archure

TEA: A LINEAR FREQUENCY DOMAIN FINITE ELEMENT MODEL FOR TIDAL EMBAYMENT ANALYSIS .

by

J. J. Westerink, J. J. Connor, K. D. Stolzenbach, E. E. Adams and A. M. Baptista

Energy Laboratory Report No. MIT-EL 84-012

•

-

February 1984

.

TEA: A Linear Frequency Domain Finite Element Model for Tidal Embayment Analysis

by J.J. Westerink J.J. Connor K.D. Stolzenbach E.E. Adams A.M. Baptista

and R.M. Parsons Laboratory for Water Resources and Hydrodynamics Department of Civil Engineering Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Energy Laboratory

Sponsored by Northeast Utilities Service Company and New England Power Service Company under the M.I.T. Energy Laboratory Electric Utility Program

and by

The Sea Grant Office of NOAA U.S. Dept. of Commerce

Energy Laboratory Report No. MIT-EL 84-012

February 1984

ABSTRACT

A frequency domain (harmonic) finite element model is developed for the numerical prediction of depth average circulation within small embayments. Such embayments are often characterized by irregular boundaries and bottom topography and large gradients in velocity. Previously developed finite element based time domain models require high eddy viscosity coefficients and small time steps to insure numerical stability, making application to small bays infeasible. Application of the harmonic method in conjunction with finite elements overcomes these problems. The model TEA, for Tidal Embayment Analysis, solves the linearized problem and is the core of a fully nonlinear code presently under development.

This report discusses in detail both the theory behind TEA and program usage. Furthermore the versatility of TEA is demonstrated in several prototype examples.

ACKNOWLEDGMENTS

This research constitutes part of an overall program for the development of more efficient and accurate circulation and dispersion models for coastal waters and is under the direction of Professor J.J. Connor, Professor K.D. Stolzenbach and Dr. E.E. Adams.

Support for this research was provided by Northeast Utilities Service Company and New England Power Service Company through the M.I.T. Energy Laboratory Electric Utility Program and also by the Sea Grant Office of NOAA, Department of Commerce, Washington, D.C..

The authors would like to thank Miss Diane Hardy for her extensive . help in the preparation of this report.

TABLE OF CONTENTS

Ē	age
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	ii
1. INTRODUCTION	1
2. GOVERNING EQUATIONS	3
3. WEIGHTED RESIDUAL AND FINITE ELEMENT METHOD FORMULATIONS	12
4. PROGRAM USAGE	17
4.1 Grid Layout	17 18
4.3 Specified Phase Shifts	19
4.4 Boundary Conditions	19
4.5 Output	20
٩	
5. APPLICATION	22
5.1 Massachusetts Bay	22
5.2 Niantic Bay	29
5.3 Brayton Point	41
REFERENCES	52
Appendix 1: Program TEA	53
1.1 input format	54
1.2 output format.	56
1.3 example problem	59
1.4 listing	82
Appendix 2: Program RENUMB	86
2.1 inputs/outputs	94
2.2 listing	98
Appendix 3: Massachusetts Bay Example	03
3.1 input for Massbay tidal case	04
3.2 input for Massbay steady current case	11
3.3 output for Massbay tidal case	18
3.4 output for Massbay steady current case	31

•

.

1. INTRODUCTION

In the past few decades there has been considerable advancement in the predictive capabilities for tidally induced circulation in waterbodies. Many of the more recent numerical models have applied the finite element method [11,12]. The principal advantage of finite element methods over the more traditional finite difference methods is the greater versatility allowed in grid discretization, both in terms of fitting the often highly irregular coastal geometry and in terms of refining the grid in critical areas. Most of these models have been time based, the time dependence being resolved either by using some type of numerical integration scheme or by applying a combined space-time finite element scheme. However, these time domain models have been plagued with requirements for small time steps necessary to insure numerical stability. The maximum allowable time step decreases along with decreasing element size, making application to small bays infeasible because of the extreme costs involved. Furthermore, these models have been criticized for their dependence on high eddy viscosity coefficients, required for numerical damping of small wave length noise, to achieve reasonable and smooth solutions [3]. Finally, these time domain codes have the additional shortcoming of requiring start up periods in order to allow initial transients to be damped out.

To overcome these inherent difficulties associated with time domain discretizations, investigators have lately applied the harmonic method in conjunction with finite elements [7,8,10]. Because of the periodic nature of the tidal phenomenon, the harmonic method is an intrinsically more natural solution procedure and was one of the traditional methods for analysis before the advent of finite difference and finite element

-1-

methods [2]. There are no time stepping limitations as with this procedure a set of quasi-steady (or time independent) equations are generated. Furthermore, there is no more need for artificially high eddy viscosity coefficients. One difficulty which arises, however, when implementing this frequency domain method, is that non linear terms can not be included as a part of the solution but must be generated by iterative superpositioning of several frequencies.

Present research is aimed at advancing the capacities of this harmonic method by developing a code specifically geared towards small scale geometries, where the most formidable problems occur with the time domain codes now available.

This report discusses a highly efficient linear code which shall be used as the core of a full non linear iterative program presently under development. This linear code has been specifically tailored to fulfill the characteristics which are desirable when applying this frequency domain method to small bays where the non linearities are often quite substantial. However, for many applications this linearized finite element frequency domain model may be quite sufficient and very useful. In the following two chapters we shall briefly discuss the theory and numerical techniques involved in the development of this linear model, such that the user will have a clearer and more comprehensive understanding of the potentials, limitations and requirements of the computer code TEA (Tidal Embayment Analysis) developed.

-2-

2. GOVERNING EQUATIONS

The equations to be solved are the depth averaged forms of the continuity and Navier-Stokes equations. With the assumptions of constant density fluid, hydrostatic pressure distribution, negligible horizontal momentum dispersion (or eddy viscosity) and constant pressure at the air-water interface, these equations are:

$$n_{t} + [u(h + \eta)]_{x} + [v(h + \eta)]_{y} = 0$$
(2.1)

$$u_{,t} + uu_{,x} + vu_{,y} = -g n_{,x} + fv + \frac{1}{\rho h} (\frac{h}{H}) (\tau_x^s - \tau_x^b)$$
 (2.2a)

$$v_{,t} + uv_{,x} + vv_{,y} = -g \eta_{,y} - fu + \frac{1}{\rho h} (\frac{h}{H}) (\tau_y^s - \tau_y^b)$$
 (2.2b)

where u,v are the depth averaged velocities in the x and y coordinate directions, respectively, n is surface elevation above mean water level, h is mean water depth, t is time, H = h + n is total depth, g is acceleration due to gravity, ρ is the density of water, f is the Coriolis parameter, τ_x^s and τ_y^s are surface stresses in the x and y directions, and finally τ_x^b and τ_y^b are the bottom stresses in the x and y directions. These equations are readily linearized by neglecting the finite amplitude components of flux in the continuity equation (i.e., the un and vn terms), by neglecting the convective acceleration terms in the momentum equations, by approximating $\frac{h}{H} = \frac{h}{h+\eta} \approx 1$, and by linearizing bottom friction to yield the following set of equations:

$$n_{t} + (uh)_{x} + (vh)_{y} = 0$$
 (2.3)

$$u_{,t} + g\eta_{,x} - fv - \frac{1}{oh} (\tau_x^s - \tau_x^{b,1in}) = 0$$
 (2.4a)

$$v_{,t} + g\eta_{,y} + fu - \frac{1}{\rho h} (\tau_y^s - \tau_y^{b,1in}) = 0$$
 (2.4b)

Bottom friction has been linearized as:

$$\frac{\tau_{\mathbf{x}}^{\mathbf{b},\mathbf{lin}}}{\rho} = \lambda \mathbf{u} \quad \text{and} \quad \frac{\tau_{\mathbf{y}}^{\mathbf{b},\mathbf{lin}}}{\rho} = \lambda \mathbf{v} \quad (2.5)$$

where

$$\lambda = c_f U = linearized friction coefficient$$

$$c_{f} = friction factor = \frac{g}{c^{2}}$$

$$\frac{n^{2}g}{h^{1/3}}$$
Manning

For the tidal case, when the linearization is done on an equivalent work over a tidal cycle basis, λ has the following form

$$\lambda = U_{\text{max}} \cdot \frac{8}{3\pi} \cdot c_{f}$$
(2.6)

.

.

where

Hence, this fully linear set of equations describe tidal wave propagation with coriolis, surface wind stress and bottom friction effects. Their validity are subject to the relative magnitude of the non-linearities

being small, which implies that both the long wave and small amplitude assumptions are satisfied, hence;

$$\frac{a}{h} \ll 1$$
 and $\frac{h}{L} \ll 1$

where

a = wave amplitude
L =
$$\sqrt{gh}$$
 T = wave length for shallow water waves
T = $\frac{2\pi}{\omega}$ = tidal wave period

The linearity of this set of partial differential equations permits superpositioning of solutions, hence allowing different frequency tides (eg., $M_2,...$) in addition to any steady state components to be solved for seperately and then to have the results superimposed.

The boundary conditions associated with our linearized governing equations are the elevation prescribed and normal flux prescribed conditions which are respectively expressed as,

$$\eta(x,y,t) = \eta^{*}(x,y,t) \text{ on } \Gamma_{\eta}$$
 (2.7a)

and

$$Q_{\eta}(\mathbf{x},\mathbf{y},\mathbf{t}) = Q_{\eta}^{\star}(\mathbf{x},\mathbf{y},\mathbf{t}) \text{ on } \Gamma_{Q}$$
(2.7b)

where

 Γ_{η} = elevation prescribed boundary Γ_{Q} = flux prescribed boundary

$$Q_n = \alpha_{nx}Q_x + \alpha_{ny}Q_y$$
(2.8)

where

$$Q_x$$
, Q_y are flux components in the x and y direction
 α_{nx} , α_{ny} are the direction cosines on the boundary

In order to be consistent with our previous linearization we must define the flux components as,

$$Q_{x} = uh$$
(2.9a)

$$Q_{y} = vh$$
 (2.9b)

A further modification of our equations which is applied in order to increase the accuracy of computation, specifically in order to reduce round off error, is the splitting of elevation into a base component n_0 , which is representative of tidal elevation amplitude of the entire bay, and a local value n_1 , which describes the amplitude deviation from the base value. Hence the actual elevation, n, is now expressed as:

$$\eta(x,y,t) = \eta_{0}(t) + \eta_{1}(x,y,t)$$
(2.10)

Substituting into our linearized governing equations we have,

$$\eta_{0,t} + \eta_{1,t} + (uh)_{,x} + (vh)_{,y} = 0$$
(2.11)

$$u_{,t} + gn_{1,x} - fv - \frac{1}{\rho h} (\tau_x^s - \tau_x^{b,lin}) = 0$$
 (2.12a)

$$v_{,t} + g\eta_{1,y} + fu - \frac{1}{\rho h} (\tau_y^s - \tau_y^{b,lin}) = 0$$
 (2.12b)

The boundary conditions become:

$$\eta_1(x,y,t) = \eta_1^*(x,y,t) = \eta(x,y,t) - \eta_0(t) \text{ on } \Gamma_\eta$$
 (2.13a)

and

$$Q_{\eta}(x,y,t) = Q_{\eta}^{\star}(x,y,t) \text{ on } \Gamma_{Q}$$
 (2.13b)

Our equations now have the primary variables n_1 , u and v, and an additional loading term n_0 .

The known loading may be thought of as a pumping mode which forces the entire basin surface up and down with the base elevation n_0 . From this point on we shall refer to n_0 as the base or pumping mode and the additional local response, n_1 , as elevation. Hence as shown in Eq. 2.10 the actual total response equals the base loading, n_0 , plus the computed elevation, n_1 . The program determines the value of the base loading by averaging the prescribed total elevation boundary loadings (Eq. 2.7a). We note that in order to be effective in improving computational accuracy, the difference between n_0 and n_1 must be at least several orders of magnitude. This is indeed the case for small scale embayments where the difference is typically quite large (e.g., 2 or 3 orders of magnitude).

We shall now eliminate the time dependence from our equations by reducing them to the frequency domain. The basic assumption in this reduction is that both forcings on the system and responses of the system in elevation and velocity are of the same periodicity, ω . The assumed

-7-

periodic response in velocity and total elevation are expressed as:

$$u(x,y,t) = \hat{u}(x,y) e^{i\omega t}$$
 (2.14a)

$$v(x,y,t) = v(x,y) e^{i\omega t}$$
 (2.14b)

$$n(x,y,t) = \hat{n}(x,y) e^{i\omega t}$$
(2.14c)

It follows that our base loading and elevation are:

$$\eta_{o}(t) = \hat{\eta}_{o} e^{i\omega t}$$
(2.15a)

$$n_1(x,y,t) = \hat{n}_1(x,y) e^{i\omega t}$$
 (2.15b)

It is noted that all quantities with $^{\circ}$ superscripts are complex spatially varying amplitudes which include both a magnitude and a phase shift. In order for these assumed responses to be valid both boundary and surface forcings must be periodic with frequency, ω . For the flux and elevation boundary forcings this is expressed as:

$$Q_{\eta}^{\star}(\mathbf{x},\mathbf{y},\mathbf{t}) \Big|_{\Gamma_{Q}} = \hat{Q}_{\eta}^{\star}(\mathbf{x},\mathbf{y}) \Big|_{\Gamma_{Q}} e^{i\omega t}$$
 (2.16a)

$$n_{1}^{\star}(\mathbf{x},\mathbf{y},\mathbf{t}) \Big|_{\Gamma_{\eta}} = \hat{n}_{1}^{\star}(\mathbf{x},\mathbf{y}) \Big|_{\Gamma_{\eta}} e^{i\omega t}$$
(2.16b)

Similarly wind forcings are assumed periodic such that:

1

$$\tau_x^s = \hat{\tau}_x^s e^{i\omega t}$$
(2.17a)

$$\tau_y^s = \hat{\tau}_y^s e^{i\omega t}$$
(2.17b)

We note that it is the wind forcing and not the wind velocity that is assumed periodic. The associated wind stress amplitude factors are then expressed as:

$$\hat{\tau}_{\mathbf{x}}^{\mathbf{s}} = \rho_{\mathbf{air}} C_{\mathbf{D}} \left| \hat{\mathbf{U}}_{10} \right| \hat{\mathbf{U}}_{10} \cos \theta_{\mathbf{w}}$$
(2.18a)

$$\hat{\tau}_{y}^{s} = \rho_{air} C_{D} \left| \hat{U}_{10} \right| \hat{U}_{10} \sin \theta_{w}$$
(2.18b)

where

 \hat{U}_{10} is maximum wind speed amplitude ρ_{air} is density of air C_{D} is a wind drag coefficient θ_{w} is the wind approach angle

Finally the periodicity of the linearized bottom friction concurs with the form of the velocity response and hence is expressed as:

$$\frac{\tau_{\mathbf{x}}^{\mathbf{b},\mathbf{lin}}}{\rho} = \lambda \hat{\mathbf{u}} e^{\mathbf{i}\omega \mathbf{t}}$$
(2.19a)
$$\frac{\tau_{\mathbf{y}}^{\mathbf{b},\mathbf{lin}}}{\rho} = \lambda \hat{\mathbf{v}} e^{\mathbf{i}\omega \mathbf{t}}$$
(2.19b)

As previously mentioned these assumed response amplitudes include both a magnitude and a phase shift which allows reference times to be handled. This may be somewhat more easily seen by expanding out these periodic responses/functions as follows:

$$A(x,y,t) = \operatorname{Re} \left[\hat{A}(x,y) e^{i\omega t} \right]$$

=
$$\operatorname{Re} \left| \hat{A}(x,y) \right| e^{i(\omega t + \phi)}$$

=
$$\left| \hat{A}(x,y) \right| \cos(\omega t + \phi) \qquad (2.20)$$

We note that the real part of our complex responses is always implied. Furthermore, an amplitude;

$$\hat{A}(x,y) = |\hat{A}(x,y)| e^{i\phi} \qquad (2.21)$$

contains both information about the magnitude $|\hat{A}(x,y)|$ and about the time phase shift, ϕ .

It is readily seen that the steady state case is represented by specifying the frequency, ω , as zero. Furthermore, we note that for this case phase shifts are not applicable and must always be specified as $\phi = 0$. Finally, we note that for $\omega = 0$, our wind forcing equations (Eq. 2.18) reduce to their customary form.

Substituting in the assumed forcings and responses into our governing partial differential equations and boundary conditions, taking appropriate time derivatives and noting that $e^{i\omega t}$ terms drop from all equations, the following set of quasi-steady equations is generated:

$$i\omega n_1 + i\omega n_0 + (uh)_{,x} + (vh)_{,y} = 0$$
 (2.22)

$$\hat{i}\omega\hat{u} + \hat{g}\eta_{1,x} - \hat{f}v - \frac{1}{h}(\frac{\tau_x}{\rho} - \lambda\hat{u}) = 0$$
 (2.23a)

$$\hat{u}\hat{v} + \hat{g}\hat{\eta}_{1,y} + \hat{f}\hat{u} - \frac{1}{h}(\frac{y}{\rho} - \lambda\hat{v}) = 0$$
 (2.23b)

with boundary conditions:

$$\hat{Q}_{\eta}(x,y)\Big|_{\Gamma_{0}} = \hat{Q}_{0}^{*}(x,y)$$
 (2.24a)

$$\hat{n}_{1}(x,y)\Big|_{\Gamma_{n}} = \hat{n}_{1}^{\star}(x,y)$$
 (2.24b)

We note that these equations are time independent and hence we have eliminated any time stepping restrictions in solving the equations.

We now wish to develop some numerical technique to solve these partial differential equations for an arbitrary geometry. We shall use the finite element method to do this and shall solve for the spatial variation of the amplitudes $n_1(x,y)$, u(x,y) and v(x,y). The magnitudes and phase shifts having been solved for using the finite element method program developed, we can readily generate the entire time history using Eqs. 2.14. Moreover, if we choose to linearly superimpose solutions we superimpose the time histories generated to resolve the total time history.

-11-

3. WEIGHTED RESIDUAL AND FINITE ELEMENT METHOD FORMULATIONS

In order to apply the finite element method we must first develop a weighted residual formulation. The basic idea behind the weighted residual method is to establish a set of equations which minimize the weighted error which is incurred between the exact solution and our approximation to the solution. Before proceeding with the weighted residual method we multiply through the momentum equations by h in order to induce a certain symmetry between the continuity and momentum equations and hence allow for similar matrices (for the derivative terms of both equations) to be generated, thereby reducing storage requirements. Hence we have:

$$i\omega \eta_0 + i\omega \eta_1 + (uh)_{,x} + (vh)_{,y} = 0$$
 (3.1)

$$\hat{i}\omega\hat{h}\hat{u} + g\hat{h}\eta_{1,x} - f\hat{h}\hat{v} - (\frac{\hat{\tau}_x^s}{\rho} - \lambda\hat{u}) = 0$$
 (3.2a)

$$i\omega h \hat{v} + g h \eta_{1,y} + f h \hat{u} - (\frac{\tau y}{\rho} - \lambda \hat{v}) = 0$$
 (3.2b)

In order to avoid a singular formulation, we shall in later manipulations substitute the momentum equations into the continuity equation. This dictates that the continuity equation be used to establish the symmetrical weak weighted residual form. Formulating the fundamental weak form in this fashion leads to elevation amplitude prescribed boundary conditions being essential and the normal flux amplitude prescribed boundary conditions being natural. We note that it is therefore mandatory to prescribe elevation on at least one point of the boundary. This is required in order to ensure uniqueness of the solution, that is a reference depth must be specified.

-12-

Specifically applying Galerkin's method to establish the fundamental weak form the error in the continuity equation is weighted by the variation in elevation, $\delta \eta l$, and is integrated over the interior domain. In addition, the natural boundary error must be accounted for by weighting it with $\delta \eta l$, and integrating over the natural boundary. It is required that the combined integrated and properly weighted interior and natural boundary errors vanish and the following expression results:

$$\iint \{i\omega\hat{n}_{1} + i\omega\hat{n}_{0} + (\hat{u}h), x + (\hat{v}h), y\}\delta\hat{n}_{1}d\Omega + \iint \hat{Q}_{n} + \hat{Q}_{n}^{\dagger}\delta\hat{n}_{1}d\Gamma = 0 \quad (3.3)$$

Applying Gauss' theorem in order to eliminate derivatives on the flux terms and combining with boundary relationships leads to the desired symmetrical weighted residual weak form:

$$\int_{\Omega} \{i\omega \hat{\eta}_{1}\delta \hat{\eta}_{1} + i\omega \hat{\eta}_{0}\delta \hat{\eta}_{1} - uh(\delta \hat{\eta}_{1}), x - vh(\delta \hat{\eta}_{1}), y\} d\Omega + \int_{\Gamma_{Q}} \hat{\eta}_{0}^{*} \delta \hat{\eta}_{1} d\Gamma = 0 \quad (3.4)$$

The weighted residual forms for the momentum equations are obtained by weighting the associated errors with residual velocities and integrating over the interior domain, resulting in:

$$\iint \{ \mathbf{i} \omega \hat{\mathbf{h}} + g \hat{\mathbf{h}}_{1,\mathbf{x}} - f \hat{\mathbf{h}}_{\mathbf{v}} - (\frac{\hat{\tau}_{\mathbf{x}}}{\rho} - \lambda \hat{\mathbf{u}}) \} \delta \hat{\mathbf{u}} d\Omega = 0$$
(3.5a)

$$\iint \{ \mathbf{i}\omega \hat{\mathbf{h}}\mathbf{v} + \mathbf{g}\hat{\mathbf{h}}\eta_{1,\mathbf{y}} + \mathbf{f}\hat{\mathbf{h}}\hat{\mathbf{u}} - (\frac{\hat{\mathbf{y}}}{\rho} - \lambda \hat{\mathbf{v}}) \} \hat{\delta \mathbf{v}} d\Omega = 0$$
(3.5b)

The functional continuity requirements imposed upon variables are that \hat{n}_1 and $\hat{\delta n}_1$ be continuous over the domain, requiring at least a linear finite element expansion, and that \hat{u} , \hat{v} , $\hat{\delta u}$ and $\hat{\delta v}$ be finite over the domain, requiring only constant expansions. For the full non linear form of the equations, however, \hat{u} , \hat{v} , $\hat{\delta u}$ and $\hat{\delta v}$ also require linear expansions.

