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1. INTRODUCTION

1.1 Objectives

There are several design requirements related to the emergency

core cooling which would follow a hypothetical loss-of-coolant accident

(LOCA). One of these requirements is that the core must retain a

coolable geometry throughout the accident. A possible cause of core

damage leading to an uncoolable geometry is the action of forces on

the core and associated support structures during the very early

(blowdown) stage of the LOCA. An equally unsatisfactory design result

would occur if calculated deformations and failures were so extensive

that the geometry used for calculating the next stages of the LOCA

(refill and reflood) could not be known reasonably well. Subsidiary

questions involve damage preventing the operation of control assemblies

and loss of integrity of other needed safety systems. A reliable

method of calculating these forces is therefore an important part of

LOCA analysis.

These concerns provided the motivation for this study. The

general objective of the study was to review the state-of-the-art in

LOCA force determination. Specific objectives were:

(a) determine state-of-the-art by reviewing current (and

projected near future) techniques for LOCA force

determination.

(b) consider each of the major assumptions involved in

force determination and make a qualitative assessment

of their validity.



(c) use a small number of illustrative problems to obtain

quantitative information concerning these assumptions.

This report will attempt to address each of the stated objectives.

1.2 Description of LOCA Forces Problem

The analysis of LOCA forces is a complex problem involving the

marriage of fluid dynamics and structural mechanics techniques to cal-

culate a very severe transient response. Following the initiation of

a LOCA, hydraulic pressure waves result which reverberate within the

reactor loop and core for a short interval of about 50 ms. Flows in

the system experience high amplitude oscillations for a few seconds,

resulting in large magnitude, short duration mechanical loads on

structural elements. Both single phase and two-phase flow conditions

occur during the accident. The character of the flows in the annular

downcomer and in plenum regions is multi-dimensional and the problem

is asymmetric as a whole. Loads are induced on structures by the

action of interface stresses (both pressure and shear) at the surfaces

in contact with the fluid. Pressure differentials in the fluid cause

net forces on the structures and may originate in a number of ways,

including:

- wall shears, expansion/contraction losses, and form losses;

- forces needed to turn fluid jets which are directed toward
(or away from) the structure surface;

- fluid acceleration both from velocity changes with position
(spatial acceleration) and velocity changes with time
(temporal acceleration); and

- depressurization of different regions around the structure
at different rates during the blowdown.



The forces arising from temporal acceleration-induced pressure

differentials can give "water-hammer" effects, taking the form of

pressure waves propagating through the system at sonic velocity (and

being reflected, transmitted, attenuated, etc.). Wall shears not only

cause pressure differentials in the coolant but also are direct forces

on the structure.

The relation between forces on the structures and resulting

stresses is, of course, a dynamic one. Recoil of previously stressed

structures from which applied loads have been reduced is one dynamic

effect. Another dynamic effect is the overshoot to larger than

"static stresses" when a new load is applied rapidly but is sustained

for a fairly long time. A third effect is the undershoot to smaller

than static stresses when the new load is applied for only a short

time (with respect to a natural period of vibration of the structure).

This interaction between structural motions and loads may be very im-

portant in calculating the stresses during the accident. Loa calcu-

lated on the basis of a rigid structure (no wall motion) can, in certain

cases, be shown to be quite different than loads calculated with

structural flexibility and resultant wall motion accounted for.

Finally, for a complete description of LOCA forces, a determination

of peak magnitude is not enough. The time-dependent history of the

structural loadings may be necessary in some cases, so methods are

needed for recognizing those cases for which peak magnitudes are

sufficient.



1.3 Organization

In order to address the goals of the project, this report has

been organized as follows: Chapter 2 presents the illustrative problem

which was considered the basis of the analytical work; Chapter 3 is a

review of state-of-the-art methods of LOCA forces analysis; Chapter 4

contains an examination of the major assumptions made in LOCA forces

analysis; Chapter 5 summarizes the conclusionsof the study and gives

suggestions for future work. Appendices and references conclude the

report.
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2. BASE CASE ILLUSTRATIVE PROBLEM

One of the objectives of the project is to identify the

underlying assumptions of present and projected methods of LOCA force

analysis and to determine the applicability of these assumptions to

Boston Edison and Yankee Atomic reactors. To this end, it was decided

that a base case problem representative of the reactors owned/purchased

by the sponsoring utilities would be identified and examined for the

applicability of such assumptions. Discussions with utility engineers

led to the selection of an instantaneous double-ended guillotine

break of a Maine Yankee primary coolant pipe (pump discharge leg) as

the base case problem.

This chapter describes the geometry and steady-state operating

conditions of the base case. A description of blowdown based on a

one-dimensional fluid representation is also given.

2.1 Major Flow Paths and Components

The Maine Yankee plant is a three loop pressurized water reactor

owned and operated by Maine Yankee Atomic Power Company. Figures

showing major core structures and flowpaths may be found in Appendix A.

A nodal diagram combining reactor details with the calculational

coolant representative is shown in Fig. 2.1. This coolant representa-

tion given in this chapter was taken from a WREM (Water Reactor Evalu-

ation Model) model of the Maine Yankee Reactor (1). This model uses a

version of the code RELAP (2) to solve the one-dimensional conservation

equations. The RELAP codes provide for describing a thermal-hydraulic

system as a series of interconnecting control volumes, as in Fig. 2.1.

Mass and energy balances are solved for the volumes and momentum



balances are solved for the connecting junctions. The solution as-

sumes one-dimensional homogeneous fluid with the vapor and liquid

phases in thermodynamic equilibrium. The importance of these assump-

tions to calculating LOCA forces will be addressed in Chapter 3. The

intent in using the model here is to provide a first order description

of the steady-state and blowdown phases of a cold leg pipe break

accident.

In the WREM representation of the Maine Yankee reactor, twenty

control volumes are used for coolant in and near the reactor core.

The in-vessel volumes are indicated in Fig. 2.1, while the correspond-

ing geometric information is given in Table 2.1. Referring to the

table, the volume column gives thke coolant content of each control

volume. The "flow path" column gives the length a typical fluid par-

ticle would traverse in passing through the control volume. These

lengths were either obtained from reference (1) or were estimated

from figures in the Maine Yankee safety analysis report (30).

Flow path operating conditions (pre-transient steady state) are

supplied in Table 2.2. These conditions were combined with the geo-

metric information of Table 2.1 to produce two sets of time constants

that characterize physical processes of interest. The first of these

is the "enthalpy transport time constant" which was defined for a

particular control volume as:

pV
h W



where p = coolant density (kg/m3);

V = coolant volume (m3); and

W = mass flow rate (kg/s).

Physically, this time constant is the "fluid transport time" or

"transport delay time" for a pipe-like component. The second time

constant is the "sonic time", the time required for a sonic wave to

travel the length L:

Ts = (L/c)

where L = flow path length (m); and

c = sonic velocity (m/s).

The time constants are given in Table 2.1, giving a basis for

comparing the speeds of fluid transport and sonic/water hammer effects.

The constants indicate, for example, that in steady-state it takes

0.33 seconds for fluid to be transported from the break location to

the reactor inlet nozzle, 1.86 seconds from there to the core inlet

(by summing numbers for volumes 27, 28, 29 and 47), and 0.75 seconds

to pass through the core. The corresponding numbers for sonic propa-

gation are 4.4 ms, 120 ms, and 3.8 ms. Therefore, break occurrence

"information" is transmitted by sonic pressure wave through the usual

coolant path to the core exit in a very short time (20.2 ms). Short-

cuts through structure can cause information transmittal in even

shorter times.

2.2 Description of Transient

The base case transient occurs as a result of a pipe break to

the left of control volume 26 in Fig. 2.1 at time t=0. As liquid



rushes toward the break a decompression wave advances through the

system displayed in Fig. 2.1. The actual pressure wave transmission

is complicated by reflections at area changes and by interactions with

coolant volumes not shown in Fig. 2.1, such as pumps and steam gener-

ators. Figure 2.2 shows the calculated flow rate from the vessel to

the broken loop during the early blowdown portion of the accident. The

magnitude of the flow out the break increases rapidly to a maximum

value (at t=60 ms) or approximately five times the pre-transient

steady-state value. The flow slowly decreases during the next two

seconds. Figure 2.3 shows the pressures in volumes 28 (downcomer)

and 31 (middle core volume), for the first two seconds of the blowdown.

By comparing these two pressure curves, the pressure differential

across the core barrel can be inferred. Although this pressure dif-

ference is actually asymmetric (as multi-dimensional calculation reveal),

Fig. 2.3 correctly shows it to be greatest in the first forty milli-

seconds of the decompression. During this period, the pressures have

not yet reached the saturation values shown in Table 2.2, so pressures

drop very rapidly. Following this subcooled blowdown portion of the

transient, saturation pressures are reached in the hotter portions of

the system resulting in flashing to steam and a slowdown in the rate

of decompression. Examination of the plots from the WREM model indicate

that the first flashing occurs at t=60 ms in the upper plenum and hot

leg regions, taking place at a pressure of approximately 11.0 MPa.

Figure 2.4 shows the decompression of the outlet plenum during the

first two seconds, demonstrating the abrupt change in decompression

rate when the pressure fell below the 11.0 MPa saturation value given



in Table 2.2. However, the control volumes (27, 28, 36) that are most

important in influencing core structural behavior remain single phase

liquid for more than two seconds. At t=20 sec the system pressure

has dropped to about 8.3 MPa and these control volumes begin flashing

(at approximately 7.1 MPa) soon thereafter.

2.3 Additional Details

The advance of the decompression wave through the downcomer

(control volumes 27 and 28) supplies the first large forces on the

barrel and the first opportunity for significant striuctural damage.

An "unwrapped" Maine Yankee downcomer is shown, approximately to scale,

in Fig. 2.5. The nozzle that connects to the broken cold leg is at

Z=0, 6=0 in the figure. The decompression wave that spreads out from

this position soon encounters reflections from the top of the downcomer

and from the hot leg pipes which penetrate the downcomer. The wave

also reaches the open pipes leading to the other cold legs before

reaching the bottom of the downcomer. These interactions of pressure

wave and structural features are obviously of a multi-dimensional

nature, a complication whose importance must be assessed.

A thermal shield (see Fig. A.1) is located between the core

barrel and pressure vessel at the same elevation as the active section

of the fuel elements. The purpose of the shield is to reduce the level

of gamma heating in the pressure vessel wall. It is secured at the

top and bottom by seven circumferentially spaced studs anchored to the

outside of the core barrel. These studs present neglible resistance

to flow. The impact of the thermal shield on hydrodynamic response to

a LOCA is not clear and may need to be addressed.



There are six bumpers at the bottom of the core support barrel

that prevent excessive motion of the barrel with respect to the reactor

vessel. Each bumper consists of a snubber block and a core restraining

lug. The snubber block is mounted on the bottom of the outside surface

of the core barrel, having a vertical slot in its outside face that

runs the length of the block. The core restraining lug is fastened

to the reactor vessel at the same elevation and azimuthal angle as the

snubber block. The lug is machined in the field to fit snugly

(azimuthally) into the snubber block slot. A clearance of 13.5 mm

exists in the radial direction between the face of the lug and the

face of the snubber block slot. The bottom of the core barrel is

therefore restrained with respect to rotation about its axis but un-

restrained in the axial direction. Local deformations of 13.5 mm are

permitted in the radial direction at each snubber block location. These

movement inhibitors could have an important impact on core barrel

response to asymmetric pressure wave loadings.

