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Abstract. The paper is dealing with the problem of finding the optimal number and location of Loading Bays (LBs) for ef-
ficient urban last mile deliveries. To solve the problem a multi-parametric model of the idealized urban area is introduced 
and applied to various instances of a rectangular urban grid structured zones. Multi-parametric approach is used to assess 
statistically the most relevant number and location of LBs. Computational and graphical results of the idealized model 
exhibit geometric patterns showing that the optimal Number of LBs (#LB) naturally tends to perfect squares. Moreover, 
even in case of generalized instances, at a selected number of LBs their distribution is not random but follows specific laws. 
The optimality is closely related to the prefixed (maximal) walking distance dmax, from the LB to the customer. Based on 
various simulations the existence and robustness of a descending convex dependence dmax = (#LB) is proven. The results 
might serve as a decision-making tool to determine the optimal number and location of LBs for any real-life city centre. 
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Introduction

Cities are irrepressibly becoming larger, which leads to 
various problems related to increasing traffic in urban 
areas. Competition for urban street space between cars, 
vans, delivery vehicles, public transport, pedestrians and 
cyclists is becoming more and more intense. One of the 
major problems is related to delivery vehicles, which are 
contributing considerably to congestion, pollution and 
emissions (Lindholm 2013; Tozzi et  al. 2014; Zou et  al. 
2016). 

Cities are implementing various restrictive measures 
(e.g. ban for heavy-duty vehicles, low emission zones, time 
windows, congestion charging, etc.) to mitigate negative 
effects of urban freight deliveries (Buldeo Rai et al. 2017; 
Fu, Jenelius 2018; Holguín-Veras, Sánchez-Díaz 2016; 
Marcucci et al. 2017; Quak, De Koster 2009; Russo, Comi 
2011). Access to urban areas (especially to historical city 
centres or some specific parts of the city) is often pro-
hibited or allowed only at certain time of the day and/
or only with small and environmentally friendly delivery 
vehicles (freight bikes, light commercial vehicles, electric 

delivery vehicles). When direct delivery to customers is 
not possible a Loading Bay (LB) is needed for tranship-
ment of goods and parking of delivery vehicles during 
the final (last mile) delivery operations (Alho et al. 2014; 
Guastaroba et al. 2016; Letnik et al. 2018). 

In general, three main issues related to LBs can be 
identified in the literature (Malik et al. 2017): lack of LBs; 
inappropriate location of LBs and the illegal use of LBs. 
In all these cases, delivery vehicles are not able to use LBs 
and they are consequently forced to double-park or to 
circulate around the city to find the next unoccupied LB. 
In European cities, this occurs in 70…80% of deliveries 
(Lopez et al. 2016), this is time consuming and contributes 
significantly to the reduction of the available road capac-
ity and to the increase of urban traffic congestion (Russo, 
Comi 2012; De Abreu e Silva, Alho 2017). Last part of the 
delivery, from the LB to the customer, is mostly performed 
on foot or by trolley, therefore number and location of LBs 
should be carefully planned to keep the walking distances 
reasonably low. 

http://creativecommons.org/licenses/by/4.0/
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The problem of finding optimal number and location 
of LBs should be, according to Alho et al. (2014), treated 
as a distance-based Facility Location-allocation Prob-
lem (FLP). The facility FLP was originally introduced by 
Cooper (1963) with the main aim to locate multiple fa-
cilities in an Euclidian space and allocate customers to a 
facility while minimizing transportation costs. Since then, 
many researchers have studied discrete and continuous 
versions of Multiple FLP (MFLP) extensively and many 
variations are nowadays available. The p-median problem 
is to place p facilities so that the total distance from all 
customers to their corresponding closest facilities is mini-
mized (Colmenar et al. 2018; Jánošíková et al. 2017; Wang 
et al. 2018). The p-center problem is to place p facilities 
in the network on such a way that the maximum distance 
from each customer to its closest facility is minimized 
(Callaghan et al. 2017; Kikuno et al. 1980; Tüzün Aksu, 
Ocak 2012). The maximal coverage location problem is 
to place one or more facilities in the network on such a 
way that all customers are covered (served) within a pre-
defined radius from at least one facility (Berman et  al. 
2016; Blanquero et  al. 2016; Farahani et  al. 2012). The 
clustering problem is, where customers correspond to 
data points and where facility locations are determined as 
cluster centres. Clustering criteria is to minimize the sum 
of distances from each data point to the corresponding 
cluster centre (Iyigun, Ben-Israel 2010; Zhao et al. 2019). 
The multi-objective (or multiple-criteria) facility location 
problem, where different objectives: minimizing total or 
average weighted time/distance travelled, maximizing the 
number of customers receiving service before a critical 
time threshold and minimizing the maximum weighted 
time/distance travelled, are used in combination (Farahani 
et al. 2010; Karatas, Yakıcı 2018). 

The above mentioned solution methods play an impor-
tant role in solving location problems in many different ar-
eas, such as: press delivery networks, locating post boxes, 
telecommunication systems, fuel/gasoline service stations, 
retail outlets, and also city logistics terminals (Hajipour 
et al. 2016), which are studied in this paper. Several re-
searchers have tried to determine the optimal number and 
location of LBs using different approaches and methods. 
Aiura and Taniguchi (2005) developed a methodology for 
determining optimal locations of on-street LBs to evaluate 
the efficiency of enforcement for controlling illegal park-
ing of passenger cars at loading-unloading spaces. The 
methodology has been applied to test road network (a 
single road section) and was able to determine a configu-
ration of parking spaces that achieved a cost reduction of 
approximately 16%. Dezi et al. (2010) studied the optimal 
number and position of LBs for the city centre of Bologna, 
Italy. They developed a methodology for placement of LBs 
taking into consideration expected urban freight delivery 
demand, specific characteristics of particular commercial 
entities (type, size, etc.) and characteristics of the urban 
road network (distances, pedestrian crossings, gradients 
and architectural barriers). In the case when all needed 
detailed data is not available (and this is often the case), 
they proposed to use the simplified process of defining 

circles of the particular radius of influence (50 m) based 
only on knowledge of buildings and road network. Their 
final aim was then to minimize overlapping areas of adja-
cent circles. Delaître and Routhier (2010) studied the pos-
sibilities to combine two different tools, one dealing with 
the generation of vehicles movements (Freturb), another 
dealing with the simulation of delivery areas (Dalsim) to 
define the best possible number and location of LBs. The 
model has been applied on several characteristic streets of 
La Rochelle city centre in France to identify the best pos-
sible micro locations of LBs for the particular street. They 
found out that the number and position of LBs depends 
mainly on characteristics of the road network (length of 
streets) and availability of space, which can be dedicated 
to LBs. Alho et al. (2014) critically analysed state-of-the-
art of the freight modelling methodologies to optimize the 
configuration of LBs and proposed alternative modelling 
framework, integrating simulation models and optimiza-
tion strategies that take into account also double-parking 
of delivery vehicles. Their model is based on the identifica-
tion of customers’ locations and their demand, again along 
the street segment and from the micro location point of 
view. 