Before proceeding with our numerical scheme we rearrange the weighted residual equations somewhat such that all non variable load terms such as the pumping mode, boundary flux and wind stress loadings appear on the right hand side. With these modifications our equations now appear as:

$$\int_{\Omega} \{i\omega\hat{n}_{1}\delta\hat{n}_{1} - \hat{u}h(\delta\hat{n}_{1}), x - \hat{v}h(\delta\hat{n}_{1}), y\} d\Omega = \int_{\Omega} \int_{\Omega} i\omega\hat{n}_{0}\delta\hat{n}_{1}d\Omega - \int_{\Omega} Q_{\eta}^{*}\delta\hat{n}_{1}d\Gamma \quad (3.6)$$

$$\iint \{i\omega h\hat{u} + \lambda \hat{u} - fh\hat{v} + gh\hat{\eta}_{1,x}\} \hat{\delta u} d\Omega = \iint_{\Omega} \frac{\tau^{s}}{\rho} \hat{\delta u} d\Omega \qquad (3.7a)$$

$$\iint_{\Omega} \{ \mathbf{i}\omega \mathbf{h}\hat{\mathbf{v}} + \lambda \hat{\mathbf{v}} + \mathbf{f}\mathbf{h}\hat{\mathbf{u}} + \mathbf{g}\mathbf{h}\hat{\eta}_{1,y} \} \hat{\delta \mathbf{v}} d\Omega = \iint_{\Omega} \frac{\tau^{\mathbf{s}}}{\rho} \hat{\delta \mathbf{v}} d\Omega \qquad (3.7b)$$

To generate a system of algebraic equations from the previous integral equations the finite element method is applied. This involves dividing the global domain, Ω , into element sub-domains, Ω_e , and representing the variables within each element by a polynominal expansion. Contributions from all elements are summed and inter-element functional continuity requirements are taken into account in order to generate a global system of equations. In our particular case we select triangular elements and the lowest possible order polynomial mandated for the full non linear form of the equations. All variables, \hat{n}_1 , \hat{u} , \hat{v} , $\delta\hat{n}_1$, $\delta\hat{u}$, and $\delta\hat{v}$, are therefore represented by linear expansion over each element,

yielding variables which are defined at the nodes. Furthermore, linear element expansions are used for mean water level depths h. In this manner elevations, velocities and depths are defined at nodes such that inter-element fluxes are both continuous and clearly defined. It may be easily shown that the application of the finite element method to the final weighted residual equations yields the following set of global algebraic matrix equations:

$$i\omega \underline{\underline{M}}_{p_{1}} \hat{\underline{\underline{n}}}_{1} - \underline{\underline{\underline{D}}} \hat{\underline{\underline{U}}} = - \hat{\underline{\underline{P}}}_{p_{1}} - \hat{\underline{\underline{P}}}_{Q_{1}}^{\text{lin}}$$
(3.8)

$$(i\omega\underline{M}_{U} + \underline{M}_{F} + \underline{M}_{C})\underline{U} + g \underline{D}\underline{n}_{1} = \underline{P}_{W}$$
(3.9)

where

<u>n</u> is the global elevation vector (1 elevation per node) <u>u</u> is the global velocity vector (2 velocities per node) <u>M</u>, <u>M</u> are global mass matrices <u>M</u>, <u>is the global linearized bottom friction matrix'</u> <u>M</u> is the coriolis matrix <u>D</u> is the coriolis matrix <u>P</u> = $i\omega M_{\eta} \hat{\eta}_{0}$ is the base elevation vector <u>P</u> is the prescribed boundary flux loading vector \hat{P}_{u} is the wind loading vector

We note that all matrices are efficiently banded, the bandwidth depending on the nodal numbering scheme used. In order to reduce computational effort and storage requirements we use lumped mass, bottom friction and Coriolis matrices. The lumping for the symmetric mass and friction

-15-

matrices involves combining all terms on a row onto the diagonal and for the skew symmetric Coriolis matrix combining rows into off-diagonal terms. The lumping procedure is in effect a slight redistribution between the nodes of mass and certain forcings. We have found that results are quite insensitive to these lumpings.

Combining the matrices commonly multiplying the velocity vector in the momentum equation as:

$$\tilde{\underline{M}}_{T} = i\omega\underline{M}_{U} + \underline{M}_{F} + \underline{M}_{C}$$
(3.10)

yields a tri-diagonal matrix which can be very economically inverted when solving for $\hat{\underline{U}}$. Hence solving for $\hat{\underline{U}}$ using the momentum equation we have

$$\hat{\underline{\mathbf{u}}} = \hat{\underline{\mathbf{M}}}_{\mathrm{T}}^{-1} (\hat{\underline{\mathbf{P}}}_{\mathrm{W}} - \underline{\mathbf{g}}_{\mathrm{U}}^{\mathrm{T}} \hat{\mathbf{\eta}}_{1})$$
(3.11)

Substituting for $\underline{\underline{U}}$ into the continuity equation and rearranging somewhat yields:

$$(\mathbf{i}\omega\underline{\mathbf{M}}_{\mathbf{n}} + \mathbf{g}\underline{\mathbf{D}} \ \underline{\mathbf{M}}_{\mathbf{T}}^{-1} \ \underline{\mathbf{D}}^{\mathrm{T}})\underline{\mathbf{n}}_{\mathbf{1}} = \underline{\mathbf{P}}_{\mathbf{P}} - \underline{\mathbf{P}}_{\mathbf{Q}}^{\mathrm{lin}} + \underline{\mathbf{D}} \ \underline{\mathbf{M}}_{\mathbf{T}}^{-1} \ \underline{\mathbf{P}}_{\mathbf{W}}$$
(3.12)

The left hand side matrix, which is non-symmetrically banded and complex is then decomposed using an LU decomposition. The right hand side is combined into a single loading vector and we solve for $\underline{n_1}$. Then using Eq. 3.11 we directly solve for $\underline{\hat{U}}$. Finally in order to obtain the total elevation \hat{n} we simply add back in our base component, $\hat{n_0}$.

4. PROGRAM USAGE

In this chapter we shall briefly comment on usage of program TEA. The exact required input information is shown in Appendix 1.2.

4.1 Grid Layout

The layout and degree of refinement used for the grid depends on the amount of detail desired and also on the expected flow pattern. Generally a finer grid is used in areas of rapidly varying flow, near sharp boundaries and near regions where the boundary type changes (i.e., from elevation prescribed to normal flux prescribed). For tidal forcing cases grid size should be small enough such that;

 $\frac{\Delta \ell}{L} \ll \frac{1}{4}$

where Δl = representative element length scale

L = tidal wavelength = /gh T

This requirement stems from the nature of our linear element expansion and the form of a wave. Regarding grid shapes an attempt should be made to keep the interior angles of triangular grid cells larger than 30°.

Once the grid layout has been completed, nodes should be numbered sequentially. Node numbering should be done such that the arithmetic difference between node numbers of connecting nodes is minimized. This should be done since the matrix bandwidth and hence the efficiency of the code is determined by the maximum nodal point difference. Program RENUMB, a bandwidth optimization code (Appendix 2), is available to renumber the

-17-

nodes in input files of program TEA. Node connectivity for each element must be entered counterclockwise. We note that the sequential element numbering doesn't effect program efficiency.

Friction factors estimated according to Eq. 2.6 are entered as constant for each element. For zero frequency cases, it is necessary that either friction or Coriolis be specified as non-zero in order to avoid a singular formulation.

4.2 Units

The gravitational constant should be consistent with other units used. Hence if lengths are entered in meters, frequency in \sec^{-1} , then g must be entered as 9.81 m/sec² and output will be meters for elevation and m/sec for velocity.

The forcing frequency is $\omega = 2\pi/T$ where T is the tidal period. For steady cases $T = \infty$ and hence $\omega = 0$.

The Coriolis parameter is entered in the same time units as frequency and is calculated as:

 $f = 2\omega_e \sin\phi_l$

where ω_e = phase velocity of Earth's rotation (in rad/time)

 ϕ_{1} = degrees latitude.

Wind velocity should be entered in the same units as water velocity is being calculated. The wind friction factor, C_D , may be calculated according to standard formulae (e.g. see Ref. 14) and typically has a value around 0.001.

-18-

4.3 Specified Phase Shifts

Phase shifts must be applied in order to specify time lags in boundary conditions and other forcings. Phase shifts should be carefully and consistently specified in order to avoid a meaningless solution. They are specified in rad/sec and are calculated as:

 $\phi = \omega t_{p}$

where t_p is the phase shift time (in seconds if ω in sec⁻¹).

4.4 Boundary Conditions

The boundary is segmented into two boundary types, the elevation prescribed boundary, Γ_{η} , and the normal flux prescribed boundary, Γ_{Q} . The elevation prescribed boundary is the essential boundary condition and must be specified at at least one point on the boundary in order to establish a reference elevation. The entire boundary may be specified as being elevation prescribed. At each node on Γ_{η} we must specify an elevation amplitude and the associated phase shift. Typically elevation prescribed boundaries are ocean boundaries where tidal forcing exists. Also elevation prescribed to a river or estuary where we would specify zero elevation. Essential boundaries are exactly satisfied and hence elevation at these nodes will coincide exactly with our input boundary conditions.

The normal flux prescribed boundary is the natural boundary condition. Any part of the boundary not specified as essential is automatically taken to be natural. Unless otherwise specified, program TEA will assume that the normal flux boundary has zero normal flux across it, that is it assumes a land boundary. When a non-zero normal flux exists

-19-

across a natural boundary segment, for either the case of a known tidal flux or a river discharge, both the segments across which the flow occurs and the value of the flow at the nodes involved must be specified. The segment end node numbers must be specified in clockwise order for shoreline boundaries and in counterclockwise fashion for islands. The x and y components of flux per unit length (i.e., velocity × depth) is then specified at each of the nodes on the non-zero flux boundaries. The user can either specify the x and y components of the normal flux vector or the x and y components. Because specified flux is a natural boundary condition the computed flux on Γ_Q will be satisfied exactly only in the limit (as grid refinement is increased).

4.5 Output

Program TEA outputs information onto both tape 6 and tape 8. Tape 6 output is a formated descriptive listing of both inputs and results. Tape 8 outputs plotting (grids and results) and/or time history generating information. For details on outputs see Appendix 1.4.

When dealing with a set of tidal and steady state components, program TEA must be run separately for each different forcing frequency. The results for each frequency are then superimposed for each node to generate time history information as follows:

-20-

$$A_{node}(t) = \left|A_{node,\omega_1}\right| \cos(\omega_1 t + \phi_{node,\omega_1}) + \left|A_{node,\omega_2}\right| \cos(\omega_2 t + \phi_{node,\omega_2}) + .$$

where

t is time at which result is desired $A_{node,\omega_1} \text{ is amplitude (for elevation or velocity) at node at}$ frequency ω_1

 ϕ_{node,ω_1} is corresponding phase shift

.

.

.

5. APPLICATION

Program TEA has been verified by comparing computed results with exact analytical solutions for both the case of a straight channel with linear friction [5] and the case of a rectangular basin with a slot [1]. In this chapter, however, we shall focus on the application of program TEA to case studies of several bays and coastal inlets. Comparisons to the full non linear time domain finite element code CAFE [12] shall be shown and some of the differences shall be discussed.

5.1 Massachusetts Bay

The first example is the calculation of the circulation pattern of Massachusetts Bay. The grid used (Fig. 5.1) is identical to one applied with CAFE [12]. The circulation is driven both by a tidal fluctuation and a steady coastal current. The tidal forcing is simply specified by giving tidal elevation values at ocean nodes and driving the system at a frequency corresponding to a period of T = 12 hours. Tidal elevations vary linearly between Cape Ann and Cape Cod and no phase shifts are applied. The steady coastal current is simulated by imposing a linear elevation gradient along the ocean boundary and driving the system at zero frequency. Since there are no fluxes from any land boundary segment, no natural boundary condition need be specified in either case. The particular boundary values used were selected to be identical to the boundary forcing values used for CAFE. Program TEA input for both the tidal forcing component and the steady current component are shown in Appendices 3.1 and 3.2 and program TEA outputs are shown in Appendices 3.3 and 3.4.

In order to find the resulting currents, velocity results for both the tidal and the steady state components are superimposed at any desired

-22-

Fig. 5.1 Finite Element Grid of Massachusetts Bay

.

time. The resulting circulation patterns at several stages of the tide are shown in Figs. 5.2, 5.3 and 5.4. Predictions from the non-linear CAFE at T/6 after low tide [12] are shown in Figs 5.5 and can be compared with corresponding output from TEA (Fig. 5.4). Note that large values of eddy viscosity were needed in CAFE for numerical damping and are most likely unrealistically high. Non-linearities are probably not very important due to the large depth of Massachusetts Bay in most areas. We note that at some points along the shoreline TEA allows a certain amount of leakage onto land. This is due to the fact that TEA treats flux boundary conditions as natural and hence allows some error. Due to the solution methodology of CAFE, flux boundary conditions are essential and hence the no flux boundary conditions are strictly enforced. However, if it is important in a particular application to conserve total mass, this boundary leakage problem of TEA may be readily resolved by doing some grid refinement in these boundary areas, especially near sharp corners and high gradient regions.

Fig. 5.5 Tidal Circulation Computed by CAFE at T/6 after Low Tide (from Ref. 12)

5.2 Niantic Bay

The second case study involves computing the tidally induced circulation in Niantic Bay, in the eastern part of Long Island Sound (Fig. 5.6). Specifically we desire to resolve the circulation around the Millstone point, the site of the Millstone Nuclear Power Station, and therefore the grid used (Fig. 5.7) shows a great deal of resolution in that vicinity. Tidal forcing boundary conditions were simulated by specifying a constant tidal elevation at ocean boundary nodes with a phase lag which increases along the boundary as shown in Fig. 5.7. It is stressed that the user must be very cautious in applying correct boundary condition values and phase lags. TEA is quite sensitive to incorrect boundary conditions and unrealistic solutions and/or boundary problems may develop due to incorrect boundary specifications. These types of problems will appear much more dramatically for TEA than for CAFE since TEA has no eddy viscosity to dampen unrealistic velocity gradients and furthermore does not allow boundary fluxes to be forced to zero in the manner that CAFE does.

The resulting circulation computed by TEA at two tidal stages are shown in Figs. 5.8 and 5.9. Results from CAFE [9] corresponding to Fig. 5.9 are shown in Fig. 5.10. Details for the flow around Millstone Point at maximum flood are shown in Figs. 5.11 and 5.12. Comparisons of velocity amplitudes and directions to both CAFE and measurements made at seven sites shown in Fig. 5.13 are presented in Fig. 5.14.

We note that, in general, velocity amplitude results from TEA compare better to measured results than those of CAFE, which substantially underpredicts flows at all points. We note especially the dramatic

-29-

Fig. 5.6 Niantic Bay and Location of Millstone Nuclear Power Station (from Ref. 9)

-30-

Fig. 5.7 Finite Element Grid Discretization of Niantic Bay and Millsone Point

•

Fig. 5.8 Computed Circulation by TEA at Maximum Flood

Fig. 5.9 Computed Circulation by TEA at Maximum Ebb

Fig. 5.10 Computed Circulation by CAFE at Maximum Ebb (from Ref. 9)

•

·

Fig. 5.11 Detail of Grid around Millstone Point

Fig. 5.12 Detail of Flow around Millstone Point Computed by TEA at Maximum Flood

Fig. 5.14 a-d Comparison of Current Measurements and Predictions by CAFE and TEA at various locations

Comparison of Current Measurements and Predictions by CAFE and TEA at various locations

improvement of currents around Millstone Point which is shown in the comparison at point 5. Even though velocities predicted by TEA at the measurement point itself are not quite high enough, velocities do tend to increase close to Millstone Point, a behavior not exhibited by CAFE. Again results for Niantic Bay are justified because, for the most part the bay is quite deep (8 - 15 meters) and hence the linear solution is applicable. Furthermore velocity amplitudes tend to be higher than those calculated by CAFE since there is no need for artificially high eddy viscosity values which tend to dampen and smooth out velocities.

Finally there is a dramatic difference in run times between CAFE and TEA. For this grid, a run with CAFE required approximately 20 hours of CPU times on a Honeywell level 68/DPS computer. This excessive amount of CPU time resulted from the maximum time step for numerical stability of 2 seconds required due to the small grid sizes. For the same grid, program TEA required only 2.5 minutes of CPU time running on a VAX 11/780, which is of comparable speed as the Honeywell.

5.3 Brayton Point

Our final example deals with predicting the combined circulation due to both tides and a power plant discharge at Brayton Point in Mount Hope Bay, Somerset, Massachusetts (Fig. 5.15). Again the main region of interest is around the power plant and hence the finite element grid discretization reflects this with a large amount of refinement in this region as shown in Figs. 5.16 and 5.17. The particular case run with program TEA examines the upper layer circulation pattern produced by tides and a three unit power plant operation and is analogous to a case study previously done with CAFE [6].

To simulate upper layer circulation, the depths used were the estimated upper layer depths which ranged between 1.5 and 3.5 meters. Again the tide and the steady state discharge must be handled by two separate runs of TEA. In the first run, the tidal component of circulation is calculated by prescribing tidal amplitude at the ocean boundary, as shown in Fig. 5.16, and forcing the system at a frequency corresponding to T = 12.4 hours. The second run simulates steady state power operation and natural river inflow. We attempt to simulate a jet by prescribing flow conditions at the near field - far field jet interface. Hence we prescribed large normal fluxes representing the outgoing jet and the in-going re-entrainment fluxes surrounding the jet as shown in Fig. 5.17. We note the very refined region necessary near the jet due to the large gradient and rapid turning expected in this region. Power plant intake flow is simulated by specifying a normal flux along the east side of the discharge peninsula. Additional withdrawals representing downwelling to the lower layer are simulated by specifying normal fluxes through elements along the southeastern edge of the domain. Taunton River

-41-

Fig. 5.15 Site of Brayton Point Generating Station located in Mount Hope Bay, Somerset, Massachusetts (from Ref. 6)

Fig. 5.16 Finite Element Grid Discretization of Mount Hope Bay

Fig. 5.17 Detail of Grid at Discharge Region at Brayton Point

flow is specified as a normal flux into the domain through elements in the northeast corner. All normal flux information is provided to TEA by specifying the end nodes, with a correct orientation (see Chapter 4.4), of each segment through which normal flow occurs and by specifying the x and y components of the normal flux at the nodes included in these flux segments. Finally, zero elevation amplitude is prescribed at the ocean boundary nodes and the system is driven at zero frequency.

Superimposed flow circulation patterns at two stages of the tide are shown in Figs. 5.18 and 5.19. Details of the flow around Brayton Point, including the discharge and intake locations, are shown in Figs. 5.20, 5.21 and 5.22. A result from CAFE corresponding to Fig 5.22 is shown in Fig. 5.23. When comparing results from TEA and CAFE we note that the jet is not as well simulated by TEA. This is due mainly to the fact that TEA does not include the non-linear momentum terms needed to simulate jet physics. TEA drives the discharge only by elevation gradients which accounts for the rapid spreading of the jet, best exhibited in Fig. 5.22. Hence we may conclude that a code which includes non-linearities is superior for simulating the circulation close to jet discharges. However program TEA will simulate discharges quite adequately if one is not interested in the region near the discharge where the momentum effects are important. Furthermore, a full non-linear version of TEA is presently under development.

-45-

Fig. 5.18 Circulation Computed by TEA at Maximum Flood

Fig. 5.19 Circulation Computed by TEA at Maximum Ebb

Fig. 5.20 Detail of Circulation at Brayton Point Computed by TEA at Maximum Flood

Fig. 5.21 Detail of Circulation at Brayton Point Computed by TEA at Maximum Ebb

Fig. 5.22 Detail of Circulation at Brayton Point Computed by TEA at High Slack

Fig. 5.23 Detail of Circulation at Brayton Point Computed by CAFE at High Slack (from Ref. 6)

References

- Briggs, D.A. and O.S. Madsen, 1975. "Analytical Models for One- and Two-Layer Systems in Rectangular Basins", MIT Parsons Lab. T.R. #172.
- 2. Dronkers, J.J., 1964. <u>Tidal Computations in Rivers and Coastal</u> Waters, North Holland Publ. Co., Amsterdam.
- Gray, W.G., 1980. "Do Finite Element Models Simulate Surface Flow", in F.E. in Water Resources #3, ed. S.Y. Wang et al.
- 4. Grotkop, G., 1973. "Finite Element Analysis of Long-Period Water Waves", Comp. Meth. in Appl. Mech. and Engrg., 2:147-157.
- 5. Ippen, A.T. (ed.), 1966. Estuary and Coastline Hydrodynamics, McGraw Hill.
- 6. Kaufman, J.T. and E.E. Adams, 1981. "Coupled Near and Far Field Thermal Plume Analysis using Finite Element Techniques", M.I.T. Energy Laboratory Report No. MIT-EL 81-036.
- Kawahara, M. and K. Hasegawa, 1978. "Periodic Galerkin Finite Element Method for Tidal Flow", Intl. J. Num. Methods in Engr., 12:115-127.
- Le Provost, C., A. Poncet and G. Rougier, 1980. "Finite Element Computation of Some Spectral Components", in <u>F.E. in Water Resources</u> #3, ed. S.Y. Wang et al.
- Ostrowski, P. and K.D. Stolzenbach, 1981. "The Effect of Natural Water Temperature Variation on the Monitoring and Regulation of Thermal Discharge Impacts - The Role of Predictive Natural Temperature Models", M.I.T. Energy Laboratory Report No. MIT-EL 81-035.
- 10. Pearson, C.E. and D.F. Winter, 1977. "On the Calculation of Tidal Currents in Homogeneous Estuaries", J. Phys. Ocean., 7:520-534.
- 11. Taylor, C. and J.M. Davis, 1975. "Tidal and Long Wave Propagation -A Finite Element Approach", Computers and Fluids, 3:125-148.
- Wang, J.D. and J.J. Connor, 1975. "Mathematical Modeling of Near Coastal Circulation", MIT Parsons Lab T.R. #200.
- 13. Westerink, J.J., J.J. Connor and K.D. Stolzenbach, 1983. "Harmonic Finite Element Model of Tidal Circulation for Small Bays", in Proceedings of the Conference in Hydraulic Engineering, H.T. Shen, ed., ASCE, N.Y.
- 14. Wu, J., 1969. "Wind Stress and Surface Roughness at Air-Sea Interface", Journal of Geophysical Research, Vol. 74, No. 2.

