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NOTICE

This report was prepared as an account of work sponsored by

the Department of Energy. Neither the United States nor any

agency thereof, nor any of their employees, makes any warranty,

expressed or implied, or assumes any legal liability or

responsibility for any third party's use or the results of

such use of any information, apparatus, product, or process dis-

closed in this report, or represents that its use by such third

party would not infringe privately owned rights.
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ABSTRACT

The Energy Information Administration (EIA) is charged by Congress to

prepare an Annual Report to Congress (ARC) which includes projections of

energy supplies, consumption and prices, as well as the relation of

energy to other economic activity. As an aid to users of ARC, the EIA

Office of Analysis Oversight and Access (OAOA) is preparing "Analysis

Quality Reports" on particular components of the energy information

analysis system used in developing the ARC-78 projections. This report

focuses on the Coal Supply Module used for the midterm projections of the

ARC-78. The Coal Supply Module is part of the EIA's National Coal

Model. The review and analysis presented here is based upon the MIT

Energy Model Analysis Program's (EMAP) evaluation of the documentation

and implementation of the Coal Supply Module sponsored by OAOA, and an

indepth evaluation of a related model--the ICF Coal and Electric

Utilities Model--which also employs the EIA Coal Supply Module. The

indepth evaluation has been sponsored by the Electric Power Research

Institute.



TABLE OF CONTENTS

1. Introduction

2. Description of the Coal Supply Module in the National
Coal Model and its use in ARC-78.

2.1 Review of Materials

2.2 Summary Description of the Coal Supply Module

2.3 Relation of Coal Supply Module to Midterm Energy
Market Model

3. Verification Analysis of the Implementation and Use of
the Coal Supply Module in ARC-78

4. Evaluation of the Coal Supply Module in the National
Coal Model and its use in ARC-78

4.1 Data

4.2 Logical and Mathematical Structure

5. Empirical Analysis of Key Uncertainties in Data and Structure

5.1 Sensitivity to Reserve Base (CDRB)

5.2 Uniform Versus Lognormal Distribution for Unallocated
Reserves

5.3 Coal Royalties and Rents

5.4 Coal Production Costing

5.4 Potential Coal Production Rates and Mine Lifetime

References

Appendix A.1 Analytical Formulation of the Coal Supply Cost
Function and Associated Elasticities

Appendix A.2 The Concept of Minimum Acceptable Real Annuity
Coal Prices--A Formulation

1-1

2-1

2-1

2-2

2-6

3-1

4-1

4-1

4-28

5-1

5-3

5-7

5-9

5-13

5-17

A-1

A-1 6



1-1

1. INTRODUCTION

The Energy Information Administration (EIA) is charged by Congress to

prepare and submit an Annual Report to Congress (ARC). In particular,

EIA is directed to prepare "..projections of energy production,

consumption and prices, in addition to their economic and other related

consequences" (EIA[1979,p. xvii]). An important objective of the Annual

Report is to organize and interpret factual materials to improve

understanding of the nation's energy-related condition, and to project

future developments in the short, medium and long term. The EIA Annual

Reports are thus an important national resource for improving,

understanding, and providing background for the development and

interpretation of national energy policy.

ARC's mandate to present short, medium and long term projections

requires that an information analysis system be developed and used to

organize factual and analytical information, and to support developing

projections. Users of the ARC must be assured that such systems exist,

are understood by energy analysts in general, and have been evaluated and

found to represent good scientific practice for the purposes of the ARC.

The EIA has developed or sponsored components of such an energy

information analysis system. In preparing the ARC projections, many of

these component systems have been used. Likewise, EIA is developing and

applying procedures and guidelines for documentation and evaluation of

these information analysis systems. A survey of these various activities

is provided in Wood [1981].

The EIA Office of Analysis Oversight and Access (OAOA) is responsible

for the review and evaluation of the ARC. As a means of combining its

responsibilities, OAOA has developed the concept of the "Analysis Quality
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Report." The purpose of these reports is to support users of the ARC by

organizing and presenting evaluative materials relating to particular

information analysis systems used in preparing ARC projections. A

distinguishing feature of the "Analysis Quality Reports" is that they are

explicitly intended for users of the ARC, not just for the conmunity of

energy analysts familiar with the EIA's modeling systems.

The Energy Model Analysis Program (EMAP) of the MIT Energy Laboratory

has been conducting documentation and model evaluation projects for EIA

and other sponsors bearing on the Coal Supply Module employed in the

preparation of ARC-78 midterm projections. EMAP was therefore contracted

by OAOA "to prepare a report, using the results of any such validation

projects in addressing the quality and usefulness of the projections of

coal production for the years 1985, 1990 and 1995 given in the EIA Annual

Report to Congress 1978, Volume III" (OAOA [1979]).

This "Analysis Quality Report" for the midterm coal supply

projections used in the 1978 Annual Report to Congress (ARC-78) is

organized as follows. In Chapter 2 we summarize the materials employed

in the evaluation, and present a summary of how the coal supply module

fits into the larger information analysis system employed in the ARC-78.

In Chapter 3, the results of a verification analysis on the

implementation and application of the Coal Supply Module are presented.

Chapter 4 presents a validation analysis of the data, logical and

mathematical structure of the Coal Supply Module, and Chapter 5 presents

results from an empirical investigation of the sensitivity of projection

results to uncertainties in the Coal Supply Module data and structure.
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2. DESCRIPTION OF THE COAL SUPPLY MODULE IN THE NATIONAL COAL MODEL, AND

ITS USE IN ARC-78

The energy information analysis system underlying the midterm

projection of ARC-78 is the EIA Midterm Energy Forecasting System

(MEFS). The MEFS includes as one component the National Coal Model which

in turn includes a Coal Supply Module. In this chapter we first identify

those aspects of the ARC-78 which reflect the NCM Coal Supply Module, the

documentation of the Coal Supply Module (CSM), and relevant evaluation

studies. Then a summary description of the CSM is presented, supported

by a more technical description in Appendix A, and followed by a

description of how the outputs of CSM are transformed and used as inputs

to the Midterm Energy Market Model (MEMM), the integrating model which

combines the various modules into a system for generating the ARC-78

projections.

2.1 Review of Materials

This "Analysis Quality Report" focuses upon the Coal Supply Module

(CSM) of the National Coal Model as used in developing midterm

projections in ARC-78. The main place in which the analysis based on the

CSM is represented in ARC-78 is in Chapter 9 of Volume III, entitled

"Coal Supply." In this chapter, EIA provides some historical

perspectives and short-term projections. However, it is the section on

mid-term projections for the years 1985, 1990, and 1995 which concern us

here. Projections are made in ARC-78 concerning production quantities

and prices for coal, by region/mine type and by region/coal type

(designated by sulfur content). In addition, the results of sensitivity

tests are reported; these tests altered the price of imported oil, coal

transportation costs, and production of western coal. The data presented
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in Chapter 9 of ARC-78 Volume III are supported in greater detail in

Supplement One to Volume III. In particular, Series C Tables 16 and 17

provided the less aggregated data upon which Tables 9.2 and 9.3 were

based. In the next section of this report, we present results of a

verification and error correction of the Coal Supply Module, and suggest

how this may alter the projections made by EIA in Chapter 9. In Section

5 of this report, we turn to the sensitivity analysis, and suggest how

uncertainty in model results may be affected.

2.2 Summary Description of the Coal Supply Module*

The supply curves employed in the Coal Supply Module (CSM) are based

on the coal supply methodology that ICF, Inc. developed in its Coal

Supply Analysis for FEA's Project Independence Evaluation System (PIES).

A description of the methodology follows.

The coal supply sector of the CSM consists of price sensitive,

multi-stepped coal supply curves for each coal type that exists within

each supply region. The curves are used to simulate potential production

levels available at various prices. Each step of a supply curve

represents a different type of mine. The length of each step gives the

potential production level for each mine type. The height of each step

is called the "minimum acceptable selling price" (known as the

"reservation price" in economic terminology) and is based on average

variable costs for existing mines and average total costs for new mines.

The supply curves are developed in six major steps. The first step

defines appropriate coal supply regions and coal types. In the CSM there

are 30 supply regions, aggregated into 12 regions as shown in Table 2-1.

*Adapted from Goldman [1980]
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Table 2-1

ARC-78 COAL SUPPLY REGIONS

Northern Appalachia

Pennsyl vani a
Ohio
Maryland
West Virginia, North

Southern Appalachia

Al abama

Central Appalachia

West Virginia, South
Virigina
East Kentucky
Tennessee*

Midwest

West Kentucky
Illinois
Indiana

East North Great Plains

North Dakota
South Dakota
East Montana

Central West

West North Great Plains

Western Montana
Wyomi ng
Northern Colorado

Gul f

TexasIowa
Missouri
Kansas
Arkansas
Oklahoma

Rocky Mountains

Colorado, South
Utah

Northwest

Washington

Southwest

Arizona
New Mexico*

Alaska

Alaska

*Minor problems exist in these regions, in that parts of the states fall
into other jurisdictions. See Section 4.1.2.



2-4

The model recognizes five heat (BTU) content and eight sulfur content

categories, including two special sulfur levels designed specifically to

allow for deep cleaning to meet either the New Source Performance

Standard (less than .60 pounds of sulfur per million BTUs) or State

Implementation Plans (a one percent sulfur emission limitation for

existing sources). All bituminous coals receive a standard level of

washing. The supply regions and the coal types form the basis for

allocating the Bureau of Mines (BOM) Demonstrated Reserve Base into

regional coal type categories.

The second step estimates future output from existing mines (using

existing production data and expected mine closings) by region and coal

type. The third step determines the minimum acceptable selling price for

the future output of these existing mines. For such mines capital has

been sunk so the minimum acceptable selling price covers only variable

costs, i.e., revenues must cover variable operating expenses. The first

steps on each supply curve represent coal production from existing mines.

The fourth step analyzes demonstrated reserves that have not yet been

developed. The model allocates these uncommitted reserves by region and

coal type to hypothetical model mine type categories, defined in terms of

overburden ratio and mine size for surface mines and in terms of seam

thickness, seam depth, and mine size for deep mines. For a given mine

type, region, and coal type the assigned stock of reserves is then

translated into a potential production flow (annual production level)

using mine lifetime and recovery factor parameters.

The fifth step estimates the minimum acceptable selling price (MASP)

for each mine type in each region. This is the price that provides for

the recovery and return on invested capital in addition to covering
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operating costs. At a given mine, it is the minimum price a coal

producer would accept for his product and still operate profitably in the

long run. The MASP is estimated using engineering mine-costing

algorithms as a function of key reserve characteristics (i.e., overburden

ratio, mine size, seam thickness, and seam depth).

The last step arrays the mine types in each region for each coal type

in order of ascending minimum acceptable selling price, thus generating a

step-function supply curve. The height of each step is determined by the

MASP (on a per-annual-ton basis) of the associated mine type. The length

of each step is determined by the annual potential production level of

the mine type.

Estimates of the minimum acceptable selling price per ton of coal for

each of approximately 190 hypothetical mine types are developed. This

was accomplished by the construction of two "base case" model mines (one

surface and one deep) and a matrix of cost adjustment factors for costing

changes in key variables. The base case cost models were developed from

existing mine cost studies by BOM and TRW and from information obtained

by ICF through interviews with mining engineers and coal economists. The

cost adjustment factors employed were based on extrapolations of

relationships observed in the existing mine cost models and judgments

based on consultations with mining engineers. It should be understood

that the costing methodology used in the Coal Supply Module does not take

into account all possible cost-influencing variables such as roof, floor,

water and gas conditions, however the model developers believe that the

major influences on mining costs have been captured.

A more technical description of the Coal Supply Module is presented

in Appendix A.
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2.3 Relation of Coal Supply Module to Midterm Energy Market Model (MEMM)

The basic documentation of the relation between the Coal Supply

Module (SCM) of the NCM and the MEMM is Shaw et al. [1979], which also

includes a summary description of the CSM/NCM. As noted, the 30 NCM

regions are aggregated into 12 MEMM regions and a raw data table is

created with the following columns:

- minimum acceptable selling price in dollars per ton, including
all direct costs plus severance taxes, reclamation costs, and
adjustments for Alaskan production where applicable;

- maximum level of production in millions of tons per year for
each step in the supply curve for each type of coal;

- proportion of production from surface mines;

- present value of the intial capital investment in millions of
dollars per million tons of coal per year, or dollars per annual
ton required between 1977 and the target year to open new mines;

- present value of the deferred capital investment in dollars per
ton per year required between 1977 and the target year to open
new mines.

The coal raw data tables are then input to the Coal Preprocessor which

- formats the raw data for input to the LP

- converts data units:

-- Production: MMTon/year to MTon/Cal. Day
-- Prices, costs: $/ton to M$/MTon
-- Capital costs: MM$/MMTon/year to MM$/MTon/Cal. Day
-- Set mine retirement rate = 3.5% for regions 1-4, and

calculate mine retirements table in case years.
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3. VERIFICATION ANALYSIS OF THE IMPLEMENTATION AND USE OF THE COAL

SUPPLY MODULE IN ARC-78

In the preceding sections we have outlined the methodology and

general design of the coal supply module of the NCM. At the initial

startup of a model evaluation effort, preliminary understanding of the

structure and formulation of a model is developed by reading and relying

upon available model documentation. An essential next step, however, is

to perform an analysis to verify that the methodology indicated in the

documentation was actually implemented in the computer code in an

error-free fashion. Both the computer code and the documentation must be

checked for internal consistency, as well as the accuracy of their

relation to each other. We term this process "verification." In this

chapter we report on the results of the verification of the Coal Supply

Module (CSM) and relate the implications of the verification results to

the coal production projections reported in ARC-78.

The verification of the NCM consisted of three basic steps: a

comparison of the documentation with the computer code and data files, an

analysis of the computer implementation, and an independent reprogramming

of the coal production costing portion of the CSM.* This reprogramming

utilized a logical sequence different from that in the NCM, and was a

very effective verification method; correspondence of the two codes was

assured by parallel runs that matched coal supply prices to five decimal

places.

During the verification work, the M.I.T. analysts worked first with

the computer code as it was received from the modelers. This version of

*The description here of the verification process and results is based
primarily on Goldman et al. [1979).

--~yl~~l ~ lllllr --- 11111110 Aftwilwill--- - "~I~l
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the code was identified as the Base Case (BC). Analysts uncovered

several errors in the Base Case, and also identified a number of other

issues relating to understandability of the programming. Many of the

errors were then corrected at M.I.T., and the corrected version of the

code was identified as the Corrected Base Case (CBC). Sensitivity

analysis was performed on both the Base Case and the Corrected Base Case

in order to determine the effects of the errors as well as to determine

the effects of changes in variables and parameters.

The following is a summary of the more important errors identified

during the verification process. None of the errors by itself has been

deemed to be of critical importance, although the summation of small

factors can sometimes lead to more significant perturbations in results

than might be expected. The errors involved the following:

o an incorrect modeling of the deep-cleaning of all metallurgical
coals, resulting in the double counting of deep-cleaning costs
for certain coal types, and other related problems;

o an incorrect escalation of base-year (1975) price data for
existing mines;

o skipping one year of cost escalation between the base year and
the case year (1985) in the calculation of real annuity coal
prices;

o inappropriate method for approximating treatment of initial
capital cost expenditures;

o an incorrect escalation of the property taxes and insurance
component of coal mine operating costs;

o an incorrect calculation of base-year Union Welfare Costs for
coal mines;

o changing the smallest seam thickness input value in the midst of
cost calculations for deep mines;

o improperly allocating more than 100 percent of deferred capital
over the lifetime of a mine when the lifetime is not perfectly
divisible by four.
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Other problems identified include:

o In parts, the Supply Code relates to old code used for the PIES
Coal Supply Analysis.. Such code may lead to user confusion;

o Because of an undocumented "patch" that exogenously overrides
the coal supply curve output for Utah bituminous low-sulfur
coal, this particular supply curve should be considered invalid
for sensitivity runs involving regeneration of supply curves;

o Real escalation of cost factors is not appropriately accounted
for in 1990 and 1995 case-year model runs; and

o The implementation of a change in the general rate of inflation
is not at all straightforward and may lead to user confusion.

Those errors that could be corrected without significantly changing

the structure of the Coal Supply Module were corrected by the M.I.T.

analysts. Such corrections related to the calculations of reserve

fractions, coal cleaning costs, property taxes and insurance, definition

of base year dollars, depreciation charges, welfare costs, smallest seam

thickness, labor costs, allocation of deferred capital, Oklahoma

reclamation costs, and escalators for initial capital and existing mine

prices.* The implementation of the corrections led to the development

of the Corrected Base Case (CBC).

In order to determine the effects that the errors alone had on model

results, Base Case output was compared with Corrected Base Case output.

The results of this comparison are summarized in Tables 3-1 and 3-2 for

two important factors--national coal production amounts and average coal

production prices. In these tables, the percentage changes due to the

effects of the corrections appear in parentheses. Some of the more

interesting and signficant effects of the corrections include:

*A detailed discussion of the errors and their corrections may be found
in Goldman et al. [1979).
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NATIONAL COAL

1985

Metallurgical

BC

CBC

Low Sulfur

BC

CBC

Medium Sulfur

BC

CBC

High Sulfur

BC

CBC

Surface

BC

CBC

Deep

BC

CBC

Total

BC

CBC

153.49

163.57 (+6.6%)

291.71

284.83 (+2.4%)

412.13

411.75 (-.09%)

260.07

254.90 (-2.0%)

598.94

599.68 (-.12%)

518.44

515.37 (-.59%)

1117.38

1115.05 (-.21%)

Table 3-1

PRODUCTION (MM TONS)

1990

154.33

169.93

466.29

459.77

550.35

544.92

342.63

330.45

776.73

779.49

736.87

725.58

(+10.1%)

(-1.4%)

(-1.0%)

(-3.6%)

(+.35%)

(-1.5%)

1513.60
1505.07 (-.56%)

1995

164.01

173.23 (+5.6%)

577.21

623.49 (+8.0%)

664.65

641.73 (-3.4%)

456.07

437.12 (-4.2%)

913.39

962.60 (+5.4%)

948.54

912.97 (-3.9%)

1861.93

1875.57 (+.73%)

BC = Base case of model as transmitted to M.I.T.