As seen from the literature review, studies on urban 
LBs have been so far limited only to specific cases and 
to selected cities (with particular characteristics). General 
rules and instructions for setting optimal number and lo-
cation of LBs, that would fit into different urban areas, is 
missing in the literature and in practice (Alho, De Abreu 
e Silva 2014; Comi et al. 2017; Malik et al. 2017). In addi-
tion to that, most of the solutions in the existing literature 
have some restrictions. Either are limited to micro loca-
tions, or to the Euclidean (aerial) distances, or consider 
the freight delivery demand as a static criterion, imply-
ing that any change of demand (in terms of quantity and/
or the location of customer) requires new calculation of 
optimal location. A good city logistics tactical planning 
should therefore include also the uncertainty of demand 
(Crainic et al. 2016). For solving the problem of setting the 
optimal number and location of LBs and overcome before 
mentioned restrictions, we introduced the new multi-par-
ametric model, which is combining fuzzy clustering and 
probability densities of cluster centres to evaluate the ef-
ficiency of placing a different number of LBs in a typical 
urban grid cell of 1 km², considering uncertainties related 
to delivery demand. The aim of this paper is two-fold:

1) to present and introduce a multi-parametric model;
2) to provide some general recommendations for deci-

sion-making related to setting the optimal number 
and locations of LBs in different urban area con-
texts.

1. Multi-parametric LB location model

The problem of finding the optimal number and location 
of LBs is a very complex, since we have to take into con-
sideration various characteristic parameters of a city and 
the volume and dynamics of delivery demand. For this 
kind of problems, a multi-parametric models and princi-
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ples have proven to provide the best possible results (Oses 
et al. 2018). The proposed model can be categorized as a 
multi-parametric tool, which is specifically dedicated to 
designing LBs in city centres and can be used as a deci-
sion-making tool for urban transport planners. The pro-
posed model is based on a statistical approach with the 
main aim to find robust solutions while varying the ge-
ometry of the city, network density, density of customers 
and their demand. Conceptual solutions are transferable 
to different other urban contexts. 

1.1. Main parameters of the model

The optimal number and location of LBs mainly depend 
on the size and shape of an urban area, the characteris-
tics of the road network, the location, distribution and 
density of customers and on the demand characteristics. 
Urban areas considerably differ from each other; there-
fore, we first need to consider and define some common 
characteristics when modelling urban freight deliveries. 
According to the Statistical Office of the European Union 
(EuroStat), an urban centre is defined as contiguous grid 
cells of 1 km² with a population density of at least 1500 in-
habitants/km² (Dijkstra, Poelman 2014). The urban core is 
similarly defined in the methodology of the Organization 
for Economic Co-operation and Development (OECD) as 
contiguous or highly interconnected densely inhabited ur-
ban areas with a population density of 1000 or 1500 peo-
ple/ km² (OECD 2012). Both methodologies take a cell of  
1 km2 as a basic unit for identification of urban areas and 
this unit should, therefore, be understood also as the main 
element for the modelling purposes of urban freight de-
liveries.

The topology of the urban road network has been stud-
ied by many researchers (Lin, Ban 2017; Strano et al. 2013; 
Tsiotas, Polyzos 2017). Generally, the following charac-
teristics of urban road networks are noted: heterogeneity 
(very few road sections interact with each other), planarity 
(roads tend to be parallel more than forming triangles), 
validity of power low (the majority of road sections are 
short in distance, especially in city centres) and density 
(high density of intersections and many roads in urban 
areas). One can conclude that an urban road network can 
be best approximated by a rectangular grid structured city 
mash. Especially in city centres (where LBs are predomi-
nantly needed), the grids are mostly rectangular. Moreo-
ver, there are some parts of almost any city (regardless of 
the type of road pattern), which undergoes to a rectangu-
lar structured network (Boeing 2017).

The delivery demand of customers varies consider-
ably in quantity and time. Bigger customers, for example, 
accommodate a higher number of deliveries and as re-
sult, they might call either for a bigger number of LBs or 
simply bigger capacity of LBs located in their proximity. 
Data on the actual number of deliveries is hard to find 
in the literature (are almost non-existing), we, therefore, 
need to rely on some assumptions and modelling princi-
ples (Muñuzuri et al. 2009, 2012). The quantity of demand 

for modelling deliveries in urban areas mainly relates to 
the number of inhabitants. Estimations based on existing 
urban freight studies (Dablanc et al. 2013) are showing on 
average 0.1 delivery/pick-up per person (inhabitant of an 
urban area) per day. This may help to assess the number 
of deliveries if we know the population density of a certain 
urban area. Assuming, on average, 0.1 delivery/pick-ups 
per inhabitant and number of inhabitants for a typical ur-
ban grid cell of 1 km2 ranging from 1000 and up to 10000 
people/km2, the following parameters are to be studied: 
100, 300, 500, 700 and 1000 deliveries/day/km2. 

1.2. The concept of the model

Considering all the above-mentioned parameters, an ide-
alized urban area model with the following assumptions 
has been introduced: an urban area is a typical urban grid 
cell of 1 km² (not the entire city); an urban road network 
is a grid of equidistant and perpendicular roads (rectan-
gular grid); customers are uniformly but randomly dis-
tributed over the perpendicular lattice, using the – Latin 
Hypercube Sampling (LHS) method, which is described 
in the sequel. To test the results of optimal number and 
position of LBs under different conditions the model al-
lows to simulate different parameters: road network den-
sity (number of roads and the distance between them); 
customers’ location and density (number of customers on 
1 km2); the number of LBs. 