Appendix 1: Program TEA

- 1.1 input format
- 1.2 output format
- 1.3 example problem
- 1.4 listing

Appendix 1.1

Input for TEA is free formated and information should be read as follows:

- card 1: 10 character alphanumeric geometry identification
- card 2: 10 character alphanumeric run number identification
- card 3: number of elements; number of nodes
- card group 4: node number; x-coord; y-coord; and nodal depth
- card group 5: element number; element node connectivity given by 3 element node numbers (counterclockwise); element linear friction factor
- card 6: gravitational constant in consistent units
- card 7: forcing frequency
- card 8: Coriolis factor
- card 9: amplitude of wind speed; wind phase shift (in radians); wind direction (in degrees); wind drag coefficient

Prescribed normal flux section:

- card 10: number of boundary segments which have non-zero normal flux prescribed (if this is zero skip inputs 10a, 10b, 10c to card 11 input)
- card 10a: end nodes of boundary segments with non-zero normal flux prescribed with correct orientation (clockwise for land boundary and counterclockwise for islands)
- card group 10b: total number of different nodes inluded in non-zero normal flux load segments
- card group 10c: node number; modulus of x-direction flux at node; phase shift for x-direction (in radians); modulus of y-direction flux; phase shift for y-direction (in radians)

Prescribed elevation section:

card 11: number of nodes where elevation is prescribed

card group lla: node number; modulus of prescribed elevation at node; phase shift at node (in radians)

Appendix 1.2

.

•

As discussed in Section 4.5 program TEA outputs information onto TAPE 6 and TAPE 8. TAPE 6 information is a formated descriptive output and consists of three main sections:

- (1) Print statements which ask for required input in the order needed by TEA. This allows the program to be run in an interactive fashion. Furthermore these prints may also aid the user in checking to make sure that the input is in proper order. Finally error messages concerning dimensioning of matrices may appear here.
- (2) A labeled echo print of all input information.
- (3) Results of calculations consisting of elevation amplitude and phase shifts at nodes and velocities in the x and y direction with corresponding phase shifts at nodes.

Example outputs are shown in Appendices 3.3 and 3.4.

TAPE 8 output consists of information required for plotting of the grid and results and/or generation of time histories. TAPE 8 output is free-formated and consists of the following information groups:

- 10 character alphanumeric geometry identificaton
- 10 character boundary condition identification
- number of elements, number of nodes
- node number, x-coordinate, y-coordinate
- element number, three corresponding node numbers

-57-

• frequency

•

• node number, elevation amplitude, elevation phase shift

•

٠

• node number, x-velocity, x-phase shift, y-velocity, y-phase shift

Appendix 1.3.1

•

.

.

.

•

Here we discuss the boundary condition input requirements for program TEA with a case which shows a variety of features. The grid used is very coarse and is used only for illustrative purposes.

We consider a tidal inlet with an island and several steady state discharges. The geometry and the coarse grid used are shown in Fig. Al. The grid is shown again in Fig. A2 with element and node numbers included. The bay is subject to a 12.4 hour tidal forcing of unit amplitude and zero phase shift along the ocean boundary. Furthermore we note the steady state discharge on the land boundary and the steady intake on the island.

To simulate this case with TEA we perform two runs with two sets of boundary conditions. The first run calculates the tidal circulation component. The required boundary condition information consists only of the specification of ocean boundary node numbers and their corresponding tidal elevation amplitude and phase shift. TEA input for this run is shown in Appendix 1.3.2.

The second run calculates the steady state circulation component (hence zero frequency) and we must input the end nodes of the boundary segments through which flow occurs (in clockwise order for the land segments and in counterclockwise order for island segments) and the x and y components of the normal flow at the nodes involved. We note that phase shifts do not apply to the zero frequency case and must be specified as zero. Finally we provide information about the open ocean boundary by specifying zero amplitude at these nodes, allowing the total flow to balance. In this case since there is a net inflow into the bay, there will be an outflow into the ocean. TEA input for this run is shown in

-60-

Fig. Al Example Finite Element Grid

•

Appendix 1.3.3. We note that for a totally enclosed waterbody we would only specify one elevation at one boundary node. In that case then there would only be flows through specified flux (natural) boundary segments. Furthermore we would have to specify fluxes such that the total flow in and out of the boundary balanced in order to satisfy continuity.

Outputs for the two sample calculations are shown in Appendices 1.3.4 and 1.3.5. Since we have solved two linear problems we may now superimpose the results as discussed in Section 4.5.

Appendix 1.3.2

•

•

.

.

.

•

.

•

EXBAY1 BC-01 44, 34

.

.

•

.

•

-

34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	34 12 34 56 7 8 90 11 23 4 56 7 8 90 11 21 21 22 34 56 7 8 90 11 21 22 34 56 7 8 90 11 21 34 56 7 8 90 11 23 4 56 7 8 90 11 23 4 56 7 8 90 11 23 4 56 7 8 90 11 23 4 56 7 8 90 11 23 4 56 7 8 90 11 23 4 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 56 7 8 90 11 2 34 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12500. 1 2 2 3 3 8 5 6 6 8 8 13 9 12 18 19 13 20 19 20 21 29 29 20 21 29 29 30 22 23	7500. 9500. 11500. 13000. 7500. 9800. 12000. 7500. 10500. 10500. 10500. 10500. 10500. 14000. 0. 3000. 2500. 10500. 12600. 12600. 12600. 12600. 12500. 10500. 9000. 11500.
14000. 2 6 3 7 4 5 6 10 7 13 9 9 9 10 13 13 13 14 14 20 22 22 22 22 30 33 23 24	800. 1500. 2300. 3000. 2500. 3800. 4500. 3000. 7500. 4000. 7000. 10
5566799990122131441819920222112903223030	
25. 0.00100	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.

.

.

.

-

·

					_	
					-	
27	30	24	31	0.00100		
28	30	31	33	0.00100		
29	24	27	31	0.00100		
30	31	27	34	0.00100		
31	31	34	33	0.00100		
32	23	15	24	0.00100		
33	15	16	24	0.00100		
34	24	16	27	0.00100		
35	27	28	34 ·	0.00100		
36	27	25	28	0.00100		
37	16	25	27	0.00100		
38	15	10	16	0.00100		
39	10	11	16	0.00100		
40	25	26	28	0.00100		
41	25	17	26	0.00100		
42	16	17	25	0.00100		
43	16	11	17	0.00100		
44	ΤŪ	/	11	0.00100		
9.81	075					
0.00014	075					
0.00010		0 0 00				
0.00, 0	.00, 0.0	0, 0.00				
Ă						
1. 1.0	0. 0.00					
2. 1.0	0. 0.00					
3. 1.0	0.0.00					
1 1 0	0 0 00					
4, 1.0						

.

•

.

.

.

Appendix 1.3.3

•

.

.

. . . .

.

.

2
EXBAY2 BC-01				
44, 34				
2	7500. 9500.	800. 1500.		25. 25.
3	11500.	2300.		25.
5	7500.	2500.		25.
6	9800.	3800.		25.
8	5000.	3000.		25.
9	7500.	6000. 7500		25.
11	13500.	8000.		25.
12	1000.	4000.		25. 25.
14	6500.	9000.		25.
15 16	8800. 11500.	10000.		25. 25.
17	14000.	10000.		25.
18 19	0.	6500. 10000.		25.
20	3000.	10500.		25.
21	6000.	12000.		25.
23	7800.	11000.		25.
25	12600.	11300.		25.
26	14000.	11600.		25.
28	13500.	13000.		25.
29 30	6000. 8500.	14500. 13500.		25. 25.
31	10500.	13300.		25.
32 33	9000.	15500.		25.
34	12500.	14000.	5	25.
2	2	6	5	0.00100
3	2 3	3 7	- 6 6	0.00100
5	3	4	7	0.00100
6 7	8	5	9	0.00100
8	6	10	9	0.00100
10	8	13	12	0.00100
11	8	9	13	0.00100
13	9	10	14	0.00100
14	12 18	13	18 19	0.00100
16	19	13	20	0.00100
18	20	14	22	0.00100
19 20	19 20	20 22	21 21	0.00100
21	21	22	29	0.00100
22 23	29 29	22 30	30 32	0.00100
24	30	33	32	0.00100
25	23	23	30	0.00100

.

.

· - · ·

.

.

- - - -

.

.

.

-

.

•

-68-

•

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 9.81 0.0000000 0.00, 0.0	30 30 24 31 31 23 15 24 27 27 27 16 15 10 25 25 16 16 16 10 00 00, 0.00,	24 31 27 27 34 15 16 16 28 25 25 10 11 26 17 17 17 17 17 7	31 33 31 34 24 27 34 28 27 16 16 28 26 25 17 11	0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100	
33, 34 34, 28 15, 23 5 33, -0. 34, -1. 28, -1. 23, -0. 15, -0. 4 1, 0.00, 2, 0.00, 3, 0.00, 4, 0.00,	93, 0. 21, 0. 53, 0. 69, 0. 69, 0. 0.00 0.00 0.00	00, - 00, - 00, - 00, -	1.80, 1.60, 1.27, 0.74, 0.74,	0.00 0.00 0.00 0.00 0.00	

.

.

.

•

-69-

.

. .

.

Appendix 1.3.4

.

,

.

.

•

\$

PROGRAM TEA DEPT OF CIVIL ENGINEERING, M. L. T. 2-D LINEAR FINITE ELEMENT FREQUENCY DOMAIN ANALYSIS OF TIDAL WAVES FOR SHALL SCALE GEOMETRY.

ENTER 10 DIGIT F.E. GRID GEOMETRY IDENTIFICATION

ENTER 10 DIGIT I.D. CODE FOR B.C. VERSION

MAI. NODAL POINT DIFFEFENCE = 11

INPUT FREQUENCY IN RADIANS TSC.

INPUT CORIOLIS PARAMETER

PROGRAM TEA

FREQUENCY = 0.00014075 CORIOLIS PARAMETER = 0.00010000

INPUT NUMBER OF ELEMENTS AND NUMBER OF NODE POINTS

INPUT NO. OF NODES WHERE ELEVATION IS PRESCRIBED

DEPT OF CIVIL ENGINEERING, M. I. T.

F.E. GRID SEDNETRY IDENTIFICATION : EIBAYI BOUNDARY CONDITION IDENTIFICATION : BC-01

INPUT THE NODE NO., I-COOPD., AND NODAL M.S.L. DEPTH, DNE NODE/LINE

INPUT AMPLITUDE OF WIND SPEED, WIND PHASE SHIFT, ANGLE OF WIND DIRECTION (IN DEGREES) AND WIND DRAG COEFFICIENT

INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT MODE INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE INPUT THE NODE NUMBER AND VALUES FOR THE NODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE

2-D LINEAR FINITE ELEMENT FREDUENCY DOMAIN ANALYSIS OF TIDAL NAVES FOR SHALL SCALE GEOMETRY.

INPUT ELEMENT NUMBER, THREE NODE NUMBERS FOR THE ELEMENTAND THE ELEMENT LINEAR FRICTION FACTOR

INPUT HOW MANY BOUNDARY SEGMENTS HAVE NON-ZERO NORMAL FLUX PRESCRIBED

0.0000

WIND PHASE SHIFT = 0.00000 RADIANS WIND DIRECTION = 0.00000 DEGREES WIND DRAG COEFFICIENT = 0.00000000

WIND SPEED AT 10 HETERS ABOVE SURFACE =

NO. OF NODE POINTS = 34 NO. OF ELEMENTS = 44

MAI. NODAL POINT DIFFERENCE = 11

*********************************	NODAL COORDI	NATES AND DEPTHS	*************************
NODE	X-COORD.	Y-COORD.	DEPTH
1	7500.00	800.00	25.00
2	9500.00	1500.00	25.00
2	11500.00	2300.00	25.00
4	13000.00	3000.00	25.00
5	7500.00	2500.00	25.00
à	9800.00	3800.00	25.00
7	12000.00	4500.00	25.00
8	5000.00	3000.00	25.00
9	7500.00	6000.00	25.00
10	10500.00	7500.00	25.00
11	13500.00	8000.00	25.00
12	1000.00	4000.00	25.00
13	4000.00	7000.00	25.00
14	6500.00	9000.00	25.00
15	8800.00	10000.00	25.00
15	11500.00	10000.00	25.00
17	14000.00	10000.00	25.00
18	0.00	500.00	25.00
19	0.00	10000.00	25.00
20	3000.00	10500.00	25.00
21	2500.00	13000.00	25.00
22	6000.00	12000.00	25.00
23	7800.00	11000.00	25.00
24	10000.00	11400.00	25.00
25	12600.00	11300.00	25.00
26	14000.00	11600.00	25.00
27	11800.00	12300.00	25.00
28	13500.00	13000.00	25.00
29	6000.00	14500.00	25.00
20	8500.00	13500.00	25.00
31	10500.00	13300.00	25.00
32	9000.00	15500.00	25.00
73	11000.00	15000.00	25.00
34	12500.00	14000.00	25.00

********		IT A	ARRAY		*************************************
ELEMENT	I	J)	ĸ	ELEMENT FRICTION FACTOR
1	1 -	2	2	5	0.0010000
2	2	6	5	5	0.0010000
2	2	3	5	6	0.0010000
4	3	1	1	6	0.0010000
5	3	4		7	0.0010000
6	8	5	5	9	0.0010000
7	5	6	,	9	0.0010000
8	6	10)	9	0.0010000
9	Å	1	1	۵	6.001020

	-			
10	8	13	12	0.0010000
11	8	9	13	0.0010000
12	13	9	14	0.0010000
13	9	10	14	0.0010000
14	12	13	18	0.0010000
15	19	13	19	0.0010000
16	19	13	20	0.0010000
17	13	14	20	0.0010000
18	20	14	22	0.0010000
19	19	20	21	0.0010000
20	20	22	21	0.0010000
21	21	22	29	0.0010000
22	29	22	30	0.0010000
23	29	30	32	0.0010000
24	30	32	32	0.0010000
25	22	23	30	0.0010000
26	23	24	30	0.0010000
27	30	24	31	0.0010000
28	30	31	32	0.0010000
29	24	27	31	0.0010000
30	31	27	34	0.3010000
31	31	34	72	0.0010000
32	23	15	24	0.0010000
33	15	16	24	0.0010000
34	24	16	27	0.0010000
35	27	28	34	0.0010005
34	27	25	28	0.0010060
37	16	25	27	u.0010000
38	15	10	14	0.0010000
39	10	11	16	0.0010000
40	25	76	78	0.0010000
41	25	17	26	0.0010000
47	16	17	75	0.0010000
43	16	11	17	0.0010000
10	10			0.0010000
77	14	'		4.4414444
			•	

•

•

•

.

.

.

NO. OF BOUNDARY SEGNENTS WHICH HAVE NON-ZERO KORMAL FLUX PRESCRIBED = 0

NO. OF NODES WHERE EL	EVATION IS PR	ESCRIBED = 4		
	NOBE	PRESCRIBED ELEVATION	PHASE	
	1	1.0000	0.0000	
	2	1.0000	0.00000	
	3	1.0000	0.00000	
	4	1.0000	0.00000	
	·			

.

N	DDAL ELEVATIONS	
NODE	MODULUS	PHASE
1	1.0000000	0.00000
2	1.00000000	0.00000
2	1.0000000	0.00000
4	1.00000000	0.00000
5	1.00100239	-0.00380
6	1.00395713	-0,00162
7	1.00278606	0.00096
8	1.00874233	-0.00752
9	1.00641567	-0.00327
10	1.00663572	-0.00264
11	1.01004528	-0.00109
12	1.00906940	-0.00451
13	1.00869093	-0.00488
14	1.00748832	-0.00262
15	1.01123755	-0.00493
16	1.00958349	-0.00294
17	1.00940425	-0.00247
18	1.00925525	-0.00581
19	1.01037390	-0.00474
20	1.01013314	-0.00480
21	1.01006339.	-0.00446
22	1.01083832	-0.00400
23	1.01085458	-0.00333
24	1.01030048	-0.00331
25	1.01040624	-0.00249
26	1.01058496	-0.00212
27	1.01058154	-0.00314
28	1.01057978	-0.00297
×. 21	1.01116096	-0.00415
20	1.01110617	-0.00372
31	1.01107183	-0.00351
32	1.01132440	-0.00343
22	1.01111392	-0.00330
34	1.01081104	-0.00271

.

********		NODAL VELOCITI	lES	
	I-DIR	ECTION	Y-DIRE	CTION
NODE	MODULUS	PHASE	MODULUS	PHASE
1	0.16149733	-0.89457	0.25987739	0.70683
2	0.07789793	-0.51438	0.17803156	1.20257
2	0.08442079	-0.11300	0.16461041	1.77377
4	0.11026195	0.59346	0.17433353	2.29168
5	0.08233856	-1.14076	0.14247863	1.28004
6	0.03004363	-0.84828	0.10528989	1.47924
7	0.02408071	-ù.29799	0.11304919	1.55365
8	0.06198340	-1.37087	0.02835620	1.65106
9	0.05060869	-1.61163	0.04258825	1.45694
10	0.01192018	0.28291	0.07564032	1.54913
11	0.04900782	1.75537	0.05858621	1.63318
12	0.02279296	0.52544	0.02081520	2.75747
13 -	0.02453620	-1.91804	0.00478852	2.96110
14	0.03264711	-1.58872	0.03211532	1.40126
15	0.03512620	-1.54573	0.04109151	1.60012
16	0.00825685	-2.06721	0.04024705	1.32265
17	0.01892373	-0.91485	0.03553314	0.98635
18	0.01753154	-1.62605	0.01699655	1.05700
19	0.00709762	A. 87972	0.07494917	0 49947

20	0.01466212	-1.28589	0.02735454	1.55791
21	0.02232717	2.59118	0.01686409	-2.19821
22	0.00326947	2.16991	0.02221997	1.57475
23	0.01037866	-1.99476	0.00320050	-1.69148
24	0.01250223	-1.81539	0.00870381	2.04171
25	0.00517681	2.60651	0.02616408	1.64628
26	0.00386064	2.40496	0.02558402	1.59382
27	0.00470081	-1.59448	0.02237984	1.46158
28	0.01544576	-1.57270	0.02540191	0.57953
29	0.01557799	2.69347	0.00362244	-2.46895
30	0.00543193	-1.66514	0.01173477	1.21762
31	0.00795269	-1.88447	0.01525586	1.40359
32	0.01306114	-3.06925	0.00655764	-2.67862
22	0.01552919	-2.40697	0.00316643	-0.65023
34	0.02074723	-2.24350	0.00385084	0.59141
FORTRAM STOP				

.

.

.

.

.

•

Appendix 1.3.5

.

.

.

٠

.

.

.

PROGRAM TEA DEPT OF CIVIL ENGINEERING, M. I. T. 2-D LINEAR FINITE ELEMENT FREQUENCY DOMAIN AMALYSIS OF TIDAL WAVES FOR SMALL SCALE GEOMETRY.

INPUT ELEMENT NUMBER, THREE HODE NUMBERS FOR THE ELEMENTAND THE ELEMENT LINEAR FRICTION FACTOR

ENTER 10 DIGIT F.E. GRID GEONETRY IDENTIFICATION

INPUT NUMBER OF ELEMENTS AND NUMBER OF HODE POINTS

INPUT THE NODE NO., I-COORD., Y-COORD., AND NODAL H.S.L. DEPTH, ONE NODE/LINE

INPUT HOW NAMY BOUNDARY SEGNENTS HAVE NON-ZERO NORMAL FLUI PRESCRIBED INPUT END NODES OF BOUNDARY SEGNENT 1 WITH CORRECT ORIENTATION

INPUT TOTAL NO. OF DIFFERENT NODES INCLUDED IN NON-ZERO NORMAL FLUI SEGMENTS INPUT NODE NO., NODULUS AND PHASE SHIFT (IN RAD) FOR I AND Y DIRECTIONS INPUT NODE NO., NODULUS AND PHASE SHIFT (IN RAD) FOR I AND Y DIRECTIONS INPUT NODE NO., NODULUS AND PHASE SHIFT (IN RAD) FOR I AND Y DIRECTIONS INPUT NODE NO., NODULUS AND PHASE SHIFT (IN RAD) FOR I AND Y DIRECTIONS INPUT NODE NO., NODULUS AND PHASE SHIFT (IN RAD) FOR I AND Y DIRECTIONS INPUT NODE NO., NODULUS AND PHASE SHIFT (IN RAD) FOR I AND Y DIRECTIONS

INPUT END WODES OF DOUNDARY SEGNENT 3 WITH CORRECT ORIENTATION

ENTER 10 DIGIT L.D. CODE FOR B.C. VERSION

MAI. NODAL POINT DIFFERENCE = 11

INPUT END NODES OF DOUNDARY SEGNENT

INPUT FREQUENCY IN RADIANS/SEC.

INPUT CORIOLIS PARAMETER

INPUT NO. OF NODES WHERE ELEVATION IS PRESCRIBED INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE

2 WITH CORRECT ORIENTATION

INPUT AMPLITUDE OF WIND SPEED, WIND PRASE SHIFT, ANGLE OF WIND DIRECTION (IN DEGREES) AND WIND DRAG COEFFICIENT

PROGRAM TEA DEPT OF CIVIL ENGINEERING, M. I. T. 2-D LINEAR FINITE ELEMENT FREQUENCY DOMAIN AMALYSIS OF TIDAL WAVES FOR SMALL SCALE GEOMETRY.

F.E. GRID GEOMETRY IDENTIFICATION : EIBAY2 BOUNDARY CONDITION IDENTIFICATION : BC-01

FREQUENCY = 0.00000000

CORIDLIS PARAMETER = 0.00010000

WIND SPEED AT 10 METERS ABOVE SURFACE = 0.0000 WIND PHASE SHIFT = 0.00000 RADIANS WIND DIRECTION = 0.00000 DEGREES WIND DRAG CDEFFICIENT = 0.00000000

NO. OF NODE POINTS = 34 NO. OF ELEMENTS = 44

.

MAX. NODAL POINT DIFFERENCE = 11

*************************************	NODAL COORDIN	NTES AND DEPTHS	************************
NODE	X-COORD.	Y-COORD.	DEPTH
i	7500.00	800.00	25.00
2	9500.00	1500.00	25.00
2	11500.00	2300.00	25.00
. 4	13000.00	3000.00	25.00
5	7500.00	2500.00	25.00
á	9800.00	3800.00	25.00
7	12000.00	4500.00	25.00
. 8	5000.00	3000.00	25.00
9	7500.00	6000.00	25.00
10	10500.00	7500.00	25.00
11	13500.00	8000.00	25.00
12	1000.00	4000.00	25.00
13	4000.00	7000.00	25.00
14	6500.00	7000.00	25.00
15	8800.00	10000.00	25.00
16	11500.00	10000.00	25.00
17	14000.00	10000.00	25.00
18	0.00	\$500.00	25.00
19	0.00	10000.00	25.00
20	3000.00	10500.00	25.00
21	2500.00	13000.00	25.00
22	6000.00	12000.00	25.00
23	7800.00	11000.00	25.00
24	10000.00	11400.00	25.00
25	12600.00	11300.00	25.00
26	14000.00	11600.00	25.00
27	11800.00	12300.00	25.00
28	13500.00	13000.00	25.00
29	50 00. 00	14500.00	25.00
30	8500.00	13500.00	25.00
31	10500.00	13300.00	25.00
32	9000.00	15500.00	25.00
22	11000.00	15000.00	25.00
34	12500.00	14000.00	25.00

e.