CBC = Corrected base case of model after error correction by M.I.T.
analysts.
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Table 3-2

AVERAGE COAL PRODUCTION PRICES (1978 $/MMBtu)

1985 1990 1995

Metallurgical

BC

CBC

Low Sulfur

BC

CBC

Medium Sulfur

BC

CBC

High Sulfur

BC

CBC

Total

BC

CBC

1.64

1.66 (+1.2%)

0.83

0.85 (+2.4%),

0.99

1.02 (+3.0%)

1.00

1.04 (+4.0%)

1.07

1.10 (+2.8%)

BC = Base case of model as transmitted to M.I.T.

CBC = Corrected base case of model after error correction by M.I.T.
analysts.

(+1 .1%)

(+1.3%)

1.76
1.78

0.79

0.80

1.03

1.07

1.18

1.23

1.10

1.14

(+3.9%)

1 .85

1.86

0.83
0.83

1.09

1.11

1.27

1.33

1.15

1.18

(+.54%)

(0.0%)

(+1.8%)

(+4.7%)

(+2.6%)

(+4.2%)

(+3.6%)

-- w"W"11111 mll - O-NI"I
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o There is a general increase in surface coal production (a high of 5
percent in CBC-1995) and a general decrease in deep coal production
(a high of 4 percent in CBC-1995) for all case years. There are
small decreases in total coal production in both 1985 and 1990, and
small increases in 1995 (see Table 3-1).

o There is a consistent average coal production price increase of
between 2 and 4 percent (Table 3-2).

Rather than examine the implications of the corrections in the

abstract, however, the important task for EMAP analysts was to consider

the effects of these corrections on the data and projections presented in

ARC-78, Volume III. The direct way to accomplish this would have been to

re-run the actual ARC-78 scenarios using corrected computer code. This

was not feasible for the EMAP team. However, an approximation to the

effect of the corrections on ARC-78 could be calculated because the CEUM,

which EMAP could run, is a somewhat generalized version of the NCM with

updated data. Both the NCM and the CEUM represent a subset of the MEMM;

variables endogenous to MEMM are exogenous to NCM and CEUM, the most

important being the supplies and prices of fuels competing with coal.

Conditional on holding these variables constant, we assume that a change

in the data/structure of the CSM has an equal proportional effect upon

coal production and prices, whether calculated by NCM, CEUM, or MEMM.

Hence, a "first order" estimate of the effect on ARC-78 of implementing

the CSM verification corrections may be obtained by examining the change

in the CEUM BC/CBC results.

The analysis was performed in the following manner. In ARC-78 Volume

III, Tables 9.2 and 9.3, a series of results and projections is presented

giving data on coal production for the three case years of 1985, 1990 and

1995. These results are developed for the EIA Series C data (median

supply curve -- median demand curve), and are supported by Supplement One
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to Volume III in Series C Tables 16 and 17. The EIA projections are

displayed by region/coal type (sulfur content) and region/mine type.

M.I.T. analysts developed for each of these same categories a percentage

change factor of the difference between CEUM Base Case and Corrected Base

Case results. Then that percentage change factor was applied to each of

the results presented in the tables in ARC-78, and a "corrected" EIA

figure was calculated. This analysis is presented in Tables 3-3 through

3-8. Tables 3-3 through 3-5 display the correction effects by coal type

and region, and the latter tables display the effects by mine type and

region.

In the analysis of these data, the first thing to notice is that

although individual percentage changes vary widely due to the

corrections, the effects tend to cancel as the regions are aggregated.

For example, in Table 3-3, metallurgical coal is increased by 17% in the

Northern Appalachian region; however the other coal type amounts are

decreased, such that the total amount of coal for that region is changed

by only 1.01%. This "cancellation" effect is also true when the regional

totals are aggregated into the national total. Again looking at Table

3-3, although the regional subtotals were changed due to the corrections

by varying amounts in both directions, the National total changed by only

0.1%.

Let us look more closely at the percentage changes due to the

verification corrections by sulfur categories, national totals.

National Total 1985 1990 1995

Metallurgical +6.6% +10.1% +5.6%

Low Sulfur -2.4% -1.4% +8.0%

Medium Sulfur -0.1% -1.0% -3.4%

High Sulfur -2.0% -3.6% -4.2%
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For the medium and high sulfur categories, the corrections show that for

those coal types production was overestimated in ARC-78, an effect that

tended to intensify as the years progressed. For the lowest sulfur

categories, the trend is not consistent; however, by 1995, in both low

sulfur categories, coal production was underestimated in ARC-78. In

fact, this underestimation in 1995 of low sulfur coal production more

than offset the overestimation of the higher sulfur coals. To rephrase

this, the error analysis indicates that if the verification corrections

were made on the ARC-78 scenarios, it is likely that the results would

show more low sulfur coal production by 1995 and less high sulfur coal

production, although the national total for all coals would not change

significantly.

Turning to the projections concerning the production of coal by type

of mine -- surface or deep -- displayed in ARC-78 Table 9.3, a similar

analysis can be performed. In general the error corrections tended not

to change the ARC-78 projections concerning surface-mined coal

significantly. Looking at Tables 3-6 through 3-8 it is evident that in

those regions where surface production of coal was changed a few

percentage points due to error corrections, the total amounts involved

tended to be small. More significant effects appear in the deep mining

production numbers, for example in 1985 in Central Appalachia (+3.2%), in

1985 in the Midwest (-3.3%), in 1990 in Central Appalachia (+5.4%), in

1990 in the Midwest (-4.9%), and in 1990 in the Rocky Mountains (-6.7%).

In 1995 the significant changes in deep coal production occur in Northern

Appalachia (-7.2%), in Central Appalachia (+5.1%), in the Midwest (-4.4%)

and in the Rocky Mountains (-5.6%). The summary table for the National

totals is as follows:
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National Totals 1985 1990 1995

Surface no change +0.4% +5.4%

Deep -0.6% -1.5% -3.8%

From this summary table it is evident that it is likely that correction

of the verification errors in the EIA ARC-78 scenarios for Series C would

produce higher figures for coal production from surface mines, and less

coal production from deep mines.

In summary, it is evident that the verification corrections do have

some effect on the results produced by model runs. Because the

analytical exercise performed above on the ARC-78 projections relies on

the application of a factor to the EIA data, the "corrected" columns in

Tables 3-3 through 3-8 should not be considered exact predictions of what

would occur should the verification corrections actually be implemented

on the ARC-78 scenarios. However, the likely direction and magnitude of

such changes is suggested.
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Table 3-3

1985

COAL PRODUCTION (MM TONS)
EFFECTS OF CORRECTIONS BY COAL TYPE AND REGION ON BASE CASE

AND ARC-78 (EIA) DATA

(The column labeled "EIA" presents data from ARC-78 Vol. III, Supplement
One, Table 17; also summarized in Vol. III, Table 9.2)

Corrected
Base Base Change "Corrected"
Case Case Factor EIA EIA

North App.

Metallurgical 16.658 19.408 1.17 17.69 20.70

Low Sulfur .282 .202 .72 1.5 1.08

Med. Sulfur 84.383 84.074 .996 72.22 71.93

High Sulfur 73.904 73.504 .995 84.96 84.53

Total 175.227 177.188 176.37 178.24

Cent. App.

Metallurgical 128.152 135.052 1.053 128.04 142.21

Low Sulfur 18.677 17.367 .929 33.64 31.25

Med. Sulfur 54.337 53.537 .985 70.58 69.52

High Sulfur 12.575 12.575 1.0 15.51 15.51

Total 213.741 218.531 247.76 258.49

South App.

Metallurgical 4.444 4.744 1.068 4.53 4.84

Low Sulfur 4.080 3.280 .804 .96 .77

Med. Sulfur 12.031 11.951 .993 12.91 12.82

Total 20.555 19.975 18.40 18.43

Midwest

Low Sulfur .720 .640 .889 .08 .07

Med. Sulfur 60.695 59.895 .987 54.99 54.28

High Sulfur 167.418 162.652 .972 167.47 162.78

Total 228.834 223.188 222.54 217.13
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Table3-3 (continued)

Change
BC CBC Factor EIA CEIA

E. No. G. Pins.

Low Sulfur 1.604 1.604 1.0 5.01 5.01

Med. Sulfur 21.531 21.531 1.0 22.66 22.66

High Sulfur .341 .341 1.0

Total 23.476 23.476 27.67 27.67

W. No. G. Plns.

Low Sulfur 215.766 212.579 .985 145.95 143.76

Med. Sulfur 90.997 92.341 1.015 50.89 51.65

Total 306.762 304.920 196.84 195.41

Central West

Metallurgical .243 .303 1.247 .23 .29

Low Sulfur .480 .400 .833

Med. Sulfur 1.375 1.647 1.198 .59 .71

High Sulfur 5.828 5.828 1.0 11.1 11.10

Total 7.927 8.178 11.92 12.10

Gul f

Med. Sulfur 57.717 57.717 1.0 70.21 70.21

Total 57.717 57.717 70.21 70.21

Rocky Mountains

Metallurgical 3.992 4.063 1.018 4.69 4.77

Low Sulfur 32.074 31.274 .975 24.56 23.95

Med. Sulfur 9.375 9.375 1.0 5.86 5.86

Total 45.441 44.712 35.11 34.58

Southwest

Low Sulfur 18.022 17.480 .97 3.66 3.55

Med. Sulfur 16.016 16.016 1.0 16.03 16.03

Total 34.038 33.496 19.69 19.58
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Table 3-3 (continued)

Change
BC CBC Factor EIA CEIA

Northwest

Low Sulfur .10 .10

Med. Sulfur 3.668 3.668 1.0 6.02 6.02

Total 3.668 3.668 6.12 6.12

National Total

Metallurgical 153.490 163.571 1.066 155.18 165.42

Low Sulfur 291.705 284.826 .976 215.44 210.27

Med. Sulfur 412.125 411.751 .999 382.93 382.55

High Sulfur 260.066 254.900 .980 279.03 273.45

Total 1117.384 1115.048 1032.58 1031.69
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Table 3-4

1990

COAL PRODUCTION (MM TONS)
EFFECTS OF CORRECTIONS BY COAL TYPE AND REGION ON BASE CASE

AND ARC-78 (EIA) DATA

(The column labeled "EIA" presents data from ARC-78 Vol. III, Supplement
One, Table 17; also summarized in Vol. III, Table 9.2)

Corrected
Base Base Change "Corrected"
Case Case Factor EIA EIA

North App.

Metallurgical 21.446 27.676 1.287 19.72 25.38

Low Sulfur .441 .361 .819 1.43 1.17

Med. Sulfur 142.335 139.245 .978 116.04 113.49

High Sulfur 90.246 88.467 .980 110.29 108.08

Total 254.518 255.748 247.48 248.12

Cent. App.

Metallurgical 123.308 131.929 1.070 134.43 143.84

Low Sulfur 17.916 16.395 .915 30.77 28.15

Med. Sulfur 30.724 31.764 1.034 50.59 52.31

High Sulfur 4.191 4.191 1.0 9.27 9.27

Total 176.140 184.280 225.06 233.57

South App.

Metallurgical 5.121 5.841 1.141 5.45 6.22

Low Sulfur 5.120 4.560 .891 .96 .86

Med. Sulfur 4.410 4.330 .982 5.96 5.85

Total 14.651 14.731 12.37 12.93

Midwest

Low Sulfur 1.040 1.040 1.0 .08 .08

Med. Sulfur 72.285 68.125 .942 60.52 57.00

High Sulfur 241.390 232.099 .962 229.86 221.13

Total 314.716 301.265 290.45 278.21
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Table 3-4 (continued)

Change
BC CBC Factor EIA CEIA

E. No. G. Pins.

Low Sulfur 6.140 5.922 .964 5.58 5.38

Med. Sulfur 23.945 23.945 1.0 26.60 26.60

High Sulfur .341 .341 1.0

Total 30.426 30.209 32.18 31.98

W. No. G. Pins.

Low Sulfur 356.849 357.829 1.003 359.83 360.91
Med. Sulfur 172.600 172.907 1.002 143.44 143.73

Total 529.449 530.736 503.27 504.64

Central West

Metallurgical .181 .253 1.398 .23 .32

Low Sulfur .880 .800 .909

Med. Sulfur 2.469 3.029 1.227 .59 .72

High Sulfur 6.463 5.350 .828 11.10 9.19

Total 9.993 9.432 11.92 10.23

Gulf

Med. Sulfur 71.757 71.757 1.0 71.76 71.76
Total 71.757 71.757 71.76 71.76

Rocky Mountains

Metallurgical 4.228 4.228 1.0 4.69 4.69

Low Sulfur 40.235 37.510 .932 29.75 27.73

Med. Sulfur 9.288 9.288 1.0 6.71 6.71

Total 53.751 51.026 41.15 39.13

Southwest

Low Sulfur 37.670 35.355 .939 6.83 6.41
Med. Sulfur 16.866 16.866 1.0 16.03 16.03

Total 54.536 52.221 22.86 22.44
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Table 3-4 (continued)

Change
BC CBC Factor EIA CEIA

Northwest

Low Sulfur .10 .10

Med. Sulfur 3.668 3.668 1.0 6.02 6.02

Total 3.668 3.668 1.0 6.12 6.12

National Total

Metal lurgical 154.334 169.927 1.101 164.52 181.14

Low Sulfur 466.290 459.771 .986 435.32 429.23

Med. Sulfur 550.347 544.924 .990 504.23 499.19

High Sulfur 342.631 330.448 .964 360.51 347.53

Total 1513.602 1505.069 .994 1464.58 1457.09
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Table 3-5

1995

COAL PRODUCTION (MM TONS)
EFFECTS OF CORRECTIONS BY COAL TYPE AND REGION ON BASE CASE

AND ARC-78 (EIA) DATA

(The column labeled "EIA presents data from ARC-78 Vol. III, Supplement
One, Table 17; also summarized in Vol. III, Table 9.2)

Corrected
Base Base Change "Corrected"
Case Case Factor EIA EIA

North App.

Metallurgical 28.900 29.860 1.033 25.24 26.10

Low Sulfur .560 .480 .857 1.40 1.21

Med. Sulfur 198.467 177.255 .893 149.67 133.66

High Sulfur 126.303 121.586 .963 144.02 138.70

Total 354.230 329.181 320.33 299.67

Cent. App.

Metallurgical 126.865 134.891 1.063 140.35 149.19

Low Sulfur 17.910 16.360 .913 29.37 26.81

Med. Sulfur 19.280 20.160 1.046 42.95 44.93

High Sulfur 6.19 6.19

Total 164.055 171.412 218.86 227.12

South App.

Metallurgical 6.060 6.060 1.0 6.36 6.36

Low Sulfur 5.520 5.120 .928 .96 .89

Med. Sulfur 1.280 .960 .75 2.45 1.84

Total 12.860 12.140 9.77 9.09

Midwest

Low Sulfur 1.120 1.120 1.0 .08 .08

Med. Sulfur 78.160 76.020 .973 66.15 64.36

High Sulfur 310.499 296.801 .956 310.87 297.19

Total 389.780 373.942 377.10 361.63
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Table 3-5 (continued)

Change
BC CBC Factor EIA CEIA

E. No. G. Pins.

Low Sulfur 10.450 10.450 1.0 14.69 14.69

Med. Sulfur 14.624 14.624 1.0 67.01 67.01

High Sulfur 10.303 10.303 1.0

Total 35.377 35.377 81.70 81.70

W. No. G. Plns.

Low Sulfur 452.035 501.899 1.11 534.20 592.96

Med. Sulfur 272.410 272.410 1.0 265.15 265.15

Total 724.446 774.309 799.35 858.11

Central West

Metallurgical .360 .600 1.667 .29 .48

Low Sulfur 1.040 1.040 1.0

Med. Sulfur 4.457 5.129 1.15 .67 .77

High Sulfur 8.960 8.425 .940 15.90 14.95

Total 14.817 15.194 16.86 16.20

Gulf

Med. Sulfur 61.750 61.750 1.0 71.76 71.76

Total 61.750 61.750 71.76 71.76

Rocky Mountains

Metallurgical 1.820 1.820 1.0 4.69 4.69

Low Sulfur 38.580 37.250 .966 43.67 42.19

Med. Sulfur 10.291 9.491 .922 10.43 9.62

Total 50.692 48.561 58.79 56.50

Southwest

Low Sulfur 49.994 49.770 .996 15.33 15.27

Med. Sulfur 2.980 2.980 1.0 16.89 16.89

Total 52.974 52.750 32.22 32.16
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Table 3-5 (continued)

Change
BC CBC Factor EIA CEIA

Northwest

Low Sulfur .14 .14

Med. Sulfur .950 .950 1.0 6.49 6.49

Total .950 .950 6.63 6.63

Alaska

Low Sulfur 5.70 5.70

National Total

Metallurgical 164.005 173.231 1.056 176.93 186.84
Low Sulfur 577.209 623.489 1.080 645.53 697.17
Med. Sulfur 664.649 641.729 .966 699.61 675.82

High Sulfur 456.065 437.115 .958 476.98 456.95

Total 1861.929 1875.564 1999.05 2016.78
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Table 3-6

1985

COAL PRODUCTION (MM TONS)
EFFECTS OF CORRECTIONS BY MINE TYPE AND REGION ON BASE CASE

AND ARC-78 (EIA) DATA

(The column labeled "EIA" presents data from ARC-78 Vol. III, Supplement
One, Table 16; also summarized in Vol. III Table 9.3)

Base
Case

North App.

Surface

Deep
Total

Cent. App.

Surface

Deep

Total

South App.