The core support barrel is hung from a lip on the inside of the

pressure vessel (see Fig. A.2). An alignment key locates the core

barrel in the azimuthal direction in the pressure vessel. An expansion

ring (Bellevelle spring type) sits on top of the barrel flange and is

compressed by a force of approximately 4 MN when the reactor vessel

head is bolted down. It may be that sufficiently large asymmetric

forces could be applied to the core barrel to result in the flange

being unseated. Since LOCA force analyses consider the core barrel

flange to be properly seated at all times, this effect is not taken

into consideration. The importance of this simplification is not known.



The response of the core shroud to different rates of decompression

in the core bypass and core regions may also be important in maintaining

a coolable geometry. The shroud is an open-ended stainless steel can

that covers the outside faces of the peripheral fuel assemblies. The

core bypass region is located between the core shroud and core barrel.

The bypass region is characterized by relatively small inlet/outlet

flow area to volume ratio and hence may decompress at a slower rate

than the core region. This could lead to net inward forces on the

core shroud with possible damage to peripheral fuel elements.

2.4 Summary

For the purpose of performing a one-dimensional thermal-hydraulic

analysis of the Maine Yankee plant during a LOCA, a volume and flow

path representation of the core, reactor vessel and other primary com-

ponents is used. In addition to the assumption of one-dimensionality,

the fluid within a control volume is assumed to be at equilibrium and

structures are rigid. Analyses performed on this basis indicate that

the largest pressure differential across the core barrel occurs during

the subcooled portion of the blowdown. The calculational volumes most

crucial to determining core barrel response do not experience flashing

until about two seconds after the break, well into the saturated blow-

down phase. A multitude of important structural details pose compli-

cations in determining core response to the hydraulic forces created

by the rapid decompression.



Table 2.1 Base Case Geometric Information and Characteristic Times
(Pre-Transient Steady State)

Control Volume Volume Flow Fluid Sonic
Identity (Circles 3 Path Transport Time

in Fig. 3.1) (m ) (m) (s) (ms)

Ruptured Loop 2.5 4.38 0.33 4.4

Cold Leg (26)

Upper Downcomer (27) 10.0 1.7 0.44 1.7

Lower Downcomer (28) 14.0 5.58 0.62 5.6

Flowing Lower 7.8 2.3 0.34 2.3
Plenum (29)

Below Core (47) 10.4 2.43 0.46 2.4

216 "Avg" Core Assy's 17.1 3.48 0.75 3.8

(30-32)

Above Core (2) 3.4 0.44 0.14 0.5

"Flowing" Upper 24.2 1.29 0.98 1.5
Plenum (41)

Ruptured Loop 5.4 0.65
Hot Leg (15)

Intact Loops 5.0 0.33
Cold Legs (14)

"Static" Lower 5.5

Plenum (46)

1 "Hot" Assy 0.1 0.75

(33-35)

Core Bypass 6.0 10.5
(36)

"Static" Upper 16.0 23.0
Plenum (1)

Control Element Assy 11.8 17.0
Shrouds (42)

Intact Loops 10.8 0.65
Hot Legs (3)



Table 2.2 Base Case Flow Path Operating Conditions
(Pre-Transient Steady State)

Flow Path Saturation
Identity (Squares Flow Pressure Temperature Pressure
in Fig. 3.1) (Mg/s) (MPa) (C) / (MPa)

Ruptured Loop
Cold Leg (27)

Downcomer (28)

"Avg" Core
Exit (37)

Ruptured Loop
Hot Leg (15)

Intact Loops
Cold Leg (14)

Hot Assy Exit (33)

Core Bypass (39)

Intact Loops
Hot Leg (2)

5.65

16.93

16.42

5.65

11.30

0.08

0.43

11.30

15.64

15.70

15.56

15.50

15.64

15.56

15.56

15.50

290 7.44

290 / 7.44

319

318

11.12

10.98

290 / 7.44

332 / 13.18

290 / 7.44

318 / 10.98

"Leakage" Paths
(1) and (47)

"Leakage" Path (48)

0.48

0.03

15.50

15.70

318 / 10.98

290 / 7.44

Notes

(a) Leakage paths (1) and (47) pass into and out of the "static"

upper plenum (1).

(b) Leakage path (48) passes from the upper downcomer (27) to the

"flowing" upper plenum (41).

(c) Pressure and temperature values are given on a "donor cell"

basis (i.e., for the control volume providing flow to the

flow path).
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3. STATE-OF-THE-ART

This chapter describes the existing state-of-the-art for the

calculation of forces on core structures during blowdown. The state-

of-the-art consists of those methods which are currently being used

commercially as well as those methods which are being developed. The

chapter begins with a presentation of methods that are representative

of those used by vendors. Unfortunately, the proprietary nature of

this work has made it impossible to obtain details on some of the more

interesting aspects of these methods. Research efforts aimed at the

investigation of certain key assumptions used in current blowdown

forces analyses are then described. These studies have centered on

the coupling of fluid and structural interactions, utilizing both new

analytical methods and experiments. To date, most of the work done in

assessing the conservatism of an uncoupled analysis has been part of a

cooperative program between the Los Alamos Scientific Laboratory and

the Karlsruhe Laboratory in Germany. Therefore, a presentation of the

work done at Los Alamos is followed by a description of the related

Karlsruhe results.

3.1 Description of Design Methods

Several vendors perform blowdown calculations as an integral

part of their safety analysis. Understandably each vendor is interested

in protecting the investment required to develop such calculational

methods and hence classifies some of the information as proprietary.

Unfortunately, much of this proprietary information concerns the

selection of the appropriate model to adequately describe a key aspect

of the blowdown process. Where the information was unavailable, an

attempt was made to provide the background upon which a selection should

be based.



This section consists of a description of the problem, followed

by a discussion of aspects of calculating the blowdown induced forces.

This is followed by a discussion of three aspects of the blowdown

process which require special attention. These are nonequilibrium

thermodynamics, critical flow and multidimensional flow.

3.1.1 Problem Description

A postulated LOCA can impose large magnitude, short duration

loads on core structures during the blowdown phase of the accident.

These loads result from the rapid depressurization of the reactor

vessel cavity. Failure of reactor vessel internals under such loads

can lead to improper functioning of the control rods or loss of cool-

able core geometry. Therefore, to ensure the structural integrity of

core structures, several vendors (4,5) perform dynamic analysis to

define the transient forces that act during the blowdown phase of a

LOCA.

3.1.2 Calculation of Blowdown Induced Hydraulic Forces

The worst case for adverse loads on core and core supports is

identified as an instantaneous (less than 20 ms) double-ended shear

in the cold (pump discharge) leg pipe (6). Resulting hydraulic

pressure waves reverberate within various regions of the core for a

short interval (about 50 ms). Flows experience high amplitude oscil-

lations for a few seconds. Such an event causes large magnitude, short

duration mechanical loads on structural elements.

The loads induced on components within the reactor vessel result

from the action of interface stresses (both pressure and shear) at the

structural surfaces in contact with the coolant. These stresses arise

from the following fluid-dynamic mechanisms:



- momentum transfer;

- spatial acceleration of fluid (caused by change in flow
direction or flow area); and

- temporal acceleration of fluid.

These mechanisms appear as terms in the hydraulic model. From

the hydraulic model one determines the interface stresses and hence

the loads induced on components.

In practice it is necessary to model the thermal-hydraulics of

the entire primary system in order to estimate the forces imposed on

the core and core supports. In principle these forces could also be

obtained by studying the reactor pressure vessel as an isolated com-

ponent with boundary conditions specified at the inlet and outlet legs.

The difficulty with this approach is that these boundary conditions

are dependent on the depressurization process in the entire primary

system and hence can be determined accurately only if the total loop

thermal-hydraulics are examined.

With the possible exception of a few key components (to be

mentioned shortly), the primary system thermal-hydraulics are modeled

in one dimension. The Water Reactor Evaluation Model (WREM) used by

Yankee Atomic Electric Company for simulation of its Maine Yankee

plant (7) serves as an example. Control volumes designated as nodes

are connected via flow paths to other nodes. The conservation equa-

tions for mass and energy are applied in the nodes while the one

dimensional conservation equation for momentum is applied in the flow-

paths. A solution is obtained by numerically integrating the conser-

vation equations over a node-flowpath network set up to model the



primary system. Other one-dimensional schemes are described in

Refs. 4, 5 and 8.

In components where the flow is complex, a more detailed model

may be required for an accurate prediction of system blowdown. The

downcomer [5,8,27] and broken inlet leg [29] are two cases. Flow

here is usually modeled in two dimensions with the equations for mass,

momentum and energy solved over a finite difference mesh. A detailed

discussion is given later.

Independent of the flow models used, the thermal-hydraulic

analysis of primary system blowdown is carried through with all struc-

tures assumed static. As a result, local volume or pressure changes

that may occur due to structural displacements in the actual system

are not represented in the thermal-hydraulic model. The exclusion of

fluid-structure effects is believed to give conservative estimates of

blowdown loads on core structures. This however, has not been proven

in general.

Three different methods for evaluating the fluid forces acting

on the surface of a structure during blowdown have been identified.

Each is suited to a particular characterization of flow in the vicinity

of the structure. For flow described with the use of an Eulerian mesh,

the shear and normal forces acting on the structure are available

directly from the fluid computational cells adjacent to the fluid-

structure interface. In Ref. 6, the forces exerted by the fluid in

the downcomer region on the core support barrel are determined using

this method. For flow given in terms of an average flow rate, empirical

correlations based on the geometry and the Reynolds number yield the



forces acting on the structure. Reference 5 describes the use of

this method for the computation of the drag forces exerted on a con-

trol element shroud subjected to a large transverse flow component

during blowdown. Finally, when flow is characterized by the node-

flowpath method, the forces on structures such as orifice plates can

be determined from the momentum control volume concept. In this ap-

proach the fluid around the structure is enclosed in a control volume

and the linear momentum equation applied. The control volume is drawn

such that node pressures are the known external forces acting on it

while the forces exerted by the structure on the control volume are

the unknown external forces (5).

3.1.3 Nonequilibrium Thermodynamics

Recall that a two-phase system is in thermodynamic equilibrium

when both phases are at the same pressure and their temperatures are

at the corresponding saturation value. Under any other conditions the

system is in a state of thermodynamic nonequilibritum.

The possible occurrence of nonequilibrium thermodynamic effects

during blowdown has been investigated by several groups (5,9,10).

Their findings indicate that these effects are negligible for the

coolant not immediately adjacent to the break. The fluid here can be

considered to be in a state of thermodynamic equilibrium. The fluid

escaping through the break, however, is in a nonequilibrium state.

The evidence supporting the use of equilibrium thermodynamics

throughout the primary system, excluding the break, is as follows. Non-

equilibrium behavior has been found only in small scale experiments.

