AN INVESTIGATION OF THE NUMERICAL TREATMENT OF CONDENSATION
 by
 Joseph Sasson and Andrei L. Schor Energy Laboratory Report No. MIT-EL 85-010
 August 1985

Energy Laboratory
and
Department of Nuclear Engineering
Massachusetts Institute of Technology
Cambridge, Mass. 02139
AN INVESTIGATION OF THE
NUMERICAL TREATMENT OF CONDENSATION
by
Joseph Sasson and Andrei L. Schor

August 1984
sponsored by
Northeast Utilities Co.
Foxboro Co.
under
M.I.T. Energy Laboratory Electric Utility Program

Report No. MIT-EL 85-010
"AN INVESTIGATION OF THE

NUMERICAL TREATMENT OF CONDENSATION"

by
Joseph Sasson and Andrei L. Schor

ABSTRACT

The simulation of complete condensation continues to challenge the numerical methods currently used for multi-phase flow modeling; especially at low pressures, the change of phase process from a two-phase mixture to liquid leads to severe pressure field perturbations and often failure of the calculations. During condensation, the local void fraction and pressure decrease rapidly; at the time of complete condensation, the strong nonlinearities of the equations at the phase-change point lead to convergence difficulties and/or unacceptably large mass or energy errors.

Various ad-hoc "fixes" for this phenomenon - often referred to as "water packing" - have been proposed and/or implemented over the last few years. However, they have failed to clarify the core of the problem and are still unsatisfactory. Indeed these solutions cast doubt on the numerical predictions and occasionally are unable to prevent the breakdown of the calculations.

The present investigations have focused on the roots of these difficulties, particularly on the nonlinear effects involved. A time-step control strategy was developed which removes or at least, greatly mitigates the aforementioned computational problems. Numerical
experiments as well as a mathematical analysis have both demonstrated the existence of a critical time-step size beyond which larger time-steps shall accommodate the liquid flow field to any perturbations; smaller time-steps shall cause the pressure to bounce, going out of range as it is indeed witnessed for condensation simulations where the time-steps are drastically reduced when the two phases are still coexisting.

Similar studies have been conduced on variety of numerical methods yielding some unexpected results in terms of time-step limit.

We wish to express our appreciation for the support provided by the Oak Ridge National Laboratory and the United States Department of Energy.

The fellowship granted one of the authors (Joseph Sasson) by the French Ministry of Foreign Affairs is gratefully acknowledged.

Thanks are due to Mrs. Rachel Morton for her help in computer related matters and Miss Marsha Levine for her readiness in helping locate various references used for this project.

We also wish to thank Mrs. Joel Sasson, for her skill and patience while typing the manuscript.

Finally, we acknowledge the support provided by the M.I.T. Department of Nuclear Engineering in the final stages of the project allowing the successful completion of this work.

The work reported herein is based on the thesis submitted by the first author for the M.S. degree in Nuclear Engineering at M.I.T.

TABLE OF CONTENTS

Item Page No.
ABSTRACT 2
ACKNOWLEDGEMENTS 4
LIST OF TABLES 8
LIST OF FIGURES 9
NOMENCLATURE 10
CHAPTER I INTRODUCTION
I.l. Motivation 13
I.2. Objectives 14
I.3. Previous work 14
I.4. Organization of the report 15
CHAPTER II MATHEMATICAL AND PHYSICAL MODELS IN THERMIT
II. 1. The two-phase flow model 16
II.l.l. Introduction 16
II.1.2. The six-equation model 17
II.2. Mixture models 20
II.2.1. The four-equation model 21
II.2.2. The homogeneous equilibrium model (HEM) 24
II.2.3. The exchange terms and the interfacial jump conditions 26

TABLE OF CONTENTS (continued)

II.3. The physical models in THERMIT 26
II.3.1. Wall friction 26
II.3.2. Interfacial momentum $\begin{aligned} & \text { exchange } 30\end{aligned}$
II.3.3. Wall heat transfer 33
II.4. The numerical methods 36
II.4.1. Introduction 36
II.4.2. The numerical methods
for fluid dynamics 38
II.4.3. The solution scheme 46
II.4.4. The Jacobian matrix and
the pressure problem 48

CHAPTER III DESCRIPTION OF THE PROBLEM
III.1. Introduction 53
III.2. Typical cases of condensation 54
III.2.1. Description of the numerical
experiments 54
III.2.2. Analysis of the results 55
III.3. Review of previous studies 58
III.4. Preliminary investigations 61

CHAPTER IV A MATHEMATICAL SOLUTION OF CONDENSATION FOR THERMIT - 4E
IV.1. Introduction 63
IV.2. A single-cell problem 65
IV.3. Application to a multi-cell pipe 72
TABLE OF CONTENTS (continued)
CHAPTER V. COMPARATIVE ANALYSIS WITH OTHER NUMERICAL METHODS
V.1. An implicit mass convection scheme 77
V.2. The fully explicit scheme 79
V.3. The method of characteristics 81
V.3.1. Introduction 81
V.3.2. Implicit characteristics 84
V.3.3. Explicit characteristics 89
V.4. A generalized approach 92
CHAPTER VI. TESTS OF THE METHOD
VI.1. Tests with circular pipes 98
VI.2. Tests with loop simulations 104
CHAPTER VII. CONCLUSION
VII.1. Conclusion and summary of the work 111
VII.2. The limitations of the analysis and recommendations for future work 112
APPENDICES
Appendix A: Derivation of the momentum equation using the staggered mesh in the continuity equation A-1
Appendix B: Thermodynamic derivations B-1
Appendix C: Derivation of the sonic velocity C-1
Appendix D: Approximation method of Krylov and Bogolyubov D-1

TABLE OF CONTENTS (continued)

Appendix E: Implemented and modified subroutines E-1
Appendix F: Code's inputs and outputs for typical cases F-1
REFERENCES 116
LIST OF TABLES
Table Page No.
2.1. Two-phase flow models 19

LIST OF FIGURES

Figure

Page No.

2.1. The fluid-wall interaction 25
2.2. Heat transfer selection logic 32
2.3. Minimum computational effort 37
2.4. Typical staggered grid 39
2.5. Sodium internal energy per unit volume versus internal energy 47
4.1. Representation of a single-cell problem 52
4.2. Staggered mesh for the momentum equations 71
4.3. Logic of the subroutine implemented 76
5.1. Sonic characteristic lines 85
5.2. Solution of the equivalent linearized equation for pressure 97
6.1. Test description 99
6.2. Steady state pressure profiles for circular pipe tests 101
6.3. Steady state density profiles for circular pipe tests 102
6.4. Loop modeling geometry 105
6.5. Steady state pressure profiles for loop tests 107
6.6. Steady state density profiles for loop tests 108
6.7. Inlet pressure versus time 109
6.8. Oscillatory loop flow 110
7.1. Pressure profile for assumed density profile 114

A	flow area	m^{2}
C	specific heat	T/(kg. $\left.{ }^{0} \mathrm{k}\right)$
C	sonic velocity	$\mathrm{m} / \mathrm{sec}$
cf	contact fraction	-
D	diameter	m
e	internal energy per unit mass	J / kg
F	force	N
f	friction factor	-
G	mass flux, ou	$\mathrm{kg}\left(\mathrm{m}^{2} . \mathrm{sec}\right)$
g	gravitational acceleration	$\mathrm{m} / \mathrm{sec}^{2}$
h	enthalpy per unit mass	J / kg
h	heat transfer coefficient	$\mathrm{W} /\left(\mathrm{m}^{2} \cdot{ }^{0} \mathrm{~K}\right)$
I	identity matrix	-
K	friction coefficient	N.s/m ${ }^{4}$
k	thermal conductivity	$\mathrm{W} /\left(\mathrm{m} .{ }^{0} \mathrm{~K}\right)$
Nu	Nusselt number, hD/k	-
p	perimeter	m
P	pressure	Pa
Pr	Prandtl ${ }^{\text {number, }} \mu \mathrm{c}_{\mathrm{p}} / \mathrm{k}$	-
Pe	Peclet number, Re.Pr	-
Q	heat source	W
Re	Reynolds number, $\rho U \mathrm{D} / \mu$	-
S	nucleate boiling suppression factor	-
T	temperature	${ }^{0} \mathrm{~K}$

NOMENCLATURE (continued)

t	time	sec
U	velocity	$\mathrm{m} / \mathrm{sec}$
u	velocity	$\mathrm{m} / \mathrm{sec}$
V	fluid volume	m^{3}
w	mass flow rate	$\mathrm{kg} / \mathrm{sec}$
x	quality	-
x, y, z	spatial coordinates	m
α	void (vapor) fraction	-
α	thermal diffusivity, $k\left(\rho c_{p}\right)$	$\mathrm{m}^{2} / \mathrm{sec}$
Γ	phase change rate	$\mathrm{kg} / \mathrm{m}^{3}$. sec
δ.	increment (or change) in...	-
δ	liquid film thickness	m
Δt	time step size	sec
$\Delta x, \Delta y, \Delta z$	mesh spacings	m
ε	eddy diffusivity	$\mathrm{m}^{2} / \mathrm{sec}$
η	weighting factor for interfacial velocity	-
θ	angle of a Fourier component	-
λ	amplification factor	-
μ	viscosity	$\mathrm{N} . \mathrm{sec} / \mathrm{m}^{2}$
ρ	density	$\mathrm{kg} / \mathrm{m}^{3}$
ρ	spectral radius	-

NOMENCLATURE (continued)

σ	superficial tension	N / m
τ	shear stress	Pa
ω	overrelaxation parameter	-

Subscripts

a	phase "a"
e	equivalent
i	interfacial
\&	liquid
P	at constant pressure
sat	saturation
v	vapor
w	wall
w	wetted

I. INTRODUCTION

I.1. Motivation

In order to simulate and investigate flows in test sections of experimental sodium loops and of LMFBR fuel assemblies, a thermalhydraulic analysis code THERMIT-4e has been implemented along with a one-dimensional loop simulation capability. One of the developments involved in this latter implementation is to present a calculational methodology for treating natural circulation and particularly its application to the primary loop of a sodium-cooled reactor.

Natural circulation along the primary circuit is induced by the differences in both thermal center elevation and the coolant specific weight between the core - the hot region- and the intermediate heat exchangers or condensers -the cold region. Thus there is a possibility that the decay heat due to the reactor shutdown (or scram) could be adequately removed by proper design without the need for forced circulation provided by pumps. While results of single phase calculations are generally in good agreement with the experimental data, however the code has not been able to achieve a stabilized flow configuration when a significant amount of boiling is taking place in the heated section, apparently because of the inability of its original numerical scheme to correctly simulate the extremely violent condensation process occuring in the upper and lower plena of the coolant loop.

Most computer codes utilized in the industry produce a pressure "spike" which at best leads to very short time-steps being needed to ride out the disturbance and at worst causes complete calculation breakdown. This same effect has been and still is encountered in some transients investigated with codes for water systems. The phenomenon came to be referred to as "water-packing".

Its severity increases drastically at lower pressures, as the liquid-to-vapor density ratio increases, thus leading to stronger non-linearities. As expected, for sodium systems, this phenomenon is extreme, given the enormous difference between liquid and vapor densities.

I.2. Objectives

The purpose of this research has been to elucidate the reasons for the breakdown of the numerical schemes used for flow field modeling when a mesh-volume changes state over a time step, from a two-phase mixture to single phase liquid.

Then, our objectives have been to propose a simple problem for which the nonlinear equations involved can be decoupled and solved. We also sought possibilities to linearize the equations with acceptable approximations for a more general case.

The final goal has been to implement a simple subroutine which could be easily incorporated into the THERMIT-4E computer code and would be activated whenever a condensation process is detected.

I.3. Previous works

The problem has bee examined before and various ad-hoc "fixes" have been proposed or used in water systems codes. However,
none of them could point to the essence of this peculiar behavior, but focused rather on eliminating (or reducing) the pressure spike itself by modifying and/or adding artificial terms in the basic equations when a water-packing situation is expected or encountered [1-3]. Moreover, they are not guaranteed to work for whatever transient is considered and therefore a more theoretical approach was deemed necessary for further progress.

1.4. Organization of the report

The following chapter presents the code used for this research -THERMIT-4E-, especially the governing differential equations and the numerical methods used to solve them.

The purpose of chapter III is to describe some of the numerical experiments of condensation examined as well as the analysis of the results. We shall emphasize the simplifications that have been made enabling us to neglect the influence of some parameters which do not affect the calculations, as a first approach to the problem itself.

Chapter IV presents the mathematical solutions of condensation for THERMIT-4E, while in chapter V a comparative analysis of other numerical schemes is carried out.

Next, chapter VI discusses tests of the method implemented. Finally, the last chapter summarizes our conclusions and offers some recommendations for future studies on this subject.

II. Mathematical and Physical Models in THERMIT

II.1. The Two-Phase Flow Model

II.1.1. Introduction

Mathematical models for vapor-liquid flows are usually derived starting from the local instantaneous differential conservation laws of mass, momentum and energy and the interfacial jump conditions. Models of varying sophistication result from the specific choices for the averaging procedures and the assumptions made about the nature of the mechanical and thermal coupling between the vapor and the liquid phases.

The most general model is the two-fluid, six-equation model (also referred to as the separated-phase model). It describes each phase by an average temperature and velocity. It could in theory provide the maximum in capability and physical consistency among the two-phase flow models. Various two-phase mixture models also exist. These mixture models use less than six equations and consequently require additional assumptions about the thermal and mechanical coupling between the phases.

II.1.2. The Six-Equation Model

The detailed derivation of the volume-averaged twophase equations is given in [5]. The working form of these conservation equations is written in one dimension since the proposed method can easily be generalized to two or three dimensions.

$$
\begin{equation*}
\frac{\partial}{\partial \dot{\tau}}\left(\alpha \rho_{v}\right)+\frac{\partial}{\partial x}\left(\alpha \rho_{v} U_{v}\right) \quad=\Gamma \tag{2.1.a}
\end{equation*}
$$

Liquid mass equation

$$
\begin{equation*}
\frac{\partial}{\partial t}\left[(1-\alpha) \rho_{\ell}\right]+\frac{\partial}{\partial x}\left[(1-\alpha) \rho_{\ell} U_{\ell}\right]=-\Gamma \tag{2.1.b}
\end{equation*}
$$

Vapor momentum equation

$$
\begin{equation*}
\alpha \rho_{v} \frac{\partial U_{v}}{\partial t}+\alpha \rho_{v} U_{v} \frac{\partial U_{v}}{\partial x}+\alpha \frac{\partial P}{\partial x}=-F_{w v}-F_{i v}+\alpha \rho_{v} \vec{x} \cdot \vec{g} \tag{2.1.c}
\end{equation*}
$$

Liquid momentum equation

$$
\begin{array}{r}
(1-\alpha) \rho_{\ell} \frac{\partial U_{\ell}}{\partial t}+(1-\alpha) \rho_{\ell} U_{\ell} \frac{\partial U_{\ell}}{\partial x}+(1-\alpha) \frac{\partial P}{\partial x}= \\
-F_{w \ell}-F_{i \ell}+(1-\alpha) \rho_{\ell} \vec{x} \cdot \vec{g} \tag{2.1.d}
\end{array}
$$

Vapor internal energy equation

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\alpha \rho_{v} e_{v}\right)+\frac{\partial}{\partial x}\left(\alpha \rho_{v} e_{v} U_{v}\right) & +P \frac{\partial}{\partial x}\left(\alpha U_{v}\right)+P \frac{\alpha}{\partial \dot{\tau}} \\
& =Q_{w v}+Q_{i v}+Q_{k v} \tag{2.1.e}
\end{align*}
$$

Liquid internal energy equation

$$
\begin{align*}
\frac{\partial}{\partial t}\left[(1-\alpha) \rho_{\ell} e_{\ell}\right]+\frac{\partial}{\partial x} & {\left[(1-\alpha) \rho_{\ell} e_{\ell} U_{\ell}\right]+P \frac{\partial}{\partial x}\left[(1-\alpha) U_{\ell}\right] } \\
& -P \frac{\partial \alpha}{\partial t}=Q_{w \ell}+Q_{i \ell}+Q_{k \ell} \tag{2.1.f}
\end{align*}
$$

Note: \vec{x} is a unit vector parallel to the channel's centerline. where:

$$
\begin{aligned}
\Gamma & =\text { interfacial mass exchange rate } \\
Q_{w a} & =\text { phase 'a' wall heat source } \\
Q_{i a} & =\text { phase 'a' heat source due to interfacial effects } \\
Q_{k a} & =\text { phase 'a' conduction heat transfer rate } \\
F_{i a} & =\text { phase 'a' interfacial momentum exchange } \\
F_{w a} & =\text { phase 'a' wall momentum exchange } \\
a & =\text { liquid or vapor phase }
\end{aligned}
$$

The interfacial momentum exchange terms are extensively presented in section II.3.2.

It should be noted that the internal energy equations are not conservation equations. They are obtained from the total energy conservation equations by substracting the corresponding mechanical energy equation from the total energy equation.

This form is used for numerical convenience. Also the momentum equations are written in non-conservative form for the same convenience reason, which will later become apparent.

Table 2.1.Two-Phase Flow Models
(General assumption: $p_{\ell}=p_{v}$)

Two-PhaseFlow Model (suggested nomenclature)	Conservation Equations				Imposed Restrictions			Required Constitutive Relations								
					External	Interfacial			Total							
	M	E	K	Total				T_{a}		U_{r}	Total	$Q_{\text {w }}$	F_{w}	r	Q_{1}	F_{1}
3 C	1	1	1	3	2	1	3	1	1	0	0	0	2			
4 C 2 M	2	1	1	. 4	1	1	2	1	1	1	0	0	3			
4C2E	1	2	1	4	1	1	2	2	1	1*	1	0	5			
4 C 2 K	1	1	2	4	2	0	2	1	2	1*	0	1	5			
5 Cl K	2	2	1	5	0	1	1	2	1	1	1	0	5			
5C1E	2	1	2	5	1	0	1	1	2	1	0	1	5			
5 Cl 1 M	1	2	2	5	1	0	1	2	2	1*	1	1	7			
6 C	2	2	2	6	0	0	0	2	2	1	1	1	7			

```
Legend: M = Conservation of Mass
    E = Conservation of Energy
    K = Conservation of Momentum
    Ta}=\mathrm{ Phase "a" temperature; a = v or }
    U
```

${ }^{\text {note }}$ that the interface mass exchange, Γ, is needed whenever Q_{i} and/or F_{i} are needed.

There are $\underline{8}$ unknowns in equations (2.1). These are $\alpha, \rho_{V}, \rho_{\ell}, P$, e_{V}, e_{ℓ}, U_{V} and U_{ℓ}. The wall and interfacial exchange terms as well as the effective fluid conduction heat sources (defined above), are assumed to depend, via constitutive relations, on these variables and the phase temperatures, T_{V} and T_{ℓ}, which represent two additional unknowns. Thus we have a total of 10 unknowns. Equations (2.1) are equivalent to 6 equations, hence we must provide 4 additional equations for closure. These are the equations of state given in the form:

$$
\begin{align*}
& \rho_{v}=\rho_{v}\left(P, T_{v}\right) \tag{2.2a}\\
& \rho_{\ell}=\rho_{\ell}\left(P, T_{\ell}\right) \tag{2.2b}\\
& e_{v}=e_{v}\left(P, T_{v}\right) \tag{2.3a}\\
& e_{\ell}=e_{\ell}\left(P, T_{\ell}\right) \tag{2.3b}
\end{align*}
$$

II.2. Mixture models

As mentioned earlier on, a mixture model is a degenerate form of the six-equation model and we should expect consistent results from all models by activating the appropriate constraints or assumptions that led to each model. Table 2.1. gives a summary of the two-phase flow models.

The four-equation model will be discussed in greater detail because of its relevance to the THERMIT-4E code that is used in this work. The homogeneous equilibrium model shall also be
discussed because it provides an easy analytical tool for the treatement of condensation in chapter 4.

II.2.1. The four-equation model

The detail of the considerations leading to the adoption of the four-equation model in THERMIT-4E has been given in reference [5]. Importantly, the code is developed for the particular applications of the analysis of two-phase sodium coolant flows. The very high conductivity of the liquid sodium precludes significant temperature gradients in the vicinity of the liquid-vapor interface and thus makes the assumption of thermal equilibrium at saturation of the coexisting phases a reasonable one. The assumption of mechanical equilibrium cannot be justified however, because the enormous liquid-vapor density ratio of sodium at near atmospheric pressure coupled with the prevalent low flow conditions lead to substantial slip ratios. It will therefore be necessary to write separate momentum equations for the two-phase in any worthwhile mixture model.

In the 6-equation model, the paramaters $\rho_{v}, \rho_{\ell}, e_{v}$, e_{ℓ} are functions of T_{V} or T_{ℓ} and P (eqs. 2 and 3) but with the assumption of thermal equilibrium at saturation, $T_{v}=T_{\ell}=T_{s}$, these parameters all become functions only of T_{s}. Thus, the equations of state become:

$$
\begin{align*}
& \rho_{v}=\rho_{v}(P) \tag{2.4a}\\
& \rho_{l}=\rho_{l}(P) \tag{2.4b}\\
& e_{v}=e_{v}(P) \tag{2.4c}
\end{align*}
$$

$$
\begin{align*}
& e_{\ell}=e_{\ell}(P) \tag{2.4~d}\\
& T_{s}=T_{s}(P)
\end{align*}
$$

(2.4e)

Hence, the $\underline{3}$ unknowns T_{V}, T_{ℓ}, P in (2.2) and (2.3) reduce to only 1 unknown P in (2.4). The number of conservation equations is also reduced by two, from six to four, yielding the fourequation model as follows:

Mixture mass equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho+\frac{\partial}{\partial x}\left[\alpha \rho_{v} U_{v}+(1-\alpha) \rho_{\ell} U_{l}\right]=0 \tag{2.5a}
\end{equation*}
$$

Momentum equations
(identical to 2.1 (c) \& (d))
(2.5 b, c)

Mixture internal energy equation

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\rho_{m} e_{m}\right) & +\frac{\partial}{\partial x}\left[\alpha \rho_{v} e_{v} U_{v}+(1-\alpha) \rho_{\ell} e_{\ell} U_{\ell}\right] \\
& +P \frac{\partial}{\partial x}\left[\alpha U_{v}+(1-\alpha) U_{\ell}\right]=Q_{w}+Q_{i m}+Q_{k} \tag{2.5d}
\end{align*}
$$

where

$$
\begin{aligned}
\rho_{m} & =\alpha \rho_{v}+(1-\alpha) \rho_{\ell} \\
e_{m} & =\left[\alpha \rho_{v} e_{v}+(1-\alpha) e_{\ell} \rho_{\ell}\right] / \rho_{m} \\
Q_{w} & \equiv \text { mixture wall heat source } \\
& =Q_{W v}+Q_{W \ell}
\end{aligned}
$$

$Q_{i m} \equiv$ mixture heat source due to interfacial effects
$=Q_{i v}+Q_{i \ell}$
$Q_{k} \quad \equiv$ mixture conduction heat transfer rate
$=Q_{k v}+Q_{k \ell}$
ρ_{m} and e_{m} are 2 additional unknowns to the 10 unknowns counted in the six-equation model. Thus we have a total of 12 unknowns. Equations (2.5) and definitions (2.6) represent a total of 6 equations. The 4 equations of state (2.4), and the 2 equations implied in the assumption of thermal equilibrium at saturation:

$$
\begin{equation*}
T_{v}=T_{\ell}=T_{\text {sat }}(P) \tag{2.7}
\end{equation*}
$$

provide the additional 6 equations required for closure.
By using the four equations (2.5), the two definitions (2.6) and the two constraints (2.7), we shall be able to calculate the following eight quantities α, T_{v}, $T_{\ell}, \rho_{m}, \rho_{v}, \rho_{\ell}, e_{v}, e_{\ell}$, for any given P and e_{m}. This is a very important step in the solution technique in THERMIT. As shall be shown in a later section, reduction of conservation equations to pressure problem is a dominant feature of the numerical method in the code.

The following terms are neglected in the THERMIT-4E formulation because of their relatively very low magnitudes: (i) contribution of interfacial effects to mixture heat source,
i.e., work terms due to interfacial momentum exchange and the kinetic energy transport via interfacial mass exchange, the mixture heat source due to interfacial effects, ii) the pseudowork terms due to wall forces in the wall heat source.
II.2.2. The homogeneous equilibrium model (HEM)

The HEM or the three-equation mixture model is obtained by assuming thermal equilibrium of the co-existing phases at saturation and equal phase velocities. Equilibrium drift flux model would result if a correlation for relative velocity were used.

The resulting HEM conservation equations are given below:

Mixture mass equation

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho_{m}+\frac{\partial}{\partial x}\left(\rho_{m} U_{m}\right)=0 \tag{2.8a}
\end{equation*}
$$

Mixture momentum equation

$$
\begin{equation*}
\rho_{m} \frac{\partial U_{m}}{\partial t}+\left(\rho_{m} U_{m}\right) \frac{\partial U_{m}}{\partial x}+\frac{\partial P}{\partial x}=-F_{w}+\rho_{m} \vec{x} \cdot \vec{g} \tag{2.8~b}
\end{equation*}
$$

Mixture internal energy equation

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho_{m} e_{m}\right)+\frac{\partial}{\partial x}\left(\rho_{m} e_{m} U_{m}\right)+P \frac{\partial U_{m}}{\partial x}=Q_{w}+Q_{k} \tag{2.8c}
\end{equation*}
$$

Figure 2.1. The Fluid-wall Interaction
where

$$
\begin{aligned}
& U_{m}=\text { the mixture velocity } \\
& U_{m}=U_{v}=U_{\ell}
\end{aligned}
$$

II.2.3. The exchange terms and the interfacial jump conditions

The wall and the interfacial exchange terms are the mass, momentum and energy exchanges that take place at the fluidwall and the fluid-fluid interface respectively. The interfacial jump conditions are essentially the equations of conservation of mass, momentum and energy at the fluid-fluid interface.

The definitions of the exchange terms and the interfacial jump conditions have been given in reference [5].
II.3. The physical models in THERMIT

II.3.1. Wall friction

The fluid-solid interaction at the wall leads to momentum dissipation $F_{w a}$ [force per mixture unit volume] of the phase "a" forming interface with the solid (fig. 2.1).