Surface

Deep

Total

Midwest

Surface

Deep

Total

E. No. G. Plns.

Surface

41.971

135.257

175.227

49.541

164.200

213.741

8.393

12.162
20.555

58.724
170.110

228.834

23.476

Corrected
Base
Case

42.321

133.867

177.188

49.111

169.420

218.531

8.393

11.582

19.975

58.724

164.463

223.188

23.476

23.476

Change
Factor

1.008

1.012

.991

1.032

1.0

.952

1.0

.967

1.0

EIA

71.9
104.5

176.4

99.9
147.9

247.8

9.9

8.5

18.4

60.3
162.2

222.5

27.7

"Corrected"
EIA

72.5
105.8

178.3

99.0
152.6

251.6

9.9

8.1

18.0

60.3

156.8
217.1

27.7

Total 23.476 27.7 27.7
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Table 3-6 (continued)

Change
BC CBC Factor EIA CEIA

W. No. G. Pins.

Surface 303.125 304.483 1.004 192.4 193.2
Deep 3.637 .437 .12 4.4 .5
Total 306.762 304.920 196.8 193.7

Central West

Surface 6.361 6.361 1.0 7.1 7.1

Deep 1.566 1.817 1.160 4.9 5.7

Total 7.927 8.178 11.9 12.8

Gulf

Surface 57.717 57.717 1.0 70.2 70.2
Total 57.717 57.717 70.2 70.2

Rocky Mountains

Surface 12.956 12.956 1.0 9.0 9.0
Deep 32.485 31.756 .978 26.1 25.5
Total 45.441 44.712 35.1 34.5

Southwest

Surface 33.008 32.446 .984 15.5 15.3
Deep 1.029 1.029 1.0 4.2 4.2
Total 34.038 33.496 19.7 19.5

Northwest

Surface 3.668 3.668 1.0 6.0 6.0
Deep 0.1 0.1
Total 3.668 3.668 6.0 6.1

National Total

Surface 598.939 599.675 1.0 569.8 569.8
Deep 518.445 515.373 .994 462.8 460.1
Total 1117.384 1115.048 1032.6 1029.9
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Table 3-7

1990

COAL PRODUCTION (MM TONS)
EFFECTS OF CORRECTIONS BY MINE TYPE AND REGION ON BASE CASE

AND ARC-78 (EIA) DATA

(The column labeled "EIA" presents data from ARC-78 Vol. III, Supplement
One, Table 16; also summarized in Vol. III, Table 9.3)

Base
Case

North App.

Surface

Deep

Total

Cent. App.

Surface

Deep

Total

South App.

Surface

Deep

Total

Midwest

Surface

Deep

Total

E. No. G. Plns.

Surface

16.272

238.246
254.518

22.936

153.204

176.140

2.797

11.854

14.651

39.703

275.012
314.716

30.426

Corrected
Base
Case

16.272

239.476

255.748

22.936
161.344
184.280

2.797

11.934

14.731

39.703

261.562

301.265

30.209

30.209

Change
Factor

1.0

1.005

1.0

1.053

1.0

1.007

1.0

.951

.993

EIA

51.0
196.5
247.5

81.4
143.6
225.1

4.8

7.6

12.4

39.4
251.1

290.5

32.2

"Corrected"
EIA

51.0
197.5
248.5

81.4
151.2
232.6

4.8

7.7

12.5

39.4
238.8
278.2

32.1

Total 30.426 32.2 32.1
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Table 3-7 (continued)

CBC

W. No. G. Plns.

Surface

Deep

Total

Central West

Surface

Deep

Total

Gul f

Surface

Total

Rocky Mountains

Surface

Deep

Total

Southwest

Surface

Deep

Total

Northwest

Surface

Deep

Total

522.614

6.835

529.449

2.120

7.873

9.993

71.757

71.757

13.335

40.416

53.751

51.107

3.429

54.536

3.668

3.668

525.503

5.233

530.736

2.120

7.312

9.432

71.757

71.757

13.335

37.690

51.026

51.191

1.029

52.221

3.668

3.668

National Total

Surface

Deep

Total

776.735

736.867

779.491

725.578

1.004

.985

815.0

649.6
818.3

639.9
1513.602 1505.069

EIA CEIA
Change
Factor

1.006

.766

1.0

.929

1.0

1.0

.933

1.002

.300

1.0

495.6

7.6

503.3

7.1

4.9

11.9

71.8

71.8

10.3

30.9

41.2

15.5

7.3

22.8

498.6
5.8

504.4

7.1

4.6

11.7

71.8

71.8

10.3
28.8

39.1

15.5

2.2

17.7

6.0

0.1

6.1

6.0

0.1

6.1

1464.6 1458.2
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Table 3-8

1995

COAL PRODUCTION (MM TONS)
EFFECTS OF CORRECTIONS BY MINE TYPE AND REGION ON BASE CASE

AND ARC-78 (EIA) DATA

(The column labeled "EIA" presents data from
One, Table 16; also summarized in Vol'.

Base
Case

North App.

Surface

Deep

Total

Cent. App.

Surface

Deep

Total

South App.

Surface

Deep

Total

Midwest

Surface

Deep

Total

4.530

349.700

354.230

10.200

153.855

164.055

12.860
12.860

28.500

361.280
389.780

Corrected
Base
Case

4.530

324.651

329.181

9.770
161.642

171.412

12.140

12.140

28.500

345.442
373.942

Change
Factor

1.0

.928

.958

1.051

.944

1.0

.956

ARC-78 Vol. III, Supplement
III, Table 9.3)

EIA

45.3

275.1

320.3

74.1

144.8

218.9

2.3

7.5

9.8

38.3
338.8
377.1

"Corrected"
EIA

45.3

255.3
300.6

71.0

152.2
223.2

2.3

7.1

9.4

38.3
323.9
362.2

E. No. G. Plns.

Surface

Total 35.377

35.377 35.377
35.377

1.0 81.7 81.7
81.7 81.7
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Table 3-8 (continued)

Change
BC CBC Factor EIA CEIA

W. No. G. Pins.

Surface 712.445 762.308 1.070 787.3 842.4

Deep 12.001 12.001 1.0 12.0 12.0

Total 724.446 774.309 799.3 854.4

Central West

Surface 7.1 7.1

Deep 14.817 15.194 1.025 9.8 10.0
Total 14.817 15.194 16.9 17.1

Gul f

Surface 61.750 61.750 1.0 71.8 71.8
Total 61.750 61.750 71.8 71.8

Rocky Mountains

Surface 12.661 12.661 1.0 11.6 11.6

Deep 38.030 35.900 .944 47.2 44.6

Total 50.692 48.561 58.8 56.2

Southwest

Surface 46.974 46.750 .955 16.4 15.7
Deep 6.000 6.000 1 .0 15.8 15.8

Total 52.974 52.750 32.2 31.5

Northwest

Surface 0.950 0.950 1.0 6.5 6.5

Deep 0.1 0.1

Total 0.950 0.950 6.6 6.6

National Total

Surface 913.387 962.596 1.054 1142.2 1203.9

Deep 948.542 912.968 .962 856.8 824.2
Total 1861.929 1875.564 1999.1 2028.1
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4. EVALUATION OF THE COAL SUPPLY MODULE IN THE NATIONAL COAL MODEL AND

ITS USE IN ARC-78

4.1 Data

4.1.1 Introduction

In this section we describe the data base underlying the Coal Supply

Model used in ARC-78. First we summarize the exogenous variables of the

model, both those used in calibrating the model's parameters and data,

and those over which the model user has more direct control. We then

discuss those variables which were changed between various scenarios in

ARC-78. It should be noted that most of the model's variables are not

explicitly documented in the ARC-78 materials. It is our understanding

that the version of the data base established in ICF [1977) was the data

base used for ARC-78, except where explicitly modified. The most

important change was the adjustment between the medium and high estimates

of geological reserves in which resources of unknown quality are included

in the high estimate, but excluded from the medium estimate.

4.1.2 Independent Variables, Data Sources, and Synthetic Data
Procedures in the Coal Supply Module of the National Coal Model

The component of the National Coal Model with which we are concerned

in this evaluation is the Coal Supply Module used to generate coal supply

curves for the MEMM. The documentation of the procedures underlying the

supply curves has been summarized above, and the model's detailed

mathematical formulation is presented in Appendix A. The data inputs are

described in ICF [1977).

To summarize, the procedures used in constructing the coal supply

model data base and generating the coal supply curves are as follows:
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o Define coal supply regions and coal types: allocate the BOM
Demonstrated Reserve Base (BDRB) to regional coal type
categories.

o Estimate existing 1980 production and selling price from
existing mine capacity by coal type and region.

o Assign BDRB to model mine categories, and convert stocks of
reserves into production flows;

o Calculate minimum acceptable selling price for each model mine
type; and

o Combine potential production flows and supply prices into supply
schedules by region and coal type.

(1) Supply regions and coal types

There are thirty NCM coal supply regions which, with minor

exceptions, map into the MEFS supply regions. The NCM supply regions and

the NCM/MEFS mapping were presented in Table 2.1. The exceptions are a

part of Tennessee in BOM District 13 which is in MEFS Southern

Appalachia, and that part of New Mexico in BOM District 17 which is in

the MEFS Rockies region. The NCM documentation reports that these

exceptions are minor, and that the addition of two NCM regions to deal

with this problem was not justified. However, the question remains how

the incompatibility is treated in aggregating NCM to MEMM regions. Are

MEMM regions redefined in the aggregation so that

o MEFS Central Applachia is overstated,

o MEFS Southern Appalachia is understated,

o MEFS Southwest is overstated,

o MEFS Rockies is understated,

or is an adjustment made to preserve the MEFS definition; if the latter

is the case, how is the adjustment made? The documentation does not

address this point.

There is a more general question relating to the basis for the
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original PIES (now MEMM) regions, and the more detailed NCM regions. The

NCM regions were developed to account for the "importance of state mining

laws and taxes" which require that each supply region include no more

than one state. Regions (by or within state) were defined so as to have

relatively homogeneous coal types (ICF [1977, p. 111-2]). However, there

is no formal analysis reported as to the definition of homogeneity, and

how this definition was employed in defining regions.

Coal types are defined in the NCM in terms of Btu and sulfur

content. Five Btu content levels (on a wet basis) are defined in

Table 4.1. Eight sulfur levels are defined in terms of pounds per

MMBtu. Sulfur levels were chosen to fit into the classification scheme

to meet clean air standards as follows.

o Levels 1 and 2: < .6 lbs/MMBtu -- meets the New Source
Performance StanaTards (NSPS)

o Level 3: .61 -.63 lbs/MMBtu -- can be deep cleaned to meet NSPS

o Level 4: .64 -.83 lbs/MMBtu -- approximately 1% sulfur which
meets requirements of some state implementation plans (SIPS)

o Level 5: .84 -.92 lbs/MMBtu -- can be deep cleaned to meet 1%
sulfur level

o Level 6: .93 -1.67 lbs/MMBtu -- corresponds roughly to the 2%
sulfur content level, which is also a break-point for certain
SIPS

o Level 7,8: > 1.68 lbs/MMBtu -- sulfur content such as to
require scrubbing.

While the NCM employs the full detail of coal types in developing

coal supply curves by regional coal type, the aggregation for use in MEMM

distinguishes low, medium and high sulfur content as follows: (see

ARC-78, Vol. III, p. 157)

o Low sulfur = 0-0.67 lbs/MMBtu

o Medium = .67 -1.68 lbs/MMBtu

o High > 1.68 lbs/MMBtu
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Table 4-1

Btu Content Categories and Codes

Millions of
Btu's per ton

> 26

23-25.99

20-22.99

15-1 9.99

<15

Code

Z

H

M

S

L

Approximate
Rank of Coal

Bituminous

Bituminous

Bituminous

Sub-bituminous

Lignite

Source: ICF [1977, p. III-51
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Tnis classification obviously does not represent an aggregation of the

more detailed WCA classification, and so there is an undocumented

adjustment that must have been made in the transition from the

aggregation of the NC4 supply curves by type to the MEFS classification.

The primary source of reserves data is the BO Public Reserves Data

Tape. This tape provides tonnage by coal beds by county, plus

information on the quality of the coal, including heat and sulfur

content, for all demonstrated reserves. The total coal tonnage contained

on the data tape is similar to, but not exactly the same as, that

contained in two BOM publications, "The Reserve Base of U.S. Coal by

Sulfur Content 1. The Eastern States" (IC 868J) and "The Reserve Base of

U.S. Coal by Sulfur Content 2. The lestern States" (IC 8693). The model

documentation states that since it was not possible to judge wnich data

source was more accurate, the 80M data tape was used for the model.

Table 4-2 presents data from the two sources -- the tape and the

publications -- for comparison.*

The comparison of these sources has shown that there are indeed some

substantial differences between the tape and the publications. The first

issue involves the heat content of the coal. As shown in Table 4-1 and

described in the text of ICF[1977](p. 111-7) the average Btu content for

each of the five heat categories was calculated for the model from the

80M tape. The tape contains dry heat content and a measure of moisture

*For the purposes of the comparison, some simple data manipulation was
performed. Some of the states on the tape data were divided into two
sections; where this occurred, the 1977 edition of Coal Data was used to
determine which counties were within each 80t district; the totals from
tne various coal categories for each individual county were then combined
to derive the data for that section of the state. Consequently, it was
possible to keep the data organized by PIES regions.



Table 4-2

A Comparison of Corresponding Data from the BOM Coal
and the 1975 BOM Information Circular

Reserves Data Tape

Tape (106 tons) Publication (million short tons)

PIES Regions Bituminous Sub- Lignite Unknown Total Bituminous Sub-bituminous Lignite Total Total
bituminous Unknown Assigned Unknown Assigned Unknown Assigned Unknown Assigned TOTAL

Northern Appalachia
Pennsylvania 21271 2593 23864 2299 21581 2299 21581 23880
Ohio 17753 3319 21072 1872 19205 1872 19205 21077
Maryland 914 115 1029 35 1013 35 1013 1048
W. Virginia, north 12723 8846 21569 2749 17392 2749 17392 20141

Total 52661 14873 67534 6955 59191 6955 59191 66146
Central Appalachia:
W. Virginia, south 14407 3556 17963 1862 16895 1862 16895 18757
Virgnia 2899 738 3637 245 3267 245 3267 3512
Kentucky, east 7901 5003 12904 2729 10188 2729 10188 12917
Tennessee 751 235 986 88 899 88 899 987

Total 25958 9532 35490 4925 31247 4925 31247 36172
Southern Appalachia:

Alabama 1704 1278 2982 213 1742 1027 - 1240 1742 2982
Midwest:

12201* 12201*
Illinois 38471 27042 65513 14256 51409 14256 51409 65665

1290* 1290*
Indiana 7587 2870 10457 1504 9119 1504 9119 10623

Kentucky, west 7460 5157 12617 2816 9808 2816 9808 12624
Amended Total 16307* 16307*
Total 53518 35069 88587 18576 70335 18576 70335 88911

Central West:
Iowa 1044 751 1063 2858 '549 2336 549 2336 2885
Missouri 3678 5773 9451 4081 5406 4801 5406 9487
Kansas 529 843 1372 383 1005 383 1005 1388
Arkansas 430 68 498 42 495 32 - 74 495 569
Oklahoma 834 413 1247 450 844 450 844 1294

Total 6515 751 8160 15426 5506 10086 32 - 5538 10086 15624
Gui f:

Texas 2828 444 3272 444 2828 444 2828 3272

*Two sets of figures were provided for Illinois anc
the assumption that coal in the ground is basicall
already mined. The asterisked number was amended
"...personal knowledge and judgment...". (see BOM

I Indiana. The larger number is based on
y equivalent in sulfur content to that
from that assumption by BOM using
IC 8680, p.8)

NOTE: May not total due to rounding



Table 4-2 (Continued)
A Comparison of Corresponding Data from the BOM Coal

and the 1975 BOM Information Circular
Reserves Data Tape

Tape (106 tons) Publication (million short tons)

PIES Regions Bituminous Sub- Lignite Unknown Total Bituminous Sub-bituminous Lignite Total Total
bituminous Unknown Assigned Unknown Assigned Unknown Assigned Unknown Assigned TOTAL

East Northern
Great Plains:

North Dakota 12576 3412 15988 15 15988 15 15988 16003
South Dakota 200 227 427 1 427 1 427 428
Montana, east 1530 1747 3277 702 - 1464 2111 2166 2111 4277

Total 14306 5386 19692 702 - 1480 18526 2182 18526 20708
Western Northern
Great Plains:
Montana, west 4511 96345 3237 104093 - 1384 - 99212 - 3523 - 104119 104119
Wyoming 9273 39717 4318 53308 22 4502 3038 45774 3060 50276 53336
Colorado, north 659 1537 2196 - 127 .606 1592 606 1719 2325

Total 13784 136721 9092 159597 22 6013 3645 146577 - 3523 3667 156113 159780
Rockies:

Colorado, south 4925 7722 12647 4924 4887 1010 1538 5934 6425 12359
Utah 793 230 2982 4005 478 3564 478 3564 4042

Total 5718 230 10704 16652 5402 8451 1010 1538 6412 9989 16401
Southwest:

Arizona 329 21 0 350 - 350 - 350 350
New Mexico 4368 0 4368 28 1749 - 2615 28 4364 4392

Total 4697 21 0 4718 28 1749 - 2965 28 4714 4742
Northwest:
Washington 98 51 1341 1950 22 229 21 1674 2 6 45 1909 1954

Alaska:
Alaska 2386 6790 9176 - 1201 - 10148 296 - 11645 11645

National Total: 164653 140160 17134 102669 425076 41649 190246 5378 162902 2985 25178 50012 378326 428338

NOTE: May not total due to rounding

i_~~l~
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content; the Btu content on a wet basis was obtained by multiplying the

average dry heat content by one minus the average moisture content. No

information is provided on the variance associated with the average Btu

content, so we do not know how representative the average is for each

heat content in each of the 30 regions.

The classification of coal on the data tape into either the

bituminous, subbituminous, or lignite categories was made on the basis of

tne coal heat content. In contrast to the tape, the publications

classify coal on the basis of percent of fixed carbon and volatile

matter, as well as heat content (see Table 4-3). Therefore, it is

difficult to determine whether the type of coal in each classification is

consistent between the tape and the publications. Using the heat value

information alone, the treatment appears inconsistent. For example, the

tape places coal in the 15-15.99 MMBtu/ton range in the subbituminous

class, while the publications' range for subbituminous coal is 21-23

Mdttu/ton (10,500-11,500 Btu/lb).*

A second important point to note regarding the two data sources

concerns the allocation of coal of unknown sulfur content. As noted in

the model documentation and displayed in Table 4-2, the tape tends to

report mucn more coal of unknown sulfur content than the publications.

