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ABSTRACT

A three-dimensional numerical model for the
simulation of sodium boiling transients has been developed.
The model uses mixture mass and energy equations, while
employing a separate momentum equation for each phase.
Thermal equilibrium on the saturation line between coexisting
phases is assumed.

The four governing equations are supplemented by
a number of constitutive relations, addressing the interphase
and intraphase exchanges, as well as the fluid-solid inter-
actions. It should be noted that this four-equation two-phase
flow model requires only one interfacial relation, i.e., the
momentum exchange, compared to the six-equation model which
needs two additional relations, describing the mass and
energy exchanges. Consequently, the relatively high degree
of uncertainty currently associated with the interfacial
exchange phenomena is considerably reduced.

From a numerical point of view, the basic approach
in this work is a semi-implicit method, in which pressure
pulse propagation and local effects characterized by short
characteristic times are treated implicitly, while convective
transport and diffusion heat transfer phenomena, associated
with longer time constants, are handled explicitly. The
method remains tractable and efficient in multidimensional
applications.
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Simulation of a number of experiments has yielded
very encouraging results. The numerical method and the
constitutive relations have performed well, especially so
in light of the extreme severity of the conditions involving
sodium boiling.

Thesis Supervisor: Dr. Neil E. Todreas

Title: Professor of Nuclear Engineering

IiIIUil I



ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of this work

by the United States Department of Energy. The additional support

provided by the General Electric Corporation and the Hanford

Engineering Development Laboratory in the early stages of this

project is also appreciated.

The collective contribution of the co-workers in the MIT

Sodium Boiling Project deserves special recognition. Their help,

suggestions and readiness to share their experience and findings

have proved invaluable.

The authors wish to express their appreciation to

Dr. William Hinkle of the MIT Energy Laboratory for his efforts in

the initial stages of the Sodium Boiling Project.

Thanks are due to Miss Cathy Lydon for her skill and

patience while typing the manuscript.

The work described in this report is based on the thesis

submitted by the first author for the Ph.D. degree in Nuclear

Engineering at MIT.





TABLE OF CONTENTS

Page No.

ABSTRACT ------------------------------- 2

ACKNOWLEDGEMENTS ----------------------- 4

LIST OF FIGURES ------------------------ 15

LIST OF TABLES --------------- ---------- 19

NOMENCLATURE --------------------------- 20

CHAPTER 1

CHAPTER 2

INTRODUCTION ------------------------

1.1 LMFBR Safety and Sodium
Boiling ------------------------

1.2 Previous and Current
Related Work -------------------

1.3 Outline of Current
Investigation ------------------

1.4 Organization of Report --------

1.5 References ---------------------

THE

2.1

2.2

2.3

2.4

2.5

TWO-PHASE FLOW MODEL ------------

Introduction -------------------

The Six-Equation Model ---------

Mixture Model Selection --------

2.3.1 Mixture Models ----------

2.3.2 Selection of a Mixture
Model for this Work-----

The Four-Equation Model --------

References ---------------------

23

23

27

33

38

40

43

43

44

53

53

58

60

63

Item



~--~inmmrnumuuuImm IwInIIYIinI. IIIuIIII mii

Table of Contents (cont'd)

Item

CHAPTER 3

CHAPTER 4

Page No.

STATE FUNCTIONS AND CONSTITUTIVE
EQUATIONS --------------------------- 64

3.1 Introduction ------------------- 64

3.2 State Functions ---------------- 64

3.3 Constitutive Equations --------- 75

3.3.1 Wall Friction ----------- 76

3.3.1.1 General
Framework ------- 76

3.3.1.2 Axial Flow ------ 81

3.3.1.3 Transverse
Flow ----------- 84

3.3.2 Wall Heat Transfer ------ 86

3.3.2.1 Fuel or Heater
Rods ------------ 86

3.3.2.2 Hex Can --------- 92

3.3.3 Interfacial Momentum
Exchange -------------- 96

3.3.4 Fluid Conduction -------- 105

3.4 References --------------------- 113

THE

4.1

4.2

NUMERICAL METHODS --------------- 115

Introduction ------------------- 115

The Numerical Method
for Fluid Dynamics ------------- 116

4.2.1 Choice of I:mplicit
and Explicit Treatments - 116

4.2.2 Difference Equations ---- 119



Table of Contents (cont'd)

Page No.Item

4.2.2.1 The Mixture
Mass Equation ----

4.2.2.2 The Mixture
Energy Equation --

4.2.2.2.1 Conservative/
Semi-Implicit
Convection -----

122

123

124

4.2.2.2.2 Non-Conservative/
Semi-implicit
Convection ----- 125

4.2.2.2.3 Non-Conservative/
Explicit
Convection ----- 126

4.2.2.2.4 Conservative,
Fully Explicit - 126

4.2.2.3 The Phasic Momentum
Equations ------- 127

4.2.2.3.1

4.2.2.3.2

The Difference
Scheme---------

New Time Phase
Velocities
as a Function
of New Time
Pressures------

4.2.3 Solution Scheme ----------

4.2.3.1 General Remarks
on the Solution
of Non-Linear
Equations -------

4.2.3.2 The Jacobian
Matrix ----------

4.2.3.3 The Pressure
Problem ---------

127

134

137

138

146

154



Table of Contents (cont'd)

Item Page No.

4.2.4 Boundary Conditions ----- 162

4.3 The Numerical Method
for Fuel (Heater) Rod
Conduction -------------------- 166

4.3.1 Choice of Treatment ----- 166

4.3.2 Difference Equations ---- 168

4.3.3 Implicit Coupling to
the Fluid Energy
Equation ---------------- 172

4.4 The Numerical Method for
Hexagonal Can Conduction ------- 175

4.4.1 Choice of Treatment ----- 176

4.4.2 Difference Equations ---- 176

4.5 The Numerical Method for
Fluid Conduction ------------- 178

4.5.1 Choice of Treatment ----- 178

4.5.2 Difference Equations ---- 179

4.6 Time Step Control -------------- 182

4.7 References --------------------- 188

CHAPTER 5 THE PRESSURE FIELD SOLUTION --------- 189

5.1 Introduction ------------------- 189

5.2 Derivation of the Dif-
ferential Pressure Field
Equations from the Mass and
Momentum Conservation
Equations ---------------------- 190



10

Table of Contents (cont'd)

Item Page No.

5.3 Solution of the Pres-
sure Field in Sub-
assembly-like Geometries--
Specific Aspects --------------- 195

5.4 Direct Methods ---------------- 198

5.4.1 General Band Matrices --- 200

5.4.2 Positive Definite Band
Matrices ---------------- 201

5.5 Iterative Methods -------------- 203

5.5.1 Successive Block
Overrelaxation (SBOR) --- 205

5.5.1.1 General
Considerations -- 206

5.5.1.2 Choice of
Splitting ------- 207

5.5.1.3 Determination
of the Optimum
Overrelaxation
Parameter ------- 214

5.5.2 Alternating Direction
Implicit (ADI) ---------- 218

5.5.2.1 General
Considerations -- 218

5.5.2.2 Three-Dimen-
sional ADI
Iteration ------- 220

5.5.3 Coarse Mesh Rebalanc-
ing (CMR) ------------- 222

5.5.3.1 General
Considerations -- 223



Item

CHAPTER 6 STABILITY AND CHARACTERISTIC
ANALYSIS -----------------------------

6.1 Introduction --------------------

6.2 Stability Analysis --------------

6.2.1 Convection ---------------

6.2.1.1 A Semi-Implicit
Numerical
Scheme for Fluid
Dynamics ---------

-__________ a -______N 11h

Table of Contents (cont'd)

Pa

5.5.3.2 CMR with Multip-
licative
Corrections,
Applied to
Assembly-Type
Geometries -------

5.6 Boundary Conditions -------------

5.6.1 Pressure Boundary
Condition ----------------

5.6.2 Velocity Boundary
Condition ----------------

5.6.3 Total Inlet Flow Rate
Boundary Condition -------

5.7 Integration of the Pressure
Field Solution Into the Over-
all Computing Scheme ------------

5.7.1 Selection of Pressure
Solvers ------------------

5.7.2 Accuracy of Pressure
Solution -----------------

5.7.3 Non-Linear Solution
Type ---------------------

5.8 References ----------------------

ge No.

227

230

230

231

233

239

239

241

242

244

246

246

247

248

248



12

Table of Contents (cont'd)

Item 6.2.1.2 Multi-Dimen- Page No.

sional Explicit
Convection ------- 251

6.2.1.3 Effect of Complex
Characteristics
on Stability ----- 254

6.2.2 Locally Implicit Dif-
fusion Equation ---------- 259

6.3 Characteristics Analysis -------- 263

6.3.1 Background --------------- 263

6.3.2 General Formulation ------ 265

6.3.3 Characteristics for the
Four-Equation Incompres-
sible Flow Model --------- 269

6.3.4 Effect of the Mass Ex-
change Rate on the
Characteristics of the In-
compressible Flow Model -- 271

6.4 References ---------------------- 275

CHAPTER 7 EXPERIMENT SIMULATIONS -------------- 277

7.1 Introduction -------------------- 277

7.2 EB19GR Experiments -------------- 278

7.2.1 One-Dimensional
Simulations -------------- 278

7.2.2 Three-Dimensional
Simulations -------------- 286

7.3 SLSF-W1 Experiments ------------- 287

7.3.1 LOPI Tests --------------- 297

7.3.2 BWT Tests ---------------- 309

7.4 References ---------------------- 318



13

Table of Contents (cont'd)

Item Page No.

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS ------- 319

8.1 Conclusions ---------------------- 319

8.2 Recommendations ------------------ 324

APPENDIX A VOLUME-AVERAGED TWO-PHASE FLOW
CONSERVATION EQUATIONS ---------------- 328

A.1 Introduction --------------------- 328

A.2 Mathematical Preliminaries ------- 329

A.3 Local Instantaneous General
Conservation Equation ------------ 330

A.4 Volume-Averaged Equations -------- 331

A.4.1 General Conservation
Equations ----------------- 331

A.4.2 Mass Equation ------------- 332

A.4.3 Momentum Equation --------- 332

A.4.4 Total Energy Equation ----- 334

A.5 Local Instantaneous General
Interface Jump Condition --------- 337

A.6 Interface Area-Averaged
Jump Conditions ------------------ 338

A.6.1 General Interface Jump
Condition ----------------- 338

A.6.2 Mass Jump Condition ------- 338

A.6.3 Momentum Jump Condition --- 339

A.6.4 Total Energy Jump
Condition ----------------- 340

A.7 Working Equations -------------- 341

A.8 References ----------------------- 347



14

Table of Contents (cont'd)

Page No.Item

APPENDIX B SODIUM THERMO-PHYSICAL PROPERTIES ------ 354

B.1 Thermodynamic Properties ---------- 354

B.2 Transport Properties -------------- 356

B.3 Remarks --------------------------- 357

B.4 References ------------------------ 359

APPENDIX C REVIEW OF NUMERICAL METHODS FOR TWO-
PHASE FLOWS ------------------------------ 360

APPENDIX D ON VOLUME AVERAGING--------------------- 369

APPENDIX E ON THE DIAGONAL DOMINANCE OF THE
PRESSURE PROBLEM ----------------------- 373



~ _11~^ 1_

15

LIST OF FIGURES

Figure Page No.

1.1 Possible Accident Paths and Lines of
Assurance for a Potential CDA --------------- 24

3.1 Equation of State Selection Logic ----------- 68

3.2 Sodium Density versus Pressure -------------- 71

3.3 Sodium Density versus Internal Energy ------- 72

3.4 Secant Approximation of the First
Derivative 73----------------------------------

3.5 Heat Transfer Regime Selection Logic -------- 87

3.6 Hex Can with Associated Structure ----------- 94

4.1 A Typical Fluid Mesh Cell Showing
Location of Variables and Subscripting
Conventions --------------------------------- 121

4.2 Sodium Internal Energy for Unit
Volume versus Internal Energy --------------- 144

4.3 Water Internal Energy per Unit Volume
versus Internal Energy ---------------------- 145

4.4 Discretized Rod Conduction ------------------ 169

5.1 Staggered Mesh for the Mass and
Momentum Equations -------------------------- 192

5.2 Two-Dimensional Grid and Associated
Matrix Structure ---------------------------- 202

5.3 Comparison of Error Decay Rates for
Successive Line Overrelaxation -------------- 209

5.4 Comparison of Error Decay Rates for
Line and Plane Successive Over-
relaxation (unaccelerated) ------------------ 211

o - 0I ahI N111111"i ".i , 1i



16

List of Figures (cont'd)

Figure Page No.

5.5 One-Dimensional Grid with Fictitious
Boundary Cell ---------------------------- 235

5.6 Inlet Mass Flow Rate Boundary
Condition (cell numbering) --------------- 235

5.7 Matrix Modification due to the
Inlet Mass Flow Rate Boundary Condition -- 238

6.1 Locus of X-Eq. (6.23 --------------------- 257

7.1 Geometrical Configuration for the
GR.19 Eb Experiment ---------------------- 281

7.2 GR.19 Axial Sodium Temperature Distribu-
tion--One Dimensional Representation ----- 282

7.3 GR.19 Axial Void Distribution--One-
Dimensional Representation --------------- 283

7.4 Axial Pressure Distribution--
One-Dimensional Representation ----------- 284

7.5 GR.19 Axial Velocity Distribution--
One-Dimensional Representation ----------- 285

7.6 GR.19 Radial Sodium Temperature
Distribution--High Flow--
End of Heated Zone ----------------------- 288

7.7 GR.19 Radial Sodium Temperature
Distribution--High Flow--End
of Test Section ------------------------- 288

7.8 GR.19 Radial Sodium Temperature
Distribution--Medium Flow--End
of Heated Zone ----------------------------- 289

7.9 GR.19 Radial Sodium Temperature
Distribution--Medium Flow--End
of Test Section -------------------------- 289



1161114111111 flilI

17

List of Figures (cont'd)

Figure Page ';o.

7.10 GR.19 Radial Sodium Temperature
Distribution--Low Flow--End of
Heated Zone ------------------------------- 290

7.11 GR.19 Radial Sodium Temperature
Distribution--Low Flow--End of
Test Section ------------------------------ 290

7.12 GR.19 T max-Tmean (at the End of Heated

Zone) versus Mass Flow Rate --------------- 291

7.13 GR.19 Axial Sodium Temperature Dis-
tribution--High Flow--Three Dimensional
Representation ----------------------- 292

7.14 GR.19 Axial void Distributicn
Three-Dimensional Representation ---------- 293

7.15 Geometrical Configuration for the
SLSF W1 ----------------------------------- 296

7.16 SLSF-LOPI 2AInlet Mass Flow Rate ---------- 300

7.17 SLSF-LOPI 2A Sodium Temperature in
Central Channel, at .94m above Bottom
of Fuel (End of Heated Zone) -------------- 301

7.18 SLSF-LOPI 2A Sodium Temperature in
Central Channel, at .74m above
Bottom of Fuel ---------------------------- 302

7.19 SLSF-LOPI 2ASodium Temperature in Central
Channel, at .46m Above Bottom of Fuel
(Middle of Heated Zone) ------------------- 303

7.20 SLSF-LOPI 2A Axial Bundle-Average
Sodium Temperature Distribution ----------- 304

7.21 SLSF-LOPI 4 Inlet Mass Flow Rate ---------- 305

7.22 SLSF-LOPI 4 Sodium Temperature in
Central Channel, End of Heated Zone ------- 306

7.23 SLSF-LOPI 4 Sodium Temperature in
Middle Channel, End of Heated Zone -------- 307

1,111,1II p,,UhII i



18

List of Figures (cont'd)

Figure Page No.

7.24 SLSF-LOPI 4 Sodium Temperature on
Central Channel, Middle of Heated
Zone --------------------------------------- 308

7.25 SLSF-BWT 7B' Inlet Mass Flow Rate ---------- 311

7.26 SLSF-BWT 7B' Sodium Temperature
in Central Channel, End of Heated
Zone --------------------------------------- 312

7.27 SLSF-BWT 7B' Sodium Temperature in
Central Channel, Middle of Heated
Zone --------------------------------------- 313

7.28 SLSF-BWT 7B' Sodium Temperature in
Peripheral Channel, Middle of Heated
Zone --------------------------------------- 314

7.29 SLSF-BWT 7B' Void Map--
Central Channel --------------------------- 315

7.30 SLSF-BWT 7B' Void Map--
Middle Channel ----------------------------- 316

7.31 SLSF-BWT 7B' Void Map--
Peripheral Channel ------------------------- 317

A.1 Definition of Geometry for
Volume Averaging --------------------------- 352

A.2 Definition of Geometry for
Interfacial Jump Condition ----------------- 353



19

LIST OF TABLES

Table Page No.

2.1 Two-Phase Flow Models --------------- 54

5.1 Pressure Solver - Problem
Type Matching ----------------------- 240

7.1 Design Data for the Gr.19
Experiment -------------------------- 279

7.2 Design Data for the SlSF W1
Experiment ----------------- -------- 295

A.1 Quantities Used in the
General Conservation Equation ------- 348

A.2 Volume-Averaged Conservation
Equations --------------------------- 349

A.3 Definition of Exchange Terms in the
Volume-Averaged Conservation
Equations -------------------------- 350

Interfacial Jump Conditions --------- 351A. 4



20

NOMENCLATURE

A

c

of

D

e

F

f

G

g

h

h

I

K

k

Nu

P

p

Pr

Pe

Q

Re

S

T

t

U

u

flow area

specific heat

contact fraction

diameter

internal energy per unit mass

force

friction factor

mass flux, pU

gravitational acceleration

enthalpy per unit mass

heat transfer coefficient

identity matrix

friction coefficient

thermal conductivity

Nusselt number, hD/k

perimeter

pressure

Prandtl number, pce /k

Peclet number, Re-Pr

heat source

Reynolds number, pUD/ i

nucleate boiling suppression factor

temperature

time

velocity

velocity

2m

T/(kg- K)

m

J/kg

N

2

kg(m 2sec)

m/sec
2

J/kg

W/(m2o K)

-

N s/m 4

W/(m- K)

m

Pa

W

oK

sec

m/sec

m/sec



_ __ __ ___

V

w

x

x,y,z

a

At

Ax,

n

Ay, Az

e1

p

p

a

-U

au

SubscriPts

NOMENCLATURE (continued)

fluid volume

mass flow rate

quality

spatial coordinates

void (vapor) fraction

thermal diffusivity, k(pc p)

phase change rate

increment (or change) in

liquid film thickness

time step size

mesh spacings

eddy diffusivity

weighting factor for interfacial

velocity

angle of a Fourier component

amplification factor

viscosity

density

spectral radius

superficial tension

shear stress

overrelaxation parameter

m3
m

kg/sec

2
m /sec

kg/m3. sec)

m

sec

m

m2 /sec

N sec/m 2

Kg/m 3

N/m

Pa

phase "a"

equivalent

m E imllilmliih



22

NOMENCLATURE (continued)

i interfacial

2 liquid

p at constant pressure

sat saturation

v vapor

w wall

w wetted



23

CHAPTER 1. INTRODUCTION

1.1 LMFBR Safety and Sodium Boiling

During the operation of a large liquid-metal-cooled

fast breeder reactor (LMFBR), a substantial amount of radio-

active material will be present within the reactor core. Of

particular concern is the Pu fuel and the fission products

generated within the fuel rods, since the accidental release

to the environment of a large quantity of these materials

could be a hazard to the public. LMFBR power plants will

accordingly be designed, constructed and operated to assure

that the public risk from such an occurrence will be

acceptably low.

To provide this assurance, the U.S. Fast Breeder

Reactor Safety Development Program is based on four levels

of protection ([1]), aimed at reducing both probability

and consequences of a postulated core disruptive accident

(CDA). These levels of protection, referred to as lines of

assurance (LOAs), have been defined as follows:

- LOA-1: Prevent Accidents;

- LOA-2: Limit Core Damage;

- LOA-3: Control Accident Progression;

- LOA-4: Attenuate Radiological Products.

Figure 1.1 illustrates the possible accident paths for a po-
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.LOA I

LOALIMITED CORE DAMAGE

CORE MELTDOWN
OR DISPERSAL (COA)

SMALL ENERGY RELEASE.
AC DENT PROGRESSION

CONTROLLED

SMALL RADIOACIVITY

RELEASE TO
ENVIRONf.ENT

LARGE ENERGY RELEASE,
PRIMARY SYSTEM

SOUNOARY FAILURE

CONTAINMENT INTACT

LIMIOE RADICACTIVTY
RELEASE TO

IR NVIR NT
LCA

CONTAINMENT FAILURE

LARGE RADIOACTI.'TY
RELEASE TO

ENVIRONMENT

Figure 1.1 Possible Accident Paths and Lines of As-
surance for a Potential CDA
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tential CDA.

In the case of LOA-2, emphasis is placed on assuring

that accidents, resulting from low probability but mechanis-

tically possible events involving failure of LOA-1,can

be terminated with only limited core damage. This is

achieved by providing a reactor and plant design which in-

herently and predictably responds to such accidents in a

way which reduces reactivity to subcriticality and main-

tains adequate core coolability with minimum damage.

There are five postulated accidents ([2]) that are

currently considered in evaluating the effectiveness of LOA2.

These accidents are:

1. Loss of flow without scram - loss of electrical

power to motors driving the primary coolant

pumps, resulting in pump rundown and loss

of core flow while the reactor is operating at

power--coupled with a simultaneous failure of

the plant protection system to scram the re-

actor.

2. Loss of piping integrity - undetected defect or

leak in a reactor coolant pipe, resulting in a

double-eneded guillotine rupture at the in-

let nozzle of the reactor vessel followed by

rapid decrease in core flow and partial loss of

liquid--with scram.

U -""~~ ~ -- -x
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3. Transient overpower without scram - malfunction of

plant reactivity control system or operator error,

resulting in a sudden increase in core reactivity

and power--coupled with a failure to scram.

4. Loss of shutdown heat removal system - loss of

forced cooling to the core and failure of shutdown

heat removal system--following shutdown.

5. Local subassembly fault - inlet flow blockage

or internal subassembly fault resulting in cool-

ing disturbance and potential for fuel failure

propagation--with scram (once the condition is de-

tected).

-2
As a design goal, a failure probability of 10 or

less has been set for LOA-2, for the above mentioned

accidents ([3]). To meet this goal, R&D work relating

to LOA-2 is focussed on developing a detailed understand-

ing of phenomena controlling the progression of each of

these accidents from inception to termination. In these

accidents, the occurrence of sodium boiling assumes a

major role in dictating the path, the rate of progression

and the final consequences of the events taking place.

In large, commercial-sized LMFBR's, voiding due to

sodium boiling could cause a reactivity and, hence,a power
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increase. Under certain conditions, the boiling process

could lead to dryout, to overheating of the fuel pins and

eventually to pin failure. There are indications, how-

ever, that there are inherent rate limiting effects for

specific accidents in the fuel assemblies and cores of the

present designs, which when properly accounted for, will

retard the onset of dryout and sustain longer cooling of the

fuel. Thus, a better understanding of the sodium boil-

ing behavior should help in developing favorable system de-

signs that will terminate all previously mentioned

postulated accidents with limited core damage, thus meet-

ing the LOA-2 design goal.

1.2 Previous and Current Related Work

Among the effects related to sodium boiling, it is be-

lieved that the radial boiling incoherence is of consider-

able importance in some accident sequences. The rate at

which sodium voids grow would be controlled by radial non-

uniformity in sodium temperatures within fuel assemblies,

sodium void reactivity feedback where boiling occurs and

subcooled sodium diversion caused by hydraulic displacement

and pressure drop changes in fuel assemblies containing

boiling coolant ([2]). Clearly, there is a strong in-

centive to develop reliable multidimensional analytical
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models for sodium boiling.

In the following, we shall briefly review previous

and current works aimed at building two- or three-dimen-

sional computational tools for sodium boiling simulation.

The HEV-2D code developed at Purdue University ([4],

[5]) used an equilibrium, equal-velocity two-phase

flow model, with constant liquid density. While reasonably

successful in simulating some transients, it had in-

herent limitations due to its basic modeling assumptions.

Nonetheless, it should be recognized as a pioneering

effort in this area.

Senglaub ([6]) used an equilibrium drift-flux

formulation in a two-dimensional geometry to model sodium

voiding. Generally, the numerical scheme used in his work

proved unreliable. It is difficult to assess the impact

of his physical model choice on the overall solution method.

Granziera and Kazimi ([7]) developed a two-

dimensional, two-fluid (six-equation) model for sodium

boiling in fuel assemblies. It uses a more powerful semi-

implicit numerical technique ([8]) similar to that employed

by the THERMIT ([9]) and TRAC ([10]) codes. In spite

of the unavoidable uncertainty associated with the required

interfacial constitutive relations, the code, NATOF-2D,

has been applied with encouraging results to a number of
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sodium boiling experiments. More recently, Zielinski and

Kazimi ([ll]) have made a number of improvements of physical

and numerical nature to the original NATOF-2D code, extend-

ing its range of application and increasing the reliability

of its predictions.

COMMIX-2([12]) is the product of a large, ongoing

effort at Argonne National Laboratory. The code uses a three-

dimensional, two-fluid (six-equation) two-phase flow model,

employing a fully implicit numerical scheme. The few re-

ported results are quite good. Novertheless, like all other

numerical methods currently used in sodium two-phase flow,

it sometimes encounters difficulties in obtaining a

converged solution.

Dearing ([13]) recently presented a simplified two-

dimensional model for sodium boiling. It uses an equilibrium

mixture model, with a vapor/liquid slip ratio provided by

correlation. The bundle is modeled as two interconnected

flow channels. To our knowledge, details of the code

(THORAX) have not been published to date.

A new code, CAPRICORN ([14]) has just been released

in a preliminary version by Hanford Engineering Development

Laboratory. It employs a more implicit scheme than say,

THERMIT or NATOF-2D. However, it is not at all certain at

this point whether the significant increase in computational

- II IIIIIYIYIIIYYYIIYIII



work per time step and in storage requirements is balanced

out by an ability to reliably run a calculation with time

step sizes substantially greater than the convective trans-

port time, such as to achieve a net decrease in overall

computing effort.

A significant developmental effort aimed at obtaining

reliable, multidimensional, analytical tools for sodium

boiling modelling, has been carried out at M.I.T. over the

last few years. The previously mentioned NATOF-2D code is

one product of this effort. In parallel, the development

of a three-dimensional capability has been pursued. Start-

ing from the original THERMIT code ([9]) designed for

water-cooled reactors, Wilson ([141) carried out the

initial effort of conversion to a sodium version, adding

and modifying a number of physical models to reflect the

specific geometry and operating conditions of a LMFBR fuel

assembly. The development was then pursued through two

approaches. The first,currently under way (1151), employs

a two-fluid, six-equation two-phase model. While we have

been most aware of the potential of this model in terms of

flexibility and range of applications, we also realize its

major drawback; the current difficulty of providing a full

set of validated constitutive relations. It was then

concluded that an alternate approach using a simpler formula-
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tion, based on thermal but not mechanical equilibrium could

provide an adequate capability. The latter approach con-

stitutes the object of this work, highlights of which are

presented in the next section of this chapter.

So far, our review of related work has presented only

domestic efforts in this area. For completeness, it is

appropriate to mention some work being performed in other

countries involved in LMFBR safety research.

The adaptation of the British code SABRE-2 ([16])

to sodium boiling is currently being pursued at Cadarache

Research Center, in France. SABRE-2 is a single-phase,

transient code for subchannel geometry. It uses a fully im-

plicit scheme, SIMPLE ([17]), a variation of which is also used

in COMMIX-2. Initial attempts to run it as a homogeneous

equilibrium model have been unsuccessful ([18]). The inclu-

sion of a slip ratio, provided as a constant "fine-tuned"

by experiment, appears to provide an adequate calculational

capability ([19]). (The modified SABRE-2 code is called

THEBES).

At Grenoble Research Center, also in France, a new

code--BACCUS--has been under development for the last few

years. It started as a steady-state, homogeneous

equilibrium model using a two-dimensional (r-z) geometry (20);
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later it evolved into a transient, homogeneous non-equilibrium

model, using a semi-implicit difference scheme ([21]).

The BACCUS code is being extended to a three-dimen-

sional geometry, with a full two-fluid two-phase model, through

work currently under way at Karlsruhe Institute for Reactor

Development, in Germany ([22]). The numerical method be-

ing implemented is a semi-implicit scheme.

At the Winfrith Atomic Energy Establishment, in Eng-

land, work is continuing on the development of the SABRE

family of codes ([23]). Currently the SABRE-3C code is be-

ing used for sodium boiling simulation. Similarly to the

THEBES code, it uses a correlated slip ratio, also assum-

ing thermal equilibrium.

In Japan, a two-fluid, three-dimensional two-

phase flow code, TOPFRES ([24]), is being developed. Either

a fully implicit or a semi-implicit numerical scheme

will be adopted, following some preliminary studies.

It is clear from this brief review that there exists

a strong national and international interest in developing

an analytical tool to help settle some still outstanding

issues in the LMFBR safety research.

At the same time, one cannot help but notice the seem-

ingly uncontained proliferation of models and methods. This

clearly attests to the challenge (and frustration)that sodium
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boiling modeling has constituted for many years.

1.3 Outline of Present Investigation

In developing an analytical tool, the choices

shaping the approach to be taken are:

o Degree of Spatial Averaging;

o Dimensionality;

o Two-Phase Model;

o Numerical Method.

All practical numerical models for reactor analysis

today are lumped parameter, porous body approaches; this is

the approach used in our work. The general porous body

approach can be formulated with a full three-dimensional

transverse momentum balance and is structured to accommo-

date homogenization of arbitrary-sized regions of interest.

This region size flexibility is very useful, but the attend-

ant requirement to provide appropriate constitutive rela-

tions should not be underestimated.

We use a full three-dimensional model in x-y-z carte-

sian coordinates. Although in our simulations to date the

configurations studied did not evince any azimuthal asym-

metry, a full three-dimensional representation was deemed

desirable in order to provide a capability for the analysis

of strong power tilts and flow blockages, i.e., situations

iII.



for which the assumption of azimuthal uniformity would no

longer be valid.

In any analytical study of two-phase flows a deci-

sion must be made onthe type of representation of such

flows from a physical and mathematical point of view. The

model chosen must be capable of adequately describing the

essential features of the flow without unwarranted complica-

tions. The two-fluid, six-equation model could provide in

theory the maximum in capability and physical consistency.

However, its very generality represents a major practical

drawback: the presence of the interfacial exchange terms

calls for a number of constitutive relations for which

current understanding is rather incomplete. A "mixture"

model (i.e., a less-than-six equation model) may then be-

come appealing because:

o it theoretically needs fewer constitutive
relations;

o it may be computationally more economic;

o in many applications, the specific nature
of the physics of the two-phase interaction,
combined with the type of information
needed (or obtainable) from experiment
or simulation may not warrant the detail
and complexity of a six-equation model.

Based on this reasoning and with the objective of

maximizing the range of applications and computational

efficiency, a four-equation mixture model was selected.
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The model uses mixture mass and energy equations, while

employing a separate momentum equation for each phase.

Thermal equilibrium on the saturation line between co-

existing phases is assumed.

To complete the definition of the two-phase model a

package of constitutive relations, addressing the interphase

and intraphase exchanges as well as the fluid-solid inter-

actions, has been assembled. Our effort was mainly directed

towards a careful selection and implementation of models,

with particular attention given to their efficiency and com-

patibility within our solution scheme. One should realize

that the complexity of the flow geometry combined with the

current inability to quantitatively describe two-phase

flow patterns introduce a great deal of empiricism and hence,

uncertainty. Consequently, while a great deal of thought

went into the selection and implementation of the nec-

essary constitutive relations, the ultimate justification for

a specific choice lies in the capability of the overall

model to simulate and display reasonable agreement with

experiments.

From a numerical point of view, our basic approach

is a semi-implicit method, in which pressure pulse propaga-

tion and local effects characterized by short characteristic

times are treated implicitly, while convective transport
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and diffusion heat transfer phenomena, associated with

longer time constants, are handled explicitly. The method

remains tractable and efficient in multidimensional applica-

tions. The temporal and spatial discretization process

generates a set of non-linear equations, solved by Newton's

method, in its regular form or in one of its related ver-

sions, the secant and the parallel-chord schemes, which

under some circumstances may become more advantageous. The

fluid-to-heat source coupling is handled in a highly im-

plicit manner, avoiding stability problems related to

some of the rather short time constants involved. A large

flexibility is provided in regard to the choice of boundary

conditions.

The particular discretization and linearization scheme

chosen leads to a large system of linear equations for pres-

sures. Indeed this is a key feature of our method and is

characteristic of many currently used numerical schemes.

The pressure field incorporates both the spatial coupling

(due to fluxes of mass, momentum and energy) and, through a

reduction process, the local coupling. After its solu-

tion, the pressure is used to infer all the other relevant

quantities. Consequently, the efficient and accurate solu-

tion of the pressure field is fundamental to our method.

A number of solution schemes, both direct and iterative,

have been investigated.



A method allowing the specification of the total inlet

mass flow rate was devised. Noteworthy the fact that the

method is perfectly integrated into the pressure field

solution, does not call for another layer of iterations

and, therefore, does not add significantly to the total com-

putational work and storage requirement.

A detailed stability and characteristic analysis

has been performed. The main conclusion of the stability

analysis was that stable solution may be obtained even for

apparently ill-posed problems. However, we showed that while

the very short and the very long wavelength components

are stabilized by the donor cell differencing and the damp-

ing terms respectively, the intermediate wavelength compo-

nents may be limiting from a stability point of view.

The characteristic analysis confirmed the existence of

complex characteristics for a wide range of two-phase

flow conditions. We found that an approximate (analytical)

analysis assuming incompressible phases was in very good

agreement with the exact (numerical) analysis, except very

near the limits of the void fraction range. Another in-

teresting and somewhat surprising finding was that appamntly

there are differential constitutive relations which do not

affect the characteristics.

Simulation of a number of experiments has yielded
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very encouraging results. The numerical method and the

constitutive relations have performed quite well, espec-

ially so in light of the extreme severity of transients

involving sodium boiling. To further assess the predic-

tive ability of our model we strongly recommend that a

systematic sensitivity analysis be undertaken. Such

study would greatly increase our confidence in the

model's predictions and at the same time would clearly point

those areas in which further work would be most bene-

ficial.

1.4 Organization of Report

Chapter 2 of this thesis presents the derivation

and the selection of the two-phase flow model. Chapter 3

describes the state functions and the constitutive

relations supplementing the basic governing equations.

Chapter 4 contains a very detailed description of the

numerical techniques selected and investigated in this

work. The solution of the pressure field, a key

feature of our method constitutes the object of Chapter 5.

Chapter 6 elaborates on some stability considerations and

describes the results of the characteristics analysis per-

formed for our two-phase flow mathematical model. Chapter 7

presents the results of our simulations of various experi-

ments. Finally, Chapter 8 lists the major conclusions
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of this work and recommends a number of areas for further

study.

The computer code, THERMIT-4E, in which the two phase

flow model described in this study has been implemented,

is fully operational. Complete information regarding

its structure, features and use is provided in a companion

report ([25]).
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CHAPTER 2. THE TWO-PHASE FLOW MODEL

2.1 Introduction

In any analytical study of two-phase flows a deci-

sion must be made on the type of representation of such

flows from a physical and mathematical point of view. The

model chosen must be capable of adequately describing

the essential features of the flow without unwarranted

complications.

The two-fluid, six-equation model could provide in

theory the maximum in capability and physical consistency

among the two-phase flow models. However, it is in its

very generality and complexity that its major drawback

lies. The presence of the interfacial exchange terms calls

for a number of constitutive relations for which current

understanding is rather incomplete.

A "mixture" model (which is how any less-than-six

equation models will be referred to from now on) may then

become appealing because:

- it theoretically needs fewer constitutive

relations,

- it may be computationally more economic,

- in many applications, the specific nature of

the physics of the two-phase interaction,

combined with the type of information needed
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(or obtainable) from experiment or simulation may not war-

rant the detail and complexity of a six-equation model.

Based on this reasoning we decided on a mix-

ture model, selected such as to maximize its range of

applications and computational efficiency. The remainder

of this chapter will describe the selection process and

the derivation of the model.

2.2 The Six-Equation Model

Appendix A contains a detailed derivation of the

volume-averaged two-phase flow equations. After arriving at

this exact set of governing equations, the following

assumptions are made to obtain an initial "working" set:

- equal bulk phase pressures,

- uniform spatial distribution for all dependent

variables,

- temporal or statistical fluctuations are

accounted for through an enhancement of some

already derived transport terms.

This set of conservation equations is given below.