In fig. 2.1 ${ }^{\tau}$ wa represents the average wall shear for the phase "a" and $A_{\text {wa }}$ represents the average area 'wetted' by the phase "a".

$$
\begin{equation*}
F_{w a}=\left(\frac{A_{w a}}{V}\right) \tau_{w a} \tag{2.9}
\end{equation*}
$$

By analogy to single-phase flow, $\tau_{w a}$ can be related to the kinetic energy of phase "a" through a Darcy-type relation.

$$
\begin{equation*}
\tau_{w a}=\frac{1}{8} f_{w a} \rho_{a}\left|U_{a}\right| U_{a} \tag{2.10}
\end{equation*}
$$

where

$$
f_{w a} \equiv \text { friction factor for phase a. }
$$

The wetted area per unit volume for phase "a" is given as:

$$
\begin{align*}
\frac{A_{w a}}{V}=\frac{P_{w a} L}{A L} & =\frac{P_{w}}{A} C_{f a} \\
& =\frac{4}{D_{e}} C_{f a} \tag{2.11}
\end{align*}
$$

where

$$
\begin{aligned}
& P_{w a}=\text { wetted perimeter for phase "a" } \\
& \mathrm{L}=\text { 'length' of the control volume } \\
& A=\text { total flow area } \\
& P_{W}=\text { total wetted perimeter } \\
& D_{e}=\text { equivalent hydraulic diameter } \\
& C_{f a}=4 A / P_{W} \\
&
\end{aligned}
$$

Combining (2.11), (2.10) and (2.9) we obtain the final forms of the wall frictional force per unit volume for phase a as:

$$
\begin{align*}
F_{w a} & =\frac{C_{f a}}{2 D_{e}} f_{w a} \rho_{a}\left|U_{a}\right| U_{a} \tag{2.12a}\\
& =K_{w a} U_{a} \tag{2.12b}
\end{align*}
$$

We shall refer to $K_{w a}$ as the wall friction coefficient for phase a.

The factor $C_{f a}$ and $f_{w a}$ must be defined with proper considerations to the two-phase situations.

An assumption which has been deemed adequate is that whenever two-phase flow exists, an annular flow regime prevails, with the liquid coating the solid surfaces. At very high void fractions, some vapor wall contact is allowed. Accordingly, $C_{f a}$ is prescribed as:

$$
C_{f \ell}= \begin{cases}1.0 & ; \quad \alpha<0.89 \tag{2.13}\\ 10(0.99-\alpha) ; & 0.89<\alpha<0.99 \\ 0.0 & ; \\ & \alpha>0.99\end{cases}
$$

and

$$
c_{f v}=1-c_{f \ell}
$$

For $f_{w a}$, the following postulate is made by analogy to the single-phase flows:

$$
\begin{equation*}
f_{w a}=C R e_{a}^{-b} \tag{2.14}
\end{equation*}
$$

The Reynold's number $\operatorname{Re}_{\mathrm{a}}$ of the phase "a" is defined to take into account the actual flow area of phase "a".

$$
\begin{equation*}
\operatorname{Re}_{a}=\frac{\rho_{a} U_{a} D_{e, a}}{\mu_{a}} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
D_{e, a} & =\frac{4 A_{a}}{P_{w}} \\
& =\frac{4 \alpha_{a} A}{P_{w}} \\
& =\alpha_{a} D_{e} \tag{2.16}
\end{align*}
$$

We shall now provide the working form correlation (equation (2.14)) for the axial flow condition that is relevant to our 1-D loop flow problem.

The correlations that follow are formulated for wire-wrapped rod bundle flow-channels; they are specific forms of equation (2.14).

Axial flow

$$
\begin{align*}
& \left(f_{w a}\right)_{\text {laminar }}=\frac{32}{\sqrt{H}}\left(\frac{p}{D}\right)^{1.5} \frac{1}{\operatorname{Re} e_{a}}, \text { for } R e_{a}<400 \tag{2.17a}\\
& \left(f_{w a}\right)_{\text {turbulent }}=\frac{0.316 M}{\operatorname{Re}_{a}^{0.25}} \text {, for } \operatorname{Re}_{a}>2600 \tag{2.17b}
\end{align*}
$$

$\left(f_{w a}\right)$ transition $=\left(f_{w a}\right)$ turbulent $\sqrt{\psi}+\left(f_{\text {wa }}\right)$ laminar

$$
\begin{equation*}
x \sqrt{1-\psi}, \text { for } 400<\operatorname{Re}_{a}<2600 \tag{2.17c}
\end{equation*}
$$

$$
\text { where: } \begin{aligned}
M & =\left[\frac{1.034}{(P / D)^{0.124}}+\frac{29.7(P / D)^{6.94} R_{a}^{(0.086)}}{(H / D)^{2.239}}\right] \\
\psi & =\left(\operatorname{Re}_{a}-400\right) / 2200 \\
H & =\text { wire-wrap lead length (meters) } \\
P / D & =\text { pitch-to-diameter ratio, } \\
H / D & =\text { helical pitch-to-diameter ratio }
\end{aligned}
$$

The laminar flow correlation was proposed by Engel
et al, and the correlation used in turbulent flow is a slight-
ly modified version of the correlation due to Novendstern. To avoid unrealistic situations for bare rods (i.e. $H \rightarrow \infty$), a cut-off is imposed on the laminar correlation by requiring f laminar $\operatorname{Re}>60$. The hydraulic diameter has been recommended to be calculated as :

$$
\begin{equation*}
D_{e}=4 \times A(\text { bundle }) / P_{w}(\text { rods }+ \text { ducts }) \tag{2.18}
\end{equation*}
$$

II.3.2. Interfacial momentum exchange

The interfacial momentum exchange $F_{i a}$ in (2.2) is made up of two components, one due to interfacial mass exchange, the other due to form and shear drag at the interface.

The form of the correlation used in THERMIT-4E for $F_{\text {ia }}$ are given below

$$
\begin{align*}
& F_{i v}=k_{i v}\left(U_{v}-U_{\ell}\right) \\
& F_{i \ell}=k_{i \ell}\left(U_{v}-U_{\ell}\right) \tag{2.19}
\end{align*}
$$

where

$$
\begin{align*}
& k_{i v}=\eta \Gamma+k_{i} \\
& k_{i \ell}=(1-n) \Gamma+k_{i} \tag{2.20}
\end{align*}
$$

η is a weighting factor defined (empirically) for the present by a donor-like formulation [5].

$$
\begin{aligned}
& \eta=1, \text { if } \Gamma>0 \text { (evaporation) } \\
& \eta=0, \text { if } \Gamma<0 \text { (condensation) }
\end{aligned}
$$

Γ and K_{i} must be specified in (2.19) in order to obtain the momentum exchange coefficients $K_{i v}$ and $K_{i \ell}$ in (2.20). Γ is obtained from the equation of conservation of mass on any one of the phases. Thus for the vapor phase;

$$
\begin{equation*}
\Gamma=\frac{\partial}{\partial t}\left(\alpha \rho_{v}\right)+\frac{\partial}{\partial x}\left(\alpha \rho_{v} U_{v}\right) \tag{2.21}
\end{equation*}
$$

The following correlations for K_{i} are obtained using the Wallis correlation [5] for friction factor.

$$
\begin{align*}
& \left(K_{i}\right)_{\text {turbulent }}=\frac{0.01}{D_{e}} \sqrt{\alpha}[1+150(1-\sqrt{\alpha})] \rho_{v}\left|U_{r}\right| \tag{2.22}\\
& \left(K_{i}\right)_{\text {laminar }}=\frac{32 \mu_{v}}{D_{e}^{2}}
\end{align*}
$$

Figure 2.2. Heat Transfer Selection Logic
where

$$
U_{r}=\text { relative velocity }=U_{v}-U_{\ell}
$$

II.3.3. Wall heat transfer

The heat transfer correlations between the fluid and the solid surfaces (heater or fuel rods and the hex can) that are used in the code are given in this section. Fuel or heater rods

The heat transfer regime selection logic is presented in fig. 2.2 adapted from reference [5]. The correlation for single-phase liquid in triangular - arrayed bundle due to Schad is adopted.

$$
\begin{align*}
\mathrm{Nu} & =N u_{0}(\mathrm{Pe} / 150)^{0.3} & & \mathrm{Pe}>150 \\
& =N u_{0} & & P_{\mathrm{e}}<15 \tag{2.24}
\end{align*}
$$

where

$$
\begin{aligned}
N u_{0} & =4.5\left[-16.15+24.96(P / D)-8.55(P / D)^{2}\right] \\
\text { and } \mathrm{Pe} & =\operatorname{Re} . \operatorname{Pr}
\end{aligned}
$$

The single-phase vapor heat transfer correlation used is the well-known Dittus-Boelter's correlation:

$$
\begin{equation*}
\mathrm{Nu}=0.023 \mathrm{Re}^{0.8} \operatorname{Pr} 0.4 \tag{2.25}
\end{equation*}
$$

For two-phase fluid heat transfer, the total heat transfer coefficient for two-phase flow boiling with no liquid deficiency is given by:

$$
\begin{equation*}
h_{T P}=h_{c}+h_{N B} \tag{2.26}
\end{equation*}
$$

as suggested by Manahan [5].
The convective component h_{c} could be represented by the Schad's correlation in which the Peclet number for twophase ($\mathrm{Pe}_{T P}$) is given by:

$$
\begin{equation*}
P e_{T P}=R e_{T P} P r_{\ell} \tag{2.27}
\end{equation*}
$$

and the two-phase Reynold's number $\left(\mathrm{Re}_{\mathrm{TP}}\right)$ is obtained through the factor F defined as

$$
\begin{equation*}
F=\left(\operatorname{Re}_{T P} / R e_{\ell}\right)^{0.8} \tag{2.28}
\end{equation*}
$$

F depends on the Martinelli's parameter, $X_{t t}$.

$$
\begin{equation*}
x_{t t}=\left(\frac{1-x}{x}\right)^{0.9}\left(\frac{\rho_{v}}{\rho_{l}}\right)^{0.5}\left(\frac{\mu_{\ell}}{\mu_{v}}\right)^{0.1} \tag{2.29}
\end{equation*}
$$

The heat transfer correlation for nucleate boiling due to Forster-Zuber's analysis is [5]:

$$
\begin{equation*}
h_{N B}=0.00122\left[\frac{k_{l}^{0.79} c_{P_{l}}^{0.45} \rho_{l}^{0.49}}{\sigma^{0.5} \mu_{l}{ }^{0.29} \mathrm{~h}_{\mathrm{fg}}^{0.24} \rho_{\ell}^{0.24}}\right] \Delta T_{\text {sat }}^{0.24} \Delta \mathrm{P}_{\text {sat }}^{0.75} \mathrm{~s} \tag{2.30}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta T_{\text {sat }} & =\text { wall superheat }, \\
\Delta P_{\text {sat }} & =\text { pressure difference corresponding to } T_{\text {sat }}, \\
S & =\text { nucleate boiling suppression factor, } \\
& =\left(\Delta T_{\text {sat, }} / \Delta T_{\text {sat }}\right)^{0.99}
\end{aligned}
$$

$\Delta T_{\text {sat,e }}=$ effective wall superheat.
The following fits for F and S are given in reference [5].
$F= \begin{cases}1.0, & x_{t t}^{-1}<0.10 \\ 2.35\left(x_{t t}^{-1}+0.213\right)^{0.736}, & x_{t t}>0.10\end{cases}$
$S= \begin{cases}{\left[1.0+0.12\left(\operatorname{Re}_{T P}^{\prime}\right)^{1.14}\right]^{-1}} & , \operatorname{Re}_{T P}^{\prime}<32.5 \\ {\left[1.0+0.42\left(\operatorname{Re}_{T P}^{\prime}\right)^{0.78}\right]^{-1}} & , 32.5 \leq \operatorname{Re}_{T P}^{\prime} \leq 70.0 \\ 0.1 & , \operatorname{Re}_{T P}^{\prime} \geq 70.0\end{cases}$
where

$$
\operatorname{Re}_{T P}^{\prime}=\operatorname{Re}_{T P}\left(10^{-4}\right)
$$

At high void regimes, ($0.89<\alpha<0.99$), film begins to blanket the surface. Heat transfer decreases and is approximated by:

$$
\begin{equation*}
h_{\text {film }}=\psi^{2} h_{T P, c}+\left(1-\psi^{2}\right) h_{\text {vapor }} \tag{2.33}
\end{equation*}
$$

where

$$
\psi=10(0.99-\alpha)
$$

II.4. The numerical methods

II.4.1. Introduction

THERMIT is a lumped parameter component code that can handle up to three-dimensional two-phase flows. An Eulerian numerical approach is used for the fluid dynamics. This approach follows the evolution of the volume- (and time-) averaged values of material parameters and other quantities of interest at fixed points in space. The reactor is divided by a mesh into a collection of cells and the parameters and quantities are calculated at each cell as a function of time. The smearing of transported entities within the cells due to this technique is minimized by reducing the sizes of the averaging volumes wherever there is a strong spatial variation of the quantity being averaged.

The numerical method in THERMIT is a modified form of the successful I.C.E. (Implicit Continuum Eulerian) technique. Like the I.C.E. method, it uses a staggered grid, treats sonic propagation implicitly and convective transport explicitly and obtains a pressure-field solution from which the other variables are inferred. In THERMIT, all the equations (mass, momentum and energy) are blended simultaneously to obtain the pressure-field solution while in the I.C.E., the energy equation is treated explicitly. This choice of treatment is necessary in THERMIT because the change in density with energy can no longer be assumed a small correction to the flow field in two-phase flows as can be done in single-phase flows [8].

Figure 2.3. Minimum Computationa: Effort

The next subsection gives a review of the numerical method used in the four-equation model THERMIT-4E simplified to a one-dimensional formulation. The detail of the analysis for multidimensional flows has been given in Schor and Todreas [5]. II.4.2. The numerical methods for fluid dynamics The finite difference equations

The choice of the method of treatment of the time discretization of a system of partial differential equations can be obtained from a spectrum of schemes, ranging from fully explicit to fully implicit ones. Whatever the choice, stability and consistency must be ascertained in order to guarantee convergence. A judicious choice can be qualitatively inferred from the curve of minimum computational efforts (figure 2.3. [7]) and from the knowledge of the time scales of the phenomena involved. In light of the above, we seek a numerical method that treats local phenomena (couplings) and sonic propagation in a fully or highly implicit manner, while describing explicitly transport mechanisms by convection and diffusion.

In space, a fully donor-cell differencing is used accompanied by additional averaging whenever quantities are required at the locations other than those at which they are originally defined. The widely used staggered-mesh approach is adopted, whereby the scalar quantities are defined at the

Figure 2.4. Typical Staggered Grid
cell center while the fluxes are defined at the cell faces to which they are normal (fig 2.4).

The discrete analogs of the partial differential equations describing our two phase model will now be presented.

The mixture mass equation
$v\left(\rho_{m}^{n+1}-\rho_{m}^{n}\right) / \Delta t+\left\{A\left[\left(\alpha \rho_{v}\right)^{n}\left(U_{v}\right)^{n+1}+\left((1-\alpha) \rho_{\ell}\right)^{n}\left(U_{\ell}\right)^{n+1}\right]\right\}_{i+1 / 2}$ $-\left\{A\left[\left(\alpha \rho_{v}\right)^{n}\left(U_{v}\right)^{n+1}+\left((1-\alpha) \rho_{\ell}\right)^{n}\left(U_{\ell}\right)^{n+1}\right]\right\}_{i-1 / 2}=0$

In the above, the convected quantities are needed at cell faces, where fluxes are defined. Full donor-cell differencing being used to define these quantities, let C stand for any cell-centered quantity (see fig. 2.4) and consider the face (i+1/2), normal to the direction of flow in the loop. The quantity $C_{i+1 / 2}$ is then determined as:

$$
c_{i+1 / 2}= \begin{cases}c_{i} & , \text { if }(u)_{i+1 / 2}^{n} \geq 0 \\ c_{i+1}, & \text { if }(u)_{i+1 / 2}^{n} \leq 0\end{cases}
$$

It is important to note that donor-cell decisions are made only with regard to quantities at time level n, using velocities at the same time level. As a result no difficulty arises even if a velocity sign change occurs during a time step.

The mixture energy equation

A number of variants for the finite difference equation exists. The conservative/semi-implicit convection (CSIC) scheme is given below:

$$
\begin{align*}
v\left[\left(\rho_{m} e_{m}\right)^{n+1}\right. & \left.-\left(\rho_{m} e_{m}\right)^{n}\right] / \Delta t+\left[p^{n}+\left(\rho_{v} e_{v}\right)_{i+1 / 2}^{n}\right]\left[A \alpha{ }^{n}\left(u_{v}\right)^{n+1}\right]_{i+1 / 2} \\
& +\left[P^{n}+\left(\rho_{\ell} e_{l}\right)_{i+1 / 2}^{n}\right]\left[A(1-\alpha)^{n}\left(u_{l}\right)^{n+1}\right]_{i+1 / 2} \\
& -\left[P^{n}+\left(\rho_{v} e_{v}\right)_{i-1 / 2}^{n}\right]\left[A \alpha^{n}\left(u_{v}\right)^{n+1}\right]_{i-1 / 2} \\
& -\left[P^{n}+\left(\rho_{\ell} e_{\ell}\right)_{i-1 / 2}^{n}\right]\left[A(1-\alpha)^{n}\left(U_{\ell}\right)^{n+1}\right]_{i-1 / 2} \\
& =Q_{W}{ }^{n+1 / 2}+Q_{K}{ }^{n+1 / 2} \tag{2.39}
\end{align*}
$$

The difference forms of energy and the mass equations, (2.38) and (2.39) are a strict adaptation of the scheme used for a six-equation model to a four-equation "mixture" model. The schemes for both models are equivalent for single-phase, either liquid or vapor. For two-phase however, the four-equation adaptation suffers a subtle flaw, namely the lack of monotonicity of the mixture internal energy density ($\rho_{m} e_{m}$) with respect to e_{m}. This feature is undesirable for the Newton method used to solve our system of equation.

To avoid the problem raised by the product $\rho_{m}{ }_{m}$, a non-conservative/semi-implicit convection (NCSIC) form of the energy equation is used. To this end, the mass equation is multiplied by e_{m} and then subtracted from the conser-
-vative form of the energy equation. The resulting difference equation is

$$
\begin{aligned}
v\left(\rho_{m}\right)^{n}\left[\left(e_{m}\right)^{n+1}-\left(e_{m}\right)^{n}\right] / \Delta t & +\left[\operatorname{conv}_{e}-\operatorname{conv}_{m}\right]^{n+1 / 2} \\
& =\left(Q_{w}+Q_{K}\right)^{n+1 / 2}
\end{aligned}
$$

where conv ${ }_{m}{ }^{n+1 / 2}$ and conv $e^{n+1 / 2}$ stand for the semi-implicit convective terms in the mass and energy equations, respectively. The heat sources appear with superscript $n+1 / 2$, indicating a combination of implicit / explicit components
in the constitutive relations used for them.
The phasic momentum equations
The momentum equations are used in the non-conservative form, particularly convenient to our method. The control volume for which the momentum equation is written is offset by half mesh with respect to that used for the scalar quantities (fig. 2.4). The momentum equations are written below:

Vapor momentum equation

$$
\begin{align*}
\left(\alpha \rho_{v}\right)_{i+1 / 2}^{n} & \frac{\left[\left(u_{v}\right)^{n+1}-\left(U_{v}\right)^{n}\right]_{i+1 / 2}}{\Delta t} \\
& +\left(\alpha \rho_{v}\right)_{i+1 / 2}^{n}\left[\left(u_{v}\right)_{i+1 / 2}\left(\frac{\Delta u_{v}}{\Delta x}\right)_{i+1 / 2}\right]^{n} \\
& +\alpha_{i+1 / 2}^{n} \frac{\left(p_{i+1}-P_{i}\right)^{n+1}}{\Delta x_{i+1 / 2}} \\
& =-\left(F_{w v}\right)_{i+1 / 2}^{n+1 / 2}-\left(F_{i v}\right)_{i+1 / 2}^{n+1 / 2}-\left(\alpha \rho_{v}\right)^{n} \vec{x} \cdot \vec{g} \tag{2.41a}
\end{align*}
$$

Liquid momentum equation

(similar to (2.41 a)
In the above equations $\left(\frac{\Delta U_{a}}{\Delta x}\right)_{i+1 / 2}$ represents a dif--ference approximation for the spatial derivatives $\partial U_{a} / \partial x$ evaluated at the point $i+1 / 2$, where $a=\ell$ or v.

Again the cell-centered quantities $\alpha, \rho_{v}, \rho_{\ell}$ are now needed at the cell faces. Donor-cell differencing can be used in case of single-phase liquid where the properties in the adjacent cells are not greatly different. Things are different, however, once the face in question separates a liquid cell and a two-phase cell. In this case the mixture density (mainly through α) may vary by as much as two orders of magnitude. In such a situation a change in the sign of the velocities at the face, for donor-cell scheme, would lead to very large changes in terms of the momentum equations, which in turn could generate large pressure spikes and even ruin the solution, by imposing an impractically short time steps. As a result, a weighted average scheme is adopted. Let C be a cell-centered quantity, then its value at the cell surface is specified as:

$$
\begin{equation*}
c_{i+1 / 2}=\left(C_{i} \Delta x_{i}+c_{i+1} \Delta x_{i+1}\right) /\left(\Delta x_{i}+\Delta x_{i+1}\right) \tag{2.42}
\end{equation*}
$$

for the product $\alpha_{a} \rho_{a}$ for instance, we define

$$
\begin{equation*}
\left(\alpha_{a} \rho_{a}\right)_{i+1 / 2}=\left(\alpha_{a}\right)_{i+1 / 2}\left(\rho_{a}\right)_{i+1 / 2} \tag{2.43}
\end{equation*}
$$

The difference approximation of the convective derivatives are defined through a donor-cell logic:
$\left(\frac{\Delta U_{v}}{\Delta x}\right)_{i+1 / 2}= \begin{cases}\frac{\left(U_{v}\right)_{i+3 / 2}-\left(u_{v}\right)_{i+1 / 2}}{\Delta x_{i+1}}, & \text { if }\left(U_{v}\right)_{i+1 / 2}<0 \\ \frac{\left(U_{v}\right)_{i+1 / 2}-\left(U_{v}\right)_{i+1 / 2}}{\Delta x_{i}}, & \text { if }\left(U_{v}\right)_{i+1 / 2}>0\end{cases}$
and the mesh spacing $(\Delta x)_{i+1 / 2}$ needed in the pressure gradient is given by:

$$
\begin{equation*}
(\Delta x)_{i+1 / 2}=\left(\Delta x_{i}+\Delta x_{i+1}\right) / 2 \tag{2.44}
\end{equation*}
$$

In the momentum equations, the wall and the interfacial exchange terms have a linear dependence on the new time phase velocities or they can be linearized in these new time velocities about the old time velocities [5]. The fol--lowing forms of constitutive relations are adopted in our calculations.

$$
\begin{align*}
& \left(F_{w a}\right)_{i+1 / 2}^{n+1 / 2}=\left(K_{w a}\right)_{i+1 / 2}^{n}\left(u_{a}\right)_{i+1 / 2}^{n+1} \tag{2.45}\\
& \left(F_{i a}\right)_{i+1 / 2}^{n+1 / 2}=\left(K_{i a}\right)_{i+1 / 2}^{n}\left(U_{v}-U_{l}\right)_{i+1 / 2}^{n+1} \tag{2.46}
\end{align*}
$$

The coefficients $K_{\text {wa }}$ and $K_{i a}$ can be complex functions of any variables, the only requirement being its evaluation using old time quantities.

With equations (2.45) and (2.46) the momentum equa-
tions (2.41 a) and (2.41 b) can be written in the form:

$$
\begin{align*}
& U_{v}^{n+1}=a_{v} \Delta P^{n+1}+b_{v} \\
& U_{\ell}^{n+1}=a_{\ell} \Delta P^{n+1}+b_{\ell} \tag{2.47}
\end{align*}
$$

where the coefficients a_{v}, a_{ℓ}, b_{v} and b_{ℓ} contain old time quantities only.

$$
\Delta P^{n+1}=\left(P_{i+1}-P_{i}\right)^{n+1} \text { is the pressure drop between }
$$ two consecutive cell centers.

The spatial subscripts have been dropped in (2.47) with the understanding that the velocities are evaluated at the faces of a node.

The quantities $a_{v}, a_{\ell}, b_{v}, b_{\ell}$ are defined below [5]

$$
\begin{align*}
& a_{v}=-\frac{\Delta t}{\Delta x}\left[\alpha e_{2}+\Delta t K_{i v}(1-\alpha)\right] / d \tag{2.48a}\\
& a_{\ell}=-\frac{\Delta t}{\Delta x}\left[(1-\alpha) e_{1}+\Delta t K_{i \ell} \alpha\right] / d \tag{2.48~b}\\
& b_{v}=\left(f_{1} e_{2}+\Delta t K_{i v} f_{2}\right) / d \tag{2.48c}\\
& b_{\ell}=\left(f_{2} e_{1}+\Delta t K_{i \ell} f_{1}\right) / d \tag{2.48~d}\\
& e_{1}=\alpha \rho_{v}+\Delta t\left(K_{w v}+K_{i v}\right) \tag{2.49a}
\end{align*}
$$

$$
\begin{align*}
& e_{2}=(1-\alpha) \rho_{\ell}+\Delta t\left(K_{w \ell}+K_{i \ell}\right) \tag{2.49~b}\\
& f_{1}=\alpha \rho_{v}\left[U_{v}-\Delta t\left(\operatorname{conv}_{v}+\vec{x} \cdot \vec{g}\right)\right] \tag{2.49c}\\
& f_{2}=(1-\alpha) \rho_{\ell}\left[U-\Delta t\left(\operatorname{conv}_{\ell}+\vec{x} \cdot \vec{g}\right)\right] \tag{2.49~d}\\
& d=e_{1} e_{2}-(\Delta t)^{2} K_{i v} K_{i \ell} \tag{2.49e}
\end{align*}
$$

In equations (2.48) and (2.49), everything is evaluated at the old time. Consequently the coefficients a's and b's can be calculated only once at the beginning of the current time step and stored.
II.4.3. The solution scheme

The finite difference equations described in the preceding section combined with the equations of state (equations 2.3) form a large system of non-linear equations. The following seven new time variables appear as unknowns for all cells in the domain of the problem:

$$
\rho_{m}^{n+1}, P^{n+1}, e_{m}^{n+1}, T_{l}^{n+1}, T_{v}^{n+1}, U_{v}^{n+1} \text { and } U_{l}^{n+1}
$$

The new time temperatures appear from the fully-implicit treatment of the heat sources and sinks that is adopted for this formulation. The high heat transfer coefficient and the low heat capacity of the plenum material that are required to keep the plenum temperature constant during transients may give rise to instabilities for a fully explicit or a semiimplicit treatment, hence the decision to use a fully-implicit treatment for tests of our method on a loop version of THERMIT.