This difference can be easily seen by comparing the regional totals,

wnere in general the tape reports about twice as mucn coal of unknown

sulfur content as the publications. State totals vary significantly as

well. In est Virginia, North for example the tape shows that 41% of the

*Al though the tape provides three categories of bituminous coal, the
publication lists only one; therefore for the comparative purposes of
Table 4-2, the three tape classes of bitumninous coal were aggregated.
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Table 4-3

BOM Definitions of Coal Classification

Anthracite

Semianthracite

Bituminous

Subbituminous

Lignite

A hard, black lustrous coal having
92 percent or more but less than 98 percent
fixed carbon, and 8 percent or less but
more than 2 percent volatile matter, on
a dry, mineral-matter-free basis.

A coal intermediate between anthracite and
bituminous coal. It is nonagglomerating and
contains 86 percent or more but less than
92 percent fixed carbon, and 14 percent or
less but more than 8 percent volatile matter,
on a dry, mineral-matter-free basis.

A solid, brittle coal relatively high in
gaseous constituents and having 69 percent
or more but less than 86 percent fixed carbon,
and 31 percent or less and more than 14 percent
volatile matter, on a dry, mineral-matter-free
basis. The calorific value ranges from
10,500 to over 14,000 Btu per pound on a moist,
mineral-matter-free basis, but the calorific
value does not determine the classification
provided the fixed carbon is 69 percent or
more; it is commonly agglomerating. Coal of
a Btu content in the range of 10,500 to
11,500 per pound, and nonagglomerating, is
classified as subbituminous.

Coal of a rank greater than lignite but less
than that of bituminous coal and distinguished
from lignite by its black color and its lack
of a distinctly woody structure and texture,
and from bituminous coal by its loss of
moisture and slacking when exposed to weath-
ering. Fixed carbon is less than 69 percent,
and volatile matter is more than 31 percent on
a dry, mineral-matter-free basis. The calorific
value and nonagglomerating characteristic
determine the classification provided the fixed
carbon is less than 69 percent.

A brownish-black coal in which the alteration
of vegetal material has proceeded further than
peat but not so far as subbituminous coal. The
Btu content is less than 8,300 on a moist,
mineral-matter-free basis.

Source: BOM Publication IC (8680) pp. 31 & 32
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total coal is of unknown sulfur content while the publications show only

13.7% in that category. Uther states with pronounced percentage

differences are Kansas, North and South Dakota, Northern Colorado, Utah,

Washington, and Alaska. This difference in the amount of coal considered

to be of unknown sulfur content amounts to a significant quantity at the

national level. The tape reports 102,669 x 106 tons, while the

publications report only 50,012 x 106 , a difference of over 50 billion

tons of coal. Less important, on the tape the coal of unknown sulfur

content is not identified by its classification (bituminous,

subbituminous, or lignite), but is considered as an unclassified total,

while in the publications coal of unknown sulfur content is identified by

classification. Thus, the publication reports less unknown coal, but at

a greater level of detail.

Anotner minor disparity between the two data sources is that in many

regions the publications show a greater diversity of coal type; for

example the tape shows Alaska having only SUDDituminous reserves, while

tne publications indicate Alaskan reserves in the bituminous,

suboituminous and lignite categories. The publications also list coal in

states not indicated on the tape. These states are Georgia, Michigan,

North Carolina, and Oregon; this coal is mostly bituminous and amounts to

only about an additional 152 million tons (see Table 4-4).

While the details differ between the two data sources, the state and

national totals for coal are very similar. The national total in the

publications is 3,262 x 106 tons larger than that on the tape, a

difference of less than one percent between the two sources. Looking

just at the total coal quantities, the modelers' choice of the tape over
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Table 4-4

Coal Tonnage Figures Not Included

In the BOM Coal Reserves Tape

the publications does not appear to be of great consequence. However, to

tne extent that the other differences between the two data sources are

important to the model (particularly the coal heat content and the

distribution of coal of unknown sulfur content), that choice could have

an impact on model results.

Once the sulfur content was determined from the BO data tape, it was

converted from percentage content to pounds per MI4Btu, using the

calculated average 8tus for the region. Further, sulfur content was

adjusted under the assumption that "a standard level of cleaning" was

applied to all bituminous coals. Citing the BOi RI 7633 "Sulfur

Reduction Potential of Coals in the United States" (RI 7633), the

Publication (not listed on tape) (106 short tons)

State Bituminous Sub-bituminous Lignite Unknown Total
Unknown Total Unknown Total Unknown Total

Georgia .17 .50 .17 .50

Michigan 7.03 118.20 7.03 118.20

North 31.62 31.62 31.62 31.62
Carolina

Oregon .00 .46 .00 1.40 .00 1.86

---;--.. -~r--rc _ _ ~_ _~~~__~_
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following reduction factors were applied.

o > 2.5 lbs/MMBtu -- 35% reduction

o .84 - 2.6 Ibs/MMtu -- 15% reduction

o .61 - .83 lbs/MMBtu -- 5% reduction

o < .6 lbs/Ml8tu -- 0% reduction

Finally, in the Central west region both bituiiinous and lignite coals

were adjusted by the above sulfur reduction percentages since in that

region the subbituminous coals can in fact be beneficiated.

Thus the basis for the allocation of BOM-demonstrated reserves to NCI4

supply regions and coal types is the BOM Reserves tape classifying coal

types by average Btu content, and significantly adjusting sulfur content

downward under the assumption of standard cleaning. Reviewing

BOM RI 7633, it is difficult to ascertain why the particular percentage

reduction factors were employed. The sulfur reduction potential reported

there seems to vary substantially by region, and no effort is devoted to

developing average or "standard" sulfur reduction estimates. Most

imaportantly, sulfur reduction potential appears to depend upon the yield

factor chosen, that is, how much coal is lost during tne cleaning

process. In general, higher yields are associated with lower sulfur

reduction potential. The particular factors chosen by ICF and employed

in ARC-78 are nowhere explained in any documentation we have reviewed,

and do not appear to be justified by RI 7633.

(2) Estimating 1980 mine capacity

1980 mine capacity is derived based on an estimate of 1975 production

capacity by region, coal type and method of mining, to which is applied
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an estiaate of mine closings between 1975 and 1980. 1975 production

capacity by region, coal type, and method of mining (surface vs. deep)

was estimated oy using BOM weekly production reports aggregated to NCM

regions, and distributed by heat and sulfur content. The distribution

was ootained by use of the FPC's fon.i 423 data for 1974 scaled to be

consistent with the national estimate of utility coal shipments in 1975.

Characteristics for non-utility coal shipments were based on the BO's

"dituminous Coal and Lignite Shipments by Ranges of Sulfur Content

Calendar 1970" classified by NCM sulfur category and region.

Classification by dtu content was assigned (no source), with coking

and export shipments assigned to the Z category (dTU content > 26 million

per ton) and the residential/industrial assigned to the H category (23-26

MAdtu per ton). Non-utility coal shipments were scaled up from 1970 to

the national estimate in 1975. The estimated distribution by heat and

sulfur content was then used to distribute the actual production in each

4CM region. If this procedure produced an estimate of production when in

fact no reserves for that coal type existed within the region, a stepwise

adjustment procedure was applied, in which first the sulfur level was

held constant and the Btu content was allowed to increase or decrease by

one category. dut if this did not resolve the problem, then a similar

one-step procedure was made in sulfur content. If the problem still

remained, the coal type was changed to that type requiring the fewest

"jumps" in neat and sulfur content category.

Finally, regional production was distributed by mining procedure

based on tne proportion of surface-to-total reserves.

No adjustment was made to account for the condition of capacity

-
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significantly exceeding production in 1975, and no documentation is

provided to argue the case that the coal industry was producing

everywhere at maximum capacity in 1975. Regional depletion rates are

oased on ICF's estimates of large mine closings by MEFS regions,

1976-1980. The "estimated production losses" for eacil ME4l region are

applied to each NC4M region within the MEMI region. The assumption is

tnat small mines had zero depletion in this period.

Summary

The estimated 1980 capacity is based upon a 1975 estimate of

production adjusted for retirements between 1975 and 1980. The 1975

production estimate is based on various data sources for 1970-1975, and

employs a fixed proportion distribution procedure and various scaling

adjustments to achieve the 1975 estimate. The procedures are well

documented in the ICF report, but little justification is given, and no

inforrnation is provided on what the confidence intervals might be for the

1980 estimate of capacity.

(3) 1980 Coal Prices

Estimates of the 1980 coal prices are based upon 1973 average coal

prices by NC4 region, inflated by the GNP deflator to 1975, and then

further inflated to 198U by undocumented functions of the separate

inflation rates for the labor and supply components of coal production

factors. A set of fixed factors is applied to distinguish contract from

spot coal average coal prices. The documentation develops an argument

that 19d0 selling prices are a relatively unimportant data input as long

as the variable costs of production -- the correct price for existing

mines -- do not exceed the estimated selling price.
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(4) Allocation of Reserves to Model Mine Types

Given reserves by region and coal type, the next step is to allocate

these reserves. NCM documentation describes this process in terms of

eight steps.

Step 1: Estimate and remove the reserves committed to existing mines

fro i the demonstrated reserve base. Coimmitted reserves were estimated by

assuming that 1980 production rates would continue through 1990, summing

these production rates, and then adjusting the cumulative production by a

recovery factor. Recovery factors of .8 and .6 were assumed for surface

and deep mines, respectively. This procedure assumes that no coimaitted

reserves exist beyond 1990 for large mines. The treatment of small mine

production is ambiguous, but apparently is assumed to continue

indefinitely.

Step. 2: Remove those stripable reserves that are illegal to mine.

Aroitrary adjustments are made to the demonstrated reserve base to

eliminate coal reserves which are either illegal or impractical to mine,

including those under highways, urban areas and parks. The arbitrary

adjustment factors are as follows :

- 25 of stripable uncommitted reserves -- Illinois, Indiana,
Kentucky (dest)

- 15% of stripable uncommitted reserves -- Pennsylvania, Ohio, West
Virginia (North and South), Virginia, Kentucky (East), Tennessee,
Alabama, Iowa, Missouri, Kansas, Oklahoma, Arkansas.

- 10% of stripable uncommitted reserves in Texas, North Dakota,
Soutn Dakota, Montana (East and est), Wyoming, Colorado (North
and South), Utah, Arizona, New Mexico, Washington, Alaska.

1, ----- - ---- -MON ' W60' -rr --- Y
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Step 3: Distribute uncommitted stripable reserves to overburden

categories. The NCVI has seven categories of overburden ratios (5:1,

10:1, 15:1, 20:1, 25:1, 30:1, and 45:1). Reserves which exceed a 45:1

overourden ratio are assumed uneconomic to mine under any circumstances.

The procedure is as follows: The average overburden ratio for coal mined

in 1977 oy PIES region is taken from earlier PIES documentation. The

marginal overburden ratio is assumed to be 15% greater than the 1970

average value, with exceptions in the Central West (2.7%), Eastern

Northern Great Plains (7.1%), and Alaska (-4.8%). The estimated upper

limit on overburden ratio by region was based on Bureau of Mines

information used in estimating the stripable reserves. The uncommitted

stripable reserves are allocated to the seven categories falling between

the marginal overburden ratio and the maximum overburden ratio, using a

uniform distribution. Reserves thus allocated to an overburden ratio

greater than 45:1 are assumed to be uneconomic. No documentation of the

15% difference between the 1970 average and the 1980 marginal overburden

ratios is provided, nor is any support given for employing the uniform

distri ution.

Step 4: Listribute the uncommitted stripable reserves to mine size

categories. Five mine size categories are employed, including .1, .5,

1.0, 2.0, and 3.0 million tons per year. The distribution is based upon

ICF review of the size of mine planned through 1980. The largest planned

strip mine within each NC44 region sets the upper size for strip mines,
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except in tne Jest where 90L of the reserves were assigned to the three

largest mine sizes. Except for the west, the uniform distribution was

emnpl oyed.

Step 5: Distribute the uncommitted deep reserve to seam thickness

categories. Again, the average seam thickness mined in 1970 is used as a

starting point for projecting the marginal seam thickness of uncommitted

deep reserves, and then distributing uncommitted reserves uniformly

oetween the marginal and minimum seam thickness. In general, 28 inches

was taken to be the ninimum seam thickness, with exceptions in Wyoming

and for several coal types where additional information on distribution

is available.

Step 6: Oistribute the uncomilitted deep reserves to seam depth

categories. Here the depth categories and distributions are the saiae as

tnose used in the PIES coal supply curves: drift, 400, 700, and 1000

feet below the surface. No documentation for the basis of this

assumption is provided.

Step 7: Uistribute the uncommitted deep reserves to mine size

categories. Assignment of reserves to mine size categories reflects the

assumption of lower productivity per section shift in thinner seams and

the limitation on the number of sections that can be effectively

managed. The distribution factors are presented in Table 4-5. No

documentation is provided for these distribution factors, nor is any

justification given for the truncated uniform distribution employed.
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Table 4-5

DISTRIBUTION FACTORS USED TO ASSIGN

RESERVES TO MINE SIZE CATEGORIES

Seam Thickness Categories
(in inches)

> 72

60-71

48-59

36-47

26-35

0.1

.250

.334

.334

.500

.500

Ming Size
(10 tons

0. 5

.250.

.333

.333

Categories
per year)

1.0

.250

.333

.333

.500

.500

Source: ICF [1977, Table III-20, p. III-46J.

.250
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Step 8: Change the stock of reserves into potential production

flows. Stocks of reserves were transformed into production flows by

assuming a constant mine life and recovery factor for all reserves.

Initially, a twenty year mine life was assumed, although in subsequent

applications of this model the mine life has been adjusted to thirty

years. A recovery factor of .8 for stripable reserves and .6 for deep

reserves is assumed. No documentation is provided regarding either the

,iine life or the recovery factors, and in particular justification is not

provided for the assumption that production rates do not vary in terms of

any of the coal characteristics data.

The "lumpiness" of the various mine size categories versus reserves

is dealt with by disallowing "fractional mines" by redistributing

fractional reserves to the next smallest mine size category.

(5) Estimation of Minimum Acceptable Selling Price

The NCM concept of the minimum acceptable selling price is a key

concept and variable in the model. This price represents the supply

price of coal at which an owner of coal resources will choose to open a

mine committed to producing at a constant production rate for a fixed

life of the mine.

Tne NWI supply price for coal is defined as the average revenue per

ton (sales/production) required to cover capital costs plus a specified

rate of return (nominal 15%, ARC-78), depletion and taxes, and operating

costs. The supply price is measured as an annuity reflecting the

inflation in deferred capital costs from the date of mine opening, plus



4-20

inflation in the operating costs. The concept of an annuity price is

critically important here since this is the means by which the NCM

includes temporal information about future costs in a static LP framework

in which a mine opening decision must be made in the case year. Since

MEMM involves the same static LP framework, the importance of the

annuitized price applies here as well.

The approach to measuring the supply price by mine type and coal

characteristic is as follows. Two model mines are defined, including:

o a slope mine producing a million tons per year from a 6 foot
coal seam 700 feet below the surface using continuous mining and
having unit-train loading facilities, but no cleaning plant.

o an area (surface) mine producing one million tons per year
working a 6 foot coal seam with a 10:1 overburden ratio and
having unit-train loading facilities but no preparation plant.

The costs of production for these two mines are based on studies by the

Bureau of Mines and by TRW, plus interviews with mining engineers and

coal economists. The cost characteristics for the two model mines are

summarized in an income statement which is presented as Table 4-6. The

key features of this income statement are as follows:

o a nominal rate of return on capital of 15% is assumed;

o operating costs are based on estimates of labor costs and costs
of power and supplies, and output, all using fixed percentages
or cost factors as shown in Table 4-6. These cost factors are
constant across regions of the country, mine types, and coal
types.

The costs associated with mine types and coal characteristics, other

than the model mines, are based on cost adjustment factors developed from

the OM and TRW studies mentioned above. These cost adjustment factors

relate the key variables of initial and deferred capital costs,

output/man-day, and power and supplies to:
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o seam thickness and depth, and annual output for drift and deep
mines,

o overburden ratio and annual output for surface mines.

In addition to these production costs, two types of cleaning costs

are included as operating expenses: basic cleaning costs and deep

cleaning costs. Each of these types of cleaning involves costs and

losses. The basic cleaning costs are based on 1971 data from a MITRE

study ("The Physical Desulfurization of Coal--Major Considerations for

SOx Emissions Control," June 1971). These costs ($.76 - $1.30) are

updated to 1975 prices by assuming that O&M accounts for 45% and capital

for 56% of the costs. For basic cleaning, the 764 cost is inflated to

1975 dollars; for the deep cleaning options, the $1.30 cost is similarly

inflated.

The basic cleaning is assumed to result in losses of 30% of tonnage

in the Appalachian regions and 20% in other regions. These percentage

losses are based on BOM "coal--bituminous and lignite in 1974," which

considered Appalachian and Midwestern cleaning losses. Deep cleaning

losses are assumed to involve an additional 10% tonnage reduction.

