduce diverse targets. These engineered strains include
Escherichia coli that overproduce lycopene (Alper et al,
2005a, b), lactic acid (Fong et al, 2005), succinic acid (Lee
et al, 2005; Wang et al, 2006), L-valine (Park et al, 2007), and
L-threonine (Lee et al, 2007), and strains of Saccharomyces
cerevisiae that overproduce ethanol (Bro et al, 2006; Hjersted
et al, 2007). FBA models allow the result of various genetic

manipulations strategies to be predicted. As a result, the space
of possible genetic manipulations can be computationally
searched for the strategy that results in the desired metabolic
network state. This space is vast, and algorithms must be
designed to search the space efficiently.

Transforming bi-level optimization of FBA models to single-
level mixed-integer linear programming (MILP) problems
(Burgard et al, 2003; Pharkya et al, 2004; Pharkya and
Maranas, 2006) has resulted in computational methods that
efficiently search the space of genetic manipulations. This
approach is much more efficient than exhaustive, brute-force
search, but it is nevertheless very computationally intensive.

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 1

Molecular Systems Biology 5; Article number 296; doi:10.1038/msb.2009.57
Citation: Molecular Systems Biology 5:296
& 2009 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/09
www.molecularsystemsbiology.com

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4425068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1038/msb.2009.57
http://www.molecularsystemsbiology.com
http://www.molecularsystemsbiology.com


The runtimes scale exponentially as the number of manipula-
tions allowed in the final design increases. For large models—
such as the latest genome-scale model of E. coli K-12 MG1655
(Feist et al, 2007), iAF1260—we have found that this runtime
generally proves prohibitive for designs involving more than a
few manipulations. Given that useful metabolically engi-
neered strains often require many genetic manipulations (such
as the artemisinic acid-producing strain of S. cerevisiae by
Ro et al (2006), which required the addition of three genes and
the up- or downregulation of four genes) and that the number
of reactions, metabolites, and genes in metabolic models
continues to grow (Feist and Palsson, 2008), it is clear that
more efficient computational search techniques are required
for effective in silico design.

We present a heuristic algorithmic method, which we call
Genetic Design through Local Search (GDLS), that is capable of
handling large models and allows for a much larger number of
genetic manipulations in the final design, with runtime scaling
only linearly with the total number of manipulations ‘T’. GDLS
employs a local search approach with multiple search paths
(Anderson, 1989; Pudil et al, 1994; Bertsimas and Weismantel,
2005) to find a set of locally optimal strategies. In brief, GDLS
functions as follows. It begins by taking a certain strategy as
a starting point, which can be a user-defined set of manipula-
tions, a randomly chosen set of genetic manipulations, or no
manipulations. The GDLS method then uses an MILPapproach
to search for the best strategies that differ from the starting
point by, at most,‘k’ additional manipulations. The population
of strategies GDLS maintains is limited to a maximum size ‘M’,
which is also the number of unique search paths maintained.
These M best strategies are then used as the starting point for
the next round of MILP search, resulting in a new set of M best
strategies, each of which differ from the one of the starting M
best strategies by, at most, k additional manipulations. This
procedure is iterated until no better strategy can be found.
Through this search method, GDLS is able to find strategies in
which the total number of manipulations T is large using
computationally feasible increments (determined by k and M).
As a result, GDLS can discover strategies that have a larger
value of Tand of the desired flux than can feasibly be found by
a global search.

A heuristic, sequential approach to finding genetic design
strategies was also employed by Alper et al (2005a). The
approach of Alper et al can be considered as a special case of
the approach of GDLS, in which we take no genetic
manipulations as the starting point and, at each iteration,
search by brute-force for the best strategy that involves only
one additional genetic manipulation. GDLS combines the
strengths of such a sequential approach with those of the bi-
level FBA approach previously mentioned (Burgard et al, 2003;
Pharkya et al, 2004; Pharkya and Maranas, 2006), allowing for
a graceful trade-off between the good complexity properties of
the former and the good optimality properties of the latter.