Figure 2.5. Sodium Internal Energy Per Únit Volume versus Internal Energy

Note also that ρ_{m}^{n+1} and e_{m}^{n+1} now appear as separate unknowns due to the non-conservative form of the energy equation adopted (equation 2.40). This splitting of the product $\left(\rho_{m} e_{m}\right)^{n+1}$, which otherwise would appear as an unknown from the conservative form (equation 2.39), is highly desirable. The product $\rho_{m} e_{m}$ is a non-monotonic function of e_{m} for sodium and also for water at low pressure (fig. 2.5). This behavior have the tendancy of ruining the NewtonRaphson method adopted to solve our non-linear system. Generally, the Newton-Raphson method is destroyed when an extremum point exists between the guess and the solution.

II.4.4. The Jacobian matrix and the pressure problem

The new time velocities that appear in the mass and the energy equations are eliminated in favor of the new time pressures using the momentum equations in the form of (2.47). Thus for each cell we now have two scalar conservation equations namely the mass and the energy equations. The appropriate equations of state are combined with these scalar conservation equations for closure. In our one-dimensional formulation, the elimination of the new time velocities leads to the appearance of the new time local and two neighboring pressures in the mass and the energy equations for each node.

Note that our numerical scheme uses the internal energy as primary variable, therefore the temperature must be inferred. It is determined through an iterative procedure applied to equations (2.3c,d).

The resulting mass and energy together with the state equations can be written in functional form for node ' i ' as follows [7]:

$$
\begin{array}{ll}
R_{m i}\left(\rho_{m i}, P_{i-1}, P_{i}, P_{i+1}\right) & =0 \\
R_{e i}\left(\rho_{m i}, e_{m i}, P_{i-1}, P_{i}, P_{i+1}\right) & =0 \\
\rho_{m i}-\rho_{m i}\left(P_{i}, e_{m i}\right) & =0 \tag{2.50c}
\end{array}
$$

where
$R_{m i}$ refers to the mass equation for node 'i'
$R_{e i}$ refers to the mass equation for node ' i '
and $a l l$ the quantities inside the parentheses are now evaluated at the new time level.

Equations (2.50) are generally highly non-linear, the source of non-linearity being mainly the state equation.

The pressure P and the mixture internal energy e_{m} are taken as the main variables and the mixture density ρ_{m} is eliminated through the equation of state. Consequently we obtain two non-linear scalar equations in $P^{\prime} s$ and e_{m} for each node. These equations can be written symbolically as:

$$
\begin{equation*}
\bar{R}(\bar{U})=0 \tag{2.51}
\end{equation*}
$$

where

$$
\begin{aligned}
\bar{R} & =\left[R_{m l}, R_{e l}, \ldots \ldots ., R_{m N}, R_{e N}\right]^{\top} \\
\bar{U} & =\left[P_{l}, e_{m l}, \ldots \ldots \ldots, P_{N}, e_{m N}\right]^{\top}
\end{aligned}
$$

Applying Newton's method to solve (2.51) we have

$$
\begin{equation*}
\bar{J}(\bar{U}) \delta \bar{U}=-\bar{R}(\bar{U}), \tag{2.52}
\end{equation*}
$$

where the jacobian $\bar{J}(\bar{U})$ is given by

$$
\bar{J}(\bar{U}) \quad=\frac{\partial \bar{R}}{\partial \bar{U}} .
$$

Let K be the counter for the Newton iteration. Then the scheme becomes:

$$
\begin{equation*}
\bar{J}(\bar{U})\left(u^{K+1}-\bar{U}^{K}\right)=-\bar{R}\left(\vec{u}^{K}\right) . \tag{2.53}
\end{equation*}
$$

The entries of the jacobian matrix for a particular node 'i' are obtained from the following partial derivatives $\frac{\partial R_{m i}}{\partial P_{i-1}} \quad \frac{\partial R_{m i}}{\partial P_{i}} \quad \frac{\partial R_{m i}}{\partial e_{m i}} \quad \frac{\partial R_{m i}}{\partial P_{i+1}}$ $\frac{\partial R_{e i}}{\partial P_{i-1}} \quad \frac{\partial R_{e i}}{\partial P_{i}} \quad \frac{\partial R_{e i}}{\partial e_{m}} \quad \frac{\partial R_{e i}}{\partial P_{i+1}}$

We denote these generally non-zero entries by "x" and thus obtain a matrix form for equation (2.52), for cell i :

$$
\left|\begin{array}{cc|cc|cc}
x & 0 & x & x & x & 0 \tag{2.54}\\
x & 0 & \mid x & x & \mid x & 0
\end{array}\right|\left[\left.\begin{array}{l}
\delta P_{i} \\
\delta e_{m i-1} \\
\delta e_{m i} \\
\delta P_{i+1} \\
\delta e_{m i+1} \\
\delta P_{i-1} \\
R_{e i} \\
K+1 \\
R_{e}
\end{array}\right|_{-} ^{-}\right.
$$

Equation (2.54) forms a total of 2 N equations, where N is the total number of nodes. The full 2×2 block in (2.54) provides local (within cell) coupling while the sparse 2×2 blocks provides spatial coupling, indicating a field coupling through pressure only.

The next step in the solution is to solve the main diagonal block to eliminate $\delta e_{m i}$ in favor of the neighboring pressures. This procedure effectively reduces the problem to a pure pressure problem in N equations. The pressure problem in matrix form becomes:

$$
\left.|x \quad x \quad x| \begin{array}{ll}
\delta P_{i-1} \tag{2.55}\\
\delta P_{i} \\
\delta P_{i+1}
\end{array}\right|^{K+1}=R_{i}^{K}
$$

Equation (2.55) when written for the N -cell domain gives rise to an $N \times N$ tridiagonal jacobian matrix in the left hand side while right hand side becomes an $N \times 1$ vector.

The pressure increments are solved in (2.55) by a direct technique (i.e., LU decomposition). The increment $\delta e_{m i}{ }^{k+1}$ is then obtained from the second equation of (2.54) in each cell. This completes a Newton iteration. The process is then repeated until successive changes in the main variables become very small.

```
Volume averaged differential equations of conservation
Area ayerzged interizcial and wall exchange terms
Area averaged interfacial jump conditions
Equations of state
```

Difference forms of the conserve i ion equations
Difference forms of the state equations*
Difference forms of the constitutive equations*

Use the momentum equations to eliminate $\bar{U}_{v, \ell}^{n+1}$ in the mixture mass and energy equations
Pick P and e_{m} as main variables and eliminate ρ_{m} through the equation of state

Obtain the Jacobian of the resulting ? scalar equations Reduce to oressure problem

Solve the pressure problem

Back substitute tine converged ? to obtain the other variables

* Algebraic equations differenced only in time

Time step completed
Figure 2.6. Summary of the Solution
Technique in THERMIT-4E.
III. Description of the problem
III.1. Introduction

Experiments suggest that the condensation process is basically the reciprocal of boiling: both can be represented as a mere change in phase. However because of the difference in density of vapor and liquid, small pressure pulses cannot be absorbed as easily for liquid as it is for vapor. Indeed this aspect of condensation will prove to be determinant for the final understanding and the resolution of this phenomenon.

The intuitive physical model considered in order to encounter a condensation problem: has been a channel with a test section in which heat would be removed through the structure walls maintained at very low temperature. An incoming two-phase mixture flow would then condense in this test section. Other conditions involving less computation were investigated: those conditions were designed so that they would re-create the same situation leading to high pres--sure spikes as they were witnessed indeed in the loop simula--tion of THERMIT.

In this latter case condensation is taking place in the neighboring cells of the upper and lower plenum [4].

The following studies shall essentially focus on one dimensional channels, and also using simple legitimate simplifications such as:

- no transverse flow
- no heat input
- adiabatic flow
- pressure-pressure boundary conditions

This last choice of boundary conditions will enable us to avoid imposing the flow in and/or out of the channel and to observe a natural behavior of the flow, especially flow reversal during change of phase as the case may be.

III.2. Typical cases of condensation

III.2.1. Description of the numerical experiments

The first series of benchmarks that have been investigated features a flow of two-phase mixture injected into stagnant subcooled liquid. The same flow pattern in indeed observed in the heated section of the upcomer of the reactor loop simulation: a two-phase mixture reverses and flows back into the lower plenum which contains subcooled liquid at approximately $840^{\circ} \mathrm{K}$. Pressure-pressure boundary conditions is imposed, the expected result being a pressure gradient throughout the channel.

Results showed the interface-cell pressure increasing rapidly and exceeding the upper limit of the pressure range prescribed by the equation of states (20.0 bars): simultaneously the incoming flow starts to reverse direction and to push the liquid away, but not sufficiently to alter substantially the
pressure increase.
The second series of benchmarks represents water-hammer-like problems: a flow of subcooled liquid is injected into stagnant two-phase mixture at higher temperature. Other conditions of the tests remained similar to previous calculations. Condensation occurs also at the interface-cell and leads to pressure going out of range.

III.2.2. Analysis of the results

It is important to note that all calculations were run keeping a tight allowable conservation error (on the order of 0.5%) since larger mass error would artificially and nonphysically "solve" the problem; when the code reached this limit it automatically reduced the time-step and reiterated the calculations.

Also, for simplicity reason, no slip was assumed; actually this condition is a much more severe situation than if slip existed since the flow has more difficulties in reversing for liquid than for a two-phase mixture or vapor: the obvious advantages of using the HEM is to eliminate a variable and an equation making hand-calculations possible.

A final reduction in computing will consist of considering a one-cell volume filled with stagnant two-phase mixture in which very subcooled liquid is injected at a given pressure.

The results of these numerical tests exhibited most interesting anomalies leading to some instabilities
of the flow yet to be defined. The pressure and the void fraction in the cell start dropping due to condensation effects, while mass flows and velocities at both cell interfaces are directed inward with increasing absolute value in order to compensate this trend. When condensation is completed, pressure rises abruptly because of the inward flows; at this point of the experiments the channel contains only subcooled liquid.

The code will recover from the above described behavior for an initial void fraction in the cell lower than a critical void fraction. However for larger initial void fractions pressure as well as velocities at the interfaces oscillate with growing amplitudes preventing the flow from reaching steady-state. The calculations eventually stop because of the pressure going out of range of state functions.

Besides the dependancy on the initial void fraction in the cell, different tests demonstrated also that the final state of the flow is greatly affected by effective quantity of subcooled liquid injected on the the two-phase mixture and not by the number of cells of subcooled liquid.

During the process of condensation, when the meshvolume still contains a two-phase mixture, the sonic velocity in the cell becomes small compared with the sonic velocity in liquid or vapor (approximately $320 \mathrm{~m} / \mathrm{sec}$ at 1 bar). In cases of larger initial void fraction than the critical void fraction mentioned above, the flow becomes supersonic until the
condensation ends: the flow returns to a subsonic regime as the sonic velocity becomes large. SHAPIRO [6], referring to steady state flows, predicted that the transition from subsonic to supersonic flow is stable whereas the transition from supersonic to subsonic is unstable. However, thus far, the case of the latter situation during transients has been unexplored; in fact, one of the consequences of our tentative findings is the possibility of a stable supersonic-subsonic transition for short transients such as condensation.

A decisive feature of these tests as far as the final solution of the problem ic concerned is deeply related to the time step control of the code. At the first stage of the runs, vapor in a cell condenses and causes the time steps to be appreciably reduced because of the large mass error involved. The final stage of the runs corresponds to a fully condensed state.

During this period, the time steps remain relatively small compared with the time step limit due to the convective term, even though the system is basically quasi-linear; indeed linearization errors in pressure, mass and energy are very small. We have noted the importance of the inertia effect of the system for liquid sodium: pressure undershoots or overshoots the estimated pressure at steady state because the velocities at the cell edges are still respectively directed outward or inward. In many cases, the velocities fail to reverse this trend soon enough before pressure reaches the upper or lower limits defined by the state functions -0.0 and 20.0 bars-. This inertia effect
has been determined as being responsible for the code's breakdown. The observation of this phenomenon lead us to restart the problem from the point of terminated condensation using a time-step size of the order of the convective limit; the problem is in fact equivalent to a liquid-filled channel with an initial pressure perturbation. Surprisingly, steady-state was reached within few time-steps. Clearly, a definite influence of the time-step size on the code's behavior toward condensation was actually perceived: these effects are extensively discussed and thoroughly examined in chapters IV and V.

III.3. Review of previous studies

As stated before, studies have been done on this subject by various workers and it is worthwhile reviewing some of them here since they have been most useful at the very beginning of this research by giving some ideas of what was wrong.
-a) A major effort has been going on at Los Alamos Scientific Laboratory [1] where the research has been based on the TRAC computer code.

Like THERMIT, in differencing the governing equations, a staggered grid is used in which velocities are evaluated on mesh cell edges and the remaining are cell centered. They proposed a procedure that consists of a correction to the pressure gradient term in the momentum equation.

The correction needs to be made only if a packing situation is expected. Generally, the equation for the change in velocity will be written as

$$
\delta V_{i+1 / 2}=F_{1}\left[\delta P_{i+1}-\delta P_{i}\right]+F_{2},
$$

where δP_{i} is the change in pressure in cell $i, \delta V_{i+1 / 2}$ is the change in velocity at cell edge $i+\frac{1}{2}$, and F_{1} and F_{2} contain the remaining terms of the momentum equation. If a packing situation is expected, say within the i-th cell, this equations is then rewritten as

$$
\delta V_{i+1 / 2}=F_{1}\left[\delta P_{i+1}-S \delta P_{i}\right]+F_{2},
$$

where S is the scaling factor chosen to minimize the pressure spike. Generally, a constant factor of 1000 was found sufficient and it need only be applied for a single time step in most cases. The scaling factor is only applied to the cell being packed. Caution must be exercised not to apply the scaling factor to two adjacent cells simultaneously since this may preclude a real water-hammer effect.

Even though the method appears to solve the problem, it affects results in ways that are not readily apparent.

- b) Water packing anomalies in thermal-hydraulics codes have been investigated at Lawrence Livermore Laboratory by Lyczkowski [2].

The source of these pressure spikes has been conjectured to be caused by nonuniform enthalpy distribution or wave reflec-
tion off the closed end of a pipe or abrupt changes in pressure history when the fluid changes from subcooled to twophase conditions. It was demonstrated that many of the faults can be attributed to inadequate modeling of the average volume flow and the sharp fluid density front crossing a junction.

General corrective models are difficult to devise since the causes of the problems touch on the very theoretical bases of the differential field equations and associated solution scheme. This is why simple corrective models, economical to implement and use, were developed.

When incorporated into the one-dimensional homogeneous transient thermal-hydraulic analysis computer code, RELAP-4, they help mitigate many of the code's difficulties related to average volume flow and water-packing anomalies.

- c) Another approach on the problem comes from Padilla and Rowe [3]. They have developed a donor flow formulation for momentum flux differencing, that have been incorporated into the CAPRICORN subchannel code. Originally CAPRICORN has,as THERMIT a staggered grid formulation where the momentum cells are shifted by one-half a computational cell from the continuity-energy cells. However their implementation was prompted by anomalies which do not occur in THERMIT and therefore it seemed reasonable to dismiss this new approach for our final solution.

III.4. Preliminary investigations

- a) The relatively large linearization errors due to mass conservation during the condensation process suggested to write the continuity equation in difference form using the momentum cell which is translated a half-cell away from the usual mass cell (see Appendix A).

However, qualitative considerations showed that the large mass errors involved are solely due to high nonlinearity of the system when two-phase are present and no evidence of improvement emerged from this calculations as far as the stability of the flow is concerned.

- b) Earlier on, we have mentioned the abnormal variation of pressure still decreasing while flow is coming in or increasing pressure while flow is going out of the mesh-volume. It seemed opportune to find an expression of the variation of pressure in terms of density, energy and their respective derivatives using basic thermodynamic derivations (see Appendix B) .

These derivations have been most helpful in understanding of the pressure's dependancy on other variables and its effect on the stability of the system.

- c) The low pressures attained during condensation of the two-phase mixture, and the corresponding large velocities that were witnessed in our tests indicated that a transonic flow situation may have occured.

Therefore sonic velocities and Mach number have been derived (see Appendix C) and inserted in the code's calculations. Indeed, in many cases supersonic flow situation did exist and its consequences are discussed in the following chapter.

IV. A Mathematical Solution of Condensation for THERMIT-4E

IV.1. Introduction

In the previous chapter, we have emphasized on the importance of the time step strategy that has been noticed in our numerical experiments run on THERMIT-4E especially when complete condensation is achieved. The system examined here is an adiabatic channel filled with very subcooled liquid and an initial pressure pertubation imposed somewhere in that channel; inlet and outlet pressures are imposed and finally we assume that the temperature and the energy remain constant throughout the tests which is a very reasonable assumptions in our case.

Consequently, the state function [5] of liquid density becomes a linear function of pressure (T constant):

$$
\begin{equation*}
\rho_{\ell}=a+b . p \tag{4.1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
a=A_{5}+A_{6}+A_{7} T^{2}-P_{r e f} / c_{l}^{2} \\
b=1 / c_{l}^{2} & \\
A_{5}=1.0042 \times 10^{3} & c_{l}^{2}=2.0 \times 10^{-7} \\
A_{6}=-2.1390 \times 10^{-1} & P_{r e f}=1.5 \times 10^{5} \\
A_{7}=-1.1046 \times 10^{-5} &
\end{array}
$$

T is in ${ }^{\circ} \mathrm{K}$ and P in Pa . Range of validity: $550<\mathrm{T}<2270^{\circ} \mathrm{K}$ In the next subsection, we shall study a simple onedimensional problem of a channel defined by a single cell for which a pressure perturbation is applied given

Figure 4.1. Representation of a single-cell problem.
the assumptions stated before while the following subsection applies the results for a multi-cell case.
IV.2. A• single-cell problem

As stated before inlet and outlet pressures are imposed as boundary conditions. The initial pressure pulse condition is applied on the cell itself.

Because of the symmetry of the problem (fig. 4.1) the velocities at both cell edges are always equal in absolute value and opposite in direction

$$
\begin{equation*}
U_{\frac{1}{2}}=-U_{-\frac{1}{2}} \tag{4.2}
\end{equation*}
$$

Therefore we are left with 2 unknowns only: the pressure in the cell and the velocity at the cell face (P 。 and $U_{\frac{1}{2}}$). Writing the mass equation using (2.38), (4.1) and (4.2), we obtain:

$$
\begin{equation*}
b\left(P_{0}^{n+1}-P_{0}^{n}\right) \frac{\Delta x}{\Delta t}+2 \rho_{\frac{1}{2}} U^{n+1}=0 \tag{4.3}
\end{equation*}
$$

where:

$$
\begin{align*}
& \rho_{1 / 2}=\left\{\begin{array}{l}
\rho_{0}^{n} \text { if } U_{1 / 2}^{n} \geq 0 \\
\rho_{b} \text { if } U_{1 / 2}^{n}<0
\end{array}\right. \\
& \rho_{b}=a+b \cdot P_{b} \\
& P_{b}=\text { constant pressure at boundaries } \\
& U=U_{1 / 2} \\
& \rho_{1 / 2}=\rho_{1 / 2}^{n} \tag{4.4}
\end{align*}
$$

We now write the momentum equation using expression (2.41a) and the same conventions mentioned above. For the purpose of the generality we are writing a mixed friction term:

$$
\begin{equation*}
F_{w}^{n+1 / 2}=(1-\theta) K^{n} U^{n+1}+\theta K^{n} U^{n} \tag{4.5}
\end{equation*}
$$

where $-1 \leq \theta \leq+1$. For $\theta=+1$, the treatment of wall friction becomes fully explicit; while $\theta=0$ corresponds to a semi-implicit one. K^{n} can be deduced from equation (2.12a) and we simplify the notation by writing K with the understanding that it is an old time parameter. The momentum equation can be written as:

$$
\begin{aligned}
U^{n+1}[\bar{\rho}+(1-\theta) K \Delta t]= & \left(P_{0}^{n+1}-P_{b}\right) \Delta t / \Delta x+ \\
& -\bar{\rho} U^{n}(1-\Delta t \cdot \operatorname{conv}-\theta K \Delta t / \bar{\rho})
\end{aligned}
$$

where

$$
\begin{align*}
& \text { conv }=\left\{\begin{array}{cc}
2 u^{n} / \Delta x & \text { if } u^{n}=u_{1 / 2}^{n} \geq 0 \\
0 & \text { if } u^{n}<0
\end{array}\right. \tag{4.7a}\\
& \bar{\rho}=1 / 2\left(\rho_{0}^{n}+\rho_{b}\right) \text { from (2.47) }
\end{align*}
$$

Re-arranging equation (4.6) so that we have en expression of the new time velocity in terms of the new time pressure yields:

$$
\begin{equation*}
U^{n+1}=\frac{P_{o}^{n+1}-P_{b}}{(\bar{\rho}+(1-\theta) K \Delta t)}(\Delta t / \Delta x)+\frac{\bar{\rho} U^{n}(1-\operatorname{con} v \cdot \Delta t-\theta K \Delta t / \bar{\rho})}{(\bar{\rho}+(1-\theta) K \Delta t)} \tag{4.8}
\end{equation*}
$$

Inserting equation (4.8) into (4.3) yields an expression of p_{o}^{n+1} as a function of old time quantities that are already known.

However, being rather interested in having the pressure variation over the time step, we substract by $\mathrm{P}_{0}^{\mathrm{n} \text { : }}$ so that we obtain the following relation:

$$
\begin{equation*}
P_{0}^{n+1}-P_{0}^{n}=\frac{A X^{2}+B X}{A^{1} X^{2}+B^{1} X+C^{1}} \tag{4.9}
\end{equation*}
$$

where

$$
\begin{align*}
& X=\Delta t \\
& A=2 \rho_{1 / 2}\left[P_{b}-P_{o}^{n}+U^{n} \Delta x(\bar{\rho} \text { conv }+\theta K)\right] \\
& B=-2 \rho_{1 / 2}-U^{n} \Delta x \\
& A^{\prime}=2 \rho_{1 / 2} \\
& B^{\prime}=(1-\theta) K b(\Delta x)^{2} \\
& C^{\prime}=\operatorname{bo}(\Delta x)^{2} \tag{4.10}
\end{align*}
$$

$A^{\prime}, B^{\prime}, C^{\prime}$ are always positive and therefore there is no real positive time step size for which the pressure variation ($P_{0}^{n+1}-P_{0}^{n}$) will be infinite.

We now concentrate on the critical situations that lead to the code's breakdown after completed condensation:

1) pressure decreasing and undershooting the steady state pressure which is here equal to $P_{b}\left(P_{o}^{n}<P_{b}\right)$. We are also placing ourself in the most critical condition where P_{0} is very close to 0.0 bar and the velocity is still positive accentuating the trend (fluid extracted from the cell, $U_{1 / 2}>0$). We then look for the Δt 's for which a flow reversal
is possible before P_{0} goes to nonphysical values.
2) The second critical condition is the opposite of the first one: it corresponds to the pressure increasing and overshooting the steady state pressure situation ($P_{\circ}^{n}>P_{b}$, and $P_{0} \simeq 20.0$ bars), while the velocity is still negative (fluid injected into the cell, $U_{\frac{1}{2}}^{n}<0$).

Examining the first case described above, we can easily note that B is negative and A is positive when U is positive and F_{0} is smaller than P_{b} (especially when $P_{0} \simeq 0.0$ bar).

If $\Delta t_{\text {o }}$ is the non-zero root that cancels the numerator of (4.9), Δt o is equal to:
$\Delta t_{o}=-B / A=\frac{\bar{\rho} U^{n} \cdot \Delta x}{\left[P_{b}-P_{0}^{n}+U^{n} \Delta x(\bar{\rho} \cdot \operatorname{conv}+\theta K)\right]}$

Let Δt_{c} be the convective time step limit

$$
\begin{equation*}
\Delta t_{c}=\frac{\Delta x}{\left|U^{n}\right|} \tag{4.12}
\end{equation*}
$$

We check that Δt_{c} is always larger than Δt_{0} :

$$
\begin{equation*}
\Delta t_{0}<\Delta t_{c} \tag{4.13}
\end{equation*}
$$

Proof:

$$
\begin{align*}
& \frac{\bar{\rho} U^{n} \cdot \Delta x}{\left[P_{b}-P_{0}^{n}+U^{n} \Delta x(\bar{\rho} \cdot \operatorname{conv}+\theta K)\right]}<\frac{\Delta x}{\left|U^{n}\right|} \\
\rightarrow & \frac{\bar{\rho} U^{n} \cdot\left|U^{n}\right|-P_{b}+P_{0}^{n}-U^{n} \Delta x(\bar{\rho} \cdot \text { conv }+\theta K)}{\left|U^{n}\right| \cdot\left[P_{b}-P_{0}^{n}+U^{n} \Delta x(\bar{\rho} \cdot \text { conv }+\theta K)\right]}<0 \tag{4.14}
\end{align*}
$$

after dividing by. Δx from each side of the inequality.

Since $U^{n}>0$, conv $=\frac{2 U^{n}}{\Delta X}$ from equation (4.11). Therefore in the numerator of equation (4.14), the following expression

$$
\left[\bar{\rho} u^{n} \cdot\left|u^{n}\right|-u^{n} \cdot \Delta x \cdot(\bar{\rho} \cdot \operatorname{conv}+\theta K)\right]
$$

is necessarily negative. P_{0} being smaller than P_{b} the numerator of (4.14) is also negative. The denominator is positive, therefore (4.13) is true. We can easily check that $\Delta t_{0}>0$ when $U^{n}>0$ and $P_{o}^{n}<P_{b}$ from equation (4.11).