An important variable in measuring costs is labor productivity. The

estimate used in the NCM is based on the 1972-73 average man-days work by

A4EFS region for deep and strip mines. It is our understanding that no

technical progress in the form of changes in labor productivity is

included in the ARC-78 application of NCM.
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Table 4-6

COSTING SUMMARY OF BASE CASE MODELS
(in thousands of dollars)

Underground Strip
Mine* Mine**

Initial Capital $29,300 $17,000
Deferred Capital 11,700 3,200

Present Value, Capital Investment 34,729 19,185

Casn Flow (Includes net profit, depreciation
and maximum allowable depletion) 3,537 1,954

Sales*** 13,980 7,157
Operating Costs 11 ,997 5,945
Gross Profit 1,983 1,212
Depletion 991 606
Profit Before Tax 991 606
Federal Income Tax 496 303
Net Profit 496 303

Selling Price ($/Ton) 13.98 7.16

Operating Costs

Labor 3,120 1,352
Power and Supplies 2,835 1,226
Payroll Overhead (.4 x Labor Cost) 1,248 541
Union Welfare ($.80 x Annual output-strip) 1,040 800

($l1.04 x " " -deep)
Royalty ($.20 x Annual output tonnage) 200 200
Licenses ($.10 x Annual output tonnage) 100 100
Indirect Costs (.15 x Labor, supply costs) 818 327
Taxes and Insurance (.02 x Initial capital

cost) 586 354
Depreciation (.05 x Initial capital plus

deferred capital costs) 2,050 1,045
Total Operating Costs 11,9 5945

Output/Man day (Tons) 17.3 57.0

Notes to Table 4-6 on next page.

Source: ICF [1977] pp. III-50, 51.
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Notes to Table 4-6

* A slope mine producing a million tons per year from a six-foot coal
seam 700 feet below the surface using continuous mining and having
unit-train loading facilities but no cleaning plant.

** An area mine producing one million tons per year working a six-foot
coal seam with a 10:1 overburden ratio and having unit-train loading
facilities but no preparation plant.

** It was assumed that the federal income tax equalled half of the
taxable income and that depletion equalled 10 percent of sales up to
50 percent of gross profit. Total sales were estimated using one of
the following two equations:

Sales = (.5 Operating Costs + Cash Flow - Depreciation)
Sales

assuming depletion equalled 10 percent of sales, or

4(Cash Flow - Depreciation)Sales = Operating Costs + 3

assuming depletion equalled 50 percent of gross profit, depending on
which assumption represented the binding constraint for the mine type
being considered. In each case, however, it was a necessary
condition that cash flow equal the sum of depreciation, depletion,
and profit after tax. The minimum acceptable selling prices equals
sales divided by the assumed annual output level of the mine being
costed.

Source: ICF [1977] pp. III-50, 51.
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The model also accounts for state severance taxes in the fonn of

percentage of output price. However, not all severance taxes have been

represented for the model in this way. At present, the following

percentage costs by NCM region are included:

Kentucky (East and West) 4%
Montana (East and West) 30%
Wyoming 2%
West Virginia 3.85%

ICF [1977, p. III-54] indicates that severance taxes for other states

nave not been added into the model data base as yet. These include:

Alabama 13.5 0/ton
North Dakota 50.0 e/ton
Ohio 4.0 i/ton
Oklahoma 0.750/ton
South Dakota 4% of net profits
Tennessee 20.0 e/ton

These taxes are based upon "Coal Outlook," February 16, 1976 (p. 3).

Wnether changes have occurred or new taxes have been imposed since then

is unknown. Also, whether EIA has incorporated those taxes not included

in the ICF data base is unknown. None of the supporting documentation to

ARC-78 comments upon these issues.

The above description provides the basic structure and information

used in developing the costs of coal production. As noted, a

distinguishing feature of the NCM is that these costs are integrated into

a measure of the supply price of coal by discounting over the life of the

mine, and then representing the supply price as an annuitized price.

Thus cost streams over the life of the mine are discounted to the date

of the mine opening, and annuitized. It is the real annuitized coal

price which is taken to be the supply price of coal, and which is the key

variable in determining mine openings.
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$ased on the above discussion, there are two points to keep in mind

concerning the real annuity coal price as a measure of the supply price

of coal. First, there is a problem with the fact that the deep cleaning

option must be treated in the annuitizing process; yet the decision

whether or not to deep clean depends upon the cost minimization process

in the static linear programming portion of the NCM, a process which uses

the real annuity coal price for different mine and coal types as an

input. This problem is discussed in the verification section.

Perhaps more fundamentally, the use of the real annuity coal price as

the supply price for coal in the NCM means that to compare coal prices

with other fuel prices requires that other prices also be represented as

annuity prices. Thus,

"The use of the annuity prices for coal has ramifications
throughout the NCM. All variable prices must be annuitized.
For the 1980 case all prices (e.g., oil/gas prices, coal
transportation costs, and electric utility O&M costs) are
assumed to increase at the 5% annual inflation rate."

While we have not examined other fuel supply models, or the electric

utility submodel of the MEMM system, it is our impression that the

annuitized prices are not used elsewhere in MEMM. We can find no

discussion of how this problem of different measures of fuel and

variables costs is dealt with. We conclude that there may be a serious

incompatibility between the measures of fuel costs in the various models

comprising MEFS, complicating the comparison of fuel costs, as well as

tne interpretation of results.
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Summary

In this section we have reviewed the data inputs and outputs of the

coal supply portion of the NCM. This review follows closely the

documentation in Section III of ICF [1977J. As noted, it is our

understanding that this is the data base underlying the coal supply

portion of ARC-78. In particular, it is our understanding that the

various data extensions and improvements discussed in Appendix E of ICF

[1977J are not included in the ARC-78 analysis.

As can be seen, the coal supply data base underlying the NCM is based

on relatively little independent source data. The most solid data are

the Bureau of Mines demonstrated reserve base, but even here there is a

serious question raised by the incompatibility between the published data

and those data provided on the BOM demonstrated reserve computer tape,

the latter being employed in ARC-78. Beyond that, the model data base is

based on many assumptions and synthesized adjustment data and parameters;

as noted, it also makes wide use of the uniform distribution when no

information is available to distribute a resource in terms of some

particular cnaracteristic.

How reliable is this data base? We cannot be certain, nor can we put

a direct confidence measure on the data base. However, in Section 5, we

report sensitivity results obtained by varying assumptions underlying the

NCM data base. The evidence presented there is disquieting with regard

to the reliability that may be attached to this data base.

4.1.3 Specific Adaptations of the NCM Data Base in ARC-78

The various scenarios of ARC-78 involve some changes in the coal

supply data base between scenarios. Differences may be summarized as

follows:
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Geologic Reserves: The high scenario here is taken to be 425 billion

tons. This estimate is equal to the Bureau of Mines total demonstrated

reserve base, undifferentiated by quality. The medium level is 322

billion tons, which is the Bureau of Mines demonstrated reserve base for

coal reserves differentiated by heat and sulfur content quality. There

is an undocumented process which was required in order to distribute the

reserves of unknown quality to appropriate coal type and mine size

categories.

Operator Efficiency: The operator efficiency differences were

introduced into the ARC-78 analysis. The efficiency factors are treated

as constant over time, but they differ by region as follows:

Appalachia .65

Midwest .75

est .85

Limited Western Coal Production: An assumption is made in Scenario D

that Great Plains coal production is limited to 394 million tons in 1985

rising to 800 million tons in 1995.

In addition to these scenario differences, the ARC-78 report updates

the ICF data on labor costs to reflect the 1978 United Mine Workers wage

agreement, and introduces an 8.5% increase to account for an expected

real labor cost escalation between 1981 and 1985. In Scenarios B and E

labor costs are assumed to increase 26% to account for real escalation

between 1981-1990.

In Scenario C, capital costs are based upon 1977 estimates with no

real escalation assumed. However, in Scenarios B and E, capital costs

are assumed to escalate at 10%.
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4.2 Logical and Mathematical Structure

In EMAP [1980], three structural issues relating to the CSM/NCM were

identified including (i) treatment of royalties and dynamic rent; (ii)

coal production costing; and (iii) the relationship between mine lifetime

and coal production rates.* In this section we review these issues in

terms of their influence upon ARC-78; in Section 5 we present

computational results suggesting the uncertainty introduced by the

CSM/NCM treatment of these issues, and the sensitivity of results to

plausible changes in structure and underlying data.

4.2.1 Coal Royalties and Rents

In a competitive economy two types of scarcity rents or royalties

accrue to the owners of coal reserves: static and dynamic. Static rents

occur because of differences in extraction and delivery costs of coal

types being mined at a given time. The lower-cost deposits earn a static

rent, which is represented by the vertical distance between the

corresponding point on the supply curve and the market price. Static

rents should not be included as a cost in constructing supply curves.

Dynamic--or intertemporal--rents result from the fact that exploiting

a resource at one point in time prevents its exploitation at a future

time. The higher the expected future price of coal, the greater is the

intertemporal rent. Coal supply curves must reflect the intertemporal

rent, because it must be paid to the owners of all currently operating

mines, even the marginal mines.

When observable in market data, intertemporal rents appear as a

portion of the royalty payments made by mine operators to the owners of

mineral rights. However, because mine operators often own the mineral

*Much of this material is taken, or abstracted from EMAP [1980].
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rights, intertemporal rents are frequently implicit and cannot be

directly observed. Nevertheless, the price the mine operator receives

for coal must cover both implicit and explicit intertemporal rents if the

operator is to be willing to work the mine. For this reason, in deriving

the supply function intertemporal rents should be imputed whenever they

cannot be measured.

There is no imputation of rents in the CSM/NCM, nor in the MEMM

underlying the ARC-78 midterm projections. While the CSM has provisions

for including royalties in the coal supply cost function, royalty

payments are always set at zero in supply regions not dominated by

federal coal lands. Thus, the model omits even explicit non-federal

royalty payments, while the possibility of imputed rents is not

mentioned. In regions dominated by federal lands, royalty payments at

federal rates are included. In Manove [1980b) a simple model of the

generation of intertemporal rents was constructed and analyzed using NCM

data to produce crude estimates of these rents. Ten percent of the

mine-mouth price was used as the estimate for rents.

4.2.2 Coal Production Costing

The NCM procedure for calculating costs of potential coal production

in any case year is based upon an engineering cost analysis of two "base

case" model mines, one surface and one deep.

A matrix of adjustment factors is used to modify the base-case mine
costs as the overburden ratio, seam thickness, seam depth, or mine
size changes between model mine types. The base-case cost models
were developed from existing mine cost studies by 80M and TRW, and
from information obtained through interviews with mining engineers
and coal economists. For underground operations the base-case mine
was defined as a slope mine producing one million tons per year from
a six-foot coal seam 700 feet below the surface using continuous
mining and having unit-train loading facilities but no cleaning
plant. For surface mining operations the base case was a one
million tons per year area mine with a 10:1 overburden ratio and
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having unit train loading facilities but no preparation plant [ICF,
1977, pp. III-47-48].

The actual matrix of cost adjustment factors employed are given in
Table 4-7. These factors were developed from examination and
comparison of existing mine cost models and consultations with a
mining engineer and the BOM Process Evaluation Group in Morgantown,
West Virginia. Changes in values for initial capital, deferred
capital, and power and supplies resulting from variations in
mine-type parameters were substituted directly into the costing
equations specified for the base-case calculations. However, the
cost effects of changes in output per man day were computed by
dividing the adjusted productivity figure into the annual output
level assumed for the mine and multiplying the resulting number of
man days per year by the average labor cost per man-day estimated
from the base cases [ICF, 1977, p. III-50].

The NCM essentially specifies the cost function by coal type

analytically, with cost parameters specified exogenously. However, the

model does not use an explicit engineering cost function that directly

relates average cost (i.e., minimum acceptable real annuity coal price)

to a mine's physical variables. Beginning with the matrix of cost

adjustment factors (see Table 4-7), real annuity coal prices (RACPs) are

determined sequentially in the Supply Code component by component. The

underlying cost function is only implicit.

EMAP analysts developed and programmed the analytical formulation of

both the NCM's implied engineering cost function for both surface and

deep mines and the associated cost elasticities relating real annuity

coal prices to each of the physical variables characterizing coal

deposition. This was verified by duplicating to five decimal places both

the uncorrected and corrected base case calculations of coal supply

prices.
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Table 4-7

A Matrix of Mining Cost Adjustment Factors
for Key Variables

n!.tial a:- ital Deferred Capital -- Pow#r and Tuaplies

2/
Underground Yine 2 /

Seam Thickness *6t/ft. decline +6%/ft. decline -l.0/TP!*/ft. decline +$S0.15/ton/ft. decline
= --. ickeses . in thickness ir. thickness in thickness

Seam Dept.h S500,000/ ft. -- --

Annual Output 3 : /TP/ Y O.5T /0 .- 1001/.Y

Drift Mine -$6,000,000 -$3,000,000 +10%

Conventional Mining 3/ 3/ -

Surface ines4 /

overburden Ratio S. 20/Ton/UOR $0.25/Ton/UOR 10S/SUOR $S30O,00/UO

Annual Output:
mines a I. 0I'TPY 5/ S/ 3TPMD//0. zaPY 100/t.TPY
inesA 1. OcLrTP -st/D0.iMUPY -5/0 .J1mrPY 3TPND/A0.lTPY 100./!'M7Y

l/ The cost effects of changes in output per manday are calculated by dividin the estivated tons per man a:y f iqur . for t
gives ELne type into the mine's annual output level to get the total number of mandays per year ar.d t!:-n -ultiplyin-I
that ftqure by the average labor cost per manday (i.e., $53.98 for underground mines and $77.12 for . f,::, niri,.:).
Note that output per manday is calculated based on- the total number of mandays worked by all clauses cf mine .rni.loyu::
in one year.

2/ Variations for underground mines are calculated from a base case operation which is defined as one million ton per y,,,
slope m.ne working a six foot seen seven hundred feet deep using continuous mining and having unit trai loading fac.
ties, no cleaning plant, and an averaqge output per manday of 17.3 tons.

3/ Initial capital (less the cost of requred shafts) and deferred capital investment costs for mines producing loss th4r
one million tons per year are assumed to remain constant on a dollars per ten of annual output basis with the capital
costs after all other adjustments are made for one million ton mine with the same characteristics. This assumes that
the capital intensity of mines with aniual output levels of less than one million tons decreases with sIze.

4/ Variations in surface mine costs are calculated from a base case mine defined to produce one million tons per year E*c
a six foot seam with a 10:1 overburden ratio using area mining tecbniques and having unit-train loading facilities but
not preparation plant.

5/ The capital costs for surface mines producing over one million tons per year are assumed to experience increasing oco.
mies of scale with respect to capital costs. To reflect this the Lacrmetal capital required for each million ton
increase in annual output is assumed to decline ten percent from the capital costs for a one million ton per year op.- r
tions. Thus, capital costs for a two million ton per year mine would equal 1.9 times thost for a one millio.n ton mi e
and capital for a thr*e million ton per year operation would equal 2.7 times those for the one millin ton mine.

ABREVIATIOS: TPmD , tons per manday
-MTPY million tons per year

UOR - units of overburden ratio.

Source: ICF [1977], p. III-52.
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4.2.3 Potential Coal Production Rates and Mine Lifetime*

Given the distribution of coal reserves and mining recovery factors,

the key variable determining the level of potential coal production is

the mine lifetime. Mine lifetime affects supply in two ways. First,

because it is inversely proportional to the rate of extraction from a

given parcel of reserves, it determines the intensity with which a parcel

of reserves is mined. Second, it affects the unit cost of coal

production from a given parcel of reserves. Longer lifetimes lead to

lower extraction costs due to lowering annualized capital requirements.

However, long lifetimes delay the realization of revenues, thus imposing

a "waiting" cost on the operator.

If a given segment of a coal supply curve represents coal extractable

from a given parcel of reserves, a change in mine lifetime will affect

the length of that segment through its effect on rate of extraction, and

the height through its effect on costs. Thus, the effect of mine

lifetime on the rate of coal extraction can dramatically alter the supply

curve. For example, when a mine lifetime of 20 years is changed to 30

years, each supply curve for coal is contracted along the horizontal axis

by 33 percent.

Examples of coal supply curves in Figures 4-1 and 4-2 illustrate this

effect. In each case, the change in lifetime causes the supply curves to

shift from S to S'. D denotes the demand curves and E and E' denote the

old and new market equilibria, respectively. Note that whether the

effect of such a change in lifetime on the market equilibrium prices and

quantities is substantial depends on the elasticity of supply. In Figure

*This material is abstracted from EMAP [1980].



4-33

Figure 4-1

20 years
-.S

Ouantity

Figure 4-2

30 years
Is'

20 years
S

Ouantity
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4-1, where the supply curves are highly elastic, the shift from a 20- to

a 30-year lifetime has little effect on the market equilibrium. However,

in Figure 4-2 where the supply curves are inelastic, the effect of the

shift is significant.

Because mine lifetime may have a critical influence on coal supply,

it is vital to the accuracy of the model results. The CSM/NCM employs a

uniform mine lifetime based on the undocumented opinion of mine engineers

and on historical data. This lifetime originally was set by the

modellers at 20 years, and was then modified to 30 years in later model

versions. In the versions of the model considered in this study of

ARC-78, the lifetime parameter was set at 30 years.
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5. EMPIRICAL ANALYSIS OF KEY UNCERTAINTIES IN DATA AND STRUCTURE

In the previous section several issues relating to the data and

logical and mathematical structure of the CSM/NCM were discussed. In

this section we report results of some computational experiments

investigating the effects upon model results of structural changes, or of

plausible changes in the underlying data. In all, five computational

experiments are reported including:

-- a change in the coal reserves data based on a random choice from
the range of 75% to 150% of the 80 estimates (CDRB),

-- changes in the real escalation for labor costs from +1% to -1%
(LABD) and to +3% (LAB3),

decrease in mine lifetime from 30 to 20 years (CML20)

-- imposing an estimate of intertemporal rent of 10% in the form of
a royalty payment to owners (ROYI)

replacing the assumption of a uniform distribution for seam
thickness by a truncated lognormal distribution skewed toward
the minimum (LOGN).

As in the verification chapter our procedure is to report computational

results based on CSM integrated with the ICF CEUM model since we do not

have access to the MEMM. Results should be interpreted as only

indicative of effects of plausible changes upon ARC-78 results.