The model is based on a dynamically changing de-
mand, which is in the model presented as a variety of 
randomly generated positions of customers (instances). 
The model simulates main features (different sets of pa-
rameters) and compares solutions for different instances 
to provide statistically relevant and robust results yielding 
the optimal #LBs and positions in any characteristic urban 
grid cell. 

In the model (the overall scheme is presented in Figure 1),  
one can vary the density of the road network and the 
density of customers, and provide graphical (scatter plot, 
contour plot and a 3D plot of probability density surface 
respectively) and computational results. The results are 
numerically evaluated with the maximal distance d from 
the LBs to the customers. Distances are measured with 
Manhattan (city block) metric, which is probably the best 
approximation for measuring distances in the real city 
centres with the rectangular road network. 

Clustering procedure serves to provide the optimal 
location of LBs. The aim is to identify k cluster centres 
and their positions in the idealized urban area. To find the 
optimal number of LBs and their positions, we use dmax, 
as a maximal allowed walking distance from the cluster 
centre to all the corresponding customers. Maximal al-
lowed walking distance determines the crucial constraint 
of the problem.

The model is built in the MATLAB software (https://
se.mathworks.com). For modelling the distribution and 
clustering of customers, MATLAB built-in procedures and 
algorithms are used (see the following sections for details).

https://se.mathworks.com
https://se.mathworks.com


Transport, 2019, 34(6): 722–740 725

1.3. Idealized urban area (city plan)  
and road network 

To construct an idealized urban area model, one has to un-
derstand the main characteristics of a typical urban road 
network, which consist of road sections and intersections. 
To range those values, we randomly selected samples of 
several cities and studied their maps. Then we selected 
a 1 km2 cell from the city centre, marked all intersec-
tions and measured the distances among them (Figure 2).  
Note again that 1 km2 is considered as a typical urban cell 
and is therefore used as a typical instance in our proposed 
model where different road network densities are simu-
lated. The road network on 1 km2 cell is determined by 
the: number of roads (city streets) in E–W-direction Nx 
and N–S-direction Ny; and distances between two adjacent 
roads in E–W-direction lx and N–S-direction ly.

Empirical results reveal that: 
 – number of intersections Inr range from 90 to 368; 
 – maximum distance among the intersections Dmax 
range from 125 to 240 m; 

 – minimum distances between the intersections Dmin 
range from 13 to 80 m; 

 – average distances among the intersections Davg range 
from 55 to 117 m. 

Note that one can barely recognise some common 
characteristics. Yet, the intersections are more or less 
evenly distributed in the area, which justifies the ap-
proximation of a typical 1 km2 area with an equidistant 
rectangular grid network. In reality, we can find highly 
symmetric and also highly asymmetric rectangular street 
layouts concerning differences in the actual block spacing, 
as shown in Figure 3. 

For the purpose of this paper, we decided to work with 
idealized square grid structures and vary the network den-
sity to assess its influence on the number and position of 
LBs. According to data gained through the empirical test, 
the most suitable choice for idealized rectangular road 
network are grid structures shown in Figure 4.

The grid structure of: 
 – 21×21 nodes are relevant for cities with Davg ≈ 50 m;
 – 15×15 nodes are relevant for cities with Davg ≈ 72 m;
 – 11×11 nodes are relevant for cities with Davg ≈ 100 m;
 – 7×7 nodes are relevant for cities with Davg ≈ 167 m;
 – 4×4 nodes are relevant for cities with Davg ≈ 333 m.

The basic cell of the lattice (grid) has a dimension 

of: 
  
 ×   − −   

1000 1000 m
1 1x yN N

. For example, in case when 

Nx  =  Ny  =  11, the basic cell is a square of dimension 
100×100 m. 

1.4. Number and distribution of customers

The number of the customers was assumed as a fraction 
of the product Nx·Ny. Example of an idealized city plan 
with LHS distributed location of customers is presented 
in Figure 5.

To simulate a realistic situation, customers need to be 
randomly distributed over the whole (rectangular) area. 
In our model, we assume independence of both location 
components for different customers and covering the 
domain of both components, as good as possible, at the 
same time. To this end, the range of each variable should 
be divided into several intervals of equal probability. This 
can be done best with the LHS method (Janssen 2013).  

Figure 1. The overall scheme of the model

Idealized urban area 

dmax

Road network

– number of roads
– street distances

Customers

Clustering

Results

– number of customers
– locations

– cluster centres
– locations
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– numerical
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LHS method
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Figure 2. A sample of cities and respected number of intersections and distances among them  
(source: Google maps – elaboration of the authors)
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One of the last improvement of the LHS provided by 
Husslage et al. (2011) is integrated also into MATLAB and 
it fits perfectly to our requirements. The MATLAB code 
uses (by default) the maxi-min criterion, which maximizes 
the minimum distances between the sample points.

Mathematical-style pseudo-code, for the algorithm 
providing an idealized city lattice and the LHS distribu-
tion of customers, is the following:

algorithm generate/print idealized city lattice with the  
customers is

input: number of roads in both directions: Nx and Ny, 
distances between two adjacent roads: lx and ly, 
number of customers #r (related to Nx·Ny),

output: perpendicular road map with #r customers on the 
roads
r = 0, generate X as 2×(#r) a matrix using the LHS
method 

while r ≤ (#r) do r → r + 1
if rand() < 0.4999999999999

locate the customer vertically to lattice: 
CustomerLoc (r, 1) = round (X(r, 1)·(Nx – 1)·lx) and
CustomerLoc (r, 2) = X(r, 2)·(Ny – 1)·ly

else
locate the customer horizontally to lattice:
CustomerLoc (r, 1) = X(r, 1)·(Nx – 1)·lx and
CustomerLoc (r, 2) = round (X(r, 2)·(Ny – 1)·ly)

print the lattice and customers
end 

1.5. Clustering of customers 

As already mentioned, the continuous MFLP can be con-
sidered as a classical clustering problem, where custom-
ers and facility locations correspond to data points and 
centres. The clustering criterion is to minimize the sum of 
distances from each data point to the corresponding clus-
ter centre. Potential location of LBs in the model is there-
fore determined by using Fuzzy c-Means (FCM) clustering 
procedure. FCM was chosen to get some flexibility to the 
model with the possibility to simulate different member-
ship degrees of customers to cluster centres, in our case 
LBs (Ross 2010).