The study of equation (4.9) where ΔP_{\circ} is a function of Δt and using equation (4.3) yields the following results:
for $\quad \Delta t=\Delta t_{0} ; P_{o}^{n+1}=P_{o}^{n}$ and $U^{n+1}=0$
for $\Delta t_{0}<\Delta t<\Delta t_{c} ; P_{\circ}^{n+1}>P_{\circ}^{n}$ and $U^{n+1}<0$
for $0 \leq \Delta t<\Delta t_{0} ; P_{\circ}^{n+1} \leq P_{\circ}^{n}$ and $U^{n+1}>0$
Important conclusions can be drawn from these expressions. We see that too small time steps keep the pressure decreasing and prevent any flow reversal, whereas time steps larger than Δt 。allow a flow reversal and the pressure to increase. This demonstrates that the semi-implicit scheme has a lower time step limit, and we will show in the next chapter the reasons for the existence of such unexpected limit.

Two additional remarks are to be made at this point.

- a) Considering the same experiment for vapor, the equations remain unchanged the only difference being in the value of the density: the changing terms are $\bar{\rho}$ and $\rho_{\frac{1}{2}}$.

Specifically, the expression of $\Delta t_{\circ}(4.11)$ is unchanged: $\bar{\rho}$ is smaller while other variables are the same. $\bar{\rho}$ appears in the numerator and the denominator of (4.11). A study of this function, $\bar{\rho}$ being then the only variable, indicates a decrease of
the whole expression when $\bar{\rho}$ decreases. Practically, Δt_{0}, which is our previously defined lower limit of "pseudo-stability" of the system, is much smaller for vapor and therefore seldom noticeable compared to the situation for liquid.

- b) When $P_{0}^{n}<P_{b}, P_{0}^{n} \cong 0.0$ bar and $U^{n}<0$ so that the flow has already reversed, we can see that Δt_{0} is negative meaning that $P_{0}^{n+1}-P_{0}^{n}$ is always positive whatever the time step size. We have checked that the pressure has to increase when flow is injected in the cell which is a normal behavior. We now turn to the aforementioned second critical condition which turns out to be very similar to the former one:

$$
P_{0}^{n}>P_{b}, \quad P_{0}^{n_{0}} \cong 20.0 \text { bars }, U^{n^{2}} 0 \text { and conv }=0 .
$$

Inequality (4.14) remains the same; however here, we note that the denominator is negative. In order to have $\Delta t_{o}<\Delta t_{c}$, the numerator has to be positive; the velocity must verify the following inequality:

$$
\left(U^{n}\right)^{2} \leq\left(P_{o}^{n}-P_{b}\right) / \bar{\rho}
$$

Considering a typical case where $\mathrm{P}_{\mathrm{b}}=1.0 \mathrm{~b}, \bar{\rho}=800 \mathrm{~kg} / \mathrm{m}^{3}$, U^{n} must be less than $50 \mathrm{~m} / \mathrm{sec}$; if $P_{b}=16.0 \mathrm{~b}$, U^{n} must be less than $22 \mathrm{~m} / \mathrm{sec}$. For our numerical experiments of condensation, these situations were never encountered and therefore for our analysis inequality (4.14) is always true.

Also $\Delta t_{0}>0$ when $U^{n}<0$ and $P_{0}^{n}>P_{b}$ from (4.11). Similarly to (4.15) we have:

$$
\begin{align*}
& \text { for } \quad \Delta t=\Delta t_{0} ; P_{0}^{n+1}=P_{0}^{n} \text { and } U^{n+1}=0 \\
& \text { for } \Delta t_{0}<\Delta t<\Delta t_{c} ; P_{0}^{n+1}<P_{0}^{n} \text { and } U^{n+1}>0 \\
& \text { for } 0<\Delta t<\Delta t_{0} ; P_{0}^{n+1}>P_{0}^{n} \text { and } U^{n+1}<0 \tag{4.16}
\end{align*}
$$

Figure 4.2. Staggerred mesh for the momentum equations.

Again, in this case, flow reversal occurs if the time step size is larger than Δt_{0}, which sets the same lower limit for the code's ability to simulate a pressure pertubation and condensation.

If $P_{o}^{n} \simeq 20.0$ bars and $U^{n}>0$ then $\Delta t_{0}<0$; meaning here again that pressure can only decrease whatever the time step size.

We have finally demonstrated in this subsection the existence of a lower limit to the time step beyond which the numerical scheme in THERMIT-4E cannot reverse the flow of subcooled liquid following either an undershooting or an overshooting of the expected pressure level. This is a rather surprising finding and it is a result of the intrinsic non-linear dependancy of the presure on the time step. We shall now try to generalize this result to multi-cell channels.

IV. 3. Application to multi-cell pipes

For our one-dimensional, barotropic and multicell analysis, let $G=\rho U$ and $c o=\partial(\rho U U) / \partial x$. Then the finite difference analogs of the mass and momentum equations are (THERMIT's semi-implicit numerical method):

$$
\begin{align*}
& \frac{1}{\Delta t}\left(\rho_{i}^{n+1}-\rho_{i}^{n}\right)+\frac{1}{\Delta x}\left(G_{+}^{n+1}-G_{-}^{n+1}\right)=0 \tag{4.17}\\
& \frac{1}{\Delta t}\left(G_{+}^{n+1}-G_{+}^{n}\right)+\underset{+}{c} 0_{+}^{n}+\frac{1}{\Delta x}\left(P_{i+1}^{n+1}-P_{i}^{n+1}\right)=\underset{+}{F_{+}^{n}} \tag{4.18}\\
& (-) \\
& (-) \\
& (-)
\end{align*}(i) \quad(i-1) \quad(-) .
$$

where the (-) and (+) refers to the two cell boundaries of our familiar staggered mesh arrangement (fig 4.2) and F
represents the friction term. Substituting the two momentum equations (for the (-) and (+) cell edges) into the mass equation for cell (i) results in

$$
\begin{align*}
\frac{1}{\Delta t^{2}}\left(P_{i}^{n+1}-P_{i}^{n}\right) & +\frac{1}{\Delta t \Delta x}\left(G_{+}^{n}-G_{-}^{n}\right)-\frac{1}{\Delta x^{2}}\left(P_{i+1}^{n+1}-2 P_{i}^{n+1}+P_{i-1}^{n+1}\right) \\
& =\frac{1}{\Delta x}\left(c o_{+}^{n}-c o_{-}^{n}\right)-\frac{1}{\Delta x}\left(F_{+}^{n}-F_{-}^{n}\right) \tag{4.19}
\end{align*}
$$

We now eliminate the density in favor of the pressure, using the equation of state (4.1) in the form:

$$
\begin{equation*}
\rho_{i}^{n+1}-\rho_{i}^{n}=\frac{1}{c_{\ell}^{2}}\left(P_{i}^{n+1}-P_{i}^{n}\right) \tag{4.20}
\end{equation*}
$$

Substitute equation (4.20) into (4.19):

$$
\begin{align*}
&(\Delta t / \Delta x)^{2}\left\{P_{i}^{n+1}\left[2+\left(\Delta x / c_{i} \Delta t\right)^{2}\right]-P_{i-1}^{n+1}-P_{i+1}^{n+1}\right\}=\left(1 / c_{l}^{2}\right) P_{i}^{n} \\
&-(\Delta t / \Delta x)\left(G_{+}^{n}-G_{-}^{n}\right)+\left(\Delta t^{2} / \Delta x\right)\left[\left(c 0_{+}^{n}-c 0_{-}^{n}\right)-\left(F_{+}^{n}-F_{-}^{n}\right)\right] \tag{4.21}
\end{align*}
$$

The right-hand-side of the above equation contains only old-time quantities; we have indeed an equation for the new pressure. We now cast equation (4.21) in the way that gives the variation of pressure in a cell over the time step as it was done in equation (4.9):
$P_{i}^{n+1}-P_{i}^{n}=\frac{\Delta t^{2}\left[P_{i-1}^{n+1}+P_{i+1}^{n+1}-2 P_{i}^{n}+\left(\Delta c 0^{n}-\Delta F^{n}\right) \cdot \Delta x\right]+\Delta x \Delta t \Delta G^{n}}{2 \Delta t^{2}+\left(\Delta x / c_{\ell}\right)^{2}}$
where:

$$
\begin{aligned}
\Delta \phi & =\phi_{+}^{n}-\phi_{-}^{n} \\
\text { and } \phi & =c 0, F \text { or } G
\end{aligned}
$$

We can deduce from equation (4.22) the critical time step that was defined in equation (4.11) and for which $P_{i}^{n+1}-P_{i}^{n}=0$:

$$
\begin{equation*}
\Delta t_{0, i}=\left(\Delta x \Delta G^{n}\right) /\left[P_{i+1}^{n+1}+P_{i-1}^{n+1}-2 P_{i}^{n}+\Delta c 0^{n}-\Delta F^{n}\right] \tag{4.23}
\end{equation*}
$$

We see that $\Delta t_{0, i}$ is expressed in terms of the new time pressure of the neighboring cells. If N is the number of cells composing the pipe, in order to find $\Delta t_{0, i}$ for which $P_{i}^{n+1}=P_{i}^{n}$, we have to solve a linear system of N equations and N unknowns - the δP_{i} 's - with a parameter - $\Delta t_{0, i}$ - that appears in both the right-hand-side and in the Jacobian matrix of equation (2.55).

More specifically, we have to find the right parameter corresponding to the solution which would include $\delta P_{I}=0$, if I is the cell number where the critical time step ($\Delta t_{0, i}$) calculation is needed.

Numerically, we decouple the system into two linear sub-systems of equations.

The first sub=system has (I-1) equations and (I-1)
unknowns: $\delta P_{1}, \delta P_{2}, \ldots, \delta P_{I-1}$. The second sub-system has ($N-I$) equations and ($N-I$) unknowns: $\delta P_{I+1}, \delta P_{I+2}, \ldots, \delta P_{N}$.

Therefore, we can obtain the $\delta P_{i}{ }^{\prime} s(i=1, N$ and $i \neq I)$
in terms of $\Delta t_{0, i}$. Considering now the $I^{\text {th }}$ equation which contains $\delta P_{I-1}, \delta P_{I}$ and δP_{I+1}, knowing $\delta P_{I-1}\left(\Delta t_{0, I}\right), \delta P_{I+1}\left(\Delta t_{0, I}\right)$ previously calculated and $\delta P_{I}=0$, we then solve this equation for $\Delta t_{0, i}$.

This procedure has to be repeated for every cell encountering a condensation problem; we will then consider only the maximum of all the $\Delta t_{0, i}$'s computed at every time step. However, this operation has proved to be very costly in computing time; it seemed more reasonable to call for the convective time step limit whenever a critical time step is needed since; it has been demonstrated in (IV.2) that the former is always larger and in these circumstances flow reverses avoiding the breakdown of the calculation.

In order to implement the method we have described before, a subroutine presented in Appendix E performs a series of tests on the void fraction at each cell: the subroutine is activated by a flag which is turned on whenever the void fraction of any cell decreases especially when the void fraction goes from some value to zero. The flag is also turned on when all the cells are filled with liquid. Once it is turned on, the code will use the minimum of the convective time step limit calculated for the whole channel and the $(\Delta t)_{\text {max }}$ prescribed by the user in the input file. A flowchart of the subroutine is given on figure 4.3.

Figure 4.3. Logic of the subroutine implemented.

V. Comparative Analysis with other Methods

This chapter is devoted to the investigation of a spectrum of numerical methods and the possible existence of a minimum time step necessary for condensation simulations. For the review of the following schemes, the conventions and notations remain unchanged and the assumptions made are those listed in sub-section (IV.2). Also, for the simplicity of the calculations, a one-cell control volume is considered all throughout our work: same results can be obtained for a multi-cell channel since the problem is basically equivalent.
V.1. An implicit mass convection scheme

The difference between the semi-implicit scheme examined in chapter IV and a fully implicit mass equation scheme is that the densities in the mass equation (the convective term) are treated implicitly: the momentum equation remains the same. With these considerations, the equations can be written as:

Mixture Mass Equation:

$$
\begin{equation*}
b \cdot \Delta P_{\circ} \frac{\Delta x}{\Delta t}+2 \rho_{\frac{1}{2}}^{n+1} U^{n+1}=0 \tag{5.1}
\end{equation*}
$$

where:

$$
\rho_{\frac{1}{2}}^{n+1}= \begin{cases}\rho_{0}^{n+1} & \text { if } U^{n} \geq 0 \tag{5.2}\\ \rho_{b} & \text { if } U^{n}<0\end{cases}
$$

Momentum equation:
identical to equation (4.6)

In order to linearize the mass equation we denote:

$$
\begin{align*}
& P_{0}^{n+1}=\Delta P_{0}+P_{0}^{n} \\
& U^{n+1}=\Delta U+U^{n} \tag{5.3}
\end{align*}
$$

Using equations (5.3) into the momentum equation, we have:

$$
\begin{equation*}
\Delta U=R \cdot \Delta P_{0}+S \tag{5.4a}
\end{equation*}
$$

where:

$$
\begin{align*}
& R=\frac{\Delta t}{\Delta x} /[\bar{\rho}+(1-\theta) \cdot K \Delta t] \\
& S=\left[\left(P_{0}^{n}-P_{b}\right) \frac{\Delta t}{\Delta x}-U^{n} \Delta t \cdot(K \theta+\bar{\rho} \operatorname{con} v)\right] /[\bar{\rho}+(1-\theta) K \Delta t] \tag{5.4b}
\end{align*}
$$

If $U^{n}<0$, then from equation (5.2) $\rho_{\frac{1}{2}}^{n+1}=\rho_{b}$ and therefore the mass equation is identical to the one for the semi-implicit scheme: the results pertaining to the case of pressure overshooting are also the same. However, for $U^{n} \geq 0, \rho_{\frac{1}{2}}^{n+1}=\rho_{0}^{n+1}$; in this case, the mass equation is written as follows after combining equations (5.1), (5.2), (5.3) and (4.4) and neglecting the second order term:

$$
\begin{equation*}
b \cdot \Delta P_{0} \frac{\Delta x}{\Delta t}+2 a\left(\Delta U+U^{n}\right)+2 b\left(U^{n} \Delta P_{0}+P_{0}^{n} \Delta U+P_{0}^{n} U^{n}\right)=0 \tag{5.5}
\end{equation*}
$$

Replacing the expression for ΔU from equation (5.4a) into equation (5.5) and solving for ΔP_{\circ} yields:

$$
\begin{equation*}
\Delta P_{\circ}=\frac{A \cdot \Delta t+B}{C} \tag{5.6a}
\end{equation*}
$$

where:

$$
\begin{align*}
& A=-U^{n} \cdot[\bar{\rho} \cdot \operatorname{conv}+(2 \theta-1) \cdot K]+\left(P_{0}^{n}-P_{b}\right) / \Delta x \\
& B=U^{n} \cdot \bar{\rho} \\
& C=-\frac{\Delta t}{\Delta x}-\frac{b}{\rho_{0}^{n}}[\bar{\rho}+(1-\theta) K \Delta t]\left(U^{n}+\frac{1}{2} \frac{\Delta x}{\Delta t}\right) \tag{5.6b}
\end{align*}
$$

$$
\text { since: } \rho_{0}^{n}=a+b P_{0}^{n} \quad \text { from equation (4.1) }
$$

For our case, B is positive and C is negative. Considering a critical situation of a pressure undershooting where $P_{0}^{n}<P_{b}$ and $U^{n} \geq 0$, then A is negative. The function for $\Delta P_{\circ}=P_{0}^{n+1}-P_{0}^{n}$ in equation (5.6a) leads us to define a time step Δt 。 which has a similar significance to those defined in (4.2) and (4.3):

$$
\begin{aligned}
\Delta t_{0}=-B / A & =\bar{\rho} U^{n} /\left[U^{n}(\bar{\rho} \cdot \operatorname{conv}+(2 \theta-1) \cdot K)+\left(P_{b}-P_{0}^{n}\right) / \Delta x\right] \\
& \simeq\left(\Delta t_{0}\right)_{\text {semi-implicit }}
\end{aligned}
$$

This result shows that an implicit mass equation scheme behaves like the semi-implicit one toward condensation or any pressure perturbation: in case of a pressure undershooting or overshooting of the steady state pressure level (here P_{b}), it can be easily overcome by using a time step larger than Δt_{0}. Moreover, work done on this particular implicit scheme by S. Free and A. Schor [14] demonstrated that it is unconditionally stable, (for subsonic flow) so that there is no upper limit on the time step.

V.2. The fully explicit scheme

Once again, the same single-cell control volume is considered, its simplicity enabling us to gain insight into the problem. The mass equation can be written:

$$
\begin{equation*}
b \cdot \Delta_{t} P_{0} \cdot \Delta x / \Delta t+2 \rho_{\frac{1}{2}} U^{n}=0 \tag{5.7}
\end{equation*}
$$

where: $\quad \Delta_{t} P_{o}=P_{o}^{n+1}-P_{o}^{n}$
Re-arranging (5.7), P_{\circ}^{n+1} can be calculated by:

$$
\begin{equation*}
P_{o}^{n+1}=P_{o}^{n}-\left(2 \rho_{\frac{1}{2}} \cdot U^{n} \Delta t\right) / b \Delta x \tag{5.8}
\end{equation*}
$$

Considering a pressure undershooting such that:

$$
\begin{equation*}
0<P_{o}^{n}<P_{b} \text { and } U^{n}>0 \tag{5.9}
\end{equation*}
$$

Calculating the adequate Δt 's for which P_{0}^{n+1} is positive using (5.8) yields:

$$
\begin{equation*}
\Delta t \leq \frac{P_{o}^{n} b \Delta x}{2 \rho_{\frac{1}{2}} U^{n}}=(\Delta t)_{\text {mass }} \tag{5.10}
\end{equation*}
$$

The momentum equation can be written as:

$$
\begin{equation*}
u^{n+1}=u^{n}+\frac{P_{o}^{n}-P_{b}}{\bar{\rho}}(\Delta t / \Delta x)-U^{n} \Delta t(\operatorname{conv}+K / \bar{\rho}) \tag{5.11}
\end{equation*}
$$

Since $U^{n}>0$, we need to find the adequate Δt 's that give a negative U^{n+1} which corresponds to a flow reversal; (5.11) yields

$$
\begin{equation*}
\Delta t \geq \frac{U^{n} \overline{\hat{\rho}} \Delta x}{U^{n} \bar{\rho} \Delta x(\operatorname{conv}+k / \bar{\rho})+P_{b}-P_{o}^{n}}=(\Delta t)_{\text {mom }} \tag{5.12}
\end{equation*}
$$

In conclusion, in order to have a succesful reversed flow before P_{0} becomes negative we need to choose Δt such as:

$$
\begin{equation*}
(\Delta t)_{\text {mom }} \leq \Delta t \leq(\Delta t)_{\text {mass }} \tag{5.13}
\end{equation*}
$$

Therefore, we have to check that such Δt 's do exist by verifying that:

$$
\begin{equation*}
(\Delta t)_{\text {mom }}<(\Delta t)_{\text {mass }} \tag{5.14}
\end{equation*}
$$

using (5.10) and (5.11) into (5.14) gives:

$$
\begin{equation*}
\frac{2\left(U^{n}\right)^{2} \bar{\rho}}{U^{n-} \Delta x(\operatorname{conv}+K / \bar{\rho})+P_{b}-P_{\rho}^{n}}<P_{0}^{n} b / \rho_{\frac{1}{2}} \tag{5.15}
\end{equation*}
$$

Practically, the inequality (5.15) turns out to be invalid, especially for low P_{b} 's; for example, for $P_{0}^{n}=0.5$ bar and $P_{b}=1.0$ bar while $U^{n}=2.0 \mathrm{~m} / \mathrm{sec}$, the flow will not reverse and P_{0} will keep decreasing and become negative.

The relatively large density of subcooled liquid renders ($\Delta t)_{\text {mom }}$ larger and $(\Delta t)_{\text {mass }}$ smaller so that eventually we rather have:

$$
(\Delta t)_{\text {mom }}>(\Delta t)_{\text {mass }}
$$

This result shows that unlike the implicit scheme, explicit schemes cannot correctly simulate either a condensation process or an important pressure pertubation.

V.3. The Method of Characteristics

V.3.1. Introduction

The basic equations of the HEM (2.8) are transformed into the characteristic form, leading to a set of ordinary differential equations. One of the most attractive features of the characteristic method is that the numerical schemes based on it conserve the physical properties of the system. Basically, the characteristic method tracks the propagation of waves and calculates their strength. Therefore, it is comparatively easy to simulate a fluid system including fluid discontinuities or shock waves.

Considering our one-dimensional homogeneous flow of subcooled liquid in a conduit of uniform cross-section, the equations of continuity and motion are respectively equations (2.8a) and (2.8b) (repeated below for convenience), and the energy equation is cast in terms of specific enthalpy:

$$
\begin{gather*}
\frac{\partial}{\partial t} \rho_{m}+\frac{\partial}{\partial x}\left(\rho_{m} U_{m}\right)=0 \tag{2.8a}\\
\rho_{m} \frac{\partial U_{m}}{\partial t}+\left(\rho_{m} U_{m}\right) \frac{\partial U_{m}}{\partial x}+\frac{\partial P}{\partial x}=-F_{w}+\rho_{m} \vec{x} \cdot \vec{g} \tag{2.8b}\\
\rho_{m}\left(\frac{\partial h}{\partial t}+U \frac{\partial h}{\partial x}\right)-\left(\frac{\partial P}{\partial t}+U \frac{\partial P}{\partial x}\right)=0 \tag{5.16}
\end{gather*}
$$

Note that no heat input is being considered. The partial derivatives of h may be written as:

$$
\begin{align*}
& \frac{\partial h}{\partial t}=\frac{\partial h}{\partial \rho} \frac{\partial \rho}{\partial t}+\frac{\partial h}{\partial P} \frac{\partial P}{\partial t} \tag{5.17}\\
& \frac{\partial h}{\partial x}=\frac{\partial h}{\partial \rho} \frac{\partial \rho}{\partial x}+\frac{\partial h}{\partial P} \frac{\partial P}{\partial x} \tag{5.18}
\end{align*}
$$

The square of sonic velocity can be defined as (App.C, eq. C-20):

$$
\begin{equation*}
c^{2}=\frac{-\partial h / \partial \rho}{\partial h / \partial P-1 / \rho} \tag{5.19}
\end{equation*}
$$

Using equations (2.8a), (5.17), (5.18) and (5.19) equation (5.16) is transformed to:

$$
\begin{equation*}
\rho c^{2} \frac{\partial U}{\partial x}+\left(\frac{\partial P}{\partial t}+U \frac{\partial P}{\partial x}\right)=0 \tag{5.20}
\end{equation*}
$$

The set of equations (2.8a), (2.8b) and (5.20) are
the basic equations used to derive the characteristic equations.

Let us first consider the set of equations (2.8b) and (5.20): along an arbitrary chosen curve on the $x-t$ plane we have the following equations:

$$
\begin{align*}
& d U=\frac{\partial U}{\partial t} d t+\frac{\partial U}{\partial x} d x \tag{5.21}\\
& d P=\frac{\partial P}{\partial t} d t+\frac{\partial P}{\partial x} d x \tag{5.22}
\end{align*}
$$

Equations (2.8b), (5.20), (5.21) and (5.22) provide a sufficient set to determine $\partial U / \partial t, \partial U / \partial x, \partial P / \partial t$ and $\partial P / \partial x$ along this curve if the determinant of the coefficients is not zero. Being however interested in the family of curves for which the determinant is zero, we have:

$$
\left|\begin{array}{llll}
\rho & \rho U & 0 & 1 \tag{5.23}\\
0 & \rho c^{2} & 1 & U \\
d t & d x & 0 & 0 \\
0 & 0 & d t & d x
\end{array}\right|=0
$$

Expanding the determinant and solving for $d x / d t$ we obtain:

$$
\begin{align*}
& \frac{d x}{d t}=U+c \tag{5.24}\\
& \frac{d x}{d t}=U-c \tag{5.25}
\end{align*}
$$

where (5.24) and (5.25) are referred to as sonic characteristic lines. When (5.24) is satisfied by a curve on the $x-t$ plane, the set of equations (2.8b), (5.20), (5.22) and (5.24) are consistent only if the following determinant becomes zero:

$$
\left|\begin{array}{llll}
\rho & \rho U & 0 & F \tag{5.26}\\
0 & \rho c^{2} & 1 & 0 \\
d t & d x & 0 & d U \\
0 & 0 & d t & d P
\end{array}\right|=0
$$

where F is the friction term in the momentum equation (2.8b). (5.26) and (5.24) yields:

$$
\begin{equation*}
\rho c \frac{d U}{d t}+\frac{d P}{d t}=c F \tag{5.27}
\end{equation*}
$$

Similarly along a curve satisfying (5.25) we have:
$-\rho c \frac{d U}{d t}+\frac{d P}{d t}=-c F$

In our case, we have assumed constant temperature and energy of the fluid (subcooled liquid) and therefore (5.24), (5.27), (5.25) and (5.28) are used to calculate P and U along the sonic characteristic lines. We shall now apply this method of solution to our sample problem using successively an implicit and an explicit scheme.

V.3.2. Implicit characteristic method

The lines represented by (5.24) and (5.25) in a time and space mesh box are referred to as positive and negative characteristic lines respectively, or simply as sonic characteristic lines. They are illustrated in fig. 5.1.

Recalling the configuration of our problem, consisting of a single-cell and equal pressures at boundaries, its symmetry allows us to consider the equivalent problem of only a half of the cell with imposed pressure at the inlet and zero velocity at the outlet as boundary conditions.