Other heuristic approaches include the application of meta-
heuristics such as evolutionary algorithms and simulated
annealing, both of which are explored in OptFlux (Patil et al,
2005; Rocha et al, 2008). These meta-heuristics apply random
local perturbations to a solution or a population of solutions
and propagate those with better performance. Although such
meta-heuristics can perform well on difficult global optimiza-

tion problems, we find that, for genetic design, it is frequently
the case that a number of manipulations have to be performed
simultaneously to have an effect, whereas each carried out on
its own has no effect. In such a case, if one of the
manipulations is randomly chosen on its own, then it is no
more likely to be propagated, as it has no effect, and the
probability of choosing all the manipulations simultaneously
in a random perturbation is very small. Thus, it is difficult for
these meta-heuristics to identify such manipulations. GDLS
overcomes this problem by systematically searching the local
neighborhood. We compare the performance of GDLS with the
evolutionary algorithm and simulated annealing approaches
implemented in OptFlux and, using the meta-heuristics, we
indeed are able only to find solutions that compare with those
found by GDLS when k¼1.

In this paper, we limit our consideration of bi-level FBA
frameworks to one for gene knockouts for simplicity, but any
bi-level FBA framework that can be transformed to an MILP,
such as one for up- or downregulation of genes using the
approach of OptReg (Pharkya and Maranas, 2006), is
compatible. We do not consider FBA extensions such as
energy–balance analysis (EBA) (Beard et al, 2004; Yang et al,
2005) or thermodynamics-based metabolic flux analysis
(TMFA) (Henry et al, 2007), which account for thermodynamic
constraints, or multi-objective optimization (Sendı́n et al,
2009), which allows the simultaneous optimization of multi-
ple cellular functions to be studied. These extensions are
important for accurate prediction of flux in eukaryotic cells,
but are less so for prokaryotic cells (Vo et al, 2004; Nagrath
et al, 2007), and developing computational methods for
genetic design that incorporate such extensions is likely to
be an important next step. Multi-objective optimization can
also be used as an alternative to bi-level optimization to find
genetic design strategies (Xu et al, 2009), but it is more
suggestive, than prescriptive, and has received relatively little
attention to date.

Beyond the local search approach, GDLS implements a
number of reductions that decrease the size of the FBA model
without changing its properties. In addition, to predict
network changes from genetic level manipulations, GDLS
employs gene–protein reaction (GPR) mappings, which
provide a complete many-to-many mapping between genes
and the reactions that depend on them. These relationships
can be complex, making it difficult to realize the effects
of genetic manipulations without computational analysis.
Compared with the common approach of allowing direct
manipulation of the reaction network, employing GPR map-
pings not only models more accurately the way in which
engineering is carried out, but also potentially reduces the
manipulation search space, which reduces search complexity
and hence runtime.

Results

Overview of the method

GDLS provides a general method for implementing a bi-level
optimization framework for genetic design that is capable of
handling large, complex FBA models, and of discovering
designs involving a large number of manipulations that
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produce high levels of the desired flux, which we refer to as the
synthetic flux. GDLS achieves its capabilities through the use
of an iterative local search approach with multiple search
paths. For simplicity and clarity, we frame our discussion and
demonstration of GDLS in the context of optimization of
knockouts but, as we have mentioned, GDLS can be applied to
find genetic designs involving any type of manipulation for
which there is a bi-level FBA framework that can be
transformed to an MILP.

An overview of the approach employed by GDLS is shown in
Figure 1. The approach begins with an initial stage in which
the GDLS MILP framework is set up. First, the input FBA model
is reduced to a smaller, but equivalent, model with fewer
genes, reactions, and metabolites. These reductions, which
include removing dead-end reactions and linked reactions, are
accepted (Patil et al, 2005; Rocha et al, 2008), and though they
do not substantially improve the runtime of the MILP, they do
substantially improve its numerical stability. We do not
remove genes from the possible knockout list based on
experimental predictions of lethality, as the lethality of a
single knockout may not hold when combined with other
knockouts. The possible knockout list is, however, easily set
by the user.