All the dependent variables in the following equations are

understood to be space and time (or ensemble) averaged.



1111 1h1

Vapor mass equation

a ( ) +
- (p ) + V(ap Uv ): 7(t v 

v Uv
(2.la)

Liquid mass equation

S-(1 - a)p ] + V- [(1 - a) p0] = - r (2.lb)

VapDr momentum equation

- (ac ) + V. (ap vU U ) + aVp - V (at) - ap F

4.
S- F

WV
- F.

1
(2.1c)

Liquid momentum equation

[(1 - a)pU + V'[(1 - )+ (1 -a)p

-V.[((-a)) ] -(J-a)PRF = -Fwl F i (2.1d)



Vapor total energy equation

-- [av (e + U /2)]3t v v

+ V (aq ) + p-t + V"

- ap F ' Uv = Q + Q*v v wy1

V[apV (e + U /2) ]

(apU ) - V-(at 
v )

vV

Liquid total energy equation

2
[(1 - ) p (eZ + U /2)]zU z2z

+ V'[(i - a) q] - P

- V-[(l - a)~T ] - (1i

+ V-[(l-a)) 2 +
p (e + U /2)U

+ VE[(l - a) pu ]

- a)p F'U £ = Qwz - Qi

a
at

(2.le)

(2.1f)
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The notations in these equations are given in the Nomenclature.

It is more convenient, from a numerical point of view,

to use equations for the internal energies instead of total

energy equations. In the following the derivation of the

vapor internal energy equation will be presented.

First an equation for the kinetic energy will be

obtained. The procedure parallels that used by Bird,

et al [1] for single-phase flow. Using the continuity

equation (2.1a), the vapor momentum equation (2.1c)

may be cast into the non-conservative form:

Pv D + aVp - V" (a- ) - apvF

=- rU - Fwv - F (2.2)

using the definition of the the substantial derivative

with respect to the vapor velocity:

v a
Dt 8t v

Form the scalar product of the equation of motion (2.2)

and the vapor velocity Uv:

IIII III~~/ I di IIkimUY I l ui I 
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D
v 2 + + --

vp (U /2) + Vp - U *V (ccT p F*Uv Dt vv vvv v

2 WV
FU (F wv

+ F +
+ F. U1 V

Using the substantial derivative, the vapor continuity

equation may be written as

D

Dt v v 
(2.4)

Multiplying Eq. (2.4) by U 2/2, adding it to Eq. (2.3)
V

and noting that

Dv 2 2
Dt (upvU /2) + (p vUv/ 2 )V'Uv

S2 2 += (ap U /2) + V"[(ap U /2)U ]
9t v vv V

gives the vapor kinetic (or mechanical) energy equation:

- (cpv U /2) + V"[(ap U /2)u + AU Vp

t vv v v v-

- U *V*(av ) -ap F*UV V V V

= -1 U /2- ( + Fi).v

(2.3)

(2.5)
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Then by subtracting this equation from Eq. (2.le) the vapor

internal energy equation is obtained:

a _ a_
-- (ap ev) + V' ( eevU v) + V (aq ) + Pt

4.
+ pV- (aU ) -cf :VU = Q + Q

+ FUv /2 + (Fwv + Fi)U v  (2.6)

The liquid internal energy equation is obtained in an en-

tirely similar manner.

An additional assumption is made to further simplify

the momentum and energy equations. Given the large number of

fluid-solid interfaces in our applications it is reasonable

to assume that the wall drag will dominate the intrafluid

viscous effects. Thus, we shall neglect the terms V (aT )

and V'[(1-a)= ] in the momentum equations and the dissipa-

tion functions, av:VUv and (l-a)t,: VUQ, in the energy equa-

tions.

Clearly, this assumptions would not be suitable in

other applications such as flow in large plena. In such

situations, the contribution of the above mentioned

terms becomes essential and must be included in the model.
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We shall consider gravity the only body force and de-

note F = - g in the momentum equations.

The final working six-equation model, as used in this

work, is given below:

Vapor mass equation

(ap v ) + V-(aPviv) = r
at

(2.7a)

Liquid mass equation

[ [(1-a)p] + V* [(l-a)p U ] = - F (2.7b)

Vapor momentum equation

4.
auvv + + P

aEp + aP U .VU +a Vp = -F -F.v-CtP g
v at v* v wV iv V

(2.7c)

Liuid momentum equation

(1-a)pt t + (1-a)pz U VUz + (1-a)Vp
(l-) Pi 1t £ £

= - FwwZ - F - (1-a)pkg (2.7d)

Vapor internal energy equation

- (ap e ) + V" (aPvevUv ) + pV (aUv ) +
at v v v v v at

= Qv + Qiv + Q kvwv iv kv (2.7e)
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Liquid internal energy equation

at [( 1 - a) p te £) + VI [(l-ae)pIeU) + pV [(l-a)£]

a Q
--at t + Qi + Qki (2.7f)

where

F. = F. + ru (2.8a)

- = . + U (2.8b)

Q' = Q + F "U (2 .8c)

Q = Qw + Fw . U  (2.8d)

2
Qiv = ru /2 + Fi-U + Qi (2.8e)

-Qi = ru /2 + F i *U + Q (2.8f)

Qkv = - V (aq ) (2.'8g)

Qk£ = - V"[(l-a)q ] (2.8h)

A few remarks may be made with regard to Eq.(2.7). The

momentum equation (2.7c,d) are written in a non-conservative

form, which is particularly convenient for the numerical solu-

tion. One notes that in this form the interfacial momentum

terms, Fiv and Fi , do not add up to zero, unless either r = 0
iv i

or Uv = U£. This is so because only in a conservative form

can the interfacial terms satisfy the jump condition, thus

cancelling out in a mixture (i.e., sum) equation.



Regarding the internal energy equations, it should be pointed

out that, unlike the equations for total energy (Eqs. (2.1e,f)),

they are not conservation equations. Again this particular form

of the energy equations is chosen for numerical convenience.

One notes the presence of some work terms in both the wall and

interfacial heat sources, Eqs. (2.8c - f). As before, we

also note that the interfacial heat terms, Qiv and Qit'

do not add up to zero unless Uv = U .

There are twelve unknowns appearing in Eqs. (2.7):

the void fraction a, the pressure p, the densities pv and p.,

the specific energies ev and e. and the three components

of Uv and U. The wall and interfacial exchange terms,

as well as the effective fluid conduction heat sources

(Eqs. (2.8g, h)) are assumed to depend, via constitutive

relations, upon these variables and the phase temperatures

Tv and T . Thus, we have a total of fourteen unknowns.

Noting that Eqs. (2.7) represent a total of ten equations,

we must supply four additional relationships for closure.

They are the equations of state, in the form:

Pv = Pv (PT v ) (2.9a)

p = pQ (P,TZ) (2.9b)

ev = ev (P,Tv) (2.9c)

e = eZ (p,T ) (2.9d)



A natural subset of variables (which may be viewed as "the

main variables") can then be chosen as p,a,T v TZ and the

phase vector velocities, Uv and U., i.e., ten "main" unknowns,

from which any other variables may be inferred via known

functional dependencies.

The six-equation model presented herein constitutes

the starting point for developing mixture models, described

in the next section.

2.3 Mixture Model Selection

2.3.1 Mixture Models

As previously defined, a mixture model uses fewer con-

servation equations than the six-equation model to describe

the two-phase flow. While it is generally true that a

mixture model requires fewer constitutive equations, it is

also evident that less information can be obtained from the

particular set of equations used. Therefore, the lost

information must be provided in an alternate form by

imposing restrictions on the two-phase flow evolution.

To place the above considerations in perspective, Table

2.1 summarizes the main features of the two-phase flow

models that can be constructed by using three to six

conservation equations. The suggested nomenclature is

of the form: nCmT



TABLE 2.1

Two-Phase Flow Models

(General assumption:

M = Conservation
E = Conservation

of
of

Mass
Energy

p = p )

K = Conservation of Momentum
Ta = Phase "a" temperature; a = v or £
U = Relative velocity = U -U

*note that the interface mass exchange, F, is needed whenever Qi and/or Fi are needed.i1

Two-Phase- Conservation Imposed Required Constitutive Relations
Flow Model Equations Restrictions
(suggested External Interfacial
nomencla- Total
ture) M E K Total Ta Ur Total Qw Fw 1 Qi Fi

3C 1 1 1 3 2 1 3 1 1 0 0 0 2

4C2M 2 1 1 4 1 1 2 1 1 1 0 0 3

4C2E 1 2 1 4 1 1 2 2 1 1* 1 0 5

4C2K 1 1 2 4 2 0 2 1 2 1* 0 1 5

5C 1 K 2 2 1 5 0 1 1 2 1 1 1 0 5

5C1E 2 1 2 5 1 0 1 1 2 1 0 1 5

5CiM 1 2 2 5 1 0 1 2 2 1* 1 1 7

6C 2 2 2 6 0 0 0 2 2 1 1 1 7

Legend:



where:

n is the number of conservation ("C") equations,

m is 1 or 2, representing the number of conservation

equations of a given type ("T")

T = M, E or K, representing mass, energy and momentum,

respectively.

An insightful discussion on obtaining consistent two-phase

flow models is given by Boure in [2].

An examination of Table 2.1 indicates that, as ex-

pected, a decreased number of conservation equations comes

at the expense of an increased number of restrictions.

(Indeed, it can be seen that the sum of the number of

conservation equations and the number of imposed re-

strictions is always six). On the other hand, the number

of required constitutive relationships clearly increases

with the number of conservation equations.

The three-equation model requires constitutive rela-

tions only for the wall exchange terms, as applied to the

mixture as a whole. The three mixture conservations

equations are supplemented by three constraints:

- both phase temperatures are related to the

saturation temperature (and hence to pressure),

usually by the assumption of thermal equilibrium,

Tv = T = Tsat(P).
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- a constraint on the relative phase motion;

if no slip is assumed, we have the equilibrium

homogeneous model, while if a correlation

for the relative velocity is used, the model

may be called equilibrium drift flux.

The four-equation models present a wider variety,

depending on the quantity for which two conservation equa-

tions are used. The first such model, 4C2M in our table

is the traditional (non-equilibrium) drift flux model,

where the use of two mass equations allows the departure

from saturation of one phase. In addition to the mixture-

wall exchange terms, the interfacial mass exchange rate, F,

must be provided. The other four-equation models require

more constitutive relations, as the use of two momentum

or two energy equations raises the need for more wall ex-

change terms. We also note the need to provide the rate

of mass exchange F whenever the energy (Qi) or the momentum

(Fi) exchange rate is required. This is obviously a con-

sequence of the fact that one mechanism for energy and

momentum transfer is the mass transport. Fortunately,

the mass conservation equation for one of the phases may be

used to determine the mass exchange rate, thus obviating

the need for an extraneous correlation. There is no



incentive to use the 4C2E model, as it provides the same

information as 4C2M, while requiring more constitutive

equations. On the other hand, the 4C2K model may be used

to advantage in situations characterized by virtual thermal

equilibrium, but inadequately described by a drift flux-

type formulation.

The five-equation models represent the next level

of refinement, achieved at the cost of requiring additional

constitutive relations compared to the previous category.

The first model, 5ClK might be of interest in situations

where thermal non-equilibrium (i.e., departure from

saturation) for both phases might be expected, while the

relative motion may be adequately treated as a constraint

on the relative velocity. The next model, 5ClE, is quite appeal-

ing, since setting one phase to saturation, an assump-

tion quite plausible in many applications, provides the

necessary single constraint. There is no particular

incentive to use the last model in this category, 5CIM,

as it provides the same information as the previous one

(5C1E), while requiring more constitutive equations. The

comment regarding the need for the mass exchange rate,

made in connection with the four-equation models 4C2E

and 4C2K, applies here too.

II



Finally, the six-equation model. removes the need for

any (more or less artificial) constraints, at the price

of requiring the largest number of (non-degenerate)

constitutive relations. It should be noted that through

appropriately modified constitutive relations, the six-

equation model can be made to simulate a lower level model.

For instance, a very high interfacial momentum exchange

leads to a virtual equal velocity model. Similar artifices

may be used to obtain thermal equilibrium of one or both

phases. This demonstrates the flexibility of the six-

equation model. However, if the applications of interest

clearly do noz warrant the full potential of this model,

its use as a computational tool may be uneconomical.

2.3.2 Selection of a Mixture Model for This Work

For our particular applications using liquid sodium

as a coolant, it was felt that the assumption of thermal

equilibrium, at saturation, between coexisting phases is

quite reasonable. Indeed the very high thermal conductivity

of liquid sodium will preclude any significant temperature

gradients in the vicinity of the liquid-vapor interface.

We should mention that after complete dryout, with vapor

directly heated by the wall, a large temperature gradient

may exist in the vapor due to its low conductivity. Thus,

while entrained liquid droplets are still at saturation, the

vapor may be superheated. For our work we are not interested

in calculations at relatively late times following boiling
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inception and, therefore, chose to ignore this regime. Ac-

tually, an additional comment must be made here. As our num-

erical treatment :is a lumped parameter approach, the implied

spatial averaging leads to an inherent loss of information

in as far as the temperature distribution within such

a "lump" (i.e., control volume) is concerned.

Under hypothetical accident conditions, fairly steep

temperature gradients may develop in the assembly. Since

assuming thermal equilibrium is equivalent to bulk boil-

ing in the control.volume of interest, this control

volume (i.e., mesh size) should not be too large. While

in principle a thermal non-equilibrium model might be

able to simulate more "localized" phenomena within a

relatively larger control volume, in practice this

potential advantage is of limited value, as any assumption

of a temperature distribution within an extremely.com-

plex three-dimensional flow field would raise grave doubts

as to its validity. Consequently, the remark made above

regarding the size of the control volumes applies gen-

erally to all two-phase flow models.

While thermal equilibrium appears a reasonable assump-

tion, mechanical equilibrium does not. The enormous liquid-

to-vapor density ratio for sodium at near atmospheric

pressures together with the low flow conditions under

consideration lead to very substantial slip ratios. In

one-dimensional configurations, an adaptation of a drift-
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flux type formulation might be possible, however, its

use for a predominantly annular flow regime would be

somewhat questionable. As our applications deal with

multi-dimensional flows, in complicated geometries, defining

adequate drift-flux like parameters becomes a hopeless

exercise. It is worth mentioning that a persistent complica-

tion in multi-dimensional flows is the current inability to

quantify flow regimes.

In light of the above, it was concluded that the use

of separate momentum equations for each phase becomes a

necessity. Such a formulation provides a suitable frame-

work for a much needed development of the interfacial

momentum exchange.

The consequence of all these considerations was the

adoption of a four-equation model, using two momentum equa-

tions and assuming thermal equilibrium on the saturation

line between coexisting phases. Using the nomenclature

of Table 2.1, our four-equation model is 4C2K.

2.4 The Four-Equation Model

Any mixture model can be obtained in a consistent

manner from the six-equation model previously des-

cribed. To obtain our four-equation model, the phase

mass and energy equations are summed up to yield a mix-

ture mass and a mixture energy equation, respectively.

The resulting governing equations are:
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Mixture mass equation

P p + V" [ap Uv + (I - a)p£U£] = 0St m 9v

Momentum equations

(identical to the six-equation model,

e.g., (2.7c,d)) (2.1Ob,c)

Mixture internal energy equation

at (p e ) + V'"ap eU + (1 - a)pze k]

(2.10d)

+ pV .[aU v + (i - a)U] = Qw + Qim + Qk

where pm = aPv + (1 - a)p£ (2.11a)

(2.11b)em = [aPvev + (1 - a)p e ]/pm

Q = mixture wall heat source

= Q' + Q'wv wZ

Qim = mixture heat source due to interfacial effects

= Qiv + Qit

Qk = mixture conduction heat transfer rate

= Qkv + QkZ

(2.10a)

-~..--- IIYI IYI11



62

To the fourteen unknowns we counted for the six-

equation model we added two new ones, the mixture density,

Pm and the specific mixture internal energy, em. Equa-

tions (2.10) and the definitions (2.11) represent a total

of ten equations. We need six additional relationships.

Four of them are again provided by the equations of state

(2.9). The other two are implied by the assumption of

thermal equilibrium on the saturation line:

Tv = T = T sat (p) (2.12)

A particularly advantageous set of main variables is p,

em and the phase vector velocities, Uv and U., i.e.,eight "main"

unknowns, from which all the others can be determined. Note

that em applies equally to single-phase flows (sensible heat)

and to two-phase flows (latent heat), thus no switch in

variables is needed. This is especially important in

as far as the numerical treatment is concerned. We shall

see in the next chapter that through the use of the four

equations of state (2.9), the two definitions (2.11) and the

two constraints (2.12) one can calculate the following eight

quantities:a, Tv TZ, Pm' Pv' P', ev, ek,for any given p

and em. Consequently, we have the equivalent of eight

equations of state, which supplement the eight governing

equations (2.10) to balance the previously identified six-

teen unknowns.
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Some further simplifying assumptions, widely used, will

be made. First the contribution of interfacial effects to

the mixture heat source will be neglected. While the work

terms due to the interfacial momentum exchange, i.e.,

Fi-U v and Fi.U are always very small, there is some recent

evidence ([3]) that in some circumstances, the kinetic

energy transport via interfacial mass exchange, i.e.,

2u /2 and U 2/2, while still small, may represent one or

two percent of the total heat source; nonetheless, we

chose to neglect this term in this work, thus Qim = 0.

We shall also neglect the pseudowork terms due to wall

forces, i.e., F *U and F *U., in the wall heat source,wv v w

since they never exceed a fraction of one percent.

To conclude, we now have a two-phase flow model,

whose governing "conservation" equations, supplemented by

appropriate equations of state and constitutive relations,

form a complete set, i.e., formally effect closure.
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CHAPTER 3. STATE FUNCTIONS AND CONSTITUTIVE EQUATIONS

3.1 Introduction

The previous chapter has presented the selection and

derivation of a two-phase flow model. Our choice, a

four-equation model containing two momentum equations,

requires additional relations to effect closure. These

additional relations are provided by the appropriate

equations of state and constitutive equations.

The thermal equilibrium assumption, requiring that co-

existing phase temperatures be equal to the saturation

temperature corresponding to the local pressure, leads

to a functional relationship, directly relating the

mixture density to the pressure and mixture internal

energy. We will present the derivation of this important

relation.

Regarding the constitutive equations, our effort was

mainly directed towards a careful selection and implementa-

tion of models, with particular attention given to their

efficiency and compatibility within our solution scheme.

3.2 State Functions

We recall from Chapter 2 that our four-equation

model calls for four equations of state, relating each

phase density and internal energy to the (common) pres-

sure and to the respective phase temperature. They



are supplemented by two constraints, requiring that when

both phases coexist they be at saturation, corresponding

to the local pressure. We have:

ov = Pv (p, T ) (3.1a)

p = Pt (p, T ) (3.1b)

e v = ev (p, T ) (3.1c)

e = e (p, T ) (3.1d)

Tsat = sat (p) (3.1e)

and

Tv = T = Tsa t  (3.2)

The fits used for Eqs. (3.1) are given in Appendix B. We

also recall the definitions of the mixture density and

internal energy:

Pm = apv + (1 -c)p2  (3.3a)

em = [ap vev + (1- a)p e ]/pm (3.3b)

Equations (3.1 - 3.3) may be used to generate a virtual

equation of state, relating the mixture density to pres-

sure and mixture internal energy in both single-phase

(liquid or vapor) and two-phase flow situations.

Let us start with the two-phase flow situation.



The void fraction, a, can be eliminated between Eqs.

(3.3) to yield

PZPv (ev - e) (3

m = Pt (e-e ) + Pv (ev - e m)

The assumption of thermal equilibrium at saturation im-

plies that p v', p, ev and e. are all functions of pres-

sure only (e.g., pv = pv (p, Tsat(P)) = Pv(p)). There-

fore, Eq. (3.4) represents a functional dependence of

the form:

Pm= Pm (p, em) (3.5)

Knowing pm, one can immediately determine the void frac-

tion from Eq. (3.3a) re-arranged as:

a = (p - pm) /(P - Pv )  (3.6)

It can be seen that pm given by Eq. (3.4) correctly re-

duces to p for em = e and to p for e e . We note

that Eq. (3.4), with p , p, ev and ez evaluated

at saturation, implies a certain interphase mass ex-

change, namely that which ensures thermal equilibrium

at saturation. In other words, when both phases coexist,

the thermal energy can be absorbed or released only as

latent heat.



The logic employed to recognize a single- or

two-phase flow condition is shown in Fig. 3.1.

We have already seen how we can determine all the

necessary thermodynamic properties for a two-phase

mixture. In single-phase situations, the calculational

sequence is as follows:

o given p and e m , set esinglephase = em;

o from Eq. (3.1c or d) determine the
temperature (see Appendix B);

o from Eq. (3.1a or b) determine the density.

This section would not be complete without dis-

cussing the derivatives of the state functions. It will

be seen in the next chapter that the numerical solution

is built around a linearization requiring the

derivatives of mixture density and temperature with

respect to pressure and mixture internal energy (here

mixture refers to the fluid generically, regardless

of its condition). The single-phase situations do not

raise any special difficulty. In two-phase flow con-

ditions the density derivatives are more complicated, a

reflection of the functional dependence embodied in Eq.

(3.4). After some algebraic work the following expres-

sions can be obtained:



68

em

NO

SINGLE-PHASE
LIQUID

YES

TWO-PHASE
MIXTURE

SINGLE-PHASE
VAPOR

Equation of State
Selection Logic
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apm apm dPv +pm dp+ apm de 8Pm de

p ap dp ~p dp ae dp ae dp

(3.7)

pm P£ 2 (e -ek) (e m-e) (3.8a)

Pv (denom)2

apm P 2(e -ek) (ev-em) (3.8b)

aPI (denom)2

apm PR £ ( -P v ) (em-e )

ae 2 (3.8c)v (denom)

apm v , (p 1- Pv ) (ev-em)pe 2 (3.8d)e (denom)

apm Pv p £(e v -e £) ( p  (39)
= - (3.9)

m (denom)

where denom = p, (em - e.) + pv (ev - em).

The appearance of the total derivatives of Pv', P, ev

and eR signifies their dependence on pressure only

(directly, and indirectly via temperature). For example:

dPv apv dTsat
S ( ) + ( )

v v



with T = Tsat

It can be easily verified that while the density

is continuous, its derivatives change abruptly between

the single- and two-phase domains. The variation of den-

sity with pressure and internal energy is illustrated

in Figs. 3.2 and 3.3. As it can be seen, the discontinuity

in slope is particularly dramatic at the liquid/two-

phase transition point. It is thus conceivable that

a secant-like approximation to the derivatives might be

a better representation of the behavior of the function

in the vicinity of this point (see Fig. 3.4). In a

sense, a "smoothing" effect is obtained.

There is no unique prescription as to how to con-

struct these secant approximations to the function

pm (p,em). A simple approximation of ( pm/ em)p for

example may be

apm) p (p,e + Sel) - 6 (p,e - 6e 2 (3.10)
aem 6e 1 + 6e 2(em p Se + Se

where 6el and 6e 2 are "suitably" chosen increments. A

more refined approach would consider perturbations in

both variables in an attempt to provide a better ap-

proximation of the function around the point of interest.

Basically one resorts to a two-dimensional interpolation.
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The simplest scheme in this context is the bilinear

interpolation (see for example, [11). Consider a

rectangle whose vertices are:

Pm,2 = PM

Pm, 2 = Pm

Pm,2 =

Pm,4 =

(p + ~P1, em + 6el)

(P - 6P2 , em + 6el)

Pm (P +

Pm (p -

1 , em - e 2)

'P2' em - e 2 )

The following approximation for pm in the neighborhood

of the point (p, em ) can then be constructed:

i=4
PM (p', e) Z

i=l

nl = (l+2x) (l+2y)/4,

n3 = (l+2x) (1- 2 y)/ 4 ,

e' - e*
m m

6el + 6e2

e * = em + (6e - 6e2)/2

p* = P + (6P1 - 62)/2

n 2 = (1-2x) (1+2y) /4

n4 = (1-2x)(1+2y)/4

p' - p*

y =
6P1 + 6p2

where:

SiPm,i (3.11)
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Note that p* and e* are the coordinates of the centerm

of the above mentioned rectangle. One can now obtain

the desired derivatives at any point inside this

rectangle. Let us evaluate (ap /ae ) at (p*, e*), for
m mp m

example:

m 1

9em )p 2(6el +e 2 ) (Pm,l + Pm,2 Pm,3 -m,4

(3.12)

Even more complicated interpolation schemes may be

considered, making use of the function (i.e., density)

evaluated at more points. The computational penalty

increases substantially and it is justifiable only if the

convergence of the non-linear iterations is significantly

improved.

3.3 Constitutive Equations

In the process of obtaining a tractable mathematical

model, a great deal of informaton is lost. Spatial and

temporal (or statistical) averaging renders such a model

unable to represent the details of interfacial inter-

actions and of intraphase distributions. The role of the

constitutive equations is to provide this lost information

thus rendering the model solvable. Clearly the com-

plexity of the flow geometry combined with the current



inability to quantitatively describe two-phase flow regimes

introduce a great deal of empiricism and hence, uncertainty.

Consequently, while a great deal of thought went into the

selection and implementation of the necessary constitutive

relations, the ultimate justification for a specific

choice lies in the capability of the overall model to

simulate and display reasonable agreement with experiments.

3.3.1 Wall Friction

3.3.1.1 General Framework

The effect of the solid-fluid interfaces leads to

the appearance of momentum sink terms through the volume-

averaging process presented in Appendix A. These terms

(Fwv and Fwk in Eqs. (2.7))have the dimension of a force

per unit volume. (The reader should note that the volume

referred to is that occupied by the two-phase mixture).

Let us consider a one-dimensional situation and let wawa

and Awa be the average wall shear and the "wetted" area

for phase "a", respectively. We then have

Fwa = (A wa/V)Twa (3.13)

By analogy with single-phase flow, Twa can be related to

the kinetic energy of phase a through a Darcy-type rela-

tion:
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= 1 f IU U (3.14)
wa 8 wa a a a

where

fwa = friction factor for phase a.

This formulation has also been used in [2] and we

adopted it because it provides a consistent framework for

modeling and presentation.

The wetted area per unit volume, for phase a, can

also be written as

A P L P
wa wa w 4Scf- cf (3.15)
V AL A a De a

where:

Pwa = wetted perimeter for phase a

L = "length" of control volume

A = total flow area

P = total wetted perimeter

De = equivalent hydraulic diameter

= 4A/P

cfa = contact fraction of phase a =

wa Pw

Substituting Eqs. (3.14 and 3.15) into Eq. (3.13), we ob-

tain the final forms of thewall friction force per unit

. . .. . . M NIEINdIii,



volume, for phase a:

cf
F wa 2Da fwa P IUaIU (3.16a)

e

= K U (3.16b)wa a

We shall call K the wall friction coefficient for phasewa

a. Equation (3.16b) represents a linearized form of the

wall friction force, which will be used in the numerical

solution scheme.

According to Eq. (3.16a), we must supply two pieces

of information to fully define the wall friction force,

for each phase, i.e., cfa and fwa

In single-phase flow situations, the contact frac-

tions are obviously 1.0 for the present phase and 0.0

for the other phase. Thus, we have to provide only one

wall friction factor.

In two-phase flow situations, the flow regime that is

likely to exist must be given some consideration. It is not

easy to quantitatively identify two-phase flow regimes

even in simple configurations, say a straight tube. It is

probably hopeless to attempt it for the extremely com-

plicated bundle geometry. Consequently, a simplified

approach is taken. The assumption is made that whenever
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two-phase flow exists, an annular flow regime prevails,

with liquid coating the solid surfaces. In light of the

enormous liquid-to-vapor density ratio for sodium at low

pressure, annular flow at low qualities is probably an

adequate assumption. Also an extensive body of test data

has demonstrated the retention of a thin liquid film on

the solid surfaces as the flow regime passed into the

annular zone- At very high void fractions, some vapor to

wall contact is allowed, thus providing a transition to

single-phase vapor flow. The contact fractions are de-

fined such as to represent the conditions just described:

1.0, a < 0.89

cf = 10 (0.99-a) , 0.89 < a < 0.99 (3.17)

0.0, a > 0.99

and

cf = 1 - cf

We will now postulate that the wall friction factor for

phase a, fwa, can be calculated from single-phase correla-

tions of the form

f = C/Renwa a (3.18)
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modified to take into account the actual flow area of

phase a. This modification is accomplished by the follow-

ing definition of a Reynolds number for the phase:

Re = PUaD e,a/1a (3.19)

where
4A 4c A

D _ a _ a - aD (3.20)
e,a P P aew w

This ad-hoc definition of the equivalent hydraulic di-

ameter for a phase implicitly assumes that the phase is

in full contact with the wall. A potential refinement

would be the consideration of an effective wetted perimeter,

Pwa, and hence of a contact fraction in the definition of

D . Since verification of this concept is currently
e,a

lacking, we have not pursued it. It is interesting to

note that the same definition of the phase Reynolds

number, i.e.,

Rea = (ap a Ua D e/a (3.19')

can be obtained by considering that phase flowing alone.

Indeed, observing that aPaUa = G a , Eq. (3.19') can be

written as



Re = G De/ a  (3.19")a ae a

which is, according to Collier ([31), just the Reynolds

number of phase a flowing alone.

Finally, we made the common (albeit questionable)

extrapolation of this formalism to a multidimensional flow.

In other words, Eq. (3.16b) becomes:

Fwa = Kwa'U a  (3.21)

where wa is a diagonal tensor. We should mention at thiswa

point some recent work ([4]) which suggests how this

formulation (Eq. (3.21)) may be generalized to consider a

full tensor Kwa. This work is still in progress, await-

ing additional experimental data.

3.3.1.2 Axial Flow

We adopted the following set of correlations, sug-

gested by Wilson in [5], which are specific forms of

Eq. (3.18):

1.5
(f 32 () 1 for Re < 400

wa Laminar D Rea a -

(3.22a)

-- IIIIIIII I III



0.316M
(f ) for Re > 2600 (3.22b)wa Turbulent 0.25 a

Rea

wa Transition = (fw,aTurbulent /'

+ (f a)Laminar -, for 400<Re <2600

(3.22c)

where

6.94 0.086
1.034 29.7(P/D) Re

M = [ 0.124 2.239
(P/D) (H/D)

S= (Rea - 400)/2200

H = wire wrap lead length (meters)

P/D = pitch-to-diameter rato

The laminar flow correlation, Eq. (3.22a) was proposed

by Engel et al, in [6]. Based on results presented in

that reference, a cutoff is imposed to avoid an unreal-

istic situation for bare rods (i.e., H - ') by requiring

f Laminar Re > 60. The correlation used in turbulent flow,

Eq. (3.22c), is a slightly modified version of a cor-

relation due to Novendstern ([7]).

In recent years, work performed at M.I.T. (see [8],

[9], [10]) has generated various correlations for pressure

drops in bundles. If used strictly for the intended
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geometry (i.e., subchannel representation), these correla-

tions would most likely provide a better model. However,

in the context of our porous body representation, the

error in their application has not been assessed. In fact,

these remarks are equally applicable to the correlations

of Engel, et al, and Novendstern. A very significant

effort of adaptation would be required to exploit the po-

tential for increased accuracy of the MIT-developed

correlations. In light of the above, we considered there

was no incentive to shift from Wilson's work for our

applications.

We note that while most test results used in producing

the correlations for f were obtained for liquids, some
w,a

experiments were performed with air (see [6]), therefore

it appears reasonable to apply the same correlations to

single-phase vapor flow.

We make a final remark regarding the calculation of

the equivalent hydraulic diameter, De . In principle

one could determine it from the local flow areas and

wetted perimeters. However, we advice against

this approach, as it would be inconsistent with the

bundle "average" behavior implied in the correlations

(3.22). We recommend simply that De be calculated as:e



De = 4xA (bundle)/Pw (rods + duct) (3.23)

3.3.1.3 Transverse Flow

To our knowledge, there is no correlation addressing

the flow across wire-wrapped rods. Therefore, a cor-

relation applicable to flow across tubes without wire

wrap spacers (such as used in various industrial heat ex-

changers) had to be adopted and adapted to our applica-

tions.

The correlation selected for this work is that of

Gunter and Shaw ([11]), developed for single-phase flow. We

have:

180
(f Laminar Re , for Re < 202.5 (3.24a)wa Laminar Re a -a

1 92
(f 1.92 for Re > 202.5wa Turbulent 0.145 a.Re

a (3.24b)

where Rea has been defined by Eqs. (3.19, 3.20).

A number of remarks are in order concerning Eqs. (3.24).

First, the crossover value for the Reynolds number

assures continuity in the friction factor. Second,

the velocity used in evaluating the Reynolds number, as

well as in Eq. (3.16), is the transverse velocity at the



point of maximum constriction between rods. Finally,

the equivalent hydraulic diameter appearing in Eq. (3.19)

is defined as:

D = 4 x Net fluid volume in tube bank (3.25)
e Wetted surface

Clearly, in view of Eq. (3.15), the "volumetric" hydraulic

diameter defined above is identical to that defined in

(3.23). This is why we have not used a different nota-

tion for De in Eq. (3.25).

It should be pointed out that these correlations

apply strictly to bare rod banks. Further refinement must

wait for additional analytical and especially experimental

investigations.



3.3.2 Wall Heat Transfer

There are two types of solid surfaces exchanging heat

with the fluid: the fuel or heater rods and the

"passive" hex can surrounding the bundle. Actually,

in transients any distinction between them is purely

artificial insofar as the fluid is concerned. This is

so because during cooling down periods in transients, the

hex can behaves just like a heat source, due to its

stored energy.

Nontheless, we shall treat the heat transfer correla-

tions for the two solid structures separately mainly due

to their geometrical representation in our applications.

3.3.2.1 Fuel or Heater Rods

The objective is to obtain a consistent set of cor-

relations, covering adequately all the heat transfer

regimes expected to occur. The heat transfer regime

selection logic is presented in Fig. 3.5.

The correlation adopted for single-phase liquid

convection is due to Schad [12]. This correlation,

based on an exhaustive compilation of available ex-

perimental data on paralled liquid-metal flow through

triangular-arrayed rod bundles, is given below:

0.3
Nu = Nu (Pe/150) 0.3 Pe > 150

(3.26)
Nu = Nu Pe < 150
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where:

Nu0 = 4.5 [-16.15 + 24.96 (P/D) - 8.55 (P/D) 2]

Experimental evidence indicates that in the lower

Peclet number range, even under supposedly well-controlled

test conditions, the presence of gas plus a less-than-

perfect wetting can occur, thereby causing a relatively

low heat transfer coefficient.

The choice for single-phase vapor convection is the

well-known Dittus-Boelter's correlation:

Nu = 0.023 Re0.8 Pr0"4  (3.27)

No "off-the-shelf" heat transfer correlation for

convective two-phase flow in LMFBR rod bundles is cur-

rently available. Therefore, an existing correlation had

to be modified to adapt it to our applications. Chen's

correlation ([3], [13]) was selected as a starting point.

This widely used correlation covers both the saturated

nucleate boiling regime and the two-phase forced convec-

tion regime. The correlation postulates the existence

of two separate heat transfer mechanisms. One such mech-

anism is associated with the overall flow and represents

the convective component, hc , of the total heat transfer

coefficient, hTp. The other mode of heat transfer is

associated with the phenomenon of bubble growth in the

liquid film in contact with the wall. This latter mechanism,

admittedly of lesser importance for sodium, given its
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high conduction and hence small temperature

gradient in the film, is referred to as the nucleate

boiling component, hNB. Thus, the total heat transfer

coefficient for two-phase flow boiling with no liquid

deficiency is given by

hTP = hc + hNB (3.28)

As suggested by Manahan ([14]y, the convective component,

hc , could be represented by the Schad's correlation,

in which the Peclet number for two-phase (PeTp) is

calculated as

Pe = ReTp Pr (3.29)

where the two-phase Reynolds number (ReTp) is obtained

through the factor F defined as

0.8F = (ReTp/Re ) .(3.30)

F has been determined experimentally as a function of the

Martinelli's parameter, Xtt, a good approximation of

which is given by ([3]):

(- 0.9 p 0.5 V) 0.1
X (3.31)tt x p R -v



The liquid Reynolds number (Re ) has already been de-

fined in Eq. (3.19).

For the nucleate boiling component, hNB, the Forster-

Zuber's analysis ([15]) is assumed to remain valid, as

suggested by Chen ([16)], based on some evidence pre-

sented in [17]. The heat transfer correlation for

this component is:

0.79 0.45 0.49
k C pt. 0.24 0.75

h = 0.00122 [ ]AT AP S
NB 0.5 0.29 0.24 0.24 sat sat

z fg p
(3.32)

where ATsa t = wall superheat,

APsat = pressure difference corresponding to ATsat'

S = nucleate boiling suppression factor

0.99
= (Tsat,e /Tsat )

AT sat, e  effective wall superheat.