Hirt et al. (9) describe a blowdown experiment conducted with a 1/25



scale model of a reactor pressure vessel and downcomer. They found that

experimental-analytical agreement could be obtained only by incorporating

a thermodynamic nonequilibrium model of vapor bubble growth in their

analysis. Other cases of nonequilibrium behavior in small scale experi-

ments are given in Ref. 5. This reference points out that the above ex-

periments differ from a typical PWR blowdown in the following respects:

fluid volume is small and break area to system volume ratio is large.

Further, two large scale experiments (LOFT and CSE) typical of a PWR

blowdown in these respects showed no nonequilibrium effects inside the

vessel. Reference 5 points out that local decompression rates in the

small scale experiments were two orders of magnitude greater than in

the large scale experiments. Hence, the nonequilibrium effects observed

in the small scale experiments cannot necessarily be expected to occur in

the blowdown of a typical PWR.

The break thermodynamics are nonequilibrium in nature. A dis-

cussion is given below.

3.1.4 Critical Flow

An important part of modeling primary system blowdown is the pre-

diction of the discharge flow rate from the broken coolant pipe. This

flow is critical during the subcooled and saturated phases of blowdown

and hence is independent of containment pressure.

Experiments reported in Ref. 10 indicate that during the sub-

cooled phase of decompression, the break flow thermodynamics are non-

equilibrium. At least one vendor (5) uses a nonequilibrium critical

flow model. Comparison of the model with experiment gave good agreement.



This same model, along with the Moody and homogeneous equilibrum

critical flow models was used to predict pressures for blowdown of a

typical PWR. With all input parameters but the critical flow model

made equal, the nonequilibrium flow model gave a more rapid decom-

pression and higher pressure loads than either of the other two models.

Unfortunately the model is unavailable for proprietary reasons.

3.1.5 Multi-dimensional Effects

The methods for blowdown analysis described in the literature

contain largely one dimensional flow models (4,5,9). However, in

components where the detail of spatial representation has a profound

effect on the calculation of loads, the flow is modeled in higher

dimensions and with fine nodalization.

The depressuraization of the downcomer following a cold leg

nozzle break is highly asymmetric and hence a case for multi-dimen-

sional flow modeling. In the standard representation (6), pressure

changes in the fluid due to structural motion are neglected. The

region is then treated as a thin two-dimensional layer of fluid of

constant thickness.

One vendor has investigated the effect of downcomer spatial

representation (dimensionality and nodalization) on the predicted

space-time decompression of the region (5). In this study, two full

representations of the primary system were examined. The models dif-

fered only in the degree of spatial representation in the downcomer

region. Unfortunately, the exact models and results have been deleted

from the text of the report for proprietary reasons.



3.2 Los Alamos Laboratory Research

The major thrust of the Los Alamos research in methods for the

calculation of LOCA forces has been in investigating the effect of

uncoupled fluid-structural analysis. That is, the blowdown induced

forces acting on the reactor vessel internals have been calculated

using an uncoupled fluid-structure procedure. In this approach, the

fluid pressures and shears are first computed from a hydrodynamic

model that considers the walls of the structure to be rigid. The

resulting time history of forces is then applied to the structural

model to determine its response. The assumption here is evident:

feedback of structural deformations to the fluid is neglected. The

uncoupled method is judged to be conservative for the following reason

(11): it is widely held that the pressures computed on a rigid wall

will be greater than if the wall is permitted to deform under the load.

To investigate the relative importance of the coupled interaction,

Rivard and Torrey (12,13,14) performed three-dimensional calculations

for the dynamics of the fluid and core support barrel of the HDR

reactor (Fig. 3.2.1) vessel during blowdown. Besides investigating

fluid-structure coupling, they also examined (a) the adequacy of a

two-dimensional fluid modeling in place of the three-dimensional

representation, and (b) the effect of a mass ring placed at the bottom

of the core barrel to simulate the core mass and stiffness.

In their work, the fluid is represented by the two fluid, six

equation model. These equations are solved by the code KFIX (15).

The cold leg break is simulated by imposing the pressure history shown

in Fig. 3.2 as a boundary condition. The core barrel is modeled as

a linear elastic cylinder clamped rigidly at the top and unrestrained



at the bottom. The code FLX solves the corresponding structural

dynamics equations. A coupled calculation is obtained by passing the

fluid pressure as an external force to the structural code while pass-

ing the structure velocity as a differentiated boundary position to

the fluid code. In their uncoupled calculations the same algorithm

is used except that the structure velocity passed to the fluid code is

explicitly set to zero. In this way the fluid dynamics are calculated

for a rigid core barrel.

The first set of calculations performed were for the coupled and

uncoupled blowdown of the pressure vessel shown in Fig. 3.1. The

results indicate the relative importance of fluid structure-coupling.

Figures 3.3a-d show the radial deflection of the core support barrel

in the 6=0 plane through the break. The inward deflection of the core

barrel at 10 and 20 ms accomodates the fluid displaced downward by the

bulging of the core barrel in the vicinity of the broken nozzle.

Figure 3.4 shows the response of the core barrel bottom directly

below the break. Note the frequency and amplitude are smaller for the

coupled case. Figures 3.5a-d compare the axial bending stresses at

the top of the core barrel. This was shown to be the most significant

stress acting at this location. Often it is also the location of the

maximum stress. Figure 3.6 shows the effect of coupling on the time

history of stress at the core barrel top next to the break.

A second set of calculations were performed to investigate the

adequacy of a coupled two-dimensional fluid modeling in place of the

coupled three-dimensional representation. A simple depressurization

model was substituted for the three-dimensional model of the lower



plenum and core regions. The two-dimensional representation of the

downcomer region was retained, however. Figures 3.7a-d show the

radial deflection of the core barrel in the plane 0=0 for the two- and

three-dimensional calculation. Rivard and Torrey judge the two-

dimensional calculation to be adequate for determining deflection pro-

files. Figures 3.8a-d give the axial bending stresses for the two-

and three-dimensional coupled calculations. Differences of 25% to 40%

occur. The two-dimensional case required 9 minutes of CDC 7600 time

compared to 56 minutes for the three-dimensional case.

A third set of calculations were performed to investigate the

effect of the core internal structures on the core barrel dynamics.

The stiffness and inertia of the internal structures were simulated by

a mass ring placed on the inside of the core barrel at its bottom

boundary. Three-dimensional calculations were performed for this con-

figuration. Figures 3.9a-d compare the radial deflection of the core

barrel through the plane 6=0 with and without the mass ring. The ring

is seen to reduce the deflection at the bottom boundary. Figure 3.10

compares the deflection history of the core barrel bottom in the plane

6=0. The mass ring reduces deflections by a factor of two. Figure 3.11

compares the axial bending stresses at the top of the core barrel. The

stress magnitude is seen not to change significantly.

A parallel but independent line of investigation is being carried

out by Diennes et al. (9,16,17,18). They have divided their study of

fluid-structure interaction into three separate phases (18). The first

phase involved the development of a coupled fluid-structure code to

describe decompression in the axisymmetric apparatus shown in Fig. 3.12.



The results of experiments conducted with this device were used as the

basis for code refinements. The second phase will simulate the asymmetric

geometry of a PWR in blowdown, but without the complexities of internal

structures. Experimental data for the HDR reactor will be compared

against analytical predictions. In the third phase, the effects of

internal structure will be included in the code.

Their study of blowdown in the axisymmetric structure shown in

Fig. 3.12 is as follows: the fluid is modeled in twe dimensions using

the two phase drift flux approximaLion. The code SOLA-DF solves the

corresponding fluid equations in cylindrical r,z coordinates using a

finite difference scheme. The core barrel is modeled as a cylindrical

shell using the classical shell equations. These equations are solved

by the finite difference code FLX. Coupling is achieved in the same

way as described for the Rivard and Torrey work. A set of blowdown

experiments was conducted with the apparatus shown in Fig. 3.12.

Blowdown was initiated by cutting the end cap (located at top of figure

but not shown) with an explosive charge. The pretest calculations dif-

fered widely from the experimental results. However, analytical-

experimental agreement improved when the code was modified to include

(a) effects of wall velocity on adjacent fluid density that had been

previously neglected, (b) a more accurate method for calculating the

speed of sound in the fluid and (c) a heat conduction limited liquid

to vapor production model. The pressure release mechanism is believed

to be responsible for a shock wave that propagated down the apparatus

causing spurious pressure peaks to appear. The experiments will be

repeated with an improved mechanism.



3.3 Karlsruhe Laboratory Research

Full scale blowdown experiments are being planned by the

Karlsruhe Laboratory for the former HDR reactor vessel (19). Schedul-d

for 1979, these experiments are intended to verify the fluid-structure

codes that have been under development at Los Alamos and Karlsruhe.

The HDR reactor vessel has been modified in several ways in preparation

for the experiments. The core barrel thickness has been reduced to

make blowdown induced deformations larger and hence fluid-structure

interaction more evident. The core barrel has been rigidly clamped

at its top since this assumption is made in the current set of codes.

A mass ring has been substituted for the core internals since the codes

do not as yet model details of the core structure. Figure 3.13 com-

pares the HDR vessel with a typical PWR.

Four fluid-structure interaction codes are under development in

Germany (20). We will describe two of these, STRUYA and FLUX, both

intended to be applied to the HDR experiments.

In their coupled code STRUYA, Katz et al. (21) have adapted the

two dimensional Los Alamos code YAQUI to describe fluid flow in the

unwrapped downcomer. Flow is parallel to the fluid-structure interface

and fluid thickness is determined by local structural displacements.

The core barrel is modeled with the code CYLDY2, a semi-analytical ap-

proach that represents displacements as a sum of modal shape functions.

Computer time for this structural code is considerably less than for

general purpose finite element codes. Coupling of the fluid and struc-

tural codes to give STRUYA is currently underway.

The second coupled code, FLUX, is in a more advanced state (22).

The fluid model is based on three dimensional potential flow and has



versions for both a compressible and incompressible fluid. The struc-

ture is modeled using the CYLDY2 code. Reference 22 describes in

detail the analytical formulation. The three vessel geometries given

in Table 3.1 were examined with the coupled and uncoupled versions of

FLUX. In all three cases the decoupled calculation gave a conservative

value for the maximum stress in the core barrel. The coupled results

for the Battelle-Frankfurt vessel agree well with the data obtained

from a blowdown experiment run with this vessel. The HDR uncoupled

results are to be compared with experiment in the near future.

3.4 Structural Mechanics and Fluid Dynamics Methods

Appendix B contains a summary of available fluid mechanics,

structural dynamics and fluid-structure interaction codes. The name,

reference and source of each code is given, along with a short dis-

cussion of the code's intended use and numerical method. In addition,

any known verification or applications of the codes are discussed.