Knockouts are modeled in terms of gene sets that can affect
one or more reduced reactions using GPR mappings, which
give a many-to-many mapping of genes to reactions. On this
reduced model, an initial set of knockouts is selected. This
initial set can be chosen randomly, thus providing the heuristic
with many possible starting points, each of which possibly
results in a different final solution.

After the GDLS MILP framework is set up, we begin
searching iteratively while maintaining a population of
solutions of size M. Starting from the initial set of knockouts,
we apply an MILP optimization routine to search for M sets of
knockouts that result in the M greatest synthetic fluxes, while
differing from the initial set by at most k knockouts. Knockouts
can be removed after being selected and, in this way, GDLS is
capable of backtracking. Ideally, the MILP optimization
routine always returns a solution, but the software packages
that are used to solve MILPs are sometimes unable to find
feasible solutions or return infeasible solutions. Thus, we, in
fact, obtain, at most, M solutions at this stage, but we do not
necessarily have exactly M solutions. We then take the up to M
solutions found and use them as initial sets of knockouts for
the next iteration, in which we apply the same MILP
optimization routine M times for each of the, up to, M
currently maintained solutions. The next iteration, therefore,
generates up to M2 unique solutions, from which the best M
solutions are selected for subsequent iterations. This process is
repeated until the set of best solutions does not change or is
empty.

The number of knockouts k that can be added to or
removed from each solution at each iteration, and the
number of solutions M maintained after each iteration
are the key factors in runtime and optimality. Generally, a
larger search size results in a better ability to search the
space, especially for groups of changes that are only effective
in concert, thus smaller values of k and M generally
yield shorter runtimes at the cost of solutions with lower
synthetic flux.

FBA model

Model
reduction

Global
search

Search size:
T manipulations

Final
knockout
selection

Final
network

Reduced
FBA model

Initial
knockout
selection

Perturbed
network(s)

M best
neighborhood

search

Iterate

Search size:
k manipulations

Figure 1 Overview of GDLS. The input FBA model is first reduced to yield an equivalent FBA model with fewer genes, reactions, and metabolites. Then, on this
reduced FBA model, an initial knockout selection is made, yielding a perturbed network. A neighborhood search is then performed, in which MILP is used to search for
the M best genetic manipulation strategies that differ from this starting point by, at most, k additional manipulations, and the M best perturbed networks thus obtained are
used for another round of neighborhood search. We continue to iterate until no further improvement can be obtained within the full range, T, of allowed manipulations
from the reduced FBA model. Alternatively, in global search, we simply use MILP to search for the best genetic manipulation strategy that differs from the reduced FBA
model by, at most, T manipulations.
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Performance

We tested the performance of GDLS by optimizing for acetate
and succinate production in the most recent genome-scale
model of E. coli, iAF1260, and comparing against a global
MILP search. A global MILP search is employed by OptKnock
(Burgard et al, 2003), though it was applied to a smaller model,
it does not implement FBA model reductions or GPR
mappings, and uses the proprietary solver CPLEX. In contrast,
GDLS uses Solving Constraint Integer Programs (SCIP)
combined with Sequential object-oriented simplex (SoPlex)
as the MILP solver, which generally has slower and less
numerically stable performance than CPLEX, but is freely
available. This capacity to effectively use freely available
solvers on large FBA models, such as iAF1260, is one of the
strengths of GDLS. For a fair comparison, the global MILP
search against which we compare GDLS includes the FBA
model reductions and GPR mappings and also uses SCIP
combined with SoPlex. Alternative MILP solvers can be used
in GDLS and any improvements in the MILP solver will
improve both global search and GDLS.