FCM aims at minimizing the following function 
(Bezdek 1981): 

= =

= ⋅m −∑∑ 2

1 1

D N
m

m ij i j
i j

J x c ,  (1)

where: D – number of customers; N – number of clusters; 
xi – i-th data point (each data point corresponds with the 
location of a particular customer); cj – centre of cluster j; 
mij – degree of membership of customer i to cluster j; m – 
parameter of fuzziness.

FCM algorithm implemented in MATLAB performs 
the following steps:

1) randomly initialize the cluster membership values 
mij;

2) calculate the cluster centres:

    

=

=

m

=

m

⋅∑

∑
1

1

D
m
ij i

i
j D

m
ij

i

x
c ;  (2)

3) update mij according to the following:

Figure 4. Idealized set of grid road networks corresponding  
to real parameters

Figure 3. Example of grid urban networks – collection of historic 
towns lattice frames, compiled by architect and city planner Ma-
nuel de Solà-Morales in 1977 (source: https://www.arquiscopio.

com/pensamiento/homenaje-a-barcelona/?lang=en)

Figure 5. Example of idealized city plan with LHS distributed 
location of customers
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4) calculate the objective function Jm;
5) repeat Steps 2–4 until Jm improves by less than a 

specified minimum threshold e or until after a spec-
ified maximum number of iterations.

In our model we used the FCM routine of MATLAB 
with the parameter m specified as 2, the maximum num-
ber of iterations being set to 100, with minimum im-
provement in objective function between two consecutive 
iterations specified as e  = 10–5. The main output of the 
algorithm is the position of N centres (c1, c2, ..., cN) and 
the partition matrix U.

1.6. Numerical evaluation and graphical 
presentation of results

The presented model allows to optimize and quantitatively 
evaluate either the number of LBs or the maximum dis-
tances between customers and cluster centres. In addition 
to that, results of the model can be evaluated also quanti-
tatively based on the graphical presentation of the results. 

Mathematical-style pseudo-code, for the algorithm 
providing clustering of customers and defining dmax is 
the following:

algorithm form clusters and cluster-centres is
input: number of clusters: k, 

the lattice and the customers
output: k clusters of customers together with cluster-centres

(such that the sum of the distances from each cluster
centre to all customers in the cluster is minimal)

use fcm (CustomerLoc, k), 
read CustomerLoc customer locations 

use fcm fuzzy clustering algorithm to generate k clusters
locate each cluster-centre to the nearest road 
(vertically or horizontally to lattice)
for i = 1 to k do find the maximal distance di from clus-
ter-centre 

to the customers within cluster i
define dmax: = max(di)

The values of actual (maximal) walking distance dmax 
are in the model presented in terms of the following per-
centiles: 1, 2, 5, 16, 32, 50, 68, 84, 95, 98 and 99. Such ap-
proach allows better evaluation of results in case we decide 
not to cover all customers. This is a reasonable assumption 
because setting and maintaining the LB is always related 
to costs and limited space in urban areas. 

Qualitatively, solutions are measured in terms of rel-
evant graphical patterns showing statistically optimal loca-
tions of LBs. Three different types of graphical representa-
tion are used in the model: scatter plot, contour plot and 
a 3D plot of probability density surface.

In the scatter plot in Figure 6a, the location of cluster 
centres for a particular predefined number of clusters and 
several simulations is presented. In general, some cluster 
centres might overlap, therefore we decided to provide 
also the results with a contour plot (Figure 6b). In that 
case, statistically optimal locations can easily be identified. 
Finally, the results are presented as a plot of the probability 
density surface in 3D (for the best position of the cluster 
centre; see Figure 6c). In this case, some fine details not 
evident from previous graphical presentations may be rec-
ognized.

Note that to present the Probability Density Functions 
(PDFs) as surfaces in 3D space and as contour plots in 2D 
space a Conditional Average Estimator Neural Network 
(CAE NN) approach was used (Peruš et al. 2006), which 
can successfully incorporate different uncertainties always 
present in the real-life case scenarios (Peruš et al. 2012). 
CAE NN uses the Gaussian density function an, with a 
width w, as a weight function. It is centred at each n-th 
point in the multi-dimensional space to get the impact of 
the l-th model vector at the point of the prediction vector:

( )

( )
=

 − = ⋅ −
 ⋅
 ⋅π ⋅
∑

2

2
12

1 exp
2

2  

D
l ni

n D
D l

b b
a

w
w

,  (4)

where: bni is the l-th input variable of the n-th model vec-
tor in the database (bn1, bn2, bn3, ..., bnD); bl is the l-th 
input variable corresponding to the prediction vector; D is 
the number of input variables and defines the dimension 
of the sample space. 

Figure 6. Scatter plot, contour plot and a 3D plot of probability density surface, an example presentation of simulation results for k = 8
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In the presented case (D = 2), the above equation sim-
plifies to:

= ×
⋅π⋅ 2

1
2na

w

( ) ( ) − − − −
 ⋅ ⋅
 

2 2

2 2exp   
2 2
l ni l nix x y y

w w
,  (5)

where: x and y denote the x- and y-coordinates (positions) 
of the points where PDF is estimated by the expression:

( )
∧

=

= ⋅∑
1

1,
N

n
n

pdf x y a
N

,  (6)

where: N is the number of all cluster centres obtained in 
particular simulation and the sign “∧” denotes the estima-
tion.

2. Simulation and results

Our research aims to evaluate the impact of different pa-
rameters on the optimal number and location of LBs. The 
main idea is to create different instances of orthogonal city 
structures and to simulate different customer densities in 
order to identify the existence of statistically relevant pat-
terns, which could be used for identification of optimal lo-
cations of LBs. This is the basis of our statistical approach, 
which generally results in: 

 – the existence of a statistically relevant concentration 
of cluster centres (where probability density is high 
enough), which could serve as potential locations for 
positioning of LBs;

 – theoretical relation between the #LBs and the value 
of dmax; 

 – the impact of different density of customers on a 
number and location of LBs;

 – the impact of different network density on a number 
and location of LBs;

 – the reasonable minimal and a maximal number of 
LBs for particular parameter characteristics. 