Table 3.1 INPUT PARAMETERS FOR NSR, PWR AND RS16 SITUATIONS

Table a. Geometric Data [m]

NSR PWR RS16

RM Radius of core barrel center plate 1.3185 2.145 0.3065

LM Length of annulus = dynamically
effective length of core barrel 7.57 8.24 7.39

RS  Vent radius 0.100 0.4025 0.0715

LF Distance of nozzle axis from flange
support 0.72 1.12 1.34

HR  Annulus width 0.150 0.315 0.077

HM Core barrel shell thickness 0.023 0.080 0.008

LS  Length of blowdown nozzle (short/long) 1.10 3.7 0.35
/5.43 /6.0 / -

RRI Mass ring, inner radius 0.81 1.20 0.2

RR1 Mass ring, outer radius 1.105 2.105 0.3065

BR1 Height of mass ring 0.75 0.682 0.3065

BR2 Height of intermediate ring 0.14 0 0.13

RRA Outer radius of intermediate ring 1.307 0 0.13

LU Effective height of upper plenum: so
that -m RV2LU = volume of upper plenum 1.0 1.6 1.97

LL Effective height of lower plenum: so
that T RV2LL = volume of lower plenum 1.8 1.5 1.7

Rv Pressure vessel inner radius =
SRM + HM/2 + HR 1.48 2.50 0.3875

fhole Component of hole area on flange
relative to annulus cross-section =
= 8 in 9 A3.2.4 0 0 0.039



Table b. Core Barrel Physical Constants

NSR PWR RS16

PM Barrel density at nominal dimensions
[kg/m3 ] 7800 7800 7800

E Modulus of elasticity [N/m 2] 1.7"1011 1.7-1011 2.1011

v Transverse contraction number 0.3 0.3 0

pR  Mass ring density [kg/m 3 ] 7800

or

MR  Mass ring mass f 1/2 core mass.or
mass of rigid barrel component [kg] 12.103 50.10 3  1400

I Rotational inertia of ring (if
geometric dimensions and density are
not fixed) [kg m2] 6100 75000 9067

s damp Damping coefficient for structure
damp according to equation (A4-10) [%] 0 1 1



Table c. Characteristic Fluid and Input Data
(NSR for Test 3, RS16 for Test PWR5)

Initial pressure [MPa]

T Initial temperature (averaged)
in annulus [OC]

T Initial temperature (averaged)
in interior [°C]

p0  Density at (po, TR) [kg/m 3 ]

a Velocity of sound at (p', TR)
[m/sec]

PS Saturated vapor pressure at TR[MPa]

T

Atrupture

Saturated vapor temperature at p 0
oC]

Pipe rupture time (msec]

f Damping for fluid according to
damp equation (Al-37) [1]

Dynamic viscosity (10 - 5 kg/(msec)]

NSR PWR RS16

11

268

305

781.3

1088

5.335

318

0

0

15.75

290

320

746.9

948

7.445

346

3

0.1

14.2

280

280

762.5

1070

6.419

337.75

1

0.25

9.44 9.810.1
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Fig. 3,1
Geometry of HDR pressurized water reactor
vessel. Dimensions are in meters. (Ref. 13)
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4. EXAMINATION OF ASSUMPTIONS

The calculation of blowdown induced forces may involve a number

of assumptions and approximations which help to make the problem more

tractable. The appropriateness of such assumptions and their effect

on the calculated results must be assessed. To that end, this chapter

will highlight a number of these assumptions, including both qualitative

and quantitative assessments.

4.1 Sonic Velocities

The calculation of sonic velocities is important in determining

the propagation of pressure waves through the reactor flow paths during

a LOCA. In order to have a well-understood source for sonic velocities,

subcooled liquid tables were used to derive needed partial derivatives

by numerical differentiation. The sonic velocities were then calcu-

lated using the following equation:

C = R (4.1.1)

T

where C = sonic velocity, evaluated for isentropic conditions;

R = partial derivative of density with respect to pressure,
holding temperature constant;

R = partial derivative of density with respect to
temperature, holding pressure constant; and

SpS T = corresponding partial derivatives of entropy.

Results indicated that, for the cold leg conditions of Table 2.2

(15.6 MPa, 2900 C), C was approximately 1010 m/s. For the hot leg con-

ditions (15.5 MPa, 318 0 C), C was approximately 850 m/s. These velocities

can be compared to those employed in computer codes of interest.



4.2 Exact One Dimensional Solution

In order to examine the methods used to treat one-dimensional

pressure wave propagation, an "exact one-dimensional" treatment was

developed. In this technique, the decompression wave is considered to

advance through a sequence of one-dimensional pipes, each characterized

by a length and flow area. At each junction between pipes, a portion

of the wave is transmitted and a portion is reflected. Knowing the

sonic velocity, the pressure conditions in the pipes can be calculated

by adding the transmitted and reflected pressure waves. The pipes

were divided into equal length steps for the purpose of calculating

the progression of the wave fronts. The pipe lengths and the time

step size were selected such that a wave traveling at sonic velocity

would advance one length step each time step. The one-dimensional

equations are derived in Appendix C.1, while the reflection and trans-

mission coefficients are derived in Appendix C.2. The formulation of

the exact solution in the steady-state is given in Appendix C.3.

The model used for the one-dimensional solution was based on

the base case illustrative problem of Chapter 2. It consisted of nine

connected pipes with a flow boundary condition on the left hand side

and a pressure boundary condition on the right hand side. These nine

pipes represent the volumes in the calculational model shown in Fig. 2.1.

Table 4.1 gives the geometric configuration of the one-dimensional

model, with the corresponding volume numbers from Chapter 2. The left

hand side flow condition represents the net result of the flow out

of the broken pipe and the flow into the vessel from the unbroken legs,

while the right hand pressure condition represents the depressurization

of the upper plenum.



Five different combinations of pressure and flow boundary con-

ditions were used. These boundary conditions are summarized in

Table 4.2 and consist of combinations of step and ramp changes in

pressure and velocity. The particular combinations of boundary con-

ditions used were selected to investigate the importance of the break

model to the calculation of forces on core internals. Boundary

condition 1 consisted of a 60 ms ramp in flow with pressure held con-

stant for 20 ms, then ramped for 40 ms. This was considered to be the

most realistic case, since the depressurization of the upper plenum

begins some time after the break. The holdup of pressure following

the break represents the time required for depressurization to travel

from the break to the upper plenum.

The results of these calculations are shown graphically in

Figs. 4.la-4.5a. The calculations were performed for a length incre-

ment of 0.5 m, a time step of 0.5 ms, and a sonic velocity of 1000 m/s.

The figures show pressure differentials across the core barrel during

the first 200 ms of the accident. Each figure shows the curves for

the pressure differences between the downcomer (pipe 3) and the core

volumes (pipes 6,7,8). Examination of these figures reveals that the

three curves are nearly the same, making it difficult to distinguish

between them. All five cases show large fluctuations in pressure dif-

ference with some degree of periodicity. The fluctuations are of the

order of MPa and vary from positive to negative. Case 3 (Fig. 4.3)

resulted in the largest pressure differences, having a positive pejak

of approximately 40 MPa and a negative peak of approximately 37 MPa.

Some of the pressures involved in computing these differences are quite



negative and unattainable physically. They serve to indicate the

magnitude of numerical differencing errors however, since results of

the FLASH/RELAP techniques are also calculated on a no-flashing basis.

A comparison of the graphs shows that the results were more sensitive

to the flow boundary condition than to the pressure boundary condition.

Figures 4.2 and 4.4 show very similar behavior, though the pressure

boundary condition in the former was a step change while a constant

pressure boundary condition was applied in the latter. However, the

agreement between Figs. 4.4 and 4.5 was not very good, despite the same

pressure boundary condition (constant pressure). The step change flow

boundary condition of Fig. 4.4 gave lower peak pressure differences

than did the 20 ms ramp of Fig. 4.5. In addition, the shape of the

curves differed substantially. Based on these comparisons, it seems

that the results are more sensitive to the flow boundary condition than

the pressure boundary condition.

Another conclusion which may be drawn is that ramped boundary

conditions result in higher pressure differences than step change

boundary conditions. This indicates that the assumption of an instan-

taneous break may give non-conservative results for forces on core

internals. However, the high pressure differences occur only very late

in the transient (80 ms or later). At these times, waves would probably

become blunted from friction, departure from one-dimensionality, etc.

The questions of which boundary condition (ramped or step) is worst

cannot be answered based on these calculations alone.

The periodicity displayed by the results lends credence to the

possibility of dynamic effects being important in determining the



stresses and deflections during the accident. If these periodic

loadings have frequencies which match natural frequencies of the struc-

tures, and if the spatial shape of the pressure wave corresponds to

the mode shape, then a resonance effect could be the result. This

feature is addressed further in section 4.4.2.

4.3 FLASH/RELAP Solutions

Having developed an exact treatment of one-dimensional pressure

wave propagation, a solution technique based on that of the FLASH/RELAP

codes was applied to the same problem. This solution provides a basis

for comparison and gives insight into the computational errors associ-

ated with the methods most often used. The FLASH/RELAP method utilizes

finite difference techniques to solve the equations of momentum and

continuity. The formulation of these finite difference equations is

given in Appendix D.l. Assumptions made in this Appendix are that the

flow is isentropic and that density and sonic velocity are constant.

These physical assumptions are completely equivalent to those employed

in Section 4.2 for the "exact solution". The finite difference equa-

tions are solved as a tridiagonal matrix by a technique outlined in

Appendix D.2.

As in the exact solution of Section 4.2, the FLASH/RELAP solution

was applied to a nine pipe representation of the base case illustrative

problem with left hand side flow and right hand side pressure boundary

conditions. For details of the model, see Section 4.2. Each pipe in

Table 4.1 is represented by one control volume. Time steps of 0.25 ms,

0.5 ms, and 1.0 ms were employed with very little difference in results

(the plotted results are based on the time step of 0.5 ms).



The results of the analyses are presented graphically in

Figs. 4.1b through 4.5b. As in Section 4.2, the figures show the

pressure difference across the core barrel for 200 ms following the

break. Three curves on each graph show the differences in the down-

comer pressure (pipe 3) and the core pressures (pipes 6,7,8). As in

the exact one-dimensional case, these three curves were often so close

as to be indistinguishable. Examination of the figures shows that the

fluctuations in pressure differential are somewhat smooth and regular.

The maximum pressure differential was approximately -12.5 MPa on

Fig. 4.2b. Figure 4.1b shows that the most realistic boundary con-

ditions gave a very weakly varying pressure differential. Figures

4.2b and 4.4b show that two problems with the same flow boundary con-

dition but different pressure boundary conditions have very similar

results. This is consistent with the results of the previous section.

In the same way, Figs. 4.4b and 4.5b show that two problems with the

same pressure boundary condition and different flow boundary conditions

give rather different results. This result is also consistent with

the previous section. That is, if we consider both the exact solution

and the FLASH/RELAP solution, it seems that the results are more sensi-

tive to the flow boundary condition than to the pressure boundary

condition, independent of the solution technique. However, in this

case, the ramp flow condition gives less severe pressures than the

step, whereas the opposite conclusion was reached before.

Since the cases run with the FLASH/RELAP program were identical

to those done with the exact analytical solution, the results can be

compared directly. The FLASH/RELAP solutions gave significantly lower



pressure differentials and less fluctuations than did the exact solu-

tion. The shape of the curves in Figs. 4.2b through 4.5b mimic the

corresponding curves from the previous section, as if some sort of

numerical damping were applied by the FLASH/RELAP solution technique.