In Figure 2, we show the results obtained with a single
search path (i.e. M¼1) for search sizes k ranging from 1 to 4.
The specific solutions obtained are given in Supplementary
Tables S1 and S2 for acetate and succinate production,
respectively. In these tests, we set the initial group of genes
to be knocked out to the empty set, so GDLS runs
deterministically.

The single search path case is illustrative of some aspects of
the general performance of GDLS, including the scaling of
search time with search size k and total gene knockouts T as
well as the ability of GDLS to find solutions with greater
numbers of knockouts and greater synthetic flux than global
search. We observe that the CPU time required by global
search increases exponentially with the number of knockouts
T in the solution. In both the acetate and the succinate cases,
the required CPU time quickly becomes prohibitive. By
contrast, the CPU time required for the solutions found by
GDLS increases much more gently with T, with an increase that
is approximately linear for a fixed value of the search size k.
Thus, for small T, GDLS is able to find solutions in much less
time than global search, often with the same or comparable
synthetic flux. For example, we are able to find the optimal
three-knockout strategy for acetate production found by global
search in 2566 s using an instance of GDLS, as compared with
36 924 s using global search—an over 14-fold runtime im-
provement. For larger T, GDLS is able to find solutions in
which global search simply cannot find solutions in reasonable
time.

The behavior of local search, in which we move from one
local optimum to another, can be simple or complex, as shown
in Figure 2. Succinate production increases fairly directly with
larger search sizes k and more iterations. Acetate production,
in contrast, shows the more complex nature of the search. We
observe that, as expected, smaller values of the search size k
result in solutions with lower synthetic flux for a given total
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Figure 2 Performance of GDLS in iAF1260 with a single search path. The required CPU time and resulting synthetic flux for varying numbers of knockouts, T,
are shown for solutions obtained by global search (black circles) and GDLS with search sizes, k, ranging from 1 to 4: k¼1 (red plus signs), k¼2 (green squares), k¼3
(blue crosses), and k¼4 (purple triangles). (A) CPU time for acetate production. (B) CPU time for succinate production. (C) Acetate flux for solutions shown in (A).
(D) Succinate flux for solutions shown in (B). Searches were run until CPU time exceeded 70 h, until 12 iterations had passed (succinate k¼1), or until termination
(acetate k¼1, 2, 3, 4 and succinate k¼2, 3). In all cases in which GDLS search terminated, it terminated owing to the set of best solutions being empty.
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number of knockouts T in general, but this is not necessarily
true. In the acetate k¼2 case, a four-knockout solution with
relatively low synthetic flux, found by the search, leads to a
six-knockout solution at the next iteration (which is followed
by another six-knockout solution with even greater synthetic
flux) that outperforms the six-knockout solutions found by the
k¼1, 3, and 4 searches. The k¼3 and 4 searches have six-
knockout solutions with lower synthetic flux because they
arrive at their six-knockout solutions from different points (the
k¼3 search arrives at its solution from a previous three-
knockout solution and the k¼4 search arrives at its solution
from a previous, relatively high production, four-knockout
solution). From the same point, larger values of k will result in
solutions with greater synthetic flux but, as the trajectories of
the various searches are likely to diverge after a few iterations,
there is no guarantee that one search will necessarily dominate
another.

It can also be seen that local search provides a clear benefit
over simple, greedy search because of the ability to simulta-
neously search gene knockouts and backtrack (i.e. undo
manipulations from previous iterations). The knockout
strategies for acetate in particular highlight the importance of
backtracking to discovering the best solutions. Backtracking is
clearly evident in the path of acetate k¼1, but is also important
if less obvious in the k¼2 search at six knockouts, in which one
knockout is added and one is removed, and in the k¼4 search
as it moves from six to eight knockouts, in which three
knockouts are added and one is removed.