2.1. Simulation instances

For simulation purposes, different characteristics of an 
idealized city plan with network densities ρn (7×7, 11×11, 
15×15 and 21×21 roads) has been considered. For each of 
the city plans, different density of customers ρc (100, 300, 
500, 700, 1000 customers/km2) located randomly in terms 
of the LHS distribution has been simulated. The examples 
of basic simulation instances are presented in Figure 7. 

For each of the instances (different combination of ρn 
and ρc), 200 simulations have been performed to provide 
a statistical basis for identification of potential locations 
of LBs. 

2.2. Graphical patterns – optimal number  
and location of LBs

Graphical patterns have been observed for a different 
number of LBs (#LB) in the range of 1 to 55. For the 

reason of brevity, only the most interesting and the most 
important graphical patterns are presented. Consequently, 
only graphical patterns for ρn = 7×7 roads and ρc = 1000 
customers/km2 are shown.

In case of #LB = 1, the simulation shows a clear cen-
tral position result. Very interesting results, worth to be 
mentioned, are in the case of simulating #LB from 2 to 
11 and #LB = 27.

Results of simulating #LB = 2 (Figure 8) indicate the 
pattern tending to 4 equally important locations. It seems 
like the system naturally tends toward 4 locations but 
in fact, it represents a solution of the well-known XOR 
problem. In general, this may be explained as two pairs of 
diagonally placed (equally important) locations. In practi-
cal terms, this means that we can opt for one or another 
diagonal positions. 

Results of simulating #LB  =  3 (Figure 9) indicates a 
continuous square rounded oval shape of possible loca-
tions. In this case, we may understand this as a rotation 
of three locations, which are almost equidistant. Since the 
distribution is more or less proportional, this means we 
can generate an infinite number of solutions of three LBs 
placed equidistantly around the oval. All possible loca-
tions have almost the same values of the PDF.

Results of simulating #LB = 4 (Figure 10) indicates a 
clear pattern of 4 locations with exactly the same values of 
PDF. When simulating #LB = 5 (Figure 11) a clear pattern 
of 5 locations could be recognized, but the fifth central 
placed location is less significant than the four ones placed 
near the corners. 

Results of simulating #LB = 6 and #LB = 7 (Figures 12 
and 13) indicates a pattern of 8 locations with 4 placed 
near the corners having considerably higher values of 
PDF. The other 4 locations placed between them are less 
significant in terms of the value of PDF.

Results of simulating #LB  =  8 and #LB  =  9 (Figures 
14 and 15) both indicate a pattern of 9 locations, with 
centrally placed location considerably less significant in 
the case of #LB = 8. 

Results of simulating #LB = 10 (Figure 16), scatter plot 
indicates a pattern of 25 locations (5×5) while contour plot 
and 3D surface both indicate a pattern of 9 locations (3×3). 
Locations placed near the corners have bigger significance, 
locations placed between them (on the outer edge) are a 
bit less significant and the centrally placed locations have 
the smallest values of PDF. We can also notice the exist-
ence of several smaller densities on the 3D surface, which 
is indicating the beginning of forming the pattern of 25 
locations. 

Concerning the results of simulating #LB = 11 (Fig-
ure 17), all three types of graphical representation indicate 
a pattern of 25 locations while locations placed near the 
corners are still the prevailing ones. This pattern remains 
relevant until simulating #LB = 27 (Figure 18), where all 
three types of graphical representations start to indicate 45 
locations, which is the “final number” of LBs for the par-
ticular network. This means that from the statistical point 
of view, increasing of LBs does not change the number 
and the placement of locations. More precisely the graph 
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Figure 7. Presentation of simulation instances (examples of one random instance)

of the PDF does not change anymore. In this case, we can 
also recognize that locations near the corners are becom-
ing less significant and centrally placed locations are be-
coming more statistically relevant. 

In-depth analysis of all three kinds of graphical repre-
sentation of simulation results, for the whole range of up 
to 55 LBs and for all four network densities, revealed some 
interesting characteristics, as can be seen from the Table 1.

All three kinds of graphical representation are show-
ing that the optimal number of LBs naturally tends to the 
perfect squares (4, 9, 16, 25, etc.). This seems to appear 
as a natural law and should be considered when planning 
logistics facilities in urban areas. It is also very interesting 
that in certain cases some perfect squares are skipped, like 
36 for example in the case of 7×7 and 11×11 grid road 
network. In other cases, a #LB locations identified seems 
to be smaller or bigger than those being simulated. The 

cognitive reason for both cases is the way we interpret 
the particular number of locations. Once we identified a 
certain number of locations for a lower #LB we, as by the 
law of inertia, kept this number as relevant until the next 
pattern was identified. It has to be noted that in between 
the patterns get fuzzy, but once reviewing simulations for 
a different number of LBs in a sequence we noticed this is 
the best possible way to present the results. 

There are also many cases, especially from #LB sim = 10 
onwards, when the #LBs, visually identified, differs be-
tween plot types. The scatter plot gives the best represen-
tation of LBs dispersion but on the other hand does not 
provide a good basis for identification of statistically opti-
mal locations. Since one cannot recognize the importance 
of certain concentrations (it is not evident how many lo-
cations overlap), the scatter plot shows a higher number 
of relevant locations than contour and PDF surface plot. 
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Some differences in visual interpretation of patterns are 
recognized also between contour plot and PDF surface 
plots and in particular when simulating higher number of 
LBs or the networks with higher network density (15×15 
and 21×21). In these cases, the PDF surface plot is indicat-

ing higher number of statistically optimal locations than 
the contour plot. The reason is based in more accurate 
visual identification of the pattern from the PDF surface 
plot showing some additional details, which are not evi-
dent from other two representations. 