Chen ([13]) correlated S against ReTP, the latter being

defined via F in Eq. (3.30). Butterworth (as reported

in [181) developed the following fits for F and S:

-11.0 - < 0.10tt -

-1 0.736 -1F 2.35 (X + 0.213) , X > 0.10tt tt

(3.33)
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[1.0 + 0.12 (Re' ) l.14

-10.78S = [1.0 + 0.42(Re;p) 0.78

0.1,

where Re'p = ReTpTP TP

Re'p < 32.5'TP

32.5<Re' <70.0 (3.34)
TP-

Re' > 70.0TP -

-4* (10 )

At high void fractions, vapor starts to blanket

the surface, with the ensuing decrease in heat trans-

fer. Currently, we treat this regime by interpolating be-

tween the two-phase forced convection and the single-phase

vapor convection as follows:

hfilm = 2 hT + (1- 2)hvfilm TP,c vapor

where

(3.35)

4 = 10(0.99 - a)

This pseudo film boiling regime is assumed to prevail in

the range 0.89 < a < 0.99. We note that this part-

icular treatment is advantageous also from a numerical point

of view, providing a smooth transition. The square of

the interpolating factor V is used to provide a faster de-

~-~s~ III IYIL 1 II



crease in the heat transfer coefficient.

3.3.2.2 Hex Can

It is important to provide a capability of represent-

ing the hexagonal can surrounding the fuel assembly be-

cause:

i) in some experiments, the heat losses to

the surroundings are significant and must

be accounted for if a correct energy balance

is to be achieved, and

ii) during transients, this additional structure

plays the role of a heat source or sink,

affecting the fluid heat up and cool down be-

havior.

We chose a simplified yet entirely adequate model, adopted

with only minor modifications from Wilson's work ([51).

Most current applications deal with single-

assembly simulations, for which no significant azimuthal

variation in the surrounding temperature is expected.

Therefore, azimuthal symmetry is assumed and the hex can

is treated as an equivalent cylindrical shell, of

equal circumferential perimeter and thickness. When us-

ing a grid layout for the numerical solution, there are

a number of peripheral cells in direct contact with the



can. The sodium in these cells is combined and formed

into an imaginary annulus adjacent to the can. Physical

properties are volume-averaged. The actual and the equiva-

lent geometrical representationsjust described are

depicted in Fig. 3.6. Dwyer ([19]) developed a Nusselt

number correlation for liquid sodium flowing in an annulus,

transferring heat only through its outer boundary:

Nu = A + CPe8  (3.36)

where:

A = 5.54 + 0.023 (r2 /r1)

C = 0.0189 + 0.316x10 - 2 (r 2
/ r l) +

0.867 x 10 -4(r 2 /r 1 ) 2

8 = 0.758 (r2/r 1 )0.0204

r2,r1 = outer and inner radia.

For simplicity, the heat transfer to and from any

fluid cell in which boiling has occurred is neglected.

Such cells are not counted in the averaging process, as

well as in the apportioning of the heat flux to the

can to each adjacent cell. This apportioning is made based

on the perimeter of contact of each of these cells.

If warranted, the hex can representation can be

refined, treating each cell individually and also provid-



peripheral mesh cell

Figure 3.6 Hex Can with Associated Structure.

(a) Actual Representation.
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imaginary sodium annulus

Figure 3.6 Hex Can with Associated Structure.

(b) Equivalent Representation.
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ing for other heat transfer regimes,as it is done for

the fuel/heater rod.

3.3.3 Interfacial Momentum Exchange

The use of two momentum equations, one for each phase,

require an interphase constitutive relation, namely the

interphase momentum exchange.

The terms we are about to discuss are F. and
IV

Fi, introduced in the previous chapter, and repeated

here for convenience:

F. = F. + FUU (2.8a)

Fi =- F i - rU (2.8b)

The reader should recall that the second term in the

right-hand-side of these equations appears because of

the non-conservative form used for the momentum equations.

The interfacial momentum exchange, Fi , was shown in

Appendix A to be made up of two components, one due to

interfacial mass exchange, the other due to form and shear

drag at the interface. Considering the interfacially

averaged phase velocities, Uvli and U1 i , we have:

F ru I + FiSVi iv

(3.37)

(r= FU i + F i)



- , I -- m nI ii iirIInik

The complexity of the flow near the interface leads to

a great deal of simplification in the treatment of Fi.

First a relatively plausible assumption: the tangential

components of the phase velocities at the interface are

equal, i.e.,

UI U X = U (3.38)
i i

Clearly, unless the interface is parallel to the flow

direction (a highly idealized situation), the normal

components will contribute to the momentum exchange.

As it is customarily done, we shall neglect

this effect, which is equivalent to assuming the equality

of the normal components as well.

Therefore, we have:

U I = U = U. (3.39)

This interfacial velocity must be related to the bulk phase

velocities. A "reasonable" expression is

- + (
Ui = nU + (1 - n) Uv , 0<n<1 (3.40)



where n is a weighting factor, discussed below.

There is no unique way, at present, to specify n.

Wallis [20] recommends n = 1/2 based on entropy production

considerations. A different approach, argued for by many in-

vestigators and chosen for this work, employes a donor-

like formulation:

n = 1, if r > 0 (evaporation)

(3.41)

n = 0, if F < 0 (condensation)

that is, U. = U during evaporation, whereas U = U when

condensation occurs. This formulation has an additional

advantage (a further argument for its selection) in

that it always renders the momentum exchange equivalent"

to a retarding (damping) force, a fact of crucial im-

portance for the stability of the numerical scheme.

Regarding the drag component, we shall assume

that the total interfacial drag onto one phase applies

with equal magnitude but in opposite direction to the

other component. We note that this is purely a simplify-
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ing assumption (widely used in this field) and not at

all a reflection of any physical law. This assumption

becomes equivalent to the momentum jump condition (i.e.,

conservation of momentum at the interface) only in the

absence of mass exchange.

With these considerations, the interfacial momentum

exchange can be written as

.-t -t
F. =- rUi + F. (3.42)

Therefore, Eq. (2.8) can be re-written as:

-+ + +d

Fiv= rF(U - U.) + F
ivv 1 1

(3.43)

-+ - + d
Fi r(U. - U ) - F

or, after substituting Eq. (3.40)

-4 - + +d
F. = n(U v - U ) + F

(3.44)

F. = ( - n r(U - ) - F

"-YYII
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We now postulate the following expression for the

d
drag term, Fd :

-+d = <F = . (U v - U ) (3.45)

The origin of this expression will become clear later in

this subsection. For now we shall consider K. non-1

negative. Substituting Eq. (3.45) into (3.44) yields:

Fv = Kv (U - U
(3.46)

Fi = Ki (U - U)

where:

K. = nF + K.
1V 1

(3.47)

K. = (1 - n) F - K

We now need two pieces of information, r and K i, to

define the momentum exchange coefficients, K.v and K i. As

already mentioned in the previous chapter, defining the

mass exchange for a thermal equilibrium two-phase flow

model does not present any difficulty. It is determined

from the mass conservation equation for one of the

phases, say vapor:

S= (ap v )  + V.(ap U ) (3.48)
Ot v v v

Indeed, in the code we use a finite difference counter-

part of this equation.
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It remains to define the coefficient Ki.  Once again

we make a major simplification with regard to the flow

regime, assuming again that an annular flow regime pre-

vails, with vapor the continuous phase. Let us consider

a tube geometry, with the understanding that it is only

for obtaining essentially correct (but of qualitative

value) functional relationships. The force exerted on

the vapor by the interfacial drag per unit volume

is:

F . = T. (Ai/V) (3.49)

where Ti = interfacial shear stress,

(Al/V) = interfacial area per unit volume.

It can be easily shown that

(Ai/V) = (P.i/A) = 4(Pi/P)/D e = 4/e/D (3.50)

where De is the tube's diameter, or in general the equiva-

lent diameter of the flow area under consideration.

For the shear stress we assume a Darcy-type form

T =  f. P UrlUr (3.51)

where

f. = friction coefficient,

Ur = relative velocity = U - U

II-- OII - 1001 MW mf iW.1,l ,
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For annular flow, Wallis' correlation ([20] or [21]),

has been and still is widely used

f. = 0.02 (1 + 300 -- )
1 D

where 6 = liquid film thickness

(3.52)

Noting that 6/D e = (1 - Y'x)/2, Eq. (3.52) can be written

as

f. = 0.02 [1 + 150(1 - /)]l (3.53)

In [21], Wallis showed that this equation for vapor

flowing over a wavy annular liquid film is equivalent to

the equation used for turbulent flow in rough pipes.

Using Eqs. (3.50), (3.51) and (3.53) into (3.49)

gives the following expression for the interfacial drag:

(Fi) _ 0.01 / [1 + 150 (1-J')]Turbulent D

Pv IUrIJU
r

(3.54)

Thus, in turbulent flow, the interfacial drag coeffic-

ient, K. is given by:
1

(K ) - 0.01 [1 + 150 (1 - /V)]p U
i Turbulent D v[1 r150(1-e(3.55)

(3.55)
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This expression would clearly yield too low values when

IUrj is small. For such situations, we provide a

"pseudo-laminar" formulation:

f. = 64/Re, i (3.56)

where:

PvIUrIDi
Re =

v,i 1v

Noting that Di = D - 26 = D /e, Eq. (3.56) becomes:
1 e e

f. =

Pv jr IDe
(3.58)

Combing Eqs. (3.49), (3.50), (3.51) and (3.58) yields:

d 32pv
i Laminar 2  rD

(3.59)

and consequently

(Ki) Laminar (3.60)
32p

S2D

To insure continuity, the interfacial drag coefficient

is taken as the greater of the values given by Eqs. (3.55)

and (3.60).
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A final remark, regarding the single-phase/two-

phase transitions, should be made. It is reasonable to

assume that the just appearing or disappearing phase

will move at essentially the same velocity as the other

phase. To obtain this behavior, the following formulation

is used:

actual 3K + (1- 3 )K. (3.61)
1 1 1

where:

K. = 1010 (note that a very large inter-1

facial drag coefficient will

render the phase velocities

virtually equal)

= 100 (0.01 - a) a < 0.01

= 0.0 0.0L<a < 0.99 (3.62)

= 100 (a - 0.99), a > 0.99

The cube of the interpolating parameter ' is used to ac-

centuate the rapid increase (or decrease) of the interfacial

drag coefficient.
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3.3.4 Fluid Conduction

The previous constitutive equations dealt with inter-

facial exchages between each phase and the wall as well as

between the phases. As shown in Appendix A these con-

stitutive equations are a direct consequence of the averag-

ing process. Unlike them, the intraphase heat transfer re-

quires a constitutive relation even for the local instantan-

eous energy conservation equation. The high conductivity

of liquid sodium makes this phenomenon a significant mode

of energy transport. In addition, the specific configuration

of LMFBR fuel assemblies using wire-wrapped rods plays an

important role in this context. The wires wrapped around

the rods, all "in phase", serve both as rod spacers and

as promoters for coolant mixing. This mixing greatly en-

hances the energy diffusion.

Consider two adjacent mesh cells, "i" and "j", and

let A.. be the intercell area. The heat transfer rate

between these cells can be written:

Qij = A.h.ij (Ti - Tj) (3.63)

where h.. is an effective heat transfer coefficient, to be

defined. Conservation of energy requires the heat flux

to the interface between cells be equal to that from the

- -- -- -~' IIYIYIIIIYI YI YIIIIY YUY i IllliiY IYIIYIYIIIY II II1IY IYIY lli u1 C lilA l iR ll
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interface. In other words, denoting the interface tempera-

ture Tint :

h. (T. - T ) = h (T - T.) (3.64)
1 i int i+l int

Clearly, the heat flux between cells must also equal the

heat fluxes above. Thus, we may write

h.ij (Ti - Tj) = h i (Ti - Tin t ) (3.65)

Eliminating Tint, the following expression for h.. is ob-

tained:

h. h.
h.- 1 3 (3.66)l] h. + h.1 3

We must now define the intracell heat transfer coefficients,

h. and h.. With d. being the distance between the cell
1 1 1

center and its edge, hi is simply given by

h. = k eff/d (3.67)
1 1 1

where k is the effective conduction of cell i. A somewhat
1

better representation for di in the porous body approach

is through an equivalent conduction radius defined as
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d. = R . = De /2 = 2V./ A (3.68)
1 e,i e, 1 1

where V. is the net cell fluid volume and Aij (already intro-

duced) is the net intercell fluid flow area. One should

note that Eq. (3.68) is obtained based on a reasoning

analogous to that used in Eq. (3.15). h. is defined in a

similar manner.

In our applications, it can be safely assumed that the

axial conduction is negligible. It is easy to show that

convection heat transfer ApUAc AT
conduction heat transfer A(k/Az)AT

AZ
Pe (3.69)

e

where

PeD = Peclet number based on the equivalent

diameter De

AZ = typical axial mesh length.

As the wire wraps promote mixing in the radial direction but

not in the axial one, even at relatively low flows the Peclet

number will be considerably greater than one. In addi-

tion, in most practical cases AZ is substantially larger

than De , thus further reducing the relative importance of
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the axial diffusion as a heat transport mechanism.

In two-phase flows, the existence of various flow re-

gimes leads to a bewildering number of possibilities for

vapor-liquid configurations, especially so in the complex

geometry under consideration. For this work, we adopted

a simplified approach. Given the fact that the vapor

conductivity is much smaller than that of the liquid and that

in an annular flow pattern the vapor becomes the continuous

phase, it appears reasonable to neglect the conduction

to and from voided cells.

It remains to define the effective conduction for

single-phase liquid cells. This effective conduction must

include the molecular conduction plus the enhanced

eddy diffusivity, the latter mostly due to the flow sweeping

induced by wire spacers. Let us define a Nusselt number

relating the effective conduction to the molecular conduc-

tion:

eff
Nu = k (3.70)

k

or, using the thermal diffusivity, a = k/pcp, and the (en-

hanced) eddy diffusivity, £EH

eff a+E H
Nu a = 1 +-- (3.71)

aGiven the extremely a

Given the extremely complicated flow pattern, E H must be
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determined experimentally. (We note that the major con-

tributor to the enhanced diffusion, i.e., EH , is not the

turbulence-induced exchange but the wire spacer-induced

flow sweep; in a sense, therefore, the mechanism of this

enhancement is deterministic).

Once again, there is a substantial body of know-

ledge in this area (see [8], [9], [10] for work performed

at MIT in recent years). The stumbling block in tapping and

applying these (and other) sources of information is the

geometrical representation. To our knowledge, all the work

in this area deals with subchannel (or subchannel-like)

configuration. It is by no means trivial to convert or

extend this work to an arbitrary porous body treatment.

Nonetheless, we shall use some of the existing formula-

tions in a mostly qualitative fashion. Following [10],

let us use dimernsionless diffusivities. Eq. (3.71) be-

comes

Nu = 1 + c*/a* (3.71')

where:

E* = EH/UADe  (3.72a)

a* = a/UADe  (3.72b)

UA = bundle average axial velocity

1 New
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De = bundle equivalent diameter (Eq. 3.23)

(Note that in [10] the inner region's

equivalent diameter, De,l, is used; for our

purposes we will assume De,1/D 1.)

In most applications, the flow split parameter (i.e., ratio

of the axial velocity in a subchannel of a given type to the

bundle average axial velocity) is not too far from unity;

for simplicity we shall assume the flow split parameter

approximately equal to unity.

With these simplifying assumptions, it can be shown

([10]) that the dimensionless subchannel eddy diffusivity,

E1, is related to the "continuum" parameter E* through a

strictly geometrical parameter:

S(XA/ L)E* (3.73)

where:

(XA/XL) = ratio of axial to lateral porosities

It turns out that for wide range of Reynolds numbers,

e* is independent of Re, being only a function of bundle

geometry, i.e., pitch-to-diameter and wire wrap lead-to-

diameter ratios.

Let us return to Eq. (3.71'). The dimensionless

molecular diffusivity a* can be expressed as
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* a k w
C4 .-a k- kP (3.74)UAD e pc pUADe 4Wcp

where

W = mass flow rate = pUAA

(Note that the equivalent diameter's definition, De = 4A/Pw ,

was used above.)

Finally, the Nusselt number can be expressed as

follows:

4e*c
Nu = 1 + P W (3.75)kPw

Thus, the enhancement of diffusion due to mixing follows a

linear variation with the flow rate. In Chapter 7, we will

present some results in support of this hypothesis.

We make a final remark with regard to the flow pattern

induced in wire wrapped rod bundle. In the interior region

of the assembly, the wire-induced sweeping flows are period-

ically directed in opposing directions, thus justifying its

modeling by an enhanced eddy diffusivity. In the region adja-

cent to the hexagonal can wall, however, a totally different

flow pattern is observed. The diversion cross-flow in-

duced by wires is always in the direction of the wire-

wrap, thus generating a swirl flow. This is clearly an

azimuthal convection-like mechanism, unlike the diffusion

,, ............. i ll n luIII g l i ~ iruulrnn
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process previously postulated for the interior region.

The work previously mentioned in connection with the

flow mixing has generated a number of correlations enabling

the determination and utilization of a "swirl" parameter in

the context of the subchannel approach. Again, we face the

difficulty of translating this work into a form applic-

able to a general porous body representation. At this point

no clear answer can be provided. Some of our calculations were

set up in a two-dimensional (r-z) geometry which implicitly

assumes azimuthal symmetry, in which case the swirl flow does

not have any effect. In three-dimensional (x-y-z) representa-

tions, the mesh cells adjacent to the wall actually straddle

both the interior and the outer (wall) region. In our simula-

tions to date, the configurations analyzed did not evince

any azimuthal asymmetry, such as power skew or flow block-

ages. In light of these considerations, we decided not to

account for this swirl flow. However, we emphasize the

need for further investigation for applications in which

the above assumptions may not be valid.
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CHAPTER 4. THE NUMERICAL METHODS

4.1 Introduction

The conservation equations for mass, energy and

momentum, combined with the appropriate state equations

and the constitutive relations required for closure, con-

stitute a complete two-phase flow model. Needless to say,

the complexity of the equations and relations involved

rules out any attempt to an analytical solution.

The numerical modeling of two-phase flow has been

the object of intense research over the last decade. To

place our work in perspective it would be appropriate to

present a review of some of the methods used in this area.

We do not attempt to be exhaustive in this review, but our

intention is rather to present the more representative

methods that in some way can be considered milestones in

this field, spawning new research or constituting the

backbone of some of the major computer codes currently

in use. Appendix C is devoted to this review.

In this chapter we will describe in detail the nu-

merical schemes adopted for the treatment of the fluid

dynamics equations and of the associated heat sources,

i.e., the fuel or heater rods and the hex can. Starting with

the introduction of the "base" scheme, we shall introduce

thereafter a few variations to it, brought about by

our investigations. It should be said that a good deal of

hindsight has been used in presenting the material, as we
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believe that a pure chronological account of our work

might have been quite confusing.

4.2 The Numerical Method for Fluid Dynamics

In this major section, we shall provide a detailed dis-

cussion of the numerical treatment of the fluid dy-

namics equations chosen to describe our two-phase flow

model.

4.2.1 Choice of Implicit and Explicit Treatments

When having to decide on a numerical representation

of some differential equation(s), the first task confront-

ing the numerical analyst is choosing from a spectrum of

schemes, ranging from fully explicit to fully implicit

ones. Whatever the choice, stability and consistency

must be ascertained in order to guarantee convergence [1]

for a properly posed initial boundary value problem

(Lax Equivalence Theorem). While this theorem applies

strictly to linear problems, it is reasonable to assume

that the aforementioned conditions for convergence must

be at least necessary in the case of non-linear problems.

A fully explicit scheme would be the cheapest per

time step, however, its severe stability restriction

would impose a very short time step which in most tran-

sients of interest would lead to an impractically large

total computing effort. At the opposite end of the

spectrum, one finds the fully implicit schemes, which
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in principle offer unconditional stability, the only

time step restriction being dictated by accuracy require-

ments. For our partial differential equations, a fully

implicit method, especially in three-dimensions, would

lead to a very large and complicated system of highly

non-linear equations, whose solution might be very dif-

ficult and expensive. In this respect it is worth

mentioning a somewhat subtler point related to the non-

linear character of the equations. To start a non-linear

iteration, a guess must be provided. In a time-dependent

problem, a natural choice for such a guess for the new

time solution is obviously the old time solution. Now

for a non-linear iterative process, the better the in-

itial guess, the faster the convergence to the solution

will be. In fact, in some circumstances, convergence can

be guaranteed only if the guess is "close enough" to the

solution. Obviously, the shorter the time step, the

closer the guess is to the solution (assuming a con-

tinuous dependence on time). Thus, a large time step can

lead to very slow convergence, with the consequent in-

crease in computational effort.

Clearly, an optimum scheme would allow acceptable

time steps (on the scale of the transients under con-

sideration) and would not lead to a prohibitively complex

(possibly unreliable as a result) and expensive algorithm.

Thus, it is important to realize that the phenomena
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represented by our equations are associated with dif-

ferent time scales. We have:

i) local phenomena (couplings); here we should

mention the interphase momentum exchange

and the fluid-wall interaction. Generally

the implied time constants could vary

widely, from very short to moderate;

ii) sonic propagation; the very high sound speed

in liquid makes the transient time for a

pressure pulse quite small (10-6-10 - 5 sec),

for the grid size of interest in our applica-

tions;

iii) transport by convection; as long as the

phase convective velocities are well below

their sonic counterparts, the time constants

involved will be considerably longer than

above;

iv) transport by diffusion; in our applications,

the time constant of this phenomenon is

of the same order of magnitude as that assoc-

iated with convection.

In light of the above, we seek a numerical method that

treats the first two types of phenomena in a fully or

highly implicit manner, while describing explicitly the two

transport mechanisms (later, we shall bring up again the

treatment of energy diffusion).
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Before turning to our discretized equations, we feel

it may be interesting to show how sonic propagation terms

can be identified in a simpler situation, that of a one-

dimensional flow of a compressible, inviscid, non-

conducting fluid. As in [2], we shall consider that the

fluid is originally at rest. A pressure perturbation then

leads to a velocity perturbation about the reference.

Considering now u=O, the terms containing the velocity

in a multiplicative fashion will vanish, leaving

however those involving the velocity derivatives. The

governing conservation equations become:

p + p-u= 0
at ax (4.1.a)

au + 1 p = 0 (4.l.b)
at p ax

ae_ p ap = Q (4.1.c)at 2 at

where the velocity divergence in the energy equation was

eliminated through the use of the mass equation. The

conclusion is that the spatial derivatives of velocity

and pressure must be treated implicity.

4.2.2 Difference Equations

The discrete analogs of the partial differential

equations describing our two phase model will now be

. 0 011 11'4161'
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presented. The spatial discretization is based on the

widely used staggered-mesh approach (see, for example,

[3] or [4]). All unknowns, except the velocities, are

associated with the mesh cell centers. The velocity

components are associated with the mesh cell faces to

which they are normal. A typical mesh cell indicating

the placement of the unknowns is depicted in

Figure 4.1. A superscript n orn+l refers to the time

level at which the dependent variables are evaluated.

In the mass and energy equations, the areas A and the

volumes V refer to net flow areas and net fluid

volumes. Alternatively, one could have considered the

full areas and volumes associated with the three-

dimensional Cartesian grid and use the concept of

porosity and permeability [5], to account for the pres-

ence of structure. The two approaches are absolutely

equivalent insofar as the scalar conservation equations

are concerned. Regarding the momentum equations,

some additional considerations related to volume averag-

ing in the context of a porous medium approach are

addressed in Appendix D.
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Figure 4.1 A Typical Fluid Mesh Cell Showing Location of
Variables and Subscripting Conventions
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4.2.2.1 The Mixture Mass Equation

V(pn+l n)/tm m

+{A[(ctp )n(Uxn+1

+{A[ (ap n(Ux ) n+l
v v

-{A[(ap ) n (UX )n+1

+{A((cxo v ) n (UY)

-+{A[(p) n (U Y) n + l

-{A[(ap) n (U ) n+1l

- {A[ (cYp n (Uz)fn+l
V V

+ ((l-)p) n (Ux n+l
( i+1/2

+ ((l-a)p) n(Ux n+l
( i-1/2

+ ((l-a)p)n(U )n+lj+/2

+ ((1-p)) n(U)n+l] j+l / 2

+ ((l-a)p)n (Uz n+l
() ]}k+1/2

+ ((1-a)p )n(uz n+l0

(4.2)

In the above equation, the convected quantities are

needed at cell faces, where the fluxes are defined. A

relationship defining the unknowns at locations other than

their basic placement must be provided. There are

various choices, but in light of its superior stability

characteristics, a full donor-cell differencing

has been selected. Let C stand for any cell-centered
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quantity (see Fig.4.1) and consider the face (i + 1/2),

normal to the x-direction. The quantity C i+/2 is then

determined as

Ci , if (Ux) > 0
iC / i+1/2 -
i+1/2

C+ , if (Ux)i+/ 2 < 0

It is important to note that donor-cell decisions are

made only with regard to quantities at time level n, us-

ing velocities at the same time level. As a result no

difficulty arises even if a velocity sign change occurs

during a time step. An important advantage with regard

to the linearization process will later become apparent.

4.2.2.2 The Mixture Energy Equation

A number of variants for the finite difference energy

equation have been examined. The reasons behind each

variation of a basic scheme will be given in this sub-

section and later in this chapter. The remarks made in

connection with the mass equation are also valid here.

- ----------------- . IYI YPIYYIIYIIUIII
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4.2.2.2.1 .Conservative/Semi-implicit Convection (CSIC)

n+1 nV[(Pm e ) -(p e ) ]/At

[pn+ (p en [An(Ux ) n+l1
v v i+1/2 v i+1/2

+ Ipn+(p e ) n +1/2][A(1-_a)n(Ux)n+ i+1/2

-[p +(p e )n 2[Acn (Ux n+
v v -1/2 v i-1/2

n n [A(1-))n (Ux n+1- ((pe zi-1/2 I [a k i-1/2

+[pn+ (pe ) [Act (U )nl I
v v j+1/2 j+1/2

nn n n+

v v 9_1/2 j-1/2

+ p +(p e ) n ][A(1-c) (U )

+[pn+(pvev) n ][Aon(U,) n+1I

v v k+1/2 v k+1/2k+/2

+ [pn+(p e )n ][A(1-a)n(Uz n+I
1' n zn+l1 1 k+1/2 2 k+1/2

-pn +(p e ) n [A(U n+
v v k-1/2 v k-1/2

n+(p e ) /2 ] [A(1-) n (U) n+k-l/2
[P 2 ) k 1/2 9 1 k-1/2

Qn+1/ 2  n+1/2

w k (4.3)
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Here the heat sources appear with superscript n+1/2,indicat-

ing a combination of implicit/explicit components, to be

later discussed. We note that this difference form of

the energy equation together with the discrete mass

equation are a strict adaptation of the scheme used in

[2] for a six-equation model to a four-equation "mixture"

model. For single-phase, either liquid or vapor, the two

schemes are equivalent. In two-phase flow, however, the

four-equation rendition suffers of a subtle flaw, namely

the lack of monotonicity of the mixture internal energy

density (p mem) with respect to em. This aspect, of

great importance to the non-linear solution, will

be addressed again later in this section.

4.2.2.2.2 Non-Conservative/Semi-Implicit Convection (NCSIC)

To avoid the problem raised by the product Pmem,

we have decided to use a non-conservative form of the

energy equation. To this end, the mass equation is

multiplied by em and then subtracted from the conservative

form of the energy equation. The resulting difference

equation is

V(pm)n [-()nl (em) n]/t + [cony - em conv m]n+/2

= (Qw +Qk) n+/2 (4.4)

--- 1~1111~1111~ -
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where n+1/2 n+1/2where conv and conv stand for the semi-implicitm e

convective terms in the mass and energy equations, re-

spectively. While a conservative form of the energy equa-

tion is generally desirable, it is not a major factor in

deciding on a particular scheme. Certainly, in our case

the overriding concern is the reliability of the non-

linear solution. In fact a non-conservative energy

equation has often been used ([6], [7], for example).

4.2.2.2.3 Non-Conservative/Explicit Convection (NCEC)

A further modification of the numerical scheme

can be obtained by treating the convective terms in the

energy equation fully explicitly. The equation will

look just like Eq. (4.4), but with the superscript n

used for the convective terms. The reason behind the

use of the energy equation in this form will become

apparent when the process through which the pressure

problem is obtained will be discussed. The reader will

see then that advantageous matrix properties can be ob-

tained if this treatment of the energy equation is

adopted.

4.2.2.2.4 Conservative, Fully Explicit (CFE)

Finally, one could treat the energy equation, in

its conservative form, in a fully explicit manner, just

as in [3] and in many related schemes. As the advance-
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ment in time is performed explicitly, the problem re-

lated to pe does not arise and at the same time the

advantageous matrix properties alluded above can also be

achieved. The equation can easily be obtained from Eq.

(4.3), written with all the terms evaluated at time level

n. (Obviously, the n+lst time level will appear only

in the discretized temporal derivative).

4.2.2.3 The Phasic Momentum Equations

4.2.2.3.1 The Difference Scheme

The momentum equations are used in a non-conservative

form, particularly convenient to our method. Unlike

the mass and energy equations, each momentum equation is

differenced about the face of a mesh cell, using the

center of the face as reference point. In other words,

the control volume for which the momentum equation is

written is offset with respect to that used for the

scalar quantities. To illustrate the concepts, consider

the momentum equation for the vapor phase, in the x-

direction, for the face with the center at (i+1/2,j,k):

[(U x ) n+l-(Ux n
p) n v v i+1/2
v i+1/2 At

AUx
+ n x xv

v i+/2 (U v ) i+1/2 1 Ax i+1/2

_ 1 h'-IIII
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A Ux  A Ux ny v z
+ (UY) ( ) + (UZ) z vv i+1/2 Ay i+1/2 v i+1/2 Az i + 1/ 2

n+l
(Pi+l -Pi ) n + l

i+1/2 Axi+/2

n+1/2 n+1/2
=- (F ) - (F)

i+1/2 F i+1/2 (4.5)

A Ux

ference approximation for the spatial derivative 3Ux3

evaluated at the point i+1/2. Similar expressions have

been used for the y and z directions. The precise manner

in which the various terms involved are evaluated will be

discussed below. Once again, we are faced with the problem

of variables appearing at locations other than those at

which they were originally defined. We observe that the

cell centered quantities a,pv,pZ now needed at the face

enter as multipliers of the derivatives rather than in

the derivatives themselves. From a linear stability

point of view, they will be only coefficients and as such

they will not affect the stability (see also Chapter 6).

Consequently, their definition is not crucial from this

point of view. One could use again a donor-cell logic

or, alternately, some weighted average between values

at the centers of the adjacent cells. The first choice

would appear quite reasonable, being consistent with
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the donor-cell differencing used in the mass and energy

equations. In single-phase liquid or, generally when the

properties in the adjacent cells are not greatly dif-

ferent, there is little to say about favoring one choice

over the other. Things are different, however, once

the face in question separates a liquid cell from a

two-phase cell. In this case the mixture density (mainly

through a) may vary by as much as two oiders of magnitude.

In such a situation a change in the sign of the

velocity(ies) at the face, for the donor-cell scheme,

would lead to very large changes in the terms of the

momentum equations, which in turn could generate large

pressure spikes and even ruin the solution, by impos-

ing impractically short time steps. We have indeed

noted this undesirable behavior in some of our numerical

tests. This finding lead to the adoption of the weighted

average scheme, through which the value of any cell-

centered quantity C can be specified at the face between

two mesh cells as:

Ci+/2 = (CAx + Ci+1 Axi+)/(Ax + Axi+1) (4.6)
i+1/2 1 1 ii+l i+l

To avoid ambiguity, we define each such quantity in-

dividually and then form their product, such as

(4.7)(aPv)i+1/2 = ai+1/2(Pv) i+1/2
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Now let us consider the velocities appearing in Eq. (4.5).

For the velocities multiplying the velocity gradients, ad-

ditional averaging is required. We define:

(uY). IuY) + (U ). +
v i+1/2 4(U j-l/2 v j+l/2

(U ) + (U )v i+lj+1/2 v i+lj-1/2

(4.8a)

S1 z (UZ) +
(Uv i+/2 4 (Uv) k-1/2 + ( v k+1/2

(Uv i+l,k+1/2 + (U )i+l,k-1/2

(4.8b)

Then the difference approximations of the convective

derivatives are defined through a donor-cell logic:
x x

(Ux) -(Ux )v i+3/2 v i+1/2 if x <0
Ax v i+1/2x i+1

A U

v i+1/2 v i-1/2
Ax.

I
if (U ) i +  > 0,S(4i+/2.9a)

(4.9a)
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(Ux (Uv i+1/2,j+1 v i+1/2

(Ay) j+1/2

(UX) -(UX)v i+1/2 v i+1/2,j-1

(Ay) j-1/2

if-. (Us). <0

if (Uv )  
< 0V i+1/2

if (Uy )  > 0v i+1/2-

(4.9b)

U x
AUX

z v
Az i+1/2

( i+1/2,k+l- (U x ) i+1/2 if
z)if (Uz ) i+/2 < 0

k+1/2

ox  ( x )(U ) - (U xv i+1/2 v i+1/2,k-1

(Az) k-1/2
if (Uz)i+1/2 > 0v i+l/2-

(4.9c)

The mesh spacings (Ay)j+ 1 / 2 and (Az)k+1/ 2 appearing in

the above expressions are evaluated as:

(Ay)j+1/2 = (Ayj + Ayj+1)/2

(Az)k+1/ 2 = (Azk + Azk+l)/ 2

(4.10a)

(4.10b)

Finally, the mesh spacing (Ax)i+1/2 needed in the pressure

gradient is given by:

A Ux

y V)
i+1/2 =1
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(Ax)i 1 / 2 = (Ax. + Ax +1 )/2 (4.10c)

Before going to the next subsection, a few comments regard-

ing the exchange terms are in order. Both the wall-phase

and the interphase interaction terms (i.e., Fwk and

Fik, with k = v or ) must be cast as linear functions

in terms of new time velocities at the cell face under

consideration. That is

n+1/2 n n+l
(Fx ) =(Kx ) (Uk) (4.11)
wk i+1/2 wk i+1/2 i+1/2

n+1/2 n n+l
(Fik) = (Kk) (U- U ) (4.12)

ik ik v Z i+1/2i+1/2 i+1/2

and similarly for all the other mesh cell faces. Here the

coefficients Kwk and Kik can be complex functions of any

variables, the only requirement being its evaluation using

old time quantities. From the material on constitutive

equations one can immediately infer the expressions for

Kwk and K.ik

One further refinement is possible if these coef-

ficients prove to be strong functions of the velocity

itself. Specifically a more formal linearization about
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the old time step can be done. We shall exemplify this

approach on the wall friction term. Generally, one can

write:

F = fU2  (4.13)w

where f is a friction coefficient. Let us now express

F n + 1/ 2 in terms of Fn via a truncated Taylor's series:w w

dF n
Fn+1/2 F n + w) (Un+l - Un) (4.14)
w w dU

or, after a few simple algebraic steps:

Fn+1/2 = 2fUn Un+l - fUnUn (4.15)w

For additional generality, one can write:

Fn+1/ 2 = (1-O)fU n n + l + efUnUnw

where -1<6<+1. For 6= +1, the treatment of wall fric-

tion becomes fully explicit; 0 =0 corresponds to our

ad-hoc linearization, Eq. (4.11); 6 =-1 yields the rig-

orously linearized form, Eq. (4.15).

This linearization procedure can also be readily

applied to the interfacial momentum exchange. In instances

lhl0ll0MIIIm
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in which Kik depends strongly on the relative velocity be-

tween phases, this approach will generally give better

results, avoiding or mitigating the possibility of

oscillation because of Kik evaluation lag.

In our applications, Eqs. (4.11 and 4.12) proved,

however, entirely adequate and were implemented in our

scheme.

4.2.2.3.2 New Time Phase Velocities as a Function of
New Time Pressures

The specific choice of implicitness in the momentum

equations previously described enables one to obtain

linear expressions relating the new phase velocities to

the applicable new time pressure gradient. In the follow-

ing, we shall show how this is accomplished.