***********	ELEMENT	ARRAY	,	*****************
ELEMENT	I	3	ĸ	ELEMENT FRICTION FACTOR

•		•		A 4010000
1	1	4	3	0.0010000
1	4	•	3	
3	4	3		0.0010000
-	3		-	0.0010000
J	2	1		0.001000
•	8	3		0.0010000
1	2		4	0.0010000
8	6	10		0.0010000
9	6	1	10	0.0010000
10	8	13	12	0.0010000
11	6	9	13	0.0010000
12	13	9	14	0.0010000
13	9	10	14	0.0010000
14	12	13	18	0.0010000
15	18	13	19	0.0010000
16	19	13	20	0.0010000
17	13	14	20	0.0010000
18	20	14	22	0.0010000
19	19	20	21	0.0010000
20	20	22	21	0.0010000
21	21	22	29	0.0010600
22	29	22	30	0.0010000
23	29	30	32	0.0010000
24	30	33	32	0.0010000
25	22	23	20	0.0010000
26	23	24	30	0.0010000
27	30	24	31	0.0010000
28	30	31	33	0.0010000
29	24	27	31	0.0010000
30	31	27	34	0.0010000
31	31	34	33	0.0010000
32	23	15	24	0.0010000
33	15	16	24	0.0010000
34	24	16	27	0.0010000
35	27	28	34.	0.0010000
34	27	25	28	0.0010000
37	16	25	27	0.0010000
38	15	10	16	0,0010000
39	10	11	16	0.0010000
40	25	26	28	0.0010000
41	25	17	26	0,0010600
12	16	17	25	0,0010000
43	16	11	17	0,0010000
11	10	;		0.0010000
	••	•	••	********

	 	BRARARS.

.

.

BOUNDARY CONDITIONS

.

.

NO. OF BOUNBARY SEBMENTS WHICH HAVE NON-ZERO NORMAL FLUX PRESCRIBED = 3

SEGNENTS WITH NON-ZERO NORMAL FLUX PRESCRIBED ARE: SEGMENT NO. BEGINING NODE NO. END NODE NO.

1	22	34
2	34	28
3	15	23

PRESCRIBED FLOW VALUES FOR NODES ON BEGMENTS ARE:

NODE NO.	I-DIRECTION		Y-DIR	ECTION	
	FLUX	PHASE	FLUI	PHASE	BEPTH
33	-0.9300	0.00000	-1.8000	0.00000	
34	-1.2100	0.00000	-1.6000	0.0000	
28	-1.5300	0.00000	-1.2700	0.00000	
23	-0.6900	0.00000	-0.7400	0.00000 `	
15	-0.6900	0.00000	-0.7400	0.00000	

NC.	OF	NODES	WHERE	ELEVATION IS NODE	PRESCRIBED = 4 PRESCRIBED ELEVATION	PHASE
				1	1.0000	0.00000
				2	1.0000	0.00000
				2	1.0000	0.00000
				4	1.0000	9.00000

RESULTS OF COMPUTATIONS

. ...

NODAL ELEVATIONS NODE HODULUS PHASE 1.00000000 0.00000 1 2 1.0000000 0.00000 1.00000000 0.00000 2 0.00000 4 1.0000000 1.00277521 0.00000 5 0.00000 6 1.00020943 7 0.99953257 0.00000 1.00179901 0.00000 8 0.00000 9 1.00135058 1.00212289 10 11 1.00114398 0.00000 12 1.00225619 0.00000 0.00000 13 1.00220921 14 0.99977815 0.00000 0.00000 15 1.00182866 16 17 1.00128145 0.00000 1.00082184 0.00000 18 1.00197919 0.00000 19 1.00254823 0.00000 1.00191389 0.00000 20 21 1.00239231 0.00030 0.000006 22 1.00246658 23 1.00199375 0.00000 1.00250935 0.00000 24 1.00193067 25 0.00000 0.00000 26 1.00123397 27 1.00164488 0.00000 0.00000 1.00106324 28 29 1.00332668 0.00000 0.00000 30 1.00267349 31 1.00267472 0.00000 32 1.00348645 0.00000 ----.

-80-

23	1.00421317	0.00000
34	1.00317041	0.00000

. .

			NODAL VELOCITI	IES	
		I-DIRG	CTION	Y-BIRF	CT I DM
	NODE	NODULUS	PHASE	MODULUS	PHASE
	1	0.11872876	3.14159	0.10354253	3.14159
	2	0.02610023	3.14159	0.07462922	3,14159
	2	0.00984074	0.00000	0.00439589	3.14159
	4	0.01634801	0.00000	0.01742001	0.00000
	5	0.01702290	0.00000	0.04220178	3.14159
	6	0.00041079	3.14159	0.04607911	3.14159
	7	0.02053215	3.14159	0.04340251	3.14159
	8	0.00574442	0.00000	0.00234294	3.14159
	9	0.01998268	0.00000	0.00337163	3.14159
	10	0.01021991	3,14159	0.01700479	3.14159
	11	0.00509576	3.14159	0.03441213	3.14159
	12	0.00007838	3.14159	0.00274338	3.14159
	13	0.01497699	0.00000	0.01432924	3.414159
•	14	0.01887863	0.00000	0.01610249	3.14159
	15	0.00627862	3.14159	0.01509755	3.14159
	16 .	0.00237505	0.00000	0.02056481	3.14159
	17	0.00828776	3.14159	0.02908004	3.14159
	18	0.00653017	3,14159	0.00232953	0,00000
	19	0.00135094	3.14159	0.01065585	3.14159
	20	0.00190716	3,14159	0.02849783	3,14159
	21	0.01979741	3.14157	0.00837544	3.14159
	22	0.03540456	3.14159	0.01914364	3.14159
	23	0.02567951	3,14159	0.00300588	3.14159
	24	0.01943137	3.14159	0.02257412	3.14159
	25	0.00369105	3,14159	0.01881449	3.14159
	26	0.01701885	0.00000	0.04196155	3.14159
	27	0.02198353	3,14159	0.04287280	3,14159
	28	0.00146240	3. 14159	0.04930760	3.14159
	29	0.03065666	3.14159	0.01331787	3.14159
	30	0.03112854	3.14159	0.00823502	3.14159
	31	0.04612814	3.14159	0.02989864	3.14159
	32	0.03615336	3,14159	0.00071217	3.14159
	22	0.06219012	3.14159	0.00729552	3.14159
	34	0.07614501	3.14159	0.05998277	3.14159
	FORTRAM STOP				

.

...

,

. . .

į.

.

.

•

.

.

...

.

• •

.

Appendix 1.4

.

· · · .

•

. .

LINEAR FREQUENCY DOMAIN FINITE ELEMENT MODEL FOR TIDAL CIRCULATION COPYRIGHT : DEPARTMENT OF CIVIL ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY FORMULATION : ELEVATION/VELOCITY EFFECTS : TIDAL MOTION, WIND STRESS, LINEARIZED BOTTOM FRICTION, AND CORIOLIS SOLUTION : COMPACT DIRECT SOURCE CODE : BAYOUF3V9 C**************** ********** COMMON /SOL1/ SYSM2C, P, ELEV DIMENSION ICON(600,3),M(600),NN(450),IFLSEG(600,2),ISVHT(450) REAL*8 XORD(450),YORD(450),H(450),ELFRIC(500),SVHT(450,2), SYSNULC(450),SYSDC(450,150),A(3),B(3),HS(3),SVFLP(450,4), ISVFLP(450) COMPLEX*16 PW(900),ELEVPR(450),FLOW(2),PN(450),SYSM1C(450,150), SYSM2C(450,150),PT(900),SYSKLC(900,3),P(450),ELEV(450),U(900) COMPLEX*16 QX,QY,TEMWINXEL,TEMWINYEL,T3,T8,ELEV0, TEMWIN,TEMWINX,TEMWINY,TEMP1C,TEMP2C,ZERCOM,UNICOM REAL*8 AREA,DEPTH,DX1,DX2,DX3, DY1,DY2,DY3,ELIMAG,ELMOD,ELREAL,G,OMEGA,PHASE,PI, TEMP,TXORD,TYORD,X1,X2,X3,XIMAG,XMOD,XREAL,Y1,Y2, Y3,HTPR,LEN,XDIF,YDIF,NX,NY,CXR,QXI,QYR,QYI,ZERO,UNITY, DEP,WIND10,WINPHAS,WINDIR,WINDRAG,T1,T2,T4,T5,T6,T7,CORFAC CHARACTER*10 ALPHID,BCV MXANPD=25 8 2 2 2 Ł æ 2 2 MXANPD=25 MXEL=600 MXNP=450 MANF=450 WRITE(6,6010) FORMAT(/,' PROGRAM TEA ',/, ' DEPT OF CIVIL ENGINEERING, M. I. T.',/, ' 2-D LINEAR FINITE ELEMENT FREQUENCY DOMAIN ANALYSIS ', ' OF TIDAL WAVES FOR SMALL SCALE GEOMETRY.',/) PI=3.14159265 7EPO-0 0 6010 2 2 £ ZER0=0.0 UNITY=1.0 ZERCOM=DCMPLX(ZER0,ZER0) UNICOM=DCMPLX(ZER0,UNITY) CCC. READ THE INPUT VARIABLES WRITE(6,6020) FORMAT(' ENTER 10 DIGIT F.E. GRID GEOMETRY IDENTIFICATION',/) READ(5,57) ALPHID FORMAT(A10) WRITE(6,6030) FORMAT(' ENTER 10 DIGIT I.D. CODE FOR B.C. VERSION',/) READ(5,57) BCV WRITE(8,7010) ALPHID, BCV FORMAT(1X,A10) WRITE(6,6040) FORMAT(1X,A10) WRITE(6,6040) FORMAT(1, INPUT NUMBER OF ELEMENTS AND NUMBER OF NCDE POINTS',/) READ(5,*) NMEL,NMNP WRITE(8,7701) NMEL,NMNP FORMAT(1X,I3,1H,,I3) IF (NMEL.GT.MXEL) GOTO 115 IF (NMNP.GT.MXNP) GOTO 117 GOTO 119 6020 57 6030 7010 6040 7701 GOTO 119 WRITE(6,6050) MXEL 115

6050 2	FORMAT(/, 'NO. OF ELEMENTS SPECIFIED EXCEEDS ARRAY DIMENSIONS ', 'UNICH ALLOWS FOR CALL IN TS ', ' PROGRAM EXECUTION '
ž	'IS STOPPED; MODIFY PROGRAM DIMENSIONING')
117	WRITE(6,6055) MXNP
6055	FORMAT(/, 'NO OF NODES SPECIFIED EXCEEDS ARRAY DIMENSIONING',
2	'IS STOPPED; MODIFY PROGRAM DIMENSIONING')
110	GDTO 1295 CONTINIE
	WRITE(6,6060)
5050 #	FORMAT(' INPUT THE NODE NO.,X-COURD.,Y-COURD., AND NODAL', 'M.S.L. DEPTH ONE NODE/LINE'/)
-	DO 130 I=1, NMNP
	READ(5,*) NN(1), IXURD, IYURD, DEP L1=NN(I)
	H(L1)=DEP
7702	WRITE(8,7702) L1,TXORD,TYORD FORMAT(1) 14 14 F10 2 14 F10 2)
130	CONTINUE
6070	WRITE(6,6070) Format(' input element number, three node numbers for the element'
2	, AND THE ELEMENT LINEAR FRICTION FACTOR', /)
	READ(5, *) N, (ICON(N, J), J=1, 3), ELFRIC(N)
7703	WRITE $(8, 7703)$ N, (ICON(N, J), J=1,3) FORMAT(1Y, 3(T4, 1H, 1, T4)
	M(I)=N
145 C	CONTINUE
č	CHECK FOR EVERSIVE DANDHIDTH
č	CRECK FOR EXCESSIVE BRADWIDTA
Č	IFLAG=0
Č.	IFLAG=0 MXNPD=0 DO 160 N=1 NMEL
Č.	IFLAG=0 MXNPD=0 DO 160 N=1,NMEL DO 160 I=1,2
Č.	IFLAG=0 MXNPD=0 DO 160 N=1,NMEL DO 160 I=1,2 I2=I+1 DO 155 J=I2,3
č	IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) I5(MM_GT_MONPD) MYNPD=MM
Ċ.	IFLAG=0 MXNPD=0 DO 160 N=1,NMEL DO 160 I=1,2 I2=I+1 DO 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD
6080	IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FDEMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF '.I3.' IS '.
6080 £	IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS ', 'EXCEEDED BY',I4,' AT ELEMENT ',I4,/,' ARRAY DIMENSIONING', WONT DE MODYTYPE . DECOMAN EXCERN IE DEMUNICED
6080 E	IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS ', 'EXCEEDED EY',I4,' AT ELEMENT ',I4,/,' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1
6080 2 155	IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS ', 'EXCEEDED BY',I4,' AT ELEMENT ',I4,/,' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE
6080 2 155 160	IFLAG=0 MXNPD=0 DO 160 N=1,NMEL DO 160 I=1,2 I2=I+1 DO 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS '. 'EXCEEDED BY',I4,' AT ELEMENT ',I4,',' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE WRITE(6,6090) MXNPD
6080 2 155 160 6090	<pre>IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) VRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS ', 'EXCEEDED BY',I4,' AT ELEMENT ',I4,/,' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE WRITE(6,6090) MXNPD FORMAT(' MAX. NODAL POINT DIFFERENCE =',I6,//) IF(IFLAG.ER.1) GO TD 1295</pre>
6080 2 155 160 6090 C	<pre>IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MONPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS ', 'EXCEEDED BY',I4,' AT ELEMENT ',I4,/,' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE CONTINUE WRITE(6,6090) MXNPD FORMAT(' MAX. NODAL POINT DIFFERENCE =',I8,//) IF(IFLAG.EQ.1) GO TO 1295</pre>
6080 2 155 160 6090 C C C	IFLAG=0 MXNPD=0 D0 160 N=1.NMEL D0 160 I=1.2 I2=I+1 D0 155 J=I2.3 MM=IABS(ICON(N, J)-ICON(N, I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD.NEXCEED.N. FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF '.I3,' IS '. 'EXCEEDED BY'.I4,' AT ELEMENT '.I4,/.' ARRAY DIMENSIONING'. 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE CONTINUE WRITE(6,6090) MXNPD FORMAT(' MAX. NODAL POINT DIFFERENCE ='.I6.//) IF(IFLAG.EQ.1) GO TO 1295 .IBW=BANDWIDTH OF FULL MATRIX WITH SINGLE DEGREE OF FREEDOM PER NODE
6080 2 155 160 6090 C C C C	IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 N=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS '. 'EXCEEDED BY'.I4,' AT ELEMENT ',I4,',' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE CONTINUE WRITE(6,6090) MXNPD FCRMAT(' MAX. NODAL POINT DIFFERENCE =',I6,//) IF(IFLAG.EQ.1) GO TO 1295 .IBW=BANDWIDTH OF FULL MATRIX WITH SINGLE DEGREE OF FREEDOM PER NODE IBW=2*MXNPD+1 IFW2=2*IBW
6080 2 155 160 6090 C C 180	<pre>IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2.3 MM=IABS(ICON(N, J)-ICON(N, I)) IF (MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF (MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS ', 'EXCEEDED EY',I4,' AT ELEMENT ',I4,',' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF (MM.GT.MXANPD) IFLAG=1 CONTINUE CONTINUE WRITE(6,6090) MXNPD FCRMAT(' MAX. NODAL POINT DIFFERENCE =',I8,//) IF(IFLAG.EQ.1) GO TO 1295 .IBW=BANDWIDTH OF FULL MATRIX WITH SINGLE DEGREE OF FREEDOM PER NODE ISW=2*MXNPD+1 IEW2=2*IBW FCRMAT(' INPUT GRAVITATIONAL CONSTANT IN CONSISTENT UNITS',/)</pre>
6080 2 155 160 6090 C C 180	<pre>IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N, J)-ICON(N, I)) IF (MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF (MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT('MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,'IS'. 'EXCEEDED EY',I4,'AT ELEMENT ',I4,/,' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF (MM.GT.MXANPD) IFLAG=1 CONTINUE CONTINUE WRITE(6,6090) MXNPD FORMAT('MAX. NODAL POINT DIFFERENCE =',I6,//) IF (IFLAG.EQ.1) GO TO 1295 IBW=BANDWIDTH OF FULL MATRIX WITH SINGLE DEGREE OF FREEDOM PER NODE ISW=2*MXNPD+1 IEW2=2*IBW FORMAT('INPUT GRAVITATIONAL CONSTANT IN CONSISTENT UNITS',/) READ(5,*) G WRITE(6,6100)</pre>
6080 2 155 160 6090 C 180 6100	IFLAG=0 MXNPD=0 D0 160 N=1,NMEL D0 160 I=1,2 I2=I+1 D0 155 J=I2,3 MM=IABS(ICON(N, J)-ICON(N, I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF ',I3,' IS ', 'EXCEEDED BY',I4,' AT ELEMENT ',I4,/,' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE CONTINUE WRITE(6,6090) MXNPD FORMAT(' MAX. NODAL POINT DIFFERENCE =',I6,//) IF(IFLAG.EQ.1) GO TO 1295 .IBW=BANDWIDTH OF FULL MATRIX WITH SINGLE DEGREE OF FREEDOM PER NODE IBW=2*MXNPD+1 IBW=2*IMXNPD+1 IBW=3*IMXPD+1
6080 2 155 160 6090 C 180 6100	<pre>IFLAG=0 MXNPD=0 D0 160 N=1.NMEL D0 155 J=12,3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXANPD,MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED,N FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF '.I3,' IS ' 'EXCEEDED BY',I4,' AT ELEMENT '.I4,/.' ARRAY DIMENSIONING', 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE CONTINUE WRITE(6,6090) MXNPD FORMAT(' MAX. NODAL POINT DIFFERENCE =',I6,//) IF(IFLAG.EQ.I) GO TO 1295 IBW=BANDWIDTH OF FULL MATRIX WITH SINGLE DEGREE OF FREEDOM PER NODE IBW=2*MXNPD+1 IBW=2*IDW FORMAT(' INPUT GRAVITATIONAL CONSTANT IN CONSISTENT UNITS',/) READ(5,*). G VRITE(6,6100) FORMAT(' INPUT FREQUENCY IN RADIANS/SEC.',/) READ(5,*). G VRITE(6,7705) G:EGA</pre>
6080 5080 2 155 160 6090 C 180 6100 7705	<pre>IFLAG=0 MXNPD=0 D0 160 N=1.NMEL D0 160 I=1.2 I2=I+1 D0 155 J=I2.3 MM=IABS(ICON(N,J)-ICON(N,I)) IF(MM.GT.MXNPD) MXNPD=MM NEXCEED=MXNPD-MXANPD IF(MM.GT.MXANPD) WRITE(6,6080) MXANPD,NEXCEED.N. FORMAT(' MAX. ALLOWABLE NODAL POINT DIFFERENCE OF '.I3.' IS ' 'EXCEEDED BY'.I4.' AT ELEMENT '.I4./.' ARRAY DIMENSIONING'. 'MUST BE MODIFIED : PROGRAM EXECUTION IS TERMINATED') IF(MM.GT.MXANPD) IFLAG=1 CONTINUE WRITE(6,6090) MXNPD FORMAT(' MAX. NODAL POINT DIFFERENCE ='.I6.//) IF(IFLAG.EQ.I) GO TO 1295 IBW=BANDWIDTH OF FULL MATRIX WITH SINGLE DEGREE OF FREEDOM PER NODE IBW=2*MXNPD+1 IEW=2*INNPD+1 IEW=2*I</pre>

-

· ·

/

FORMAT(' INPUT CORIOLIS PARAMETER',/)
READ(5,*) CORFAC
WRITE(6,6120)
FORMAT(' INPUT AMPLITUDE OF WIND SPEED, WIND PHASE SHIFT, ',
'ANGLE OF WIND DIRECTION (IN DEGREES) ',
' AND WIND DRAG COEFFICIENT',/)
READ(5,*) WIND10, WINPHAS, WINDIR, WINDRAG
WINDIR=(PI/180.0)*WINDIR
TEMWIN=0.0012*WINDRAG*WIND10**2*(COS(WINPHAS)+UNICOM*
SIN(WINPHAS))
TEMWINY=TEMWIN*SIN(WINDIR)
TEMWINX=TEMWIN*COS(WINDIR)
WRITE(6,6130)
FORMAT(' INPUT HOW MANY BOUNDARY SEGMENTS HAVE NON-ZERO NORMAL',
' FLUX PRESCRIBED')
READ(5,*) NBSF 6110 6120 2 2 6130 2 READ(5,*) NBSF C..... INITIALIZE THE LOAD VECTOR FOR THE CONTINUITY EQUATION DO 192 I=1, NMNP 192 PN(I) = ZERCOMС LOAD VECTOR LOADING SECTION FOR NON-ZERO PRESCRIBED NORMAL FLUXES C C IF (NESF.EQ.0) GOTO 226 С C..... READ IN REQUIRED INFO FOR SEGMENTS WITH NON-ZERO NORMAL FLUX PRESCRIBED DO 196 I=1, NBSF WRITE(6,6140) I FORMAT(' INPUT END NODES OF BOUNDARY SEGMENT', I5, ' WITH ', 'CORRECT ORIENTATION') 6140 READ(5,*) IFLSEG(I,1), IFLSEG(I,2) CONTINUE 196 WRITE(6,6145) FORMAT(' INPU RMAT(' INPUT TOTAL NO. OF DIFFERENT NODES INCLUDED IN NON-', ZERO NORMAL'FLUX SEGMENTS') 6145 ZERO NORMAL FLOX SEGMENTS)
READ(5,*) NBNF
DO 200 I=1.NENF
WRITE(6,6148)
FORMAT(' INPUT NODE NO.,MODULUS AND PHASE SHIFT (IN RAD) ',
 'FOR X AND Y DIRECTIONS ')
READ(5,*) NODE.(SVFLP(NODE,J),J=1,4)
 ISVFLP(I)=NODE
CONTINUE 6148 CONTINUE 200 CUNTINUE D0 225 I=1,NBSF M1=IFLSEG(I,1) M2=IFLSEG(I,2) XDIF=XORD(M2)-XORD(M1) YDIF=YORD(M2)-YORD(M1) ł LEN=(XDIF**2+YDIF**2)**0.5 NX=-YDIF/LEN NY=_XDIF/LEN NY= XDIF/LEN D0 210 K=1,2 NODE=IFLSEG(I,K) QXR=SVFLP(NODE,1)*COS(SVFLP(NODE,2)) QYI=SVFLP(NODE,1)*SIN(SVFLP(NODE,2)) QYI=SVFLP(NODE,3)*COS(SVFLP(NODE,4)) QYI=SVFLP(NODE,3)*SIN(SVFLP(NODE,4)) QY=DCMPLX(QXR,QXI) QY=DCMPLX(QYR,QYI) FLOW(K)=QX*NX+QY*NY CONTINUE CONTINUE 210 СLOAD THE NON-ZERO FLUX SEGMENT CONTRIBUTIONS INTO GLOBAL LOAD VECTOR С