Before presenting more detailed results we summarize in Table 5-1 the

effects of each change in terms of national coal production and prices,

low-sulfur coal production, and coal washing. As the table shows, the

effects of these changes in data and structure are mixed, but not

trivial. The impact of changes in the real escalation rate for labor are

especially dramatic in terms of impact upon coal price. These results

also highlight a compositional effect in coal production which occurs

whenever the cost share of some input variable varies significantly by
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Table 5-1

Effect of Changes in Data and Structure of NCM
Upon Selected Variables, 1985

Production (MMTons) Prices (1978 $/MMBtu) Coal Washing
Aggregate Low-Sul fur (IMMTons)

1115.0 284.8 $1.10 17.7

% Change

-5.2%

11.8

1.9

3.3

26.4

-6.3

from CBC

-2.7%

5.5

-.9

4.6

16.4

-12.7

CBC

CML20

ROYI

CDRB

LOGN

LAB3

LABD

-5%

.7

-.1

-. 2

2.4

-1.0

-67.7%

-27.2

-10.4

-9.4

-85.9

11.9
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coal type. Note that in LAB3 (LABD) as real wages rise (fall) coal price

rises (falls) and both aggregate and low-sulfur production rise (fall).

The anomalous rise (fall) in production is due to the fact that labor's

cost share in deep mining is greater than in surface mining, and the

average BTU content of surface mines that the model chooses is lower than

for chosen deep mines. Hence more tons of coal must be produced to

obtain a given level of BTU's. In the more detailed results to follow,

several of these compositional effects may be observed.

5.1 Sensitivity to Reserve Base (CDRB)*

It was beyond the scope of this project to undertake an investigation

of the reliability of the U.S. BOM demonstrated reserve base. It should

be noted, however, that a recent report (Major [1979)) undertook a

comparison of the demonstrated reserve base estimates between January

1974--the estimates upon which the ICF data base depends (ICF [1977, p.

III-6])--and January 1976. The revisions are summarized in Table 5-2 for

states having deep or surface reserves exceeding 10 billion tons. While

the national totals do not change very much, note that the state

distributions do.

In order to examine the effects of uncertainty in the Bureau of Mines

reserve base data, a sensitivity run was conducted (CDRB) in which the

specified reserve base for each coal type was randomly selected from a

uniform distribution whose minimum was 75 percent of the NCM figure and

whose maximum was 150 percent of that figure. The confidence interval

*This and the following sections are abstracted from EMAP [1980].
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Table 5-2

COMPARISON OF U.S. BOM DEMONSTRATED RESERVE BASE FOR DEEP
AND SURFACE COAL BY LARGE RESERVE STATES: 1974 VS. 1976

1/1/74

Deep Surface

1/1/76

Deep Surface

MT 65,165 42,562 70,959 49,610

IL 53,442 12,223 53,128 14,841

Percent Percent

Deep Surface

+9 +17

< -1 +21

WU 34,378

PA 29,819

5,212 33,457

1,181 29,303

5,149

1,534

WY 27,554 23,674 31,647 23,725

OH 17,423

CO 14,000

3,652 13,091

870 12,465

0 16,003

6,140

3,791

0 10,145

Others 55,454 31,334 52,926 26,426

+15

-25

-11

+30

<1

+68

+335

-37

-16

Total U.S.:

297,235 136,713 296,976 141,361 <1

*A state is classified as a "large reserve state" if either Deep or
Surface reserves exceed 10 billion tons.

Source: Major [1979]
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used in CDRB is based upon an inspection of Table 5-2 and consultation

with Professor Richard L. Gordon of Pennsylvania State University.

The results of the CDRB experiment indicate a significant impact upon

regional coal productivity and to a lesser extent on prices (see Table

5-3). The production Deviation Indexes are the second highest in 1985 of

all runs.*

The results of the CDRB model runs show substantial increases in the

production of high-quality coal and in coal with low extraction costs.

This is because, on the average, the specified reserves of all types of

coal were increased, while overall demand remained unchanged. Therefore,

in the model solution, less expensive coal was substituted for more

expensive coal, and higher-quality coal was substituted for lower-quality

coal. The pattern of percentage changes in production and prices by coal

type presented in Table 5-4 bears out these conclusions.

The reader should not attach undue significance to the particular

outcome of choosing reserve levels at random from the uniform

distribution, since other outcomes would have produced different

results. Our purpose here is to provide some indication of what effect

uncertainty in basic reserve data might have on ARC-78 results.

**The average Deviation Index is defined as the average change in the
absolute value of a quantity (price) between two model runs weighted by
the original price (quantity). The measure is unforgiving in that
absolute values of differences are accumulated. In this sense it is
comparable to similar measures such as the root mean squared difference.
For example, consider the value of the index for an aggregation over two
regions and a change in quantity between two runs. Assume the original
price is 1 in both regions, that the original quantities are 50 and 100
respectively, and that the new quantities are 55 and 95. Then the
percentage value of the Deviation Index is 6.67 even though the aggregate
quantity is unchanged. The corresponding value for the root mean squared
difference measure is 7.07. For our present purposes, there is no
inherent basis for preferring one particular measure over another.

iv uliI MEr ~ ~ h i
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Table 5-3

COAL PRODUCTION AND PRICE DEVIATION INDEXES: CDRB vs. CBC

1985 1990 1995

Coal Production 9.1 14.8 17.7
Coal Price 1.6 3.0 4.4

Table 5-4

PERCENTAGE CHANGE IN NATIONAL COAL PRODUCTION AND PRICES
BY COAL TYPE DUE TO CHOOSING RESERVE LEVEL FROM A "PLAUSIBLE"

UNIFORM DISTRIBUTION (CDRB vs. CBC)

National Coal Production
(MM Tons) 1985 1990 1995

Metallurgical 6.7 4.5 5.9
Low Sulfur 1.9 4.8 8.5
Medium Sulfur -3.5 -4.3 -5.5
High Sulfur -1.4 -1.5 -6.0
Deep -2.1 -1.9 -1.4
Surface 1.6 2.0 1.5
TOTAL - .1 .1 .1

National Coal Prices
($ MMBtu) 1985 1990 1995

Metallurgical -4.0 0.0 -3.8
Low Sulfur 0.0 -5.0 -9.6
Medium Sulfur -2.9 - .9 0.0
High Sulfur -1.0 -2.4 -2.3
TOTAL - .9 -2.6 -4.2
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5.2 Uniform Versus Lognormal Distribution for Unallocated Reserves

Next we consider a sensitivity experiment to evaluate the potential

impact upon model results of a change in the underlying distribution

using allocated unclassified reserves to ARC-78 coal types.

As stated previously, the CSM/NCM incorporates no real data on the

distribution of reserves by seam thickness. Because CSM/NCM mine-costing

algorithms require such data, seam thickness is arbitrarily assumed to be

uniformly distributed between the minimum (28 inches) and maximum (72

inches) values for which the Bureau of Mines reports resources. The LOGN

sensitivity runs were constructed in order to test the sensitivity of the

NCM to the seam thickness distribution. In the LOGN runs, seam thickness

is distributed as a truncated log-normal function between the same

minimum and maximum as is specified in the Corrected Base Case. The

distribution is highly skewed toward the minimum, with the point of

truncation being approximately two standard deviations to the right of

the mode. It should be noted that because the seam-thickness minima and

maxima were not perturbed in the LOGN runs, the output may understate the

effect of seam-thickness uncertainty. The LOGN runs are compared with

the Corrected Base Case runs in Tables 5-5 and 5-6.

Again, a change in the underlying characterization of the coal

reserve data used in ARC-78 leads to significant impacts on the regional

distribution of coal production, with lesser impacts on prices. And as

with CDRB, the change shifts coal production from inferior to superior

coal types and from deep to surface mining.

There are several additional problems with coal reserve data that

were not examined via sensitivity runs. For example, data specifying the
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Table 5-5

COAL PRODUCTION AND PRICE DEVIATION INDEXES: LOGN vs. CBC

1985 1990 1995

Coal Production 9.8 15.4 12.3
Coal Price 4.5 2.5 1.5

Table 5-6

PERCENTAGE CHANGE IN NATIONAL COAL PRODUCTION AND PRICES
BY COAL TYPE DUE TO ASSUMING A LOGNORMAL DISTRIBUTION FOR

SEAM THICKNESS (LOGN vs. CBC)

National Coal Production
(MM Tons) 1985 1990 1995

Metallurgical 7.2 6.5 5.8
Low Sulfur 3.5 9.8 2.3
Medium Sulfur .7 3.3 6.9
High Sulfur -10.4 -22.5 -13.2
Deep -5.1 -9.3 -7.3
Surface 3.4 8.6 8.1

TOTAL - .2 -0.0 .6

National Coal Prices
($ MMBtu) 1985 1990 1995

Metallurgical 2.4 1.1 1.1
Low Sulfur 1.2 -3.8 -2.4
Medium Sulfur 2.9 3.7 -. 9
High Sulfur 9.6 5.7 2.3

.9 -. 9TOTAL 4.6
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distribution of overburden ratios for surface coal reserves were also

estimated in the NCM employing the uniform distribution to distribute

resources within the endpoints provided in the BOM data. No

computational experiment was conducted relating to the distribution

function for overburden ratio.

Another potentially serious problem is the difficulty in deriving

data on recoverable reserves from data specifying the reserve base. A

1975 Bureau of Mines publication that presents reserve base data contains

the following warning:

Extreme caution must be exercised in any attempt to translate the
underground reserve base into a recoverable reserve figure....
Because of data gaps and inadequacies, it would be very difficult,
if not impossible, to accurately quantify the coal unavailable due
to multiple beds, thick beds, subsistence considerations, and other
factors.

Such warnings by the principal source data organization, coupled with our

computational experiments, suggest that extreme caution must be exercised

in interpreting ARC-78 results on coal production and prices from the

CSM/NCM, or from any other model using these data. This latter point is

worth bearing in mind. Any coal supply model, not just the CSM/NCM, must

face up to these problems in the quality of the source data.

5.3 Coal Royalties and Rents

To test the potential importance of intertemporal rents on ARC-78

results, a run (ROYI) was made with intertemporal rents set at an

estimated 10 percent of coal extraction costs in non-federal regions;

royalties in federally dominated regions were left unchanged. The

results were compared with the Corrected Base Case model runs for 1985,

1990, and 1995. Differences between the two runs were substantial in

ft lf - - iWNMM
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each case year.

Introducing estimates of intertemporal rents into coal production

costs influences the pattern of production and prices by coal type.

Table 5-7 shows that metallurgical production falls in all case years.

This is due to the high substitution between these coal types and the

fact that metallurgical prices rose relative to low-sulfur prices.

The ROYI market-equilibrium quantities and prices of coal by coal

type and supply region were compared to the corresponding CBC values

using the Deviation Index (see Tables 5-8 and 5-9). The national average

coal price increase was 7.3 percent in 1985 and 6.4 percent in both 1990

and 1995. Coal production changed by an average of 8.8 percent in 1985.

On the one hand, coal regions such as Pennsylvania and Ohio decreased

production by more than 12 percent in ROYI versus CBC. On the other

hand, Western Montana and Colorado South increased coal production by

about 23 percent. Coal production by supply region changed by an average

of 12.6 percent in 1990 and 10.2 percent in 1995.

As expected, equilibrium prices rise with one exception (low sulfur

in 1990) due to changes in the regional shares used to obtain a weighted

national average.

Although intertemporal rents should be included in the analysis of

the Coal Supply Module, such an analysis is virtually impossible to

perform with current structure limitations. Intertemporal rents depend

on expectations of the very same future prices that the model is designed

to predict. As a result, models including such rents cannot be solved by

simple static optimization techniques. The imputation of intertemporal

rents together with the solution of the entire model is a dynamic

optimization problem, which normally requires the use of dynamic
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Table 5-7

PERCENTAGE CHANGE IN NATIONAL COAL PRODUCTION AND PRICES

BY COAL TYPE DUE TO INCLUDING AN ESTIMATE OF INTERTEMPORAL RENT
IN THE COST OF COAL PRODUCTION (ROYI vs. CBC)

National Coal Production
(MM Tons) 1985 1990 1995

Metallurgical -7.8 -9.8 -8.1
Low Sulfur 11.8 18.5 8.6
Medium Sulfur -2.2 -2.2 6.9
High Sulfur -1.5 -10.6 -11.1
Deep -4.8 -9.0 -8.7
Surface 5.4 11.2 11.9
TOTAL .7 1.4 1.9

National Coal Prices
($ MMBtu) 1985 1990 1995

Metallurgical 7.2 6.7 8.1
Low Sulfur 1.2 -2.5 1.2
Medium Sulfur 4.9 4.7 0.0
High Sulfur 9.6 8.9 7.5
TOTAL 5.5 1.8 1.7

Il~,..r. I^-.--r.~ _l- -~^ 'W".66 - -ul i i IY L -- - -- - - w-iil" ^I 1 1-.--
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Table 5-8

COAL PRODUCTION AND PRICE DEVIATION INDEXES: ROYI vs. CBC

1985

Coal Production
Coal Price

8.8
7.3

1990

12.6
6.4

1995

10.2
6.4

Table 5-9

COAL PRODUCTION PRICES: ROYI vs. CBC

Coal Prices Aggregate
(1978 $/MMBtu)

CBC
ROY I
Percent change

1985

1.10
1.16
+5.5

1990

1.14
1.16
+1.8

1995

1.18
1 .20
+1.6
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programming or an equivalent technique more highly aggregated than the

NCM. The rents so calculated could be introduced into the present static

version of the NCM as exogenous parameters. As a consistency check, the

output of the NCM run with intertemporal rents could then be compared to

the output of the more aggregated dynamic model.

Intertemporal rents have a significant role to play in any model

focusing on coal, and their omission in the CSM could affect ARC-78

results. This omission in the NCM should be corrected. However, to our

knowledge no other supply model of U.S. coal reserves treats the

intertemporal rent aspect of production costs.

5.4. Coal Producting Costing*

Examining the analytical cost function and associated cost adjustment

factors utilized in the ARC-78 Coal Supply Module of the NCM suggests

that an important parameter in the NCM's implicit engineering cost

function is the real escalation rate of unit labor costs. This rate is

exogenous, and in choosing its value the user/analyst takes into account

the fact that the escalation rate implies growth rates for either the

rate of growth in labor productivity or in the nominal wage rate.

Depending upon which of these rates is taken as given, one determines the

other. Thus, if c denotes unit labor cost, w the average wage rate, and

v average labor productivity, then c = w/v. Therefore, the rate of

growth of unit labor costs is the difference between the growth of wage

rates and growth of average labor productivity.

In all studies we consider the real escalation rate for labor inputs

*This section is abstracted from EMAP [1980].

-- - --- ~~~'^I*~I~~~'~ ------ -- II -- ----- --"^---Yi
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was assumed to be 1 percent/year. However, given the factors underlying

such a rate, the assumption that wage rates will grow uniformly 1

percentage point greater than the growth rate of productivity over the

next 35 years must be considered highly uncertain. An average unit labor

cost escalation of 3 percent/year or -1 percent/year, for example, might

be equally plausible. In addition, there is little reason to expect that

unit labor cost escalation would be uniform throughout the country. For

example, labor market conditions and technological conditions in the West

are quite different from those in the East. So, to provide some

indication of the impact of unit labor costs on ARC-78 results, two

computational experiments were formulated, setting the real escalation

rate for unit labor costs at 3 percent/year (LAB3) and -1 percent/year

(LABD).

The results of the LAB3 runs indicate that the NCM is quite sensitive

to changes in unit labor cost escalation. The Deviation Index shows that

equilibrium coal production prices are roughly 25 percent higher in the

LAB3 runs than in the Corrected Base Case runs. Solution quantities are

about 15 percent smaller. Comparing the LAB3 runs with the Corrected

Base Case, Tables 5-10 and 5-11 summarize the most significant results.

For the LABD runs, where labor productivity was assumed to grow 2

percentage points per year more quickly than wage rates, the Deviation

Index shows production prices down about 15 percent from the Corrected

Base Case, with quantities increased about 10 percent. Comparing the

LABD runs with the Corrected Base Case, Tables 5-12 and 5-13 summarize

the most signficant results.
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Table 5-10

COAL PRODUCTION: LAB3 vs. CBC

Surface Coal Production
(MM Tons)

1985
600
709

+ 18

1990
779
979

+ 26

Deep Coal Production
(MM Tons)

1995
963

1203

+ 25

Low-Sulfur Coal Production
(MM Tons)

1985
285
360

26

1990
460
547

19

1995
623
732

18

1985
515
433

-1 6

1990
726
572

-21

1995

913
741

-19

Coal Production Detailed
(Deviation Index-Percent)

1985

15

1990 1995

Table 5-11

COAL PRODUCTION PRICES:

Coal Prices Aggregate
(1978 $/MMBtu)

LAB3 vs. CBC

Coal Prices Detailed
(Deviation Index-Percent)

1990 1995

24 28

CBC
LAB3
Percent
change

CBC
LAB3
Percent
change

CBC
LAB3
Percent
change

1985
1.10
1.28

+ 16

1990
1.14
1.28

+ 12

19851995
1.18
1.38

+ 17
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Table 5-12

COAL PRODUCTION: LABD vs. CBC

Surface Coal Production
(MM Tons)

1985

600
561

-7

1990

779
704

-10

1995

963
820

-1 5

Low-Sulfur Coal Production
(MM Tons)

1985

285
267

-6

1990

460
453

-1

1995

Deep Coal Production
(MM Tons)

1985

515
543

+5

1990

726
790

1995

913
1014

+11

Coal Production Detailed
(Deviation Index-Percent)

1985 1990 1995

623
574

Table 5-13

COAL PRODUCTION PRICES:

Coal Prices Aggregate
(1978 $/MMBtu)

LABD vs. CBC

Coal Prices Detailed
(Deviation Index-Percent)

1985

1.10
0.96

1990

1.14
1.01

1995

1.18
1.05

1985 1990 1995

16 15 15

CBC
LABD
Percent
change

CBC
LABD
Percent
change

CBC
LABD

Percent
change -13 -11 -11
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5.5 Potential Coal Production Rates and Mine Lifetime

To form a concrete estimate of the importance of the mine lifetime

parameter to ARC-78 projections, a comparison was made of the output of

the Corrected Base Case (CBC) version of the model (30-year lifetime)

with that of an otherwise identical version with a 20-year mine lifetime

(CML20).

'This change in the mine lifetime parameter from 30 to 20 years

significantly affects the regional distribution of coal production.