Let us look at the pair of momentum equations writ-

ten at some cell face. For simplicity of notation we

drop the spatial subscripts, keeping in mind all the

conventions and definitions previously introduced. Also

let cony stand for the convective terms in the momentum

equation. Then we have:
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Un + l _- Un  n+
[apvn v v + [ap n convn + ()n p

v At v v Ax

n (n+1n+ - Kn un+l [pv]ng
= -K (U 'U ) - Kn + [p ] giv v 1 wvv v

(4.16a)

Un+l Un n+l
[(1-ac)p ]n t + [ ( -a ) p ] convn + (i-)n p

At Y ( Ax

=-K n (Un+
i k(U1

~ n+) Kn Un+ + [(l-a)P ]nSw(4.16b)

(4.16b)

These two linear equations are coupled through the momentum

exchange terms. However, the system can be solved for

the new time velocities as functions of the new time pre-

sure gradient and other quantities evaluated at the old

time. The result of this reduction process is:

Un + l = a Apn+l + bv

(4.17)

n+1 = a Apn + l + b

where:
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At
av = [e + AtK. (l-a)]/d (4.18a)

a= - [(l-a)e + AtK.ia]/d (4.18b)

b v = (fle2 + AtKivf 2 )/d (4.18c)

b = (f 2 el + AtKi f )/d (4.18d)

e = apv + At(Kwv + K iv) (4.19a)

e 2 = (l-a)pz + At(Kwz + Ki ) (4.19b)

f = apv [Uv - gt(convv - g)] (4.19c)

f2 = (1-a)Pz[U - At(conyv - g)] (4.19d)

d = ele 2 - (At) 2KivKi (4.19e)

In Eqs. (4.18) and (4.19) above, the time level super-

script was dropped, with the understanding that everything

is evaluated at the old time. Consequently, the coef-

ficients a's and b's in Eqs. (4.17) can be calculated

only once at the beginning of the current time step

and stored.
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It is interesting to note what happens in

of Kiv and Kit becoming very large and equal.

all the terms not containing Kiv or Ki can be

it can be easily verified that
At Kwv+Kw+ 1-i

lim a = lim a£ =- [P + At(

1k IV

the limit

In this case

dropped and

(4.20a)

and

£im b = Lim b =
v R

k. -oo
iV

k iv+iv

PmUm - At(pconv)m+Atpmg
Pm + At(Kwv + KwL)

(4.20b)

Pm = apv + (1-a)p,

Um = [aPvp U + (l-a)ptU]/pm

(pconum) = aPv conv + (1-)p convu

(4.21)

Thus, Eqs. (4.17) yield the equal velocity model without

any additional assumptions.

4.2.3 Solution Scheme

The finite difference equations previously des-

cribed combined with the appropriate equations of state

form a large system of non-linear equations with the

where
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following new time variables as unknowns:

n+l n+l n+l _n+1 _n+l n+l n+l
pm 'p , e , ,U and U

for all cells in the domain of the problem. (While not

shown explicitly up to now in our equations, the new

time temperatures are needed in our semi-implicit treat-

ment of the heat sources). The sources of non-linearity

in our discretized equations are the state equations as

well as the appearance of fundamental variables in

n+l
products, i.e., (Pmem)n+

In this subsection, the overall solution scheme

will be presented in detail, with special emphasis

on the treatment of nonlinearities.

4.2.3.1 General Remarks on the Solution of
Non-Linear Equations

With few exceptions, non-linear equations must be

solved via an iterative technique. An extensive review

and analysis of such methods is given by Ortega and

Rheinboldt [8). The method chosen in our application is

Newton's iteration, with the possibility of using its

variants, the secant and the parallel-chord methods.

The reasons behind our choice are:

- convergence is guaranteed, if the guess is

close enough to the solution; it will be

seen that a reduction in time step size in
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principle assures a better guess (more

on this will be discussed in Chapter 5);

- the method exhibits a relatively high rate of

convergence;

- the evaluation of the necessary deriva-

tives is not overly costly from a computa-

tional viewpoint;

- if only one non-linear iteration is per-

formed, the method is equivalent to a

linearization about the old time values

for the main variables; this latter

technique of linearization has been and

still is widely employed for the numerical

solution of fluid dynamics equations.

The essential aspects of Newton's method will be pre-

sented below.

Consider a system of n nonlinear equations in

n unknowns:

f l (X1lX 2 ,''.,xj' . .Sxn) = 0

f 2 (xl 1 x 2 '''xj'''''x n ) 
= 0

fi(xl x2 '...'xj ''''x n ) = 0

(4.22)fn(xlx 2 ,.,x F...x n ) = 0
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or, in compact vector notation

f(x) = 0

where

f = (fl f 2 ... fn T

x = (x l , x 2 ,...,xn)

Then, in the neighborhood of a point defined by the vec-

-0
tor x , a linear approximation for the function f may be

used:

Y(x) (x-o ) + J(-o) (x - xo) (4.23)

Considering x as a guess and x as the solution, i.e.,

f(x) = 0, the following iterative scheme can be

constructed:

-k -k+1 k -k 
J(x )(x - x ) - ) (4.24)

In Eqs. (4.23) and (4.24) J(x) stands for the

Jacobian matrix associated with f(x). Its entries are

a f.
J. - (4.25)

ij ax.

Equation (4.24) defines the Newton's method. Denoting

-k+1 -k+l -k
6x = x - x

eq. (4.24) can be written as
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J( k) 6yk+l (ik) (4.26)

Equation (4.26) represents a system of n linear alge-

braic equations, which must be solved at every itera-

tion. Sometimes two natural modifications to the scheme

(4.24) or (4.26) can be used to advantage.

The first involves the evaluation of the partial

derivatives (4.25). Generally, these partial deriva-

tives can be replaced by some finite difference

approximation. The incentive in many instances lies

in the fact that the analytical partial derivatives

have complicated expressions, the evaluation of

which being possibly more expensive computationally than

the evaluation of the functions themselves. However,

in our application, the computational efforts required

for the evaluation of the partial derivatives and of

the functions proper are quite comparable. The poten-

tial benefit of using the secant method in our case is

of a totally different nature. As it was shown in Chap-

ter 3, the state functions, especially the mixture den-

sity, exhibit very large discontinuities in the first

derivative, while the function itself is still con-

tinuous. In such a situation a finite difference repre-

sentation for the partial derivatives achieves a

"smoothing effect", defining an approximation for such
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a derivative even when theoretically such a derivative

does not exist. The manner in which these "secant"

approximations to the derivatives of the state functions

are constructed was presented in Chapter 3.

The other modification to the Newton's method is

reevaluating the Jacobian matrix only periodically dur-

ing the iteration cycle. Rather substantial computa-

tional savings are achieved when this modification,

called the parallel-chord method, is used. Not only is

the evaluation of the Jacobian entries less frequent, but

also the average time spent on solving the system of

Eqs. (4.26) is drastically reduced. As both direct and

iterative methods are used to solve this system (see

Chapter 5), a few additional comments are in order. When

a direct solution is used, the relatively expensive LU

factorization is performed only when the Jacobian is

updated, while the computationally much cheaper back-

substitution is all that is needed between updates. In

the case of an iterative method, such as the successive

overrelaxation, the optimum (or near optimum) relaxation

parameter, determined when the Jacobian matrix is re-

evaluated, is used unchanged (or as an estimate in a

continuing refining process) between updates, since the

matrix with which it is associated remains the same.

Moreover, if a block iterative method (of the type to
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be described in Chapter 5) is used for the solution

of the system (4.26), the remarks made above in connec-

tion with a direct method extend to the inversion of

the "blocks" involved.

Before closing this subsection, we would like to

mention an important fact related to our choice of main

variables, with consequences on the overall numerical

scheme. We recall that in the energy conservation equa-

tion, the "conserved" quantity is the internal energy

density, i.e., the group Pmem. In our investigations, we

have discovered a subtle peculiarity in the behavior of

Pmem in the case of sodium two-phase flow. It turns out

that the mixture internal energy density is not monotonic

with respect to the mixture specific energy. This is

illustrated in Fig. 4.2. Actually, this same behavior is

exhibited by water at low pressures, while at high pres-

sures, pe becomes monotonic (see Fig. 4.3). The reason

for this behavior is clearly the very large decrease of

the mixture density for a relatively small increase in

specific energy, when changing from single-phase liquid

to a two-phase mixture. It is well known that if an ex-

tremum point exists between the guess and the solution,

the convergence of the Newton-type methods is generally

destroyed.
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This undesirable feature of the group pe lead to

our decision to use a non-conservative form of the energy

equation, in which a "splitting" of this group occurs,

that is, instead of

n+l n
[(Pmem) - (Pme ) ]/At

we will have

n n+l n
P (em - e)/At.m m m

Avoiding the presence of the group pe in the non-linear

stage of the solution can also be accomplished by ex-

plicitly advancing the energy equation. In this way,

the only non-linearity arises due to the dependence

of density on pressure, but fortunately this is always

monotonic. Later in this section, we shall provide

additional comments on this latter scheme (mentioned

in 4.2.2).

4.2.3.2 The Jacobian Matrix

As it has just been explained, the linearization of

our non-linear system of equations involves the con-

struction of the Jacobian matrix for this system. In the

following we shall describe in detail how this is

accomplished.
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We recall that the difference approximation of

the momentum equations yielded a set of expressions,

linearly relating each new time phase velocity at a cell

face to the advanced pressures in the abutting mesh cells.

Consequently, all advanced velocities can be eliminated in

favor of the relevant pressures. This major simplifica-

tion is made possible by the specific discretization

scheme chosen for our method.

For each cell, we now have two equations, namely the

mass and the energy equations, with velocities ex-

pressed in terms of pressure as mentioned above. Let

Rm and Re stand for the mass and energy equations, re-

spectively; also assign the subscript "c" to the cell

under consideration and the subscript "a" to any of its

up to six neighboring cells. It is apparent from our dif-

ference equations that the spatial coupling between

cells, at the new time, is due solely to the convective

terms via the face-centered velocities, which are now

replaced by the appropriate pressures. As a result each

mass or energy equation will contain as main unknowns not

only the local pressure and mixture internal energy but

also the up to six neighboring pressures.

Therefore, the non-zero entries of the Jacobian, for

cell "c", are:

IIhII N-
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3 Rm c R fR e R
__c m,c e,c e,c

3 p pe p aec m,c c m,c

aR
mc (up to six such entries)

apa

aR

e,c (up to six such entries)
apa

that is a total of up to 16 entries per cell. The actual

expressions of these partial derivatives will obviously

depend upon the particular scheme chosen. We give the

detailed expressions for the basic scheme, i.e., the

semi-implicit treatment of the energy equation in con-

servative form, as the other schemes can be viewed (and

obtained) as special cases. Recalling Eqs. (4.2) and

(4.3), we have:

3R V C p a cony m
mc- + (4.27a)pc At ap e apc c m,c c

aR V 3 p
em, c (c amc )P (4.27b)em  At m,c aem,c p cm,Cmcc
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aR V (pe,c c mc

ap At m,c apc em,c

aconv aQ a Q
+ c e,c Iw,c k, c

'Pc 8pc Pc (4.27c)

aR v apc
e -c c [e (2 ) + PI ]
m, t m,c e m,c

Q e kQ

R- m (4.27d)
m,c m,c

aR aconvme
mc - mc (4.27e)

ap apa

aR a cone,c _ e,c (4.27f)
apa apa

The actual expressions for the heat sources will be given

in the relevant sections of this chapter. Here we il-

lustrate how a partial derivative of the mass con-

vective term is formed:
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a con a onv a Uc a a conv U c,a
m,c _ m,c v m,c .

apa a Uc, a pa a Uc,a apa
v R

Aca[(ap va V )n + ((1-a)pt a z ) nca (4.28)

Above, we used the superscript group c,a to denote the

face between cells "c" and "a". The partial derivatives

of the velocities with respect to pressure were obtained

from Eqs. (4.17). A similar expression is easily obtained

for the energy convective term.

We observe that the partial derivative of a convec-

tive term with respect to the local pressure contains con-

tributions from all the (up to six) cell faces. In light

of Eqs. (4.17), each such contribution will then be equal

(but opposite in sign) to the partial derivative of the

same convective term with respect to the appropriate neighbor-

ing pressure. Thus:

; conv conv
CnVm(e),c - m(e) ,c= - (4.29)
pc all a's aa

It is worth noting that the derivatives of the convective

terms involve only quantities evaluated at the old time.

Therefore, they can be calculated only once, at the
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beginning of the time step, stored and used during the

non-linear iterative process. Thus, at the cost of

some additional storage, a significant saving in computa-

tional work can be achieved. This and some other

computation-saving features related to the construction

of the Jacobian matrix and of the right-hand-side in

Eq. (4.26) merit some further comments.

In general a mass or energy difference equation will

contain linear and non-linear terms involving the main

variables. In particular, we note that the non-linear

terms, which have to be updated during the iteration cycle,

are "local", i.e., not involved in spatial coupling.

We can write:

R(x) = G(x) + Ax + c = 0 (4.30)

where R(x) = vector representing the mass and
energy equations;

G(x) = non-linear terms;

A = matrix representing the linear de-
pendencies;

C = vector containing constant terms;

x = vector representing the main unknowns.

Using the superscript R as the non-linear iteration counter,

the Newton's method (Eq. (4.36)) applied to Eq. (4.30)

yields:
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( )x 6x = - R(X ) (4.31)

or

[() + A] = - [G(x + Ax + c] (4.31a)

Clearly A and c can be calculated only once and used after-

wards unchanged during iterations. We have implemented

these computation-saving features in our numerical

scheme. However, in computational environments where the

storage is at a premium, A and c can be reconstructed at

every iteration.

We make an additional remark regarding the fully ex-

plicit treatment of the energy equation. Once the energy

advancement is performed, the mixture internal energy be-

comes known. Consequently, only the mass equation will have

to be linearized, and moreover only with respect to pre-

sures. Clearly, the only nonlinear term in the mass equation

is that involving the local pressure. In this situation,

a certain computational advantage of the one-dimensional

secant method [8] may be used. Specifically, the mix-

ture density derivative can be evaluated from:

SP 9, (p - )m,c) m,c m,c(

Pc (pc _ pc- 1  (4.32)
c c
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Note that one does not have to store the old pm iterate,

since as soon as the difference quotient is evaluted, the

new Pm replaces the old one, component by component. The

denominator is easily recognized as the "c"-component of

the vector 6p , for which our method already requires sep-

arate storage.

The application of the secant method in the manner

just described saves on the evaluation of the density

derivative (with respect to pressure) from a rather

complicated equation of state.
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4.2.3.3 The Pressure Problem

So far we have seen how our discretized equations are

linearized via Newton's method, leading to a system of

linear algebraic equations(Eqs. (4.26) or (4.31)). For N

mesh cells, the order of this system is obviously 2N. We

shall see below that the special structure of the Jacobian

matrix (which, in turn is a consequence of the particular

differencing scheme employed) makes possible a further

simplification, of great importance to the efficiency of the

overall numerical method.

At this point, let us collect the results of the pre-

vious subsection, examining the above mentioned system of

equations. Let us look first at the two equations cor-

responding to cell "c". They can be written as:

6a,l

6pa,2

x 6pc xxx xxx ,3 _ m,c

x x x x xxxx x Pa,4 R6ec a,4 e,c

6Pa,5

6pa,6 (4.33)

where subscripts a,l through a,6 correspond to the (up to)

six neighboring cells. The 2x2 matrix represents the "local"
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coupling, its entries being given by Eqs. (4.27a-d). The

2x6 matrix, whose entries are given by Eqs. (4.27e,f)

represents the "spatial" coupling. It is immediately

apparent that the spatial coupling is accomplished only

through pressures, while the neighboring energies are not

involved. It is worth reiterating that this is a direct

consequence of the particular discretization selected.

Thus, from any one of the two equations (4.33), if the

pressure corrections in the cell under consideration and

in the neighboring cells are known, the energy correction

in cell "c", 6e m c , can be readily obtained. This find-

ing indicates that the energy correction can be eliminated

from one of these equations in favor of the relevant pres-

sures, thus obtaining an equation for pressures only.

Mathematically, the procedure just mentioned amounts to

inverting the 2x2 matrix, i.e., solving the system of two

equations for 6pc and 6em,c:

0 1 em  x' x' x' x' x' x' • e,cmc c

(4.34)

Above the (') indicates an alteration resulting from the

aforementioned manipulation. This procedure is applied

to all cells, the result being a system of N equations for
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the pressure corrections.

To ascertain the properties of the associated NxN

matrix, the implications of this reduction process will

be further examined. Let us re-arrange the order of

the equations and of the unknowns as follows:

- place the N mass equations one after

the other, followed by the N energy

equations;

- in the vector for the unknowns, use the

pressure corrections as the first N

components, followed by the N energy

corrections.

This reordering of both equations and unknowns is

accomplished by row and column interchanges. The original

system of 2N equations in 2N unknowns takes on the

following structure:

A D 6 R1 1 p Rm (4.35)
A2  D 6e R
2 2 m e

where:

Al and A2 are banded matrices, containing up

to 7 stripes (in three-dimensional problems); these
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two matrices contain the coefficients of

the pressure corrections in both the mass

and the energy equations;

D1 and D2 are diagonal matrices; their entries

are the coefficients of the energy correc-

tions;

6P = (6pl''''' 6Pc,.'.. 6pN)T

6em = (6em,,... 6e ,..., 6e Se)T

R =(R m ... Rm  R.. Rm)T

e = (Re,1l,..., Re,c,..., Re'N

We shall note a number of favorable properties that

matrices A1 and A2 possess. Later in this chapter we

will see that the partial derivatives of the heat sources

with respect to pressure and internal energy are negative.

A look at the coefficients av and a£ in Eqs. (4.17) and at

their defining relationships, Eqs. (4.18) and (4.19), re-

veals the fact that they are always negative, there-

fore, the partial derivatives of the convective terms with

respect to the neighboring pressures, Eq. (4.28), are

also always negative. Consequenty the off-diagonal
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entries in both A1 and A2 are negative, while the diagonal

elements, defined by Equations (4.27a) and (4.27c), are

always positive. It is also obvious from Eq. (4.28) that

onv m  ~ convm a
rc m ,a

apa apc

thus Al1 is symmetric. In-contrast, because of the term pVO

in the internal energy equation, A2 is not symmetric.

On the other hand, since (p m/P)em - 0, both matrices are

diagonally dominant. In particular, even with constant heat

sources, i.e., (3Q/ p) = 0, and for an incomnressible fluid,
m

i.e., (3p / )e = 0, the boundary conditions (see next chap-

ter) will provide the strict diagonal dominance required for

irreducibility.

To summarize, Al and A2 are:

- symmetric and not symmetric, respectively,

- irreducibly diagonally dominant,

and have

-positive diagonal entries,

-non-positive (i.e., negative or zero)

off-diagonal entries.

Matrices such as Al1 are also positive definite and are

called Stieltjes matrices , while matrices such as A2 are

called M-matrices [9].

We turn now to the D-matrices. The entries of DI,
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corresponding to the mass equation and defined by Eq.

(4.27b) are always negative, since (apm/3e) p < 0.

(Obviously, they are zero if the incompressible fluid

assumption is used). The situation is more complicated

for the entries of D2 , Eq. .(4.27d). While the heat

source contributions are always positive, the derivative

(0 pm em)/) em)p is not, as our earlier comments on the group

(Pmem) indicated. If the non-conservative form of the

energy equation is used, then the expression in the brackets

in (4.27d) becomes Pmc' therefore, the elements of D

become always positive. But in this case, A2 may not

be diagonally dominant.

At this point, we can examine the procedure through

which the energy correction is eliminated in favor of the

pressure corrections, leading to a system of equations

for the latter. Let us re-write Eq. (4.35) as

A1 Sp + D1 6e =- Rm

A2 6p + D2 6 em R- Re (4.36)

Multiplying the first Equation in (4.36) by D2, the

second by D1 and subtracting the two modified equations

(say the second from the first) results in:

(D2 A1 - D A2 ) 6 P =-(D2 Rm - DIRe)

I I _--- _

(4.37)
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or,

AR 6p = - RR

(with obvious definitions for AR and RR). Note that un-

less D1 and D2 are of the form C I and C2I, respectively and

the compression work term, pVU, in the energy equation is

neglected, AR will not be symmetric. Moreover, the diagonal

dominance will, in some instances, be lost. The analysis

of this second aspect requires a great deal of algebraic

manipulation and is provided in Appendix E.

Diagonal dominance is needed for both direct and

iterative solutions of (4.37), avoiding a possibly algor-

ithmically singular matrix for the former and a diverging

situation for the latter. Fortunately, diagonal dominance

can be regained by a reduction of the time step. That

this is so can be easily seen from the expressions of the

off-diagonal terms which vanish in the limit of At-*0.

Thus, there will always be such a time step size as to en-

sure the diagonal dominance. The problem is that some-

times the required time step reduction may be significant.

We shall perform one additional manipulation in

Eq. (4.37), the purpose of which will be readily apparent.

Let A. = A d + A = 1,2, where A is the diagonal ofLet A 1 1' i =1,2, where A

A. and A. contains the off-diagonal entries. Then we

rewrite Eq. (4.37) as:
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[(D 2 A1 - D1 Ad ) + (D 2 A1 - DIA2 )]6P1 122 1

= - (D 2 Rm - DIR ) (4.38)

d d
Let B = D2 A - D A Since B is obviously a diagonal

matrix, its inversion is trivial (we shall show in

Appendix E that B is never singular). Multiplying Eq.

B-l
(4.38) by B-1 we finally get:

[I + B (D 2 Aa - DA2) Sp

-i
= -B(D 2 Rm - lRe) (4.39)

This is exactly equivalent to the system obtained by taking

the first equation in (4.34), for all cells.

Before closing this subsection, we will briefly examine

the implications of an explicit treatment of the con-

vective terms in the energy equation upon the resulting

pressure problem.

First consider the fully explicit advancement of the

energy equation. In this case, this equation does not

contribute directly to the construction of the pressure

problem, which then becomes simply:
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A l 6p = - Rm  (4.40)

Clearly, no concerns regarding the diagonal domin-

ance or the symmetry of the matrix in the equation above

are raised.

Let us look now at the scheme treating explicitly

not the entire energy equation but only its convec-

tive terms. In this situation, the matrix A2 becomes

diagonal, as only the local terms in the energy equa-

tion are treated implicitly. As the spatial coupl-

ing is provided now only by A1 , the symmetry of the matrix

AR is preserved. While not obvious at this point, we

shall show in Appendix E that unconditional diagonal dom-

inance is maintained.

4.2.4 Boundary Conditions

A combination of physical considerations and a char-

acteristic analysis is generally used to establish the nec-

essary and permissible boundary conditions. A conceptual

problem arises because our system of differential equa-

tions is not always hyperbolic, i.e., not all the char-

acteristics are distinct and real, when the phase veloc-

ities are not equal. Nevertheless, in the vast majority

of our applications, the in-flow is single-phase and as we

shall see, it is the in-flow boundary condition that

raises potential questions. What we basically seek in the
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context of our numerical method is to completely specify

the problem avoiding obvious or subtle over- or under-

determination.

The simplest boundary condition is the zero normal

flow condition, applied on the sides of the three-

dimensional problem domain. This condition reflects the

existance of the hexagonal can around the assembly.

Because in this case no information is transferred across

such a cell face, the fluid properties on either side of

the face are irrelevant to forming the corresponding

flux terms. Thus, the specification of a null velocity

completely defines such a situation. Note also that a

momentum equation need not be written for such a cell

face.

For the top and bottom of the assembly two types of

boundary conditions are provided, namely prescribed pres-

sure and prescibed velocity. If a pressure boundary con-

dition is applied, then the velocity at the appropriate

face will be determined from the solution. A velocity

boundary condition implies the specification of the vel-

ocity during the transient. In this latter case, insofar

as the solution is concerned, a momentum equation is not

needed at the cell face located on the boundary. We, how-

ever, form the appropriate momentum equation even in

this situation, solely forthe purpose of updating the
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pressure on the boundary. This update is necessary if

at some point during a transient a switch from a velocity to

a pressure boundary condition is desired.

For both types of boundary conditions, if the flow

is inward, fluid properties at the boundary must be speci-

fied to characterize the incoming fluid. In particular,

the internal energy must be provided. In the case of the

pressure boundary condition everything is completely

determined, as one obtains the fluid density at the bound-

ary via the equation of state, from the appropriate known

pressure and internal energy. In the case of the vel-

ocity boundary condition, the pressure on the boundary

becomes theoretically non-essential information. In fact

to specify it independently of the prescribed velocity

constitutes overdetermination. Nonetheless, we need the

pressure to define the fluid properties. Given the very

weak dependency on pressure of the liquid density and the

fact that in a vast majority of applications the entering

fluid is single-phase liquid, the independent specifica-

tion of pressure does not appear to cause any problems.

Nevertheless, a more consistent approach would es-

tablish a relationship between the pressure and the vel-

ocity at the inflow boundary. Such a relationship is

automatically accomplished in the formulation of another

"velocity-type" boundary condition, the total inlet flow
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rate condition, which will be described in detail in

Chapter 5, in the context of the pressure field solution.

Briefly, this latter boundary condition uses the momentum

equations at the boundary to obtain an equation for the

boundary pressure such as to obtain a prescribed total

inlet mass flow rate. This option correctly treats even

the case of an incoming two-phase mixture with (generally)

unequal phase velocities.

If the flow is outward, no extraneous fluid proper-

ties are needed. Usually the outlet pressure is speci-

fied as a boundary condition, the imposition of a velocity

at the exit being extremely unlikely.

An additional remark regarding the formation of the

momentum equations at an inflow boundary is in order. The

reader will recall that a donor-cell formulation is used

to define the velocity gradients. When writing the

axial velocity gradient in the z-direction (i.e.,

AU /Az) at the inflow boundary, one immediately notes the

need for a velocity outside the problem domain. A number

of choices are availble, the two most common being:

a. zero outside velocity (this situation may

be viewed as attempting to simulate the

existence of a large plenum at the inlet), or

b. zero gradient, that is, the outside vel-

ocity is equal to the velocity at the boundary.
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We have adopted the second approach, based on the

reasoning that in many instances of interest in our ap-

plications, the pressure is given (i.e., measured) not

necessarily in a plenum upstream of the test section but

at a location already inside the test section, near its

inlet.

In any case, changing from one option to the other

would involve only very minor modifications.

4.3 The Numerical Method for Fuel (Heater) Rod Conduction

In this section, we shall describe the numerical

treatment of the conduction in the fuel or heater rod. Of

particular interest in our applications, the strong coupl-

ing to the fluid energy equation will receive special

attention.

4.3.1 Choice of Treatment

The radial heat conduction in the fuel/heater pin

is described by

aT 1 3 9 Tpc (rk ) = q"' (4.41)
at r r r (4.41)

where

p = material density

c = specific heat

k = thermal conductivity

q"' = volumetric heat generation rate
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While it is true that p, c and k are all functions of

temperature, their dependence is relatively weak, justify-

ing an explicit treatment of the properties. In other

words, p, c and k are evaluated as a function of the old

time temperature. Therefore, Eq. (4.41) becomes a linear

partial differential equation insofar as its solution over

a time step is concerned.

It remains to decide on the numerical treatment of

the rod conduction equation proper. For typical properties

and radial mesh sizes encountered in our applications, a

standard stability analysis for a fully explicit scheme

yields an upper limit for the allowable time step which

is generally more lenient than the time step limitations

imposed by the fluid dynamics solution. Nevertheless

we selected a fully implicit scheme and we will now explain

the reasoning behind our choice.

Since the fluid dynamics is treated semi-implicitly,

a steady-state calculation is performed as an unperturbed

transient. At the same time, the generally large thermal

inertia of the fuel (or heater) rods requires a rather

long time to elapse before reaching a steady state. Be-

cause of the limitation on time step size dictated by the

fluid flow solution, a large number of time steps would

then be needed, rendering such calculations unnecessarily

expensive. An implicit treatment of the rod conduction

I _ ~. ~.YIIIYI I11 ~
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makes possible the removal of the temporal derivative in

such calculations, which is equivalent to setting to zero

the thermal capacity (i.e., the product pc) of the rod

material. With this option, no heat storage occurs in the

rod, the amount of heat generated being entirely and in-

stantaneously transferred to the fluid, thereby signify-

ing shortening the time required to reach steady state.

As the fully implicit conduction gives rise to a tri-

diagonal matrix, with a very efficient solution, the in-

crease in computational work per time step is insignifi-

cant.

In addition, we will see that an implicit scheme

allows a very useful modification regarding the coupling

to the fluid energy equation.

4.3.2 Difference Equations

The finite difference approximation is obtained by

dividing the fuel/heater rod into an arbitrary number

of mesh cells. The temperatures are calculated at the

edges of the cells, denoted by the subscript i, while the

material properties are associated with the centers of the

mesh cells, i + 1/2 (see Fig. 4.4).

To generate a spatial difference analog, Eq. (4.41)

is integrated between the centers of two adjacent mesh

cells, i.e., from ri-1/2 to ri+1/ 2 . Considering now

an implicit time differencing scheme yields the difference

equation for the interior points in the rod:
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Figure 4.4 Discretized rod conduction



170

1 2 2
[(r- r / 2 ) (pc) +-1/2 i-1/2

Tn+l Tn
2  2 n - 1

S 1 t(ri+1/2 - r i ) (pc)i+1/2 At

n nrk (Tn+1 Tn1 + rk Tn+1 Tn+ l )

Ar i-1/2 i i-1  + r i+1/ 2 (i+l

2 2 0,n+1/2+-[(r i - ri ) (q n/ +
i-1/2

2  2 n+1/2
+ (ri+1/2 -ri) (q"'i+1/2

(4.42)

where (Ar) = ri+ - r.
1+1 1

+ /2 (i) (i-l)

At the center of the pin, this equation is modified by

setting r1 = rl1 /2 = 0, which is equivalent to integrat-

ing over the half cell extending from r = 0 to r = r3/2'

A modification is also required at the clad surface, i.e.,

for the last half cell of the rod. Setting r +1/2 = rI = R

(where R is the rod outer radius and I-1 is the number of

mess cells) and adding to the right hand side the surface heat

flux, 4", Eq. (4.42) becomes:
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1 2n+ n
S2 2 n I I

2(r - r-1/2) (pc)i-1/2 At

rkn
=- -1/2I-1/2

n+1 n+1(TI - T )I I -1

• 1 2 2 n+1/2-q"R + 2 (rI - r 1-/2)(q'")1-/2 (4.43)

The surface heat flux is a function of both the wall

temperature (Tw = TI) and the fluid temperature (Tf):

q" = h(T - T )w f (4.44)

where h = heat transfer coefficient. If the fluid

temperature is known at this point and the heat transfer

coefficient is evaluated explicitly, then the wall

temperature may be treated either explicitly, i.e.,

(q")n = hn(T - T~) (4.45a)

or implicitly, i.e.,

(qi")n+1/2 = hn (Tn+l T )
w f

In either case, the discrete conduction problem can be

cast in matrix form:

(4.45b)

- -------------- N119iY
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X Ti = 5 (4.46)

where: A is a tridiagonal matrix,

T = (T,...,'' Ti,..., T) T , and

b contains contributions from the volumetric

heat source, the old time temperatures and

the surface heat flux.

The solution of (4.46) is easily accomplished by a

direct forward elimination--backward substitution pro-

cedure. The reader should note that for steady-state

conduction one must use the boundary heat flux in the

form (4.45b), otherwise matrix A would be singular.

Physically, under steady-state conditions, the heat

generation rate and the surface heat flux cannot be in-

dependently specified. By treating it implicitly, the

wall temperature will always adjust to render the sur-

face heat flux consistent with the internal source.

4.3.3 Implicit Coupling to the Fluid Energy Equation

The explicit or semi-implicit treatment of the

wall heat flux may give rise to instabilities under some

circumstances, characterized by a high heat transfer co-

efficient and/or a low heat capacity of the clad or the

fluid. This undesirable behavior can be corrected by a

reduction in time step size. In some applications,
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this additional limitation on the time step size would sig-

nificantly increase the computational cost. Fortunately,

a method described in [2] eliminates this restriction by

providing an implicit coupling between the wall and the

fluid. This method, adapted to our thermal equilibrium

two-phase flow model, will be presented below.

In the following discussion, an explicit evaluatin of

the heat transfer coefficient is assumed. An implicit

treatment of the surface heat flux

(,,)n+ = hn (Tn+ - +1) (4.47)
w f

allows us to re-write Eq. (4.43) as:

a Tn+1 Tn+l = hn n+l + (4.48)
I,I-1 I-1 I,I w f

where the expressions for the coefficients a's can be

readily inferred by comparision with Eq. (4.43). Eq. (4.48)

is just the last equation in the system of equations (4.46).

Following the forward elimination, Eq. (4.48) becomes:

' Tn+l 1nn+l
a T n+ = hn Tn+ + ... (4.49)
I,I w f

Clearly this is a linear equation, relating the wall sur-

face temperature to the temperature of the fluid at that

particular axial level.

" 1 i III ,I I I 1 i, 11 IlI lI 10 "- - 1.. . 1,
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Formally, at this stage, we can eliminate the wall tempera-

ture in favor of the fluid temperature and proceed to the

solution of the fluid dynamics equations. Once the new

fluid temperature is obtained, the new wall temperature is

calculated and then the backward substitution is per-

formed to get the remaining new rod temperatures (at the

interior points).

In this method, the surface heat flux is, there-

fore, a function only of the fluid temperature, directly

and indirectly via the wall temperature. With this observa-

tion in mind we can now show in detail the expressions

for the derivatives of the heat flux, needed in the fluid

dynamics solution (see Eqs. (4.27c) and (4.27d)). Denoting

wall heat transfer area by Aw , the wall heat source is

simply:

Qw = AW q" (4.50)

Its derivatives with respect to the main fluid dynamics

variables, p and em are:

aQw 9Q Qw dTw aT f
S_ w + w dT (4.51a)

f w f m

Q w Q Qw dTw  T f
w w w f) (4.51b)
m Tf aTw dTf aem p
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where, from Eqs. (4.47) and (4.50)

-= - A hn w (4.52a)
aT w T

and from Eq. (4.49)

dTw  hndw -
(4.52b)

dTf
I,I

The derivative dTw/dTf provides the feedback effect of a

change in Tn+1 on Tn +l .  It can be easily verified that

for steady-state conduction, the wall heat source deriva-

tives correctly reduce to zero.

The only penalty of the method is the necessity to

provide extra storage space to hold the intermediate re-

sults of the rod conduction problem following the forward

elimination stage. For practical applications, this repre-

sents only a very modestincrease in the overall storage re-

quirements.

A further refinement is possible with only a slight

increase in complexity. Namely, if h is a strong function

of Tw and/or Tf, the method can be modified to treat h

implicitly too.

4.4 The Numerical Method for Hexagonal Can Conduction

In this section we shall describe the numerical treat-
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ment of the conduction in the can surrounding the fuel

assembly. Most of the discussion in the previous section

also pertains to the material herein, therefore, we will

limit ourselves to presenting only those aspects which are

different.

4.4.1 Choice of Treatment

Recalling the model description (Chapter 3), we con-

sider only the radial conduction, with no internal heat

sources:

3T 1 9 DT
pc (rk T) = 0 (4.53)p t r r ar

where all the quantities have already been defined in con-

nection with Eq. (4.41).

Once again a fully implicit treatment is selected for

reasons already elaborated on in Section 4.3.1.

4.4.2 Difference Equations

The finite difference equation for the internal nodes

is identical to that derived in Section 4.3.2, (Eq. (4.42),

with no heat source. At the surface of the can exposed to

the environment an equation analogous to Eq. (4.43) is ob-

tained. We have to write a similar equation for the inner

can surface, exposed to the coolant. Such an equation is

obtained by integrating over the half cell extending from

r1 = inner radius to r = r3/2 :
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Tn+l- Tn
1 2 2 n 1 1S(r3/2 - r1 ) (pc)3 2

Ar 3/2 2 1

-(q" R)inner (4.54)

A few comments on the surface heat flux treatment are in

order. For the outer surface, the environment temperature

(Tenv) is given and an expression similar to Equation

(4.45b) is used:

(q")n+l = hn (Tn+l - T ) (4.55)outer w,outer w,outer env

For the inner surface we use an average sodium temperature,

obtained by volume weighting the sodium temperatures in

the cells adjacent to the hex can. An implicit treatment of

this average sodium temperature would couple the above

mentioned cells through the new time temperatures. Our

numerical scheme for the fluid dynamics equations provides,

however, for spatial coupling at the new time via pres-

sures only. Consequently, the fluid temperature in the

inner face heat flux is evaluated at the old time, i.e.,

-~ iii------ _ ii Jlllhh
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n+1/2 n n+l
(4") = h (T - T ) (4.56)

inner w,inner f

Note that because of the explicit treatment of the fluid

temperature, there will be no contribution to the Jacobian

matrix. We have found this approach entirely adequate

in all our applications.