Apart from the succinate k¼1 search, which reached the
iteration maximum of 12, all other searches terminated
because the set of best solutions was empty, that is, at a
particular iteration, the MILP solver did not return a
solution or returned an infeasible solution, which seems to
become more likely as the synthetic flux increases. One
method of extending the search beyond its termination points
is to restart GDLS using a particular solution as the new
starting point after adjusting the parameters of the search.
Another method is to increase the number of search paths. As
GDLS maintains a set of best solutions that grows with the
number of search paths, using more search paths is less likely
to result in a situation in which the set of best solutions is
completely empty.

We also ran GDLS with the number of search paths M, set to
2, 3, and 4, which, as mentioned above, leads to approximately
M2 MILP searches being executed at each iteration and, hence,
to an M2 increase in CPU time (see Supplementary Tables 1 and 2).
As expected, increased values of M allowed us to extend each
of the searches to greater total knockouts T. For both
optimization targets, reaching larger values of T resulted in
correspondingly higher levels of synthetic flux. For acetate
production, the increase in the number of search paths yielded
solutions with equivalent levels of synthetic flux to searches
with M¼1 until larger values of Twere reached. For succinate
production, however, improvement was seen for k¼1, 2, and 3
in the range of total knockouts T already encountered with
M¼1. In particular, for the succinate k¼3 case, solutions with
substantially greater synthetic flux are obtained by using two
search paths (M¼2), with a nine-knockout solution with a flux
of 9.699 mmol h�1 gDW�1 found, which outperforms the
maximum flux of 9.664 mmol h�1 gDW�1 (using ten knock-

outs) obtained in all cases using a single search path. This
nine-knockout solution then leads ultimately to an 18-knock-
out solution with a flux of 9.727 mmol h�1 gDW�1.

The knockouts in the solutions that are produced by GDLS
can possibly contain redundant knockouts that are not, in fact,
necessary for the achievement of the synthetic flux level of the
solution. Such redundant knockouts arise because they were
necessary at earlier iterations, but are no longer necessary in
the solution in question. It is simple to check whether all
knockouts are necessary and to remove those that are not,
shrinking the knockouts to the smallest necessary set. We have
found that doing so generally leads to mild improvements in
GDLS, but does not do so in every case. The results of running
GDLS with such shrinkage of the knockout sets are given in
Supplementary Tables 3 and 4 and are shown in Supplemen-
tary Figure 1.

In addition, we compared GDLS against OptFlux (Patil et al,
2005; Rocha et al, 2008), which implements the evolutionary
algorithm and simulated annealing meta-heuristics. We ran
each meta-heuristic twice to find knockout strategies for both
acetate and succinate production. Both meta-heuristics were
run for the same number of function evaluations, taking
approximately 5�104 s for each run (see Materials and
methods for details). The best solution found for acetate
production was 15.1381 mmol h�1 gDW�1 under the evolu-
tionary algorithm meta-heuristic and 15.1291 mmol h�1

gDW�1 under the simulated annealing meta-heuristic, and
the best solution found for succinate production was
9.87498 mmol h�1 gDW�1 under the evolutionary algorithm
meta-heuristic and 10.0076 mmol h�1 gDW�1 under the simu-
lated annealing meta-heuristic. For acetate production, we
observe that the best synthetic fluxes obtained by these
methods are only in the range of those found by GDLS with
k¼1 and do not rise to the levels found by GDLS when k41.
For succinate production, the synthetic fluxes found by
OptFlux exceed those found by GDLS, but this is because
OptFlux does not implement GPR mappings and allows
reactions themselves to be knocked out; the solutions found
by OptFlux cannot in fact be implemented using gene
knockouts once GPR mappings are taken into account.