TEMP=LEN/6.0 PN(M1)=PN(M1)+TEMP*(2*FLOW(1)+FLOW(2)) PN(M2)=PN(M2)+TEMP*(FLOW(1)+2*FLOW(2)) 225 226 CONTINUE CONTINUE ... READ IN ELEVATION LOADING INFORMATION . . . ELEVO=ZERCOM ELEVO=ZERCOM WRITE(6,6200) FORMAT(//,' INPUT NO. OF NODES WHERE ELEVATION IS PRESCRIBED') READ(5,*) NBL IF(NBL.EQ.0) GOTO 240 DO 230 I=1,NBL WRITE(6,6210) FORMAT(' INPUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND', ' PHASE (IN RAD) OF THE PRESCRIBED ELEVATION AT NODE') READ(5,*) NODE,HTPR,PHASE ISVHT(I)=NODE SVHT(I.1)=HTPR 6200 6210 2 SVHT(I, 1)=HTPR SVHT(I, 2)=PHASE XREAL=HTPR*COS(PHASE) XIMAG=HTPR*SIN(PHASE) ELEVPR(I)=DCMPLX(XREAL,XIMAG) ELEV0=ELEV0+ELEVPR(I) CONTINUE 230 ELEVO=ELEVO/NBL CONTINUE DO 250 I=1,NBL ELEVPR(I)=ELEVPR(I)-ELEVO 240 250 00. 0 PRINT INPUT VALUES WRITE(6,6300)
FORMAT(//,130('-'),/)
WRITE(6,6310) ALPHID, BCV
FORMAT(//,1X,'F.E. GRID GEOMETRY IDENTIFICATION : ',A10,
 /,1X,'BOUNDARY CONDITION IDENTIFICATION : ',A10,//)
WRITE(6,6320) OMEGA
FORMAT(1X,'FREQUENCY = ',F10.8)
WRITE(6,6322) CORFAC
FORMAT(1X,'CORIOLIS PARAMETER = ',F10.8,//)
WRITE(6,6330) WIND10, WINPHAS, WINDIR, WINDRAG
FORMAT(//,' WIND SPEED AT 10 METERS ABOVE SURFACE = ',F10.4,
 /,' WIND PHASE SHIFT = ',F10.5,' RADIANS',
 /,' WIND DIRECTION = ',F10.5,' DEGREES',
 /,' WIND DRAG COEFFICIENT = ',F12.8,//)
WRITE(6,6340) NMNP, MEL 6300 6310 Ł 6320 6322 6330 2 2 /,' WIND DRAG COEFFICIENT = ',F12.8,//)
WRITE(6,6340) NMNP,NMEL
FORMAT(' NO. OF NODE POINTS =',I3,/,' NO. OF ELEMENTS =',I3,/)
WRITE(6,6090) MXNPD
WRITE(6,6350)
FORMAT(/,1X,37('*'),10X,'NODAL CCORDINATES AND DEPTHS',10X,
35('*'))
WRITE(6,6352)
FORMAT(/,38X,'NODE',9X,'X-COORD.',8X,'Y-COORD.',9X,'DEPTH',/)
DO 270 I=1,NMNP
L1=NN(I) £ 6340 6350 2 6352 D0 270 I=1,NMNP L1=NN(I) WRITE(6,6355) L1,XORD(L1),YORD(L1),H(L1) FORMAT(36X,I5,6X,F10.2,6X,F10.2,6X,F10.2) CONTINUE WRITE(6,6360) FORMAT(6(/),1X,37('*'),10X,'ELEMENT ARRAY',10X,40('*'), //,35X,'ELEMENT',8X,'I',5X,'J',5X,'K',12X,'ELEMENT', 'FRICTION FACTOR',/) P3 287 N=1 NMFL 6355 270 6360 ٤ ٤ DJ 257 N=1, NMEL

•	
-	. I=M(N)
6365	FORMAT(37X I3 AX I3 AY I3 AY I3 AY I3 (2) F13 7)
287	CONTINJE
201	WRITE(6,6400)
6400	FORMAT(6(/),1X,30('*'),1CX, 'BOUNDARY CONDITIONS',10X,30('*'))
	WRITE(6,6410) NBSF
5410	FORMAT(///,1X, NO. OF BOUNDARY SEGMENTS WHICH HAVE NON-ZERO ',
æ	NURMAL FLOX PRISCRIELD = ',14)
	IF (NDSF, E.G. U) GUIU SZI UDITE (8 64/5)
6415	FORMAT(// 1X 'SEGMENTS WITH NON-ZERO NORMAL FULK PRESCRIBED '
2	'ARE''/'4X''SEGMENT NO.'.5X. 'BEGINING NODE NO.'.5X.
2	'END NODE NO.',/)
	DO 305 I=1,NBSF
305	WRITE(6,6420) I, (IFLSEG(I, J), J=1,2)
6420	FORMAT(7X, 13, 2(16X, 14))
6420	WALLE(0,0430) Format(// 19 'ddescreteen ei ou valles for Nores on'
0430	' SEGMENTS ARE ')
-	WRITE(6.6435)
6435	FORMAT(//,6X, 'NODE NO.',9X, 'X-DIRECTION',19X, 'Y-DIRECTION',15X,
2	/,20X,2(' FLUX',6X,'PHASE',14X),'DEPTH',/)
	DO 316 I=1,NBNF
	NUDE=ISVFLP(1) Lipite(6 6426) Node (svelp(Node 1) 1-1 4)
6436	FORMAT(6Y TA 5Y 2(F11 A 2Y F9 5 8Y))
316	CONTINUE
321	CONTINUE
	WRITE(6,6440) NBL
6440	FORMAT(5(/), 'NO. OF NODES WHERE ELEVATION IS PRESCRIBED =', I3)
	IF (NBL.EQ.O) GOTO 2741
6447	FORMAT('0' 25Y 'NODE' 10Y 'PRESCRIBED FLEVATION' 10Y
2	'PHASE' /)
-	DO 2740 I=1,NBL
	WRITE(6,6445) ISVHT(I),SVHT(I,1),SVHT(I,2)
5445	FORMAT(26X, I3, 8X, F15.4, 11X, F13.5)
2740	
C ²¹⁴¹	CONTINUE
č	FORM THE ELEMENT MATRICES IN GLOBAL COORDINATE SYSTEM
C	
	NT2=NMNP*2
	ICB=(IBW-1)/2.0
	105-1103-1 DO 325 I=1 NT2
	DO 325 J=1.3
325	SYSKLC(I, J)=ZERCOM
	DO_326_I=1, NMNP
325	SYSNULC(I)=0.0
	DU 327 I=1,NMNP DO 327 I=1 TEM2
327	SYSDC(I,J)=0.0
	DO 328 I=1.NT2
328	PW(I)=ZERCOM
	DO 500 N=1, NMEL
	NKI=ICUN(N, I)
	NAZETCON (N, Z)
	X1=XORD(NR1)
	X2=X0RD(NR2)
	X3=XORD(NR3)
	Y1=YORD(NR1)
	Y2=YORD (NR2)
	Y3=YORD (NK3)

-

· ·

;

•

-

A(1) = X3 - X2A(1)=X3-X2 A(2)=X1-X3 A(3)=X2-X1 B(1)=Y2-Y3 B(2)=Y3-Y1 B(3)=Y1-Y2B(3)=Y1-Y2 AREA=0.5*(B(1)*A(2)-B(2)*A(1)) IF(AREA.LE.0.0) WRITE(6,6500) N FORMAT(' AREA OF ELEMENT', 12, ' IS LESS THAN ZERO,', ' PROGRAM EXECUTION IS TERMINATED') IF(AREA.LE.0.0) STOP HS(1)=2*H(NR1)+H(NR2)+H(NR3) HS(2)=H(NR1)+2*H(NR2)+H(NR3) HS(3)=H(NR1)+H(NR2)+2*H(NR3) 6500 Ż C C..... LOAD ELEMENT CONTRIBUTION INTO GLOBAL MATRIX SYSNULC (IN LUMPED-C..... COMPACT STORAGE MODE) С T1=AREA/3.0 SYSNULC(NR1)=SYSNULC(NR1)+T1 SYSNULC(NR2)=SYSNULC(NR2)+T1 SYSNULC(NR3)=SYSNULC(NR3)+T1 C C..... GENERATE GLOBAL LUMPED-COMPACT STIFFNESS MATRIX FOR MOMENTUM EQUATION, C..... INCLUDES COMBINED MASS, FRICTION AND CORIOLIS MATRICES C T2=AREA/12.0 DO 460 I=1.3 IR=ICON(N,I) IR2=2*IR IR1=IR2-1 T3=T2*DCMPLX(4*ELFRIC(N), OMEGA*HS(I)) T4=T2*CORFAC*HS(I) SYSKLC(IR1,2)=SYSKLC(IR1,2)+T3 SYSKLC(IR1,3)=SYSKLC(IR1,3)-T4 SYSKLC(IR2,1)=SYSKLC(IR2,1)+T4 SYSKLC(IR2,2)=SYSKLC(IR2,2)+T3 CONTINUE 460 С C..... LOAD ELEMENT CONTRIBUTIONS INTO GLOBAL MATRIX SYSD (IN COMPACT C..... NON-SYMMETRIC STORAGE MODE) CC T6=1.0/24.0 DD 450 I=1,3 IR=ICON(N,I) DD 440 J=1,3 JNCOMP=ICON(N,J) JCOMP=JNCOMP+ICB-IR T7=T6+HS(I) SYSDC(IR,2*JCOMP-1)=SYSDC(IR,2*JCOMP-1)+B(I)*T7 SYSDC(IR,2*JCOMP)=SYSDC(IR,2*JCOMP)+A(I)*T7 CONTINUE TIME 440 450 CONTINUE C C..... ADD ELEVO COMPONENT TO PN LOADING VECTOR T8=T1+UNICOM+OMEGA+ELEVO DO 465 I=1,3 IR=ICON(N,I) 465 PN(IR) = PN(IR) + T8CCC LOAD PW TO CONTAIN WIND STRESS LOADINGS TEYWINXEL=TEMWINX*T1 TEMWINYEL=TEMWINY*T1 D0 470 I=1,3

IR=ICON(N,I) IR2=2*IR IR1=IR2-1 PW(IR1)=PW(IR1)+TEYWINXEL PW(IR2)=PW(IR2)+TEYWINYEL CONTINUE CONTINUE 470 500 000 INVERT THE MATRIX SYSKLC DO 910 IR=1, NMNP IE2=2*IR IR1=IR2-1 INT=IR2=1 TEMP1C=SYSKLC(IR1,2)*SYSKLC(IR2,2)-SYSKLC(IR2,1) *SYSKLC(IR1,3) TEMP2C=SYSKLC(IR1,2) SYSKLC(IR1,2)=SYSKLC(IR2,2)/TEMP1C SYSKLC(IR2,2)=TEMP2C/TEMP1C SYSKLC(IR2,1)=-SYSKLC(IR2,1)/TEMP1C SYSKLC(IR1,3)=-SYSKLC(IR1,3)/TEMP1C TINITE Z 910 CONTINUE CCC FORM THE PRODUCT PT=SYSKLC*PW DO 915 IR=1,NT2 TEMP1C=ZERCOM DO 912 K=1,3 KSUM=IR-2+K IF((KSUM.LE.0).OR.(KSUM.GT.NT2)) GOTO 912 TEMP1C=TEMP1C+SYSKLC(IR,K)*PW(KSUM) CONTINUE 912 . IF(IR.GT.1) PT(IR-1)=TEMP2C TEMP2C=TEMP1C . 915 CONTINUE PT (NT2) = TEMP2C CCC FORM THE PRODUCT P=SYSDC*PT-PN DO 920 IR=1, MMNP JSHIFT=2*(IR-ICB) JSHIFT=2*(IK-ICS) TEMP1C=ZERCOM DO 918 JCOCL=1,IBW2 JNCOCL=JCOCL+JSHIFT IF((JNCOCL.LE.O).OR.(JNCOCL.GT.NT2)) GOTO 918 TEMP1C=TEMP1C+SYSDC(IR,JCOCL)*PT(JNCOCL) CONTINUE 918 P(IR)=TEMP1C-PN(IR) 920 CONTINUÉ C C..... FORM PRODUCT SYSMIC=SYSKLC*SYSDC(TRANSPOSED):SYSMIC IS STORED SIDEWAYS DO 930 IR=1, MMNP JSHIFT=2*(IR-ICB) • . DO 925 JCOCL=1, IBW2 JNCOCL=JCOCL+JSHIFT SYSM1C(IR, JCOCL)=ZERCOM IF((JNCOCL.LE.O).OR.(JNCOCL.GT.NT2)) GOTO 925 KSUM=JCOCL-2 DO 924 KADD=1,3 924 KADD-1,3
KSUM=KSUM+1
IF((KSUM.LE.0).OR.(KSUM.GT.IBW2)) GOTO 924
SYSM1C(IR,JCOCL)=SYSM1C(IR,JCOCL)+SYSKLC(JNCOCL,KADD)*
SYSDC(IR,KSUM) Ż 924 CONTINUE 925 CONTINUE 930 CONTINUE

с с	FORM THE PRODUCT SYSM2C=1+0MEGA+SYSNULC+G+SYSDC+SYSM1C
Ċ	IBW3=IBW2-1
	ILCB3=IBW-1 ICB3=ILCB3+1
	DO 935 IR=1,IBW DO 935,JCOM=1,IBW-IR
935	SYSM2C(IR, JCOM)=ZERCOM DD 937 IR=NMNP+2-IBW,NMNP
\$ 37	DC S37 JCDM=NMNP+2+I5W,IBW3 SYSM2C(IR,JCDM)=ZERCOM
	DU 950 IAI=1, NMNP IRBEG=IR1-IBW+1 IS(IRBEC LE ON IRRECT)
	IF(INDERLEIG) INDEGEI IRENDEIR1+IBW-1 IF(IREND (IL NMNP) IRENDENMNP
	DO 945 IR2=IRBEG, IREND KSHIFT=2*(IR1-IR2)
	KBEG=1 IF(KSHIFT.LT.O) KBEG=1-KSHIFT
	KEND=2*IBW-KSHIFT IF(KSHIFT.LT.0) KEND=IBW2
	TEMP1C=ZERCOM DO 943 K1=KEEG_KEND
~ ~ ~	K2=K1+KSHIFT TEMP1C=TEMP1C+SYSDC(IR1,K1)*SYSM1C(IR2,K2)
943	JCOMP=IR2-IR1+IBW SYSWCC(IR1 JCOMP) - C+TEMPIC
	IF (JCOMP.NE.ICB3) GOTO 945 SYSM2C(IR1 ICOMP)=SYSM2C(IR1 ICOMP)+UNICOM#OMEGA
945	*SYSNULC(IR1) CONTINUE
950 C	CONTINUE
C C	INCLUDE PRESCRIBED ELEVATIONS IN FINAL SYSTEM OF EQUATIONS FOR CALCULATING ELEVATIONS, SYSM2C*ELEV=P
c	IF(NBL.EQ.0) GOTO 990 DO 980 I=1,NBL NODE=ISVHT(I)
ç	. ZERO OUT THE ROW FOR THE PRESCRIBED NODE
و 960 و	DO 960 JCOM=1, IBW3 SYSM2C (NODE, JCOM) =ZERCOM
č	SET DIAGONAL EQUAL TO 1
c	SYSM2C(NODE, ICB3) =DCMPLX(UNITY, ZERO)
Č	SUBSTITUTE PRESCRIBED ELEVATION INTO P
980	P(NODE)=ELEVPR(I) CONTINUE CONTINUE
ğ	SOLVE THE SYSTEM OF EQUATIONS SYSM2C*ELEV=P
c	CALL EFICSOL (NMNP, IBW3)
č	CALCULATE NODAL VELOCITIES VECTOR U FROM ELEV
1070	DO 1070 I=1,NT2 U(I)=ZERCOM

-

ì

	DO 1100 IRCOM=1, NANP KSHIFT=2=(IRCOM-1)-2=ILCB DO 1080 JCOM=1, IBW2 IRNCOM=JCOM+KSHIFT IF((IRNCOM_LE.0) GR.(IRNCOM.GT.NT2)) GOTO 1080 IF((IRNCOM_LE.0) GR.(IRNCOM.GT.NT2)) GOTO 1080
1080 1100	CONTINUE DO 1102 IR=1,NT2
1102	U(IR)=PT(IR)-U(IR) VRITE(5.6600)
6600	FORMAT(///,1X,3C('*'),1CX, 'RESULTS OF COMPUTATIONS',1CX,3C('*'))
č	CALCULATE AND PRINT MODULUS AND PHASE FOR ELEVATION
6610 £	WRITE(5,6610) FORMAT(////.1X.31('-').8X.'NGDAL ELEVATIONS'.7X.31('-'). //.28X.' NODE '.14X.'MODULUS '.18X.'PHASE './)
č	ADD BACK IN ELEVO TO TOTAL ELEVATION
1246	DO 1246 I=1, NMNP ELEV(I)=ELEV(I)+ELEVO DO 1250 I=1, NMNP ELREAL=DREAL(ELEV(I)) ELIMAG=DIMAG(ELEV(I)) ELMOD=CDABS(ELEV(I))
1005	IF((ELREAL.EQ.0.0).AND.(ELIMAG.EQ.0.0)) GOTO 1235 PHASE=ATAN2(ELIMAG.ELREAL) GOTO 1240 PHASE=0
1235	CONTINUE
6620	WRITE(6,6020) 1,ELLAD, FRASE FORMAT (30X, I3, 14X, F12, 8, 14X, F9.5)
7706	FORMAT (1X, 14, 1H, , F20. 10, 1H, , F15. 10)
C C C	CALCULATE AND PRINT THE MODULUS AND PHASE FOR VELOCITY
6530 2 2	<pre>WRITE(6,6630) FORMAT(////,1X,30('-'),10X,'NDDAL VELOCITIES',10X,30('-'), //,31X,'X-DIRECTION',28X,'Y-DIRECTION',/, 3X,'NODE',12X,'MODULUS',11X,'PHASE',16X, 'MODULUS',12X,'PHASE',/)</pre>
1090	DO 1290 I=1, NMNP L1=NN(I) +2-1 DX1=CDABS(U(L1)) DX2=DIMAG(U(L1)) DX3=DREAL(U(L1)) IF(DX2.EQ.0.0.AND.DX3.EQ.0.0) GD TO 1276 DX2=ATAN2(DX2,DX3)
1280	LI=LI+I DY1=CDABS(U(L1)) DY2=DIMAG(U(L1)) DY3=DREAL(U(L1)) IF(DY2.EQ.0.0.AND.DY3.EQ.0.0) G0 T0 1278 DY2=ATAN2(DY2.DY3) G0 T0 1282
1275	DX2=0.0 G0_T0_1280
1278 1232 6650	DY2=0.0 WRITE(6,6650) NN(I),DX1,DX2,DY1,DY2 FORMAT(8X,I3,10X,F12.8,6X,F9.5,12X,F12.8,7X,F9.5) URITE(8,7203) NN(I) DY1 DY2 DY1 DY2
7709	FORMAT(1X, 14, 1H, , F20.10, 1H, , F15.10, 1H, , F20.10, 1H, , F15.10)

CONTINUE 1290 1295 STOP END SUBRCUTINE EFICSOL(NDM, IBW) COMMON /SOL1/ 2,C,X COMPLEX*16 B(430,150),C(450),X(450) COMPLEX*16 TEMSOL1,TEMSOL2 REAL*8 ZER0,UNITY ZER0=0.0 UNITY=1.0 ILCB=(IBW-1)/2 ICB=ILCB+1 IRCB=ILCB+2 C C..... PERFORM GAUSS ELIMINATION ON COMPACT MATRIX AND LOAD VECTOR C D0 100 IRW=1,NDM TEMSOL1=B(IRW,ICB) C(IRW)=C(IRW)/TEMSOL1 B(IRW,ICB)=DCMPLX(UNITY,ZERO) D0 10 JNMR=IRCB,IBW P(TPU_IMR)=B(IRW_INMB)/TE B(IRW, JNMR) = B(IRW, JNMR) / TEMSOL1 CONTINUE 10 IRWB=IRW+1 IRWB=IRV+1 IRWE=IRV+ILCB DD 90 IRWZ=IRWB, IRWE IRMVE=ICB-(IRWZ-IRW) TEMSOL2=B(IRWZ, IRMVE) B(IRWZ, IRMVE)=DCMPLX(ZERO, ZERO) IROCH=IRMVE+1 DO 40 JCOZ=IROCH, IBW B(IRWZ, JCOZ)=B(IRWZ, JCOZ)-TEMSOL2*(B(IRWZ, JCOZ)=B(IRWZ, ICOZ)-TEMSOL2*(CONTINUE C(IRWZ)=C(IRWZ)-TEMSOL2*C(IRW) Ż 40 C(IRWZ) =C(IRWZ) -TEMSOL2*C(IRW) CONTINUE 90 CONTINUE 100 CCC SOLVE FOR UNKNOWNS USING BACK-SUBSTITUTION . . . ISV=NDM ISV=NDM CONTINUE X(ISV)=C(ISV) DD 300 JSV=1, ILCB KSV=ISV+JSV IF(KSV.GT.NDM) GDTD 301 X(ISV)=X(ISV)-B(ISV, ICB+JSV) *X(KSV) CONTINUE CONTINUE 200 300 CONTINUE ISV=ISV-1 IF(ISV.GE.1) GOTO 200 301 RETURN END

•

Appendix 2: Program RENUMB

- 2.1. inputs/outputs
- 2.2 listing

Appendix 2.1

•

•

. . .

.

1

.

· .

.

.

Program RENUMB renumbers grid node numbers in an efficient manner in order to optimize the maximum nodal point difference between connecting nodes, allowing program TEA to be run more efficiently. RENUMB should be run after a grid has been set up or after some grid modification has been done.