4.5 The Numerical Method for Fluid Conduction

In this section we shall describe the numerical

treatment of the cell-to-cell fluid conduction.

4.5.1 Choice of Treatment

The net rate of heat flow into a given fluid cell "i"

due to diffusion effects is expressed as the sum of

equivalent heat fluxes evaluated at the cell faces. Let us

consider the face between cell "i" and its neighbor "j".

The effective conduction heat flux at the face "ij" is

qij = Aij hij (Tj - Ti )  (4.57)

where

A.. = open ("flow") area between cells "i" and "j"
13

hij = effective heat transfer coefficient (defined

in Chapter 3).

Then the total heat flow into cell "i" (using the sub-

script k for "conduction") is:
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Qki = E Aij hij (Tj - Ti ) (4.58)

A fully implicit treatment would spatially couple the

mesh cells through the temperature field. But as our

numerical scheme for the fluid dynamics allows for

spatial coupling at the new time via the pressure field

only, this treatment cannot be applied. Therefore, we

selected the other extreme, a fully explicit treatment

for the effective conduction heat transfer. When the

molecular conduction is greatly enhanced by turbulent mix-

ing and the mesh cell size is small (true in our applica-

tions especially in the radial direction), this type of

treatment may give rise to time step limitations more

severe than the convective time step constraints. This is

especially true for single-phase, relatively low flow

conditions. To reduce the computational expenses in such

situations, we provided a semi-implicit option, which

displays unconditional stability. We will further dis-

cuss these aspects in the next section.

4.5.2 Difference Equations

The explicit treatment of the conduction heat flux

leads simply, for a cell "i" to

Q" = A.. hn  (Tn -Tn) (4.59)
k,i ji 13 ii j3
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Obviously, there will be no contribution to the Jacobian

matrix. Note also that this scheme assures strict con-

servation for the energy transferred by this mechanism,

i.e.,

n nqij = -ji (4.60)

This approach has an inherent stability limitation. Spec-

ifically, considering the conduction only in the transverse

directions and assuming equal mesh spacings (Ax = Ay), the

stability criterion which must be satisfied by the time

step is:

2

4a (4.61)

where a = effective thermal diffusivity.

To circumvent this time step limitation within the

framework of our numerical scheme, a semi-implicit formula-

tion was also developed. Equation (4.59) is modified

into a locally implicit form:

n+1/2 n n+l
Q j Ai h (T. - T ) (4.62)
k,i j# i i

A stability analysis (see Chapter 6) indicates indeed un-

conditional stability. However, there is a penalty assoc-
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iated with this formulation. Unlike the explicit one, the

semi-implicit scheme does not conserve the energy trans-

ferred between adjacent cells. Indeed

n+1/2 hn (n n+l) hn n n n+l
ij iij hij i 3

n+1/2
= ji (4.63)

Obviously, the equality will be satisfied only when a

steady-state is reached, i.e., Tn+1 T for all i's.

Therefore, the use of this scheme is recommended only for

steady-state calculations. Actually, one might attempt its

use in a very slow transient, but in this case the degree

of energy conservation must be kept track of. In Chapter 6,

we will provide some additional comments on this scheme.

The semi-implicit formulation provides a contribu-

tion to the jacobian matrix. First, re-write Eq. (4.62)

as:

n+1/2 hn  Tn+l
ji 1 ) i

+ E A.. h n  Tn  (4.64)
j 1J3 13J J

Then, the derivatives of the conduction heat source with

.. . . .iYmiiYIYIYYIIIII um iligll~nlm l i



182

respect to p and em are:

aQk,i _ (Ah) T (4.65a)
ap k,i (p em

and

3~Qk i )3T (4.65b)e - khk,i (-pm)p
m m

where (Ah) = A.. hn  (4.65b)
k,i i 13 ij

j i

To avoid its repetitive calculation during the Newton

iterations, the quantity (Ah)ki is calculated and stored

at the start of a new time step. The impact of the

semi-implicit conduction formulation on the computational

work per time step is insignificant.

4.6 Time Step Control

The description of the numerical methods would be in-

complete without presenting the time step control strategy

we have implemented in our computer code. Indeed, auto-

matically determining the proper time step size constitutes

an important consideration in our applications.

For our partially implicit method, two aspects are

taken into account. First, the explicit treatment of
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the convective and diffusive transport immediately im-

poses a stability condition. As shown in Chapter 6, the

explicit convection leads to the following limitation:

1 1 1 -1
t<tconv = min ( + 1 + 1 ) (4.66)cony At x t At

x y z

where the minimum is taken over the entire domain and

At Ax =At =Az

x  u x y z =Uz

For computing convenience and an additional margin of

conservatism we actually calculate the minimum of each

min =min(x/Uxl) and"directional" time steps, i.e., Atx  = min(Ax/tUx1) and

similarly for Atm in and Atm in . Therefore,
y z

-1
1 1 1t con= (Amin + min + min ) (4.67)

x x z

The reader should note that this limitation is more re-

strictive than the often used

min min mm
At = min(At , At , At ) (4.68)

con x y z

Actually, this latter expression is incorrect when a

multidimensional stability anaysis is performed. The two

lml ni gmilll
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expressions yield practically the same result if one

directional limitation is much more severe than the

others, for example At <<At and At <<At . This situation

is usually encountered in single-phase flow in a rod

bundle, without blockages. However, when blockages are

present or the flow becomes two-phase, the radial vel-

ocities are significant and in combination with the rather

small radial mesh spacings may give rise to time step limita-

tions comparable to or even more restrictive than that

due to the axial flow. In such situations, clearly one

must use Eq. (4.66) or (4.67).

The explicit treatment of energy diffusion places

another restriction on the time step, as already men-

tioned. While it is perfectly feasible to calculte this

time step size limit using the actual local properties,

we decided to save some computational work by having a

user-prescribed upper limit on the time step size, At
m ax

with the understanding that the diffusion-imposed restric-

tion would be accounted for. This course of action is

justified by the fact that currently only liquid conduc-

tion is considered and the rather weak variations of liquid

properties (density, specific heat, conductivity) easily

allow finding an appropriate upper bound. Consequently,

At = min (At , Atmax) (4.69)
cony'
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The other aspect, often neglected, in time step

control is accuracy. This consideration should be of

major concern because

* our numerical scheme is only first

order in time, and

* in two-phase flows, especially at low

pressures, the main variables may change

greatly over a time step whose size

satisfies the stability criteria.

Consequently, it appears quite reasonable to place limits

on changes in major variables over a time step. One

should also note that limiting changes in velocities has

a beneficial effect on stability. Indeed the time step

limitation due to convection is determined based on

old time velocities. If velocities change greatly

over a time step an instability may result which will

eventually destroy the solution (in fact, to further

guard against such an occurrence, we apply a less-than-

unity multiplier to Atconv obtained in (4.67)). Consider

a quantity X whose changes over a time step are to be

monitored. The actual relative changes are defined as

n+1 n /X n  (4.70)'Xactual = (X x )/x
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Then imposing a maximum allowable change AXallowable , one

can estimate the required time step from

Atnew = (AX allowable/AX) Atold (4.71)
allowable actual

This type of time step size adjustment may be applied in

two ways:

a) at the end of the time step the actual relative

changes are calculated and if found to exceed

the allowable limits, then the advancement

is repeated with the new time step given by

(4.71);

b) similar to a), except that the advancement

is not repeated but the adjustment given

by (4.71) is used as an additional constraint

on the time step size, in conjunction with

Eq. (4.69), i.e.,

At = min [At from (4.69), At from (4.71)]

Procedure (a) may be quite expensive as the severe non-

linearities require at times numerous repetitions of the

advancement. Procedure (b) is obviously cheaper by not

actually enforcing the limits on changes but only attempt-

ing to. Both procedures have been implemented. The
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quantities currently checked for maximum changes are

pressure, mixture density and mixture internal energy.

Finally, an additional time step control is provided

to remedy various error conditions that may be encountered.

When an error condition occurs, the time step size is

repeatedly halved until either the error disappears or

a minimum (user supplied) time step size is reached.

In this latter case, the calculation is stopped.
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CHAPTER 5. THE PRESSURE FIELD SOLUTION

5.1 Introduction

In the previous chapter we have described a class of

numerical methods for the solution of the fluid dynamics

equations. A key feature of the methods (or variations

thereof) is the obtaining of a pressure field problem. In-

deed this pressure problem is characteristic of many

currently used numerical schemes. The pressure field

incorporates both the spatial coupling (due to fluxes of

mass, mcmentum and energy) and, through a reduction process

(described in the previous chapter), the local coupling.

After its solution, the pressure is then used to infer all

the other relevant quantities. When it is part of a

nonlinear solution scheme (such as ours) the pressure field

has to be determined repeatedly within each time step.

Thus it becomes quite clear that the efficient and ac-

curate solution of the pressure field is fundamental to our

method. In this chapter we will present a number of schemes

that were investigated. Additional aspects relevant to our

numerical method will be examined. Finally the

implementation of various boundary conditions will be

discussed.
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5.2 Derivation of the Differential Pressure Field Equations
from the Mass and Momentum Conservation Equations.

When the pressure field problem was derived, the reader

will recall that basically we manipulated a sequence of fi-

nite difference equations. That derivation may have

obscured the actual origin of the pressure problem. In the

following we would like to show that the discrete pressure

problem is actually the analog of a partial differential

equation.

For simplicity let us consider the case of a

one-dimensional, barotropic flow. The appropriate equations

are:

ap/at + a(pu)/ax = 0 (5.1)

a(pu)/at + a(puu)/ax + 9p/ax = F (5.2)

p = p(p) (5.3)

Differentiating eq.(5.1) with respect to time, taking into

account the commutativity of the temporal and spatial dif-

ferentiation and substituting eq.(5.2) yields

2 p/at 2 - a2p/ax 2 = a2(puu)/Bx2 - aF/ax (5.4)
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Let c2 = ap/P . Then eq. (5.4) may be written as

c a p/at2 - a2p/ax2 = 2(puu)/ax2 - aF/ax (5.5)

If the right-hand-side of eq.(5.5) were known, the above

would be simply a hyperbolic equation for pressure.

One could use eq.(5.4) or (5.5) to derive a finite dif-

ference analog. What we will show is the correspondence be-

tween the pressure equation obtained as a result of our dif-

ferentiation scheme and the differential equation (5.4 or

5.5) obtained above. Consider our familiar staggered mesh

arrangement (Fig. 5.1). Let G = pU and convy = a(pUU)/ax.

Then the finite difference analogs of the mass and momentum

equations are (in our scheme):

p -p. ++ c k++1) = 0 (5.6)

1 +l n 1 n+l n+l) (5.7)

(-) -) (-) (i) (i-1) (-)

Substituting the two momentum equations (for the - and +

cell boundaries) into the mass equation for cell (i) results

in:

_ I ~ ~_ ~ ~
1llnMNSll ll i
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Figure 5.1 Staggerred mesh for the
momentum equations.

~



193

1 n+1 n 1 1 n+l n+l n+ln nl ) + 1Pi + Pi-1)
(i - pi) AtAx - - (i+ - 2

1 n 1 
S-(conv+ - conv - - ) (5.8)
Ax + - x +

Writing equation (5.6) for the n-th time level gives:

1 n n-i 1---(p. - ) = -- ( - ) (5.9)
at i Ax +

Substituting eq.(5.9) into eq.(5.8) finally yields:

1 n+l n n-i 1 n+l n+l n+l)
it (P - 2  + ) - (Pi+-i + Pi-i

1 n conv 1=- (conv+- convn)- ( + - ) (5.10)Ax + - Ax +

The perfect equivalence between eq.(5.10) and eq.(5.5) is

easily noted.

Density appears in eq.(5.10) at three time levels. To

avoid storing quantities at three time levels one actually

uses eq.(5.8). It is in this latter form that we cast our

pressure field problem.

To continue our discussion let us eliminate the density

in favor of the pressure, using the equation of state in the
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form:

n+l n 1 n+l n
Pi Pi ( Pi Pi )  (5.11)

Substitute eq.(5.11) into eq.(5.8):

2 2 n+l 2 n+1 2n
(At2/Ax 2){-pl + [2+(Ax/ct) ] -Pi+ 1 } = (1/c pi

-(At/Ax) (+ - i) + (At 2/x) [(conv - convn )

S)1 (5.12)

The right-hand-side of the above equation contains only

old-time quantities; we have indeed an equation for the new

pressure.

It is interesting to note the dependency of the

right-hand-side of the pressure equation on the time step.

Indeed the right-hand-side varies parabolically with At.

Thus while the variation is continuous, it is not monotonic.

This has an important effect on our non-linear solution. At

times, in order to achieve convergence, the "solution" must

be brought closer to the guess. This, in principle, is

achieved by a reduction of the time step. In the limit of

At - 0, it is easily seen that eq.(5.12) reduces to
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n+l n
p. = pi i

provided c is finite. However, an initial reduction in time

step may lead to an increase in the right-hand-side. To ac-

complish a reduction in the right-hand-side a rather signif-

icant reduction in time step may sometimes be necessary. We

have actually noted this behavior in our two-phase flow

calculations. The term responsible for this behavior is the

second one in the right-hand side of eq.(5.12). Recalling

eq.(5.9), one immediately notes that this term is really a

"measure" of compressibility.

For single-phase liquid this term is very small, being

rather a measure of mass conservation. For a well-converged

pressure field, this term is negligible. In contrast, in

two-phase flow, especially at low pressures, the high densi-

ty variations and the difficulty to conserve mass very

tightly combine to make this term dominant.

5.3 Solution of the Pressure Field in Subassembly-like
Geometries -- Specific Aspects

The spatial grid associated with a reactor fuel assem-

bly usually features a rather large aspect ratio, that is

the mesh spacing in one direction is significantly larger

than in the other direction(s). Indeed to provide adequate

resolution transversely one chooses a mesh size on the order

of the fuel pin pitch. In contrast the mesh spacing in the
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axial direction is usually significantly larger (say be a

factor of 5 to 20) for reasons of computational cost and/or

storage limitation. This situation has an important conse-

quence regarding the application of iterative schemes to the

pressure field solution. We shall look at this in detail

for the remainder of this section.

Consider again the finite difference representation of

the mass and momentum equations (eqs. 5.6 and 5.7). As a

refinement let us treat the distributed resistence

semi-implicitly (as in the previous chapter) in the form:

Fn+1 Kn+ (5.13)

where Kn = fn(Gn , . . ) .

From (5.7) and (5.13) one then obtains an expression for the

advanced mass flux, Gn +l, in terms of the advanced pressures

and other old time quantities:

Gn+I n At n+l n+l At n
+ + Ax(l+&tK) (Pi+l i +tK +(514)

(-) (-) (i) (i-l) (-)

Substituting eq.(5.14) into eq.(5.6) and using (eq.5.11)

results in an equation similar to eq.(5.12):
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At2  1 n+1 2 Ax 2 n+l 1 n+l
x I+AtK P i- +  c&t Pi 1+AtK Pi+l

1 n At At2 n n
7po - con) (5.15)

cx + (x(tK) +

The off-diagonal elements in the matrix corresponding to the

pressure equation are therefore

At2

(i) Ax (1+AtK)

Thus for a given time step, a.. is inversely proportional to
13

the square of the mesh spacing.

Our derivation of the pressure equation (5.15) can be

very easily extended to two- and three-dimensions. Consider

a two-dimensional problem with Az and Ax the axial and the

transverse mesh spacings, respectively. In this case, the

off-diagonal elements of the matrix associated with the

pressure problem, are

At2  At2

a. = - -A- and a. ix= -az Az (l+AtKz ) Ax (l+AtK )

Their ratio is then:



198

aix &z2  l+AtKzai z = x  l+tK (5.16)
a Aiz x 1+AtKx

Assume for the moment K z a-Kx; then for an aspect ratio

Az/Ax of, say, 10, the ratio of the off-diagonal elements is

equal to 100. We note thus a much stronger transverse "cou-

pling". But this is not the whole story. Assuming a

Blassius-type expression for the friction coefficient, i.e.,

f = aRe b (with b - 0.2) it is easy to see that K ~ Gl - b

Thus for the usual values of b, K varies almost linearly

with G. Now in assembly-like geometries the axial

velocities are much larger than the radial ones, therefore

in general Kz is significantly larger than Kx . This addi-

tional effect further increases the ratio a. /a.iz

The conclusion is that for assembly-like geometries and

usual spatial grid selection, the transverse pressure cou-

pling is much stronger than the axial one. In other words a

pressure perturbation in a transverse neighbor will have a

much greater effect than a similar perturbation occurring in

an axial neighbor. The recognition of this aspect of the

pressure field problem is crucial to constructing an effi-

cient iterative scheme.

5.4 Direct Methods

In recent years the direct methods of solution for si-

multaneous linear algebraic equations have reached a very
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high level of maturity. The technical commumity has now at

its disposal a number of highly sophisticated mathematical

software packages [1,2,3,41 containing extensive

capabilities in linear algebra. Indeed the user will find a

wide availability of algorithms from which he has to judi-

ciously select those best suited to his problem. More spe-

cifically the subprograms he chooses must perform optimally

with regard to economy and reliability as modules in the

overall computational scheme.

That today we have highly reliable direct linear equa-

tion solvers is due to no small extent to Wilkinson's

seminal work on rounding errors [5]. Excellent discussions

of modern schemes are given in [16] and [71. Additional the-

oretical background can be found in 18,9,10]. All these

works are only a few from a very rich field.

The relevance of the direct methods to our pressure

problem is two-fold. First they can be used for moderately

sized problems as complete solvers for the pressure field.

Second a direct method can be used as a part of an overall

block iterative scheme, for large problems. Of course what

is moderately sized and what is large is somewhat arbitrary

depending to a great extent on the particular computing en-

vironment. Later in this chapter we shall provide addition-

al comments regarding the choice of direct vs. iterative

methods for the pressure field solution.

UEUUU IIYIIY I IIIII IIIIIII i II,, II llm
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5.4.1 General Band Matrices

In the previous chapter we showed that if the

convective terms in both the mass and energy equations are

treated semi-implicitly, the resulting matrix for the pres-

sure problem is non-symmetric but still diagonally dominant

(for some time step size). In our scheme each cell is spa-

tially coupled to at the most six neighbors, therefore the

matrix has a seven-stripe structure. Such matrix is called

a band matrix. Let 2m+l be the band width; then a.. = 0 if

li-ji > m. Let the rank of the matrix be n. The concept of

a band matrix is useful only if m is appreciably smaller

than n. By taking advantage of the band structure a linear

equation solver can save both time and storage. Space is

saved because only the elements between the leftmost and the

rightmost stripes are stored. Note that space must be

provided even for the zero elements located in between these

outermost stripes. This is because of the "fill-in" process

typical of the Gauss elimination. Fortunately for

irreducibly diagonally dominant matrices row interchanges

[i.e., pivoting] are not necessary [61. Consequently the

"fill-in" is limited to within the outermost stripes and the

resulting LU decomposition will have the same bandwith as

the original matrix. As a result the storage requirement is

(2m+l)n locations, compared with n for a full matrix.

Using the band structure of L and U saves time also.

The purpose of Gaussian elimination is to reduce the number
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of unknowns in each equation. For a band matrix, the number

of unknows in each equation is small to begin with, and

therefore the reduction to triangular form takes less time.

In fact, the decomposition involves roughly nm2

multiplications, compared with n3/3 for a full matrix.

To illustrate these concepts consider the following

5x20 grid (Fig. 5.2). In this example n=100 and m=5. (Note

that if instead of row-by-row ordering one chose ordering by

columns, m would be 20; clearly that ordering which leads to

the minimum band width must be chosen.) Storing the matrix

in band form requires (2x5+1)x100 = 1100 locations compared

with 1002 = 104 for a full matrix. As far as the time is

concerned, the decomposition for this band matrix involves

approximately 100 x 112 = 104 multiplictions versus 1003/3 =

106/3 if full. Clearly the savings in both time and space

are substantial. Note that in one-dimensional cases m=l and

the matrix becomes tridiagonal. In this case the direct so-

lution is very economical, requiring only 3n locations of

storage and involving a number of operations on the order of

n.

5.4.2 Positive Definite Band Matrices

When the convective terms in the energy equation are

treated explicitly we have shown that the resulting matrix

for the pressure problem is a Stieltjes matrix (i.e.,

symmetric, positive definite and with non-positive

' II 0
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off-diagonal entries [121). For symmetric positive definite

matrices there exists a modification of the Gauss elimina-

tion which preserves symmetry (see [63, [8], Ill]). This

algorithm is called Cholesky's method (Fadeev and Fadeeva

19] call it the square root method). The method consists of

a special decomposition, of the form:

A = LLT.

The main virtues of this algorithm are:

- no necessity for pivoting,

- only slightly over half of the matrix must be

stored (i.e., (m+l)n) due to symmetry.

Its only disadvantage (small on modern computers) is

the necessity of calculating n square roots. Overall, for

positive definite symmetric matrices this is the algorithm

of choice. Its efficiency and economy of storage make pos-

sible its use in fairly large problems.

5.5 Iterative Methods

The discretization of a wide range of problems in phys-

ics and engineering leads to large systems of linear alge-

braic equations characterized by very sparse matrices. By

limiting the spatial coupling for a cell to only its immedi-

ate neighbors, the usual low order finite difference

approximations produce only a few non-zero entries in each

row of the resulting matrix. Indeed this is one major fac-

tor favoring low order approximations over higher order

.. ...-- -.. ... . .. . I r l i . .. I ll illl1
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ones, the latter yielding potentially greater accuracy but

at the some time unacceptable cost of "filling in" the ma-

trix by adding non-zero entries.

In the previous section we described how this

sparseness is taken advantage of in dealing with band versus

full matrices. We have also noted that the elimination

process leads inherently to a certain amount of "fill-in".

This is true even without the necessity for pivoting. Let

2s+l be the number of stripes (i.e., the maximum number of

non-zero entries in a row), 2m+l be the band width and n be

the rank of the matrix . Then if s<<m the additional stor-

age required by the "fill-in" process is very substantial.

Consider for illustration the following example. Let nx , ny

and n be the number of grid points in the x-, y- and

z-direction, respectively. Assume nx = 5 , ny = 6, nz = 40

and ordering by horizontal plane. In this case n = 1200,

m = 30 and s = 3. The initial matrix requires (2s+l)n =

8,400 locations of storage. To provide for the fill-in dur-

ing the elimination process the storage would have to be

(2m+l)n = 73,200, thus an increase by a factor of about 9.

For large three-dimensional problems this factor is about

m/3.5. Note also that the number of operations involved

increases rapidly.

From the foregoing it is clear that an optimum method

would be one which preserves matrix sparseness and involves

a relatively small total amount of operations. The
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iterative methods automatically satisfy the first require-

ment, necessitating only relatively modest storage. To an-

swer the second requirement is much more difficult. While

it is true that due to sparseness, the number of operations

per iteration is small, the number of iterations may be

prohibitively large (for some acceptable level of accuracy),

thus rendering the total operation count and therefore the

computing time unacceptable. Indeed the challenge of the

iterative methods in practical applications is to find ade-

quate means of accelerating the basic scheme.

In this section we shall present a number of methods we

have investigated as potential pressure field solvers for

large problems.

5.5.1 Successive Block Overrelaxation (SBOR)

Relaxation methods are probably the best known and the

most widely used among iterative methods. Indeed their use

preceded the appearance of automatic computing machines. A

summary of some of these methods especially as applied to

manual computing can be found in 1133. However the impetus

for extensive research was provided by the advent of digital

computers. There exists a vast literature devoted to this

subject. References will be made to more widely known works

which through their approach and coverage have maintained

their relevance. Excellent expositions of the subject are

given by Varga [12], Forsythe and Wasow 1143, Young [15],
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and Wachspress [16], among others.

5.5.1.1 General considerations

We are seeking the solution of the matrix equation Ax =

b, where A is a given non-singular nxn matrix. Following

Varga [12], we consider expressing the matrix A in the form

A = M - N

where M and N are also nxn matrices. If M is non-singular,

this represents a splitting of the matrix A and associated

with it there is an iterative method

(m+l ) = 1 (m) + b, m;o (5.17)

or equivalently

x (m+l) = M-(m) + Mb, mo (5.17' )

If M-1 > 0 and N > 0 then A = M - N is a regular splitting.

Expressing now A as a matrix sum we have

A = D- L- U

where D is a diagonal (or block-diagonal) matrix and L and U

are respectively strictly lower and upper triangular nxn

matrices. If one chooses the following forms for M and N:

1 1M = -(D-wL); N = 1 [wU + (1-w)D]

then (5.17) gives the successive overrelaxation iterative

method. The method is a "point" or a "block" method

according to whether D is diagonal or block-diagonal. As

shown in .the previous chapter, A is a real, irreducibly di-
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agonally dominant nxn matrix with aij K 0 for all i # j and

aii > 0 for all 1 < i < n. It can be proved (Varga [121)

that if these requirements are met, then A-1 > 0. Therefore

we can indeed construct the regular splitting mentioned

above.

To fully construct the method, one has to decide on the

actual splitting and to define a scheme for evaluating the

optimum overrelaxation parameter. These aspects will now be

addressed.

5.5.1.2 Choice of splitting

Considering a general three-dimensional case, the A ma-

trix can be expressed in our case as a sum of one-stripe

matrices:

A= -L -L -L +D U - U-Uz x y o y x z

Here Lx and Ux, L and Uy, and Lz and Uz represent the spa-

tial coupling in the x-, y- and z-direction, respectively

and Do is a diagonal matrix. We can now examine a few

splitting schemes.

a) Point SOR

This scheme is obtained when

D= D ; L L + L + L ; U U + U + U
0 x y z x y z

For our marginally diagonally dominant matrices (indeed for

single-phase liquid, practically the diagonal dominance is
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provided only by the pressure boundary condition, as shown

later in this chapter), this method is much too slow. As

shown in [123, going from a point to a block overrelaxation

for two regular splittings of the same matrix leads to a

higher convergence rate. This choice is successful if the

increased convergence rate more than counterbalances the in-

herent increase in computational work per iteration.

b) Line SOR

For a very modest increase in computational effort but no

additional storage, the line-SOR displays a greater conver-

gence rate than (a). A natural choice for "lines" are the

vertical (z) channels, especially so if the x-y domain is

not rectangular (i.e., the boundaries in the x- or y- direc-

tion are irregular). The z-line SOR is obtained when

D=-L +D - U; L = L +L; U = U + U
z 0 z x y x y

As shown earlier in this chapter, the matrix entries

corresponding to the z-direction are generally substantially

smaller than those corresponding to the other two

directions. As a result the convergence of this scheme

proved to be unacceptably slow. The error decay curves for

a number of w's are shown in Fig. 5.3. The problem consid-

ered consisted of a 5x5x20 domain, single-phase liquid, with

an aspect ratio Az/Ax of about 6 and Ay a Ax. The boundary

conditions were inlet velocity - outlet pressure. As one

can see, the asymptotic rate of convergence is very low, a



.. . . . l l i .J ui ldl,

209

10
lo

0

1,4

10
- 2

S= 1.

1 .W=. 5

= 1. 984 w=1

-3 ... I,,,

10 0 . 200 400 600 800

Number of iterations

Figure 5.3 Comparison of Error Decay Rates for succes-
sive line over-relaxation.

UI iU106



210

great many iterations being required for adequate accuracy.

(For the pressure problem a reasonable convergence criterion

is 10 - 10-5.)

We should mention that while for our particular 3-D

applications the line-SOR has not proved useful, the scheme

may be entirely adequate for other problems. (Indeed we

have successfully used the x-line SOR in 2-D problems.) We

also note that we have tried a x-line SOR and a y-line SOR

variant, with only marginal improvement over the z-line SOR.

c) Plane SOR

As indicated earlier, the matrix entries corresponding to

the x- and y- directions are significantly greater than

those corresponding to the z- direction (associated with the

main flow). The strong pressure coupling in the horizontal

(x-y) plane points therefore towards another splitting:

D =-L - L + D - U - U ; L = L; U = U
x y o y X Z Z

In this scheme a direct inversion is performed for each hor-

izontal plane successively as the three-dimensional grid is

swept in the z-direction. A significant improvement in con-

vergence rate over (b) is achieved (see Fig. 5.4). This

gain however comes at the price of increased computational

effort and storage. These aspects necessitate a more

detailed examination.

Consider first the situation where the storage is at

premium. The minimum storage requirement is 7n (for a
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seven-stripe matrix). The point and line SOR do not require

any additional storage. The plane SOR however needs some

extra storage, required by the direct solution in the x-y

plane. The matrices corresponding to each plane are of

five-stripe type. Assume nx < ny To minimize the band

width of these matrices one chooses an ordering scheme by

row. The band width of these five-stripe matrices is then

2nx+l and their rank is nxny. Then each of these matrices

require (2nx+l)nxny locations. If we try to save on stor-

age, then this amount of locations must be provided as

"scratch pad" space. Relative to the base (i.e., 7nxn n z)

storage, the additional storage represents a fractional in-

crease of (2n +1)/7n . For the example given at the
x z

beginning of this section (i.e., nx = 5, nz = 40) this addi-

tional storage is less than 4% of the base storage. For

this very modest increase in storage a -high price is paid in

terms of computing work. What happens is that since we are

providing storage for one "plane" matrix only, the LU decom-

position must be performed over and over during each itera-

tion. Even though the number of iterations required for a

given accuracy is significantly reduced compared to that

required by the line SOR, the large increase in

computational work per iteration render any reduction in the

total computing time marginal. Nevertheless, it must be

said that this conclusion is based on our specific applica-

tion. The performance of this storage saving implementation
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of the plane SOR may be entirely satisfactory in other

problems.

In our situation the main concern was the computing

time. A very significant reduction in computing effort is

achieved if storage is provided for all "plane" matrices.

In this case the LU decomposition is performed only once,

during the first iterative cycle and the L and U matrices

are stored in place. During all the subsequent iterations,

only a back-substitution is necessary. For the generally

narrow bandwidths encountered in our problems, this

back-substitution requires a computational effort not much

greater than the corresponding process in the line SOR (note

that in the line SOR implementation, this stored-in-place LU

decomposition for the tridiagonal matrices involved was

used).

In this implementation space must be provided for all

"x-y" matrices and also, obviously, for the entries

corresponding to the z-direction. The storage requirement

is therefore (2+(2nx+l))nxnyn z . Compared to the base stor-

age, this constitutes an increase by a factor of

(2+(2n +1))/7. In our example (i.e., for nX = 5) this fac-x

tor is about 2. Taking into account that the base storage

for the pressure matrix constitutes less than 10% of the to-

tal storage required by our numerical scheme, this increase

in storage is quite modest.

It may be of interest to assess the storage requirement
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for a fully direct solution. In our applications nz is

greater than both n x and ny. The minimum band width is

achieved by a plane-by-plane numbering scheme, where a plane

is composed of all the mesh cells at a certain z-level. In

this case the band width is (2n n +1) and the storage
x y

required is (2nxny+l)nxnyn z , representing an increase by a

factor of (2n n +1)/7. In our example (i.e., nx = 5, n =

6) this factor would be about 9. This is a very substantial

increase, which nonetheless might be accomodated for a small

problem. Again, "small" or "large" are characteristics very

much dependent on the particular computing environment.

To conclude, our implementation of the plane SOR has

proven very satisfactory in our applications.

5.5.1.3 Determination of the optimum overrelaxation
parameter

In slowly converging problems finding a reliable and

efficient accelerating scheme is evidently of primary impor-

tance. Perhaps the best known technique of increasing the

convergence of an iterative scheme is the overrelaxation.

The effectiveness of this technique is tied directly to the

determination of the optimum overrelaxation parameter (w).

If the eigenvalues of the associated Jacobi (i.e., si-

multaneous displacement) iterative matrix are real, then a

theoretical foundation exists regarding the evaluation of

this parameter. If the matrix involved is symmetric it can

be shown [181 that this is indeed the case. For one variant
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of our numerical scheme the resulting pressure matrix is not

symmetric, therefore there is no certainty that the

associated Jacobi iterative matrix will have real

eigenvalues. Still we did apply the same technique for

finding the accelerating parameter, the only justification

being its success in our experience. It would probably be

interesting to actually study the eigenvalue spectrum in

this case, but this is no trivial task for the large

matrices involved.

In general the methods of estimating the overrelaxation

parameter fall into two categories:

a) a priori methods, with the objective of finding the

spectral radius of the associated Jacobi or SOR iteration

matrices, before actually starting the iteration process.

These methods are very reliable, making possible a very ac-

curate determination of the parameter. Their only and, un-

fortunately, major drawback is they are not economical.

First, being iterative but usually not accelerated (such as

Jacobi or Gauss-Seidel), they are slow, requiring a large

number of iterations. Second, these iterations are

performed (usually) with null right-hand-side, in which case

they are "wasted" in as far as the solution to the actual

matrix equation is concerned.

b) a posteriori methods, in which one starts the SOR

iterations with some w < wopt and then obtains new estimates

for w based on the actual numerical results. The problem
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here is that if at some point w > wopt' the algorithm for

further refining w is no longer valid, because the

eigenvalues of the SOR iteration matrix become complex.

Detailed discussions of some of these methods are given

in (12,14,15,16]. In the following we will describe the

scheme that we implemented for accelerating the SOR itera-

tion.

The eigenvalues of the SOR matrix are related to

those (W) of the corresponding Jacobi matrix by

2 2 (5.18)
( X + w - 1) = Xw 2 (5.18)

The optimum overrelaxation parameter (i.e., for which the

spectral radius of the SOR matrix is minimum) is given by

opt = 2/{1 +l [-p 2(B)]} (5.19)

where p(B) is the spectral radius of the associated Jacobi

matrix. If one obtains an estimate for the spectral radius

of the SOR matrix p(L ), then for some value of w one can

calculate p(B) from eq.(5.18). To calculate the spectral

radius one can use the displacement vector, i.e., the dif-

ference between the results of successive iterations:

d (m) = x(m) - x(m-l)

Let lid (m)1 1 be any norm. Then it can be shown that
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(m+l) I/ad(m)3d U/md U p(L )

We have used the 1-norm, i.e., the sum of the absolute value

of the components, due to its computing ease. Thus we esti-

mate p(L.) from:

p(L ) / Id(m+l) I/Id(m) 1 (5.20)

This estimate and the associated w update are performed ev-

ery k iterations. The w-updating algorithm is given below:

1) Start iterations with w < wopt; if no better esti-

mate is available w = 1 is used;

2) Every k iterations, obtain p(L ) from eq.(5.29),

P(B) from eq.(5.18) and a new w from eq.(5.19);

3) Continue iterating with the new w for another k

iterations and then repeat step (2);

4) Stop the iterations when either the desired conver-

gence or the maximum allowed number of iterations

has been reached.

The only "degree of freedom" in the above procedure is

the frequency of updating the overrelaxation parameter. Too

seldom an update will lead to slow convergence. On the oth-

er hand, too frequent an update will yield a poor estimate

for p(L ) by not allowing the higher harmonics to decay

enough. It is very difficult to give general guidelines as

to how to achieve the best compromise between these

extremes. Usually some numerical experimentation will point

m Ill iI



218

towards an adequate choice.

5.5.2 Alternating Direction Implicit (ADI)

In the mid-1950s, Peaceman and Rachford [181 and,

shortly after, Douglas and Rachford 1191 introduced a new

method for the solution of parabolic equations. Given the

analogy between an iterative process and a transient problem

(extensively discussed in [12]), this new method was almost

immediately applied to the iterative solution of elliptic

equations. The ADI scheme belongs to the larger class of

fractional step (or operator splitting) methods, a review of

which is given by Yanenko 120]. A succinct but insightful

discussion of the ADI method is presented in [21].

5.5.2.1 General considerations

Given the matrix equation Ax = b one can construct an

associated time-dependent problem

di = - Ax + b (5.21)
dt

where C is an arbitrary positive diagonal matrix. In the

following we will consider C = I. One could then construct

an implicit time-stepping scheme

n+l nx - x n+lSAx + b (5.22)

With fixed boundary conditions and source, the steady-state

solution of the above is just the solution of our original
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equation. Note however that the solution of (5.22) involves

a matrix inversion at every step. For three-dimensional

problems A is a large seven-stripe matrix whose inversion is

not trivial. The A matrix can be expressed as the sum of

three matrices

A=A +A +Ax y z

each being associated with one spatial direction. After

suitable permutations, each of these matrices is

tridiagonal. If a scheme could be devised such that the

time advancement be carried out in sub-steps, each involving

only the inversion of a tridiagonal matrix, the result would

be a potentially very efficient solution method. If in ad-

dition the time step could be viewed as an acceleration pa-

rameter and an optimum T(or sequence of T's) could be de-

termined, we would have at our disposal a very powerful

method, both in terms of computational effort per step as

well as regarding the convergence rate. For the model prob-

lem (i.e., Laplace's equation on the unit square, with uni-

form mesh spacings and homogeneous boundary conditions), a

number of ADI schemes, with optimal acceleration parameters,

have been devised which display enormous gains in convergen-

ce over the SOR. Their theoretical analysis however gener-

ally imposes a very severe constraint, requiring that the

spatial operators be commutative. The method has been ap-

plied nonetheless heuristically to more general

OiiWW l
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two-dimensional problems with mixed results [12].