Discussion

The utility of genome-scale FBA modeling in finding promising
genetic manipulation strategies for metabolic engineering has
been established in numerous studies (see Patil et al, 2004;
Feist and Palsson, 2008). The space of all possible genetic
manipulation strategies, however, is vast and, even if we
restrict ourselves to knocking out genes, it is a challenge to
search the space of all possible strategies computationally for
those that are likely to result in the desired metabolic changes.
Through a principled heuristic approach, we have developed
GDLS, a method that allows the space of possible genetic
engineering strategies to be efficiently searched and allows the
trade-off between optimality of the search and runtime. We
observe that GDLS achieves over an order of magnitude
improvement in computational time for solutions that yield
equal or comparable values for the desired flux with as few as
three manipulations.
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GDLS employs a local search approach with multiple search
paths, which searches through genetic design strategies by
propagating a set of best solutions. Increasing the number of
search paths increases the size of the set that is propagated,
which, at the cost of increased runtime, has numerous
advantages. First, as we have observed in the case of
optimization for succinate production, it allows solutions with
greater synthetic fluxes to be found. Second, it makes the
search more robust to numerical inaccuracies in the MILP
solver. Finally, it yields a larger set of solutions, all of which
have high synthetic fluxes. These alternative solutions yield
alternative genetic designs for examination and testing, which
are useful because predictions from FBA models are subject to
some error and prior biological knowledge may suggest that
one of the alternative designs is in fact a more promising
candidate for implementation.

The knockout strategies we find using GDLS on iAF1260
seem to be biologically sensible and consistent with previous
studies. In particular, the knockout strategies for acetate
production contain knockouts for alcohol and ethanol
dehydrogenase and for ATP synthase, which are knockouts
present in the acetate-producing strain of E. coli W3110 of
Causey et al (2003). The knockout strategies we find
for succinate production differ from those reported previously
by Burgard et al (2003) using OptKnock because we
use different models, but we still find knockout strategies
that include removing alcohol and ethanol dehydrogenase as
we do for acetate production. In the results listed in
Supplementary Tables 1 and 2, all strategies start with the
removal of alcohol dehydrogenase through the removal of
either the gene set (adhE, frmA and adhP) (all cases except
acetate k¼2) or the removal of adhE and mhpF. This result is
sensible because removing these enzymes eliminates the
production of ethanol and other competing fermentation
products. In general, the removal of competing pathways is a
consistent feature of most in silico and in vitro optimization
strategies.

The majority of other knockout targets affect the redox
balance of the cell, which is a common result of genetic design
using FBA models because many metabolites whose produc-
tion we desire to increase are by-products that naturally act to
help the cell maintain redox balance, and this is true of acetate
and succinate. Changing the redox balance can induce the
production of these metabolites as the cell acts to restore that
balance. An interesting knockout in several strategies was
phosphoglucose isomerase, the removal of which results in a
rather drastic change in cellular function, but in silico it is most
likely directed at forcing flux through the pentose phosphate
pathway so that NADPH is produced rather than NADH.
Combined with the removal of NAD(P) transhydrogenase,
such that NADPH cannot be exchanged for NADH, the system
is now dependent on the production of the desired metabolite
to create NADH.

Our strategies also include targets to decouple the synthetic
flux from amino-acid biosynthesis, biomass production, or
alternative redox balancing. The superior synthetic flux
achieved by the acetate k¼2 search is achieved through the
removal of 3-hydroxy acid dehydrogenase, which acts to break
down amino acids for the production of NADH. The succinate
strategies include knockouts such as glutamate dehydro-

genase, the removal of which helps make the production of
amino acids from succinate impossible.

In examining these knockout strategies, we see that the GPR
mappings implemented in GDLS result in a realistic coupling of
genes and reactions, making sure, for example, that reactions
are not removed individually when they can, in fact, only be
removed along with other reactions. Gene sets such as (adhE,
frmA, and adhP) and individual genes such as that producing
3-hydroxy acid dehydrogenase are each associated with
multiple reactions in iAF1260.