Input requirements for RENUMB are exactly the same as for program TEA. Hence a complete input file set up for TEA can be run with RENUMB. The un-renumbered grid input file is read in on TAPE 5. The renumbered output file will be output onto TAPE 6. We note that only node numbers change when running RENUMB and that element numbers remain the same. Finally RENUMB outputs renumbering information on TAPE 8. The example shown in Appendix 1.3.3 has been run with RENUMB and is listed here.

EXBAY	2		
BC-01	-		
44, 3	34		
1,	11000.00;	15000.00,	25.0000
2,	9000.00,	15500.00,	25.0000
4 ,	10500.00,	13300.00.	25.0000
5.	12500.00.	14000.00,	25.0000
6,	6000.00,	14500.00,	25.0000
7,	6000.00,	12000.00,	25.0000
8,	7800.00,	11000.00,	25.0000
9,	10000.00,	11400.00,	25.0000
11	13500.00,	13000.00.	25.0000
12,	2500.00.	13000.00,	25.0000
13,	3000.00,	10500.00,	25.0000
14,	6500.00,	9000.00,	25.0000
15,	8800.00,	10000.00,	25.0000
17	12500.00,	11300.00,	25.0000
18.	14000.00	11600.00,	25.0000
19,	C.00.	10000.00.	25.0000
20,	4000.00,	7000.00,	25.0000
21,	7500.00,	6000.00,	25.0000
22,	10500.00,	7500.00,	25.0000
23, 24	14000.00,	10000.00,	25.0000
25.	0.00.	6500.00.	25.0000
26,	5000.00,	3000.00,	25.0000
27,	1000.00,	4000.00,	25.0000
28,	7500.00,	2300.00,	25.0000
29,	9800.00,	3800.00,	25.0000
• 31.	7500.00,	800.00.	25.0000
32,	9500.00,	1500.00,	25.0000
33,	11500.00,	2300.00,	25.0000
34,	13000.00,	3000.00,	25.0000
2.	32, 29.	28, 0.00100	000
3,	32, 33,	29, 0.001000	000
4,	33, 30,	29, 0.00100	000
5,	33, 34,	30, 0.00100	000
5 ,	26, 28,	21, 0.001000	000 000
8.	29, 22,	21, 0.001000	
9,	29, 30,	22, 0.001000	000
10,	26, 20,	27, 0.00100	00 0
11,	26, 21,	20, 0.001000	000
12,	20, 21, 21, 21		000
14,	27. 20.	25. 0.00100	000
15,	25, 20,	19, 0.00100	000
16,	19, 20,	13, 0.00100	00 0
17,	20, 14,	13, 0.00100	000
18, 10	13, 14, 19, 13		000 00 0
20.	13. 7.	12. 0.00100	000
21.	12, 7,	6, 0.00100	000
22,	6, 7,	2, 0.00100	00 0
23,	6, 2,	3, 0.00100	000
24,	2, 1,	3, 0.00100	000
25,	/, 3, 8, 9	2, 0.00100 2, 0.00100	00 0
,02	· · · · · ·		

.

•

.

27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44,	2,944 1590,0,5,177,6,6,20 105,177,6,6,20	9, 10, 15, 16, 17, 23, 24, 30,	4, 1, 4, 5, 1, 9, 10, 16, 16, 11, 18, 17, 24, 23,	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001					
0.00		1000 1000 1000,	٥.	000000	0000,	0.0000	000000,	0.000000	000
	1, 5, 15,		5 11 8						
	1, 5, 11,	-0. -1. -1.	93000 21000 52999	00072, 00381, 99714,	0.00 0.00 0.00	0000000	$\begin{array}{c} 0, & -1.79 \\ 0, & -1.60 \\ 0, & -1.26 \end{array}$	999999523, 100000238, 599999809,	0.0000000000000000000000000000000000000
	8, 15, 4	-0.	68999 68999	99976, 99976,	0.00	00000000	0, -0.74 0, -0.74	100000095, 100000095,	0.0000000000000000000000000000000000000
	31, 32, 33,	0.	00000 00000 00000	00000, 00000, 00000,	0.00	10000000 10000000 10000000	0 0 0		
	34,	0.	00000	00000,	0.00	00000000	0		

-

Appendix 2.2

.

,

.

•

```
program for automatic renumbering
it will give the following input
for program tea : alphid, boy
CC
CC
                                                                      variables
cc
                                 nmel
                                 nmel nmnp
node x-coord y-coord
elt iconi icon2 icon3 depth
20
CC
CC
read(5,1000) alphid
read(5,1000) bcv
1000 format(a10)
          write(6,1001) alphid
write(6,1001) bcv
  1001 format(ix, a10)
 read(5,*) nmel,nmnp
write (6,2001) nmel,nmnp
2001 format (1x,13,1h,,13)
          do 10 i=1,nmnp
     read(5,*) next(i), xord(i), yord(i), dep(i)
nint(next(i))=i
10 continue
          read(5,*) (n,(icon(n,j),j=1,3),fric(n),n=1,nmel)
CC
          call renum(nmnp,nmel,icon,jnt,idiff,ndiff)
cc
          maxbwh=ndiff+1
          do 13 11=1,nmnp
do 11 1=1,nmnp
j=jnt(1)
if (11,ne.j) go
          if (ii.ne.j) go to 11
write(6,3001) next(ii), xord(i), yord(i), dep(i)
          continue
   11
          continue
do 12 1=1,nmel
    13
          11=1con(1,1)
12=1con(1,2)
13=1con(1,3)
           j1=jnt(i1)
j2=jnt(i2)
j3=jnt(i3)
write (6,4001) 1,j1,j2,j3,fric(i)
 12 continue

3001 format(1x,14,1h,,f10.2,1h,,f10.2,1h,f10.4)

4001 format(1x,4(14,1h,),f12.8) 

read (5,*) g

write(6,5001) g

5001 format(1x,f10.5)

read(5,*) omega

write(6,5003) omega

5003 format(1x,f15.10)

read(5,*) corfac

write(6,5003) corfac

read(5,*) win1,win2,win3,win4

write(6,5005) win1,win2,win3,win4

5005 format(1x,3(f15.10,','),f15.10)

read(5,*) nbsf

write(6,5006) nbsf
     12 continue
           write (6,5006) nbsf
  5006 format(1x,110)
           if(nbsf.eq.0) goto 5100
do 5040 i=1,nbsf
           read(5,*) n1,n2
           jn1=jnt(n1)
jn2=jnt(n2)
```

write(6,5030) jn1,jn2 5030 format(ix,110, ',',110) 5040 continue read(5,*) nbnf write(6,5006) nbnf do 5070 i=1,nbnf read(5,*) node, sv1, sv2, sv3, sv4 jnode=jnt(node) write(6,5065) inode, sv1, sv2, sv3, sv4 5065 format(1x, i10,4(',',f15.10)) 5070 continue 5100 read(5,*) nbl write(6,5006) nbl if (nbl.eq.0) goto 9999 do 5300 i=1,nbl read(5,*) node, htpr, phase jnode=jnt(node) write(6,5250) jnode, htpr, phase 5250 format(1x,110,2(',',f15.10)) 5300 continue CC 9999 stop end ccccc subroutine renum(nodes,lments,icon,jnt,idiff,ndiff) CCCCC dimension icon(600,3),jnt(600),jt(2400),memit(4800) dimension jmem(600),ix(5),jt1(5),jt2(5),jt3(5),jt4(5) dimension jx(5),jntx(5) write (8,19) do 100 i=1, lments i1=1 12=1+600 13= 1+600*2 14=1+600*3 jt(11)=icon(1,1)
jt(12)=icon(1,2)
jt(13)=icon(1,3)]t(14)=0 100 continue format(1h0, 'input data'/1h0, 'no.', 3x, '1.', 3x, '2.', 3x, '3.'/1h0) 19 lx=lments/4+1 do 150 i=1,1x 1p=0 ip=0
do 160 i1=1,4
ix(i1)=1+1p
jt1(i1)= jt(i+1p)
jt2(i1)= jt(i+1p+600)
jt3(i1)= jt(i+1p+1200)
jt4(i1)=jt(i+1p+1800) ł lp=lp+lx 160 continue write (8,2) (ix(ii),jt1(ii),jt2(ii),jt3(ii),jt4(ii),ii=1,4) 150 continue format(1h, 4(515, 3x)) 2 CCC call setup(nodes,lments,jt,memjt,jmem,jnt,idiff,ndiff) write(8,20) idiff 20 format(ih0, ' maximum difference idiff=',i5) call optnum(nodes,lments,jt,memjt,jmem,jnt,idiff,ndiff) write (8,29) ' results od nodes after renumbering') 29 format(1h0, write(8,30)
format(1h0,9x,'j',2x,'jnt(j)') 30 nx=nodes/5+1 do 200 j=1,nx

```
np=0
      .
          np=0
do 210 jj=1,5
jx(jj)=j+np
jntx(jj)=jnt(j+np)
          np=np+nx
   210 continue
          write(8,31) (jx(jj),jatx(jj),jj=1,5)
   200 continue
   31 format(1h,5(5x,215))
write (8,32)
do 300 j=1,1x
          b=0
do 310 jj=1,4
ix(ij)=j-1p
jt1(ij)=jt(j+1p)
jt2(ij)=jt(j+1p+600)
jt3(jj)=jt(j+1p+1200)
lp=1p+1x
continue
          1p=0
        write (8,33) (ix(jj),jnt(jt1(jj)),jnt(jt2(jj)),jnt(jt3(jj)),
vjj=1,4)
   310 continue
   300 continue
32 format(1h0,9x,'1',3x,'11',3x,'12',3x,'13'/1h0)
33 format(1h,4(5x,415))
          return
          end
CCCC
          subroutine setup(nodes,lments,jt,menjt,jmem,jnt,idiff,ndiff)
CCCC
          dimension jt(2400), memjt(4800), jmem(600), jnt(600)
         idiff=0
do 10 j=1,nodes
jmem(j)=0
do 60 j=1,lments
do 50 i=1,4
inti=jt(600*(1-1)+j)
if (jnti.eq.0) go to 60
jsub=(jnt1-1)*8
do 40 i1=1,4
if(i1.eq.1) go to 40
ijt=jt(600*(11-1)+j)
if (jjt.eq.0) go to 50
mem1=jmem(jnt1)
if (mem1.eq.0) go to 30
          idiff=0
     10
          if (memi.eq.0) go to 30
do 20 iii=1,memi
if (memjt(jsub+iii).eq.jjt) go to 40
   20
          continue
          intinue
jmem(jnti)=jmem(jnti)+1
memjt(jsub+jmem(jnti))=jjt
if(labs(jnti-jjt).gt.idiff) idiff=iabs(jnti-jjt)
   30
   40
          continue
   50
          continue
   60
          continue
          return
          end
ccccc
          subroutine optnum(nodes,lments,jt,memjt,jmem,jnt,idiff,ndiff)
CCCCC
          dimension jt(2400), memjt(4800), jmem(600), jnt(600)
dimension newjt(600), joint(600)
          njts=nodes
          minmax=idiff
          do 60 ik=1, nodes
          do 20 j=1, nodes
joint(j)=0
newjt(j)=0
  20
```

```
max=0
i=1
nevjt(1)=ik
joint(ik)=1
k=1
k=1mm(nevjt(i))
if(k4.eq.0) go to 45
isub=(nev;t(i)=1)*8
do 40 jj=1.k4
k5=mmjt(isub+jj)
if(joint(k5).gt.0) go to 40
k=k+1
nevjt(k)=k5
ioint(k5)=k
hdiff=iabs(1-k)
if(ndiff.gt.max) max=ndiff
40 continue
if(k.eq.njt5) go to 50
45 i=i+1
go to 30
50 minmax=max
co 55 j=1.nodes
55 jnt(j)=joint(j)
60 continue
nndiff=ndiff+1
write(8.100) ndiff.nmdiff
100 format(ih0, maximum difference after renumbering ndiff',i5, 'new ma
&xtowh',i5)
return
end
```

÷ .

. .

.

4

Appendix 3: Massachusetts Bay Example

- 3.1 input for Massbay tidal case
- 3.2 input for Massbay steady current case
- 3.3 output for Massbay tidal case
- 3.4 output for Massbay steady current case
Appendix 3.1

.

•

¢

.

.

.

.

.

•

.

-

•

64,	30480.0000,	51245.0000,	30.0000	
	18352.0000,	40577.0000,	62.0000	
3,	7049.0000,	31560.0000,	25.0000	
Э,	3239.0000, 34544.0000	25554.0000, 44323.0000	10.0000 22.0000	
<u>, 1</u> ,	30798.0000,	37052.0000,	21.0000	
73,	20257.0000,	33687.0000,	58.0000	
74,	14224.0000,	29749.0000,	47 0000 33 0000	
76,	5207.0000;	19653.0000,	5.0000	
78,	33719.0000,	31052.0000,	60.0000	
79, 80	27496.0000, 20066.0000	29337.0000, 26289.0000	60.0000 55.0000	
81,	14732.0000,	22479.0000,	40.0000	
82, 83,	6096.0000,	16764.0000,	10.0000	
84, 85	1475.0000, 40799.0000.	16462.0000, 33814.0000.	5.0000 55.0000	
86,	35735.0000,	27464.0000,	30.0000	
88,	26988.0000,	23463.0000,	53.0000	
89, 90.	21146.0000, 16129.0000.	20574.0000, 16732.0000.	48.0000 40.0000	
91,	11970.0000,	13367.0000,	30.0000	
93,	3250.0000,	13012.0000;	5.0000	
94, 95,	40545.0000 <i>,</i>	28067.0000,	30.0000	-
96, 97	44577.0000, 33150.0000	27464.0000, 19431.0000	30.0000 46.0000	
98,	36576 0000,	22416.0000,	40.0000	
100,	23146.0000,	14288.0000,	43.0000	
101, 102,	17812.0000, 14542.0000,	12509.0000, 9081.0000,	37.0000 25.0000	
103,	10287.0000,	10097.0000,	5.0000	
105,	39053.0000,	19558.0000,	38.0000	
106, 107,	35433.0000, 29655.0000,	10573.0000,	35.0000	
108, 109,	25718.0000, 20003.0000.	6287.0000, 7366.0000,	32.0000 33.0000	
110,	15399.0000, 11557.0000	3239.0000, 4953.0000	22.0000	
112,	44037.0000,	23844.0000,	20.0000	
114,	41815.0000,	14034.0000,	27.0000	
115, 116,	36703.0000, 31845.0000,	8954.0000, 4699.0000.	31.0000 29.0000	
117,	26321.0000,	381.0000, 794.0000	20.0000	
119,	14478.0000,	-1048.0000,	15.0000	
120,	48000.0000,	12954.0000,	5.0000	
122, 123	42736.0000, 38132.0000	8192.0000, 3520.0000	18.0000 22.0000	
124,	32925.0000,	-1016.0000,	22.0000	
125, 126,	20479.0000,	-5017.0000,	20.0000	
127, 128	16764.0000, 13399.0000	-3526.0000, -5080.0000	17.0000	
129,	11239.0000	-2953.0000	5.0000	

•

•

.

555566666666677777777777888888888888899999999	334445666122235443333333322222555665566577888884505566611556699977112333322222222211115555661115566999771123333	323211215554444444433221566666565555554433267776766665555557777787876	3333222225555443434334334333266666556666554544437777777666666555488999904 3333222225555688944564756878888445559906114456667999900712236671225769588999904	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $
118, 119, 120, 121,	73, 73, 67, 67,	74, 67, 68, 62,	20, 74, 74, 68,	0.005000 0.005000 0.005000 0.005000 0.005000

		000000000000000000000000000000000000000		
50 50 50 50	0000	00000		
50 50 50	00000	0000		
50 50 50	00000	0000		
50 50 50	0000	00000		

. .

$\begin{array}{c} 63, \ 63, \ 63, \ 95, \$

-

.

:

Appendix 3.2

.

.

•

.

·

.

.

.

.

•

•

.

MASEXAC B-02:F3	V10		
224,	140 -21554.0000.	68040.0000.	5,0000
2, 3,	-17685.0000, -19558.0000.	70549.0000, 64643.0000	5.0000
4,	-13462.0000,	76581.0000,	5.0000
6, 7	-14224.0000,	65326.0000, 61786.0000	34.0000
8,	-18955.0000,	59531.0000,	15.0000
10,	-24829.0000,	65024.0000, 80677.0000,	5.0000
12,	-5588.0000,	74517.0000,	45.0000
13,	-10160.0000,	62548.0000, 62548.0000,	30.0000
16,	-14288.0000,	57817.0000,	25.0000
18,	-23876.0000,	53023.0000, 55817.0000,	15.0000
20,	1016.0000,	75184.0000,	62.0000
21, 22,	-1334.0000,	62167.0000,	60.0000
23.	-8604.0000,	59055.0000, 59055.0000,	40.0000
25, 26,	-11239.0000,	56198.0000, 53721.0000,	30.0000
27, 28,	-14446.0000,	49371.0000,	10.0000
30,	5556.0000,	80137.0000,	20.0000
31, 32,	10065.0000, 5334.0000,	73660.0000, 68898.0000,	65.0000
33, 34,	1588.0000,	55817.0000,	60.0000
35, 36,	-3016.0000, -5874.0000,	57245.0000, 57023.0000,	45.0000
37, 38,	-8541.0000, -9356.0000,	56293.0000, 52737.0000,	23.0000
39, 40,	-9906.0000, 8033.0000,	48419.0000, 90297.0000,	15.0000
41. 42.	13018.0000, 17521.0000,	B1B20.0000, 73724.0000,	75.0000
43. 44,	13535.0000, 9610.0000,	61055.0000,	55.0000
45, 46,	1683.0000,	50102.0000,	42.0000
47, 48,	-5884.0000,	52959.0000,	34.0000
50,	-6191.0000,	44006.0000,	10.0000
52,	16955.0000,	59436.0000, 52435.0000,	80.0000
53, 54,	7874.0000,	47625.0000,	50.0000
55, 56,	-1969.0000,	45228.0000,	25.0000
57,	-3302.0000, 26334.0000,	38058.0000, '58452.0000,	10.0000
59, 60,	22505.0000, 15875.0000,	51552.0000, 45800.0000,	85.0000 70.0000
61, 62,	9338.0000, 4191.0000,	41655.0000, 36862.0000,	37.0000 22.0000
53,	-254.0000,	32226.0000,	10.0000

•

	\$4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30480.0000, 25225.0000, 18352.0000, 12446.0000, 7049.0000, 3239.0000, 34544.0000, 30798.0000, 24892.0000, 24892.0000, 24892.0000, 5207.0000, 5207.0000, 5207.0000, 37133.0000, 2796.0000, 2796.0000, 2796.0000, 14732.0000, 14732.0000, 14732.0000, 1475.0000, 1475.0000, 1475.0000, 1475.0000, 1475.0000, 1475.0000, 26988.0000, 1475.0000, 33941.0000, 26988.0000, 26988.0000, 26988.0000, 26988.0000, 25735.0000, 5969.0000, 5969.0000, 5969.0000, 5969.0000, 5969.0000, 5969.0000, 33150.0000, 5969.0000, 33150.0000, 33150.0000, 5969.0000, 10287.0000, 27877.0000, 23146.0000, 17812.0000, 17812.0000, 17812.0000, 17812.0000, 35433.0000, 29655.0000, 39053.0000, 39053.0000, 35433.0000, 25718.0000, 257	$51245 \ CC00, 44037 \ CC00, 40577 \ 0000, 36195 \ 0000, 31560 \ CC00, 25654 \ 0000, 36539 \ C000, 36539 \ C000, 36539 \ C000, 36539 \ C000, 29749 \ C000, 29749 \ C000, 29749 \ C000, 29337 \ CC00, 29337 \ CC00, 29337 \ CC00, 29337 \ CC00, 26289 \ 0000, 22479 \ 0000, 16764 \ 0000, 16764 \ 0000, 16764 \ C000, 25527 \ 0000, 23463 \ 0000, 23463 \ 0000, 23463 \ 0000, 23463 \ 0000, 23463 \ 0000, 23463 \ 0000, 13367 \ 0000, 13367 \ 0000, 13367 \ 0000, 13367 \ 0000, 13367 \ 0000, 13367 \ 0000, 13430 \ 0000, 22416 \ 0000, 13430 \ 0000, 22416 \ 0000, 13430 \ 0000, 22416 \ 0000, 13430 \ 0000, 22416 \ 0000, 136510 \ 0000, 14288 \ 0000, 12509 \ 0000, 12509 \ 0000, 12538 \ 0000, 12538 \ 0000, 13875 \ 0000,$	$\begin{array}{c} 30.0000\\ 50.0000\\ 22.0000\\ 25.0000\\ 22.0000\\ 21.0000\\ 50.0000\\ 58.0000\\ 58.0000\\ 55.00$
	111, 112, 113, 114, 115, 116, 117, 118,	11557.0000, 44037.0000, 45942.0000, 36703.0000, 31845.0000, 26321.0000, 20013.0000,	4953.0000, 23844.0000, 19050.0000, 14034.0000, 8954.0000, 4699.0000, 381.0000, 794.0000,	5.0000 20.0000 15.0000 27.0000 31.0000 29.0000 20.0000 20.0000 25.0000
·	119, 120, 121, 122, 123, 124, 125, 126,	14478.0000, 10795.0000, 42000.0000, 38132.0000, 32925.0000, 27178.0000, 20479.0000,	-1048 0000, 667 0000, 12954 0000, 8192 0000, 3620 0000, -1016 0000, -4699 0000, -5017 0000,	15.0000 5.0000 18.0000 22.0000 22.0000 21.0000 20.0000
	127, 128, 129,	13399.0000, 11239.0000,	-5080.0000, -2953.0000.	5.0000

.