5.5.2.2 Three-dimensional ADI iteration

The technical literature on ADI, while quite abundant

on 2-D applications, is very scarce when dealing with 3-D

problems. One reason for this is the fact that some ADI

schemes cannot be properly extended from 2-D to 3-D

applications, as they lose their unconditional stability

and/or consistency [20]. Nevertheless there are a few 3-D

ADI schemes and we chose Douglas' variant [22] for further

investigation.

As applied to eq.(5.21), this scheme is:

1 n+1/3 n 1 n+1/3 n n n
-(x - x ) = - A Xn+ 3 + ) - A x - Ax +b (5.23a)

2x y z

( x ) =  2 x + x )  2A(x- + x )

- A x + b (5.23b)
z

1 (n+l n 1 xn+1/3 + xn) 1 A 2"n 3 + xn)(x - x y- Axx n)

1- (xA 1  + x ) +b (5.23c)

After eliminating the intermediate steps, the scheme reduces

to
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1 n+1 n 1 n+1 n 2
-x ) = (x + x ) + b - O(T) (5.24)

Thus up to a term of the same order of magnitude as the

truncation error (in time), this scheme is analogous to the

well-known Crank-Nicholson's scheme.

The scheme (5.23) can be re-arranged for computational

ease. Let

Bi Ai i=x,y or z.

un+/3 n+Z/3 nu = x - x , = 1,2,3.

Note that xn+/3 + x n = un+./3 + 2xn . Eq.(5.23) can now

be re-written as:

B un+1/3 = - -Axn + rb (5.25a)

n+2/3 = un+1/3 (5.2)Bu = u (5.25)y

Bz  = un2/3 (5.25c)

xn+ = un + x (5.25d)

Obviously

To reduce

in this form the scheme is much more economical.

the computational work per iteration, the B



222

matrices must be decomposed and stored. In principle A can

be reconstructed every time from the B's. If the B's are

already decomposed that would involve a substantial

computational effort. Thus for efficiency one would have to

store A also, in its original form. Additional storage is

required for the vector u. As expected, computational

savings come at some cost in storage.

We have implemented the ADI scheme in the form of

eq.(5.25) and used it as an iterative pressure solver. A

sensitivity study using t as an acceleration parameter was

performed. The results generally display a behavior much

like the line SOR (for varying w).

Overall our experience with the ADI scheme has been

disappointing. Its convergence rate was strongly dependent

on the choice of T, but even for the optimum (determined by

trial and error) it was no better than the line SOR with op-

timum w. Note also that the computational work per itera-

tion, even in our highly optimized implementation, is still

greater than for the line SOR. Because of the above reasons

(and, to a lesser extent, the increased storage) our conclu-

sion was that the 3-D ADI was not a viable candidate as an

iterative pressure problem solver for our applications.

5.5.3 Coarse Mesh Rebalancing (CMR)

The methods belonging to this class are of more recent

vintage, their use having become more widespread in the late
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60s and during the 70s. Some of the ideas involved can be

found however in earlier works, for example Kellogg and

Noderer [23] and Kopp 1261]. Wachspress [16] described such

a scheme calling it "variational acceleration." Nakamura

[171 applied a CMR method to a variety of problems in reac-

tor physics, fluid mechanics and structural analysis and

studied some of its theoretical aspects. Brandt [25] has

also used and analyzed a CMR method extensively.

As it will be later seen, this class of methods belongs

to a larger category known as the weighted residual methods

(WRM). What one basically does when solving a problem by

such a method is attempt to find a "weaker" solution. For

example, instead of finding a solution satisfying a certain

equation in a pointwise sense, a solution is sought that

satisfies that equation in an integral sense.

The CMR methods are used to find corrections to a solu-

tion obtained by some other means in order to accelerate an

iterative process or, at times, to improve the conservation

of a physical quantity (for instance, mass) within some

(relatively) large subdomain.

5.5.3.1 General considerations

Basically, one can divide the CMR methods according to

the type of corrections they yield, namely:

- multiplicative, or

- additive.

In the following we shall briefly introduce both approaches,
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later focusing on the multiplicative corrections, which in

our numerical experiments proved superior. The discussion

is partly adapted from [171].

a) multiplicative corrections.

In a coarse-mesh-rebalanced iterative scheme, the iter-

ation process is interrupted periodically, say, every n

iterations. The approximations obtained after these

n-iteration cycles are called prebalanced vectors. Let us

denote one such vector by x o. The result of the coarse mesh

rebalancing is called a rebalanced vector, denoted by x,

which then becomes the initial guess for the next

n-iteration cycle. A prebalanced vector and a rebalanced

vector are related by:

K
x = ( Pk)xo (5.26)

k=l

wnere:

Pk = partitioning matrices;

k = arbitrary coefficients, to be determined via the

weighted residual method;

K = number of coarse mesh regions.

The residual vector r is given by:

K
r = Ax - b = A( kPk)xo - b (5.27)

k=a

The K arbitrary coefficients are determined by introducing K
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independent weighting vectors, wk and requiring, according

to the weighted residual methods, that the residual be

orthogonal to each weighting vector:

<ws, r> = 0

or

K
I <w, APkXo> *k = <w,, b>, =lr,...,K (5.28)

k=l

Eqs.(5.28) form a set of K equations from which the K

coefficients (multiplicative corrections) are obtained.

There are various choices for wk's and for P 's. Two

types of partitioning are widely used. The first type is

called disjunctive partitioning. In this case P is a diag-k
onal matrix, containing zero elements except for those

elements corresponding to the subdomain Dk, which are uni-

ty. For example, consider a domain containing N = 6 mesh

cells and a coarse mesh partitioning into K = 3 subdomains.

Assume that the second subregion (k=2) contains the third

and the fourth mesh cells. In this case we have

P2 = diag (0 0 1 1 0 0)

The second type of partitioning is called pyramid

partitioning. It is similar to the first one, except that

instead of unity, the elements corresponding to the

subdomain Dk become interpolating functions, achieving a

"smoother" transition between the fine and the coarse grids.
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Even more choices exist regarding the weighting

vectors. In the context of the CMR used as an acceleration

method, the two probably most often used weighting methods

are:

- Galerkin's:

w = Pzxo

- Region balancing:

w = P 1

(where 1 = col (1 1 1 1 ... 1), i.e., a vector with all

elements equal to unity).

b) additive corrections

In this approach the relationship between the

prebalanced and rebalanced vectors is:

K
x = + ( L 'k Uk) (5.29)

k=l

Here uk is a vector to be prescribed. As before we form the

residual vector and impose that it be orthogonal to K

weighting vectors. One obtains:

K
L <w, A Uk> k = <w,, b - Axo>, £=1,...K (5.30)

k=l

from which the K coefficients can be determined. One

common choice for uk is uk = P 1
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5.5.3.2 CMR with multiplicative corrections, applied to
assembly-type geometries.

We now present our specific implementation of this

method. Our basic iterative scheme is the successive plane

overrelaxation (SPOR). In our applications a natural choice

for coarse mesh subdomains are the horizontal planes. Con-

sequently we have decided to use disjunctive partitioning

and region balance weighting. This choice leads to a rela-

tively simple algorithm which can be programmed in such a

way as to add only a small amount of computational work to

the basic iterative scheme. We note that this combination

of partitioning and weighting was reported very successful

by Nakamura and Esposito [26].

Consider a row in our matrix equation Ax = b:

zL xLzL + aLx aYLjX +aai,j,kxi,j,k- ai,j,ki-,jk ,j,ki,j-l,k ai,j,kxi,j,k

+y U xU a zU x = b (5.31)
+ i,j,kxi,j+l,k ij,kxi+l,j,k i,j,k i,j,k+l i,j,k

where i,j,k are the mesh indices in the x-, y-, and

z-direction, respectively. The other notations are then

self-explanatory.

The coarse mesh equations can now be obtained from

eqs.(5.28):

L MlIMM I~i lMIH 11, Il
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k- +  k + k+ =  k=l ... ,K (5.32)

where:

(U) zL(U)
X ai",jk xi,j,k() 1

S xL o
k (ai,j,ki-l,j,k ij,kxi,j-l,k i,j,ki,j,k

+ j,kxi,j+l,k + aj,kxi+lj,k

Sk bi,j,k
ij

Eqs.(5.32) form a tridiagonal system whose solution is very

simply accomplished, yielding the multiplicative corrections

Ck'S. Actually more computational work is generally

required by the construction of the matrix C and the vector

S.

Two remarks are in order in regard to the solution of

Cc = S

First, a slight saving in computational time can be accom-

plished by calculating the vector S (i.e., the coarse mesh

right hand side) only once and storing it for the duration

of the iteration. The price in additional storage is quite

negligible. Second, particular attention must be paid when
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constructing the elements of the C matrix near the

boundaries. As the pressure on the boundary is known, the

corresponding $ must preserve it. Therefore

o - k+l = 1

The scheme described so far was implemented as a means of

accelerating our basic iterative scheme.

Our experience with this method has been mixed. In

some instances, the accelerating effect was dramatic, in

some others, the acceleration was marginal. In some (albeit

few) cases the iteration was actually destroyed, the CMR

preventing convergence or even leading to divergence. We

have experimented extensively with the choice of rebalancing

frequency. Unfortunately no systematic effect was noticed.

One interesting observation has been that when the right

hand side b contained fairly large components (typically

occurring in the early Newton iterations), the CMR was gen-

erally more effective than when the bij. 's were small and

not displaying any systematic trend. This latter situation

occurs almost always in later Newton iterations. We were

unable to draw more precise, quantitative conclusions that

would have reduced the almost totally heuristic character of

the application of this accelerating technique. Recently

Brandt et al. [27] reported an -application of an additive

correction CMR (described in detail in 1251) to accelerating

the pressure solution in SOLA-ICE [281]. Their resuls, which

pertain to a 2-D problem, indicate a certain accelerating
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effect, but far from spectacular.

Our experience with the CMR method indicate that much

more work would be necessary to use its potential. Other

combinations of partitioning and weighting may prove more ef-

fective, different choices for the coarse mesh grid may be

advantageous. Extensive numerical experimentation would be

needed, as the non-linear character of this iterative accel-

eration practically precludes any rigorous analysis.

5.6 Boundary Conditions

In chapter 4, we have discussed the boundary conditions

associated with our numerical method. That discussion was

actually more general in character, being based on the par-

tial differential equations describing the two-phase flow

model. Here we present some complementary aspects, in par-

ticular the manner in which the boundary conditions are

treated in and affect the pressure field solution.

5.6.1 Pressure Boundary Condition

Consider for simplicity a one-dimensional incompress-

ible flow. It is easy to see that in this situation

eq.(5.12) reduces to:

- + 2pn+ - pn+l - AX(E- F) (5.34)i-1 + i i+l +

Let us look at, say, the inlet boundary (Fig. 5.5). The in-

let pressure is prescribed in a "fictitious" cell, in this
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case cell "0". This pressure will now alter the

right-hand-side of the pressure equation (5.34) written for

the first real cell, i.e., i=l:

2pn+l n+l = -dx(F )1 + n+l (5.35)
1l P2  + 1 O

The pressure coefficients display strict diagonal dominance.

In fact this finding is more general. Indeed it is the

pressure boundary conditions that assure (for incompressible

fluids) the strict diagonal dominance of the pressure coef-

ficient matrix. At least one such boundary condition (math-

ematically equivalent to the Dirichlet-type boundary) is

needed if the resulting matrix is to be irreducibly diago-

nally dominant, thus rendering the problem solvable.

While it is true that in our treatment some liquid

compressibility is assumed, its very small value still makes

the pressure boundary condition practically responsible for

strict diagonal dominance.

5.6.2 Velocity Boundary Condition

Consider the same situation as before, but in this case

assume that the velocity is specified at the inlet. In this

case the momentum equation written for the "edge" 1/2

becomes unnecessary. It can be easily shown that the pres-

sure equation for cell 1 becomes:

n+l n+1 / ax n Ax .i+
p - 2  -x E2 -' 2 + 2 (536)13/2 t 3/2 Ut 1/2 (5.36)
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Clearly this type of boundary does not provide diagonal dom-

inance. Mathematically it is equivalent to the Neumann-type

boundary condition, i.e., the normal derivative of pressure

is specified. Noteworthy that when the fluid is incompress-

ible and only velocity boundary conditions are specified,

the pressure coefficient matrix becomes singular. Physical-

ly this implies that for an incompressible fluid mass cannot

be added or extracted at arbitrary rates.

Actually there is more to be said about this latter

situation. Consider the steady-state flow of an incompress-

ible but viscous fluid and impose velocity boundary

conditions at both ends of the pipe. In particular the mass

flux is obviously uniform and so is the velocity (if the

duct area is constant). The pressure drops can be obtained

directly from the momentum equations:

Api+-/2 = Pi - Pi+l = - Fi+/2 (5.37)

What one cannot determine however are the absolute

pressures! In order to determine them, the absolute pres-

sure must be specified for one cell, say i*. This amounts

to breaking up the domain into two subdomains, i = I to i =

i* and i = i* to i = I. Now each of these two subproblems

are perfectly solvable, each being characterized by a

velocity/pressure or pressure/velocity set of boundary

conditions. Mathematically we removed the i*-th equation
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from the system, rendering the rank of the associated matrix

one less than its order.

5.6.3 Total Inlet Flow Rate Boundary Condition

Often the simulation of an experiment requires a

prescribed mass flow rate at the inlet to the domain. While

in one-dimensional (single-channel) representations this can

be easily achieved through an inlet velocity boundary condi-

tion, simulations of multiple inter-connected channels are

significantly more difficult with this constraint.

One "easy" way to specify a given inlet mass flow rate

would be to prescribe the velocity of the inlet of all

channels. However one does not know a priori the flow

splits. Even for geometrically similar channels, large

changes in properties would cause differences in hydraulic

behavior. This is especially true for two-phase flows.-

Thus a more or less arbitrary inlet flow distribution would

generally create nonphysical cross-flows persisting for some

distance downstream from the inlet. Depending on the prob-

lem under consideration, the predictions will be negatively

affected.

There are schemes that allow the specification of the

total inlet flow rate (see [28] and 129]). Their major

drawback is an additional "layer" of iterations, at a sig-

nificant computational cost. Moreover, these schemes are

associated with "marching" methods and it is not clear

whether their adaptation to truly boundary-value solution
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schemes is possible.

We have developed a method which makes possible the

specification of the inlet mass flow rate in a manner in-

trinsically connected to the pressure field solution. This

method will now be described. Condider the situation

depicted in Fig. 5.6. Here we have four channels fed from a

common "plenum." The plenum pressure, p , will be deter-

mined together with the pressures inside the domain such

that a given total mass flow rate is achieved.

In the previous chapter we have seen that in our numer-

ical method, the momentum equations yield relations between

new time velocities and pressures. Written for the inlet

"edge", these relations are:

k k k
Uli li (Pli - o) + bli(538)

where superscript k refers to vapor (v) and liquid (1), "i"

is the channel index, and a and b contain only old time

quantities. The flow rate for phase k into channel i is

k k k * k
i i k)liuli (5.39)

where Ali is the i-th channel inlet area and the "macroscop-

kk *
ic" densities (a p ) are evaluated exactly as in the mass

equation (see previous chapter). The mixture mass flow rate

into the i-th channel
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Actual domain boundaries
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w li +Wii~i i'i 11 (5.40)

can then be written, by combining eqs.(5.38), (5.39) and

(5.40) as:

Wli = ali (Pli-Po) + bli

where:

VV* V +ali ali[( p liali + ( p )liali

bli i [ ( a p ) ibli + ( )ibli ]

The total inlet mass flow rate is

W1= . li
1

(5.41)

(5.42)

(5.43)

(5.44)

Substitution of (5.41) into (5.44) yields an additional

equation for pressures:

( ali)po - ilili bli -11 1 1
(5.45)

In terms of pressure corrections the above equation leads

to:

I I

( ali)6Po -  ali 6li = 0
i i

(5.46)
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The steps required to implement this boundary condition

are then the following:

- evaluate coefficients a' and b' for all i;

- based on the current guess for pressures inside

the domain and the specified total mass flow rate,

a consistent guess for the plenum pressure, po'

is obtained from eq.(5.45);

- eq.(5.46) is then solved as a part of the pressure

field solution;

- the resulting correction, 6Po, is used to update

the pressure po in the plenum, just as all the

other pressure corrections are used to update the

pressures inside the domain.

The crucial point to emphasize is the perfect integra-

tion of the additional pressure equation into the overall

pressure field solution. The extra computational work and

storage required are virtually insignificant. Basically we

add one unknown and one equation to our system, increasing

the order and the rank of the coefficient matrix by one.

The left upper corner of the matrix corresponding to the do-

main illustrated in Fig. 5.6 is shown in Fig. 5.7. The (X)

indicate entries due to the additional equation. The dashed

lines evidence the block structure of this matrix, each

block corresponding to a layer of cells (in our case a row

of four cells). As can be seen, the band width of the ma-
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FIGURE 5.7

MATRIX MODIFICATION DUE TO THE 
INLET MASS FLOW

RATE BOUNDARY CONDITION
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trix (in our case 4 + 1 + 4 = 9) remains unchanged. This

again supports our contention about the ease of

implementation of this new boundary condition capability in

our various pressure solvers.

5.7 Integration of the Pressure Field Solution into the
Overall Computing Scheme

After discussing in detail various aspects of the pres-

sure field solution, it is appropriate to conclude the chap-

ter with some considerations on the incorporation of this

computing stage into the overall numerical scheme, with the

objective of minimizing the total computing effort.

5.7.1 Selection of Pressure Solvers

The major factor influencing the choice of a particular

pressure solver is the dimensionality of the problem. While

it is perfectly feasible to construct a pressure solver ap-

plicable to all spatial representation, in many instances it

is substantially more effective computationally to "tailor"

to some extent a pressure solver to a certain problem type.

This has been our approach and Table 5.1 indicate the avail-

ability of various "customized" pressure solvers. Note that

a second factor has been taken into account, namely the sym-

metry (or lack of it) of the pressure coefficient matrix.

We remark that generally our higher dimensionality

pressure solvers will "collapse" properly when used in a

problem of lower dimensionality. The specific information

as to when this is so is more appropriately provided in the

M.. ... . . .... .. ..
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TABLE 5.1

PRESSURE SOLVER - PROBLEM TYPE MATCHING

1-D 2-D 3-D

S N/S S N/S S N/S

LU-tridiagonal x x

LU-5- stripe banded
x x

SLOR-radial blocks
x x

SLOR-axial blocks
x x

SPOR-planar blocks x x

LLT-7-stripe banded

Legend:

n-D = n-dimensional domain

S = symmetric

N/S = non-symmetric
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code user's guide.

5.7.2 Accuracy of Pressure Solution

At this point the reader should recall that the pres-

sure field solution is really an "inner" step of a

non-linear solution, the latter being intrinsically

iterative. That is, each non-linear iteration provides an

improved guess for the next iteration, which then provides a

further improvement and so on. The question that one may

raise is the following: since each pressure field solution

basically constitutes only an intermediate step towards

attaining the final solution to the non-linear problem, how

accurate must the former be? While this is a legitimate

question, its answer is unfortunately quite difficult and

the following comments are offered as guidance only.

With respect to the direct methods we can state practi-

cally with no hesitation that for the diagonally dominant

matrices involved, the solution is very accurate and there

is no need for iterative refinement.

In the case of the iterative methods one must actually

choose the convergence criterion. Based on the previous

remarks the conclusion may be reached that a rather loose

convergence criterion would speed up the overall computa-

tion. Unfortunately often this is not so. Indeed a poorly

converged pressure field solution may substantially slow

down or even destroy the non-linear iteration. Probably a

safe rule to follow is to impose a convergence criterion for
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the presssure field one to two orders of magnitude tighter

(i.e., smaller) than its counterpart for the non-linear it-

eration. In any case, numerical experimentation must be

used for further guidance.

5.7.3 Non-linear Solution Type

Fundamental to our non-linear solution scheme is the

construction of the Jacobian matrix, which in turn generates

the pressure coefficient matrix. If this Jacobian is

updated every non-linear iteration, then each time the pres-

sure field solution must be started from "square one." This

is the case if Newton's or the secant methods are used.

While they might provide faster convergence, a fairly large

computational effort is required for every iteration.

In contrast, if the parallel-chord method is used, the

Jacobian is calculated only once and all the LU

decompositions can be performed during the first non-linear

iteration. Subsequent iterations then require only

"back-substitutions", at great savings in computations. The

drawback is that the convergence of the parallel-chord meth-

od is generally lower than that of the other two methods.

In only mildly non-linear problems such as those encountered

in single-phase liquid flows, there is no incentive to up-

date the Jacobian, thus the choice points clearly towards

the parallel-chord method. In two-phase flows the strong

non-linearities would make however this method much less ef-

fective. The optimum in terms of overall computational ef-



243

fort would be to update the Jacobian periodically, thus

achieving both an adequate convergence rate and at the same

time a relatively low average computing work per iteration.

Once again numerical experimentation is needed to find a

near optimum frequency for the Jacobian update.
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CHAPTER 6. STABILITY AND CHARACTERISTIC ANALYSIS

6.1 Introduction

As already mentioned in Chapter 4, the stability of a

numerical scheme is an absolute necessity if a converged solu-

tion to a well-posed initial boundary value problem is to be

obtained. Since our numerical scheme for this work is not

fully implicit, it is only conditionally stable, i.e., there

are some time step limits which must be satisfied. In the

section of Chapter 4 addressing the time step control

strategy, we have indicated without proof what these

limits are and how they are used to ensure a stable calcula-

tion. In this chapter, we will attempt to substantiate these

time step criteria. We should note that although conceptually

possible, a complete and rigorous stability analysis is

algebraically prohibitive. Consequently, we have taken a

simplified approach for this presentation which we believe is

quite adequate in bringing out the salient points. It should

be also noted that in the last analysis, stability is

ascertained through extensive numerical experimentation.

Above, we have associated a converged solution to a

well-posed initial boundary condition. The time-dependent

single-phase fluid dynamics equations are hyperbolic in

character, in that small perturbations propagate with real

finite characteristic velocities. Clearly, one would ex-
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pect this to be also true in the case of two-phase flow

equations. Unfortunately, it has been known for some years

now that the common two-phase flow equation sets with unequal

velocities display a peculiar trait, namely they have some

complex characteristics. Therefore, they are not hyperbolic

and consequently, they do not represent a well-posed initial

value problem. The implications of this finding are

important from both a theoretical and practical point of view,

having definitely an impact on the physical soundness of

the model as well as on any numerical solution of it. A

brief analysis of this aspect, applied to our two-phase

model, forms the object of the second major section of this

chapter.

6.2 Stability Analysis

We recall from Chapter 4 that the numerical scheme we

selected for this work treats two phenomena,convection and

diffusion, in an explicit manner. Generally, an explicit

treatment leads to conditional stability, i.e., there will be

upper limits to the size of the time step. The object of

this section is to find these limits, thus substantiating

the time step control strategy we implemented in this work.
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6.2.1 Convection

6.2.1.1 A Semi-Implicit Numerical Scheme for Fluid
Dynamics

For simplicity we shall consider a one-dimensional

inviscid adiabatic flow. The equations describing this kind

of flow are the continuity and momentum equations, given

below:

ap + + Up3+ p- + U-- =
3t ax ax

5t 3x p x

(6.la)

(6. lb)

(6.lc)p = p(p)

Using a staggered mesh, treating the terms related to sonic

propagation (see Chapter 4) implicitly and the convective

terms explicitly, we have

- n + rp (U n+l

j j j+1/2

- Un

j+i/2
+ rUn

j+1/2

- U ) + rUn+ (p - p ) = 0
j-1/2 j-1/2 j j-1

(6.2)

(Un
j+1/2

- Un
j-1/2

+ (r/pn ) (n+l

j+1/2 j+l

n+l
pn+) = 0

(6.3)

n+l
p

j

Un+l
j+1/2
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where r = At/Ax.

Above, a donor cell logic (assuming flow in the direc-

tion of increasing x) was used for the spatial derivatives

of the density (in the mass equation) and of the velocity

(in the momentum equation). The reader may easily verify

that the last two terms in the mass equations are equivalent

to the form used in Chapter 4, i.e.,

ApU + pn Un+l n Un+1 (6.4)
j j+1/2 j-1 j-1/2

Next we eliminate the density differences in favor of the

pressure differences:

2-Ap = a -2Ap (6.5)

where a2 = (dp/dp) s and treat the quantities multiplying the

differences as constant coefficients. We can now apply the

standard von Neumann linear stability analysis ([1]) by

considering a Fourier component of p and U, namely

n ^= ije n = n (6.6)p. p e and U. Oe

where 8 = kAx (k is the wave number, related to the wave

length, A, through the relation k = 27/A). The amplitudes
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of these components then satisfy the equation:

Vn+l = GVn (6.7)

where V = col(p,U). The eigenvalues of the amplification

matrix, G, are given by:

X-C
det 2iX(r/p)sin (/2)

c = 1 - rU(1 - e-i)

2i rpa 2sin (8/2)

X-c = 0

From Eq. (6.8), one immediately finds that X's are given

by

1+4r2 a 2sin2 (/2)
(1+2ira sin 8/2)

For stability, the eigenvalues must satisfy the condition:

Il < 1 (6.10)

which leads, after some algebraic manipulation, to:

2 2- rU(1-rU) < r a

where

(6.8)

(6.9)

(6.11)
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For positive velocity, a sufficient condition to satisfy

(6.11) is

rU < 1

that is,

At < Ax/U (6.12)

Therefore, the discretization (6.2, 6.3) leads to the

standard time step limitation for explicit upwind convection.

6.2.1.2 Multi-Dimensional Explicit Convection

In light of (6.12), one might conclude that the exten-

sion to a multidimensional flow would consist simply of ob-

taining an equivalent condition for each direction and then tak-

ing the most restrictive one. We shall see, however, that

this is not the case.

Consider the "model" two-dimensional convection equa-

tion ([2]):

.+ U . a - 0 (6.13)
-t x ax y ay

The finite difference equivalent of this equation, using
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donor-cell differencing (with Ux > 0, U > 0), is:x y

n+l
j, z

n n n
j, + Cx j,, -,

n
+ C(j,

y jE
Snn _ ) = 0

jt-1
(6.14)

where:

Cx = UAt/Ax and Cy = U At/Ay

Extending the von Neumann analysis to two dimensions, we

consider

ij i£8n n x e
(6.15)

Substituting (6.15) into (6.14) we find

sn+l

where the amplification factor, X, is given by:

(6.16)

-iex  -y
S= 1 - C - C +Ce +Ce

x y x y
(6.17)

For stability, the condition IX] < 1 must be satisfied.

After some re-grouping, one obtains:

= n= X
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2 = ( - C ) 2 + 2(1 - Cx - Cy)(C cosOx

2 2
+ CyCos y) + C + C + 2C C cos(e - )

y y x y x y x y
(6.18)

Since some terms (namely the "squares") are always positive,

IX12 will attain its maximum value when all the terms are

positive and maximum in magnitude. Assuming 1 - C - C 0,

this happens when 8 = e = 0 (since cose < 1). In this case:
x y

max Xl2 = 1
(for all

ex, y)

Therefore, for stability we must have:

Cx + Cy< 1

or

At < (U /Ax + U y/y) 1  (6.19)

In an entirely similar manner, one can extend the

analysis to three-dimensional flows, yielding:

... . . il ll id- ,llllnl-~rlllll J'IIYIYN M I i Li4 I iIlUlIJIlIhPI h,
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-1
At < (U /Ax + U /Ay + U /Az) 1  (6.20)

Clearly, conditions (6.19) and (6.20) are more stringent than

(6.12). For example, considering Ux = Uy = Uz , the limita-

tions represented by (6.19) and (6.20) constitute 1./2 and 1/3,

respectively, of the limit given by (6.12).

6.2.1.3 Effect of Complex Characteristics on StabiLity

This effect can best be illustrated by reviewing

a simple, but insightful example containing the basic features

of interest in an algebraically tractable form. Following

Stewart ([31), let us consider the equation:

O/a8t + U(I + ei)3 /9x + K = 0 (6.21)

Assume U and K are non-negative constants. This equation

represents the convective transport of a quantity ¢ with a

complex velocity, including a damping term.

A finite difference equivalent, treating explicitly the

convection and implicitly the (local) damping, is

n+1 n n n n+l
j - j+rU(l + Ei)(j - j ) + (At)Xc = 0

(6.22)

where r = At/Ax.
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Note that donor cell differencing is used for the convective

term. As before, let

n n ije
j = e

where e = kAx and k =/ZAx, 2 = 1,2,...,L (L = total

number of spatial intervals). The amplification factor is

found to be:

X = (1 + KAt)- [1-rU(l + Ei)(1 - e )] (6.23)

For stability, the condition IXI<l must be met, i.e., the

locus of X(8) must lie inside the unit circle.

It is easy to see that:

-for e - 0

-for 6 =

X - (1 + KAt) 1 (6.24a)

X + (1 + KAt)-1[l1-2ru(l+i)]

(6.24b)

Equation (6.23) represents, in the complex plane, a circle

with a radius R given by

R = (1 + KAt) - 1 (1 + 2 )1/2 rU (6.25)

and passing through the point [(1 + KAt)-1, 0]. In other
and passing through the point [ (i + Kt) , 0]. In other

~ ~. ~ W... 1..1.. . Ylilll i , ,, , I, ,,
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words the damping term provides a contraction, while the

complex velocity produces a dilation. In addition, the

complex velocity leads to a rotation by an angle arctan E.

This geometrical representation is illustrated in Fig. 6.1

(for c > 0). Note that the locus of X is actually only

the bottom half of this circle.

A few remarks can now be made. First let us consider

the case K = c = 0, i.e., real characteristic with no damp-

ing. This is the standard convection problem. The

locus of X will pass through the point (1,0) and the radius

will be just ru; the center of the circle is on the real

axis. Clearly, when rU < 1, the condition IXI < 1 is met.

Note that the points corresponding to the long wavelength

(i.e., large Z) components are the closest to the unit circle.

When E = 0 but K > 0, there will be a contraction of

the locus of X(as already noted) which may allow for an

rU in excess of unity.

Now if K = 0 but E # 0, the locus of X passes through

the point (1,0) and is tilted by an angle arctan e.

Clearly, the situation raising concern is that for c > 0

(it should be noted that when complex characteristics

occur, they do so in conjugate pairs, therefore, there is

always an E > 0). In this case, for some k large enough,
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-1 Re

£=1
(e=z,
k large,
short wave length
limit).

\ I \ R=L
£=2 £=3 Z=4 (8-0,

k small,
long wave-
length

limit)

FIGURE 6.1 Locus of X - Eq. (6.23)
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the locus of X will be outside the unit circle. We note

that a smaller At leads to a larger "threshold" Z. In

principle, if there are only a few nodes, the numerLcal solu-

tion may still be stable.

Finally, if K > 0 and E > 0, the above locus under-

goes a contraction and passes through the point

-I
[(I + KAt) , 0]. The rotation due to e now leads to a

situation in which we find points corresponding to some

relatively short wavelength components close to (or pos-

sibly outside) the unit circle, whereas the very locng

wavelength components (with £ near L) may be perfectly

stable. This point, we feel, has not been sufficiently

emphasized in [3]. In other words, it appears that the

very short wavelength modes are stabilized by the donor

cell differencing, the very long wavelength modes are

stabilized bythe damping term, but the intermediate wavelength

components may be unstable due to the complex characteristic

velocity.

For this last case, it is interesting to note the

effect of the time step reduction for a fixed mesh size. Re-

calling the expression of the radius R, it is evident that

for At - 0, R will decrease linearly with At, thus compensat-

ing for the intercept with the real axis moving toward the

point (1,0). For any finite mesh size, hence finite L,
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one could always find some time step which would render all

the Fourier modes stable.

Reference [3] contains an interesting stability

analysis applied to an isothermal unequal velocity two-phase

flow model. It is shown there that stability of the very

short wavelength components is assured by the donor cell

differencing, while the long wavelength modes are stabilized

by the interfacial momentum exchange. However, the concern

over the intermediate wavelength modes is left unanswered.

To conclude this subsection on a positive note, we

should state that a very large body of numerical experience

substantiate the fact that successful computations can

be made even with ill-posed models (i.e., models having com-

plex characteristics) for reasonable mesh sizes and

physically meaningful wall and interfacial momentum exchange

terms.

6.2.2 Locally Implicit Diffusion Equation

In Chapter 4, it was stated that the fully explicit

radial liquid conduction imposes a time step limitation

of the form (for Ax = Ay):

At < Ax2  (6.26)
-- 4i

where a = thermal diffusivity. This limitation of the

011111I 11116 011i l i ih 11 I LJ , ,
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explicit treatment of the diffusion transport is well-known

(see, for example, [1], [2], [4]) and will not be proved

here. In that same chapter, however, we introduced an

alternate scheme, locally implicit, which displays uncondi-

tional stability. The analysis of this scheme is presented

below.

For simplicity, let us consider a one dimensional dif-

fusion equation without source:

aT/at = a32T/3x 2  (6.27)

The corresponding locally implicit difference equation is:

Tn + l - T = d(T - 2Tn+l + T (6.28)
J T-1 j j+l

where

d = aAt/Ax 2

The obvious advantage of this scheme is the lack of spatial

coupling at the new time, which means that computationally

this scheme requires essentially the same effort as the ex-

plicit scheme.

To assess its stability, consider as before a Fourier

component:

n = ^n eije
j
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The resulting amplification factor X is given by:

2dcos 8+1X 2d +l (6.29)2d + 1

For stability IXI < 1, or -1 < X < 1, for any 8:

The first inequality leads to

0 <2d (1 + cosO) + 2

which is always satisfied (note that 1 + cosS>0). The other

inequality simply yields

cose < 1

which is obviously true. Therefore, the scheme (6.28) is

unconditionally stable. Unfortunately, its use is not with-

out some drawbacks.

First, we recall from Chapter 4 that this scheme

is not conservative, and consequently the recommendation was

to use it mostly for steady-state simulations, although its

cautious application to some slow transients was not

ruled out.

There is another, more subtle flaw associated with

this scheme even when used to reach a steady-state through

1~ ~1-.111411 1 I ~ YIIVYYIII
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a transient. Let us re-write Eq. (6.28) in a

modified form:

n+1 n n n n n n+1T T = d(T - 2T + T j + + 2T - 2T
j j j-1 j j+1 j j

n n n n+l n
= d(T - 2T. + T ) - 2d(T. - 'n.) (6.30)

j- j j+ j J

or after re-grouping:

(1 + 2d)(T n + - Tn ) = d (T - 2T + T ) (6.31)
j J j- j+l(

Equation (6.31) clearly looks just like the explicit scheme,

but with an increased thermal inertia! The effect of this

somewhat surprising feature is to slow down changes in T..
J

Therefore, although we may take larger time steps (limited,

in our case, only by the explicit treatment of the zonvec-

tive transport), the increased apparent thermal inertia may

slow down the establishment of steady-state. It is prac-

tically impossible to say a priori what would be more

advantageous (i.e., computationally more economical): a

fully explicit treatment with some shorter time steps

or a locally implicit scheme with longer time steps but with

the difficulty noted above. Therefore, numerical experimenta-

tion must be used for guidance.
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6.3 Characteristics Analysis

6.3.1 Background

As it was stated in the introductory section of this

Chapter, it has been known for the last several years that

many commonly used two-phase flow systems of equations

possess complex characteristics. It appears that a signifi-

cant incentive for further research of this aspect was pro-

vided by a round table discussion at the Fifth Inter-

national Heat Transfer Conference in 1974 ([5]). Indeed

in the years following it, there have been numerous papers

dealing directly or indirectly with this subject (for

example [6] - [10], to quote some of the more representative

ones). It seems that there is even somewhat earlier work

documenting the existence of complex characteristics

([11], [12]). Currently, there is no consensus as to the

implications of the complex characteristics, but it is

generally agreed that the equations are ill-posed as an

initial value (or Cauchy) problem ([13]).