Figure 8. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 2; ρn = 7×7 roads; ρc = 1000 customers/km2

Figure 9. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 3; ρn = 7×7 roads; ρc = 1000 customers/km2

Figure 10. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 4; ρn = 7×7 roads; ρc = 1000 customers/km2

Figure 11. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 5; ρn = 7×7 roads; ρc = 1000 customers/km2
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Figure 12. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 6; ρn = 7×7 roads; ρc = 1000 customers/km2

Figure 13. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 7; ρn = 7×7 roads; ρc = 1000 customers/km2

Figure 14. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 8; ρn = 7×7 roads; ρc = 1000 customers/km2

Figure 15. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 9; ρn = 7×7 roads; ρc = 1000 customers/km2

Y-
di
re
ct
io
n

X-direction

X-direction

Y-direction

Y-
di
re
ct
io
n

X-direction

X-direction
Y-direction

Y-
di
re
ct
io
n

X-direction

X-direction
Y-direction

Y-
di
re
ct
io
n

X-direction

X-direction
Y-direction



732 T. Letnik et al. On fundamental principles of the optimal number and location of loading bays in urban areas

It is also very important to note that the final number 
of statistically relevant locations depends on the grid den-
sity. In particular, for a n×n city plan the final number of 
locations was found to settle at #LB = n2–4. For example, 
a typical grid of 7×7 roads tend to 45 relevant locations. 
Similar holds true for a typical grid of 11×11 roads, which 
tends towards 117 statistically relevant locations as seen in 
Table 1. Presuming these characteristics, a typical grid of 
15×15 would tend to 221 locations and a typical grid of 
21×21 to 437 relevant locations. These two examples are 
not evident from the Table 1, since the number of LBs 
simulated was limited to 55. On one hand, this is a conse-
quence of network regularity, but on the other, it indicates 
also the need to place LBs at each road section of the city 

grid and specifically in the proximity of interactions. Spe-
cial cases are locations at the corners of the surveyed area, 
where LBs are considerably less relevant (they are covering 
a smaller part of the network than the other ones). In ad-
dition to that, it has to be noted that this relation is valid 
until dmax ≥ l, where l is the distances between two adja-
cent roads. In case when dmax get smaller than l, different 
patterns, with more locations would accrue. 

Though, our research is limited to uncapacitated 
MFLP, note that the PDF is not useful only for identifica-
tion of the optimal placement of the LBs but could be also 
used to assign different capacities to different LBs. Namely, 
the locations with higher (lower) values of PDF naturally 
need a higher (lower) capacity.

Figure 16. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 10; ρn = 7×7 roads; ρc = 1000 customers/km2

Figure 17. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 11; ρn = 7×7 roads; ρc = 1000 customers/km2

Figure 18. Scatter plot, contour plot and a 3D plot of the probability density surface for:  
#LB = 27; ρn = 7×7 roads; ρc = 1000 customers/km2
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2.3. The relation between #LBs and dmax

The relation between the number of LBs and dmax has 
been simulated for different network and customers densi-
ties. Furthermore, the relation is presented also for differ-
ent percentile values, which statistically indicate the rate 
of estimated dmax in case of covering a particular percent-
age of customers (from 1 to 99%). In practical terms, city 
authority can opt to cover only certain percentage of cus-
tomers and this kind of presentation allows to determine a 
reasonable number of LBs assuming that some customers 
may be served with a reasonably bigger dmax values. 

A typical example of a graph of the functional relation 
dmax = dmax(#LB) for a particular network and customer 
density and for different percentile values is presented in 
Figure 19. 

The results presented in Figure 19, are showing that 
the relation between dmax and #LB is a descending con-

vex curve. In relation to the optimal number of LBs, this 
means that a smaller number of LBs result in bigger dmax 
values and vice versa. If we decide, for example, that dmax 
should be lower than 100 m, this would mean (for a par-
ticular instance presented above), that we need to set at 
least 22 LBs to cover 50% of all customers, 34 LBs to cover 
68% of all customers and 52 LBs, if we would like to cover 
84% of all customers, respectively. 

To understand the nature of the relation between 
dmax and #LB, linear regression of the corresponding log-
log dependence has been performed. In Figure 20, the 
example of 95 percentile relation for ρn  =  21×21 roads 
and ρc  =  1000 customers/km2 is presented as a log-log 
dependence. 

The presented log-log dependence results in 
dmax = 18.169(#LB)–4.719, and reveals how significantly the 
relation dmax = dmax(#LB) fits the power low dependence.

Table 1. #LBs visually identified when simulating particular #LB

City plan 7×7 11×11 15×15 21×21

#LB sim Scatter Contour 3D 
surface Scatter Contour 3D 

surface Scatter Contour 3D 
surface Scatter Contour 3D 

surface
4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5
6 8 4 4 8 8 4 4 4 4 8 8 4
7 8 4 4 8 8 4 4 8 8 8 8 8
8 9 9 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 8 9 9 9 9 9 9

10 25 9 9 9 9 8 9 8 8 9 9 8
11 25 25 25 9 9 9 9 8 8 9 9 8
12 25 25 25 16 9 9 16 8 8 16 16 16
13 25 25 25 16 16 16 16 16 16 16 16 16
14 25 25 25 16 16 16 16 16 16 16 16 16
15 25 25 25 16 16 16 16 16 16 16 16 16
16 25 25 25 16 16 16 16 16 16 16 16 16
17 25 25 25 16 16 16 16 16 16 16 16 16
18 25 25 25 16 16 25 25 16 16 25 16 16
19 25 25 25 81 16 25 25 16 16 25 16 16
20 25 25 25 81 16 49 36 25 25 49 25 25
21 45 25 25 81 16 49 36 25 25 49 25 25
22 45 25 25 81 16 49 36 25 25 49 25 25
23 45 25 25 81 49 49 36 25 25 49 25 25
24 45 25 25 81 49 48 121 25 25 49 25 25
25 45 25 25 81 49 49 121 25 25 49 25 25
26 45 25 25 81 49 49 121 25 25 49 25 25
27 45 45 45 81 49 49 121 25 25 49 25 36
28 45 45 45 81 49 81 121 25 25 49 25 36
29 45 45 45 81 49 81 121 25 25 49 25 36
30 45 45 45 81 81 81 169 25 36 49 25 36
… … … … … … … …  …  …  … … …
50 45 45 45 81 81 81 169 64 121 361 25 49
51 45 45 45 117 81 81 169 64 121 361 25 49
52 45 45 45 117 81 81 169 64 121 361 25 49
53 45 45 45 117 81 81 169 64 121 361 25 49
54 45 45 45 117 81 81 169 64 121 361 25 49
55 45 45 45 117 81 81 169 64 121 361 25 49



734 T. Letnik et al. On fundamental principles of the optimal number and location of loading bays in urban areas

2.4. The dependence of dmax in terms of #LB  
for different values of ρn and ρc 

The relation between dmax and the number of LBs was 
further analysed to test the dependence on the custom-
ers density. One would expect that the dmax varies signifi-
cantly for different customers densities, but this is not the 
case, as it can be seen from graphs presented in Figure 21. 