To discover the most complete set of design strategies
possible, we recommend running GDLS with increasing values
of the search size k and the number of search paths M, starting
with one for both parameters, until the limit of feasible
computational resources is reached (e.g. when a certain time
limit is reached). Given the limitations in the prediction power
of FBA modeling, such an approach will result in a variety of
good design strategies that can be manually examined and will
allow manipulations that are consistently chosen to be
identified and prioritized.

An implementation of GDLS is publicly available, thus
facilitating and advancing the use of computational tools in the
design of biological organisms. With the ever-increasing
complexity and accuracy of mathematical models of biological
organisms, such computational tools are likely to have an ever
larger role in biological engineering.

Materials and methods

Genome-scale FBA modeling

We work with the genome-scale model of E. coli, iAF1260. This model
consists of three parts. From m metabolites and n reactions, we form
an m�n stoichiometric matrix S, whose ijth element Sij is the
stoichiometric coefficient of metabolite i in reaction j. The vector of
flux values of v, whose jth element vj is the flux though reaction j, are
constrained by a lower bound vector a, whose jth element aj is the
lower bound of the flux through reaction j, an upper bound vector b,
whose jth element bj is the upper bound of the flux through reaction j.
Finally, the linear objective is formed by multiplying the fluxes by an
objective vector f, whose jth element fj is the weight of reaction j in the
biological objective. Thus, a biologically optimal flux distribution is
obtained by solving

max f 0v
subject to Sv ¼ 0

a � v � b
ð1Þ

Reduction of FBA models

We apply three principal reductions. First, we remove all dead-end
reactions. Dead-end reactions occur when metabolites are associated
with only a single reaction, which, therefore, cannot carry any flux.

Second, we find all linked reactions. Linked reactions occur when
metabolites are associated with exactly two reactions. As metabolites
are conserved, the fluxes of the two reactions are always in the same
ratio and can be reduced to a single variable. Thus, we find all
equations of the form

Sij1 vj1 þ Sij2 vj2 ¼ 0

and we reduce j1 and j2 to a single reaction, because we simply have

vj1 ¼ �
Sij2

Sij1

vj2 :

Third, we successively maximize and minimize each flux subject to
the constraints of the problem—a problem sometimes referred to as
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the max–min problem (Burgard et al, 2001; Mahadevan and Schilling,
2003; Pharkya and Maranas, 2006)—to obtain tighter bounds on the
fluxes, that is, we solve

max=min vj

subject to Sv ¼ 0;
a � v � b:

ð2Þ

Let vj,l and vj,u be the result of minimizing and maximizing (2),
respectively. If, for any j, we have vj,upvj,l, then we remove reaction j
from the model, as the flux through reaction j must be zero.

We iteratively apply these reductions until we cannot reduce the
model any further. For the iAF1260 model, we start with an initial size
of m¼1668 and n¼2382; after reduction, we obtain m¼483 and
n¼959. These reductions reduce the number of variables in the model
without changing its properties; the reduced and original models are
mathematically equivalent.

Local search for genetic strategies

GDLS builds upon previous metabolic design methods by incorporat-
ing the relationship between genes and reactions and a local search of
multiple genetic manipulations strategies. To allow GDLS to function
at the genetic level, we have implemented GPR mappings. GPR
mappings define how certain genetic manipulations affect reactions in
the metabolic network. For a set of L genetic manipulations, we
summarize the GPR mappings with an L�n matrix G, where the ljth
element Glj of G is 1 if the lth genetic manipulation maps onto reaction j
and is 0 otherwise. In iAF1260, we have L¼913 initially; after
reduction, we have L¼632.