In the case of the most realistic boundary condition, the agreement

between the two techniques was quite poor. These results indicate

that the FLASH/RELAP solution technique damps out some of the higher

frequency pressure oscillations and under-predicts the pressure differ-

entials across the core barrel. This effect was not due to time step

size, as was shown by a time step size sensitivity study performed for

boundary conditions 1, 2 and 3 of Table 4.2. The sensitivity of the

FLASH/RELAP solution to time step selection was shown to be very small.

See Appendix A for the results in graphical form. It is likely that

using more control volumes in the FLASH/RELAP case would reduce the

damping and give a more satisfactory numerical solution.

4.4 Comments on Other Effects

4.4.1 Multi-dimensional Effects. The wave propagation through

the downcomer cannot easily be visualized as an approximate one-dimen-

sional problem. Figure 4.6 shows the pressure in a PWR downcomer ob-

tained by a multi-dimensional fluid-structure coupled calculation (20).

This figure reveals two effects that are obscured in a one-dimensional

calculation. First, at a given time, the depressurization has traveled

further down the downcomer at 00 from the nozzle than at 1800. Second,

the zone of least pressure is located in the vicinity of the nozzle.

The consequences of these effects on the core barrel motion are il-

lustrated in Fig. 4. 7. Radial forces from the asymmetric pressure dis-

tribution cause a beam-like motion of the barrel while the reduced



pressure in the vicinity of the nozzle results in local bulging of

the barrel.

It is also apparent that other multi-dimensional effects would

be observed in a case with hot leg penetration and with other cold

legs present (see also Fig. 2.5).

4.4.2 Dynamic Structural Analysis. The loads on the core barrel

and other structures vary rapidly and at times are of the order of the

natural periods of the structure so that resonances between the struc-

ture and fluid may occur. Therefore, the mechanical analyses of the

structure are most properly done with dynamic techniques.

As a first step, the natural frequencies of the structure can be

compared with the frequency of pressure oscillations in the fluid.

Those structure modes with natural frequencies close to the frequency

of pressure oscillations in the fluid may be preferentially excited.

The rate of amplitude increase seen will depend on the structural

damping and on the difference between the excitation frequency and the

natural frequency of the mode.

A simple method for determining the lowest natural frequency of

the core barrel follows. Kreig et al. (6) calculated the modal shape

functions for the HDR core barrel rigidly clamped at the top and loaded

with a mass ring at the bottom. The modal shapes corresponding to the

first fifteen eigenfrequencies are given in Fig. 4.8. Note that the

first shape function is the beam-bending mode for which the radius of

the barrel is constant. An expression for the natural frequency of

this mode is (23):
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where the symbols are as defined in Table 3.1. Now if the core and

support structures are simulated by a mass ring attached at the bottom

of the core barrel, then Eq. (4.1) can be used to predict the frequency

of the lowest mode. The ring will be dynamically equivalent to the

core and core support structure if it is taken as 1/2 of the sum of

their masses (22). Frequencies obtained in this way are always higher

than the true value. Table 4.3 compares these with those obtained

from the sophisticated structures code STRUDL/DYNAL (6,22) for three

different core barrels.

Based on the above, we can estimate the frequency of the beam

bending mode of the Maine Yankee core barrel. There are 217 fuel as-

semblies inside the barrel, each of mass 581 kg. Neglecting the core

support structure mass, the barrel internals are then dynamically

equivalent to a 63,000 kg mass ring attached to the barrel bottom.

The variable thickness of the core barrel as seen in Fig. A.1 presents

a difficulty as far as the application of (4.1) is concerned. We will

assume the barrel to have a constant thickness equal to the average

thickness of 50.4 mm. The barrel is Type 304 stainless steel. Its

mass is obtained by computing its volume from Fig. A.1 and then multi-

plying by the density of Type 304 stainless steel. The values to be

used in (4.1) are:
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H R L pE H R L Pm ME m m M
(GPa) (m) (m) (m) (kg/m3)  (kg)

193.0 0.054 1.88 8.33 8027.0 44,200.0

The frequency of the beam-bending mode is then found to be 26.9 Hz.

Based on Table 4.3, this value is 15% to 30% high so that the true

frequency of the first mode is expected to be somewhere between 20.5

and 23.5 Hz.

Simple estimates for the frequency of pressure oscillations in

the downcomer and core region can also be made. The one-dimensional

water hammer results obtained from the representation of the Maine

Yankee vessel as a series of half meter pipe lengths are useful in

this respect. Although the core barrel pressure differentials given

by this method are axisymmetric, the frequency of pressure oscillations

should be similar to those found using a multi-dimensional fluid repre-

sentation. Therefore the one-dimensional water hammer results provide

a measure of the frequency of the forces acting on the core barrel

during blowdown. Examination of the water hammer plots for step and

ramp boundary conditions show core barrel differential pressure fre-

quencies of 12-13, 19-20, 71-81 and 200-228 Hz.

These simple estimates indicate that for the Maine Yankee plant

the natural frequency of the core barrel beam bending mode is close to

one of the characteristic frequencies of the core barrel differential

pressures. Whether the amplitude of this mode grows in time will depend

on the degree of pressure relief due to the displacement of the core

barrel wall under the pressure load. If it should grow, the core

snubber block and core restraining lugs may be damaged.



4.4.3 Interaction of Motions and Loads. The above discussion

is based on decompression wave propagation into regions of fixed

geometry. Normally, however, the vessel internals deform (either

elastically or plastically) under the loads imposed by the fluid.

This is accompanied by a corresponding change in flow region geometry.

In this section, conservative estimates are given for the circumfer-

ential strain experienced by the core barrel, shroud and thermal shield

during blowdown. These numbers help characterize the relative change

in flow area of key coolant regions and indicate how close components

are to yielding.

Conservative estimates for the circumferential strain experienced

by the core barrel, core shroud and thermal shield are obtained as

follows. Consider a thin metal annulus of infinite length bounded on

both the inside and outside by annular regions of fluid whose inside

and outside boundaries, respectively, are rigid. Suppose a pressure

differential is applied to the thin annulus via the fluid on either

side. The annulus then strains, reducing the fluid pressure differen-

tial until the hoop stress balances the pressure differential. A con-

servative estimate for this strain can be obtained by assuming the

thick annulus has zero stiffness in which case it will deform further

until the pressure differential across it is zero. Appendix E gives

an expression for this total strain as a function of the initial fluid

pressures. This expression was used to compute the strain and radius

change necessary to relieve representative blowdown pressure loads

acting on the core shroud, core barrel and thermal shield. These

figures give orders of magnitude for the amount of component deformation



that can occur. In reality, the stiffness of these components and

their finite length (fluid vented through the ends) should limit de-

formations to less than what we calculate from the expression given

in Appendix E. Hence these calculations yield upper bounds on the

deformations.

Five "worst case" component loadings are defined in Table 4.4.

The corresponding circumferential strains necessary to relieve these

loads were computed using the expression of Appendix E and are given

in Table 4.5. Note that the radius used for the core shroud was

obtained by fitting a 6 m3 (bypass region volume) annulus inside the

core barrel such that the outside radius equalled that of the bypass

region. The core shroud radius was then taken as the inside radius

of the annulus (1.74 m).

The numbers given in Table 4.5 involve several assumptions.

First, the pressure changes due to structural deformation occur

isentropically. Second, the region of lowest pressure is assumed to

be at saturation while the region of higher pressure corresponds to

the state reached by following an isentropic path from the state of

lower pressure.

In light of the assumption of zero component stiffness, the

values for strain given in Table 4.5 indicate the core shroud, core

barrel and thermal shield deform elastically (in the breathing mode)

since the strain is roughly no greater than 0.2%. Note the breathing

mode deformation of these components affects coolant flow area

negligibly.



Table 4.1

Geometric Parameters for One-Dimensional Model

Flow
Base Case Volume Path
Volumes m3 m

26 & 14
27
28
29
47
30
31
3
2

2.5
10.0
14.0
7.8

10.4

4.38
1.7
5.58
2.3
2.43

17.1 3.48

Pipe
No.

1
2
3
4
5
6
7
8
9 .44

Length
m

4.5
2.0
5.5
3.0
1.0
1.0
1.0
1.0
0.5

Area
m
2

1.7058
5.89
2.51
2.59
8.12
4.9
4.9
4.9
7.79

Note: In pipe No. 1, three loops were combined.

Table 4.2

Boundary Conditions for One-Dimensional Model

Left Hand Side Velocity

Ramp of 60ms to -11.7m/s
Step change to -11.7m/s
Ramp of 20ms to -11.7m/s
Step change to -11.7m/s
Ramp of 20ms to -11.7m/s

Right Hand Side Pressure

Ramp to 10.7 MPa after 20ms hold
Step change to 10.7 MPa
Ramp of 20ms to 10.7 MPa
Constant at 15.5 MPa
Constant at 15.5 MPa

(a) Pretransient velocity at left hand side is + 14.6m/s
in all cases.

(b) Pretransient pressure at right hand side is 15.5 MPa
in all cases.

3.4

Volume
m
3

7.676
11.780
13.805
7.770
8.120
4.9
4.9
4.9
3.895

Case

Note:
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Error in Computed Frequency of Lowest Mode
Compared to Results.

Core Barrel Computed
(Hz)

NSR

PWR

HDR

21.5

34.5

STRUDL/DYNAL

(Hz)

18.9

29.7

23.4 17.95

Table 4.3

Error

14%

16%

30%



Table 4,4

Component

Core Shroud

Core Barrel

Thermal Shield

Differential. Pressure Relief Through Component Circumfer-
ential Strain: Case Definitions

Case Definition

- core shroud stiffness zero

- all other structures rigid

- no depressurization in bypass, region b

- depressurization throughout core, region a

- core shroud and core barrel stiffness zero

- all other structures rigid

- no depressurization in bypass and between

thermal shield and core barrel, region b

- depressurization in core, region a

- core barrel and thermal shield stiffness zero

- all other structures rigid

- no depressurization in bypass, region a

- depressurization through downcomer, region b

- thermal shield stiffness zero

- all other structures rigid

- no depressurization between thermal shield

and barrel, region a

- depressurization between thermal shield

and pressure vessel, region b

- thermal shield and core barrel stiffness zero

- all other structures rigid

- no depressurization in bypass and between

core barrel and thermal shield, region a

- depressurization between thermal shield

and core vessel wall, region b
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Table 4.5 Differential Pressure Relief Through Coinponent Circumfer-
ential Str~ain: Case Param,-ltors

Conmponen t Case

Pao Pbo PaO

(MPa) (kg/m 3 )

Parameters

(kg/m3 ) ( 3)
kg/m

£ Ad
( IV,)

3aIpb R R R

MPa
(m3) (m) (m) (m)
kg/m

3

Core Shroud

Core Barrel

Thermal
Shield

1 8,15 722

2 8,15 722

3 15,8 722

4 15,8 722

5 15,8 722

722 0.50 0.50 1.88 1.74 0

722 0.50 0.50 1.99 1.74 0

-0.15% -2.6

-0.25% -4.4

722 0.50 0.50 2.18 1.88 1.74 +0.1% 1.9

722 0.50 0.50 2.18 1.99 1.92 +0.05% 1.0

722 0.50 0.50 2.18 1.99 1.74 0.1% 2.0

_
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No. Eigenfrequency Circumferential mode Axial mode
(Hz) (periodicity n) (total number of waves m)

1 17,95 . n = 1 m = 1/4

2 49,0 n = 3 m - 1

3 55,60 n 4 m = 1

4 69,0 C: n - 2 m -

5 79,5 n s m 1

6 86,2 n - 4 m 3/2

7 92,9" n = mo 1

8 96,1 n - 5 m = 3/2

9 102,6 n- 3 M = 3/2

10 111,0 n= 1 m 3/4

11 112,8 n = 6 m I

12 123,1 n =6 m - 3/2

13 127,3 n= S m = 2

14 132,7 0 n - 4 m - 2

15 145,0 n = 6 m~=

• Since in STRUDLDYNAL curved finite elements are not available the circular cross-sections are .yproximated by polygons whbih
reduce the frequency of the breathing mode considerably. The true value is roughly live times larger.