There is a smaller impact upon regional coal prices. Table 5-14 presents

Deviation Indexes for production and prices. The values for the

production indexes are the highest of any computational experiment

considered in this report.

Table 5-14

COAL PRODUCTION AND PRICE DEVIATION INDEXES: 0ML20 vs. CBC

1985 1990 1995

Coal Production 19.2 21.6 20.9
Coal Price 5.3 6.6 7.6

The change also influences the distribution of coal production by

coal quality, the primary effect is a significant substitutability from

low-sulfur to metallurgical coal. This is the result of a high degree of

substitutability between these two coal types and the fact that

metallurgical coal prices fall relatively more than low-sulfur prices.

Table 5-15 presents these results, together with information on changes

in total coal production (very small) and changes in coal prices. The

changes in coal prices are, with one exception (low sulfur in 1985 due to

changes in coal type and regional mix), consistent with the expectation
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Table 5-15

PERCENTAGE CHANGE IN NATIONAL COAL PRODUCTION AND PRICES
BY COAL TYPE DUE TO REDUCING THE MINE LIFETIME FROM 30 TO 20 YEARS

National Coal Production
(MM Tons)

Metallurgical

Low Sulfur

Medium Sulfur

High Sulfur

Deep

Surface

TOTAL

National Coal
($ MMBtu)

Metallurgical

Low Sulfur

Medium Sulfur

Hi gh Sulfur

Prices

1985

7.3

-5.2

-1.0

-1.8

1.0

1985

-6.0

2.4

-4.9

-3.9

1990

9.2

-2.1

1995

10.2

-11.5

2.7 7.3

-3.0-1.5

- .6

2.6

1.1

1990

-7.3

-2.5

-3.7

-7.3

-2.7 -4.4

2.1

-4.0

-1.1

1995

-9.1

-2.4

-2.7

-6.8

-4.2TOTAL
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that costs of production are negatively correlated with mine lifetime,

since in the NCM the shorter the mine lifetime, the less capital is

required to produce a given quantity of reserves.

These results demonstrate the importance of the mine lifetime

parameters and the need for a sound method of determining appropriate

values. Several conclusions may be drawn from this analysis. First,

mine lifetime should not be assumed uniform. That assumption is no more

justifiable than an assumption of uniformity in other mining conditions.

Second, the lifetime estimate should not be based on engineering data

alone, but should also be treated as an economic variable because of its

effect on extraction costs. If mine operators set the lifetime with the

intent of minimizing costs, the estimates of optimal (cost-minimizing)

lifetimes are appropriate for use in forecasting policy models.

To determine which economic variables affect the optimal mine

lifetime and how they affect it, a simple theoretical model of coal

extraction was constructed and analyzed (Manove [1980]). The results

suggest a surprising hypothesis: The optimal mine lifetime is determined

primarily by only two economic variables, the market rate of interest and

the capital recoupment period for the mine in question.* Long capital

recoupment periods lead to long optimal mine lifetimes, as do low and

high interest rates. Intermediate interest rates result in shorter

optimal lifetimes.

These results are logical. When a mine is worked over a long period

of time, a substantial fraction of the present value of the ultimately

extracted reserves is "lost" as a result of discounting future revenues

*The capital recoupment period is the length of time required to earn
net revenues equal to the initial capital investment.
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at the market interest rate. If the recoupment period is short (and thus

the mine is of high quality), this lost value may be great compared to

the initial capital investment. Therefore, there is strong incentive to

construct a mine with a short lifetime and high extraction rate.

Conversely, if the recoupment period of a mine is long, the value of

revenues lost from discounting will be relatively small compared with the

cost of the initial capital investment, so there are incentives to

construct a mine with a long lifetime.

For very low interest rates, optimal mine lifetime is high because

the owner extracts the coal slowly to save on initial capital costs.

Over some range, mine lifetime decreases and rate of extraction increases

as the interest rate increases. However, as interest rates rise still

higher, the present value of any income stream from a mine becomes

relatively small compared with initial capital expenditures, so it

becomes less desirable to incur high capital expenditures in order to

extract the coal more quickly. Thus, as with low interest rates, there

is an incentive to reduce initial capital costs, thereby increasing the

lifetime of the reserves.

To summarize, the following factors would tend to promote mines with

long lifetimes and low rates of extraction by lengthening the recoupment

period:

o low quality coal,

o negative mining conditions (bad roofs, thin seams, presence of
water or gas, etc.),

o low price of coal, and

o high costs (for labor or other production requirements).

In addition, both very low and very high interest rates would promote

long mine lifetimes.
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We believe that improving this aspect of the NCM's Coal Supply Module

formulation would improve ARC-78 results; at a minimum, the CSM user

should be provided with some means to ensure that the assumed mine

lifetime for each coal type is consistent with the interest rate, the

cost of capital, and the capital recoupment period (the latter determined

by the price of coal). One possibility is to reformulate this part of

the NCM by making mine lifetime an endogenous variable. Thus, the coal

supply functions would be determined simultaneously with utility coal

demand and, therefore, with the price of coal. We have not pursued such

a formulation in this report, but anticipate that it would be very

difficult and would significantly change the operating characteristics of

the Coal Supply Module.

A more modest proposal would be to formulate and implement an

auxiliary model that included the variables necessary to endogenize the

mine lifetime parameter (conditional on the price of coal). Such a model

could be used both to estimate the lifetime parameter and to check that

the parameter actually used in the model was consistent with the coal

prices estimated by the model. We do not necessarily recommend the

implementation of the theoretical model outline mentioned above. The

issue of the correct formulation for a satisfactory auxiliary model

remains a subject for further research.
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APPENDIX A.1 ANALYTICAL FORMULATION OF THE COAL SUPPLY COST FUNCTION
AND ASSOCIATED ELASTICITIES*

This appendix presents a detailed and explicit analytical formulation

of the corrected version of CSM/NCM's implied engineering cost function

and its associated cost elasticities for both surface and deep mines. Note

throughout that the minimum acceptable real annuity coal price (described in

Appendix A.2) is equivalent to average cost.

A. Definition of Parameters and Variables

RACP = real annuity coal price in case year (1985) dollars per clean ton.

MYR = mine lifetime in years.

ECAP = nominal escalation rate in coal mine capital costs.

EMP = nominal escalation rate for coal mine labor costs.

EPAS = nominal escalation rate for coal mine costs of power and supplies;
used in places as a proxy for the general inflation rate.

ROR = nominal after-tax cost of capital (nominal discount rate) for
coal producers.

RUT = nominal after-tax cost of capital (nominal discount rate) for
electric utilities.

APFAC = annuity price factor; analytically defined both in Appendixes D.1
and F.2; a function of MYR, RUT, and the general inflation rate.

SZ = mine size in millions of raw tons per year; the allowable sizes
are 0.1, 0.5, 1.0, 2.0, 3.0, and 4.0, for surface mines and 0.1,
0.5, 1.0, 2.0, and 3.0, for deep mines.

OB = overburden ratio for surface mines; the allowable ratios are

5, 10, 15, 20, 25, 30, and 45.

ST = seam thickness in inches for deep mines; the allowable seam
thicknesses are 28, 36, 48, 60, and 72.

DP = seam depth in feet for deep mines; the allowable seam depths are

0, 400, 700, and 1000.

*This material draws heavily on Goldman [1980].
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DR = drift mine switch; equals one when DP=0O, and equals zero otherwise.

ICBS75 = initial capital cost for surface model-mine in thousands of base
year (1975) dollars.

ICBD75 = initial capital cost for deep model-mine in thousands of base year
(1975) dollars.

DCBS75 = total deferred capital cost for a 20-year surface model-mine in
thousands of base year (1975) dollars.

DCBD75 = total deferred capital cost for a 20-year deep model-mine in
thousands of base year (1975) dollars.

SLAB75 = labor cost in base year (1975) dollars per man-day for surface
model-mine.

DLAB75 = labor cost in base year (1975) dollars Der man-day for deep
model-mine.

TPMDBS = raw tons per man-day for surface model-mine; varies by supply
region.

TPMDBD = raw tons per man-day for deep model-mine; varies by supply region.

PSBS75 = power and supplies cost for surface model-mine in thousands of
base year (1975) dollars per million raw tons of output.

PSBD75 = powver and supplies cost for deep model-mine in thousands of base
year (1975) dollars per million raw tons of output.

POW = power cost in thousands of base year (1975) dollars per million
raw tons of output; varies by surface or deeD mine.

WEL = union welfare cost in base year (1975) dollars per clean ton;
varies by supply region.

WPD = union welfare cost in base year (1975) dollars per man-day.

ROY = royalty fee in base year (1975) dollars per clean ton; has a zero
value in all supply regions.

LIC = licensing fee in base year (1975) dollars per clean ton.

SEVTR = severance tax rate as a percentage of required revenue (sales);
varies by supply region.

SEVT = severance tax charge in base year (1975) dollars per clean ton;
varies by supply region.

SEVT$ = severance tax charge in thousands of current dollars per mine year
(constant in nominal terms); determined from SEVT; varies by
supply region.
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FED = Federal royalty tax rate (applies to coal mined on Federal lands)
as a percentage of required revenue (sales); varies by surface or
deep mine and by supply region.

EINS = exposure insurance charge as a percentage of labor costs; varies
by surface or deep mine and by supply region.

AMR = abandoned mine reclamation charge in base year (1975) dollars per
clean ton; varies by surface or deep mine and by Btu content
level of coal.

BLUNG = insurance charge for Black Lung Disease in base year (1975) dollars
per clean ton; varies by surface or deep mine and by BTU content
level of coal.

FREC75, fixed and variable reclamation cost, respectively, in base year

VREC75 = (1975) dollars per clean ton; varies by overburden ratio and by
supply region.

FCL75, fixed and variable basic bituminous cleaning cost, respectively,

VCL75 = in base year (1975) dollars per clean ton; varies by surface or
deep mine, by sulfur content level of coal, and by Btu content
level of coal.

YIELD = clean coal yield fraction in clean tons per raw ton; varies by
surface or deep mine, by sulfur content level of coal, by Btu
content level of coal, and by supply region.

IC75 = adjusted initial capital cost for any mine in thousands of base
year (1975) dollars.

DC75 = adjusted total deferred capital cost for any 20-year mine in
thousands of base year (1975) dollars.

TPMD = adjusted raw tons per man-day for any mine.

LAB75 = labor cost in thousands of base year (1975) dollars per year.

PAS75 = adjusted power and supplies cost in thousands of base year (1975)
dollars per year.

CF = required annual cash flow, constant in thousands of current dollars
per mine year (constant in nominal terms).

CRFROR,MYR = capital recovery factor for coal producers; a function of ROR and
MYR.

PVIc = present value of initial capital cost, in case year dollars, as
of beginning of case year (1985).

PVDc = present value of deferred capital costs, in case year dollars,
as of beginning case year dollar (1985).

PVcAP = present value of total capital investment of coal producers, in
case year dollars, as of beginning of case year (1985).
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DCj = fraction of deferred capital spent at the end of each year of
a mine's lifetime.

OC = total operating costs in thousands of current dollars per mine
year.

LABJJ = labor cost in thousands of current dollars per mine year.

PASJJ = power and supplies cost in thousands of current dollars per mine year.

DEP = annual depreciation charge--total nominal capital costs divided
by the mine lifetime.

POj = payroll overhead cost in thousands of current dollars per mine
year.

WC = total union welfare cost in thousands of current dollars per mine
year.

RF royalty and licensing cost, respectively, in thousands of current

LF dollars per mine year.

IDC = indirect cost in thousands of current dollars per mine year.

TAI = property taxes and insurance cost in thousands of current dollars
per mine year.

RR = total required revenue (sales) in thousands of current dollars
per mine year.

DEPL = annual depletion allowance either as a percentage of required
revenue or as a percentage of gross profit.

GP = gross profit in thousands of current dollars per mine year.

JJ = counter on mine years.
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Cost Adjustment Factors

Surface Mines

For SZ 2 1: (Note that Equations (1) & (2) are only valid for

SZ 5 10.5)

IC75 = [ICBS75 + 1.20*10 3(0B-10)] SZ [l1-(SZ-1)/20]

DC75 = [DCBS75 + 0.25*103(0B-10)] SZ Cl-(SZ-1)/20]

(b) For SZ < 1:

IC75 = [ICBS75 + 1.20*103(08-10)]

DC75 = [DCBS75 + 0.25*103(08-10)]

(c) For any SZ:

TPMD = [TPMDBS + 3(SZ-1)/0.1][1 -

LAB75 = (SZ*10 3IO/TPMD) SLAB75

PAS75 = [PSBS75 + 30(08-10)] SZ

[1-0.05(1-SZ)/0.1]

[1-0.05(1-SZ)/0. 11

0.1(08-10)/51

2. Deep Mines

Note that if DP =0, DR = 1, and if DP O, DR =0.

(a) For SZ 2 1:

IC75 = [ICBD75 + 500(DP-700)/100 - 6000(DR)][l + 0.06(72-ST)/12]

* [1 + 0.30(SZ-1)] (8)

DC75 = [DCBD75 - 3000(DR)][1 + 0.06(72-ST)/12][I + O.15(SZ-1)] (9)

(b) For SZ < 1:

IC75 = [ICBD75 + 500(DP-700)/100 - 6000(DR)][1 + 0.06(72-ST)/12]

IC75 = [IC75 - 500(DP/100)] SZ + 500(DP/100) (10)

DC75 = [DCBD75 - 3000(DR)][I + 0.06(72-ST)/12] SZ (11)

(c) For any SZ:

TPMD = TPMDBD - 1.0(72-ST)/12 + 0.5(SZ-1)/0.1 (12)

LAB75 = (SZ*1O 3/TPMD) DLAB75 (13)

PAS75 = [PSBD75 + 0.15 * 103(72-ST)/12] SZ. (14)

B.

1.

(a)

(1)

(2)

(3)

(4)

(5)-

(6)

(7)
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C. Cash Flow

CFj = CRFROR,MYR* PVCAP

where:

CRFROR,MYR = ROR/[1

PVCAP = PVIC + PVDC

PV = IC75(1IC

PVDC =

- (1 + ROR) MY ]

+ ECAP) 0 - 2 / 3 (1 + EPAS) 2 / 3

* + C) 10
DC75 (1 + ECAP)

MYR
1 + ECAP\

DCFJJ 1 + ROR /

DC75 = DC75(MYR - 10)/10.

Let: M25 = MYR/4, M50 = MYR/2, M75 = M25 + M50, M99 = MYR- 1.

When MYR is perfectly divisible by four:

DCF .05/M25 ,

- .90/M50

= .05/M99 ,

33 = 1, ...., M25

JJ = M25 +1, .... , M75

JJ = M,175 +1, .... , M99

When MYR is not perfectly divisible by four, an amended version of the allocation

of deferred capital is needed. (This is discussed further in Goldman [1980]).

D. Operating Costs

OCj = LAB + PAS + POJ + WCJ + RF + LFj + IDCJ + TAIj + DEP

+ [(FREC75 + FCL75)(1 + ECAP) 11 + VREC75(1 + EMP) l O +JJ

+ VCL75(1 + EPAS) 10 +J J + AMR + BLUNG] SZ*10 3*YIELD (16)

where:

LABJJJJ = LAB75(1 + EMP)

PASJJ = PAS75(1 +.EPAS) 10 +JJ

(15)
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POjj = [0.20 + O.01(EINS)] LABJJ

WCJJ

RFjj

= [SZ*10 3 (WEL*YIELD + WPD/TPMD)] (1 + EMP)

= [ROY*(SZ*10 3 *YIELD)] (1 + ECAP) 10+JJ

LFjj = [LIC*(SZ*10 3 *YIELD)] (1 + ECAP)10+JJ

IDCJJ = 0.15 [LABJJ + (PASJJ - POW*SZ*(l+EPAs)10+JJ)]

TAI = 0.02[PVIC/(l+EPAS) 2/3] (1 + ECAP)2/3+JJ

DEPJ = PVIC/(1+EPAS)2/3 + DC75 ((MYR-10)/10)(+ECAP) 0

MYR

* R DCFjj (1 + ECAP)JJ] /MYR

JJ=l

(17)

Note that for deep mines FREC75 = VREC75 = 0.0, and that ROY = 0.0

in every coal supply region.

E. Required Revenue and Depletion Allowance

It is assumed that the Federal Income Tax equals half of taxable income and

that the depletion allowance equals 10% of required revenue up to 50% of

gross profit.

From Appendix A.2 it can easily be shown that if DEPLJj = 0.1 * RRJJ

then:

RR = 0.5 OCj+ CFjj - DEP
RR 0.55[ - (SEVTR + FED)]

'3'5 0.55[I - (SEVTR + FED)]

0.5 SEVT$
0.55

If DEPL = 0.5 * GPjj then:

4/3 (CF - DEP J) + OC + SE$

[1 - (SEVTR + FED)]

(18)

(19)
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where:

GPJJ = [1 - (SEVTR + FED)] RRj

SEVT$ = SEVT * 103 * SZ * YIELD.

- OC i - SEVT$, and

Note that in Equations (18) to (20), one or both of SEVTR and SEVT$ will be

zero in each coal supply region. Also, FED = 0 in all but seven Western

regions.

F. Real Annuity Coal Price (RACP)

Again referring to Appendix A.2, it can easily be shown that if

DEPLJJ = 0.1 * RR J, then:

RACP = (APFAC*103*YIELD)-1

0.5 OC + CF

S0.55[1 - (SEVTR

If DEPLjj = 0.5 * GPj :

RACP = (APFAC*10 3*YIELD) -I

* 4/3 (CFjj

L [1 - (

MYR

S(1 +
JJ=1

- DEP

+ FED)]

MYR

S(1 +

JJ=1

- DEPJJ) + OCJJ

SEVTR + FED)]

RUT) -JJ
1
SZ

0.5 SEVT$
0.55

RUT) -JJ
1
SZ

+ SEVT$S

Substituting Equations (15), (16), and (17) into Equations (21) and (22)

yields the following set of equations.