-113-

130, 131, 132, 1334, 1355, 1389, 1345, 1389, 1345, 1389, 140, 123, 145, 155, 1389, 140, 123, 145, 155, 1389, 140, 112, 144, 155, 178, 190, 112, 112, 144, 155, 158, 159, 140, 112, 144, 155, 158, 159, 144, 159, 144, 159, 159, 159, 159, 159, 159, 159, 159	$\begin{array}{c} 49086.0000,\\ 44164.0000,\\ 39592.0000,\\ 337432.0000,\\ 21939.0000,\\ 49826.0000,\\ 49826.0000,\\ 499556.0000,\\ 499.29,\\ 199,12,\\ 11,\\ 4,\\ 20,\\ 29,\\ 199,12,\\ 11,\\ 4,\\ 22,\\ 21,\\ 31,\\ 300,220,\\ 229,\\ 19,\\ 11,\\ 4,\\ 22,\\ 21,\\ 31,\\ 300,220,\\ 229,\\ 12,\\ 13,\\ 14,\\ 4,\\ 22,\\ 21,\\ 31,\\ 300,\\ 229,\\ 21,\\ 31,\\ 300,\\ 229,\\ 22,\\ 11,\\ 31,\\ 300,\\ 220,\\ 21,\\ 13,\\ 14,\\ 4,\\ 22,\\ 21,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 21,\\ 33,\\ 33,\\ 32,\\ 32,\\ 32,\\ 32,\\ 32,\\ 32$	6921 0000 2159 0000 -2032 0000 -549 0000 -9335 0000 -6985 0000 -5525 0000 -5525 0000 -5525 0000 -10668 0000 41, 30, 20, 12, 12, 12, 5, 5, 6, 3, 42, 31, 31, 31, 32, 21, 13, 13, 14, 6, 7, 8, 9, 51, 42, 43, 43, 44, 33, 32, 21, 14, 6, 7, 8, 9, 5, 5, 6, 3, 42, 13, 13, 14, 6, 7, 8, 9, 5, 5, 6, 3, 42, 13, 13, 14, 6, 7, 8, 9, 5, 5, 6, 3, 42, 13, 13, 14, 6, 7, 8, 9, 5, 5, 6, 3, 42, 12, 12, 12, 12, 12, 12, 12, 1	$\begin{array}{c} & 5 & 0000 \\ & 5 & 0000 \\ & 15 & 0000 \\ & 15 & 0000 \\ & 5 & 0000 \\ & 5 & 0000 \\ & 5 & 0000 \\ & 5 & 0000 \\ & 5 & 0000 \\ & 00500 \\ & 00500$	· ·
36,,38,39,39,40,39,40,441,445,445,445,445,55,55,55,55,55,55,55,55	$\begin{array}{c} 13, \\ 24, \\ 14, \\ 14, \\ 14, \\ 17, \\ 7, \\ 8, \\ 18, \\ 27, \\ 88, \\ 18, \\ 27, \\ 44, \\ 53, \\ 34, \\ 44, \\ 33, \\ 22, \\ 2$	22, 223, 245, 156, 166, 178, 187, 187, 187, 187, 187, 187, 187	0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000	2

.

•

578901234567	222222111155555433333332222255565 565544444443336676566666555	32321121555444444443322156666656555554433267776767666655 54755667293556677888888687950604145556699889851112637722277 3232112155566778888888888888887950604145556699889851122637722277	33332222235555544343334333266666556668554544437777777766666 3333222223555555555555555555555555	$\begin{array}{c} 0 & 005000 \\ 0 & 0 & 00500 \\ 0 & 0 & 00500 \\ 0 & 005000 \\ 0 & 0 & 00500 \\ 0 & 0 & 00500 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
978900123455578990112345567899011112345567899011111111111111111111111111111111111	567655661155566999777112333377 665555543777777777666	671126737766377722770008119230447882	7077122366712557695888999904448	0.005000 0.005000

•

!

•

23456789012345678901234567890123456789012345678901234567890123	- - - - - - - - - - - - - -	659678788888777766989899000256957467970891012223342434442555768788880 19987760957467970899101222334243444255576878800 111111111111111111111111111111111	83656667788891145987799909022635346666778891112223134222112455667888 111111000000009998809134222112455667888 111111111111111111111111111111111	$\begin{array}{c} 0 & 005000 \\ 0 & 005000 $
179, 180, 181, 182, 183, 183, 185, 185, 187,	107, 108, 108, 109, 109, 102, 102, 102, 103, 91, 104,	108, 117, 118, 110, 110, 111, 103, 103,	116, 116, 117, 108, 118, 109, 102, 102, 91,	0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000 0.005000

.

.

agoi2345678901234567890112345678901234 589999999999999900000000000000000000000	92, 124, 122, 131, 122, 133, 15, 123, 16, 117, 126, 127, 16, 117, 126, 127, 16, 117, 126, 127, 118, 129, 119, 120, 131, 132, 123, 132, 123, 134, 123, 134, 124, 135, 125, 136, 127, 128, 129, 139, 120, 131, 131, 132, 123, 134, 125, 136, 127, 128, 129, 129, 129, 129, 133, 134, 129, 129, 129, 129, 132, 134, 129, 129, 133, 134, 129, 129, 133, 134, 132, 128, 129, 129, 133, 134, 132, 134, 129, 129, 133, 134, 132, 134, 132, 134, 132, 134, 129, 129, 133, 134, 132, 134, 134, 132, 134, 134, 132, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134, 134,	91000 910012233444576789 1223444576789 1223444576789 111077881223334555667898909 11309 11333334555667898909 11309 0000 0000	0.000000,	0.005000 0.0050000 0.0050000 0.0050000 0.0050000 0.0050000 0
10 40, 41, 51, 58, 70, 77, 85, 96,	0.04000 0.03460 0.02950 0.01980 0.01520 0.01520 0.01080 0.00770 0.00410 0.00000	, , , , , ,	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	

.

•

•

-

Appendix 3.3

.

.

. .

.

.

•

•

CONSTANT OFVIL ENGINEERING, H I T 2-D LINEAR FINITE ELEMENT FREQUENCY DOMAIN ANALYSIS OF TIDAL WAVES FOR SMALL SCALE GEOMETRY. ENTER 10 DIGIT F.E. GRID GEOMETRY IDENTIFICATION ENTER 10 DIGIT I.D. CODE FOR B.C. VERSION INPUT NUMBER OF ELEMENTS AND NUMBER OF NODE FOINTS INPUT THE NODE NO.,X-COORD.,Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE INPUT THE NODE NO.,X-COORD.,Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE INPUT THE NODE NO.,X-COORD.,Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE INPUT THE NODE NO.,X-COORD.,Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE INPUT ELEMENT NUMBER, THREE NODE NUMBERS FOR THE ELEMENTAND THE ELEMENT LINEAR FRICTION FACTOR MAX. NODAL POINT DIFFERENCE = 13

INPUT FREQUENCY IN RADIANS/SEC.

INPUT CORIOLIS PARAMETER

INPUT AMPLITUDE OF WIND SPEED, WIND PHASE SHIFT, ANGLE OF WIND DIRECTION (IN DEGREES) AND WIND DRAG COEFFICIENT INPUT HOW MANY BOUNDARY SEGMENTS HAVE NON-ZERO NORMAL FLUX PRESCRIBED

TITICAT	NO	07 N	1075 104		T.EVATTO	NK 75	P21	SCRIPTD										
TYPUT	THE	NOTE	NIMBER	AND	VALUES	FCR	THE	MCCULUS	AND	PHASE	CIN	RAD)	07	THE	PRESCRIBED	ELEVATION	٨.	NCOE
INPUT	THE	NCOL	NUMBER	AND	VALUES	FOR	THE	MODULUS	AND	PHASE	(IN	200)	ŌŦ	THE	PRESCRIBED	ELEVATION	AT	NODE
INPUT	THE	NCOL	NUMBER	AND	VALUES	FCR	THE	MCOULUS	AND	PHASE	(IN	RAD)	OF	THE	PRESCRIBED	ELEVATION	AT	NCOE
INPUT	THE	NCDE	NUMBER	AND	VALJES	FOR	THE	KCOULUS	AND	PHASE	(IN	? ?)	CF	141	PRISCRIBID	LEVATION	AT.	NODE
INPUT	THE	NCDE	NIMBER	V:D	VALUES	FGR	THE	X020003	AND	PHASE	(IN	M)	CF	THE	PRESCRIBED	LEVATION	AT.	NCDE
INPUT	THE	BCDE	NUMBER	AND	VALUES	FOR	THE	MODULUS	AND	PHASE	SIN	RAD)	QT	145	PRESCRIBED	ELEVATION.	AT.	NEDE
INFUT	THE	NODE	NUMBER	AND	VALUES	FCR	THE	MULUE.	AND	THASE	ζIN	NOV	CT.	THE	PRESCRIBED	ELEVATION.	AT.	NCOL
INFUT	THE	NCDE	NUMBER		VALUES	FCR	THE	1000-03	NND	?HASE	LIN	SV2	25		PRESCR. SED	THEYA LUN	<u>^</u>	
INPUT	THE	NUDE	NUMBER	AND	VALUE	FUR	THE		AND.	TRASE	748	222		10°	7823-81520		* +	
TNPUT	146	RUDE	ALC: LAN	~~~	VALUES	PUR	112	Fight and a	N NU	LUCI	112	(ایت ا			- nij - na Sil	۵۳ ما ۲۸ متامه	~1	

PROGRAM TEA DEPT OF CIVIL ENGINEERING, M. I. T. 2-D LINEAR FINITE ELEMENT FREQUENCY DOMAIN ANALYSIS OF TIDAL WAVES FOR SMALL SCALE GEOMETRY.

F.E. GRID GEOMETRY IDENTIFICATION : MASEXAC BOUNDARY CONDITION IDENTIFICATION : B-01:F3V1

FREQUENCY = 0.00013963 CORICLIS PARAMETER = 0.00010000

VIND SPEED AT 10 METERS ABOVE SURFACE = 0.0000 VIND PHASE SHIFT = 0.00000 RADIANE VIND DIRECTION = 0.00000 DEGREES VIND DRAG COEFFICIENT = 0.00000000

NO. OF NODE POINTS =140

NO. OF ELEMENTS =224

.

MAX. NODAL POINT DIFFERENCE = 13

***************************************	*****	NCDAL COORDIN	ates and depths	*************	************
	NODE	X-COORD	Y-COORD.	DEPTH	
	:	-21654 00	62040 00	5 00	
	2	-17555 00	70849 00	5 00	
	3	-19555 00	54543 00	12 00	
	ž	-10753 00	7:015 00	34 00	
	6	-14224 00	65326 00	34 00	
•	7	-14001 00	61786 00	30 00	
	8	-18955 00	5953: CO	15 00	
	.9	-24820 00	65024 00	5 00	
	11	-8065 00	80577 00	13 60	
	:2	-5588 00	74517 00	45.00	
	13	-7420.00	.66534.00	40.00	
	14	-10150 00	62543 00	30 00	
	15	-11452 00	59055 00	25 00	
	17	-17621 00	53023 00	5 00	
	18	-23876.00	55817 00	15.00	
	19	-1365.00	82504.00	15.00	
	20	1015 00	75184.00	52.00	
	21	-1334.00	62167 00	50.00	
	23	-6255.00	60738.00	40.00	
	24	-8604 00	59055 00	25.00	
	25	-11239.00	56198.00	30.00	
	25	-13335.00	53721.00	15.00	
	27	-14445 00	49371 00	10.00	
	29	3905.00	85255.00	20.00	
	30	5555.00	80137.00	55.00	
	31	1005500	73550.00	65.00	
	32	5334.00	62421 00	75.00	
	34	1588.00	55817.CO	60.00	
	35	-3016.00	57245.00	45 00	
	35	-5874.00	57023.00	35.00	
	37	-8541.00	55233.00	23.00	
	30	-9355.00	28419 00	15 00	
	40	8033 00	90297.00	15.00	
	41	13018 00	81820 00	75.00	
	42	17621.00	73724.00	8 <u>5</u> 00	
	43	13335 00	67247 00	55 00	
	5 4 45	6255 00	52372.00	71.00	
	46	1663 00	50102 00	42 00	
	47	-2504 00	52292.00	30.00	
	48	-5894 CO	52959 00	34 00	
	4 Y 50	-6191 00	44226 00	10 00	
	51	2:97: 00	65124.00	50.00	
	52	15955 CO	59435 00	80.00	
	53	12322.00	53435 CO	78.00	
	54	7874.00	47528 00	50.00	

:

134 1245 1245 1245 1245 1245 1245 1245 124	25:325 00 52:325 00 27:175 00 15754 00 15359 00 1:2359 00 4:1592 00 4:1592 00 3:3935 00 2:5739 00 2:5739 00	900 -1000 -50159000 -5015975000 -501580000 -501580000 -5015820000 -501000 -501000 -501000 -1000000 -1000000 -1000000 -10000000 -10000000 -100000000	222:0000000000000000000000000000000000
135	21939 00	-5335 00	
135	15939 00	-6335 00	
137	49379 00	-762 00	
138	44926 00	-5225 00	
139	39655 00	-8446 00	
140	33560 00	-10668 00	

ELEMENT ARRAY J ELEMENT FRICTION FACTOR к

e

ELEVENT

I

231211 3323211 17789033243123344

443321111 4333320111133346789123343322233

.

.

•

.

.

.

÷

-12345678901234567890123456789012345679

-122-

•

.

i

.

`

.

: 2445403000030321.0100544444444483322100606060555564433006777676766 ,

•

•

7..2/17.6913889999044888366577888911459877999090202065111112009999880555 222770008192304792375588798091455937899900025695746797009910122833422434 56555557777778766555598787888887777669989809002566957466797009910122833422434

.

.

.

i

.

.

•

-124-

į,

BOUNDARY CONDITIONS

NO. OF BOUNDARY SEGMENTS WHICH HAVE NON-ZERL NORMAL FLUX PRESCRIBED = 0

NO. OF NODES WHERE ELEVATION IS PRESCRIBED = 10

NGDE	PRESCRIBED ELEVATION	PHASE
40 41 51 58 64 70 77 85 95	: 2500 : 2446 : 2395 : 2346 : 2298 : 2208 : 2208 : 22141 : 2141 : 2141	

.

•

.

•

•

.

. •

r

.

RESULTS OF COMPUTATIONS

•

	NODAL ELEVATIONS	
NCDE	MODULUS	PHASE
1	1.32107698	-0.04420
. 2	1.3.532057	-0.04531
3	1 75051388	
2	1 28024876	+0 01894
Š	1.28550871	-0.02718
7	1.28885076	-0.03216
ŝ	1.30879955	-0.05523
, j	1.33326414	-0.07721
10	1.33591558	-0.03136
11	1.28928822	-0.01575
12	1.27037581	-0.01339
13	1.27769090	-0.02221
14	1,28508052	-0.03016
15	1.291/7553	
. 10	. 1.2312/00/	-0.03910
17	1 20772870	-0.01912
10	1 97050987	+0.00522
. 20	1 28107945	-0 00792
21	1.26595393	-0.01435
22	1.25789476	-0.01652
23	1.27656987	-0.02481
24	1.28522768	-0.02512
25	1.23845252	-0.03369
25	1.30069917	-0.04694
27	1.31914924	-0.05556
28	1.30794358	-C.C4988
29	1.25540751	0.01023
30	1.25438317	-6.03421
31	1.25011315	-0.03480
32	1.25717380	-0.01210
33	1.2010/9/4	-0.00070
24 25	1.2000/0/2	
33 78	28395143	-0 03435
30		-0.03433

•

1.22745102 2.2274299 1.25724299 1.2502000 1.25025103 1.250351212 1.251351212 1.25145209 1.25145209 1.25145299 1.25145299 1.25455231 1.2545299 1.2545299 1.2545299 1.2545299 1.2545299 1.2545299 1.2545299 1.25521557 1.2545299 1.25521557 1.25725791 1.25725037 1.257575 1.25725037 1.2575737 1.2575737 1.2575 !

.

.

.

-127-

•

103	1.33197695	-0 10101
	1 37832168	_0.10054
	1 22021 201	
103	1.3003.201	-0.12635
195	1.33044726	-0.11879
107	1.33757830	-0.11274
109	1.34647592	-0 12027
100	1 34570144	-0 10001
109	4 98686267	-0.10331
110	1.00200397	-0.12335
111	1.41652277	-0 16038
112	1.35353374	-0.10307
1.3	1 35658855	-0 15990
	1 220-2-20	-0.1/200
115		-0.14695
115	1.32555517	-0.13573
117	1.37202247	-0 14334
	36128-08	-0 10900
	1 38/01009	-0 1/557
		-0 1933/
120	1.4294.929	-0.1/304
:21	1.41453380	-0.21401
:22	1.37049939	-0.16015
23	36233310	-0 14990
	• 97/5-700	-0 158/3
:47	1.0/430/00	-0.13043
125	1.3/986312	-0 131/1
125	1.37774280	-0 14852
:27	1.38358351	-0.14738
:28	1.43515103	-0.18721
- 26	1 44026534	-1 18821
* 20	• *******	-0.04707
.30		-0.24(9/
131	1.44620139	-0.25080
132	1.41737555	-0.20259
:33	1.39515710	-0.17854
134	1.44545913	-0 20732
126	1 41181380	-0 17288
130	4.414447709	-0.1203
.30	1.9300//03	-0.19268
137	1.44335549	-0.27295
138	1.45217139	-0.25637
139	1.45704040	-0.23959
140	1 45085534	-0 23006
***	*********	0.20000

....

.

-

.

.

.

•

.

.

NODAL VELOCITIES

	X-DIR	ECTION	Y-DIRECTION			
NCDE	Kodulus	PHASE	MEDULUS .	PHASE		
1	0.00590895	0 83547	0.04942572	-: 25297		
5	0 06445719	-1 48589	0 (335-562	-1 57762		
1	0 07306741	-1 64950	0 04162360	-1 57600		
Ă	0.05056778	-1 40758	0 07002053			
2	0.02030770	-1 10787		-1 /7834		
5	0.05501032	-1.39307	0.03029133	-1.4/634		
9	0.07401051		0.02703088	-1.65128		
<u> </u>	0.07494970	70494	0 03733711	-1 80144		
8	C.05135728	-1.71214	0.02979027	-1.55485		
9	0.05571792	-1 65986	0.00552031	-1.47248		
10	0.08251321	-1.59237	0.01899510	1.65934		
11	0.06946384	-1.27546	0 02102046	-1.17412		
12	0.07575073	-1.58156	0.02107980	-1.13256		
13	0.09721866	-1.65749	0 02555721	-1 3EE74		
14	C.09938410	-1.69302	0 00319958	-1 39238		
15	0 078331 37	-1 66210	0 01670135	- 17313		
iš	0 08313830	-1 65800	0.00018045	- 80374		
;7	0.0720/720	-1 55619	C 0200070			
	0 01304130			-0 22027		
:2	C.00031515	1 1 4 3 2		-4.2330/		
	0 05/30815	-1.29659	0 0104/000	-1 17211		

.

C. 223:702 C. 21:5:25 C. 21:5:59 C. 22:5:55 C. 21:5:59 C. 22:5:55 C. 21:5:59 C. 22:5:55 C. 21:5:59 C. 22:5:55 C. 21:5:55 C. 0205C778 C. 0203E541 C. 0302542 C. 05412525 C. 05412525 C. 05412525 C. 05425252 C. 05425252 C. 05425257 C. 02046370 C. 02046370 C. 02046370 C. 02046370 C. 02046370 C. 02046370 C. 02044916 C. 02029514 C. 020295512 C. 020295274 C. 02029545 C. 02029545 C. 02029544 C. 05029545 C. 02029544 C. 05029544 C. 05029555 C. 02029544 C. 050295555 C. 02029577 C. 020424341 C. 0502955574 C. 020295774 C. 020295555 C. 020295774 C. 02029592774 C. 020424341 C. 050295774 C. 0202555574 C. 0202752704 C. 020424341 C. 050957774 C. 0205931756 C. 0203959577 C. 0203959377 C. 0203959377 C. 0203959377 C. 0203959377 C. 0203959377 C. 020395359 C. 0203959377 C. 020395359 C. 020395359 C. 0203959577 C. 020395359 C. 0203959577 C. 020395359 C. 0203959577 C. 020395359 C. 0203959577 C. 020395359 C. 020395359 C. 020395359 C. 020395556 C. 0202752704 C. 02037556 C. 0202752704 C. 02037556 C. 020277210 C. 02037556 C. 020277210 C. 0202752704 C. 02037556 C. 020277210 C. 0202752704 C. 0202752 -: 37585 -: 42::59 -: 67416 -: 53:39 -: 67416 -: 53:39 -: 67416 -: 53:39 -: 67416 -: 53:39 -: 67416 -: 53:39 -: 67416 -: 53:39 -: 62:525 -: 74460 -: 62:525 -: 74460 -: 62:527 -: 63:439 -: 63:439 -: 63:439 -: 63:439 -: 63:439 -: 63:439 -: 63:439 -: 63:439 -: 63:539 -: 72:428 -: 72:428 -: 63:539 -: 72:428 -: 72:428 -: 63:539 -: 72:428 -: 72:428 -: 63:539 -: 72:428 -: 72:428 -: 72:428 -: 63:539 -: 72:428 -: 7 . :