Fig. 4.8 Eigenfrequencies and corresponding mode shapes for the HDR-core

barrel (Ref. 6)



5. CONCLUSIONS

The calculation of blowdown-induced forces is important for

assessing the response of a PWR to a loss-of-coolant accident. Tech-

niques for performing these calculations are being developed and ex-

perimental verification is underway. Thus, the state-of-the-art is

in the process of being revised and refined. In particular:

(A) The blowdown is usually calculated with structures assumed

static and most core components modeled in one dimension. The down-

comer and the broken inlet leg are often modeled in two dimensions.

Thermal equilibrium is usually assumed throughout the fluid dynamic

calculation. In some cases, a nonequilibrium critical flow model is

used for the break. A coupled fluid-structural calculation in three

dimensions has been performed by Los Alamos Scientific Laboratory,

as well as a coupled calculation with a two-dimensional downcomer and

one-dimensional modeling elsewhere. Experiments for the verification

of these advanced techniques are being prepared, but little verification

has yet been done. Therefore, it is not yet known which treatment

gives the best results. A comparison of the different techniques in-

dicates that the uncoupled calculation gives results for maximum

stresses and deflections which are conservative with respect to a

coupled calculation. The results are quite different functions of

time, however, and the uncoupled calculation is only marginally con-

servative in a time-history sense. Though the coupled technique is

physically more correct, the technique has not yet been verified

experimentally.
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(B) A comparison of results for different levels of dimensionality

showed that a strictly one-dimensional representation is unacceptable

since it masks pressure differences across the core barrel which

arise because of the asymmetric depressurization and flow in the

downcomer. Very little difference was seen between two- and three-

dimensional modeling, suggesting that two-dimensional modeling is

probably adequate.

(C) The effect of modeling core internals (admittedly by a single

mass ring) proved to be a reduction in deflections and some reduction

in stresses over time. The maximum stress appeared to be independent

of the modeling of core internals. Thus a model for the core barrel

which does not take the core internals into account is probably con-

servative with respect to core barrel stresses. Effects on structures

which transmit forces to the core apparently have not been assessed.

(D) A comparison of the techniques for calculating one-dimensional

pressure wave propagation was performed. An exact one-dimensional

solution was developed and compared with a FLASH/RELAP type solution.

The exact solution gave much larger pressure differences across the

core barrel than did the FLASH/RELAP solution. The FLASH/RELAP solu-

tion gave much smaller pressure fluctuations with longer peiods than

did the exact solution. This indicates that the FLASH/RELAP solution

may mask the higher frequency pressure variations or somehow damp the

calculated pressure differences. Thus, the FLASH/RELAP solution tech-

nique as used herein may not be conservative for this type of problem.

Other conclusions made from this analysis were that the flow boundary

condition was more important than the pressure boundary condition



and that ramp boundary conditions may give large pressure differen-

tials than do the step change boundary conditions.

(E) The importance of dynamic structural effects was also investi-

gated. A simple calculation for the frequency of the beam-bending

deflection mode of the core barrel was performed. When compared with

the results of the exact one-dimensional solution, it was seen that

the bending-mode frequency was near to some of the characteristic

frequencies of the core barrel pressure differences. Thus, a resonance

effect is possible in which the frequency of the core barrel loadings

excites the natural bending mode frequency, leading to larger stresses

and deflections.

(F) The importance of the interaction of motion and loads was in-

vestigated by means of a simple calculation for the circumferential

strain experienced by the core barrel during a blowdown. An upper

bound for the "breathing mode" strains was calculated by assuming a

thin annulus of zero stiffness. The results were that the circum-

ferential strain experienced by core barrel, shroud and thermal shield

during blowdown was not greater than .2%.

(G) A review of the various available computer codes for the analysis

was completed and the results given in an appendix.

(H) It appears that further development, refinement and verification

of techniques for blowdown-induced forces on core internals is called

for. Experimental verification and the development of benchmark prob-

lems is needed for assessing the advanced techniques. Modeling of

core internals other than the core barrel should be considered. Core
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support structures should be considered as part of these models. In

addition, forces which may be generated on exterior supports need to

be assessed. Improvements in the coupling techniques and in the

calculation of pressure wave propagation should be pursued.
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APPENDIX A

ADDITIONAL FIGURES
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Dimensions (cm)

A 358.1 I 24.8

8 308.0 J 188.0

C 166.4 K 218.4

D 386.1 L 6.35

E 24.1 M 7.62

F 11.7 N 4.45

G 6.7 0 5.72

H 5.4

Table of Materials

Fig. A.1 Dimensions of Major Core Structures
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APPENDIX B

COMPUTER CODES - STATE OF THE ART



FLUID MECHANICS CODES

SOLA-PLOOP (Ref. 24)

Los Alamos Scientific Laboratory

Code

Source

Intended Use

Method

Verification

Applications

Code

Source

Developed for use in nuclear reactor safety analysis.
Describes transient, nonequilibrium, two phase flow
in networks.

Each network component has a one dimensional axial
representation with variable flow area. The flow
dynamics are governed by a set of nonlinear conser-
vation laws based on a generalized drift-flux model
for two phase mixtures. Code is claimed to be com-
patible with multidimensional codes. This permits
modeling of systems with single and multidimensional
components.

Calculations performed to simulate blowdown of a
straight pipe initially filled with hot wate- under
pressure. Results compared with experiment (Ref. 24).

Code applied to hypothetical single loop PWR (Ref. 24).

SOLA-DF (Refs. 17, 18, 25)

Los Alamos Scientific Laboratory

Intended Use

Method

Verification

Provides finite-difference solutions to the equa-

tions of motion of a two phase fluid in two dimen-
sions.

Eulerian fluid description. Drift flux approximation.
Equations of motion for a two-phase fluid in two
dimensions are written in a partially implicit
finite-difference form and solved by a variant of
the "ICE" method. The partially implicit method is
a "hybrid" of the explicit characteristic method
and the strict implicit method which bridges any gap
between the stability criteria of the two methods.
Stable solutions are obtained when the time step size
exceeds the value prescribed by the Courant condition.

References 17, 18, 25 do not cite any attempt to verify

code by experiment.



Applications

Code

Source

Intended Use

Method

Verification

Applications

Code

References 17, 18, 25 describe coupling of SOLA-DF
to the structural code "FLX". Resultant code is
used to analyze the dynamic response of a PWR core
barrel and coolant during blowdown (Ref. 18).

YAQUIR (Refs. 6, 11, 26)

Institut fur Reaktorentwicklung, Karlsruhe, Germany.

To describe the fluid dynamics in the downcomer of
a PWR.

Significantly modified version of the Los Alamos
code "YAQUI". Uses a finite difference scheme to
solve fluid dynamics equations in two dimensions.

References 6, 11, 26 do not cite any attempt to
verify code by experiment.

Reference 26 describes coupling of YAQUIR to a
structural code "CYLDY2". Resultant code is to be
used to analyze the dynamic response of a PWR core
barrel during blowdown.

TRAC (Ref. 27)

Los Alamos Scientific Laboratory

Intended Use

Method

Verification

Applications

Analysis of accidents in Light Water Reactors.

Finite difference, three dimensional treatment of
fluid dynamics equations. Nonhomogeneous, non-
equilibrium two phase models. Flow-regime-dependent
constitutive equation package.

Code is being applied to a broad range of reduced-
scale water reactor safety experiments. TRAC pre-
dictions are to be compared with the experimental
results to verify the thermal-hydraulic models in
the code.

Code has been used to simulate in sequence the blow-
down, refill and reflood stages of a PWR LOCA (Ref. 27).

Source



Code

Source

Intended Use

KFIX (Refs. 12, 13, 15)

Los Alamos Scientific Laboratory.

To provide finite-difference solutions to the
equationsof motion of a two phase fluid in three
dimensions.



Code

Source

Intended Use

Code

Source

STRUCTURAL DYNAMICS CODES

SAP IV (Ref. 8)

Earthquake Engineering Research Center, University
of California.

To perform linear, elastic dynamic and static
analyses of three dimensional structural systems.

FLX (Refs. 12, 13, 16, 17, 18, 25)

Los Alamos Scientific Laboratory

Intended Use

Method

Verification

Applications

Code

Source

Intended Use

Method

Verification

To solve Timoshenko equations of elastic shell
motion for an annulus.

Equations of motions are solved by a finite difference
scheme.

Approximate verification obtained by comparing code
results with beam and membrane theory.

References 12, 13, 16, 17, 18 describe coupling of
FLX to two different fluid codes "SOLA-DF" and "K-FIX".
Resultant codes are used to analyze the dynamic
response of PWR core barrel and coolant during
blowdown.

CYLDY2 (Refs. 6, 26)

Institut fur Reaktorentwicklung, Karlsruhe, Germany.

To model the dynamic behavior of a PWR core barrel
during blowdown.

Deformations are described as a superposition of
appropriate modal functions satisfying the kinematic
boundary conditions. Hamilton's principle is applied
leading to a system of eigenvalue problems. Approach
reduces computer effort considerably in comparison to
usual finite element codes.

References 6, 26 do not cite any attempt to verify
code by experiment.



Applications References 6, 26 describe coupling of CYLDY2 to the

fluid code "YAQUIR". Resultant code is used to

analyze the dynamic response of PWR core barrel and

coolant during blowdown.



COUPLED FLUID STRUCTURE CODES

SOLA-FLX (Refs. 9, 16, 17, 18, 25)

Los Alamos Scientific Laboratory

Code

Source

Intended Use

Method

Verification

Applications

Code

Source

Intended Use

Method

Verification

Applications

To analyze the dynamic response of a PWR core barrel
and coolant during blowdown.

The fluid code "SOLA-DF" is coupled to the structure
code "FLX". The coupling algorithm uses a staggered
solution scheme. The pressure computed from the
fluid solution at the end of a time step is applied
to the cylindrical shell as a loading function,
while the shell velocities are imposed as kinematic
boundary conditions for the fluid solution.

An experiment was run to verify the code. However,
various difficulties in the experimental and compu-
tational techniques prevented good agreement. A
modified version of the experiment is being planned
(Ref. 9).