Figure 5.1. Sonic Characteristic lines

If subscripts 1 and 2 refer to the inlet and outlet, we have:

$$
\begin{align*}
P_{2}^{n}=P_{2}^{n+1}=P_{2} & =\text { constant } \\
U_{1} & =0 \tag{5.29}
\end{align*}
$$

The difference approximation to equations (5.27) and (5.28) along the characteristic lines may be written, respectively, as:

$$
\begin{align*}
& \frac{P_{2}-P_{G}}{\Delta t}+(\rho c)_{+} \frac{U_{2}^{n+1}-U_{G}}{\Delta t}=(c F)_{+} \tag{5.30}\\
& \frac{P_{1}^{n+1}-P_{H}}{\Delta t}-(\rho c)_{-} \frac{0-U_{H}}{\Delta t}=-(c F)_{-} \tag{5.31}
\end{align*}
$$

Implicit difference schemes for characteristic equations are obtained in accordance with fig. 5.la where the points G and H are located on the vertical sides of each mesh box. The values of P and U at those points are interpolated between the values of $(1, n)$ and $(1, n+1)$ for G and between $(2, n)$ and $(2, n+1)$ for H applying equations (5.29) :

$$
\begin{align*}
& P_{G}=\left(1-n_{+}\right) P_{1}^{n+1}+n_{+} P_{1}^{n} \\
& U_{G}=\left(1-n_{+}\right) U_{1}^{n+1}+n_{+} U_{1}^{n}=0 \\
& P_{H}=\left(1-n_{-}\right) P_{2}^{n+1}+n_{-} P_{2}^{n}=P_{2} \\
& U_{H}=\left(1-n_{-}\right) U_{2}^{n+1}+n_{-} U_{2}^{n} \tag{5.32}
\end{align*}
$$

where:

$$
\begin{aligned}
& \eta_{+}=\frac{\Delta x}{\Delta t} \frac{1}{\left(c+U_{2}\right)_{+}} \\
& \eta_{-}=\frac{\Delta x}{\Delta t} \frac{1}{\left(c-U_{2}\right)_{-}} \\
& ()_{+} \text {and }()_{-} \text {denote averages along the positive and }
\end{aligned}
$$ negative sonic characteristic lines. With the following change of variables :

$$
\begin{aligned}
& \Delta U_{2}=U_{2}^{n+1}-U_{2}^{n} \\
& \Delta P_{1}=P_{1}^{n+1}-P_{1}^{n}
\end{aligned}
$$

and using equations (5.32) and (5.33) into (5.30) and 45.31) we finally obtain:

$$
\begin{align*}
-\left(1-\eta_{+}\right) \Delta P_{1}+(\rho c)_{+} \Delta U_{2}= & \frac{\Delta x}{\left(c+U_{2}\right)_{+}}(c F)_{+}-(\rho c)_{+} U_{2}^{n} \\
& -\Delta_{x} P^{n} \tag{5.34}\\
\Delta P_{1}+(\rho c)_{-}\left(1-n_{-}\right) \Delta U_{2}= & \frac{\Delta x}{\left(c-U_{2}\right)_{-}}(c F)_{-}-(\rho c)_{-} U_{2}^{n} \\
& +\Delta_{x} P^{n} \tag{5.35}
\end{align*}
$$

where

$$
\Delta_{x} p^{n}=P_{2}-p_{1}^{n}
$$

We now have to solve at every time step, a system of 2 equations and 2 unknowns, ΔP_{1} and ΔU_{2}. However, being concerned only with the pressure variation over the time step when critical situations are expected, ΔU_{2} is eliminated between equations (5.34) and (5.35) to give:

$$
\begin{equation*}
\Delta P_{1}=\frac{A \Delta t+B}{\Delta t \cdot C} \tag{5.36}
\end{equation*}
$$

where:

$$
\begin{align*}
A= & \frac{\Delta x}{\left(c+U_{2}\right)_{+}} c_{+} c_{-} \rho_{-} F_{+}-\frac{\Delta x}{\left(c-U_{2}\right)} c_{+} c_{-} \rho_{+} F_{-}-\left(\rho_{-} c_{-}+\rho_{+} c_{+}\right) \Delta_{x} P^{n} \\
B= & \frac{\Delta x}{\left(c-U_{2}\right)} c_{-} \rho_{-}\left(c_{+} \rho_{+} U_{2}+\Delta \Delta_{x} P^{n}-\frac{\Delta x}{\left(c+U_{2}\right)_{+}} c_{+} F_{+}\right) \\
& C=\left(\eta_{+}-1\right)\left(1-\eta_{-}\right)(\rho c)_{-}-(\rho c)_{+} \tag{5.37}
\end{align*}
$$

Since $\eta_{+} \leq 1$ and $\eta_{-} \leq 1, C$ is always negative, as well as the denominator of equation (5.36). Defining $\Delta t_{\text {o }}$ such as $\Delta t_{0}=-B / A$ (5.38), if $-B / A>0$ then $\Delta P_{1}=0$ for $\Delta t=\Delta t_{0}$. Considering the case of pressure undershooting where $P_{1}^{n} \cong 0.0$ bar so that $\Delta_{x} P^{n}>0$, and $U_{2}>0$, equations (5.37) shows that practically the first two terms in the expression of A are comparable in magnitude and opposite so that the third term turns out to be dominant: in this case, A is negative. Also, in the expression of B, the last term is always negligible compared to the first and second terms so that B is positive here. Since C is negative, from equation (5.36) we deduce that ΔP_{1} is positive if $\Delta t>\Delta t_{0}$ and ΔP_{1} is negative if $0 \leq \Delta t<\Delta t_{0}$.

For the case of pressure overshooting where $P_{1}^{n} \cong 20.0$ bars and $U_{2}<0$, the assumptions previously made concerning the expressions of A and B remain valid so that now A is positive and B is negative. Since C is negative, from equation (5.36) we deduce that ΔP_{1} is negative if $\Delta t>\Delta t_{0}$ and ΔP_{1} is positive for $0 \leq \Delta t<\Delta t_{0}$.

These results mean that in order to have a flow reversal which is necessary to avoid having pressure going out of range (negative pressure or exceeding 20.0 bars), we need to impose a time step larger than some critical value Δt_{0}. This conclusion is entirely similar to our findings in chapter V for the treatment of the implicit finite difference.

Furthermore, the implicit method of characteristic requires a time step larger than:

$$
\Delta t \geq \frac{\Delta x}{c-\left|U_{2}\right|}
$$

so that it will be always possible to reverse the flow in these particular "critical" conditions described before, resulting from complete condensation.

V.3.3. Explicit characteristic method

For the explicit scheme, points G and H are on the bottom line of the mesh-box as shown in figure 5.1b.

The values of P and U at those points may be calculated by interpolating the known values at $(1, n)$ and $(2, n)$; using (5.29) we have:

$$
\begin{align*}
& P_{G}=\left(1-\frac{x_{G}}{\Delta x}\right) P_{1}^{n}+\frac{x_{G}}{\Delta x} P_{2} \tag{5.39}\\
& U_{G}=\left(1-\frac{x_{G}}{\Delta x}\right) U_{1}^{n}+\frac{x_{G}}{\Delta x} U_{2}^{n}=\frac{x_{G}}{\Delta x} U_{2}^{n} \tag{5.40}\\
& P_{H}=\left(1-\frac{x_{H}}{\Delta x}\right) P_{1}^{n}+\frac{x_{H}}{\Delta x} P_{2} \tag{5.41}\\
& U_{H}=\left(1-\frac{x_{H}}{\Delta x}\right) U_{1}^{n}+\frac{x_{H}}{\Delta x} U_{2}^{n}=\frac{x_{H}}{\Delta x} U_{2}^{n} \tag{5.42}
\end{align*}
$$

Substituting the values of P_{G}, U_{G}, P_{H} and U_{H} into (5.30) and (5.31) while recalling that $U_{1}=0$ and P_{2} is constant at all times, those equations can be written as:

$$
\begin{align*}
& \Delta P_{1}=\frac{x_{H}}{\Delta x}\left[P_{2}-P_{1}^{n}-(\rho c)_{-} \cdot U_{2}^{n}\right] \tag{5.43}\\
& \Delta U_{2}=\frac{1}{(\rho c)_{+}}\left[\Delta t c F_{+} U_{2}^{n}+\left(1-\frac{x_{G}}{\Delta x}\right)\left(P_{1}^{n}-P_{2}-(\rho c)_{+} U_{2}^{n}\right)\right] \tag{5.44}
\end{align*}
$$

where $\quad \Delta p_{1}=p_{1}^{n+1}-p_{1}^{n}$

$$
\begin{equation*}
\text { and } \quad \Delta U_{2}=U_{2}^{n+1}-U_{2}^{n} \tag{5.46}
\end{equation*}
$$

As for the implicit scheme, () $)_{+}$and () refers to the average quantity along the positive and the negative characteristic lines respectively.

In equations (5.43) and (5.44), $x_{G} / \Delta x$ and $x_{H} / \Delta x$ need to be calculated.

From equation (5.24) which corresponds to the positive characteristic line we have:

$$
\begin{equation*}
x_{G}=\Delta x-\Delta t\left(\bar{U}+c_{+}\right) \tag{5.47}
\end{equation*}
$$

where $\quad U=0.5\left(U_{G}+U_{2}^{n+1}\right)$
Using equations (5.40) in (5.48) and then in (5.47) yields, after dividing by Δx :

$$
\begin{equation*}
\frac{x_{G}}{\Delta x}=\frac{2 \Delta x-\Delta t\left(U_{2}^{n+1}+2 c_{+}\right)}{2 \Delta x+U_{2}^{n} \Delta t} \tag{5.49}
\end{equation*}
$$

Similarly, x_{H} is computed from equation (5.25) using the negative characteristic line;

$$
\begin{align*}
x_{H} & =\Delta t\left(c_{-}-\bar{U}\right) \tag{5.50}\\
\text { where } \quad \bar{U} & =0.5\left(U_{H}+U_{1}^{n+1}\right) \tag{5.51}
\end{align*}
$$

Equation (5.42) substituted into equation (5.51) yields:

$$
\begin{equation*}
\bar{u}=\frac{x_{H}}{\Delta x} \frac{u_{2}^{n}}{2} \tag{5.52}
\end{equation*}
$$

Then equations (5.50) and (5.52) combined give after dividing by Δx :

$$
\begin{equation*}
\frac{x_{H}}{\Delta x}=\frac{2 c_{-} \Delta t}{2 \Delta x+U_{2}^{n} \Delta t} \tag{5.53}
\end{equation*}
$$

Introducing the equation for $x_{H} / \Delta x$ from (5.53) into (5.43) we obtain :

$$
\begin{equation*}
\Delta P_{1}=\frac{2 c-\Delta t}{2 \Delta x+U_{2}^{n} \Delta t}\left[\left(P_{2}-P_{1}^{n}\right)-(\rho c) U_{-}^{n}\right] \tag{5.54}
\end{equation*}
$$

Considering a pressure undershooting due to condensation, where the most critical condition already described is encountered:

$$
P_{1}^{n} \simeq 0.0 \text { bar and } U_{2}^{n}>0
$$

(5.54) shows that the pressure trend will not reverse if

$$
u_{2}^{n}>\frac{P_{2}}{(\rho c)_{-}}
$$

whatever the time step is. Considering now a pressure
overshooting situation where $P_{1}^{n} \simeq 20.0$ bars and $U_{2}^{n}<0$ (5.54) shows again that the incorrect pressure trend will not reverse whatever the time step size if:

$$
\left|U_{2}^{n}\right|>\frac{p_{1}^{n}-F_{2}}{(\rho c)_{-}}
$$

These results prove that the explicit characteristic method will not adapt to a situation of large pressure pertubation created by such tests as a condensation or a waterhammer phenomenon. This is indeed consistent with the reported behavior of the explicit finite difference examined in V.2..

V.4. A generalized approach

At this point of the research, when some of the reviewed numerical methods seemed to exhibit difficulties in simulating a condensation process without the remedial use of relatively large time steps, and other schemes have been proved to be totally ineffective even with such remedy, an approximated analytical solution has been sought for the same problem that have been tested all throughout this work.

As previously done for the method of characteristics, only a half of the one-cell control volume is considered, with fixed pressure boundary condition at the outlet and zero velocity at the inlet. Furthermore, constant temperature and energy is also assumed so that density becomes a linear function of pressure and therefore only mass and momentum equations are used: namely eqs.
(2.8a) and (2.8b) from the HEM and equation (4.4) for the equation of state. Denoting by subscript 1 the boundary corresponding to the inlet and 2 for the outlet, we make the additional approximation that the mesh-size is small enough so that the following assumption can be justified.

Let $\phi=P, \rho U$ or ρU^{2}

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=\frac{\phi_{2}-\phi_{1}}{\Delta x} \tag{5.55}
\end{equation*}
$$

We also recall that P_{2} is constant and $U_{1}=0$,
Using (4.4), (5.55), (5.56) and (2.8a) the mass equation can then be written as:

$$
\begin{equation*}
b \frac{d P_{1}}{d t}+\rho_{2} \frac{U_{2}}{\Delta x}=0 \tag{5.57}
\end{equation*}
$$

We now consider the density at the boundary constant so that:

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho U)=\rho \frac{\partial U}{\partial t}+U \frac{\partial \rho}{\partial t} \simeq \rho_{2} \frac{d U_{2}}{d t} \tag{5.58}
\end{equation*}
$$

Using (5.55), (5.56), (5.57) and (2.8b) the momentum equation can be written as:

$$
\begin{equation*}
\rho_{2} \frac{d U_{2}}{d t}+\rho_{2} \frac{U_{2}^{2}}{\Delta x}+\frac{P_{2}-P_{1}}{\Delta x}=-K \cdot U_{2} \tag{5.59}
\end{equation*}
$$

Equation (5.57) is re-arranged as written below :

$$
\begin{equation*}
u_{2}=-\frac{b \cdot \Delta x}{\rho_{2}} \cdot \frac{d P_{1}}{d t} \tag{5.60}
\end{equation*}
$$

Substituting equation (5.60) and its derivative into (5.59)
(recalling that ρ_{2} is assumed constant) yields:

$$
\ddot{P}(b \cdot \Delta x)+\dot{P}\left(K b \cdot \Delta x / \rho_{2}\right)-\dot{P}^{2}\left(b^{2} \cdot \Delta x / \rho_{2}\right)+P(1 / \Delta x)=P_{2}(1 / \Delta x)
$$

where:

$$
\begin{align*}
& P=P_{1} \\
& \dot{P}=\frac{d P_{1}}{d t} \\
& \ddot{p}=\frac{d^{2} P_{1}}{d t^{2}} \tag{5.62}
\end{align*}
$$

Let

$$
\begin{align*}
& a_{0}=b \cdot \Delta x \\
& a_{1}=k b \cdot \Delta x / \rho_{2} \\
& a_{2}=1 / \Delta x \\
& a_{3}=-b^{2} \cdot \Delta x / \rho_{2} \\
& a_{4}=\rho_{2} / \Delta x \tag{5.63}
\end{align*}
$$

With the change of variable defined by $\bar{P}=P-P_{2}$, equation (5.61) becomes:

$$
\begin{equation*}
a_{0} \ddot{\bar{P}}+a_{1} \dot{\bar{P}}+a_{2} \bar{P}+a_{3} \dot{\bar{P}}^{2}=0 \tag{5.64}
\end{equation*}
$$

The approximation method of Krylov and Bogolyubov [13] yields an equivalent linearization of the given differential equation (5.64) with an error of the order of $\left(1 / \rho_{2}\right)^{2}$ which is a very good approximation for subcooled liquid as it is the case here. The details of the approximation method are given in appendix D. Therefore, the linearized form of equation (5.64) is:

$$
\begin{equation*}
a_{0} \ddot{\bar{P}}+a_{1} \dot{\bar{P}}+a_{2} \overline{\bar{P}}=0 \tag{5.65}
\end{equation*}
$$

Let $\Delta=a_{1}^{2}-4\left(a_{0} a_{2}\right)$
Then, using equations (5.63) :

$$
\begin{equation*}
\Delta=\left(\mathrm{Kb} \cdot \Delta \mathrm{x} / \rho_{2}\right)^{2}-4 \mathrm{~b} \tag{5.67}
\end{equation*}
$$

Since we made the initial assumption of small Δx,
we necessarily have:

$$
\begin{equation*}
\Delta x<\frac{2 \rho_{2}}{k \sqrt{b}} \tag{5.68}
\end{equation*}
$$

Typically, for $\rho_{2}=800 \mathrm{~kg} / \mathrm{m}^{3}, U_{2}=1 \mathrm{~m} / \mathrm{sec}, \mathrm{b}=2 \cdot 10^{-7}$ and $\Delta x=0.1 \mathrm{~m}$ and using equation (2.12) for K, the right-hand-side of inequality (5.68) is indeed greater than the mesh size assumed; we can see that inequality (5.68) does not restrict the generality of our analysis and therefore from equation (5.67), we conclude that Δ is always negative. This means that the differential equation (5.65) has an underdamped (oscillatory) solution of the form:

$$
\begin{equation*}
\bar{P}(t)=R \cdot e^{\sigma t} \cdot \sin \left(\omega_{N} t+\alpha\right) \tag{5.69}
\end{equation*}
$$

where:

$$
\begin{align*}
& \sigma \text { is the damping constant } \\
& \sigma=-a_{1} / 2 a_{0}=-K / 2 \rho_{2} \tag{5.70}\\
& \omega_{N} \text { is the natural circular frequency } \\
& \omega_{N}=\left(\sqrt{4 a_{0} a_{2}-a_{1}^{2}}\right) / 2 a_{0} \tag{5.71}
\end{align*}
$$

R and α are chosen so as to match given initial conditions.

$$
\begin{equation*}
\text { Let } P(t=0)=P_{0} \tag{5.72}
\end{equation*}
$$

and $\dot{P}(t=0)=0$
because $U_{2}(t=0)=0$
Equations (5.69), (5.72) and (5.73) yield:

$$
\begin{equation*}
\tan \alpha=-\frac{\omega_{N}}{\sigma} \text { and } R=\left(P_{0}-P_{2}\right) / \sin \alpha \tag{5.74}
\end{equation*}
$$

Then, equations (5.4.15) can be re-written as:

$$
\begin{equation*}
P(t)=P_{2}+\frac{P_{0}-P_{2}}{\sin \alpha} \cdot e^{\sigma t} \cdot \sin \left(\omega_{N} t+\alpha\right) \tag{5.75}
\end{equation*}
$$

The above equation for P (5.75) shows that if $P_{0}>2 \cdot P_{2}$, P will go through negative values since for the damping constant for subcooled liquid $\left(\sigma_{\ell}\right)$, which is a function of density, is too small and thus does not provide enough damping to prevent these oscillations from reaching negative minima (figure 5.2).

Similarly, the phenomenon can be observed for a pressure overshooting case with the maxima of the oscillations reaching the upper limit of the pressure range (20.0 bars) as shown on figure 5.2 .

In the case of vapor however, from equation (5.70), it is interesting to note that since the density is much smaller in the denominator, the damping constant for vapor $\left(\sigma_{v}\right)$ is much larger and thus this effect is actually not felt.

Moreover, the time step strategy that has been recommended as a remedy to avoid pressure spikes mainly for semi-implicit and fully implicit schemes can now be understood as a method which predicts the time at which the minima of these oscillations cease to be negative and will remain positive until steady state is reached.

Also, the method enables us to evaluate the time for which the maximum of the oscillations (for pressure overshooting situations) do not exceed the upper limit of the pressure range as shown on figure 5.2.

Figure 5.2. Solution of the equivalent linearized equation for pressure.
VI. Tests of the method VI.1. Tests with a circular pipe

Several numerical experiments have been examined, each of them involving a condensation phenomenon, using the computer code THERMIT-4E and its modified version for loop simulation with our proposed algorithm. Computer outputs illustrating sample problems for each of these tests are given in Appendix F. First series of tests consist of a one-dimensional channel designed to generate a condensation process alone whereas a second series of tests is essentially considering a boiling-condensation combination.

First runs already described in chapter III feature subcooled liquid injected into two-phase mixture assumed initially stagnant (figure 6.1a). The two-phase mixture fully condenses so that only subcooled liquid flows in the channel at steady state. The corresponding computer code results are given in pages $\mathrm{F}-1$ to 3.

The second type of runs feature a channel in which a twophase mixture is injected: the first half of the channel is maintained at adiabatic conditions while heat is withdrawn at a constant rate from the fluid in the second half downstream. The boundary conditions are prescribed pressures at the inlet and the outlet; as expected, the two phase mixture fully condenses to liquid (figures 6.1b and 6.2; pages $\mathrm{F}-4$ to 6).

For the tests described above where only condensation is taking place, the method implemented here enabled the code to reach steady state within a reasonable elapsed time.

-a -

Legend:

TPM: Two-phase mixture
SL : Subcooled liquid
(1): Initial conditions
(2): Steady state conditions

Figure 6.1. Test description

The second series of tests considers a channel where the heat input in the first half of the total axial length is removed in the second half (figure 6.1c), thus creating essentially symmetrical density, enthalpy and velocity profiles. The bounclary conditions are inlet mass flow rate and outlet pressure. The code reached steady state in this particular case of boiling-condensation experiments with the help of our algorithm. As expected, the results show here the coexistence of two-phase mixture-filled cells in the top half with subcooled liquid-filled cells in the bottom half of the channel and thus an interface of density gradient is correctly simulated (figures 6.2 and 6.3 ; pages $\mathrm{F}-7$ to 12).

Furthermore, by keeping the same boundary conditions and the same heat input in the first half of the channel as before while maintaining the second half adiabatic (figure 6.le) so that only boiling is taking place, we could check that the steady state obtained features now a two-phase mixture-filled pipe with some subcooled liquid at the inlet due to the inertia of the system (figures 6.2 and 6.3 ; pages $\mathrm{F}-13$ to 20).

However, some remarks are to be made at this point, as far as these applications are concerned.

First,it is interesting to mention that the time step control algorithm is indeed turned on only whenever the void fraction of a cell changes from some value to zero. This situation takes place in the condensation test (figure 6.1b) and the boiling-condensation test (figure 6.1c) when in both cases, the channel initially

Figure 6.2. Steady state Pressure profiles for circular pipe tests.

Figure 6.3. Steady state Density profiles for circular pipe tests.
contains two-phase mixture. For a subcooled liquid initial state (figure 6.1d), the flow evolves toward a final steady state without encountering a transition such as the one described above.

Secondly, when boiling numerical experiments were performed (figure 6.le), we have noted the following behavior of the code: the flow is rejected from each side of the heated section of the channel in spite of the incoming flow at the inlet-side of the heated section; physically, the fluid flashes, entailing a very drastic density change. This trend causes the Newton iterations to diverge if the option of multiple Newton is invoked, eventually leading to pressure going out of range in the neighboring cells of the heated test section and finally to the code breaking down. However, a single Newton iteration i.e., a linearization only about old time values enables the code to overcome this trend successfully.

Whereas the code demonstrates the capability of simulating boiling with inlet mass flow and outlet pressure boundary conditions, it is not possible to achieve a boiling situation at steady state for a fixed inlet pressure as a boundary condition at the inlet of the channel. A tentative explanation of this behavior can be drawn from the numerous tests performed using such particular boundary conditions.

When sufficient heat input is provided for at least one cell to boil, the flow slows down substantially because of the relatively large friction factor of vapor. This leads to the boiling cell's pressure exceeding the pressure at the boundary such as to create a flow reversal from this particular cell to the inlet, while for the
downstream cells, the flow keeps the same direction. Eventually, the boiling cell being depleted and heated at the same time reaches a state of superheated steam and the vapor temperature rapidly goes out of range of state functions (1649 K).

VI.2. Tests with loop simulations

Last series of tests were performed using the loop version of THERMIT-4E. The loop geometry used for our numerical tests of loop simulations (figure 6.4) was developed by 0. Adekugbe [4].

This geometry was found to be well adapted to the series of experiments performed in the sodium boiling test facility loop at the Oak Ridge National Laboratory.

Basically, the fluid undergoes a combination of the five simple processes previously described when flowing in the simulated loop. Considering the results from previous tests using the basic version of the computer code THERMIT-4E, it should be noted that in a reactor loop, the coolant undergoes a combination of our simple tests reviewed before. It was therefore expected that we would encounter difficulties in simulating natural circulation loop since in that case, it would imply a fixed pressure at the inlet as boundary conditions, whatever the location of the cut used for our simulations [4].

Indeed, a similar pattern of the code's breakdown to the one described in section VI. 1 was observed. However, forced circulation loop tests simulated by using inlet mass flow-outlet pressure boundary conditions were successfully performed. Various power levels were

assumed and steady state was achieved (Appendix F, pages F-24 to 33); figures 6.5 and 6.6 (pages $F-28$ to 33) present two such cases.

For a given power input in the heated section, a given inlet mass flow rate and outlet pressure as boundary conditions, the pressure at the inlet varies non-monotonically for some time before reaching the steady state level (figure 6.7).

This behavior can be interpretated as being due to the pressure gradient necessary to prevent the flow reversal tendancy caused by flashing cells in the heated region of the loop.

It should also be noted that the location of the fictitious cut (figure 6.4) which is required in our loop simulation, has not proved determinant as far as the code's behavior toward condensation is concerned; for all our calculations, this cut has been located at the inlet of the upper plenum.

Keeping the same heat input as well as the same outlet pressure, an oscillatory flow behavior was observed for lower inlet mass flow rates. Figure 6.8 indicates this behavior for one such case. This behavior is similar to the oscillatory loop flow encountered in single-phase by Adekugbe [4].

Figure 6.5. Pressure profile at steady-state for loop tests.

Figure 6.6. Steady state density profile for loop tests.

Figure 6.7. Inlet Pressure vs. time.

Figure 6.8. Oscillatory loop flow.

VII. CONCLUSION

VII.1. Conclusion and summary of the work

A general analysis of the effects of a vapor or twophase mixture to liquid phase change has been carried out.

A number of numerical methods commonly used to solve the mass, momentum and energy equations for a thermo-hydraulic system were reviewed with regard to their behavior following complete condensation. The pressure perturbation generated following a full condensation process was proved to be damped differently by the system depending on the degree of explicitness of the equations.

Specifically, fully implicit and semi-implicit numerical methods are capable to absorb any pressure perturbation caused by condensation whereas a fully explicit scheme may encounter situations of large pressure spikes for which the calculations will fatally break down.

Furthermore, our findings cast doubt on the friction factor in the particular case of complete condensation and subsequent large pressure pulses: it appears from subsection V.4. that indeed the friction factor correlated in [5] and presented in chapter II is under-estimated leading to a small damping factor for the approximate solution of the mass and momentum equations. In addition, it is now ascertained that numerical methods and the corresponding legitimate approximations involved
are not the source of the breakdown of the basic numerical scheme used in the computer code THERMIT-4E, as far as these types of problems are concerned.

The outcome of this research which leads to a time step strategy by applying a time step increase (as opposed to a time step reduction originally implemented) whenever condensation conditions are met, is finally an optimized time step since it is also computed so as to maintain a small allowable mass conservation error. The ultimate results are very appreciable savings in computing time, and in many cases, making actually possible a broad range of calculations.
VII.2. The limitations of the analysis and recommendations
for future work
An adequate friction factor should be investigated in those situations of sudden large pressure gradients for subcooled-liquid-filled channel. It would enable us to use time steps as small as it is needed, when a detailed picture of the physics of the channel. is sought.