20

121232221123333333333444444444

		1 67130	A ALAPITA.	
85	C.55341//5	-1.65190	V.21401051	-1.90291
	0.00001.07	-1 01270	0 /0800/55	
6/	0.03321.31	-1.303/0	U.9002J933	-1./6508
	A A12AC729	-0 50070	r 7/7cs+70	-1 76200
63	0.01009/55	-0.09212	V. 44/97.14	-1.70050
		-0 17203	A CARE/COA	77000
89	· · · · · · · · · · · · · · · · · · ·	-2.0/033	0 20139000	-1./3329
	A APRENALL	-0 11077	0 #8620400	-1 70070
90	0.00002231	-2.5.2//	0.10032409	-1.72570
	A ACO10011	1 26270	A 1000000	
91	0.02253844	1.303/8	0.12820321	-1.64351
11		6 66 7 9 7	A	
52	C. 33333764	-2.25/6/	0.02022235	-1.35523
		1 01 704	A ACCACLAR	
93	0.05251491	-1.81/84	0.02309108	1.85134
94	0.01920526	-2.72398	0 0283/520	-1.21509
			A	
98	C.55005577	+2.142/0	0.11222527	-0.4013Z
35	C 4Ca47552	-2.441/3	0.13461574	1.32493
G7	C 13006434	1.35531	5.24522765	-1.75946
53	C 38853079	4:743	C.24411180	-1.51528
- C3	0.05531071	2 10675	0.22377515	-1 75221
	A. APAATAL 7			
100	0.00870141	1 14205	C 16230102	+1 755R6
.* 01	0.0100200	4 01773	0 17365386	-* 75667
· • • •	A. A. AAAAAA	A - # + # # # #		
	0 07883123	4 92448	0 15807025	- 65187
		···	A AAA. AWA	
	C 05831538	2 04:39	0 12917045	-1 33231
	A. A9021230	2.94.95	A	
104	C C2210202	2 37390	0.04400055	09800
	U.U3312339	2.9193V	A. A144449	
· ^ =	0 1/989004	4 35601	0.05000538	\$2069
	U.13000UU9	1.99901	V. 49466990	
• A 2	A AC/77212	• • • = 77	A + 57985A5	-1 77523
	V V3411633	7.47911	A. 79.99999	-1.11000
• • • 7	A 64830+AA	· 2^7/2	0 18815708	00030
101	0.00033100	1.30/23	A. 70070020	~
	A A0101238	1 70005	N 170F0592	_· E^875
103	0.02101330	1.12223	0.2100-324	
	A A19AAAA9	1 45789	A 18070200	-1 78090
	0.0.303023	1.50800	V	~1./0340
	/ 00909040	-6 63696	A 197A2994	-1 70010
110	6 62323348	-2.23238	V. 3/03234	-1.10018
	A A955656A	-1 0:224	A +8247748	-1 /0080
	0.03335330	-1.3.309	A. 72341130	40400
	A A74AAAAA	1 95944	A () COROR1	1 41400
	0.0/392500	1.32354	A. 77932307	2.72766
	A AAT 88888	A A	A A4811029	27217
113	0.02303900	2.04531	U U438.233	-1.3/31/
	A A77A4748	1 20108	A + A + A 7 A 47	-1 72052
114	0.0//08538	1.80120	0.1012/03/	-1./3833
		1 67616	A 1920229A	-1 75636
115	C.05058544	1.3/949	V.13060C33	-1./3530
			A 10000010	
116	0.04501852	1.344/1	0.12993812	-1.60221
			A 11046038	-1 72749
117	0.04433249	1.2.49/	A.TTA43309	-1./3/43
			A 10007074	
118	0.01606257	1./0413	0.1203/234	-1./95/9
		A AT A 4	6 65498399	
	C.C1885828	-2.0354/	0 05435233	-1.6394/
			A 60171707	
120	0.01576499	-1.02593	0.051/193/	-1.53252
			A AA. A	
121	0.05591482	1.18440	. 0.0310/1/3	-1.83021
		1.91149	A 10900996	1 37614
122	0.67689177	1.24132	U.10377556	-1./0299
			A 10070049	
123	0.G7198302	1.23184	U.12333937	-1./6320
137		31004	A 11A4A18A	
124	0.04533830	I.310¥4	U.11040185	-1.50486
175	A A/80000	1 07008	A 47/49//A	_1 00796
125	0.04502007	1.2/920	U.V/580992	-1.50//0
100	A A1707000	1 20012	A ATRECARE	-1 79044
120	0.01/04299	1.02240	0.01039028	-1.70044
167	A AA7A1A74	6 17971	A ABBA104A	-1 73796
127	0.03701074	2.1/3/1	U. V562:230	-1./3/39
		A AAAA	A ABAZZZA-	_1 90000
128	U.UI28/425	2.2233/	U . UZ6033J4	-1.19900
155		A 16744	A A9049614	-1 40000
129	0.01096795	2.124//	0.03953946	-1.00923
111		7 7 7 7 7 7 7	A 11000050	-1
:30	0.04996831	1.42319	0.11399253	-1.55519
	X . X X X X X X X		A 1074050	
131	0.10912470	1.27737	0.10/49524	-1.0¥/64
		7.21121		
132	0.09585924	1,21633	0.07891162	-1.74948
	I.IIIIII	1.21111	A AFFAA14	-1 00775
:33	0 05550509	1.21621	0.05529105	-1.2237B
				7 7 7 7 7 7 7
134	0.05555379	1.39186	0.04571839	-1.80017
		1.11111		
:35	0.04501656	1.45780	0.01820587	-1.35313
		1.32121		1.12211
135	0 02492258	1.35531	0.01973553	-1.63329
		.1.11111		
137	0 01407805	0.91704	0.02900213	-1.65870
		1.11111		
138	0.06835311	1.67543	0.01763277	-1.35572
139	C.05555334	1.15127	0.03176735	-1.87021
		: · · · · · · · · · · · · · · · · · · ·		
:40	C.05E35456	1.33418	0.01859831	-1.85382
***	* · • • • • • • • • • • • • • • • • • •			

_

.

.

•

-

٠

•

-

Appendix 3.4

-

:

.

-

•

PRESENT OF CIVIL ENGINEERING. M. I. T 247 D LINEAR FINITE ELEMENT FREQUENCY DEMAIN ANALYSIS OF TIDAL WAVES FOR SMALL SCALE GEOMETRY. 278 IO DIGIT F.E. GRID GEOMETRY IDENTIFICATION ENTER 10 DIGIT I.D. CODE FOR B.C. VERSION 2000 INFUT KUMSER OF ELEMENTS AND KUMBER OF KODE POINTS 2000 INFUT THE NODE NO. X-COORD., Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE 2000 INFUT THE NODE NO. X-COORD., Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE 2000 INFUT THE NODE NO. X-COORD., Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE 2000 INFUT THE NODE NO. X-COORD., Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE 2000 INFUT THE NODE NO. X-COORD., Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE 2000 INFUT THE NODE NO. X-COORD., Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE 2000 INFUT THE NODE NO. X-COORD., Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE 2000 INFUT THE NODE NO. X-COORD., Y-COORD., AND NODAL M.S.L. DEPTH, ONE NODE/LINE 2000 INFUT THE NODE NODES. THREE NODE NOMBERS FOR THE ELEMENTAND THE ELEMENT LINEAR FRIGTION FACTOR 2000 INFUT THE NODE NODES. THREE NODE NOMBERS FOR THE ELEMENTAND THE ELEMENT LINEAR FRIGTION FACTOR 2000 INFUT THE NODE NOTE: AND VALUES FOR THE MONOLUS AND PHASE (IN MAD) OF THE PRESCRIED D LEWATION AT NODE 2000 INFUT THE NODE NOMER AND VALUES FOR THE MODULUS AND PHASE (IN MAD) OF THE PRESCRIED ELEWATION AT NODE 2000 INFUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN MAD) OF THE PRESCRIED ELEWATION AT NODE 2000 INFUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN MAD) OF THE PRESCRIED ELEWATION AT NODE 2000 INFUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN MAD) OF THE PRESCRIED ELEWATION AT NODE 2000 INFUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN MAD) OF THE PRESCRIED ELEWATION AT NODE 2000 INFUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN MAD) OF THE PRESCRIED ELEWATION AT NODE 2000 INFUT THE NODE NUMBER AND VALUES FOR THE MODULUS AND PHASE (IN MAD) OF THE PRESCRIED ELEVATION AT NODE 2000 INFUT THE NODE NUMBER AND VALUES FOR THE MOD

F.E. GRID GEOMETRY IDENTIFICATION : MASEXAC BCUNDARY CONDITION IDENTIFICATION : B-02:F3V1

FREQUENCY = 0.00000000 CCRIDLIS PARAMETER = 0.00010000

VIND SPEED AT 10 METERS ABOVE SURFACE = 0.0000 VIND PHASE SHIFT = 0.00000 RADIANS VIND DIRECTION = 0.00000 DEGREES VIND DRAG COEFFICIENT = 0.000000000

NO. OF NODE POINTS =140

NO. OF ELEMENTS =224

.

•

.

.

NODAL POINT DIFFERENCE = 13

.

	NGDAL COCRDINA	ATES AND DEPTHS	***********************
NODE	X-CCORD.	Y-CCORD.	DEPTH
	NCDAL COCRDIN/ X-CCORD. -21654.00 -17685.00 -19558.00 -13452.00 -14224.00 -14224.00 -14224.00 -14224.00 -24329.00 -24329.00 -24329.00 -24329.00 -5588.00 -7420.00 -11462.00 -11462.00 -11462.00 -11462.00 -1365.00 -1334.00 -1335.00 -1335.00 -1335.00 -12330.00 -12330.00 -14446.00 3905.00 5556.00 10065.00 5556.00 10065.00 5334.00 2953.00	XTES AND DEPTHS Y-CCORD. 62040 CO 70549 CO 64643 CO 75581 CO 75581 CO 62040 CO 65226 CO 61785 CO 65326 CO 65326 CO 62033 CO 65234 CO 66234 CO 62548 CO 59055 CO 57817 CO 62548 CO 59055 CO 55817 CO 62380 CO 62167 CO 62738 CO 62167 CO 63781 CO 63731 CO 82804 CO 75184 CO 63738 CO 63737 CO 5371 CO 5371 CO 5817 CO 5817 CO	DEPTH 5 00 5 00 10.00 3 00 34.00 34.00 32.00 5 00 5 00 5 00 25.00 25.00 25.00 25.00 25.00 500 15.00 15.00 25.00 25.00 25.00 50.00 15.00 15.00 25.00 25.00 25.00 25.00 50.
334 35 36 37 38 39 40 41 42 42 43 44 45 46 47 48 47 48 49 50 51 52 53 53 55	2953.00 1588.00 -3016.00 -5874.00 -9366.00 99366.00 13018.00 13018.00 1335.00 9519.00 6255.00 1683.00 -2604.00 -6254.00 -6255.00 16955.00 16955.00 12922.00 7674.00 2477.00 -1969.00	02421.00 55817.00 57245.00 57023.00 562737.00 48419.00 90297.00 81820.00 73724.00 67247.00 61055.00 52372.00 529292.00 52959.00 48406.00 66104.00 59436.00 53435.00 47625.00 4228.00	70.00 60.00 45.00 35.00 23.00 20.00 15.00 75.00 80.00 55.00 85.00 71.00 30.00 31.00 32.00 55.00 85.00 71.00 30.00 31.00 32.00 32.00 32.00 33.00 35.00 71.00 32.00 32.00 32.00 33.00 34.00 55.00 10.00 50.00 50.00 51.00 52.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00

~

$\begin{array}{c} -3302 & 00\\ 25364 & 00\\ 22606 & 00\\ 15875 & 00\\ 9939 & 00\\ -254 & 00\\ 30480 & 00\\ 26226 & 00\\ 12352 & 00\\ 12446 & 00\\ 20257 & 00\\ 34544 & 00\\ 30798 & 00\\ 24892 & 00\\ 24898 & 00\\ 21146 & 00\\ 36735 & 00\\ 34941 & 00\\ 26988 & 00\\ 21146 & 00\\ 16129 & 00\\ 11970 & 00\\ 36989 & 00\\ 11970 & 00\\ 3250 & 00\\ 5969 & 00\\ 44577 & 00\\ 32150 & 00\\ 33150 & 00\\ 33150 & 00\\ 36576 & 00\\ 365$	380588 00 52452 00 468200 00 468200 00 322250 00 322250 00 44037 00 44037 00 44037 00 35135 00 35135 00 35554 00 44323 00 35654 00 44323 00 35657 00 25749 00 22743 00 22743 00 22743 00 22743 00 227454 00 16732 00 16758 00 16758 00 16758 00 16758 00 16758 00 16758 00 16758 00	00000000000000000000000000000000000000
5969.00	13430.00	10.00
40545.00	28067.00	30.00
44577.00	27454.00	30.00
33150.00	19431.00	45.00
36576.00	22416.00	40.00
27877.00	16510.00	45.00
23146.00	14288.00	43.00
17812.00	12509.00	37.00
14542.00	9081.00	25.00
10267.00	10097.00	5.00
7938.00	12033.00	5.00
39053.00	19558.00	38.00
35433.00	13675.00	35.00
29655.00	10573.00	35.00
25718.00	6287.00	32.00
15399.00	3239.00	22 00
11557.00	4953.00	5.00
44037.00	23544.00	20.00
45942.00	19050.00	15.00
41815 00	14034.00	27.00
35703.00	8954.00	31.00
31845.00	4639.00	29.00
26321 00	381.00	20.00
20013.00	794.00	25.00
14478.00	-1049.00	15.00
48000.00	12954.CO	5 00
42736.00	8192.00	18.00

.

•

,

÷

: . . .

.

•

23 124 125 125 125 127 128 129 130 131 132 133 135 135 135	33132.00 32525.00 27178.00 20479.00 16764.00 13339.00 49026.00 49026.00 33592.00 33909.00 27432.00 21939.00 15939.00	3520.00 -1016.00 -4639.00 -5060.00 -5060.00 -2953.00 6321.00 -2159.00 -2232.00 -5429.00 -10160.00 -9335.00 -5985.00 -762.00	222:000 21:000 21:000 21:000 20:00000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:000 20:0000 20:0000 20:0000 20:0000 20:0000 20:00000000
135 135 137 138 139 140	21939.00 15939.00 49879.00 44925.00 39555.00 33560.00	-5925.00 -762.00 -5525.00 -8446.00 -10668.00	5.00 5.00 5.00 5.00 5.00

•

.

•

•

.

Ś

**************		ELEMENT ARRAY		лY	*****************************	
	ELEMENT	I	J	к	ELEMENT FRICTION FACTOR	
·	1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 20 1 22 3 4 5 5 6 7 8 9 20 1 22 3 4 5 5 6 7 8 9 20 1 22 3 4 5 5 6 7 8 9 20 1 22 3 4 5 5 6 7 8 9 20 1 22 3 4 5 5 6 7 8 9 20 1 2 2 3 4 5 5 6 7 8 9 20 1 2 2 2 3 4 5 5 6 7 8 9 2 2 2 2 8 9 0 3 12 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	409999999114 44320002225665333321113222211334	290902114526311002212356477890332431223344 332022113564778903332432123344	41 410 332 112 5 5 5 321 113 332 113 14 5 7 8 9 1233 4 332 2233 22233	0 005000 0 0050000 0 0050000 0 000000 0 0000000 0 000000 0 000000 0 0	

•

-

,

.

211111115555443333333222225556889445647568788884455906114566679999007122236

•

•

.

.

.

.

1

.

.

-

7125759588999904488365566778891145987799090226353466677891111212231342 6665555487777787766559988888888888887759999990226353466677891111212231342 $\begin{array}{c} 6_{15}\\ 5_{5}\\ 5_{5}\\ 6_{9}\\ 9_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 7_{7}\\ 6_{6}\\ 6_{5}\\ 8_{8}\\ 8_{9}\\ 9_{9}\\ 8_{1}\\ 8_{8}\\ 8_{9}\\ 9_{1}\\ 1_{10}\\ 0_{9}\\ 9_{9}\\ 9_{9}\\ 0_{0}\\ 0_{0}\\ 0_{0}\\ 0_{2}\\ 2_{6}\\ 6_{6}\\ 1_{3}\\ 3_{3}\\ 3_{7}\\ 7_{7}\\ 1_{10}\\ 0_{10}\\ 0_{9}\\ 9_{9}\\ 9_{9}\\ 0_{0}\\ 0_{0}\\ 0_{0}\\ 0_{2}\\ 2_{6}\\ 6_{6}\\ 1_{3}\\ 3_{3}\\ 3_{7}\\ 7_{7}\\ 1_{10}\\ 0_{10}\\ 0_{9}\\ 9_{9}\\ 9_{9}\\ 0_{0}\\ 0_{0}\\ 0_{0}\\ 0_{2}\\ 2_{6}\\ 6_{6}\\ 1_{3}\\ 3_{3}\\ 3_{7}\\ 7_{7}\\ 1_{10}\\ 0_{10}\\$ 66555557777787666565987**9809145593789900025695746797089**100122233442434

·.

.

i

ļ

.

104

.

. ; į. ;

:

1

.

•

.

•

OF NODES WHERE ELEVATION IS PRESCRIBED = 10

.

· · · · · · · · · · · ·

.

· •

NCDE	PRESCRIBED ELEVATION	PHASE
40 41 42 51 58 64 70 77 85 96	0.0400 0.0345 0.0295 0.0246 0.0198 0.0152 0.0108 0.0077 0.0041 0.0030	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
******	RESULTS OF COMPUTATIONS	** *********************
	NCDAL ELEVATIONS	
NODE	MODULUS	PHASE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 33 34 35	0.04239742 0.04146851 0.03871197 0.04140596 0.03409668 0.03367290 0.03430751 0.04199020 0.04199020 0.04231058 0.04012124 0.03313332 0.03313332 0.03328799 0.03411663 0.03425399 0.03414669 0.03425399 0.04144649 0.03265935 0.03265359 0.03265359 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0326535 0.0327254 0.03071956 0.02975798 0.0297578 0.0297578 0.02996507 0.0314561 0.03291786	C.00000 C.0000
C.00000 0.00000 0.00000 0.00000 0.00000 $\begin{array}{c} 0. \ 0.3425405\\ 0. \ 0.3437238\\ 0. \ 0.3580912\\ 0. \ 0.450000\\ 0. \ 0.2950000\\ 0. \ 0.2950000\\ 0. \ 0.27750821\\ 0. \ 0.2759321\\ 0. \ 0.22759321\\ 0. \ 0.22759321\\ 0. \ 0.2275334\\ 0. \ 0.2225334\\ 0. \ 0.2225334\\ 0. \ 0.2225334\\ 0. \ 0.2225334\\ 0. \ 0.2235544\\ 0. \ 0.2235544\\ 0. \ 0.22355645\\ 0. \ 0.22355645\\ 0. \ 0.22357446\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2237746\\ 0. \ 0.2232183\\ 0. \ 0.225722183\\ 0. \ 0.225722883\\ 0. \ 0.2257268\\ 0. \ 0.2257268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.2235268\\ 0. \ 0.22357230\\ 0. \ 0.22357230\\ 0. \ 0.22357530\\ 0. \ 0.22442700\\ 0. \ 0.22357530\\ 0. \ 0.22442700\\ 0. \ 0.22357530\\ 0. \ 0.22427533\\ 0. \ 0.22357530\\ 0. \$. 0 00000

100 101 102

.

•

:

ļ

1

	103 104 105 105 107 108 109 110 112 115 116 117 119 1222 234 125 1223 1234 125 1223 1234 125 1223 1223 1223 1223 1223 1234 1235 1233 1233 1334 1335 1336 1338 1339 140	$\begin{array}{c} 0.\ 0.2524565\\ 0.\ 0.2567436\\ 0.\ 0.2100311\\ 0.\ 0.2174395\\ 0.\ 0.2156953\\ 0.\ 0.223339\\ 0.\ 0.223339\\ 0.\ 0.2245442\\ 0.\ 0.2244336\\ 0.\ 0.2244426\\ 0.\ 0.2244536\\ 0.\ 0.2244536\\ 0.\ 0.2244536\\ 0.\ 0.2244536\\ 0.\ 0.2244536\\ 0.\ 0.2245312\\ 0.\ 0.2245312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.22347312\\ 0.\ 0.2234530\\ 0.\ 0.22331225\\ 0.\ 0.2245496\\ 0.\ 0.22331225\\ 0.\ 0.22454530\\ 0.\ 0.22331225\\ 0.\ 0.22454530\\ 0.\ 0.22373517\\ 0.\ 0.2245318\\ 0.\ 0.22451650\\ 0.\ 0.22454542\\ \end{array}$		D. CCCCO D. CCCCCO D. CCCCO D. CCCCO D. CCCCO D. CCCCO D. CCCCO D. CCCCO D. CCCCO D.	
		NCDAL VELOCITIES	********		
NODE	X-DIREC Medulus	TION PHASE	Y-DIRI Modulus	ECTION PHASE	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.00175050 0.00032554 0.00072648 0.00193925 0.00057336 0.00057336 0.0004535 0.0004535 0.0004535 0.00115312 0.0011542 0.001134435 0.001134435 0.001134435 0.00113459 0.0011759 0.00178335 0.0017835 0.0017835 0.0017835 0.0017835 0.0017835 0.0017835	0.00000 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 0.000000	0.00191328 0.00150622 0.00029330 0.00233961 0.00334094 0.003262769 0.00122589 0.00089568 0.00089568 0.00089568 0.00072311 0.00457581 0.00457581 0.00457581 0.00457581 0.00457581 0.00457301 0.00453300000000000000000000000000000000	0.00000 3.14159	

,

.

-141-

.

.

01234587890123456789012345678901234567890123456789012345678901234567777777777888288

÷

.

1

•

•

.

•

.

.

•

$\begin{array}{c} 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	-	
0.00327267 0.0337267 0.0357210 0.0450311 0.0450311 0.025328 0.0251184 0.0251184 0.0251184 0.0251184 0.0251184 0.0251184 0.0251184 0.0251184 0.0251184 0.0251184 0.0251184		3.14159 3.14159 0.00000 3.14159 3.14159 3.14159 3.14159 3.14159 0.00000 3.14159

.

. •

85 87 88 90 91 92 93 94 95 95 97 99	0.11622073 C.02550812 C.02911381 0.01230833 0.02423225 0.02252005 0.02201497 0.00056456 0.00113570 0.14779993 0.14779993 0.14817184 0.02210415 0.02291919	C.COCCO O.CCCOO O.OCCOO C.OCCOO C.OCCCO C.CCCCO O.CCCCO O.CCCCO O.CCCCO O.CCCCO 3.14159 3.14159 3.14159	0.05796836 0.02977408 0.00483513 0.00149100 0.00394934 0.00149100 0.0023129 0.00131442 0.00125250 0.02554527 0.02554527 0.02574527 0.02767749 0.00377943	C.CCCCO C.CCCCO 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159
162 103 105 105 106 107 109 110 111 112 113 114 115 116 116 116	0.00125243 0.00383435 0.00103845 0.00115355 0.02158940 0.0237921 0.00158940 0.02158940 0.02167553 0.00148176 0.00186985 0.00564437 0.00354185 0.00544185 0.00544185 0.0054175 0.003175 0.003175 0.003175 0.003189215 0.00351836 0.00251836	3.14159 0.0000 3.14159 0.00000 0.00000 0.00000 0.00000 0.00000 3.14159 3.14159 3.14159 0.00000 0.00000 0.00000 0.00000 0.00000	0.6032979 0.0027859 0.00178592 0.00124522 0.00042744 0.00154209 0.0015971 0.00058501 0.00058501 0.00254638 0.00254638 0.00254639 0.00254639 0.00254639 0.00254539 0.00254539	3.14159 3.14159 3.14159 0.00000 0.00000 0.00000 3.14159 3.14159 3.14159 3.14159 0.00000 0.00000 0.00000 0.00000 0.00000 3.14159 3.14159
119 120 121 122 123 124 125 125 125 127 128 129 130 131 132 133 134 135 136 137 138 139 140	0.0039673 0.00176357 0.0008461 0.0076819 0.0011919 0.0029475 0.0010347 0.00053032 0.00007171 0.0022641 0.00005522 0.0001941 0.00025608 0.0001941 0.00025608 0.00027081 0.00039875 0.00039875 0.0003981	0.0000 3.14159 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3.14159 3.14159 3.14159 3.14159 0.000000 0.000000 0.000000 0.000000 0.00000000	0.00060235 0.0005756 0.0009352 0.0001324 0.0001525 0.00073324 0.00073324 0.00073324 0.00058711 0.00058711 0.0005871 0.00028569 0.00125001 0.00010516 0.00043097 0.00102705 0.00102705 0.00102705 0.00102705 0.00102705 0.00102705 0.00102705 0.000102705 0.000102705 0.000102705 0.000102705 0.000102705 0.000102705 0.000102705	3.14159 3.14159 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 3.14159

·. •

•

......

I

1

•

.

.

•

•

. .

-143-