Code used to simulate blowdown of a simplified
version of the HDR reactor (Ref. 18).

K-FIX-FLX (Refs. 12, 13)

Los Alamos Scientific Laboratory

To investigate the relative importance of fluid
structure interaction during PWR blowdown.

The fluid code "K-FIX" is coupled to the structure
code "FLX". Coupling is explicit.

Several full-scale blowdown experiments will be
performed in the former HDR reactor (Ref. 12).

Calculations were performed for the dynamics of the
core support barrel in a reactor vessel during
blowdown (Ref. 13).



Code

Source

Intended Use

Method

Verification

Applications

Code

Source

Intended Use

Method

Verification

STRUYA (Refs. 19, 20, 26)

Institut fur Reaktorentwicklung, Karlsruhe, Germany

To investigate the relative importance of fluid
structure interaction during PWR blowdown.

The fluid code "YAQUIR" is coupled to the structure
code "CYLDY2".

Several full-scale blowdown experiments will be
performed in the former HDR reactor (Ref. 19).

Calculations were performed for the dynamics of the
HDR core barrel during blowdown (Ref. 20).

FLUX1 (Refs. 19, 20)

Institut fur Reaktorentwicklung, Karlsruhe, Germany

To provide a "Best Estimate" analysis of the stresses
in PWR vessel internals during blowdown.

The structure code "CYLDY2" is coupled to a three
dimensional finite difference fluid code.

Full-scale experiments carried out at Battelle
Frankfurt simulated PWR blowdown conditions.
Pressures measured in the downcomer and upper plenum
regions were in good agreement with those predicted
by FLUX.

PELE-IC (Refs. 25, 28)

Lawrence Livermore Laboratory

Intended Use

Method

Verification

A coupled fluid structures code for the analysis of
BWR pool dynamics.

A fluid module and structure module are coupled

using a staggered solution scheme. The fluid module

solves the two dimensional incompressible fluid

mechanics equations by a finite difference method.

The structure module is a finite element representation.

Reference 28 sketches several experiments used for

code verification.

Code

Source



STEALTH (Refs. 11, 21)

Electric Power Research Institute

Intended Use

Method

Verification

Intended for use in design situations such as water
hammer, soil-structure interaction, missile impact,
mixed fluid impact and fluid-structure interaction.

Coupled fluid-structure code; fluid mesh and struc-
tural mesh are both Lagrangian; explicit finite
difference technique; two dimensional.

Reference 21 lists verification cases the code has
been run against. Results were good enough to
permit distribution of the code.

WHAMS (Ref. 29)

Source

Intended Use

Method

Verification

Applications

Department of Civil Engineering
Northwestern University, Chicago, Illinois

Program for nonlinear, transient analysis of two
dimensional and axisymmetric three dimensional
structures and continua. Most appropriate for
problems where time frame of interest is short,
such as several of the lowest periods of the
structure.

Finite element format; elements subdivided into
three groups:
1. Flexural elements, which are used for modeling

thin walled structures;
2. continuum elements, which are used for modeling

solids; and
3. Hydrodynamic elements, which are used for

modeling fluids.

Reference 29 compares the results of several experi-
ments with the results predicted by WHAMS.

Examples of types of problems program is intended for:
1. Clamped ring loaded impulsively over a section.

This is an elastic-plastic problem with large
changes in geometry.

2. Model of a primary containment enclosing a fluid.

Code

Source

Code



Code

Source

Intended Use

Method

Code

Source

Intended Use

Method

Applications

STRAW (Refs. 11, 25)

Argonne National Laboratory

Energy source and fluid representation in structural
response.

Two dimensional coupled fluid-structure code.

SING-S (REfs. 6, 20)

Institut fur Reaktorentwicklung, Karlsruhe, Germany

Detailed analysis of fluid-structure interaction in

the BWR pressure suppression system during
Brunsbutter blowdown experiments.

Fluid module coupled to a structural module.

Code used to successfully predict occurrence of

oscillations in Brunsbutter blowdown experiments
resulting from fluid-structure interaction (Ref. 20).



APPENDIX C

EXACT ONE-DIMENSIONAL SOLUTION

C.1 Equations for a Single Pipe

This section derives the necessary equations for the exact

analytical solution of the one-dimensional conservation equations,

as described in Section 4.2.

Conservation of Mass

S+ u + p u 0 (C.1)
Dt Dz 3z

Conservation of Momentum

au aul ap _
p + u u + a - 4 + P g (C.2)

It 3z I z De

Conservation of Energy

e + e +pu ku + (C.3)
t 3z] Dz De

where u = fluid velocity

p = fluid density

p = pressure

s = fluid entropy

Equation of State

p = R(p,e) (C.4)



define:

R 3R

p pp e = constant

S = R I

e 9e p = constant

Development:

The four equations given contain four unknowns:

p, u, p, e

Equations (C.1), (C.2), and (C.3) may be written in the following form:

4. +4.
A X + A Xz =

1 t 2 z

u

X= p

e

and
and Cip

0

- -- + pg-+pg
De

4Tru
+ QDe

(C.5)

and the subscripts t and z indicate differentiation with respect to

time and position, respectively.

Utilizing (C.4) to eliminate derivatives of density in (C.1),

the matrices A1 and A2 are as follows:

0 R R
- R e

A,= P 0 0

0 0 P

p uR uR

A2 = pu ] 0

p 0 pu

where



We desire to transform (C.5) into the following form:

m+ T Xt i Xz T
(M.) [X = A. X ] =

1 t 1 Z
i=1,2,3 (C.6)

This transformation may be accomplished by defining a pair of

fectors P and m which satisfy the following relations:

(T A1  () T

()T A2 +T B (C.7)

where a, B are scalars.

Rearranging (C.7) gives: ()T [A - A] = 0
1t 2

Let-= :
a

()T [AA - A2] = 0 (C.8)

In order for (C.8) to have non-trivial solutions for (1), the

following relation must be satisfied:

SAl - A2 I = 0 (C.9)

Solving (C.9) yields three roots (eigenvalues):

= u + c

u - c



where

2 1-pR/P
2

C R
R

(C.10)

For each eigenvalue ., there is a corresponding "left-handed"

eigenvector (~i) which must satisfy (C.8).

+i Tx iz 0( i

1 u+c

u - c

cR
P

1 -cR
p

+ T
Operating on (C.5) with (91.)

1

-T + T T
(9. )T A1 Xt + (i)T A2 Xz =  .

1 1

By (C.7), (C.5) becomes:

+ i)T + + mi)T = T

1 t 1 z 1

-+ T + + 1 T
(.) [XT + X ] = - (.)

T 1 z X 1

This is the desired form. Performing the indicated operations

yields three transformed equations:

R
e

P

R
e

p

-p/p

or:



Dt [ Dt u e
+ (u+c) + pc + (u+c) - c1 4

ct az It z 2 pR 3

Lp + (u-c) - pc au + (u-c)

Fp p c 2 _e + e
+ + u -3 z p at zI T p p

au] Re

az 2 pR 3
p

pR 3
p

Equations (C.11), (C.12), and (C.13) will be solved subject to the

following assumptions:

p = p* = constant

c = c* = constant

u << c

2 = 3 = 0

Rewriting (C.11) and (C.12)

[p + p*c*u] + c* [p + p*c*u] = 0
at Dz

- [p - p*c*u] - c* z [p - p*c*u] = 0

Let Y1 = p + p*c*u

Y2 = p - p*c*u

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)
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Substituting:
9Y DY
1 1(C.17)

+ c* - 0(C.17)
at az

Y2 Y2
c* 0 (C.18)

at az

Thus we can obtain a solution by having a Y1 wave moving with

velocity +c*, a Y2 wave with velocity -c*, and retrieve the pressures

and velocities when required

1
P= (Y1 + Y2)

1
u = 2 p*c* (Y1 - Y2)
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APPENDIX D

FLASH/RELAP SOLUTION

D.1 Formulation

In this appendix, the solution technique used in FLASH/RELAP is

applied to the same situation as the exact analytical solution of

Appendix C. This involves the derivation of tridiagonal coefficients

for the pressure calculation from finite difference forms of the equa-

tions of momentum and energy.

As in the analytical solution, the problem to be solved involves

a series of connected pipes of different cross sections. Consider two

pipes as shown:

A A +
I I

RK+

where

Define the

where

K' K+ = lengths of pipes K and K+l

AK,AK+l = area of pipes K and K+l

interface flow rate:

K+ E PAKUK+2 = pK+lUK+'

p = density

- +
UK+ ,UK+ = fluid velocities at interface of pipes K and K+1.
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Applying conservation of momentum to control volumes inside 
the two

pipes:

P P- K d (W (D.1)
K-K+ = 2AK dt (WK+-

+ p
K+- K+l

zK+l d
2 AK+l dt WK+

(D.2)

where PK+ PK+ = pressures of pipe K and K+1 at the interface (which

will be taken to be the same, to the order to accuracy of Appendix C.1).

Combining Eqs. (D.1) and (D.2):

P -P = I K+ d (W ) ]
K K+l K+ dt K+)

(D.3)

K K+1
where I = ( + )

K+F 2AK 2AK+l

For an isentropic process, the following relation is true:

dp =2 dp

dt dt

In the notation of this appendix:

ZKAK dpK dmK
2 dt dt

c

where mK is the total fluid mass in pipe K.

(D.4)

(D.5)

(D.6)
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Conservation of mass applied to pipe K gives:

dm
K wdt = WK-- WK+ (D.7)

Combining Eqs. (D.6) and (D.7) and writing in finite difference form

gives:

N+1 N 1 N+1
K K c2 K 

K -
2 K+ (D.8

AtN KAK

where superscripts n,n+l refer to times n and n+l.

Equation (D.3) may also be written in finite difference form:

[ N+1 N 
N+1 N+1 I K+ K+ (D.9)
K K+ K1 - L At N

Equations (D.8) and (D.9) are the basis for the FLASH/RELAP

solution. In the program, the following variables are used:

9KAK
c node(K) E

(c )(At)

zK K+1

IK+ 2AK 2AK+
c jct(K) -t-

At At

where K is the pipe number, as before.
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The boundary conditions give:

Rkmax
cjct(kmax) -

2 [Akmax [At]

N
W E bclw(n)

where kmax is the maximum of the K pipes and bclw is the flow rate

boundary condition at the left hand side.

Rewriting Eq. (D.9):

N+1 N+l
P -P

_N+1 N K K+1
K+ = WK+ + (D.10)

cjct(K)

Transposing subscripts and defining Kd = K-l:

WN+l= WN
K- K-

N+1 N+l
P -P
+ K-l K

cjct(Kd)
(D.11)

Substituting Eqs. (D.10) and D.11) into (D.8) gives:

[ N I N 1 [ 1 1 1 N+1 1 N+1 1 N+1
N+l N _W-- K+- cjct(Kd) + cjct(K) K + cjct(Kd) K-1 cjct(K) K+l
K K

cnode(K)

(D.12)

Equation (D.12) may be rearranged to yield:
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F 1 1

1 _N+1 1 pN+1 1+ cjct(Kd) cjct(K) N+
cnode(K) cjct(Kd) K-I cnode(K) cjct(K) K+1 cnode(K) K

N N

P + -i K+- (D.13)K cnode(K)

Notice that in this form, the pressures at the new time step are written

in terms of the pressures and flow rates from the current time step.