Also the use of a new donor flow formulation for momentum flux differencing has been investigated. Even though the convective term in the momentum equations do not affect the code's global behavior for our tests of boiling and condensation a new formulation would help eliminate the small pressure and velocity anomalies caused by fictitious momentum sources that arise when the actual numerical formulation is used to characterize the large density gradients associated with sodium boiling. To illustrate the incentive for a new formulation of the momentum
flux, let us consider the following situation: one dimensional steady-state flow with constant area and without gravity and friction.

The momentum equation used for this situation is cast in a non-conservative form:

$$
\begin{equation*}
\rho U \frac{d U}{d x}+\frac{d P}{d x}=0 \tag{7.2.1}
\end{equation*}
$$

since oU is constant, equation (6.1.1) can be integrated as:

$$
\begin{equation*}
P_{2}-P_{1}=(\rho U) \cdot\left(U_{1}-U_{2}\right) \tag{7.2.2}
\end{equation*}
$$

where U_{1} and U_{2} are the velocities at the cells center.
The code's formulation however uses the velocities placed at the boundaries of the cells.

To compare the numerical solution used in THERMIT-4E with the analytical solution, a simple case can be considered (see Figure 7.1) where two low-densities cells ($\rho=1$) are separated from high-density cells ($\rho=2$) on both ends, the flow is steady with $\rho U=20$. Figure 7.1 shows the pressure profiles pertaining to the numerical and analytical solutions.

As expected, the analytical solution produces a symmetrical pressure profile but the numerical solution gives a different pressure profile which is translated downstream from the geometric symmetry axis of the channel. In order to remedy this discrepancy a new donor flow formulation, adapted from the one proposed by Rowe and Padilla [3] should be applied to the THERMIT-4E computer code.

Δ Analytical solution
\square Numerical approximation
Figure 7.1 Pressure profile for assumed density profile.

However, it should be pointed out that the above mentioned formulation is applicable to the conservative form of the momentum equations, and its modification to a non-conservative momentum form (as used in THERMIT-4E) does not appear straightforward.

REFERENCES:

1. R.J. Pryor, D.R. Liles, J.H. Mahaffy (LASL), "Treatment of Water Packing Effects", A.N.S. Transactions (1978).
2. R.W. Lyczkowski, J.T. Ching, D.C. Mecham, "Studies Concerning Average Volume Flow and Water-Packing Anomalies in Thermal-Hydraulics codes", A.N.S. Thermal Reactor Safety Meeting (1977).
3. A. Padilla, D.S. Rowe, "A Donor Flow Formulation for Momentum Flux Differencing", A.N.S. Second Proceeding of Nuclear Thermal-Hydraulics (1984).
4. O. Adekugbe, A.L. Schor, "Loop Simulation Capability for Sodium Systems", M.I.T. Energy Laboratory Report: N°. M.I.T. - EL 84-013.
5. A.L. Schor, N.E. Todreas "A Four-Equation Two-Phase Flow Model for Sodium Boiling Simulation of LMFBR Assemblies", M.I.T. Energy Laboratory Report: No. M.I.T. - EL 32-039
6. Asher H. Shapiro, "The Dynamics and Thermodynamics of Compressible Fluid Flow", Mc. Graw Hill book Company (1969).
7. Lecture Notes. M.I.T. Course 22.43 (Spring 1984)
8. A. L. Schor, "Numerical Method in THERMIT/TRAC Course Notes, Nuclear Engineering Department, MIT.
9. James E. A. John, "Gas Dynamics", Allyn and Bacon Inc. (1974).
10. Victor L. Streeter and Benjamin E. Wylie "Hydraulic Transients", Mc. Graw Hill book Company (1967)
11. Patrick J. Roache, "Computational Fluid Dynamics", Hermosa Plubishers, Albuquerque (1980)
12. S. Nakamura, "Computational Methods in Engineering and Science", John Wiley \& Sons (1977).
13. Granino A. Korn and Theresa M. Korn "Mathematical Handbook for Scientists and Engineers", Mc. Graw Hill Company (1968).
14. S. Free and A. L. Schor, "A Stable Numerical Method for oneDimensional Sodium Boiling Simulation", Nuclear Engineering Department at MIT. Presented at the llth LMB meeting at Grenoble, France (1984).

APPENDIX A

Derivation of the momentum equation using the staggered mesh in the continuity equation.

The mass equation is written for the control volume located between cell centers (i) and ($i+1$) as represented in figure 2.4.

$$
\begin{equation*}
\left.\frac{\Delta \rho}{\Delta t}\right|_{i+1 / 2}+\left(\frac{\Delta}{\Delta X}(\rho U)\right)_{i+1 / 2}=0 \tag{A-1}
\end{equation*}
$$

The momentum equation is written for the same control volume in a conservative form:

$$
\begin{equation*}
\left.\frac{\Delta}{\Delta t}(\rho U)\right|_{i+1 / 2}+\left(\frac{\Delta}{\Delta x}(\rho U U)\right)_{i+1 / 2}=R \tag{A-2}
\end{equation*}
$$

where R includes the pressure gradient and the friction term which remain unchanged. Expanding (A-2) yields:

$$
\begin{align*}
& \left(U \cdot \frac{\Delta \rho}{\Delta t}\right)_{i+1 / 2}+\left(\rho \cdot \frac{\Delta U}{\Delta t}\right)_{i+1 / 2}+U_{i+1 / 2} \cdot\left(\frac{\Delta}{\Delta x}(\rho U)\right)_{i+1 / 2} \\
& +(\rho U)_{i+1 / 2} \cdot\left(\frac{\Delta U}{\Delta x}\right)_{i+1 / 2}=R \quad \text { (A- } \tag{A-3}
\end{align*}
$$

Multiplying equation (A-1) by $U_{i+1 / 2}$ and substracting it from equation (A-3) we obtain the momentum equation in a non-conservative form:

$$
\begin{equation*}
\left.\rho_{i+1 / 2} \cdot \frac{\Delta U}{\Delta t}\right|_{i+1 / 2}+(\rho U)_{i+1 / 2}\left(\frac{\Delta U}{\Delta x}\right)_{i+1 / 2}=R \tag{A-4}
\end{equation*}
$$

We see that there is no difference between the usual momentum equation (2.41) and equation (A-4). This transformation was therefore determined not to be worthwile pursuing.

APPENDIX B

Thermodynamic Derivations
Pressure is considered as a function of density and energy so that:

$$
\begin{equation*}
P=P(\rho, e) \tag{B-1}
\end{equation*}
$$

The total derivative of P is:
$d P=\left.\frac{\partial P}{\partial \rho}\right|_{e} \cdot d \rho+\left.\frac{\partial P}{\partial e}\right|_{\rho} \cdot d e$
Let \dot{M} be the mass input to the volume V and $e_{i n}$ the corresponding energy input, we have:
$\rho^{n+1}=\left(\rho^{n} \cdot v+\dot{M} \cdot \Delta t\right) / v=\rho^{n}+\frac{\dot{M}}{V} \cdot \Delta t$
and

$$
\begin{equation*}
(\rho e)^{n+1}=(\rho e)^{n}+\frac{\dot{M}}{V} \cdot \Delta t h_{i n} \tag{B-4}
\end{equation*}
$$

Assuming an isentropic flow, equation ($B-4$) yields:

$$
\begin{equation*}
\left[(\rho e)^{n+1}\right]-\left[(\rho e)^{n}\right]=d(\rho e)=e d \rho+\rho d e=0 \tag{B-5}
\end{equation*}
$$

Equation (B-5) yields:

$$
\begin{equation*}
\frac{d \rho}{d e}=-\frac{\rho}{e} \tag{B-6}
\end{equation*}
$$

using equation ($B-6$), equation ($B-2$) can be re-written as
$d P=\left[\left.\frac{\partial P}{\partial \rho}\right|_{e} \cdot\left(-\frac{\rho}{e}\right)+\left.\frac{\partial P}{\partial e}\right|_{\rho}\right] \cdot d e$
Note-that ρ and e with subscripts refers to mixture.

In eq. (B-7) $\left.\frac{\partial P}{\partial \rho}\right|_{e}$ and $\left.\frac{\partial P}{\partial e}\right|_{\rho}$ have to be evaluated.
In [5] $\left.\frac{\partial \rho}{\partial P}\right|_{e}$ has been calculated:

$$
\begin{equation*}
\left.\frac{\partial \rho}{\partial P}\right|_{e}=\left.\frac{\partial \rho}{\partial \rho_{v}}\right|_{e} \cdot \frac{d \rho_{v}}{a P}+\left.\frac{\partial \rho}{\partial \rho_{\ell}}\right|_{e} \cdot \frac{d \rho_{\ell}}{d P}+\left.\frac{\partial \rho}{\partial e_{l}}\right|_{\rho} \cdot \frac{d e_{\ell}}{d P}+\left.\frac{\partial \rho}{\partial e_{v}}\right|_{\rho} \cdot \frac{d e_{v}}{d P} \tag{B-8}
\end{equation*}
$$

where:

$$
\begin{align*}
& \frac{\partial \rho}{\partial \rho_{v}}=\rho_{\ell}^{2}\left(e_{v}-e_{\ell}\right)\left(e-e_{\ell}\right) / \text { Denom }^{2} \\
& \frac{\partial \rho}{\partial \rho_{\ell}}=\rho_{v}^{2}\left(e_{v}-e_{\ell}\right)\left(e_{v}-e\right) / \text { Denom }^{2} \\
& \frac{\partial \rho}{\partial l_{v}}=\rho_{v} \rho_{l}\left(\rho_{\ell}-\rho_{v}\right)\left(e-e_{\ell}\right) / \text { Denom }^{2} \\
& \frac{\partial \rho}{\partial e_{\ell}}=\rho_{\ell} \rho_{v}\left(\rho_{\ell}-\rho_{v}\right)\left(e_{v}-e\right) / \text { Denom }^{2} \\
& \text { Denom }=\rho_{\ell}\left(e-e_{\ell}\right)+\rho_{\ell}\left(e_{v}-e\right) \\
& \frac{d \rho_{a}}{d P}=\left.\frac{\partial \rho_{a}}{\partial P}\right|_{T}+\left.\frac{\partial \rho_{a}}{\partial T_{a}}\right|_{P} \cdot \frac{d T_{s a t}}{d P} \\
& \frac{d e_{a}}{d P}=\left.\frac{\partial e_{a}}{\partial P}\right|_{T a}+\left.\frac{\partial e_{a}}{\partial T_{a}}\right|_{P} \cdot \frac{d T_{s a t}}{d P} \\
& a=v \text { or } \tag{B-9}
\end{align*}
$$

$\left.\frac{\partial \rho_{a}}{\partial P}\right|_{T_{a}}$ and $\left.\frac{\partial e_{a}}{\partial P}\right|_{T_{a}}$ can be easily calculated from state functions
in [5] written as:

$$
\begin{align*}
& \rho_{a}=\rho_{a}\left(P, T_{a}\right) \\
& e_{a}=h_{a}\left(T_{a}\right)-\frac{P}{\rho_{a}} \tag{B-10}
\end{align*}
$$

Calculation of $\left.\frac{\partial P}{\partial e}\right|_{\rho}$:
The internal energy can be considered as a function of pressure and density. Thus the following is inferred:

$$
\begin{equation*}
d e=\left.\frac{\partial e}{\partial P}\right|_{\rho} \cdot d P+\left.\frac{\partial e}{\partial \rho}\right|_{\rho} \cdot d \rho \tag{B-11}
\end{equation*}
$$

The internal energy of a mixture can be written as:

$$
\begin{equation*}
e=\left[\alpha \rho_{v} e_{v}+(1-\alpha) \rho_{\ell} e_{\ell}\right] / \rho \tag{B-12}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{\rho_{\ell}-\rho}{\rho_{\ell}-\rho_{v}} \tag{B-13}
\end{equation*}
$$

the expression for $\left.\frac{\partial e}{\partial P}\right|_{\rho}$ can be obtained using equations $(B-12)$ and ($B-13$). Since $T_{\ell}=T_{v}=T_{\text {sat }}$:

$$
\begin{align*}
& \left.\frac{\partial \rho_{a}}{\partial P}\right|_{\rho}=\frac{d \rho_{a}}{d P} \\
& \left.\frac{\partial e_{a}}{\partial P}\right|_{\rho}=\frac{d e_{a}}{d P} \quad a=v \text { or } \ell \tag{B-14}
\end{align*}
$$

let $\Delta \rho=\rho_{\ell}-\rho_{v}$ and $\Delta e=e_{\ell}-e_{v}$
Using equations ($B-15$), ($B-14),(B-13)$ and ($B-12)$ we have:

$$
\begin{aligned}
\left.\frac{\partial e}{\partial P}\right|_{\rho} & =\frac{1}{\Delta \rho}\left[\frac{d \rho_{\ell}}{d P}\left(e_{\ell}-\rho \rho_{v} \Delta e-\frac{A}{\rho(\Delta \rho)^{2}}\right)-\frac{d \rho_{v}}{d P}\left(e_{v}+\rho \rho_{\ell} \Delta e+\frac{A}{\rho(\Delta \rho)^{2}}\right)\right. \\
& \left.+\frac{d e_{\ell}}{d P} \rho_{\ell}\left(1-\rho \rho_{v}\right)-\frac{d e_{v}}{d P} \rho_{v}\left(1-\rho \rho_{\ell}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
\text { where } A=\left(\rho_{\ell}-\rho\right) \rho_{v} e_{v}+\left(\rho-\rho_{v}\right) \rho_{\ell} e_{\ell} \tag{B-17}
\end{equation*}
$$

Note that the expressions for $\frac{d e_{a}}{d P}$ and $\frac{d e_{a}}{d P}(a=v$ or $\ell)$ have been derived above. Thus a final expression for $d P$ has been obtained in our particular case.

APPENDIX C

Derivation of Sonic Velocity

$$
\begin{align*}
h & =e+p v \\
d h & =d e+p d v+v d p \\
T d s & =d e+p d v \\
d s & =0 \text { if isentropic } \\
\rightarrow d e & =-p d v \text { or }\left.\frac{d v}{d e}\right|_{s}=-\frac{1}{p} \tag{C-1}\\
d h & =\frac{d p}{\rho} \tag{C-2}\\
\rho & =\rho(p, e) \tag{C-3}\\
d \rho & =\left.\frac{\partial \rho}{\partial p}\right|_{e} d p+\left.\frac{\partial \rho}{\partial e}\right|_{p} ^{d e} \tag{C-4}\\
\frac{d \rho}{d p} & =\frac{\partial \rho}{\partial p}+\frac{\partial \rho}{\partial e} \cdot \frac{d e}{d p} \tag{C-5}\\
\left.\frac{d p}{d \rho}\right|_{s} & =\frac{\partial \rho}{\left(\frac{\partial \rho}{\partial p}\right)_{e}+\left.\left(\frac{\partial \rho}{\partial e}\right)_{p} \cdot \frac{d e}{d p}\right|_{s}}=c^{2} \tag{C-6}\\
d v & =\left.\frac{\partial v}{\partial p}\right|_{e} d p+\left.\frac{\partial v}{\partial e}\right|_{p} d e \tag{C-7}
\end{align*}
$$

for s constant, using ($C-1$), ($C-7$) yields:

$$
\begin{equation*}
\left.\frac{d v}{d e}\right|_{S}=-\frac{1}{p}=\left.\left(\frac{\partial v}{\partial p}\right) e \frac{d p}{d e}\right|_{S}+\left(\frac{\partial v}{\partial e}\right)_{p} \tag{C-8}
\end{equation*}
$$

Then $(d p / d e)_{S}$ can be written as:

$$
\begin{align*}
\left.\frac{d p}{d e}\right|_{s} & =\left(-\frac{1}{p}-\left(\frac{\partial v}{\partial e}\right)_{p}\right) /\left(\frac{\partial v}{\partial p}\right)_{e} \\
& =\left(-\frac{1}{p}+\frac{1}{\rho^{2}}\left(\frac{\partial \rho}{\partial e}\right)_{p}\right) /\left(-\frac{1}{\rho^{2}}\left(\frac{\partial \rho}{\partial p}\right)_{e}\right) \tag{C-9}\\
\left.\frac{d p}{d e}\right|_{s} & =\frac{\rho^{2} / p-(\partial \rho / \partial e) p}{\left({ }^{2 \rho} / \partial p\right)_{e}} \\
\left.\left(\frac{\partial \rho}{\partial e}\right)_{p} \cdot \frac{d e}{d p}\right|_{S} & =\frac{(\partial \rho / \partial e) p \cdot(\partial \rho / \partial p) e}{\rho^{2} / p-(\partial \rho / \partial e) p} \tag{C-10}
\end{align*}
$$

Using equations (C-10), (C-6) yields:

$$
c^{2}=\left.\frac{d p}{d \rho}\right|_{s}=\frac{\rho^{2} / p-(\partial \rho / \partial e)_{p}}{(\partial \rho / \partial p)_{e}\left(\rho^{2} / p-(\partial \rho / \partial e)_{p}\right)+(\partial \rho / \partial e)_{p} \cdot(\partial \rho / \partial p)_{e}}
$$

or: $\left.\quad \frac{d p}{d \rho}\right|_{s}=\frac{1}{\rho_{p}}\left(1-\rho_{e} \frac{p}{\rho^{2}}\right)$
where $\quad \rho_{p}=\left.\frac{\partial \rho}{\partial p}\right|_{e}$ and $\rho_{e}=\left.\frac{\partial \rho}{\partial e}\right|_{p}$
We now calculate the sonic velocity in terms of the enthalpy.
The enthalpy is defined as:

$$
\begin{align*}
h & =e+P / \rho \tag{C-11}\\
d h & =d e+\frac{1}{\rho} d P-\frac{P}{\rho^{2}} d \rho \tag{C-12}
\end{align*}
$$

We know that: $T d s=$ de $-\frac{P}{\rho^{2}} d \rho$
We are considering an isentropic process: $d s=0$
Equations ($C-12$), ($C-13$) and ($C-14$) yield:

$$
\begin{equation*}
\mathrm{dh}=\mathrm{dP} / \mathrm{o} \tag{C-15}
\end{equation*}
$$

The enthalpy is a function of pressure and density:

$$
\begin{equation*}
h=h(P, \rho) \tag{C-16}
\end{equation*}
$$

Differentiating equation (16) gives:

$$
\begin{equation*}
d h=\left.\frac{\partial h}{\partial P}\right|_{\rho} \cdot d P+\left.\frac{\partial h}{\partial \rho}\right|_{p} \cdot d \rho \tag{C-17}
\end{equation*}
$$

Re-arranging eq. (C-17) and recalling that we are considering an isentropic process yields:

$$
\begin{equation*}
\left.\frac{\partial h}{\partial \rho}\right|_{p}=\frac{d h}{d \rho}-\left.\left.\frac{\partial h}{\partial P}\right|_{\rho} \cdot \frac{d P}{d \rho}\right|_{S} \tag{C-18}
\end{equation*}
$$

From equation ($C-15$), equation ($C-18$) can be written as:

$$
\begin{equation*}
\left.\frac{\partial h}{\partial \rho}\right|_{P}=\left.\frac{d P}{d \rho}\right|_{S} \cdot\left(\frac{1}{\rho}-\left.\frac{\partial h}{\partial P}\right|_{\rho}\right) \tag{C-19}
\end{equation*}
$$

We finally obtain after re-arranging equation (C-19):

$$
\begin{equation*}
\frac{d P}{d \rho}=\frac{\left.\frac{\partial h}{\partial \rho}\right|_{P}}{\frac{1}{\rho}-\left.\frac{\partial h}{\partial P}\right|_{\rho}}=c^{2} \tag{C-20}
\end{equation*}
$$

APPENDIX D
Approximation Method of Krylov and Bogolyubov [13]

To solve a differential equation of the form

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+\omega^{2} y+\mu f\left(y, \frac{d y}{d t}\right)=0 \tag{D-1}
\end{equation*}
$$

where ω is a given constant, and the last term is a small nonlinear perturbation, we write

$$
\begin{equation*}
y=r(t) \cdot \cos \phi(t) \tag{D-2}
\end{equation*}
$$

Assuming that errors of the order of μ^{2} are negligible, the "amplitude" $r(t)$ and the "total phase" $\phi(t)$ are then obtained from the first-order differential equations
$\frac{d r}{d t}=\frac{\mu}{2 \pi \omega}=\int_{0}^{2 \pi}[f(r \cos \lambda,-r \omega \sin \lambda) \cdot \sin \lambda] \cdot d \lambda=-r \cdot a_{1}(r) / 2$
$\frac{d \phi}{d t}=\omega+\frac{\mu}{2 \pi r \omega}=\int_{0}^{2 \pi}[f(r \cos \lambda,-r \omega \sin \lambda) \cdot \cos \lambda] \cdot d \lambda=\sqrt{a_{2}(r)}$

For a given value $r(0)=r_{0}$, the solution of the equivalent linear differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+a_{1}\left(r_{0}\right) \frac{d y}{d t}+a_{2}\left(r_{0}\right) \cdot y=0 \tag{D-5}
\end{equation*}
$$

approximates the solution of the given differential equation ($D-1$) with an error of the order of μ^{2}.

In our case, we have:

$$
\begin{equation*}
\mu=1 / \rho_{2} \tag{D-6}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } f\left(y, \frac{d y}{d t}\right)=\left(a_{1} \dot{\bar{P}}+a_{3} \dot{\bar{P}}^{2}\right) / a_{0} \tag{D-7}
\end{equation*}
$$

Substituting equations ($D-6$) and ($D-7$) into equation ($D-3$) yields after integrating:

$$
\begin{align*}
\frac{d r}{d t} & =-a_{1} r / 2 a_{0}=-r a_{1}(r) / 2 \\
\therefore \quad a_{1}(r) & =a_{1} / a_{0} \tag{D-8}
\end{align*}
$$

Similarly, substituting equations (D-6) and (D-7) into equation (D-4) yields after integration:

$$
\begin{align*}
\frac{d \phi}{d t} & =a_{2} / a_{0}=\sqrt{a_{2}(r)} \\
\therefore \quad a_{2}(r) & =a_{2} / a_{0} \tag{D-9}
\end{align*}
$$

Recalling then equation ($D-5$) and using equations (D) and ($D-9$), the equivalent linear differential equation for $\dot{\bar{P}}$ is:

$$
\begin{equation*}
\ddot{\bar{P}}+a_{1} \dot{\bar{P}} / a_{0}+a_{2} \overline{\bar{P}} / a_{0}=0 \tag{D-10}
\end{equation*}
$$

APPENDIX E: Implemented and modified subroutines

Listing of the subroutine for the

time step algorithm

```
    subroutine constn(alp,alpn,nc,nzp2,ncdns)
    implicit real*8 (a-h,o-z)
    integer ncans
    dimension alp(nzp2,nc),alpn(nzp2,nc)
    ncans=0
    sma =0.0
    do 20 i=1.nzp2
    do 10 j=1,nc
        if (alpn(i.j).gt.0) go to 10
        if ((alpn(i,j)-alp(i.j)).1t.0) ncdns=1
10 continue
20 continue
    do 40 i=1.nzp2
    do 30 j=1,nzp2
        sma=sma+alpn(1.1)
30 continue
40 continue
    if (sma.eq.0) ncdns=1
50 continue
    return
    end
```