The analysis of a fixed customers density ρc and several 
different network densities ρn (4×4, 7×7, 11×11, 15×15, 
21×21 roads) is presented in Figure 22. It can be as seen 
from the graphs that also in those cases, the value of 
dmax does not vary significantly, if the network density is 
changed. 

We see that the dependence dmax = dmax(#LB) is quite 
robust, when changing either ρc or ρn. This means that 
the “typology” of a city structure (i.e. different ρc or ρn) 
does not have a significant impact on the setting of LBs in 
urban areas with rectangular road networks.

2.5. Minimal and maximal number of LBs

The graph of the descending function dmax = dmax(#LB) 
for different percentile values can be used also to de-
termine the minimal and maximal number of LBs for 
a particular value of dmax. The minimal number simply 
depends upon the dmax corresponding to the percentile 
value, which we consider as “still acceptable”. The maximal 

#LBs has to be recognised as a critical point at which the 
derivative of dmax = dmax(#LB) becomes “small enough”, 
which in practice means that any additional LB does not 
bring any relevant decrease of dmax. 

To determine this critical point for each particular case 
a second order approximation of the first derivative of a 
function dmax = dmax(#LB) was calculated. Our aim was to 
identify when the derivative becomes small enough. The 
following second order approximation formula for the 
first derivative of F:

( ) ( ) ( ) ( )′
+ − −

= +
⋅

2
2

F x h F x h
F x O h

h
.  (7)

Results for the interval from 3 to 35 LBs, is presented 
in the following Figure 23.

As it can be seen in Figure 23, each additional LB re-
sults in a considerable decrease of dmax for #LB ≤ 10 and 
in a very small decrease from #LB ≥ 20. A considerable 
difference can be observed also between lower and higher 
percentile values. For lower percentile values (e.g. 5%) any 
additional LB does not bring a reasonable improvement 
even for a lower #LBs. On the other hand, one additional 
LB results in a significant improvement for dmax, provided 
95% of all customers are to be covered.

Based on these findings, we can finally set the maxi-
mum (critical) number of LBs still reasonable to be 
opened just by defining percentile values and acceptable 
decrement of dmax. If we decide to cover 95% of customers 
assuming the decrement of dmax is greater than 4 m, this 
results in a maximum of 20 LBs (Figure 23). This indicates 
the existence of a threshold in the number of LBs. 

3. Interpretation of results

3.1. Practical example

In this sub-section we consider a practical example illus-
trating the basic concept of the model. Note that defining 
the threshold of a maximal walking distance from the LB 
to the customer and consequently the number of LBs in 
a particular area of the city is always a political decision.  

Figure 19. Relation dmax = dmax(#LB): 1…99 percentiles; ρn = 21×21 roads; ρc = 1000 customers/km2

Figure 20. Log-log plot and linear regression for the relation 
dmax = dmax(#LB): 95 percentile; ρn = 21×21 roads; ρc = 1000 cus-

tomers/km2 
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The model presented in this paper is providing the method-
ology, which may help public authorities and urban plan-
ners to understand and use the relation dmax = dmax(#LB) 
to construct the optimal network of LBs, knowing only 
main parameters of the urban area, without the need for 
gathering the big amount of data. 

Let us consider the area of 1 km2 with ρn = 7×7 roads 
and ρc = 1000 customers/km2. In this case, the city author-
ity should check the relation dmax = dmax(#LB) for (before 
mentioned) urban area characteristics (Figure 24) to make 

its decision. If, for example, the city authority would decide 
for dmax ≤ 200 m, this would result with: 55 LBs in case of 
covering 99% of all customers, 24 LBs in case of covering 
95% of all customers, 15 LBs in case of covering 84% of all 
customers, 10 LBs in case of covering 68% of all customers 
and 6 LBs in case of covering 50% of all customers. 

As we can see, the city authority should carefully con-
sider the percentage of customers to be covered, since 
the bigger percentage considerably increase the required 
number of LBs. 
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Figure 21. The relation dmax = dmax(#LB): #LB = 4…60; 95 percentile; ρn = 15×15; ρc = 100, 300, 500, 700, 1000 customers/km2

Figure 22. The relation dmax = dmax(#LB): #LB = 4…60; 95 percentile; ρn = 4×4, 11×11, 15×15, 21×21; ρc = 1000 customers/km2

Figure 23. The second order approximation for the first derivative of dmax = dmax(#LB): 5…95 percentiles; ρn = 21×21 roads; 
ρc = 1000 customers/km2



736 T. Letnik et al. On fundamental principles of the optimal number and location of loading bays in urban areas

On the other hand, the city authority might also decide 
to place a particular number of LBs and check the corre-
sponding dmax values, in order to cover a certain percent-
age of customers. If, for example, the city authority would 
decide for #LB = 5, this would result in dmax = 470 m in 
case of covering 99% of all customers, dmax = 412 m in 
case of covering 95% of all customers, dmax = 330 m in 
case of covering 84% of all customers, dmax = 272 m in 
case of covering 68% of all customers and dmax = 225 m 
in case of covering 50% of all customers. 

From the locations point of view, the model provides 
statistically optimal locations in the form of contour plots. 
Let us continue with the above example of #LB = 5. As 
seen from the Figure 25 (example for the decision of plac-
ing 5 LBs), the central contour lines are presenting op-
timal locations. All other contour lines are representing 
statistically less but still highly relevant options for setting 

a particular LB. If the LB is placed on the particular con-
tour line, the quality of a solution does not decrease (i.e. 
dmax does not increase). In that respect, we have a certain 
freedom of choosing the most feasible solution.