In order to simplify the equation for further treatment, the following

definitions were used:

1
AK [cnode(K)][cjct(K)]

1 1
+

Bc 1+ ejet(Kd) + cjt(K)

cnode(K)

C 1
K [cnode(K)][cjct(Kd)]

NN N
N N K-i K+-2D P +

K K cnode(K)

These definitions hold for K = 2,3,..., K l Equation (D.13) maymax- Em

thus be written:

N+1 N+1 N+1
-AKPK+1 - CK PKl + B KPK  = DK  , K = 2, 3, ... , Kmax-1 . (D.14)KKl K K-1 K K K max-i*
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The boundary conditions at the left hand side (pipe 1, flow rate

condition) and at the right hand side (pipe 9, pressure condition)

must be combined with Eq. (D.14) to give a solution. This is done as

follows:

By Eqs. (D.10) and (D.8)

N+1 N+l
N+l N 1 -P2w = W + 1 2 (D.15)
3/2 3/2 cjct(l)

N+1 N+l N+1
W - W bclw(n+1) - wN+I N - W3/2 = 3/2 (D.16)
cnode(l) cnode(l)

Substituting Eq. (D.15) into (D.16) gives:

N+1 N+1 NP -P w
N+1 1 2 N bclw(N+l) 3/2

1  cjct(l) cnode(l) . cnode(l) cnode(l)

The following definitions were made for K = 1:

A 1
1 cnode(l) cjct(l)

1
B 1 + =1 + A

1 cjct(l) cnode(l) 1

bclw(N+l) - W/2N N 3/2
D =P +

cnode(l)

Similarly, for the right hand side:

°N+1 +N+l
N+l N =8 +92 (D.18)

P9 -P9 
(D.18)

cnode(9)
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N+1 N+1
P -P

N+1 N 9 10
w9 =W9 +

98 9 CJCT(9)

N+1
N P9 - bcpr (N+1)

= W 9 + cjct(9)

N+1 N+1
P -P

N+1 N 8 9
8- 8- Wcjct(8)

Combining Eqs. (D.18) - (D.20):

1 1

+ cjct(8) cjct(9) PN+1
cnode(9) 9

1 N+1 N
cjct(8) Cnode(9) 8 9

WN -N bcrp(N+1)
8- 9 - cjct(9)

(D.21)

cnode (9)

By analogy with Eq. (D.14), the constants for K = K = 9 are:
max

1 1
+

B9  1 + cjct(8) cjct(9)

cnode(9)

1

9 - cjct(8) cnode(9)

(D. 19)

(D.20)
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N N 1
W - + 1 bcrp(N+1)

N N 8 9 cjct(9)
D P+
D9 - 9

cnode(9)

A complete set of equations and constants have now been developed.

To summarize:

N+1 N+l
- A12 + 1 1

N+1 N+l
- PK+1 + BK K

N+1 N+1
B9P 9  - C9P 89 9 9 8

N
= D

N+l N
K K-1 K

K = 2, 3, ... Kmmax-I

N
=D

These equations may be written in matrix

O 0

O 0

0 0

S0 0 0 0 0
0 0 0 0

-3
B 4 -A4 0

Cs  s -A
0 -Co 6  6
0 O -C,

0
A

0 0
O O
O 0

6, -A 7

o 0 O -Ce B8 Aq
0 o O O - C 69

This sytem of equations is solved in the manner given in Section

D.2.

form:

O0

o -C3

O -C4O
O
O

D

4D"

D4-
D-,

Ds

Ds

D9

p3

9+)

P.7

P,

P
. II l.

P,*

r

BI

v

-
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D.2 Formulation of Tridiagonal Solution

In Section D.1, a set of linear equations with a tridiagonal

coefficient matrix was derived. An efficient and accurate means of

solving such a set of equations is described below, where P is pressure

and all other constants are as given in D.1.

B1P1 - A1P2

- C2 P 1 + B2P 2 - A 2P 3

- CKPK-1 + BKPK - APK = DK

- C9 P8 + B9P 9

Define variables EK and FK such that:

A

1 B
1

K = BK-CKEK-1

and F -
1 B1

DK+CKF K-1

K BK-CKEK-_1

= D1

= D2

= D9
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The unknown pressures may then be calculated in the order of decreasing

subscript K as follows:

P9 = F9  (Kmax = 9)

K = EKK+1 + FK

Thus the pressure coefficients EK and FK are first generated by starting

with K=l and moving consecutively to K=K . The pressures are then
max

calculated starting with PKmax and moving "backwards" through the

system to K=l. This procedure is often referred to as forward elimin-

ation - back substitution. It is highly desirable for the proper

operation of this procedure that the following conditions be met:

AK > 0, BK > 0, and CK > 0

BK ' AK + CK

All the AK's, BK's, and CK's are strictly greater than zero, as

defined in D.l. It is easily shown that:

B1 = A1 + 1 (C1 is not defined)

BK = A + CK + 1 , K = 2, ... , KmaxK K max-1

B = 1 + C +cjct(9) cnode(9) (A9 is not defined)

Thus, the problem is well suited to this solution scheme. Having cal-

culated the pressures at the new time step in this way, the interface
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flow rates can be calculated with Eq. (D.10). The constants DK can

then be calculated and a new pressure calculation can be performed.

D.3 Code Description

As written, the code contains no "read" statements. All necessary

data is given in "data" statements within the program. The left hand

flow boundary condition and the right hand pressure boundary condition

are given as simple functions of time, with values for each time step

set in do-loops. A number of variable arrays are dimensioned by the

number of time steps or the number of "pipes" in the problem. The

required data are presented in Table D.1, along with the variable names

and a sample value. The calculations are performed as described in

Sections D.1 and D.2 and the pressure differences between pipe 3,

representing the downcomer, and pipes 6, 7 and 8, representing core

volumes, are printed out in MPa for each time step.



D.4 FLASH/RELAP Program Listing

dimiension~ areat;, i clernth(9)
uflhersion w(9001) P(99,401)

diiersion cjct'?),crode(?)

data dtIO.0005/'
data d~,!.~ 10.0~
data

data kmax/9/
data kkakax/
data Psteadv/15V.0',100./

ccccc set boundarv cortditicns
do 3001 1=1041

3^401 bcrP(D=:155OOOOO.
do 3002 1=429121

3002 bcrp(l)=15500000. 57500.*fioat(1,-41)
do 3003 1=122,401

3003 bcrp(l)=10900000,-554.1*float(1-121)
do 3004 1=1t121

3004 cv1146029fot1)
do 3005 1=1221,401

3005 -'clv(l)=bclv(l2)
do 3006 1=10401

3006 bclw(l)=ds*area(!)tA'clv(l)
ccccc set initial conditions

do 10 k:1,kga:,
w(k,1):bclw(1)

10 p(kr1)=Psteadv
ccccc coefficients calcul3tion

kmaxd~kfmax-1
do 11 k:1,knayd

do 12 k:1,kmax
12 cnode(k)=slength(k)*area(k)/'(d'xtx*2)

ccccc solution of linear eGuation- wit'i 'r trjdialoni! roeffilciernt ,at
ca(1):1,0/(cct()*cnode(1))
cb(1)=ca(1)+1,0
cc(kmax):1,0/(cjct(kmaxd)$cnodefkqRax,))

do 13 k=2,knmaxd
Pd =k -I
cc(k):1 10/(cict(kd)*cnode(k))

13 ca(k)=1,0/(cnode(k)*cjct(k))
ce(1)=ca(1)/cb(I)
do 100 n=1?400
riin+l
cd (ri )/ncjctc'kwrtax)w )/cr)odcn.de)
do 101 k=2ykrma:xd-w
kd~k-1

101 cd(k)=P(kin)+(w(kdyn)-w'kkn')1crode(k)
cf(lh=cd(l)/cbfIJ
do 102 k=2,hmax
kdzk-1
ce(k):ca(k)I(cb(k.)-cc(rYtceUId',)

k~kmax
P(kynj)=cf(k)

103 kd~k-1
P(kdynl)=ce(kd',*p(kini)+d'(; d)

104 do 105 h4,ykrdax:

ccccc Print out
do 2000 nz1,401
dpt(n)=(p(3,i)-P(3,n) )*0.OOCOO01

dpb(n)=(P(3,i) -P(6,n) )t0.000)0i

2000 writel.11,17)timeydFt(rt)tdpm(n),dp~l, r)

stop
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Table D.1

Data for FLASH/RELAP Solution Program

Description

Time step size

Fluid density

Sonic velocity

Length step size

Pipe flow area

Pipe length

Number of pipes

Steady-state pressure

Units

seconds

kg/m 3

M/S

m

2
m

m

Variable
Name

dt

ds

c

dx

area (1)

slength(1)

kmax

psteady

Sample
Value

0.0005

680

1000

0.5

1.7058

4.5

9

15500000
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APPENDIX E

This appendix derives an expression for the circumferential

strain of a thin-walled annulus of infinite length and zero stiffness

subjected to an initial pressure differential P -Pb'
a b"

I,

Let Pf be the pressure in the fluid after the annulus has strained to

relieve the initial pressure differential, P- P°a b"

P + AP = p P + = Pf
a a f b b =f

P 0 - P =AP AP
" a b b a

PO P = P Ap I PP A
a b 8p b Dp a

____ll____DO__ ___~~~
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If R is the initial radius of the annulus and Ad is the change in

radius, then circumferential strain is:

27(R 1+Ad) - 27rR 1

2R 1

. Ad
R
1

Letting a prime denote the final state, the density change in region a is:

Ap = p' -o
a Pa Pa

Ap m 1 1
a 7 2 2 2 2rr(R 1+Ad) - 7R2 JR1 - R 2

2 2 

p 0 7k(R -R )a 1 (R-R 2) 1 1
2 R R

7tR Ad 2 R 22 2 2
1 (1 + -i 1 - ()

R R R

1 1 1

1 (1 + ) 1 - ( )

R R R2 2

a ( + )2 R 2 ) 21 (R I

Now if E << 1, (1 + + 2 % 1 +
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S1 - (R2/R1)2

a =  a +2 - (R /R )2

a 1+26 - (R2/R1)a 1+2E- (R2 /R

Similarly, for region b

Ab b b

m 1 1R 2 2  22r[R - (R +Ad) 2 ] r(R -R )

Sp oTr (R ) i 1
b o 1

2 I )2 2 2
R 2 (R /R 1) - (1+E) (R /R 1  -1

1 o 1o

PO o 2 1 1

b (R/R 1 ) 2  2 -l

0 (Ro/R 1 )2 _ ( -]
p [ (R/R1)2

(R /R 1 2 - (1+2:)

2 -= o 1
b 2c

(Ro/Rl ) -(1+2E)
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Therefore,

a -b p b b 2 a a (R ) 2

(1+2E) - (RL/R ) (1+2) - (R /R )

This expression includes only initial conditions and may be rearranged

to give a quadratic in E, which may then be solved for e. Then

Ad = ER1.
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