The general one-dimensional system of first-order

partial differential equations can be written as:

A() -+ B(4) + C() = 0 (6.32)

where

.......... IIII .nl# AbdMYIIYY I IY Ylhl Jl~
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= vector of dependent variables,

A,B = coefficient matrices,

C = source (sink) vector.

The characteristics (or characteristic speeds), X, are

defined by the equation:

det (AX - B) = 0 (6.33)

Mathematically, the characteristics may separate discon-

tinuities in the solution, thus constituting trajectories

along which discontinuities may propagate ([14]) in the

x-t plane. In the limit of very short wavelength, the

characteristics are just the speeds at which small perturba-

tions propagate ([9]). If all the characteristics are

real and distinct, the problem defined by Eq. (6.32) is of

hyperbolic type. By analogy to the time-dependent, one-

dimensional, single-phase compressible flow, whose cgovern-

ing equations are always hyperbolic (see, for example, [15]),

it is reasonable to expect that the governing equations of

its two-phase counterpart should also be hyperbolic. As al-

ready mentioned, many two-phase flow models exhibit, how-

ever, complex characteristics.

We do not purport to have solved this current con-



265

troversy surrounding two-phase flow modeling. Instead,

ourpurpose for the remainder of this chapter is to provide

some insight and understanding into this problem, particularly

as it applies to our four-equation two-phase flow model.

6.3.2 General Formulation

Let us rewrite the governing equations, presented in

Chapter 2 in one-dimensional form:

t + ax [ap U + (1 - a)p£U£] = 0 (6.34.a)

a a eU

S: (Pmem) + a [apvevUv + (1-a)p eU]

(6.34.b)

+ pa [aUv + (l-a)UZ] = Q

v T+ PvUv vF (6.34.c)
v  at v v ax ax Fv

aU a
(l-a)p + (l-a)p U + (l-a) F

(6.34.d)

where Fv and F denote the total forces acting on the vapor

and liquid, respectively. We can select as main dependent

variables p, a, Uv and U£. Note that the choice of a
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as an "energy" variable leads to somewhat simpler algebraic

expressions.

Recalling the definitions of pm and em, using the

appropriate equations of state and considering, for the

moment, that Fv and F do not contain differential terms,

Eqs. (6.34) can be recast in the form (6.32). The correspond-

ing coefficient matrices are given below:

a -Ap 0 0
p

ae -A(pe) 0 0

A = (6.35.a)

0 0 p p 0

0 0 0 (l-c) p

bm  -A(pU) apv (l-s)p

be -A(phU) ap h (1-a)p h
p v RR

B = (6.35.b)

a 0 p U 0

vv) 0 0 (

(l-o) 0 0 (1-a) U



(dp/ zp -d'i Idp/Ap = d'Aa

'dp/6dp = d'6d Idp/Adp = d'Ad

'ld/d + =q , Id+ a = Aq)

Anq A -6f1tnId = (nqd)V

nA d -16 nid n-fdV
d -

df P6 '66 + A (dA d + dIA d A A r 0 dq
d (a) T) 0n0 =+

d-Oz Id'A d l d d a (-T) + AdA = U

A aAd -e'6d = (9d)V

d d -Zd = dV

6 d + d"Idl;) (D I) + (
d'a d  d'

dld(r -T) +

d Aa) lo d le

An d
d'Adlo =

uI m

: xatM

L9Z

III I IIIIIIINI N iI

A
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The specific structure of the coefficient matrices gen-

erates, through (6.33), a fourth order algebraic equation

in X. Unfortunately, it appears that this equation cannot

be factored. Therefore, we resorted to a numerical evalua-

tion of the eigenvalues X. We used as parameters:

- the pressure,

- the void fraction,

- the total mass flux, G, i.e.,

G = [ap U + (I-a)p U ]/[apv + (l-a)p],

- the slip ratio, S, i.e.,

S = Uv/Uk

Generally, the results indicate the existence of two real

characteristics of large magnitude and two complex conjugate

characteristics of a magnitude on the order of transport

velocities. Except for relatively large slip ratios, the

magnitude of the imaginary part is substantially smaller

than that of the real part of the complex character:.stics.

At very small void fractions (i.e., a 0.001) all four

characteristics become complex, whereas at very high void

fractions (i.e., a " 0.999), they are all real, for the

entire range of slip ratios studied (1<S<100).
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To gain some insight into the actual functional de-

pendencies involved, a simplified analysis was performed under

the assumption that the phase properties are constant,

that is, the phases are incompressible. With this assump-

tion

am = ae = bm = be = 0
p P P p

The resulting modified matrices, when substituted into

Eq. (6.33) generate a second order algebraic equation,

much more amenable to analysis. The results of this

analysis constitute the object of the following subsec-

tions.

6.3.3 Characteristics for the Four-Equation Incompressible
Flow Model

The characteristic equation (6.33) becomes in this

case:

0 (Pvnv-P2'9) -a -(i-a)

det 0 (Pvhv n-p-ph -ah -(1-a)h
det

= 0
-1 0 n0

-1 0 0 'n
(6.36)

~l~s~~ ^__ I
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where:

v = X-Uv and T = X- U

Expanding the determinant, we get:

a£ kdet

(vnv-pn ) -1 (P v -p £nz) -1

+(l--a) v det =0

(Pvhvv -P£hhn) -h (p vh n h )-h

2 2
apR n2 + (1-a)pv n2 = 0 (6.37)

Denoting 82 = Cp£/(l-a)pV, Eq. (6.37) leads to

(6.37')Bnk = + in v

Recalling the definitions of nv and n., we finally ob-

tain:

S= [ + (S-1) ] U2 2B +1 +1
(6.38)

Except for very small a's, an approximate expression can be

2 2
obtained for X, considering 8 >>I and B >>S:

or
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(1 + i S ) U (6..39)

Therefore, the "slow" characteristics of the incom-

pressible, four-equation two-phase flow model are always

complex. (The other two characteristics are infinite,

due to the assumption of incompressibility).

A remarkable finding is that the "slow" characteristics

of the compressible model are extremely close to the

values predicted by Eq. (6.38) or (6.39), except very near

the extremes of the void fraction range. Consequently,

it appears quite reasonble to extend the results of the

incompressible flow analysis to the actual, compressible

flow.

6.3.4 Effect of the Mass Exchange Rate on the Characteris-
tics of the Incompressible Flow Model

Up to now, it has been assumed that Fv and Fk (see

Eqs. (6.34c,d)) contain only algebraic terms. The

components of these "forces" are the wall friction,the

interfacial momentum exchange and the body force. While

the first and the last of these components, being generally

purely algebraic, do not affect the characteristics, the

momentum exchange term, in the context of our four-equation

model raises a question in this respect. Indeed, as we
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recall from the material presented in Chapters 2 and 3,

the momentum exchange term includes the contributicn

of the mass exchange rate, which, under the assumption of

thermal equilibrium at saturation, can be obtained from

one of the phasic mass conservation equations. Therefore,

the mass exchange rate is given by a differential equa-

tion and one could expect some effect on the characteristics.

From Eqs. (3.44), it follows that the additional terms

to be added to the left-hand-side of the phasic momentum

equations are:

- for vapor: IFUr (6.40.a)

- for liquid: (1-n) FUr (6.40.b)

For symmetry let us use the vapor mass equation in the vapor

momentum equation and the liquid mass equation in the

liquid momentum equation. Assuming also incompres;ibility,

the terms (6.40) then become:

- vapor:

U e pv v
nUrP a + nUrPU U v - + nU p (6.41.a)

r v t rv v x r'V x
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- liquid:

(1-n)Ur at + (1-n.)UrP £UR x

- (1-n)U p (1-a) - (6.41.b)

The last two lines of the coefficient matrices will be

altered as shown below:

nUrPv

0 (l-n)Urpz

Cap

(1-a) p

(6.42.a)

apv (Uv+nUr)

(1-n)Ur £UR 0 (l-C)p [U-(l-n)Ur I

(6.42.b)

These changes will in turn modify the characteristic

equation, which now becomes:

a rpUpU

(1-)

Mog&
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0 (Pvv-Pzn£) -1 -1

0 (pvhvv-p hznk -h -h

det = 0

-a nUrPv v  (nv-U r ) 0

-(1-) (l-)Ur Pz 0n [n+(I- n)U r
(6.43)

Expanding this determinant, it turns out that all the terms

generated by the mass exchange (i.e., the terms in Ur ) cancel

each other! We thus have the interesting and surprising re-

sult that the inclusion of the mass exchange rate, given by a

differential equation, into the momentum exchange terms has

no effect on the characteristics of the incompressible flow

model. In fact, we found this to be true for the compres-

sible flow model as well.

To our knowledge, this fact has not been proved or noted

elsewhere. It indicates the existence of differential con-

stitutive equations which do not affect the characteristics.

Further investigation of this aspect is needed to elucidate

its implications.

- --- --at~m=6~-- ;__~ .-~TIL-----E= L- _~ _~
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CHAPTER 7. EXPERIMENT SIMULATION

7.1 Introduction

The model and the methods described in the previous

chapters have been implemented into the computer code

THERMIT-4E.

During the process of assemblying a large and

complex computational framework, one becomes acutely

aware of various sources of uncertainty:

o physical models are used sometimes

extrapolatively;

o simplifications are made-which may

appear valid if considered individually,

but whose combined effect is not clear;

O implementation of various models

almost always involves some arbitrary,

though seemingly reasonable, decisions;

o numerical methods are, after all, only

approximate means of solution.

Consequently, the ultimate justification for a

specific choice lies in the capability of the over-

all model to simulate and display reasonable agree-

ment with experiments.

We would like to emphasize that all our

me-in ---- --- _I Iii iiiiihIoo Hi ii ImpUllH ii 111 llllll I ,I I l ,1h
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calculations have been run on a best estimate basis,

without any "fine tuning", to assess the truly pre-

dictive capabilities of our model.

The code has been exercised in one-, two- and

three-dimensional configurations, to check and prove

its geometrical versatility.

Two experiment series were selected for simulation.

7.2 EB19GR Experiments

This is a 19-pin, electrically heated, steady-

state test series performed on the CFNa loop at

Grenoble, France [1]. Table 7.1 presents the significant

design data of the test section.

The flow rate in the experiments was gradually re-

duced from 2.25Kg/s to about 0.26 Kg/s. The last

flow rate corresponds to the sodium temperature

reaching the saturation line at the end of the heated

section, based on a heat balance.

The tests have been simulated in both one-

and three-dimensional configurations.

7.2.1 One-Dimensional Simulations

One-dimensional simulations have been performed

to provide a check and, at the same time, a proof of
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TABLE 7.1

Design Data for the GR19 Experiment

Number of Pins

Clad OD (m)

Heated Length (m)

Downstream Unheated Length (m)

Upstream Unheated Length (m)

Wire Wrap OD (m)

Wire Wrap Lead (m)

Flat to Flat (m)

Inlet Temperature (OC)

Power (kw)

19
-3

8.65 x 10-

0.6

0.494

0.12
-3

1.28 x 10-

0.18
-2

4.58 x 102

400

170
(axially uniform)
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capability. A quarter of the bundle is collapsed

into a flow channel of uniform cross-section.

Figure 7.2 displays the axial temperature dis-

tribution for various flow rates. In single-phase,

the fluid temperature in the adiabatic section

downstream of the heated zone remains constant. In

two-phase flow conditions, the fluid temperature,

equal to the saturation temperature, decreases

slightly due to the drop in pressure.

The following three figures illustrate the :)ro-

found effect of the phase slip on the major flow

characteristics. The void fraction for the case of

homogeneous flow attains substantially greater values

(Fig. 7.3). As can be seen from Fig. 7.4, the slip

has a strong effect on the pressure drop. It is

interesting to note the appearance of a small inflexion

in the upper curve in this figure. The effect is a

manifestation of the fact that the friction and

acceleration pressure drops, on the one hand, and the

gravitational pressure drop, on the other, vary with

void fraction in opposite directions. Finally, Figure

7.5 shows the axial distribution of the velocity,

with and without slip.
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It is apparent that the slip between phases has

a dramatic effect on the flow, hence an unequal velocity

two-phase flow model becomes a necessity for sodium

boiling simulations.

7.2.2 Three-Dimensional Simulations

The geometric configuration used in our simula-

tion is a quarter of the bundle as shown in Fig. 7.1.

One notes the mesh layout in which a triangular lat.-

tice is represented by a cartesian grid. This repre-

sentation is obviously made possible by our porous

body approach.

To test our model for the enhanced liquid conduc-

tion (see Chapter 3, Section 3.3.4), we performed a

number of single-phase calculations at various flow

rates. The radial temperature distributions at three

flow rates (2.25 Kg/s, 0.606 Kg/s and 0.350 Kg/s),

at the end of the heated zone and at the end of the

test section, are shown in Figs. 7.6-7.11. The dif-

ference between the maximum and the mean sodium tempera-

tures is plotted in Fig. 7.12 as a function of flow

rate. The agreement with the reported experimental

results is very good. Figure 7.13 displays the axial
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temperature distribution, for each channel, for the

highest flow, illustrating the attenuation of the radial

temperature gradient in the adiabatic zone due to

liquid conduction.

It is interesting to remark that even for the

lowest flow in the experiment a true steady-state is

not reached. Actually a pulsating behavior is en-

countered, with the outlet flow rate oscillating about

the fixed inlet flow rate. Figure 7.14 illustrates the

void fraction distribution at a pointin time at

which the outlet mass flow rate is nearly the same as

that at the inlet. It can be seen that an appreciable

portion of the assembly is voided, with some upstream

progression occurring in the center channel (i.e.,

channel no. 7 in Fig. 7.1).

The reported experimental results concerning the

boiling regime are only of qualitative nature, with the

authors also mentioning chugging at the outlet.

7.3 SLSF-W1 Experiments

The SLSF-W1 Experiment (2] was designed to help re-

solve fast breeder reactor safety development questions

in areas of:
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Figure 7.6 GR.19 Radial Sodium Temperature Distribution--
High Flow--End of Heated Zone.

Figure 7.7 GR.19 Radial Sodium Temperature Distribution--
High Flow--End of Test Section.
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Figure 7.8 GR.19 Radial Sodium Temperature Distribution--
Medium Flow--End of Heated Zone.

Figure 7.9 GR.19 Radial Sodium Temperature Distribution--
Medium Flow--End of Test Section.
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Figure 7.10 GR.19 Radial Sodium Temperature Distribution--
Low Flow--End of Heated Zone.

Figure 7.11 GR.19 Radial Sodium Temperature Distribution--
Low Flow--End of Test Section.
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O heat release characteristics of FBR fuel

pins during loss-of-piping integrity

accident conditions;

O sodium boiling and void characteristics;

O coolant boiling conditions required to

produce incipient fuel pin failure.

The SLSF in-pile loop was operated in the Engineer-

ing Test Reactor of Idaho National Engineering Lab-

oratory. The principal design data of the test sec-

tion are given in Table 7.2.

Two series of experiments have been performed. The

objective of the LOPI tests was to investigate the fuel

pin heat release characteristics for a protected loss-

of-piping integrity (LOPI) accident. The other :series,

the boiling window tests (BWT), was designed to deter-

mine if there is a regime beyond the onset of boiling

that persists and does not immediately lead to dryout

and fuel pin failure. This regime of boiling in the

bundle is characterized as "stable" boiling ("boiling

window") even though it really pertains to a tra:nsient

phenomenon.

The 19-pin bundle was designed to allow a good

approximation of the behavior of the coolant in
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Design Data

TABLE 7.2

for the SLSF W1 Experiment

Number of Pins

Fuel Pellet OD (m)

Clad OD (m)

Clad ID (m)

Wire Wrap OD (m)

inner pins

outer pins

Wire Wrap Lead (m)

Flat to Flat (m)

Duct Wall Thickness (m)

Length of Fuel (m)

Inlet to Bottom of Fuel (m)

Top of Fuel to End of Pins (m)

Fill Gas

Fuel

Inlet Temperature (°C)

19
-3

4.94 x 10-

5.842 x 10-3

5.030 x 10-3
5.030 x 10

-3
1.422 x 10-

-4
7.11 x 10-

.3048
-2

3.26 x 10-2

1.016 x 10-3

.9144

.2794

1.270

Helium-Neon (10%),
1.7 bar at 680F

Uranium-Plutonium
mixed oxide, Pu 25%
of total mass.

388

' . ..... .. .. . . . .. 1[ i I [ iY iii 
'
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Figure 7.15 Geometrical Configuration
for the SLSF W1 Experiment.
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a full size fuel bundle: the diameter of the wire

wrap spacer for the outer pins was half of that used

for the inner pins, thus reducing the amount of flow in

the peripheral region; at the same time, through

appropriate enrichment selection, an almost flat radial

power profile was achieved. The axial power distribution

was cosine-shaped.

For simulations, we chose tests from each series.

Given the azimuthal symmetry of the test bundle, a two-

dimensional (r-z) representation (Fig. 7.151 using three

radial channels, was deemed adequate. The measured total

inlet mass flow rate was used as inlet boundary condition.

7.3.1 LOPI Tests

Each LOPI test was initiated from steady-state

full power, full flow conditions. Over the first

0.5 seconds of the transient, the inlet flow was rapidly

decreased. At 0.65 seconds into the transient, the

reactor was scrammed. At approximately 3.0 seconds,

flow recovery started.

Two of the LOPI tests were selected for simula-

tion. The first, LOPI 2A, started from a power of

668 kW (test bundle power) and a mass flow rate of

1.95 Kg/s. The flow decay curve is shown in Fig. 7.16.

There was no indicaton of boiling in this test, and

our calculations confirmed it. The reason for choosing

II , I, ,10 IMMU N10
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this non-boiling test was a desire to check our overall

model, under single-phase conditions, insofar as heat

release characteristics are concerned: thermal inertia

of fuel and clad, stored energy, and heat transfer to

coolant.

The experimental results and our predictions are

compared in Figs. 7.17-7.19. The agreement is quite

good, especially so if one bears in mind that the measure-

ments are point readings, whereas the predictions

represent average mesh cell temperatures. The axial

distribution of the bundle-averaged sodium temperature

is plotted in Fig. 7.20 at different times into the

transients. One notes that early in the transient (say

up to about 2.3s), the large thermal inertia of the

fuel pins almost totally obscure the fact that the

scram occurred earlier. As a result the maximum

temperature changes only slightly, while the "peak"

broadens. Later, the fuel cools down and so does the

sodium.

The second test selected from this series was LOPI 4.

We note that originally the tests in this series were

to be different only with respect to the fuel condition

prior to the accident. However, the failure of one

of the thermocouples used for test section power
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calculation lead to running of the experiment at approx-

imately 5% over power (specifically 705.3kW). The

inlet mass flow rate, shown in Fig. 7.21 was almost

identical to the previous one.

Our results and the experimental data are dis-

played in Figs. 7.22-7.24. The sodium temperature

measurements at the end of the heated zone in the central

and middle channels are well matched by our calculations.

Our results indicate a somewhat higher temperature than

the data taken near the midpoint of the heated length,

at the center of the assembly. The factors that may

account for this difference are local temperature dis-

tribution, thermocouple lag and magnitude of radial

coolant mixing. Unfortunately, the assembly was too

sparsely instrumented at this axial level, thus pre-

venting the inference of a radial temperature

distribution, which might have helped in making a more

precise assessment.

As in the experiment, our calculation predicted about

0.5 seconds of boiling (Fig.7.22). Noteworthy that the

voided region was limited to the central channel and

it extended only a small distance (on the order of 5

cm) above and below the end of the heated section. The

test results indirectly confirm this void evolution in

that only the centrally located thermocouples display

- "^"""^~~"~ ~- ' --
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the almost flat traces indicative of the saturation

temperature being reached.

7.3.2 BWT Tests

In these tests, the bundle power is maintained

constant, while the inlet flow rate is rapidly decreased

to its "low flow" value, in 0.5 seconds, kept there for

a specified period of time and then finally returned to

its initial value in 0.5 seconds. The objective of

these tests was to determine stable boiling limits as

a function of fuel pin power and bundle flow rate.

The last test in this series, BWT 7B', was chosen

for simulation. This test was the most severe,

resulting in clad dryout and fuel failure. It was

felt that this test, being characterized by the highest

power-to-flow ratio in this series, would provide a

proof of capability, since none of the "milder" tests

were expected to create essentially new situations in as

far as our methods were concerned.

The power in this test was maintained fixed at

668 kW until 3.5 seconds into the transient, at which

time indications of severe dryout lead to the decision

to scram the reactor. The measured inlet flow rate

is shown in Fig. 7.25. Boiling initiation at about

1.7 seconds caused an increasingly rapid inlet flow
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decay, leading to flow reversal at about 2.8 seconds,

followed by flow oscillations.

Our simulation focused on the first 3 seconds of

the transient, i.e, the pre-dryout period.

Our results are shown together with the experimental

data in Figs. 7.26-7.28. We match quite well the

temperature in the central channel, at the end of the

heated zone. As in the experiment, boiling also

started at about 1.7 seconds into the transient. Our

calculations indicate a higher temperature at the mid-plane

of the heated zone just as in the case of LOPI 4. The

comments already made there also pertain to this ex-

periment. We do not have, at this point, a clear ex-

planation for this discrepancy.

The axial and radial boiling front propagation is

illustrated in Figs. 7.29 - 7.31. One notes

about 0.6 seconds delay between the boil-

ing inception times in the central and peripheral

channels (1.7 vs 2.3 sec). The pronounced two-dimensional

character of the void evolution in the early part of the

transient is evident.

The existence of a stable boiling period prior to

dryout is an indication of the overly conservative

nature of the modeling of coolant boiling and cladding
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dryout in current safety codes.

It is probably worth noting that while fuel -in

cladding breach was detected (by the Cover Gas Sampling

System), the fuel bundle damage appeared to be minimal,

with no indication of coolant flow blockage.
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

A three-dimensional numerical model for the simulation

of sodium boiling transients has been developed. The model

uses mixture mass and energy equations, while employing

a separate momentum equation for each phase. Thermal

equilibrium on the saturation line between coexisting

phases is assumed.

The set of equations governing the evolution -of the

two-phase flow has been rigourously derived, starting

from the local-instantaneous form of the field equations.

The assumptions made in obtaining the final "working"

set of equations have been clearly identified, facilitat-

ing further refinements wherever warranted by the part-

icular application.

The four governing equations are supplemented by a

number of constitutive relations, addressing the interphase

and intraphase exchanges, as well as the fluid-solid

interactions. Here our efforts have been directed mainly

towards establishing a consistent framework, followed by

a careful selection and implementation of models. It

should be noted that our four-equation two-phase flow

model requires only one interfacial relation, i.e., the

momentum exchange, compared to the six-equation model
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which needs two additional relations, describing the mass

and energy exchanges. Consequently, the relatively

high degree of uncertainty currently associated with

the interfacial exchange phenomena is considerably re-

duced.

From a numerical point of view, our basic approach

is a semi-implicit method, in which pressure pulse propa-

gation and local effects characterized by short char-

acteristic times are treated implicitly, while convective

transport and diffusion heat transfer phenomena, assoc-

iated with longer time constants, are handled explicitly.

The method remains tractable and efficient in multidimen-

sional applications. The temporal and spatial disc:retiza-

tion process generates a set of non-linear equations,

solved by Newton's method, in its regular form or in one

of its related version, the secant and the parallel-

chord schemes, which under some circumstances, may be-

come more advantageous. The fluid-to-heat source coupling is

handled in a highly implicit manner, avoiding stability

problems related to some of the rather short time con-

stants involved.

A very detailed discussion of the numerical mrethods

involved has been presented, attempting as much as possible

to justify the choice of various schemes, to reveal and
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explain some subtleties, in order to provide a firm basis

for future work.

The particular discretization and linearization

scheme chosen leads to a large system of linear equations

for pressures. The pressure field incorporates both the

spatial coupling (due to fluxes of mass, momentum and

energy) and, through a reduction process, the local

coupling. Consequently, the efficient and accurate solu-

tion of the pressure field is fundamental to our method.

A number of solution schemes, both direct and iterative,

have been investigated.

Our conclusion is that for the small to mod-

erately-sized problems we have dealt with, the direct

solutions are superior in as far as the computing effort

is concerned, for a given level of accuracy. We empha-

size that this conclusion has been reached for a particular

computing environment. For larger problems or, in general,

in circumstances where the storage requirements become

the limiting factor, we found the successive Block Over-

relaxation (using as "blocks" planes of cells in the

direction(s) characterized by small mesh sizes), with

adaptive optimum relaxation parameter search, to be

a very suitable scheme.

A large flexibility is provided regarding the

choice of boundary condition. In addition to allowing
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the more customary velocity and pressure boundary condi-

tions, a method enabling the specification of the total

inlet mass flow rate was devised. Noteworthy is tihe fact

that the method is perfectly integrated into the pressure

field solution, does not call for another layer of itera-

tions, and does not add significantly to the total computa-

tional work and storage requirement.

A detailed stability and characteristic analysis has

been performed. The main conclusion of the stability

analysis was that stable solution may be obtained even

for apparently ill-posed problems. However, we shcwed that

while the very short and the very long wavelength components

are stabilized by the donor cell differencing and the damp-

ing terms respectively, the intermediate wavelength compo-

nents may be limiting from a stability point of view.

The characteristic analysis confirmed the existence

of complex characteristics for a wide range of two-phase

flow conditions. We found that an approximate (analytical)

analysis assuming incompressible phases was in very good

agreement with the exact (numerical) analysis except very

near the limits of the void fraction range. Another in-

teresting and somewhat surprising finding was that

apparently there are differential constitutive relations

which do not affect the characteristics.
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Simulation of a number of experiments has yielded

very encouraging results. The numerical method and the

constitutive relations have performed quite well, espec-

ially so in light of the extreme severity of the conditions

involving sodium boiling. The major conclusions, drawn

from our calculational experience are:

a) For single-phase conditions, the variant

of our method treating the convection

terms in the energy equation explicitly gives

excellent results and it is advantageous

computationally because the coefficient

matrix of the pressure field becomes symmetric

and positive definite;

b) For two-phase flows, the semi-implicit treat-

ment of the convection in both mass and

energy equations has proved generally superior;

c) In some circumstances, especially at phase

transitions, Newton's method (or its varia-

tions) required very short time steps for con-

vergence;

d) A modified strategy has been found to

perform quite robustly in our applications:

instead of a full non-linear iteration, the
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linearization is performed only about the

old time step and then the mass and energy

residuals are kept below acceptable limits

through adequate time step control.

We would like to emphasize that all our calculations

have been run on a best estimate basis, without any fine

tuning. In light of the above, the performance of the

constitutive relation package is quite remarkable.

Nonetheless, based on our work of selecting, mDdify-

ing and adapting various models, we certainly feel that

further work in a number of areas, mentioned in the next

section of this chapter, is needed. Only a systematic

sensitivity analysis would point areas in which refinement

or replacement of constitutive models would be most

beneficial. Obviously, such an analysis would alsc

greatly increase the confidence in our model's predic-

tive capabilities.

8.2 Recommendations

The research performed during the development and

application of the four-equation sodium boiling model

has enabled us to identify areas in which further work

would be highly advisable. Such additional investigation

would address both physical and numerical modeling

questions.
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To begin, work is needed with regard to the treatment

of two-phase flow pressure losses in LMFBR rod bundles

using wire-spacers. The complex flow pattern and the

inability to quantitatively identify two-phase flow re-

gimes combine to inject a significant dose of un-

certainty into any modeling attempt. The degree of

uncertainty would be greatly reduced only by the availa-

bility of reliable and detailed experimental results.

However, the difficulty of obtaining such results for

the geometries and flow conditions of interest should

not be underestimated.

A closely related aspect, the interfacial momentum

exchange, requires further attention. Local pressure

distribution effects, i.e., virtual mass, may have to be

included and generally the local flow topology may be

given increased importance. Once again the difficult

geometry constitutes a major impediment in removing the

rather speculative character of various hypotheses.

The fluid-solid heat transfer needs further investiga-

tion. While the single-phase and saturated boiling regimes

seem to be adequately modeled, additional work is needed

to correctly complete the boiling curve. In particular,

the disruption of the liquid film, leading eventually to
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dryout requires careful consideration, given its effect

on the rate of progression of some transients.

The steady-state single-phase liquid energy diffu-

sion appears correctly accounted for. Further work is

needed to assess transient effects, as well as to model

the conduction and mixing of a two-phase mixture.

Our applications have dealt with azimuthally uniform

configurations. In situations displaying a significant

departure from azimuthal symmetry, such as power skew

and flow blockages, the peripheral swirl flow, neglected

in our work, must be incorporated. In such situations, a

more detailed representation of the hex can may also be

called for.

Given the tight and complex nature of the coupling

of various phenomena in two-phase flow, it is almost im-

possible to predict the impact of a change in a particular

model on the results. It is thus imperative that a

systematic sensitivity analysis be undertaken to identify

those constitutive models which have the strongest effect

on the overall results.

Regarding the numerical method, we feel that a

concentrated effort must be devoted to further study

non-linear solution schemes. Given the extremely severe

non-linearities associated with the numerical simulation
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of sodium boiling and the fact that often the limitation

on the time step size was due to difficulty in obtaining

a converged solution, the need for further work in

this area cannot be overstated.

On a longer term basis, the possibility of higher

degrees of implicitness should be investigated. Indeed

at very high void fractions, the large vapor velocities

may lead to rather short time steps, for the mesh size of

interest, if the convection is treated explicitly, as in

our method. However, in light of the previous observa-

tion, the impact of a longer time step on the non-linear

solution must be assessed.

The severe nature of the sodium boiling transients

can generate pressure and flow oscillations and in some

instances even temporary total flow reversals. In such

situations, the flow dynamics of the test section and of

the rest of the loop are essentially inseparable. If

one simulates only the test section, providing adequate

boundary conditions often becomes a trial-and-error exer-

cise. To achieve a truly predictive capability, we

strongly recommend that a significant effort be devoted

to incorporate the rest of the loop into the calculational

framework.
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Appendix A

Volume-Averaged Two-Phase Flow Conservation Equat:ions

A.1 Introduction

The derivation of a tractable set of equations describ-

ing the evolution of the two-phase flow consists of applying

an averaging procedure to the local instantaneous conserva-

tion equations, followed by various simplifying assumptions

aimed at reducing the number of unknowns and the constitutive

relations.

The averaging procedure may involve various operators:

* instantaneous volume- and area-averaging operators,

* local time-averaging operators,

* statistical averaging operators,

* combined averaging operators (e.g., space/time or

time/space).

Detailed discussions of various averaging procedures are

given by Delhaye and Achard [1] and Ishii [2].

The objective of this appendix is to provide a rigorous

derivation of the equations governing the two-phase flow,

attempting to elucidate the meaning of the terms appearing

in these equations and the implications of various assump-

tions and approximations. For our purpose, we chose the

volume-averaging procedure which we believe is quite adequate

for presenting the salient aspects of such a derivation,

without undue complications. The derivation generally
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follows and extends the methodology presented in [1]. A simi-

lar approach is taken by Banerjee and Hancox in [3] and by

Banerjee and Chan in [4].

A.2 Mathematical Preliminaries

Consider the situation depicted in figure A.1 (for sim-

plicity, only a two-dimensional configuration is shown). Let

Va be the volume of phase a, Ai the interfacial area and Awa

the contact area between phase a and the solid structure

(referred to as "the wall" in the following). A is consi-wa

dered fixed and impermeable. Let V be the total fluid volume,

i.e., V = ZVa. We will use net fluid flow areas and volumes,
a

thus implicitly accounting for the presence of the solids.

Alternately, one could use total volumes and areas and define

porosities (as in [5]), thus virtually treating the solid as

a third phase. Obviously these variations in geometrical

treatment are fully equivalent.

Special forms of the Leibnitz and Gauss theorems ([11])

will be availed of:

(a) The Leibnitz rule: transforms the time rate-of-change

of a volume integral into the sum of a volume integral

and a surface integral:

f 4.

fat(x,y,z,t) dV = t dV UinadA
V a ( t )  V a ( t )  Ai ( t )

(A.1)

Note that this theorem considers a volume bounded by a

____ . ~---~-~-c~~ ---- I IYI1111
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moving boundary. In our case, only Ai represents a mov-

ing surface, the other surfaces bounding the volume Va ,

i.e., Awa, Ay+, Ay , AZ_ and Az+, being fixed.

(b) The Gauss theorem: transforms the volume integral of

a spatial derivative into the spatial derivative of a

volume integral plus a surface integral:

VB dV = V. B dV + na BdA
Va(t) Va (t )  A i ( t ) +Awa

(A.2)

We will define the volume average as:

<f > 1 f dV - 1 f dV (A.3)
a V a aV a

a a

where ca = Va /V .

Note that the total fluid volume is constant.

A.3 Local Instantaneous General Conservation Equat:.on

The local instantaneous form of the general conservation

equation, for phase a, is (Truesdell and Toupin in [6]):

a Paa + (paaUa) + Ja - Paa = 0 (A.4)

The conserved quantity per unit mass, la, the flux -:erm Ja'

and the source per unit mass, a, are defined in Table A.1,

where Ua = velocity vector

a = total stress tensor
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F = body force per unit mass

ea = internal energy per unit mass

qa = heat flux

Equation (A.4) is valid within each phase, at every point, and

must be supplemented by a jump condition at the interface.

This equation constitutes the starting point in the deriva-

tion.

A.4 Volume-Averaged Equations

A.4.1 General conservation equation

Integrate Eq. (A.4) over the volume Va, using Eqs. (A.1)

and (A.2) as follows:

a ad V a pa adV - Pa aU* na dAV a a d  V  a Va A.

V-(pa aUa +Ja) dV = V (Pa+aUa +a) dV
a a

+ na-( P, aU + Ja) dA
Ai+Awaa

Then the general volume-averaged conservation equation for

phase a is (using definition (A.3)):

V1a Ta(Pa a> + VaVaa<aaa a> - Vaa a a >

= - [paa(Ua-Ui) + a ] n a d A - Ja -nadA

(A.5)
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Let ma be the interphase mass flux, i.e.,

;n
ma a= P(Ua - Ui) na (A. 6)

We can finally write:

-tCa<Pa a> + Vaa <Pa aUa +a> - a<Pa a>

= - 1 + Ja.n ) dA -n
VA a a a - VJ a a

i wa
(A.7)

The conservation equation for each quantity (mass, iomentum

and energy) for each phase may now be derived.

A.4.2 Mass equation

In this case, a = i, Ja = , a = 0. We have:

D+ Vaa<paUa> =-- maA = <. (A.8)t a Pa a V a rila
1

Generally the interfacial mass transfer rate, Fia, is not

known "a priori" and an "extraneous" correlation (that is, a

constitutive relation) must be supplied.

A.4.3 Momentum equation

In this case, a = U J = -  = paI- a (where pa is

the pressure, Ta the shear stress tensor and r the unit ten-

sor), a = F. We have:
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ta aa> + Va a a +Pa a- > - ea<pa>

1i 1 . = +
= - (maUa +aI-na - an a ) dA

V A.

1 = t)"
- a (Pa a) n dA (A.9)

As in [3], let us express the pressure on the bounding sur-

faces Ai and Awa as:

Pali(w) --<Pa> + APa (A.10)

We note that Apa can be split into two components ([41), one

representing the difference between the average interfacial

(or wall) pressure and the volume-averaged phase pressure, the

other the difference between the local and the average inter-

facial (or wall) pressures. Generally, however, the form

(A.10) is adequate. The reason for expressing the local

interfacial and wall pressures as above will immediately be-

come apparent.

The terms in the right-hand side of (A.9) containing

pressures can be combined into:

V (a > + Pa) In( dA
=1Ai+Awa<"

1 <pa> I*na dA + 1 aIpa*na
Ai+Awa V Ai+Awa

(A. 11)
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Using Gauss' theorem, Eq. (A.2), for B= I yields:

V.IdV = 0 = Iv dV + na I dA

a a 1 wa

(A. 12)

Therefore the first term in the right-hand side of :A.11) can

be written as:

<p a> I'na dA = - <pa>Vaa
1 wa

(A. 13)

(One notes that this term is similar to that appearing in the

derivations for single-phase flows for control volumes with

sloping walls.) This term may be combined with the pressure

term in the left-hand side of (A.9), finally yielding:

t a<P a U a> + V*a <p a U a U a > + a V<Pa>

where

and

- Va <T > a <paF> = - F. - F waaa - a<a la wa

ia = V (maU a + Pana a'a) dA
1

S 1 IAw  = a ) dA
F = (Ap n - T*n
wa V a a a

wa

(A.14)

(A. 15)

(A. 16)

Generally, correlations must be provided for the total inter-

facial momentum exchange (F ) and the total wall drag (Fwa).