Heat removal capability implemented in THERMIT-4E

```
        subroutine initrc (rf,rrorf,vmf,vpf,qz,qt,ar,rn.dz,twf.tr.trn.
        ifcar,iarf,nrzf,nrmzf,nf,nfm1, drzf,qpp,q.
        nc,narf,nz,nfmx,nfm1mx, nrzfmx)
        1
            rrdrf(k,j)=half*(rf(k+1,j)+rf(k,j))/(rf(k+1,j)-rf(k,j))
        vmf(1,j) = zero.
    rp = haif*(rf(2,j) +rf(1.j))
    rp= half*(rf(2,y) +rf(1.j))
    if(nfm1j.eq. 1) go to 35
    do 30 k=2,nfmij
        rp = haif*(rf(k+1.j) +rf(k.j))
            rm=nalf*(rf(k,j) +rf(k-1,j))
            vpf(k,j)=half*(rp*rp-rf(k,j)*rf(k,j))
            vmf(k,j)= half*(rf(k,j)*rf(k,j) - rm*rm)
        continue
35 rm= half*(rf(nf(j).j) +rf(nfmij.j))
    vmf(nf(j),j)= nalf*(rff(nf(j),j)*rf(nf(j),j) - rm*rm)
    vpf(nf(j),j)=zero
```


cont inue

$$
n f m i j=n f m i(j)
$$

$$
\text { do } 20 k=1 \text {, nfmij }
$$

c

```
Initialize rod conduction arrays
    and make initial call to gap conductance calculation
        implicit real*8 (a-h,o-z)
    common /prop/ ftd. fpuo2,fpress. epr. expr. grgh, pgas.
    1 gmix(4), hgap, burn, effb, frac
    dimension rf(nfmx,1),rrdrf(nfmimx,1),vmf(nfmx,1).vpf(nfmx,1).
        qz(1),qt(narf,1),gr(nfmimx,1),rn(narf,1),dz(1),twf(nz,1).
        tr(nfmx,nz,1),trn(nfmx,nz,1),ifcar(1),iarf(1),nrzf(1).
        nrmzf(nrzfmx,1),nf(1),nfm1(1), drzf(nrzfmx, 1), app(nz.1)
    data pi/3.14159265/.rp12/.159154943/
    data zero,half.one /0.0d0.0.5d0.1.0d0/
geometry arrays
    do 100 j=1,narf
        rf(i,j) = zero
        m=2
        do 10 k=1,nrzf(j)
            dr = drzf(k.j)/nrmzf(k.j)
            do 10 1=1,nrmzf(k,j)
                rf(m.j)=rf(m-1.j)+dr
            m=m+1
    do 20 k=1 nfmij
radial and transverse heat source distributton arrays
    sum = zero
    do 40k=1,nfm1j
40 sum=sum+gr(k,j)*pf*(rff(k+1,j)*rf(k+1,j)-rf(k,j)*rf(k,j))
    if(sum.eq.zero) go to 55
    rsum = one/sum
    do 50 k=1,nfm1j
        ar(k,j)=\operatorname{ar}(k,j)*rsum
    sum = zero
55 do 60 k=1,nc
60 sum = sum + qt(j,k)*rn(j,k)
    If(sum.eq.zero) go to }10
```

```
            rsum = one/sum
            do }70k=1\mathrm{ , ne
                            qt(j.k) = qt(j.k)*rsum
        100 continue
    c
    c axial heat source distribution array
    C axial heat sour
    do 190 j=1.nz-1
        jj=j+1
        if(az(j)*az(jj).ge.0) go to 190
        ncond=jj
        go to 195
    continue
    sum = zero
    do 200 j=1.ncond-1
        jj=j + 1
        sum = sum + qz(j)*dz(jj)
    200 continue
    rsum = dabs(one/sum)
    do 210 j=1,ncond-1
        az(j) = az(j)*rsum
    nzp}=nz+
    if(ncond.eq.nzp) go to 235
    sum = zero
    do 220 j=ncond.nz
            jj=j+1
            sum = sum + qz(j)*dz(jj)
    220 cont inue
        rsum = dabs(one/sum)
        do 230 j=ncond.nz
    230qz(j) = qz(j)*rsum
    235 continue
    c set iarf: this array assigns a region number to each axial level
    if(narf.eq.1) go to 255
            do 250 j=2.narf
            do 250 k=1fcar(j-1), ifcar(j)-1
            iarf(k)=j-1
        250
        do 260 k=ifcar(narf),nz
        260 iarf(k) = narf
C
C set initial rod temperatures
    do 300 i=1,nc
            do 300 j=1.nz
                    do 300 k=1,nf(iarf(j))
                    trn(k.j.i) = twf(j.i)
                        tr(k,j,i)=twf(j,i)
        300 continue
c
C set up neat flux distribution for "fast" steady-state
c
    do 400 ic=1,nc
        do 400 iz=1.nz
            iarfz= {arf(iz)
            GP = q*qz(iz)*qt(iarfz,ic)
            qpp(iz,ic)=qp*rpi2/rf( nf(iarfz),iarfz )
        400 continue
```

 radfu \(=2.465 e-3\)
 radci \(=2.540 e-3\) d9.d10.d11, d12.d13.d14)
 return
end

Excerpt of the modified timstp subroutine

Activation of the process for the time step increase

```
        dtconv = one/(rtscvz + rtscvy + rtscvx)
    50 dtconv = dmin1(clm*dtconv,dtmax)
        if (ncdns.ne.1) go to 55
        delt=dtconv
        go to }5
c
    55 delt = dmin1(dtconv,dtnew )
    56 if (delt.lt.O.9*dtconv) ird = 1
        kred = kred + ird
        dtmina = dabs(dtmin)
        if (dtmin.eq.zero) dtmina = 0.001*dtconv
        if (delt.ge.dtmina) go to 100
        if (dtmin.ge.zero) go to 60
            lerr = .true.
            lerr = 10
        return
        60 delt = dtmina
c
    100 if (dtold.gt.zero) tsmult = delt/dtold
        return
        end
```

Appendix F: Code's input and outputs for typical cases.

```
                Input for test of subcooled liquid coming
                into a stagnant two-phase mixture (Fig. 6.1a).
        1
two-mesh calculation with pressure b.c.'s
    sintgin nc=1 nz=2 nr=1 narf=0 nx=1 nrzs=1 iss=1 ixfl=0 ibb=0
    ichnge=1 ishpr=11111 istrpr=1 nitmax=-5 ipfsol=34 noumax=0
                neq=4 ieqvax=1.0 numder=0 kfold=4 $
    Srealin epsn=0. 10e0 grav=0.0 hdt=2.6e-3 pdr=1.15 hdr=20.0
radf=4.325e-3 delpr=1.0 delro=1.0 delem=1.0 errmax=0.5e-1 $
    1 $ ner
    O $ indent
    26.47e-3 & dx
    22.92e-3 s dy
    0.12e0 0.03e0 0.03e0 0.12e0 $ dz
    2(0.0e0) $ arx
    2(0.0eO) & ary
    3(169.8475e-6) & arz
    2(0.0e+0) $ vol
    5.263e-3 $ hedz
    3.616e-3 $ wedz
    1.60e+5 1.40e+5 1.40e+5 1.40e+5 $ pressure
    2(0.0e0) 2(0.3e0) S alpha
    2(800.0e0) 2(1195.92e+O) S tfluid
    2(0.0eO) 0.0eO $ velocity
    Stimdat tend=1.0e-1 dtmin=-1.0e-7 dtmax=1.0e-2 dtsp=1.0 dtlp=0.0 iredinx=10 $
    $timdat tend=-1.0 $
    O
```


INITIAL CONDITIONS FOR TEST 6.1a

maximum relative changes over the time step in pressure
$0.0000+00$
in mixture density: $0.0000+00$
in mlxture energy: $0.0000+00$

1	1	0.0	1.60000	0.0000	0.000	1048857.	826.11	800.00	800.00	1211.97	0.000	0.000	0.5768	826.11	0.000
1	2	15.0	1.40000	0.0000	0.000	1048857.	825.91	800.00	800.00	1195.92	0.000	0.000	0.5047	825.91	0.000
1	3	45.0	1.40000	0.3000	0.022	1550819.	512.86	1195.92	1195.92	1195.92	0.000	0.000	0.3692	732.49	0.000
1	4	60.0	1.40000	0.3000	0.022	1550819.	512.86	1195.92	1195.92	1195.92			0.3692	732.49	

FINAL STEADY-STATE FOR TEST 6.1a

CONDENSATION TEST (Fig. 6.16): INPUTS
1

```
condensation test
    Sintgin nc=1 nz=2 nr=1 narf=1 nx=1 nrzs=1 iss=1 ixfl=0 lbb=2 intf=1
    ichnge=1 ishpr=11111 istrpr=1 nttmax=-2 ipfsol=10 noumax=0
            neq=4 ieqvax=0.0 mumder=0 kfold=4 s
    $realin epsn=0. 10e0 grav=0.0 hat=2.6e-3 par=1. 15 har=20.0
    radf=4.325e-3 delpr=1.0 delro=1.0 delem=1.0 errmax=0.5e-1 winlet=16.616e-3 s
    srodinp qO=9000.0 s
    O $ indent
    1$ifcar
    1Snrzf
    1$nrmaf
    3$mnrzf
    26.47e-3 $dx
    22.92e-3 $dy
    0.12e0 0.10e0 0.1e0 0.12e0 $ dz
    2(0.0e0) $ arx
    2(0.0e0) $ ary
    3(169.8475e-6) $ arz
    2(0.0e+0) $ vol
    5.263e-3 $ hedz
    3.616e-3 S wedz
    1.6e5 2(1.4e+5) 1.4e+5 s pressure
    2(0.5) 2(0.0eO) s alpha
1195.920 1(1195.92) 2(1040.0) $ tfluid
    3(0.118e0) $ velocity
    1(1200.00) 1(1040.0) $twf
        0.0 -1.0 $qz
    1.0 sat
    1.0 $ar
    1.0 $rn
    1.625e-3 $drzf
    stimdat tend=10.0e0 dtmin=-1.0e-6 dtmax=1.0e0 dtsp=20.0 dtlp=0. 1e1 iredmx=20 s
    stimalat tend=-1.0 $
    O
```


INITIAL CONDITIONS FOR TEST 6.1 b

total reactor power. $\quad 9.000 \mathrm{~kW}$ total reactor power:
lolal heat transfer. low entrialpy rlse flow energy rise.

time step size $=0.000000+00$ sec \quad cpu lime $=000$ sec

maximum temperatures ic iz $\begin{array}{cccc}\text { rodimum temperatures } & 0 & 12 \\ \text { wall: } & 0.00 \text { at } & 0 & 0 \\ \text { will } & 0.00 \text { at } & 0 & 0\end{array}$ $\begin{aligned} & \text { inlet llow rate: } 7.344 \mathrm{~g} / \mathrm{s} \\ & \text { utlet lou rate }\end{aligned} \quad 16.553 \mathrm{~g} / \mathrm{s}$ cotal system mass: $\quad 20.252 \mathrm{~g} / \mathrm{s}$ $\begin{array}{r}\text { total system mass : } \quad 0.252 g \\ \text { global mass error }\end{array} \quad 0.0000+00 \mathrm{~g}$
lauld: l195.00 at
maximum relative linearlzation errors
in pressure:
$.0000+00$
in mass/volum
$0.0000+00$
in energy/yolume: $0.0000+00$

,	1	0.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0.118	0.118	0.3692	732.49	7.3
1	2	50.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0. 118	0.118	0.3692	732.49	7.34
1	3	150.0	1.40000	0.0000	0.000	1048857.	825.91	800.00	800.00	1195.92	0. 118	0.118	0.5047	825.91	6
1	4	200.0	1.40000	0.0000	0.000	1048857.	825.91	800.00	800.00	1195.92			0.5047	825.91	

. 3692732.49
$0.5047 \quad 825.91$ 16.553

FINAL STEADY-STATE FOR TEST 6.1 b


```
    1
boiling and condensation test
    Sintgin nc=i nz=2 nr=1 narf=1 nx=1 nrzs=1 iss=1 ixfl=0 lbo=2 lintf=1
    lchnge=1 ishpr=11111 istrpr=1 nitmax=-2 ipfsol=10 noumax=0
            neq=4 leqvax=0.0 numder=0 kfold=4 $
    sreailn epsn=0. 10e0 grav=0.0 ndt=2.6e-3 pdr=1.15 ndr=20.0
    radf=4.325e-3 delpr=1.0 deiro=1.0 delem=1.0 errmax=0.5e-1 winlet=16.616e-3 &
    srodinp q0=9000.0 s
    1
    ncr
                        $ indent
    1sifcar
    1$nrzf
    1$nrmaf
    3smnrzf
    26.47e-3 $ dx
    22.92e-3 s dy
    0.12e0 0.10e0 0.1e0 0.12e0 $ dz
    2(0.0e0) $ arx
    2(0.0e0) $ ary
    3(169.8475e-6) $ arz
    2(0.0e+0) $ vol
    5.263e-3 $ hedz
    3.616e-3 $ wedz
    1.6e5 2(1.4e+5) 1.4e+5 s pressure
    2(0.00) 2(0.0e0) $ alpha
    800.00 1(1040.00) 2(1040.0) $ tfluid
    3(0.118eO) s velocity
    1(1200.00) 1(1040.0) Stwf
        1.0 -1.0 $qz
    1.0 $at
    1.0 sar
    1.0 Srn
    1.625e-3 sarzf
    Stimdat tend=10.0e0 dtmin=-1.0e-6 dtmax=1.0e0 dtsp=20.0 dtlp=0. 1e1 iredmx=20 s
    $timdat tend=-1.0 $
    O
```


INITIAL CONDITIONS FOR TEST 6.1c

FINAL STEADY STATE FOR TEST 6.1c

INPUTS FOR BOILING-CONDENSATION TEST (Fig. 6.1C) (ten cells)
boiling and condensation test
sintgin nc=1 $n z=10 \quad n r=1$ narf=1 $n x=1 \quad n r z s=1$ iss=1 fxfleo fbb=2 intf=1
ichnge= 1 ishpr=1111i istrpr=1 nitmax=-2 ipfsol=10 noumax=0
neq $=4$ ieqvax $=0.0$ numder $=0 \mathrm{kfold}=4$ \$
Sreal in epsn=0.10e0 grav=0.0 hdt $=2.6 e-3$ pdr $=1.15$ hdr $=20.0$
radf=4.325e-3 delpr=1.0 delro=1.0 delem=1.0 errmax=0.5e-1 winlet=16.616e-3 \&
srodinp $90=9000.0$ s
1 s ner
0 \$ indent
1sifcar
1\$nrzf
1snrmaf
3smnrzf
26.47e-3 s dx
$22.92 e-3$ s $d y$
$0.12 e 0$ 10(0.10e0) $0.12 e 0$ s dz
$10(0.0 e 0)$ s arx
10(0.0e0) stary
11(169.8475e-6) \$ arz
10(0.0e+0) \$ vol
$5.263 \mathrm{e}-3$ \$ hedz
3.616e-3 \$ wedz
$1.6 e 510\left(1.4 e^{+5}\right) 1.4 e+5 \quad \$$ pressure
$6(0.00) 6(0.0 e 0)$ s alpha
$800.005(1040.00) 6(1040.0)$ s tfluid
11(0.118e0) s velocity
5(1200.00) 5(1040.0) \$twf
5(1.0) 5(-1.0) \$qz
1.0 sat
1.0 sar
1.0 srn
1.625e-3 sdrzf

stimdat tend=-1.0 s
0

INITIAL CONDITIONS FOR TEST 6.1c

(10 cells)

INPUTS FOR BOILING TEST (Fig. 6.1e)

```
    1
boiling test
    Sintgin nc=1 nz=2 nr=1 narf=1 nx=1 nrzs=1 iss=1 ixfl=0 lbb=2 intf=1
    lchnge=1 ishpr=11111 istrpr=1 nitmax=-2 ipfsol=10 noumax=0
        neq=4 feqvax=0.0 numder=0 kfold=4 $
    Srealin epsn=0.10e0 grav=0.0 hdt=2.6e-3 pdr=1.15 hdr=20.0
    radf =4.325e-3 delpr=1.0 delro=1.0 delem=1.0 ermmax=0.5e-1 wtrlet=16.616e-3 $
    $rodinp q0=9000.0 $
    1 $ ncr
    O $ Indent
    1$ifcar
    1Snrzf
    1$nrmaf
    3$mnrzf
    26.47e-3 s dx
    22.92e-3 $ dy
    0.12e0 0.10e0 0.1e0 0.12e0 $ dz
    2(0.0eO) $ arx
    2(0.0e0) s ary
    3(169.8475e-6) $ arz
    2(0.0e+0) & vol
    5.263e-3 $ nedz
    3.616e-3 $ wedz
    1.6e5 2(1.4e+5) 1.4e+5 $ pressure
    2(0.00) 2(0.0e0) $ alpha
    800.00 1(1040.00) 2(4040.0)s tfluid
    3(0.118e0) $ velocity
    1(1200.00) 1(1040.0) stwf
        1.0 0.0 $qz
    1.0 sqt
    1.0 $ar
    1.0 $rn
    1.625e-3 sdrzf
    $timdat tend=10.0e0 dtmin=-1.0e-6 dtmax=1.0e0 dtsp=20.0 dt1p=0.1ei iredmx=20 $
    stimdat tend=-1.0 s
    O
```


INITIAL CONDITIONS FOR BOILING TEST 6.1 e

FINAL STEADY-STATE FOR TEST 6.7e

INPUT FOR BOILING TEST (6.1e)

(ten cells)

1
boiling
test
\$Intgin $n c=1 \quad n z=10 \quad n r=1$ narf=1 $n x=1 \quad n r z s=1$ iss=1 $|x f|=0$ ibb=2 intf=1
ichnge=1 ishpr=1ifil istrpr=1 nitmax=-2 ipfsol=34 noumax=0 neq=4 ieqvax $=0.0$ numder $=0 \mathrm{kfol} d=4 \$$
\$real in epsn=0. 10e0 grav=0.0 hdt $=2.6 e-3$ pdr $=1.15$ hdr $=20.0$
radf $=4.325 e-3$ delpr $=1.0$ delro=1.0 delem=1.0 errmax=0.5e-1 winlet=16.616e-3 \$
$\$$ rodinp qO=15000.0 \$
1 \$ncr
0 \$ indent
1\$1fcar
1\$nrzf
1 \$nrmaf
$3 \$ m n r z f$
26.47e-3 \$dx
$22.92 e-3$ \$dy
$0.12 \mathrm{e} 0 \mathrm{10}(0.1 \mathrm{eO}) 0.12 \mathrm{eO} \$ \mathrm{dz}$
10(0.0eO) \$ arx
$10(0.0 e 0)$ \$ ary
11(169.8475e-6) \$ arz
$10(0.0 e+0)$ vol
5.263e-3 \$ hedz
3.616e-3 \$ wedz
$1.50 e 510(1.4 e+5) 1.4 e+5$ pressure
6(0.00) $6(0.0 e 0) ~ \& ~ a l p h a$
800.0 1(800.0) 10(800.0) \$ tfluid

11(0.118eO) $\$$ velocity
$5(800.00) 5(800.0) \$ t w f$
$5(1.0) 5(0.0) \$ q z$
$1.0 \$ q t$
$1.0 \$ \mathrm{qr}$
$1.0 \$ r n$
1.625e-3 \$drzf
$\$ t$ imdat tend $=50.0 e 0 \mathrm{dtmin}=-1.0 e-6 \mathrm{dtmax}=1.0 e 0 \mathrm{dtsp}=20.0 \mathrm{dt} 1 \mathrm{p}=0.1 \mathrm{e} 1$ iredmx=20 $\$$
$\$$ timdat tend=-1.0\$
0
$\begin{array}{lcccc}\text { time step no }= & 0 & \text { real } & \text { time } & = \\ \text { number of newton iterations } & 0 & \\ \text { number of inner iterations }= & 0 & 0 & 0\end{array}$ 0
time step size $=0.000000+00 \mathrm{sec}$
cpu time $=$
0.00 sec

O time step reductions due to error o

em	rom	Tvap	Tilq	Tsat
1048857.	826.01	800.00	800.00	1204.16
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92
1048857.	825.91	800.00	800.00	1195.92

rov
roi
low (g/s)

1	1	0.0	1.50000	0.0000	0.000
1	2	50.0	1.40000	0.0000	0.000
1	3	150.0	1.40000	0.0000	0.000
1	4	250.0	1.40000	0.0000	0.000
1	5	350.0	1.40000	0.0000	0.000
1	6	450.0	1.40000	0.0000	0.000
1	7	550.0	1.40000	0.0000	0.000
1	8	650.0	1.40000	0.0000	0.000
1	9	750.0	1.40000	0.0000	0.000
1	10	850.0	1.40000	0.0000	0.000
1	11	950.0	1.40000	0.0000	0.000
1	12	1000.0	1.40000	0.0000	0.000

0.118	0.118	0.5408	826.01	16.555
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553
0.118	0.118	0.5047	825.91	16.553

time step no $=6539$ real time $=25.998644 \mathrm{sec}$
number of newton iterations $=2$
number of inner iterations $=1000$

```
total reactor power =
total reactor power=
total reactor power=
flow energy rise=
```

5.000 kW
15.000 kW
4.987 kW
14.473 kW
time step size $=0.367700-02 \mathrm{sec}$
cpu time $=$
1201.10 sec
time step reductions due to error 0 o reduced time steps since last print

maximum temperatures	ic	Iz	
rod:	1314.40 at	1	3
wali:	1218.91 at	1	3
ilquid:	1199.84 at	1	3

maximum relative changes over the time step in pressure: $0.1000-09$
In mixture density: 0.1000-09
in mixture energy: 0.1000-09
maximum relative linearization errors
$\begin{array}{ll}\text { In pressure: } & 0.2120-12 \\ \text { in mass/volume: } & 0.3570-15\end{array}$
$\begin{array}{lll}\text { In mass/volume: } & 0.3570-15 \\ \text { in energy/volume: } & 0.4080-17\end{array}$
ic iz $z(\mathrm{~mm}) P(b a r)$ vold qual(\%) em rom

8I-」
lquid: 1199.84 at
3

∞	1	1	0.0	1.44730	0.0000	0.000	1053920.	825.03	804.02	804.02	1199.87	0. 119	0.119	0.3807	825.03	16.616
\cdots	1	2	50.0	1.44716	0.0000	0.000	1234461.	791.50	947.77	947.77	1199.86	0.124	0.124	0.3806	791.50	16.616
4	1	3	150.0	1.44703	0.0000	0.000	1415002.	757.68	1090.80	1090.80	1199.85	0.789	0.129	0.3806	757.68	16.616
	1	4	250.0	1.44688	0.5014	0.052	1557306.	365.00	1199.84	1199.84	1199.84	4.184	0.266	0.3806	731.60	16.616
	1	5	350.0	1.44605	0. 7934	0.199	1563979.	151.47	1199.77	1199.77	1199.77	14.402	0.618	0.3804	731.62	16.616
	1	6	450.0	1.44176	0.8699	0.345	1570246.	95.51	1199.41	1199.41	1199.41	23.945	0.945	0.3793	731.70	16.616
	1	7	550.0	1.43384	0.8710	0.347	1569455.	94.76	1198.76	1198.76	1198.76	24.085	0.952	0.3774	731.85	16.616
	1	8	650.0	1.42726	0.8714	0.347	1568729.	94.47	1198.21	1198.21	1198.21	24.215	0.955	0.3758	731.97	16.616
	1	9	750.0	1.42065	0.8715	0.346	1567960.	94.38	1197.65	1197.65	1197.65	24.355	0.956	0.3742	732.10	16.616
	1	10	850.0	1.41401	0.8724	0.347	1567287.	93.76	1197.10	1197.10	1197.10	24.476	0.962	0.3726	732.23	16.616
	1	11	950.0	1.40732	0.8708	0.340	1566259.	94.94	1196.53	1196.53	1196.53	24.670	0.950	0.3710	732.35	16.616
	1	12	1000.0	1.40000	0.8769	0.358	1566259.	90.48	1195.92	1195.92	1195.92			0.3692	732.50	

Initial conditions for
boiling test. (with gravity)

Steady state of boiling test with gravity (6.1e): 10 cells

Input for condensation-boiling test

```
bolling and condensation test
    Sintgin nc=1 nz=10 nr=1 narf=1 nx=1 nrzs=1 |ss=1 |xf|=0 |bb=0 intf=1
    lchnge=1 ishpr=111:1 istrpr=1 n|tmax=-2 lpfsol=34 noumax=0
        neq=4 ieqvax=0.0 numder=0 kfold=4 $
    $realin epsn=0.10e0 grav=0.0 hdt=2.6e-3 pdr=1.15 hdr=20.0
    radf=4.325e-3 delpr=1.0 delro=1.0 delem=1.0 errmax=0.5e-1 winlet=16.616e-3 &
    $rodinp q0=3000.0
    $rodinp qO=3000.0 $
    1
        $ ner
    1$ifcar
    1$nrzf
    1$nrmaf
    3$mnrzf
    26.47e-3 $ dx
    22.92e-3 $ dy
    0.12e0 10(0.1e0) 0.12e0 $ dz
    10(0.0e0) $ arx
    10(0.0e0) $arx
    11(169.8475e-6) $ arz
    10(0.0e+0) $ vol
    5.263e-3 $ hedz
    3.616e-3 wedz
    1.5e5 10(1.4e+5) 1.4e+5 $ pressure
    6(0.50) 6(0.5e0) $ alpha
1204.16 1(1195.92) 10(1195.92) $ tfluld
    11(0.118eo) $ velocity
    l(0.118e0)$velocity
    5(800.00) 5(800.0) $twf
    5(-1.0) 5(1.0) $qz
    1.0 $qt
    1.0 $ar
    1.0 $rn
    1.625e-3 $drzf
    $timdat tend=5.0e0 dtmin=-1.0e-6 dtmax=1.0e0 dtsp=20.0 dtlp=0.1e1 iredmx=20 $
    $timdat tend=-1.0$
O
```


maximum relative changes over the time step	
In pressure:	$0.0000+00$
In mixture density: $0.0000+00$	
in mixture energy: $0.0000+00$	

maximum relative 1 inearization errors	
in pressure:	$0.0000+00$
in mass/volume:	$0.0000+00$
in energy/volume:	$0.0000+00$

$\begin{array}{ll}\text { In pressure: } & 0.0000+00 \\ \text { in mass/volume: } & 0.0000+00\end{array}$
In energy/volume: $0.0000+00$

	1 C	12	$z(m m)$	P(bar)	void	qual (\%)	em	rom	T vap	T 119	T sat	vvz	viz	rov	rol	flow(g/s)
4.	1	1	0.0	1.50000	0.5000	0.054	1562990.	365.50	1204.16	1204. 16	1204.16	0.118	0.118	0.3934	730.61	7.325
	1	2	50.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0. 118	0.118	0.3692	732.49	7.344
	1	3	150.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0.118	0.118	0.3692	732.49	7.344
	1	4	250.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0. 118	0.118	0.3692	732.49	7.344
	1	5	350.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0.118	0.118	0.3692	732.49	7.344
	1	6	450.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0.118	0.118	0.3692	732.49	7.344
	1	7	550.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0.118	0.118	0.3692	732.49	7.344
	1	8	650.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0.118	0.118	0.3692	732.49	7.344
	,	9	750.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0. 118	0.118	0.3692	732.49	7.344
	1	10	850.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0. 118	0.118	0.3692	732.49	7.344
	1	11	950.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92	0.118	0.118	0.3692	732.49	7.344
	1	12	1000.0	1.40000	0.5000	0.050	1552141.	366.43	1195.92	1195.92	1195.92			0.3692	732.49	

Final steady-state for condensation-boiling test

Initial conditions for loop test（ 700 W ）

tIme Step	NO	0	REAL	0.000000 SEC
NUMBER OF	NEWTON	ITERATIONS	0	
NUMBER OF	INNER	ITERATIONS	0	

TIME STEP SIZE $=0.00000 \mathrm{D}+00 \mathrm{SEC}$
CPU TIME＝

$\begin{aligned} \text { INLET FLOW RATE } & = & 0.845 \mathrm{G} / \mathrm{S} \\ \text { OUTLET FLOW RATE } & = & 0.845 \mathrm{G} / \mathrm{S}\end{aligned}$
OIOBAL SYSTEM MASS $=0.26 .483 \mathrm{G}$
$0.0000+00 \mathrm{G}$

ERROR
O TIME STEP REDUCTIONS DUE TO ERROR O
O REDUCED TIME STEPS SINCE LAST PRINT

MAXIMUM	TEMPERATURES	IC	12
ROD：	0.00 AT	0	0
WALL：	0.00 AT	0	0
LIOUID：	693.15 AT	1	1

MAXIMUM TEMPERATURES IC
ROD： 0.00 AT ROD：
0.00 AT $0 \quad 0$

MAXIMUM RELATIVE LINEARIZATION ERRORS
IN PRESSURE：$\quad 0.0000+00$
IN MASS／VOLUME：$\quad 0.000 \mathrm{O}+00$
IN ENERGY／VOLUME： $0.0000+00$
IC $12 Z(M M) \quad P(B A R)$ VOID QUAL（\％）EM ROM
TVAP