In the real-life process of final (precise) placement of 
LBs, various criteria may be considered. In the case when 
the optimal location is not feasible, we can always find 
a statistically acceptable solution, which is near the op-
timum. Beside physical constraints also economic aspect 
could be considered as a relevant criterion.

3.2. Covering of customers with different  
percentile and dmax values 

To show the (on-street) locations of the serviced and 
un-serviced customers, one has to consider the (convex) 
graph on the Figure 24 to associate the particular #LB with 
the dmax at a given covering percentile value cp. To explain 
these relations and to present them graphically we select-
ed #LB=5, ρn = 7×7 roads, ρc = 1000 customers/km2 and 
three different covering percentile values: cp = 50 (with 
dmax = 225 m), cp = 84 (with dmax = 330 m), and cp = 99 
(with dmax = 470 m). 

As seen on Figure 26, in case cp = 50, the customers 
on the outer edge and in between LBs (on the distances 
note reached by the dmax) remains un-covered. In the case 
cp = 84, all the customers in the inner part of the network 
are covered, except those located in the middle of each 
side of the outer edge. In the case of cp = 99, the majority 
of customers are covered and there is (statistically) only 
1 percent of customers which are to be considered as un-
covered (all located on small segments of the outer edge).

3.3. An example with asymmetric  
city grid transport network

In the real city centres with orthogonal structured trans-
port network, distances between streets are most often not 
completely symmetric. The model was therefore adopted 
to simulate (using LHS method) also asymmetric city 
grids. Two city grids with randomly distributed streets on 
the area of 1 km2 with ρn  =  7×7 roads, ρc  =  1000 cus-

Figure 24. Relation dmax = dmax(#LB): 50…99 percentiles; ρn = 7×7 roads; ρc = 1000 customers/km2
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Figure 25. Contour plot of statistically optimal surfaces for 
placing LBs: ρn = 7×7 roads; ρc = 1000 customers/km2; inserted 
circles (°) present one of many near optimal possible solutions, 
while the full squares (■) present the other near optimal possible 

solution, which is qualitatively the same as the first one (°)
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Figure 26. Covering patterns for customer locations for #LB=5: ρn = 7×7 roads, ρc = 1000 customers/km2 for cp = 50, 84, 99;  
red full squares present LBs, green marked lines covered locations, orange marked lines un-covered locations

Figure 27. Two examples of randomly generated asymmetric city grids and results of simulating #LB = 5 in the form of scatter plot, 
contour plot and a 3D plot of probability density surface

Figure 28. Two examples of randomly generated asymmetric city grids and results of simulating #LB = 9 in the form of scatter plot, 
contour plot and a 3D plot of probability density surface
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tomers/km2 have been produced and simulated. Results 
of the simulations are presented for #LB = 5 and #LB = 9, 
which were identified as the most interesting in previous 
simulations. 

Graphical locations of customers are indicating the city 
grid, which is presented on the far-left side of the Figures 
27 and 28. In total 200 simulations have been performed 
for each city grid. Results are presented in the form of 
scatter plot, contour plot and a 3D plot of probability den-
sity surface (from left to the right). 

As shown in Figures 27 and 28, simulations still re-
sult with the same number of statistically identified LBs, 
revealing a pattern similar to the symmetric one, but fol-
lowing the (asymmetric) grid structure. Obviously, the 
distribution of streets affects the pattern, but its geometric 
structure remains generally the same as in case of equidis-
tant grid structure. In this sense, the geometric patterns 
obtained in the Sub-section 2.2 are proven to be robust. 
Finally note that statistically identified LBs are tending to 
areas with higher street density. For example, in case of 
extremely high customer’s density, 49 LBs will be located 
exactly on the junctions (vertices) of the asymmetric street 
grid.

Conclusions 

A multi-parametric model for determining the optimal 
#LBs and location of LBs in idealized urban areas is pro-
posed. The model is based on a statistical approach allow-
ing consideration of different urban context and uncer-
tainties in delivery demand. The model provides robust 
solutions, which are valid and transferable to any other 
rectangular based city and can be considered as a tool for 
decision-making process of urban planners worldwide.

One of the crucial input parameters of the model is the 
maximal allowed walking distance dmax, of the delivery 
from the LB to the customer. Various simulations reveal 
the power law dependence between dmax and #LB. The 
dependence dmax = dmax(#LB) is proved to be robust for 
varying the customers and grid density. In addition to that 
it was found that for any customers and grid density on 
the area of 1 km2 a threshold of #LB = 20 exist. Each addi-
tional LB results in minimal (less than 4 meters) decrease 
of the maximal walking distance dmax. 

In-depth analysis of graphical representation of simu-
lation results (scatter plot, contour plot and the 3D plot of 
PDF) indicates that for any number of selected LBs their 
distribution is not random, but always follows specific 
laws. Moreover, the increasing of the number of LBs re-
veals the formation of patterns from which it can be con-
cluded that: the optimal number of LBs naturally tends to 
the perfect squares (4, 9, 16, 25 etc.) and depending on the 
grid density some perfect squares are skipped and the final 
numbers are limiting to n2  –  4. To fully understand all 
different aspects influencing the number and location of 
LBs in urban areas, future research should contain: point 
and linear distribution of customers (simulating higher 
concentration of demand located at certain points/areas 
or along a certain road) and different grid shapes of urban 

areas (rectangular and parallelogram-based shapes of dif-
ferent sizes and dimensions and finally also some irregular 
shapes and real city network). 

It should be mentioned that although simulations pre-
sented in this paper have been done for a typical urban 
grid cell of 1 km² and a rectangular road network, the 
theoretical framework of the proposed model allows in-
clusion of the network and the topology of any real city 
of the world. Last but not least, although the presented 
research was focused on LBs, the obtained results can be, 
to some extent, applicable also to optimal number and lo-
cation of public transport stations (bus, metro), locations 
of different public services (e.g. waste collection stations, 
drugstores) and different kinds of collection points (lock-
ers, 3D printer stations).
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