A.4.4 Total energy equation

2 4 =
In this case, a = ea + Ua /2, J = q- a *U a
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qa + (Pa - a ) Ua' a = FU a (neglecting volumetric heat

generation). We have

~ a <Pa(ea +U 2/2)> + V-a <p (e +U 2/2)Ua>IT a a a a a a a a a

+ V*caa<qa> + V'eca<PaUa>

- V*a < U a > - a<p F*U a >
- a a a a a a

2 + - + 
[z (e +U 2/2) + q*na +P Unaa a a aa na

- (T ia) .n a ] dA

(A. 17)V gqa*na dA
wa

where again the "wall" was assumed impermeable (i.e., Ualw = 0)

and fixed (Uw = 0).

Note that, using (A.6), we have:

PaUana = Ua*na - PaUina + PaUi'na

Sm a + PaUi.na
a

(A. 18)

As previously discussed, pa i= <Pa> + APa, hence

VA PaUi nadA = V<pa> Uin a dA + A
1 1 1

ApaUi na dA

(A. 19)

if
V
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Applying Liebnitz' rule for f= 1 gives:

~t V dv = a 0+ U n dAat A. a
1

(A. 20)

Therefore, Eq. (A.19) becomes:

1c a 1 -

VA inadA = <pa > at v PaU na dA
i 1i

(A. 21)

Substituting Eqs. (A.21) and (A.18) into Eq. (A.17) and intro-

ducing the phase enthalpy, ha = ea+ pa/Pa, we obtain the equa-

tion for the total energy conservation in the form shown below:

a 2 2
9t a <Pa(ea +Ua /2)> + Vaaa< p a(ea + Ua /2 )Ua>

+ a a >
+ V-a <qa> + <Pa > at-+ -a<U >

- V*a <Ta *U > - ca <P F'U >
a a a a a a

= Qia + Qwa (A.22)

Qia V i
V A

2 + q
[ma (ha + Ua /2) +q a*na +Ap aUi na

- (Ta' a)* na] dA

Qwa
1(

a

q ana dA

where

and

(A. 23)

(A. 24)
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Once again, correlations must be supplied for the total inter-

facial energy exchange (Qia) and the wall heat source (Qwa)

A.5 Local Instantaneous General Interface Jump Condition

The local instantaneous conservation equations for each

phase, Eq. (A.7), must be supplemented by a "jump" condition,

i.e., a conservation equation governing the interfacial ex-

changes.

Treating the interface as a contact discontinuity, the

generalized conservation equation across the interface can be

derived as follows. Consider a small "pillbox" control volume

constructed at the interface Ai, as in figure A.2, containing

both phases. The general equation of conservation for this

volume is obtained by summing up the volume-averaged phase

equations (i.e., the phase equations integrated over their

respective subvolume, e.g., (A.7)) and taking the limit of V

(i.e., volume occupied by both phases) becoming vanishingly

small. Note that in the limit, the control volume under con-

sideration does not contain any portion of the wall surface.

Note also that this limit of V is understood to occur through

a vanishing thickness, while the area into which it collapses

remains finite. We then obtain:

a=2

al AA(ma + a*n a ) dA = 0 (A.25)
a=1~ A

The requirement that Eq. (A.25) be valid for any arbitrary A iA

leads to the local jump condition:

i i iIY iYl III I Illll illllYllil ilm IU16 , I, ,,, n
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a=2
S(M a a + J na ) = 0 (A.26)

a=l

A.6 Interface Area-Averaged Jump Conditions

A.6.1 General interface jump condition

Define another averaging operation, over the interfacial

area separating the two-phases:

f >. = 1 f adAfa 1i V A.
1

Then we integrate the local instantaneous jump condition, Eq.

(A.26) over the entire Ai to obtain:

1 I  a=2
- (; a + Ja*na) dA

A. a=l1

a=2

V 1 (maaa+ J a*na) dA
a=l A.

a=2= (<m aa >. + <Ja *na >.) (A.27)

a=l

The interface jump conditions for mass, momentum and energy

can now be readily derived, using Table A.l.

A.6.2 Mass jump condition

a=2
S< >. = 0

a=l
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or <m >i = - <m2 >i = <m>i
1 0 0

(A. 28)

Using this result and the fact that n1 = -n2 = n on the inter-

face, we can re-write the general jump condition as

<m(l- 2 ) > i + <(J I - J 2) n> i = 0 (A. 29)

We will use this form in the following.

A.6.3 Momentum jump condition

<m(U U2 ) > i + <( l P2 ) n > - <( 1 2 ) n> = 0

(A.30)

Expressing the pressure on the interface as in Eq. (A.10) and

using Gauss' theorem, we have (as in section A.4.3):

<(Pl- P2 )In> i  = <Pl><In i  + <P 2 ><I*n 2 >i

+ <(AP 1 AP2) n>i

= - <pl>Vcal- <p2>Va2 + <(Apl- AP2)n>i

(A. 31)= - (<pl > - <p 2 >)Va + <(Apl- AP2)n> i

where a = l = 1-2

The jump condition for momentum becomes:

Illliusurr lu ...
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(<Pl > - <P2 > ) Va= <m(Ul- U2 )> i + - )n>

- <(T - T 2)n>i (A. 32)

A.6.4 Total energy jump condition

2 2 +

<m[ (e +U /2) - (e2 +U2 /2)1> + <(pl 2U2 ) n>

+ <(ql- 2).n> - <(T 1 U1  T2 *U2 )n> i  0 (A.33)

Proceeding similarly to section A.4.4, the pressure terms

above can be further re-arranged:

<(plUl -P 2 U2 )*n> = <( i 2 )m> + <p<U i n- Pl P2  i + <Pl<Ui'nl>i

+ < 2><(P- aP)ii 'i

Pl p2  +< Pl P2 > + (<pl>_ <p2> ) at

+ <(APl - AP2)Uin>i (A. 34)

The jump condition for total energy, using the previously

defined phase enthalpy, becomes:

(<Pl > - <P 2 >) t - <m(hl +U 1 2 /2 ) - (h 2 + I 2 2 /2) ] >

- <(Apl-AP2 )U in> i - <(ql-q2)n>
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+ <(T1 U1 - T2*U2)*n>i  (A.35)

A.7 Working Equations

The results obtained thus far are collected and displayed

in Tables A.2 through A.4. The derived conservation equations

for each bulk fluid phase and for the interface are in spa-

tially-averaged instantaneous form. These equations may now

be time- or ensemble-averaged. However, in transient flows,

the period over which the time averaging must be taken cannot

be generally defined. This is especially true for rapid tran-

sients because of the frequency spectrum of the phenomena

involved and also because of the temporal resolution of the

measuring devices ([1]). A statistical averaging of the in-

stantaneous space-averaged equations is therefore recommended.

The time- or ensemble-averaged equations remain in the

same form. For example, terms like aa<p aa >/at become

a a<P a a>/t, where the overbar indicates temporal or statis-

tical averaging. As demonstrated in [1], the spatial and the

temporal (statistical) averaging operators are commutative.

The bulk and interphase conservation equations just de-

rived are exact, in that starting from the complete local in-

stantaneous equations we have applied a rigorous mathematical

procedure to obtain a set of averaged equations. The original

problem, intractable for all practical purposes due to its

need to track a hopelessly complicated moving boundary confi-

guration, has been transformed into a simpler formulation.

......... IYYI
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However, information is lost in the averaging process and must

now be supplied as auxiliary relationships. Indeed, as can

be seen, the averaged equations contain far more unknowns than

there are equations. To get a practical working modlel, fur-

ther simplifications and assumptions must be made.

Regarding the auxiliary (or constitutive) relationships,

one can distinguish a few types:

(a) relationships required by the original local instan-

taneous equations (e.g., shear stress, heal: flux);

obviously the need for them is not a result of the

averaging.

(b) relationships for interfacial and wall transfer of

mass, momentum and energy.

(c) relationships for intraphase distribution of the

dependent variables, made necessary by the spatial

averaging.

(d) relationships for terms containing temporal or sta-

tistical fluctuations; such terms are a results of

the time or ensemble averaging.

A few comments on the last two types of constitutive relation-

ships are in order. First let us consider the effects of

spatial averaging. The volume-averaged conservation equa-

tions (see Table A.2) contain averages of various products of

the dependent variables. Generally we wish to solve the

equations so that averages of each dependent variable are

obtained. Two equivalent approaches can be formally used:
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(a) define distribution coefficients, i.e., multiplica-

tive corrections:

<fg> = C<f><g>

(b) define "covariant" terms, i.e., additive corrections:

<fg> = <f><g> + A

Either approach requires the knowledge or the assumption of a

spatial distribution. For our working equations, we will

assume flat profiles, leading to C =1 or A= 0, with the under-

standing that other distributions may be easily incorporated

if needed or warranted in certain situations.

The effects introduced by the temporal (or statistical)

averaging are formally quite similar. Traditionally, the

approach (b) above has been taken with regard to this type of

averaging, by expressing each dependent variable as a sum of

an average ("the signal") and a fluctuation ("the noise").

For our equations, the direct application of this procedure

leads to a fairly large number of additional terms. The prob-

lem that immediately arises is that of interpreting these

terms, that is, of identifying some specific phenomenon with

a term (or combination thereof). Such an exercise, especially

when combined with spatial distribution effects, is generally

futile. For the purpose of arriving at a tractable working
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set of equations, the temporal or statistical fluctuations

are accounted for through an enhancement of some of the al-

ready defined transport terms, again with the understanding

that additional terms may be necessary in certain situations.

With the previous discussion in mind, we shall drop the

symbols for the averaging operations (< > and ) and con-

sider all dependent variables volume- and time- (or ensem-

ble-) averaged.

At this point it is instructive to perform a ccunt of

unknowns and equations:

20 unknowns:

10 dependent variables (ca' Pa' Pa' ea, Ua; a=1,2),

4 wall exchange terms (Pwa' wa; a= 1,2),

6 interfacial exchange terms ( ia, Fia, Qa; a=l1,2).

12 equations:

6 conservation equations,

2 equations of state (pa = Pa(Paea); a= 1,2),

1 constraint (1 + a2 = 1),

3 interface jump conditions.

Therefore eight additional relationships are needed for clo-

sure.

We shall now make the usual assumption of equal bulk

phase pressures, i.e.,

(A. 36)Pl = P2
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With this assumption, the momentum and energy jump conditions

(see Table A.4) reduce to:

Momentum:

P. + - 0 (A.37)i1 i2

Total energy:

Qil + Qi2 = 0

Let us now introduce the following notations:

P = p =P2

a= 1 = 1- a 2

r =r il i2

Fi = F = -Fi2

Qi =Qil = -Q1 2

(A.39)

These notations can then be substituted into the conservation

equations (Table A.2). We now have:

15 unknowns:

8 dependent variables (p, a; Pa' ea' Ua; a= 1,2),

4 wall exchange terms (Fwa Qwa; a=1,2),

3 interfacial exchange terms (F, Fi, Qi).

(A. 38)
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8 equations:

6 conservation equations

2 equations of state (pa = Pa(p,ea); a= 1,2).

Thus the seven wall and interface exchange terms must be sup-

plied as constitutive relationships.

To summarize, we obtained a working model describing the

evolution of a two-phase flow. This was achieved by first

rigorously deriving a set of averaged conservation equations

for the bulk fluid phase and for the interface, after which

additional assumptions were introduced to arrive at a working

set of equations. The value of this exercise is that it

points out clearly the nature of these assumptions, while at

the same time providing the framework within which some of

these assumptions may be eliminated or replaced by :Less severe

ones. The final set of equations is quite general and can be

used for a broad range of applications dealing with two-phase

flow. Careful consideration of phenomena involved in some of

these applications may lead to further simplifications, making

the working equations even more tractable, while still ade-

quate for describing the essential features of the flow.
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Table A.1

Quantities Used in the General Conservation Equation

Conservation
Equation a a a

Mass 1 0 0

Momentum U - Fa a

1 2 +. = 4 . +
Total Energy ea+U q- Ua F Ua



Table A. 2

Volume-Averaged Conservation Equations

Conserved Volume-averaged conservation equation for phase "a" (a = 1,2)
Quantity

Mass a a + a< P U > = ria

Momentum a< PaUa> + Va PaUaUa > + aa <pa > -> -< - a F >

-_ia - Pwa

a 2 2 + a
Total Energy ta a <Pa(ea + Ua /2)> + V a a (ea +Ua /2)Ua> + V-aa<qa> + <Pa> ea a

+ Vea<paUa> - V'ea a<a a > - a <PFa U

Qia + Qwa

wA

'0



Table A.3

Definition of the Exchange Terms in the Volume-Averaged Conservation Equations

Equation Interfacial Exchange Terms Wall Exchange Terms

Mass .ia = -<m >.

Momentum ia = <ma U a + APana - T ana>i wa a a*a wa

<m2 - .

Total Qia = -<a(ha+U a /2) + a*na wa = -<q a wa
Energy

+ Ap aU.in + (a *Ua )*na >i

Note: The average over the wall surface area is defined as <fa >wa Vl fadA

Awa
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Table A. 4

Interfacial Jump Conditions

ConservedCoQuantity Area-averaged interfacial jump conditions
Quantity

Mass ril i2 = 0

Momentum il + Fi2 -(<>Va l +<P 2 >Va 2 ) = 0

1 2
Total Qil + Qi2 + (<Pl > a + <P2 >  ) = 0
Energy

.................
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Appendix B

Sodium Thermo-Physical Properties*

B. 1 Thermodynamic Properties

1. Saturation Temperature (OK)

A1
T =
sat A2  A SA2 + A + 4 n(p)

where: A1 = 6.8354 x105

A2 = -1. 1485 x 10 4

A3 = 1.6156 x 108

A4 = -1.3671x106

Range of validity: 550 < T < 22700 K

Source: Ref. 1

2. Liquid Density (kg/m3)

2 -2 t
p = A5 + A6 T + A7 T + C (p-Pref

where: A5  = 1.0042 x 10
-1

A6  = -2.1390 x101

-5
A7  = -1. 1046 x 10

c 2 = 2.0x10 7

5
Pref = 1.5 x10

Range of Validity: 550 <T < 2270 0 K

Source: Ref. 1

*T is in OK and p is in MPa in all correlations given in this
Appendix.

See subsection B.3



3. Vapor Density

29 + A+ A + A1 T + AT +9 10 11 A 2 T3 + A1 3 T4px106
12 13

where: A

A
9

A10

AllA11

A12

A 13

= 4.1444 x103

= -7.4461
-2

= 1.3768 x 10
-5

= -1.0834 x10

= 3.8903 x10

-3= -4.922 x 10

Range of Validity:

Source: Ref. 1

4. Liquid Enthalpy

550 <T < 22700 K

(J/kg)

h = A14 + A15T + A16 T + A T15 16 17

where: A = -6.7508 x 104

A = 1.6301x 103
-1

A16 = -4.1672 x 10

A17  1.5427x10-4A = 1.5427 x10
17

Range of Validity:

Source: Ref. 2

5. Vapor Enthalpy

360 < T < 16440 K

(J/kg)

hv=A 8 + A1 9T + A2 T

where: A18

A19

A 20

6= 5.2464 x10

= -3.9950 x102

= 6.4578 x10-1

355

(kg/m 3 )

A 8
Sv =

+ A21T21

ill ,=, , "

__
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-4
A = 4.8590 x 1021

Range of Validity: 550 <T < 16440K

Source: Refs. 1 and 2*

B.2 Transport Properties

1. Liquid Conductivity (w/mOK)

2 3
k =B 1 + B2T + B + B4 T

22 3 4

where: B1 = 1.1045 x 102

-2
B2 = -6.5112 x 10

-5
B3 = 1.543 x 10

-9
B4 = -2.4617 x 10

Range of Validity: 550 <T < 22700 K

Source: Ref. 1

2. Vapor Conductivity (w/mOK)

k =B + B + BT + B T
v 5 6s 7s

where: Ts = 1.8 T - 459.7
-3

B5 = 2.8366 x 105-
B = 6.8830 x 10

-8
B = -1.6783 x 107

Range of Validity: 360 <T < 1644K

Source: Ref. 2

*Obtained by combining the fits for liquid enthalpy from [1]
and of the heat of vaporization from [2].
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3. Liquid Viscosity (Pa sec)

B9 B10 B11S= B +-+ +
T T T

-5
where: B8 = 3.6522 x10 5

-1
B = 1.6626 x10

B10 = -4.5688x101

B11 = 2. 8733 x 10

Range of Validity: 550 <T < 22700 K

Source: Ref. 1

4. Vapor Viscosity (Pa sec)

Uv = B12 + B1 3T

where: B1 2 = 1.261x10-5

-9
B1 3 = 6.085x10

Range of Validity: 360 <T < 16440 K

Source: Ref. 2

5. Liquid Surface Tension (N/m)

a = B14 + B15 (T-B 16)

where: B1 4 = 2.067 x10 1

-4
B15 = -1.0x1015

B = 2.7314 x 102

Range of Validity: 360 <T < 16440K
Source: Ref. 2

B.3 Remarks

The derivatives of the state properties, needed in the
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linearization process, were obtained by directly differen-

tiating the fits shown above. Regarding the liquid compres-

sibility, we used an average sonic velocity which yielded

ck2 = p/p = 0.2x10 6 kgm-3 Pa. This constant compressi-

bility renders the liquid density dependency on pressure

linear, thus numerically very advantageous. Then we provided

for consistency a correction to the liquid density of the

-2
form previously shown, i.e., Ap = c 2 Ap (a typical pressure,

say p= 1.5 x 105 Pa, was considered as "reference" pressure).

One should note that this approximate treatment is perfectly

adequate, as this correction represents about 0.001 of the

liquid density, thus well below the accuracy of the fit

(" 1.5%).

A second remark pertains to the fact that our numerical

scheme uses the internal energy as primary variable, therefore

the temperature (for single-phase liquid or vapor) raust be

inferred. While inverse fits can be obtained (i.e., T=fn(p,e))

we decided on a different approach. The drawback with such a

fit is that it may not generally assure continuity across the

saturation line. The reason is this: when we have a two-phase

mixture, the pressure determines the (saturation) temperature,

which in turn is used to calculate, among other quantities,

the internal energies, using the direct fit, i.e., ek = hk - P/Pk

= fn(p,T), with k=v or R. In contrast, when dealing with

single-phase flow situations, the temperature would be inferred

from the inverse fit. At the saturation line crossover, there
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would generally be a discrepancy which cannot be tolerated,

as it may lead to lack of convergence of the nonlinear itera-

tions. Consequently we decided to determine the single-phase

temperatures using also the direct fit, through an interative

procedure. Specifically Newton's method is used. The rela-

tively mild nonlinearity of the direct fit results in only 2

or 3 iterations being needed to attain a more than adequate

accuracy, therefore exacting only a very modest (almost neg-

ligible in the overall scheme) computational penalty.

A final remark is made in connection to the calculation

of liquid internal energy. We found the term p/p. to repre-

sent less than 0.01% of the enthalpy for the entire range of

validity, thus significantly below the stated accuracy of the

fits (n-1.5%). Therefore, the assumption eQ = h, appeared

completely justifiable and it was adopted.

B.4 References

1. Argonne National Laboratory Reactor Development Program
Quarterly Progress Report, ANL-RDP-78, December 1978.

2. H.G. Golden and J.V. Tokar, "Thermophysical Properties
of Sodium," ANL-7323, August 1967.
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APPENDIX C

REVIEW OF NUMERICAL METHODS FOR TWO-PHASE FLOWS

The numerical modeling of two-phase flow has been

the object of intense research over the last 'decade. It

is instructive to review some of the methods used in this

area, in order to gain a perspective on the evolution

and current status of this field. We do not attempt to be

exhaustive in this review, but our intention is rather to

present the more representative methods that in some way

can be considered milestones in this field, spawnirLg new

research or constituting the backbone of some of the major

computer codes currently in use.

It is appropriate to begin with the ICE technique [1],

which has been the starting point, through its basic

ideas, for the development of the majority of the

numerical fluid dynamics methods currently used in nuclear

engineering. It is a semi-implicit method, treating im-

plicitly the pressure pulse propagation, thus no longer

restricted by the full Courant criterion. The method

employs the now almost universally used staggered mesh,

placing the scalar quantities (pressure, density, energy,

etc.) at the center of the mesh cell and the velocities

(or mass fluxes) at the cell faces. The equation of state

is linearized about the old time values. The total. energy
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equation is advanced explicitly. The mass and momentum

equations are combined, resulting in a Poisson equation

for pressure. The density is obtained from the linearized

equation of state, thus the actual (non-linear) equation

of state is never truly satisfied.

The FLASH method [2] is roughly of the same vintage

as the previous one. It has been widely used for system

codes (RELAP [3], RETRAN [4]). The method is semi-implicit,

as ICE, and it also uses a staggered variable placement.

Unlike ICE, however, it treats the energy equation in the

same manner as the mass equation, thus providing an im-

proved coupling. The equation of state, relating the

pressure in a control volume to the fluid mass and energy

in that control volume, is linearized about the old

time values. It is then used in the momentum equation to

eliminate the pressures in favor of the masses and energies

of the relevant volumes. Finally, the use of the mass and

energy equations leads to a system of linear equations for

mass fluxes (or velocities). In this method, the mass

and energy equations are linear, thus mass and energy are

automatically conserved (within the computing round-off

error). Non-linearities are, therefore, "assigned" to

the momentum equations.

The marching method has been used extensively in
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subchannel codes, such as the widely used codes in the

COBRA series [5]. The method generally assumes that the

density is independent of pressure, but still dependent of

enthalpy. From the point of view of time discretization,

the method is fully implicit. The solution proceeds from

the inlet, where the flow rate and fluid pressure and en-

thalpy are normally given. If the outlet pressure is

given as a boundary condition, then the appropriate inlet

flow rate is determined through an iterative process.

At each axial level, the mass and momentum equations are

used to obtain a system of equations for cross-flows.

These nonlinear equations are solved via a successive

substitution procedure. The method is unable to treat

local axial flow reversals and the solution generally

breaks down under severe conditions leading to relatively

large cross-flows. Nonetheless, this method is quite

effective for many design calculations and for the analysis

of relatively mild transients.

The modified ICE method [6,7,8,9] has been very

successfully used in the last few years to simulate a very

wide range of transients of interest in reactor safety

analysis. It builds on the strengths of the first two

methods previously described (ICE and FLASH). As in

FLASH, the mass and energy equations are treated in a

consistent manner. However, instead of obtaining a sys-
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tem of equations for velocities, the modified ICE method

uses a different reduction process resulting in a sys-

tem of equations for pressures, analogous to the original

ICE. It should be noted that in two- or three-dimensional

problems, the matrix associated with the system of equa-

tions for pressure has a significantly simpler

structure and is sparser than the matrix corresponding to

a system of equations for velocities. The advantage of

the "pressure-problem" over the "velocity-problem" increases

significantly for multifluid flow treatments. In this

method, nonlinearities are handled in two different

ways. The linearization may be performed only once,

about the old time values, as in [9]. In this case,

an acceptable degree of mass and energy conservation is

maintained via the time step control. In contrast, the

scheme applied in [6,7,8] consists of a full Newton

iteration process at every time step. However, in order

to achieve convergence within some prescribed criterion,

the time step size may be occasionally reduced below

its stability limit.

While quite adequate for the aniaysis of a wide

range of transients, the previously described method be-

comes rather uneconomical in some cases, such as:
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- very slow transients, when there is

a need to simulate over a long period of

time, and

- direct chocked flow simulation, without

resorting to special "break" models.

In such cases, the time step size limitation im-

posed by the explicit treatment of the convective trans-

port may lead to almost prohibitive computing costs.

Methods which relax or eliminate this limitation are

obviously better suited in such situations, if they offer

adequate accuracy and reliability.

The SETS method [10] removes the convective time

step limitation through an ingenious series of prediction/

corrector steps applied to the basic modified ICE scheme,

in one-dimensional configurations. The extension to

two- and three-dimensions is not trival, however, and

may actually prove uneconomial.

The SIMPLE method [(1] attempts to solve the

governing equations in a fully implicit manner in up to

three-dimensions. The resulting non-linear difference

equations are solved via a successive substitution

scheme. While this scheme renders a fully implicit

method relatively tractable (avoiding the need to construct

the complete Jacobian matrix), its convergence is not
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always guaranteed. In fact, in some situations, heavy

underrelaxation is required to attain a converged solution.

In such situations, the convergence is usually very

slow, and great many iterations are needed at each time

step, to the point of almost cancelling the advantage

of a fully implicit scheme. Nevertheless, further work

in the area of optimal relaxation strategy may bring

this powerful method to its full potential.

The methods described thus far are all based on the

finite difference approach. From an accuracy point of

view, they are all first order schemes in both time and

space. A more novel approach, based on the weighted

residual method, shows promise of improved accuracy and

efficiency. Such a method has been described by Werner [12].

It is an Asymmetric, Separated Region Weighted Residual

(ASWR) method, which apparently yields considerably higher

accuracy, for a given mesh size, than finite difference-

based methods currently used. In this method, coupling

of the regions is restricted to "nearest neighbor",

greatly contributing to the efficiency of the solution.

In recent applications [13], the method provided for boil-

ing front tracking (in one-dimension) and it is this part-

icular feature which it is probably responsible to a sig-

nificant extent for its success. In principle, the ASWR

may be extended to two- and three-dimensions, but at the
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cost of a considerable increase in computational work. Un-

fortunately, the interface tracking capability is ex-

ceedingly more difficult to extend to multidimensional

configurations. It still remains to be seen if this

method proves a superior alternative in multidimensional

analyses. Nonetheless, the potential offered by the

mathematical framework of this method must be noted.

Given the interest in and the difficulties inherent

to simulating multidimensional multiphase flows, the

years to come will certainly bring forth many evolutionary

and, hopefully even a few revolutionary numerical methods.
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APPENDIX D

ON VOLUME AVERAGING

Two remarks are in order concerning the use of volume-

averaged equations. First, one recalls from the mat-

erial presented in Appendix A that the divergence terms

in the volume-averaged equations originate from the sur-

face integrals taken over the fixed boundaries of the

control volume occupied by each phase. Consequently

our discretized scalar equations (i.e., mass and energy)

were written with this observation in mind, substitut-

ing the divergence terms by difference of fluxes,

i.e., (for the x-direction)

VOU O #AUIx+ - #AUI (D.1)

The second remark refers to the momentum equations.

In Chapter 4, a difference scheme was introduced for

these equations, which is essentially a direct equiva-

lent of their differential form. This approach was

mainly chosen because of the use of a non-conservative

form of the momentum equations, particularly advant-

ages for our numerical method. A somewhat subtle

constraint implicitly arises, however, in the context of

our porous media representation.



370

For simplicity, let us consider the single-phase

momentum equation:

;t (pU)+ V(pUU) + Vp = F (D.2)

Consider now a control volume containing (possibly)

dispersed fixed solids and integrate (D.2) over

it:

SI (p-) dv + I pUdA + I pdA
f ff ff

= V F'dv (D.3)

In Equation (D.3), Gauss' theorem was applied to the

divergence terms. The fluid-only volume, denoted by

Vf, is bounded by the surface Af, which is turn is

made up of:

* Aff = net flow area, through which the

control volume exchanges mass with

the surrounding space, and

* Afs = fluid-solid interface (on which U=0).

The form drag, i.e., Afs pdA, was included into
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the force F'. Consider now, for facility, a one-dimen-

sional configuration and neglect spatial distribution

effects; Eq. (D.3) then becomes:

Vf (pU) + (U2 Aff) - (pU 2Aff)

+ (p Aff)+ - (pAff)_ = VfF' (D.4)

If (Aff)+ = (Aff) = A*f = Vf/Ax, Eq. (D.4)

can be written as:

- (pU) + A(pU2)/Ax + Ap/Ax = F' (D.5)

which is clearly the form used to construct a finite

difference equivalent.

It follows that the velocities in fact correspond

to an area A f, which obviously is the volume-averaged

area:

i.e., A A (x)dx = Vf/Ax (D.6)ff Ax Ax ff f

Therefore, in calculating the fluxes, the significance

of the calculated velocity must be kept in mind.

Assuming the density changes negligibly over a short

distance (on the order of the mesh size), the velocity

at some location x can be obtained as:
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U(x) = U A / A(x) (D.7)

Alternately, one can use directly the volume-

averaged areas. This latter approach was taken in

this work.

In this way, the staggered-mesh (described in

Chapter 4) is properly handled.
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APPENDIX E

ON THE DIAGONAL DOMINANCE OF THE PRESSURE PROBLEM

We start from Eq. (4.39), Chapter 4, where all the no-

tations used thereafter were introduced:

[I + B (D2 A -1 D1 A2 )]6p = ... (E.1)

Let us denote AR the matrix in brackets above. First, we

should ascertain that B is not singular. Recalling the def-

inition of B.

d dB = D2A - DIA2  (E.2)

we can show that none of the entries of this diagonal matrix

become zero under any circumstances. For simplicity, we

shall assume in the following that the heat sources are

fixed (or treated explicitly), thus not contributing to

the Jacobian matrix. We note that this simplification

does not limit the applicability of the following dis-

cussion, as the reader may verify. Let tI and t2 be the

sum of the off-diagonal entries of A1 and A2 , respectively

(see Eqs. (4.28, 4.29)); also recall that these off-

diagonal entries are non-positive, thus tl and t2 are

also non-positive. We shall focus on a given row of

matrix AR (and its components) and with this understanding



374

we will not use any additional indices. The relevant

entries for B are

[D2] = (V/At) (p e m/ae )

[D1] = (V/At) (pm/ ae) p

[A ] = (V/At) (pm /p)e - t (E.3)

[A2 ] = (V/At) em Pm/p) e  2

Noting that:

(pm e /3e ) = e (p m/3e ) + p

one obtains after re-grouping:

[B] = (V/At) (t2 - tlem) (pm/;em)

+ (V/At) pm m/ p)e
m (E.4)

- (V/At) Pmtl

The first term may be positive, according to the sign of

the factor (t2 - tle m ) , the second and third terms are

always positive (recall that p m/aem < 0 and Cp mp > 0).

The probability that the first term, while negative will

be exactly equal in magnitude to the sum of the other two

is, for all practical purposes, zero.

We proceed to analyzing the diagonal dominance of

AR . First rewrite Eq. (E.4) by regrouping in a form we
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will find more convenient:

[B] = (V/At) Pm (ap /ap)e
m

- (V/At) {[Pm + em (Pm/e) ]t 1- (ap m/aem) t 2

(E.4')

The grouping (D2Aa - DIA2) in (E.1) gives rise to the

off-diagonal entries, the sum of which is (for the row

under consideration):

S = [D2 ] t  - [D1] t 2

= (V/At) {[Pm + em(aPm/em)p]t l - (ap /ae )pt 2 }

(E.5)

Since the diagonal entry of AR is 1, the condition for

diagonal dominance is simply:

ICI _ 1 (E.6)

where:

C = S/[B] (E.7)

Using Eqs. (E.4') and (E.5) we obtain:

1/C = [(V/At) p (ap /3p) /S] - 1 (E.8)
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The condition (E.6) is equivalent to:

I1/Cl > 1 (E.6')

Let us denote the expression in brackets in (E.8) by E;

then (E.6') becomes:

I - El > 1 (E.9.)

We are interested in maintaining the off-diagonal entries

nonpositive, i.e.,

E< 0 (E.10)

Clearly, this is one of the conditions satisfying (E.9)

(the other is E > 2). Let us analyze in detail the ex-

pression for E:

(V/At)pm (OPm /P)em
E = (E.11)

[Pm + em ( Pm/ae) ] t - (p /e ) t 2

Clearly for an incompressible flow E = 0, thus satisfy-

ing (E.10). Equation (E.11) can also be written as:

V (Pm/p)em -1
E = - P (St - t )

At (Pm/em) 1 2 (E.11')
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-1
where 8 = em + pm(aPm/ae m) (E.12)

In light of the sign of the density derivatives and of

the Eq. (E.11), condition (E.10) will be satisfied if

F = 8t t 2 > 0 (E.13)

As already mentioned, both tl and t2 are nonpositive,

therefore, whenever a < 0, (E.13) is automatically sat-

isfied. If 8 > 0, (E.13) may still be satisfied by

8t > t 2 (or -St1 < -t 2 ) (E.13')

that is, the relative magnitudes of at1 and t2 will play

a role. If spatial variation of properties is neglected,

than it is easily seen (from the material in Chapter 4) that

t 2 = emtl' (neglecting the pVU term), therefore:

-1
F = (8-em)t = PM (Pm/aem p tl > 0

that is, in this idealized case, unconditional diagonal

dominance can be proved.

In the general case, the analysis becomes considerably

more difficult.

In the case of single-phase liquid, it turns out
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that always Ipm (3m/em)pI I > em. Consequently, 8liquid < 0

and condition (E.13) is satisfied.

For the case of single-phase vapor, consider for

simplicity a perfect gas. We have:

p
RT

e = c T

Then

p =
(y-l)e

(E.14)

(a ) = 1 p
aep e2 (y-1) e

and thus 8 = 0; the inequality (E.13) is satisfied.,

Let us turn to the case of two-phase flow. From

Appendix B we have

(p m/;em)p = - Ap/[emAp - Ape] (E.15)

where: Ap = p - Pv > 0

Ape = p e - Pv e > 0+v

Then

8 = em - [emAP - Ape]/Ap

= Ape/Ap > 0

This is true in spite of eZ<e , because the liquid/vapor
density ratio dominates the beKavior of this expression.
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We cannot ascertain, the diagonal dominance in general.

We can make, however, a few additional considerations.

At low pressures, characteristic for sodium applications,

P >> P , while e£ and ev are much closer. Approximately,

then 8 e . If all neighboring cells are in two-phase

and the pressure does not vary much, e becomes a lower

bound for em. Therefore, it is possible to have

- et < - t

So far, we have used the conservative form of the

energy equation, treating implicitly the convective

terms. We shall turn our attention to some of its other

variants mentioned in Chapter 4.

First let us analyze the effect of a non-conservative

treatment. This form of the energy equation is ob-

tained by subtracting the mass equation (multiplied by

em) from the conservative form. While the various terms

d a
originating from the mass equation (i.e., Ad , A , DI ' t)

are unchanged, their energy equation counterparts will

be modified as follows:

~---- - -- IN- 1 1 -1'4-11-- 1411,
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n
[D2 ] + [D 2 ] = (V/At) pm

[A2 ] + [Ad = -t 2

' n
t - t = t -e m t2 2 2 m 1

First of all we note that with A

strictly diagonally dominant. I

treated implicitly, these will b

to the pressure dependence, i.e.

it is not possible to ascertain

dominance of A2, because the sig

terms will depend on the relativ

[Ai].
2

' d  _

2 -t 2 , A2 is no longer

f heat sources are

e a local contribution

[A2 ] # 0. However,

a priori the diagonal

n of the off-diagonal

e magnitude of [A'] and

In this case, [B], S, C and E change into:

[B'] = (V/At)2 pn (3 m/P )m m/ e m
- (V/Vt) [pnt

(aPm/em) p t 2 ]

S'=(V/At) [pn tl - (~pm/em)p t]J
PMlt m p2

(E.17)

(E.18)

1/C' = [B']/S = [(V/At) pn ( p /3p) /S] - 1 (E.19)m m em
m

(E.16)
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n
(V/At)p (ap /ap)

E' = .er (E.20)
pm tl - (SPm/em)p t2

Equation (E.20) can also be written as:

V (3Pm / Pe n ,1
E V - m (8't - tn (E.21)

At m 1 2
(pm/aem) 

p

n -i
where 8' = P (ap /ae) p(E.22)m m mp

The counterpart of F then becomes:

F' = B't - t' = B't - t + e n t1  1  2  m 1

= (B' + e ) t - t2

n n -1
[en + pn (Pm/aem)p] t - t2 (E.23)m m m MP 1 2

Therefore, except for the fact that pm and em appear

at the old time, the results and hence the discussion

are identical to those previously obtained and given

for the conservative energy equation. For a numerical

scheme linearizing about the old time only, even the

above exception disappears.

We have also looked at a scheme using the non-

conservative form of the energy equation, treating the
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convective terms explicitly. In this case the off-

diagonal terms in A2 will vanish, therefore,

'd "d
[A 2 -+ [A2  = 0

(E.24)
ti t" = 02 2

The expression for E in this case is obtained by

simply setting t2 = 0 in Eq. (E.20):

-I
E" = (V/At) (Opm/P)e t1  (E.25)

m

Recalling that (3pm /p)e > 0 and tl < 0, it follows
m

that E" < 0 and, therefore, unconditional diagonal. dom-

inance (see condition (E.10)) is always maintained.

In closing, we should remark that the inclusion

of the effects of the heat sources does not alter the

conclusions of the analysis presented herein.