693.15
693.15
693.15
693.15
693.15
693.15
693.15
693.15
693.15
693.15

SAT
vVZ
VLZ
ROV ROL FLOW（G／S）

1	1	0.0	1.01325	0.0000	0.000
1	2	308.7	1.01325	0.0000	0.000
1	3	846.2	1.01325	0.0000	0.000
1	4	1383.7	1.01325	0.0000	0.000
1	5	1921.2	1.01325	0.0000	0.000
1	6	2458.7	1.01325	0.0000	0.000
1	7	2967.5	1.01325	0.0000	0.000
1	8	3367.5	1.01325	0.0000	0.000
1	9	3717.5	1.01325	0.0000	0.000
1	10	4017.5	1.01325	0.0000	0.000
1	11	4167.5	1.01325	0.0000	0.000

913556.	850.14
913556.	850.14
913556.	850.14
913556.	850.14
913556.	850.14
913556.	850.14
913556.	850.14
913556.	850.14
913556.	850.14
913556.	850.14
913556.	850.14

$\begin{array}{lll} & 693.15 \quad 1158.78\end{array}$
$0.120 \quad 0.120$
$0.120 \quad 0.120 \quad 0.4107$
850.14
0.845
$\begin{array}{lllll}0.120 & 0.120 & 0.4107 & 850.14 & 0.845 \\ 0.120 & 0.1207 & 850.14 & 0.845\end{array}$ $\begin{array}{lllll}0.120 & 0.120 & 0.4107 & 850.14 & 0.845\end{array}$ $\begin{array}{lllll}0.120 & 0.120 & 0.4107 & 850.14 & 0.845\end{array}$ $\begin{array}{lllll}0.120 & 0.120 & 0.4107 & 850.14 & 0.845\end{array}$ $\begin{array}{llll}0.120 & 0.120 & 0.4107 & 850.14\end{array}$
$\begin{array}{llll}0.120 & 0.120 & 0.4107 & 850.14\end{array}$
0.845
0.845
0.845
0.845
0.845
0.845
0.845

TIME STEP NO $=7164$ REAL TIME $=50.000788$ SEC NUMBER OF NEWTON ITERATIONS $=12$
NUMBER OF INNER ITERATIONS $=10$

IC IZ $Z(M M) P(B A R)$ VOIO QUAL(\%) EM RO

IN MASS/VOLUME:
IN MIXTURE DENSITY: 0.1130-06
IN MIXTURE ENERGY: 0.142D-06
TIME STEP SIZE = 0.628990-O2 SEC

SEC CPU TIME * OUTLET FLOW RATE TOTAL SYSTEM MASS =

MAXIMUM RELATIVE LINEARIZATION ERRORS

IN ENERGY/VOLUME. 0.855D-18
1388.52 SEC O TIME STEP REDUCTIONS DUE TO ERROR O O REDUCED TIME STEPS SINCE LAST PRINT

1	1	0.0	0.98732	0.0000	0.000	913556.	850.12	693. 15	693.15	1155.91	0. 120	0.120	0.2674	850.12	0.845
1	2	308.7	0.96243	0.0000	0.000	1128239.	810.81	863.14	863.14	1153.09	0.126	0.126	0.2611	810.81	0.845
1	3	846.2	0.96175	0.0000	0.000	1128239.	810.81	863.14	863.14	1153.01	0.126	0.126	0.2609	810.81	0.845
1	4	1383.7	1.00379	0.0000	0.000	1128203.	810.86	863.11	863.11	1157.74	0.126	0.126	0.2715	810.86	0.845
1	5	1921.2	1.04584	0.0000	0.000	1128110.	810.91	863.04	863.04	1162.31	0.126	0.126	0.2820	810.91	0.845
1	6	2458.7	1.08901	0.0000	0.000	913569.	850.21	693.16	693.16	1166.86	0.120	0.120	0.2927	850.21	0.845
1	7	2967.5	1.08823	0.0000	0.000	913569.	850.21	693.16	693.16	1166.78	0. 120	0.120	0.2925	850.21	0.845
1	8	3367.5	1.05615	0.0000	0.000	1386908.	762.55	1068.68	1068.68	1163.41	7.382	0.134	0.2846	762.55	0.845
1	9	3717.5	1.03885	0.8323	0.187	1513989.	124.42	1161.56	1161.56	1161.56	21.060	0.782	0.2802	740.38	0.845
1	10	4017.5	1.02142	0.8376	0.192	1511745.	120.56	1159.67	1159.67	1159.67	21.463	0.806	0.2759	740.81	0.845
1	11	4167.5	1.01325	0.8548	0.217	1511745 .	107.84	1158.78	1158.78	1158.78			0.2738	741.02	

 NUMBER OF NEWTON ITERATIONS $=0$
NUMBER OF INNER ITERATIONS $=0000$

TOTAL REACTOR POWER $=$	0.600 KW
TOTAL HEAT TRANSFER $=$	0.600 KW
FLOW ENTHALPY RISE $=$	0.000 KW
FLOW ENERGY RISE $=$	0.000 KW

maximum relative changes over the time step IN PRESSURE: 0.0000+00
IN MIXTURE DENSITY: $0.0000+00$
IN MIXTURE ENERGY: $0.0000+00$

$\begin{array}{crr}\text { MAXIMUM } & \text { TEMPERATURES } & \text { IC } \\ \text { ROD: } & 0.00 \text { AT } & 0 \\ \text { WALL: } & 0.00 \text { AT } & 0 \\ \text { LIQUID: } & 693.15 \text { AT } & 1\end{array}$
12
0
0
CPU TIME =
0.00 SEC

TIME STEP SIZE $=0.000000+00$ SEC
TIME STEP REDUCTIONS D
ERROR 0
O REDUCED TIME STEPS SINCE LAST PRINT

MAXIMUM RELATIVE LINEARIZATION ERRORS
IN PRESSURE
$0.0000+00$
IN MASS/VOLUME
$0.0000+00$
IN ENERGY/VOLUME: $0.0000+00$

1	0.0	1.01325	0.0000	0.000
2	308.7	1.01325	0.0000	0.000
3	846.2	1.01325	0.0000	0.000
4	1383.7	1.01325	0.0000	0.000
5	1921.2	1.01325	0.0000	0.000
6	2458.7	1.01325	0.0000	0.000
7	2967.5	1.01325	0.0000	0.000
8	3367.5	1.01325	0.0000	0.000
9	3717.5	1.01325	0.0000	0.000
10	4017.5	1.01325	0.0000	0.000

913556 . 850.14
$913556 . \quad 850.14$ $\begin{array}{ll}913556 . & 850.14 \\ 913556 . & 850.14\end{array}$ $913556 . \quad 850.14$ $\begin{array}{ll}913556 . & 850.14 \\ 913556 & 850.14\end{array}$ 913556 . $\quad 850.14$ $913556 . \quad 850.14$ $\begin{array}{ll}913556 . & 850.14 \\ 913556 . & 850.14\end{array}$ $\begin{array}{ll}\text { 13556. } & 850.14 \\ 950.14\end{array}$
$693.15 \quad 693.151158 .78$ 693.15 $693.15 \quad 693.15 \quad 1158.78$ $\begin{array}{llll}693.15 & 693.15 & 1158.78 \\ 693.15 & 693.15 & 1158.78\end{array}$ $\begin{array}{llll}693.15 & 693.15 & 1158.78\end{array}$ 693.15 $693.15 \quad 1158.78$ $\begin{array}{lll}693.15 & 693.15 & 1158.78 \\ 693.15 & 693.15 & 1158.78\end{array}$ $\begin{array}{lll}693.15 & 693.15 & 1158.78 \\ 693.15 & 693.15 & 1158.78\end{array}$ $\begin{array}{lll}693.15 & 693.15 & 1158.78 \\ 693.15 & 693.15 & 1158.78\end{array}$ $\begin{array}{lll}693.15 & 693.15 & 1158.78 \\ 693.15 & 693.15 & 1158.78\end{array}$ $693.15 \quad 693.15$ 1158.78
0.120
0.120
0.120
0.120
$0.120 \quad 0.120$
$0.120 \quad 0.120$
$0.120 \quad 0.120$
$0.120 \quad 0.120$
0.120
$0.120 \quad 0.120$
$0.120 \quad 0.120$

0.4107

0.4107

 0.4107 0.4107 0.41070.4107 0.4107
0.4107 0.4107
0.4107 $\begin{array}{ll}0.4107 & 8 \\ 0.4107 & 8\end{array}$ 0.4107
0.4107 0.4107
0.4107 $\begin{array}{ll}0.4107 & 850.14 \\ 0.4107 & 850.14 \\ 0.4107 & 850.14\end{array}$ 850.1
850.
850.
850.
850.
850.
850.
850.
850.1
0.845 0.845
0.845 0.845
0.845 0.845
0.845 0.845
0.845 0.845
0.845 0.845
0.845 0.845
0.845 0.845

maximum relative changes over the time step IN PRESSURE: 0.177D-08 $\begin{array}{ll}\text { IN PRESSURE: } & 0.1770-08 \\ \text { IN MIXTURE DENSITY: } \\ 0.3820-06\end{array}$ IN MIXTURE ENERGY: 0.2340-06

MAXIMUM RELATIVE LINEARIZATION ERRORS
$\begin{array}{lr}\text { IN PRESSURE: } & 0.1690-08 \\ \text { IN MASS/VOLUME: } & 0.3270-12 \\ \text { IN ENERGY/VOLUME: } & 0.5330-17\end{array}$

	IC	12	Z (MM)	P(BAR)	VOID	QUAL (\%)	EM	ROM	T VAP	1 LIO	T SAT	VVZ	VLZ	ROV	ROL	FLOW(G/S)
\cdots	1	1	0.0	0.97967	0.0000	0.000	913556.	850.11	693.15	693.15	1155.05	0.120	0.120	0.2654		
1	1	2	308.7	0.95478	0.0000	0.000	1128239.	810.80	863.14	863.14	1152.21	0.126	0.126	0.2654 0.2592	810.80	0.845 0.845
ㄴ	1	3	846.2	0.95411	0.0000	0.000	1128239.	810.80	863.14	863.14	1152.13	0. 126	0.126	0.2590	810.80	0.845
	1	4	1383.7	0.99615	0.0000	0.000	1128203.	810.85	863.11	863.11	1156.89	0. 126	0.126	0.2696	810.85	0.845
	1	5	1921.2	1.03819	0.0000	0.000	1128113.	810.91	863.04	863.04	1161.49	O. 126	0.126	0.2801	810.91	0.845
	1	6	2458.7	1.08137	0.0000	0.000	913569.	850.21	693.16	693.16	1166.06	0. 120	0. 120	0.2908	850.21	0.845
	1	7	2967.5 3367.5	1.08058	0.0000	0.000	913569.	850.21	693.16	693.16	1165.98	0.120	0. 120	0.2906	850.21	0.845
	1	8	3367.5 3717.5	1.04824 1.02955	0.0000 0.7101	0.000 0.092	1319288.	775.21	1015.19 1160.56	1015.19	1162.57	7.084	0.132	0.2826	775.21	0.845
	1	10	3717.5 4017.5	1.02955 1.01854	0.7101 0.7200	0.092 0.095	1508356. 1506975.	214.87 207.63	1160.56 1159.36	1160.56 1159.36	1160.56 1159.36	12.572	0.464	0.2779	740.61	0.845
	1	11	4167.5	1.01325	0.7519	0.112	1506975 .	184.06	1158.78	1158.78	1159.36 1158.78	12.681	0.480	0.2752 0.2738	740.88 741.02	0.845

2
ingle phase measurement for sodium natural convection
IN \wedge VERTICAL LOOP:ORNL/TM-7018
\$INTGIN $N C=1, N Z=26, N R=1, N A R F=1, N X=1, N R Z S=1,1 H T F=1$.
$1 H T S=3, I S S=1, I X F L=0,10 \cup M P=1,1 B B=2$
ISTRPR $=0$. I SHPR $=10111$, NITMAX $=-2, I P F S O L=34$
NE $Q=4$, NUMDER $=0$, IHTRPR $=0$
sREALIN
HDT $=3.25 E-3 . P D R=1.2533, H D R=1 . O E+10 . D E L P R=0.5$
RNUSS=7. 0, RADF $=1.625 E-4$, WINLET $=8.50 E-4, G R A V=i 10.0$
\$RODIN
$1 \$ N C R$
O\$INDENT
$1 \$$ IFCAR
$1 \$$ NRZF
1 \$NRMAF
$1 \$$ NRMAF
$3 \$$ MNRZF
3\$MNRZ
$1 \$$ INX
$1 \$$ INX
$7 \$ M N R Z S$
$4 \$ N R M Z S$
$4.07327 \mathrm{E}-3$ \$0X
4.07327E-3 SDY
(.OE-6 0.6175 4(0.4575) 6(0.6175) 4(0.4575) 0.6175 5(0.194)

5(0.3) 1.OE-6 \$DZ
$26(0.0)$ \$ARX
$\begin{array}{ll}\text { 26(0.0) \$ARX } \\ 26(0.0) & \text { \$ARY }\end{array}$
27(8.285E-6) \$ARY
5.122162E-6 4(3.794962E-6) 6(5.12212E-6) 4(3.794962E-6)
5.122162E-6 5(i.60923E-6) 5(2.4885E-6) \$VOL
3.25E-3 \$HEDZ
3.25E-3 ${ }^{28(1-01325 E+05) \$ P}$

28(0.0) \$ALP
28(693.15) \$ALP
27(12.OE-2) \$VEL
$-9.85(0.0) 5(9.8) 5(0.0) 11(-9.8)$ SGRAV
26(693.15) \$TWF
16(0.0) 5(1.0) 5(0.0)
1.0 \$0T
1.0 \$RN
1.625E-3 \$DRZF
1.62929E-2 \$PCX
1.62929E-2 \$PCX
2.O3E-2 \$ORZS

863.15 14(500.0) 693.15 10(500.0) \$TOUT
$26(693.15) \quad \$ T W 5$
26(2.5E+6) \$HLSS
\$1IMDAT TEND=200.0.DTMIN=1.OE-6.DTMAX=1.O.DTSP=20.0.OTLP=1.O.IREDMX=20 \$
\$TIMDAT TEND=-1.0\$

maximum relative changes over the time step IN PRESSURE: $0.000 \mathrm{D}+00$
IN MIXTURE DENSITY: $0.0000+00$
IN MIXTURE ENERGY: $0.000 \mathrm{D}+00$

MAXIMUM RELATIVE LINEARIZATION ERRORS
IN PRESSURE: $0.0000+00$
IN MASS/VOLUME: $0.0000+00$
IN ENERGY/VOLUME: $0.0000+00$

913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845

TIME STEP NO = 16556 REAL TIME - 195.995733 SEC
TIME STEP SIZE = 0.10863D-OI SEC
CPU TIME 8344.33 SEC

TOTAL REACTOR POWER	0.600 KW	INLET FLOW RATE	$0.850 \mathrm{~g} / \mathrm{s}$	MAXIMUM T	temperatures	1 C	12
total heat transfer	0.600 KW	OUTLET FLOW RATE	. $0.850 \mathrm{~g} / \mathrm{s}$	ROD:	1167.08 AT	1	21
FLOW ENTHALPY RISE	0.600 KW	total srstem mass	66.231 G	WALL:	1165.11 AT	1	21
FLOW ENERGY RISE -	0.592 KW	GLOBAL MASS ERROR	0.1550-16 G	LIOUID:	: 1164.81 AT	1	21

MAXIMUM RELATIVE CHANGES OVER THE TIME STEP
IN PRESSURE:
IN MIXTURE DENSITY: $0.1000-09$
IN MIXTURE ENERGY: $0.1000-09$
$\begin{array}{cc}\text { MAXIMUM RELATIVE LINEARIZATION ERRORS } \\ \text { IN PRESSURE: } & 0.4090-12 \\ \text { IN MASS/VOLUME: } & 0.3960-15 \\ \text { IN ENERGY/VOLUME: } & 0.6100-18\end{array}$
$\begin{array}{llll}\text { ROD: } & 1167.08 A T & 1 & 21 \\ \text { WALL: } & 1165.11 & A T & 1 \\ \text { LIOUID: } & 1164.81 & 1 \\ & & 1 & 21\end{array}$
IC 122 (MM) P(BAR) VOID QUAL(\%) EM ROM

	1	0.0	0.94834	0.0000	0.000	913556.	850.08
1	2	308.7	0.92344	0.0000	0.000	1128239.	810.77
1	3	846.2	0.92276	0.0000	0.000	1128239.	810.77
1	4	1303.8	0.92219	0.0000	0.000	1128239.	810.77
1	5	1761.3	0.92161	0.0000	0.000	1128239.	810.77
1	6	2218.8	0.92104	0.0000	0.000	1128239.	810.77
1	7	2756.2	0.92036	0.0000	0.000	1128239.	810.77
1	8	3373.7	0.96865	0.0000	0.000	1128239.	810.81
1	9	3991.2	1.01694	0.0000	0.000	1128239.	810.86
1	10	4608.7	1.06524	0.0000	0.000	1128239.	810.91
1	11	5226.2	1.11353	0.0000	0.000	1128239.	810.96
1	125843.8	1.16183	0.0000	0.000	1128239.	811.01	
1	13	6381.3	1.16116	0.0000	0.000	1128239.	811.01
1	14	6838.8	1.16058	0.0000	0.000	1128239.	811.01
1	157296.3	1.16001	0.0000	0.000	1128239.	811.00	
1	16	7753.8	1.15943	0.0000	0.000	1128239.	811.00
1	178291.3	1.15870	0.0000	0.000	913569.	850.28	
1	18	8697.0	1.12460	0.0000	0.000	1054741.	824.55
1	19	8891.0	1.10893	0.0000	0.000	1195913.	798.36
1	20	9085.0	1.09377	0.0000	0.000	1337085.	771.92
1	21	9279.0	1.07911	0.0000	0.000	1478257.	745.49
1	22	9473.0	1.06938	0.6815	0.083	1513437.	235.77
1	2399720.0	1.06027	0.6922	0.087	1512359.	227.93	
1	2410020.0	1.04986	0.6970	0.088	1510987.	224.42	
1	2510320.0	1.03943	0.7016	0.089	1509599.	221.09	
1	2610620.0	1.02898	0.7058	0.090	1508187.	218.10	
1	2710920.0	1.01852	0.7117	0.092	1506800.	213.77	
1	2811070.0	1.01325	0.7453	0.108	1506800.	188.96	

693.15	693.15	1151.47
863.14	863.14	1148.55
863.14	863.14	1148.47
863.14	863.14	1148.41
863.14	863.14	1148.34
863.14	863.14	1148.27
863.14	863.14	1148.19
863.14	863.14	1153.80
863.14	863.14	1159.19
863.14	863.14	1164.37
863.14	863.14	1169.37
863.14	863.14	1174.21
863.14	863.14	1174.14
863.14	863.14	1174.08
863.14	863.14	1174.03
863.14	863.14	1173.97
693.16	693.16	1173.90
804.67	804.67	1170.50
917.06	917.06	1168.91
1029.30	1029.30	1167.35
1140.36	1140.36	1165.83
1164.81	1164.81	1164.81
1163.85	1163.85	1163.85
1162.74	1162.74	1162.74
1161.63	1161.63	1161.63
1160.50	1160.50	1160.50
1159.36	1159.36	1159.36
1158.78	1158.78	1158.78

0.121	0.121	0.2576	850.08	0.850
0.127	0.127	0.2513	810.77	0.850
0.127	0.127	0.2511	810.77	0.850
0.127	0.127	0.2510	810.77	0.850
0.127	0.127	0.2508	810.77	0.850
0.127	0.127	0.2507	810.77	0.850
0.127	0.127	0.2505	810.77	0.850
0.127	0.127	0.2627	810.81	0.850
0.127	0.127	0.2748	810.86	0.850
0.127	0.127	0.2868	810.91	0.850
0.127	0.127	0.2988	810.96	0.850
0.127	0.127	0.3108	811.01	0.850
0.127	0.127	0.3106	811.01	0.850
0.127	0.127	0.3105	811.01	0.850
0.127	0.127	0.3103	811.00	0.850
0.127	0.127	0.3102	811.00	0.850
0.121	0.121	0.3100	850.28	0.850
0.124	0.124	0.3016	824.55	0.850
0.129	0.129	0.2977	798.36	0.850
0.133	0.133	0.2939	771.92	0.850
7.148	0.138	0.2903	745.49	0.850
11.680	0.426	0.2879	739.63	0.850
11.718	0.440	0.2856	739.85	0.850
11.890	0.447	0.2830	740.11	0.850
12.070	0.454	0.2804	740.36	0.850
12.262	0.460	0.2778	740.62	0.850
12.427	0.469	0.2752	740.88	0.850
		0.2738	741.02	

```
    2 2INGLE PHASE MEASUREMENT FOR SODIUM NATURAL CONVECTION
        IN A VERTICAL LOOP:ORNL/TM-7018
$INTGIN NC=1,NZ=26,NR=1,NARF=1,NX=1,NRZS=1, IHTF=1.
            HTS=3,ISS=1,IXFL=O,IDUMP=1,IBB=2
            STRPR=O. ISHPR=10111,NITMAX=-2,IPFSOL=34
            NEQ=4,NUMDER=0,IHTRPR=0
$REALIN HDT=3.25E-3,PDR=1.2533,HDR=1.OE+10,DELPR=0.5.
                RNUSS = 7.O,RAOF = 1.625E-4,WINLET =8.5OE-4,GRAV =1 10.0
$RODINP OO=640.0$
$ $NCR
O$INDENT
1$IFCAR
1$NRZF
1 $NRMAF
3$MNRZF
1$INX
1$INX
7$MNRZS
4$NRMZS
4.07327E-3 $DX
4.07327E-3 $DV
1.OE-6 0.6175 4(0.4575) 6(0.6175) 4(0.4575) 0.6175 5(0.194)
5(0.3) 1.OE-6 $DZ
26(0.0) $ARX
26(0.0) $ARY
27(8.285E-6) $ARZ
5.122162E-6 4(3.794962E-6) 6(5.12212E-6) 4(3.794962E-6)
5.122162E-6 5(1.60923E-6) 5(2.4885E-6) $VOL
3.25E-3 $HEDZ
3.25E-3 $WEDZ
28(1.01325E+05) $P
28(0.0) $ALP
28(693.15) $TEMP
27(12.OE-2) $VEL
-9.8 5(0.0) 5(9.8) 5(0.0) 11(-9.8) $GRAV
26(693.15) $TWF
16(0.0) 5(1.0) 5(0.0)
1.0 $0T
1.0 $OR
1.0 $RN
.625E-3 $DRZF
1.62929E-2 $PCX
2.03E-2 $DRZS
1.OE+6 14(0.0) 1.OE+6 10(0.0) $HOUT
863.15 14(500.0) 693.15 10(500.0) $HOUT
26(693.15) $TWS
26(2.5E+6) $HLSS
$TIMDAT TEND=10.0,DTMIN=1.OE-6,DTMAX=1.0.DTSP=20.0.DTLP=1.O.IREDMX=20 $
$TIMDAT TEND=-1.O$
    O
```


maximum relative changes over the time step N PRESSURE: $0.0000+00$
IN MIXTURE DENSITY: O.OOOD+00
IN MIXTURE ENERGY: $0.000 \mathrm{D}+00$

MAXIMUM RELATIVE LINEARIZATION ERRORS
N PRESSURE: $0.0000+00$
N MASS/VOLUME: $\quad 0.0000+00$
IN ENERGY/VOLUME: $0.0000+00$

	IC	12	Z (MM)	P(BAR)	void	OUAL (\%)	EM	ROM	TVAP	T L10	T SAT	vVz	VLZ	ROV	ROL	FLOW(G/5)
	1	1	0.0	1.01325	0.0000	0.000	913556.	850.14	693.15	693. 15	1158.78	0.120	0.120	0.4107	850.14	0.845
	1	2	308.7	1.01325	0.0000	0.000	913556.	850.14	693. 15	693. 15	1158.78	0.120	0.120	0.4107	850.14	0.845
	1	3	846.2	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0845
	1	4	1303.8	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
\cdots	1	5	1761.3	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
\cdots	1	6	2218.8	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
L	1	7	2756.2	1.01325	$0.0000{ }^{\text { }}$	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
	1	8	3373.7	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
	1	9	3991.2	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
	1	10	4608.7	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0. 120	0.4107	850.14	0.845
	1	11	5226.2	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0. 120	0. 120	0.4107	850.14	0.845
	1	12	5843.8	1.01325	0.0000	0.000	913556.	850.14	693. 15	693.15	1158.78	0.120	0. 120	0.4107	850.14	0.845
	1	13	6381.3	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0. 120	0.4107	850.14	0.845
	1	14	6838.8	1.01325	0.0000	0.000	913556.	850.14	693.15	693. 15	1158.78	0.120	0.120	0.4107	850.14	0.845
	1	15	7296.3	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	85014	0.845
	1	16	7753.8	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
	,	17	8291.3	1.01325	0.0000	0.000	913556.	850.14	693.15	693. 15	1158.78	0.120	0. 120	0.1107	850.14	0.815
	,	18	8697.0	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845
	1	19	8891.0	1.01325	0.0000	0.000	913556.	850.14	693. 15	693.15	1158.78	0. 120	0.120	0.1107	850.14	0.845
	1	20	9085.0	1.01325	0.0000	0.000	913556.	850.14	693.15	693. 15	1158.78	0. 120	0. 120	0.1107	850.11	0.815
	1	21	9279.0	1.01325	0.0000	0.000	913556.	850.14	693. 15	693.15	1158.78	0.120	0. 120	0.4107	850.14	0.815
	1	22	9473.0	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0. 120	0.4107	850.14	0.845
	1	23	9720.0	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0. 120	0.4107	850.14	0.845
	1		10020.0	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0. 120	0.4107	850.14	0.845
	1	251	10320.0	1.01325	0.0000	0.000	913556.	850. 11	693.15	693. 15	1158.78	0. 120	0. 120	0.1107	850.11	0.815
	1	261	10620.0	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850. 14	0.845
	1	271	10920.0	1.01325	0.0000	0.000	913556.	850.14	693.15	693.15	1158.78	0.120	0.120	0.4107	850.14	0.845 .
	1	281	11070.0	1.01325	0.0000	0.000	913556.	850.14	693. 15	693.15	1158.78			0.4107	850.14	