We use a previously established approach for posing the problem of
finding knockout strategies as a bi-level optimization problem and
converting it to an equivalent MILP problem (Burgard et al, 2003). The
bi-level optimization problem can be written as follows:

max g0v

subject to
PL

l¼1

yl � C;

yl 2 f0; 1g;
max f 0v
subject to Sv ¼ 0;

ð1�yÞ0Gjaj � vj � ð1�yÞ0Gjbj; j¼ 1; . . . ;n;

ð3Þ
where g is the synthetic objective vector, whose jth element gj is the
weight of reaction j in the synthetic objective; y the knockout vector,
whose lth element yl is equal to 1 if the genes involved in manipulation
l are knocked out and 0 otherwise; Gj denotes the jth column of G; and
C is the maximum number of knockouts allowed. We convert the bi-
level (3) problem to an equivalent MILP using the dual of (1) to obtain

max g0v

subject to
PL

l¼1

yl � C;

yl 2 f0; 1g; l ¼ 1; . . . ; L;
Sv ¼ 0;
ð1� yÞ0Gjaj � vj � ð1� yÞ0Gjbj; j ¼ 1; . . . ;n;

f 0v ¼
Pn

j¼1

njbj � mjaj;

fj �
Pm

i¼1

liSij � nj þ mj � xj ¼ 0; j ¼ 1; . . . ;n;

�Dy0Gj � xj � Dy0Gj; j ¼ 1; . . . ;n;
m; n � 0;

ð4Þ

where l is the dual variable for the equality constraints of (1), m and n
are the dual variables for the lower and upper bounds, respectively, x is
the dual variable corresponding to the constraint nj¼0 if yj¼1, and D is
a scalar chosen to be sufficiently large to ensure that xj is effectively
unconstrained whenever y0Gj is non-zero (we set D to be 100 in our
analysis).

Now suppose we start with some initial knockout vector n(0). At
each iteration i, we maintain a set of knockout strategies Y(i), so let the
set Y(0):¼ {y(0)} and i¼0. For each knockout vector ỹ in Y(i), we solve

problem (4) M times using the following additional constraints. We
first add the constraint

X

l:~yl¼0

yl þ
X

l:~yl¼1

ð1� ylÞ � k ð5Þ

to problem (4) to limit the size of the search neighborhood to k, and we
solve problem (4) using constraint (5). We set Y(iþ 1) to be the set that
contains the optimal solution y*. Then, for M�1 times, we solve
problem (4) again using constraint (5) and the additional constraint

X

l:ŷl¼0

yl þ
X

l:ŷl¼1

ð1� ylÞ � 1 ð6Þ

for all ŷ in Y(iþ 1), and we add the optimal solution y* to Y(iþ 1). If we do
not obtain an optimal solution or the solution returned is infeasible, we
do not modify Y(iþ 1) and simply continue. Thus, from each ỹ in Y(i), we
add up to the M best solutions to problem (4) with constraint (5) to the
set Y(iþ 1), which ultimately contains up to |Y(i)|M elements. We then
remove elements from Y(iþ 1) to reduce its size to a maximum of M,
keeping the best solutions.

We increment i and repeat the above procedure until Y(iþ 1)¼Y(i).

GDLS implementation

We describe an implementation of GDLS using MATLAB, GLPK (GNU
Linear Programming Kit), SCIP (Achterberg, 2007), and SoPlex
(Wunderling, 1996). GDLS, GLPK, SCIP, and SoPlex are non-
commercial software packages publicly available for download. We
illustrate the capabilities of GDLS by applying it to acetate and
succinate overproduction problems in E. coli using iAF1260 as the FBA
model. As succinate and acetate fermentations are generally carried
out under anaerobic or microaerobic conditions (Zeikus et al, 1999;
Causey et al, 2003), and such conditions are consistent with good in
silico production, we gave the model no available oxygen and
10 mmol h�1 gDW�1 available glucose. All computations were carried
out using 2.4 GHz Intel Xeon processors.

Comparison with OptFlux

Following Rocha et al (2008), we used the set-based algorithm with a
population size of 100 for the evolutionary algorithm, and we used 50
trials for simulated annealing. In both cases, runs were terminated
after 100 000 function evaluations.

Software availability

GDLS is freely available for non-profit use in the supplementary
information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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