If DEPLjj = 0.1 * RRj :

(20)

(21)

(22)



A-9

RACP = (APFAC*103*YIELD) -1
MYR

JJ=1

(1 + RUT) 1 I
SZ

* [Cl + C2(Blj *IC75 + B2JJ*DC75 + B3 *LAB75 + B4 j *PAS 75

+ B5 J*(SZ/TPMD) + B6j *SZ) ]

where:

Cl = (0.5/0.55) SEVT$

C2 = 1/(0.55[1 - (SEVTR + FED)] )

Bl1j = (T + ECAP) 10-2/3 [CRFROR,MYR(1 + EPAS) 2 / 3 + 0.01(1 + ECAP) 2 / 3 J J - 1/(2*MYR)]

B2ji = (1+ECAP)O[CRFROR,MYR

MYR

JJ=1
dJ=l

DCFJJ (+ECAPJJ
DC I+ROR

MYR

2*MYR
Jj=1

DCFj (1 +ECAP)J J]

* (MYR - 10)/10

B3 (1 + EMP) 10+ [1.35 + 0.01*EINS)
11 2

84  = (1 + EPAS) (1.15)

B5 j (1 + EMP) 10+J J (10 3*WPD)
3 2

= * 103 * YIELD [ (1 + EMP) 10+J J (WEL + VREC75) +
11 2

(1 + ECAP) 1 0 +JJ(ROY+LIC)

+ (1 + EPAS)10 +JJ VCL75 + (1 + ECAP)11 (FREC75 + FCL75) + AMR + BLUNG ]

- (1 + EPAS)10+JJ (0.15*POW).

Recall again that for deep mines FREC75 = VREC75 = 0.0.

If DEPLjj = 0.5 * GPj :

RACP = (APFAC*10 3*YIELD)-1

MYR

JJ=1

(1+RUT) 
J J s-- [ C1 + C2 (Bl1j * IC75

+ B2 * DC75 + B3 * LAB75 + B4 * PAS75 + BSj * (SZ/TPMD)

+ B6*j * SZ)]

(23)

C24)
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where:

Cl = SEVT$

C2 = 1/[1 - (SEVTR + FED)]

BI = (1+ECAP)1 0 - 2 / 3 [- CRFROR,MYR(1+EPAS)2/3 + 0.02(1+ECAP)2/ 3 + J  - 1/(3*MYR)]

MYR

MYR 1 4 1+ECAPB2jj (1+ECAP) 0  CRF Y DCFE3 ROR,MYR 3= 1+ROR
JJ=l

MYR

3*MYR DCF (+ECAP) * (M1ECAP) (MYR - 10)/10
JJ=l

B3 = 2 * B3

*
B4 = 2 * 84

*
B5 = 2 * B5

B6 = 2 * B6

Substitution of Equations (1)to (7) into Equations (23) and (24) yields a

closed-form expression for RACP as a function of the surface mine physical

variables, SZ and OB.

Substitution of Equations (8) to (14) into Equations (23) and (24) yields a

closed-form expression for RACP as a function of the deep mine physical

variables, SZ, ST, and DP.

G. RACP Derivatives

Note that all derivatives below are calculated assuming that in each year of

the mine's lifetime DEPLJJ = O.1*RR j. If in any year DEPLJJ = 0.5*GPJd

then Cl , C2 , B1JJ, B2 j, B3jj, B4jj, B5 j, and 86dd must be substituted

appropriately.
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1. Surface Mines

(a) For SZ k 1.

Price derivative with respect to overburden ratio:

- (APFAC*103*YIELD)-1

* C2[

MYR

JJ=1

(1 + RUT) -J

[B1jj(1.20*10 3 ) + B2jj(0.25*10 3)](1

+ (0.02) [83j (103*SLAB75) + B5JJ [TPMDBS

* [l - O.1(OB-10)/5]- 2 + 30*B4jj]

Price derivative with respect to mine size:

- (SZ-1)/20o]

+ 3(SZ-1)/0.1]-1

(25)

- (APFAC*10 3*YIELD)-1
MYR

JJ=1

(1 + RUT) J J

+ C2 - 1- 81 [ICBS75 + 1.20*103(OB

- - B2jj
20 JJ

- 10)]

[DCBS75 + 0.25*10 3(0B - 10)]

- 30 [B3J (103 *SLAB75) + B5 j] [TPMDBS + 3(SZ - 1)/0.1]-2

* [1 - 0.1(OB - 10)/51 12$ (26)

a(RACP)

a(0B)

a(RACZ)3(s z)"
I-

Cl/(SZ) 2
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(b) For SZ < 1.

Price derivative with respect to overburden ratio:

a(RACP)
a(OB)

MYR

(APFAC*10 3 *YIELD)-1 (1 + RUT) - J

JJ=1

*C2 [B1 (1.20*10 3 ) + B2j (0.25*10 3 )] [1 - 0.05(1-SZ)/0.11 -
L 1 11 sz

+ (0.02) [B3j (103*SLAB75) + B5 j ] [TPMDBS + 3(SZ-1)/0.1]- 1

* [1 - 0.1(08-10)/5]-2 + 30*B4 J
Price derivative with respect to mine size:

(27)

- (APFAC*103*YIELD)-1

MYR

JJ=1
(1+RUT) JJ { - Cl/(SZ) 2

+ C2 -B1lj[ICBS75 + 1.20*103( (OB-10)] 2*(SZ) 2

2*(SZ)2

- 30[B3j (103 *SLAB75) + B5 j]

* [1 - 0.1(OB-10)/5] -1

[TPMDBS + 3(SZ-1)/0.1] - 2

]1

a(RACP)

a(sz)

(28)
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2. Deep Mines

(a) For SZ Z 1.

Price derivative with respect to seam thickness:

= (APFAC*10 3*YIELD)-1

MYR

JJ=1

* [ICBD75 + 5(DP - 700) - 6

(1 + RUT) " J J * C2 [-(0.005) 81I

000*DR] [1 + 0.30(SZ-1)] I

- (0.005) B2JJ DCBD75 - 3000*DR] [1 + 0.15(SZ-1)]

- [B3j (103*DLAB75) +

- 1 (0.15*103) B4 5 ]

B5 ] [TPMDBD- (72-ST)/12 +0.5(SZ-1)/0.1] - 2

(29)

Price derivative with respect to seam depth:

= (APFAC*10 3 *YIELD)-1

MYR

JJ=1

(1 + RUT) J J * C2 [5*81 j

(30)* [1 + 0.06(72-ST)/12] [1 + 0.30(SZ-1)]

Price derivative with respect to mine size:

= (APFAC*10 3*YIELD)-1

MYR

JJ=l

(1 + RUT) -

- Cl/(SZ) 2

+ C2 [-(0.7) B1j [ICBD75 + 5(DP-700) - 6000*DR]

* + 0.06(72-ST)/12] 1 -----
(SZ)

* [1 + 0.06(72-ST)/12]
(SZ)

- (0.85) B2JJCDCBD75 - 3000*DRI

- 5[83 j(103 *DLAB75) + 85 J]

* [TPMDBD - (72-ST)/12 + 0.5(SZ-1)/0.1] - 2
(31)

a(RACP)
a(ST)

1
sz

a(RACP)
3(DP)

a(RACP)

a(sz)
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(b) For SZ < 1.

Price derivative with respect to seam thickness:

= (APFAC*10 3*YIELD)-1 (1 + RUT) * C2 [-(0.005) 81ij

JJ=1

* [ICBD75 + 5(DP-700) - 6000*DR] - (0.005) B2

* [DCBD75 - 3000*DR] - 1 2 [B3 j(10 3 *DLAB75) + B5d]
12 Ees3 JJ DA75 55

* [TPMDBD - (72-ST)/12 + 0.5(SZ-1)/0.11 - 2

- 2 (0.15*103) B4J

(32)

Price derivative with respect to seam depth:

= (APFAC*10 3 *YIELD) - 1

JJ-1

* [ (1 + 0.06(72-ST)/12)

(1 + RUT) J * C2

+ ( - 1 )

Price derivative with respect to mine size:

= (APFAC*10 3*YIELD)-1 (1 + RUT) -JJ
- C1/(Z)2

MYR

JJ=l

+ C2 -5*B1 *DP (1 )2

1 - (S Z)2
- 5 [B3 J(10 3*DLAB75) + B5JJ]

* [TPMDBD - (72-ST)/12 + 0.5(SZ-1)/0.1]-2] }

a(RACP)

a(ST)

a(RACP)

a(DP) [ 5*Bl

(33)

a(RACP)

a(SZ)

(34)
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H. RACP Elasticities

The elasticities of the real annuity coal price with respect to each physical

variable, for both surface and deep mines, are calculated in the usual way.

Let X denote any physical variable. Then the elasticity of RACP with respect

to X is given by:

X a(RACP) (35)
RACP a(X)

I. Final Notes

(a) Note that for surface mines the derivatives of RACP with respect to

OB and SZ are not continuous at SZ = 1.

(b) Note that for deep mines RACP is not continuous at DP = 0 (i.e., for

deep drift mines) and that the derivatives of RACP with respect to ST, DP, and SZ

are not continuous at both SZ = 1 and DP = 0.

(c) Each elasticity has its expected sign.
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APPENDIX A.2 THE CONCEPT OF MINIMUM ACCEPTABLE REAL ANNUITY COAL PRICES--
A FORMULATION*

The ultimate objective of the Coal Supply Module (CSM) of the National

Coal Model is to produce supply schedules for coal as viewed by purchasers.

Supply schedules reflecting the producer's point of view are derived, and

these schedules are then adjusted to reflect the purchaser's point of

view. A central concept of this procedure is the notion of minimum

acceptable real annuity coal prices. Since the model documentation

(ICF [1977]) does not adequately describe this concept, our own construc-

tion of it is presented below.

The modelers' objectives in employing the minimum acceptable real

annuity coal pricing concept were twofold. First, the coal prices ought

to reflect the stream of required prices for the entire life of the mine,

and second, the prices must be internally consistent with other inflating

price series such as oil/gas prices, coal transportation costs, and

electric utility O&M costs. The objectives were achieved by the use

of real annuity prices that implicitly inflate at the general rate

of inflation, thereby remaining constant in real terms. All other

inflating series employed in the CSM are expressed in similar terms.

In this appendix the coal pricing logic employed in the CSM

is explained in a step-by-step manner starting with the calculation

of the coal producer's minimum acceptable selling price.

*This material draws heavily on Goldman [1980].
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1. For each model mine type in each supply region the present value of

capital investment (as of the case year, 1985) is calculated using a given

initial capital cost and a given distribution of deterred capital costs over

the mine lifetime.

The present value of the total capital investment of coal producers,

PVCAP (in case year dollars, as of the beginning of the case year, 1985) is

given by:

PVCAP = PVIC + PVDC

PVC = IC75(1 + gc 10-2/3(1 + kp)2/3

N (I + i

PVDC = DC75(1 + g )10 DCFi (
i=1 (1 + kp)

where:

PVIC = present value of initial capital cost, in case year
dollars, as of beginning of case year (1985)

PVDC = present value of deferred capital cost in case year
dollars, as of beginning of case year 1985)

IC75 = initial capital cost in base year, beginning-1975, dollars

DC75 = deferred capital cost in base year, beginning-1975, dollars
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DCFi = fraction of deferred capital spent at end of year i

kp = coal producer's nominal discount rate (after-tax nominal
cost of capital)

9c = total capital escalation rate (incluGing general intlation
and real escalation)

9 = general rate of inflation

N = mine lifetime in years

Note that initial capital is inflated at the nominal escalation rate from

the base year to eight months before the case year. Deferred capital is

escalated to the end of the year in which is money is considered spent.

Let: Kp = coal producer's real discount rate (after-tax real cost
of capital)

l+k
Recalling that 1 + Kp = + , we point out that

PVCAP PIC + C75(1 + 10 CFi) (2)
i=1 (1 + Kp

Equation (2) only holds if g=gc.

Using the distribution for deferred capital costs given on page III-49

of ICF[1977], we have for N=20;

DCFi = .01 , i = 1-5

= .09 ,i = 6-15

= .0125 , i = 16-19

Except for mine lifetime, the following parameter values represent recent

figures used by ICF to calculate PVCAP. Although NCM is currently using

a mine lifetime of 30 years, we use a value of 20 years in Equations (3)

and (4) since for this lifetime, the distribution used by ICF for deferred

capital costs is documented.

kp = .15 , gc = .06 , g = .055
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1 + Kp = 1.15/1.055 Kp .09 (3)

Utilizing Equations (1) and (3), we now have:

P )+10 0 i6 i  (4)
PVCAP PVIC + DC75(1 + g10 .01 i (4)

15 19

+.09 ' 1.06 + .0125 2 (. 06
i=6 i=16

2. A minimum acceptable or required annual cash flow (equivalent to

annualized capital cost) in nominal terms, CF, can be calculated by

annualizing PVCAP using the coal producer's nominal discount rate, kp,

and the mine lifetime, N. This cash flow is constant in nominal terms

(i.e., constant in current year dollars). It is given by:

PVCAP
CF= N 1 = PVCAP * CRFk , N (5)

where:

CRFkp N = capital recovery factor = k [1 - (l+kp)-' -1

(based on nominal discount rate)

A minimum acceptable annual cash flow with the same present value but

constant in real terms is obtained simply by substituting Kp for kp in

Equation 4.
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Note that for the NCM analysis, a cash flow constant in real terms was

used.

3. Utilizing given total operating costs for the base year,

depreciation, and the above calculated minimum acceptable annual

cash flow, total required revenues (referred to as sales by ICF) for

the case year can be estimated from the appropriate equation on

page 111-50 of the NCM documentation ICF [1977]. (Since ICF assumes

that the depletion allowance equals 10 percent of required revenues

up to 50 percent of gross profit, there are two possible required-

revenue equations. Both are derived in the addendum to this appendix.

Adjustments to these equations, including severance tax rates as a

percentage of sales, severance tax charges in dollars per ton, and

Federal royalties, are not included.) The coal producer's minimum

acceptable selling price, MASP, for the case year is determined by

dividing required revenue by the annual output of the mine.

4. Starting from the MASP in the case year, 1985, a minimum

acceptable coal price series in nominal terms is generated over the

assumed 20-year mine lifetime as follows: The minimum acceptable cash flow

or annualized capital cost is constant in nominal terms over the mine



A-21

lifetime. Variable costs are escalated from year to year over the life of

the mine using a 6.5% rate for labor costs, including approximately 1%

real escalation, and the 5.5% general inflation rate for the cost of power

and supplies and for other operating expenses. Required revenues are

recalculated (as described in step 3 above) for each year, creating a stream

of minimum acceptable prices in nominal terms (i.e., in current year dollars).

By construction, via this required price stream, the coal company will

recover all of its costs and earn the required return on its investment.

5. The coal producer's minimum acceptable coal price series in

nominal terms, calculated in the previous step, is present-valued or

discounted to the case year using the after-tax nominal cost of capital to

electric utilities,. k . The utility industry's discount rate is used at

this stage because the utilities decide which stream of prices is preferable

(i.e., which mines are opened) and make the trade-off decisions between

various fuels and between capital-intensive and high-variable cost plants.

Currently, NCM is using a 10% after-tax nominal cost of capital to

utilities. The present-value (as of the case year) of the coal price series,

PVps, is calculated as follows (note that the values pi are neither constant

in real terms nor in nominal terms):

N 20

PV Pi 20 (6)
ips ) I ( 0) (6)

i=1 i=l
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where:

pi = coal producer's minimum acceptable coal price in ith year in
nominal terms (for model mine type and supply region under
consideration).

6. Finally, a minimum acceptable "real annuity coal price," RACP, is

capculated from PVps using ku and the general inflation rate, g. This

calculation implicitly defines an after-tax real cost of capital to

electric utilities, k .u

PV PV
RACP ps N ps

(constant 1 + g 1
in real (1+ ku(+K)
terms) i=l i=

= PVps/APFAC

where:

APFAC = annuity price factor, and

I + K = 1.10/1.055 =- K U .0427.u u

The real annuity coal price is a case year value in case year dollars

that inflates at the general rate of inflation (i.e., RACP is constant in

real terms). Note that while the methodology described above is projecting

coal prices pi in actual nominal terms, it is only the present value of the

coal price series that is important. The associated real annuity, given by

Equation (7), has the same present value to the utility as does the nominal

price series.

Other prices in the NCM are all assumed to inflate at the general

rate of inflation (i.e., to remain constant in constant case year
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dollars). Therefore, the 1985 price for, say, oil/gas is both its actual

price in 1985 and the value of the real annuity for oil/gas stated in 1985

dollars. So the real annuity coal price has the advantage of being

consistent with other data inputs, such as oil prices. Its other advantage

is that it makes the NCM static linear programming framework possible.

It is the minimum acceptable real annuity coal price (deflated to

1978 dollars), for each model mine type in each supply region, that appears

in the linear programming matrix as the cost coefficients of the coal

mining activity variables in the objective function..
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Addendum: Derivation of Required-Revenue (Sales) Equations

(For further discussion see ICF[1977], p. III-50.)

Case 1: Depletion = .50 * Gross Profit (GP) (1)

By definition:

Annual Cash Flow (CF) = Net Profit (NP) + Depreciation (DEP) + Depletion. (2)

Assuming a 50% Federal incone tax rate,

NP = .50 (GP - Depletion) (3)

Substituting Equation (1) into Equation' (3) yields:

NP = .50 (GP - .5 GP) = .25 GP (4)

Substituting Equations (1) and (4) into Equation (2) we have:

GP = 4 (CF-DEP)/3. (5)

By definition:

GP = Required Revenue - Operating Costs. (OC) (6)

From Equations (5) and (6) we have:

[Required Revenue = OC +1 (CF-DEP)]. (7)

Case 2: Depletion = .10 * Required Revenue (8)

From Equations (3) and (8):

NP = .50 (GP - .10 Required Revenue) (9)

Substituting Equations (G), (8), and (9) into Equation (2) yields:

CF - DEP = (.55) Required Revenue - (.50)0C (10)

Rearranging Equation (10) we have:

[Required Revenue = (.50)OC + CF - DEP (11)
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