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MODEL PATHWAYS IN LIGNIN THERMOLYSIS

by

Michael T. Klein and Preetinder S. Virk

Department of Chemical Engineering
Massachusetts Institute of Technology, Cambridge, MA 02139

ABSTRACT

A fundamental description of lignin thermolysis was attempted.

Analysis of the chemical topology of lignin suggested likely re-
action pathways of import to lignin pyrolysis. In turn, 20 model compound
pyrolysis substrates were selected to mimic the important reactive func-
tional groups present in whole-lignin thermolysis. The more salient models
were: phenethyl phenyl ether (PPE)0~'To) , which depicts the most preva-
lent lignin interunit linkage, guaiacol c V , model of the predominant
aromatic methoxyl, and saligenol r@" and cinnamyl alcohol %i H , models
of important propanoid side chains.

Detailed pathway and kinetic analyses and determination of reaction
Arrhenius parameters provided mechanistic insights into the model compound
pyrolyses. Several pericyclic reaction mechanisms, hitherto not mentioned
in the lignin pyrolysis literature, were suggested. In particular, PPE
likely pyrolyses via a concerted retro-ene mechanism, whereas guaiacol and
saligenol may respectively eliminate methane and water by concerted group
transfers.

A statistical interpretation of the lignin substrate coupled with
the experimental model compound pyrolyses allowed simulation of whole-
lignin thermolysis. The simulations were in substantial agreement with
experimental pyrolyses reported in the literature in regard to overall gas,
methane, carbon monoxide, individual phenols, and carbonaceous residue
yields. Weight loss kinetics deduced from the time dependency of the
latter yield also accorded well with the experimental literature.



1. Summary

1.1 Introduction

ThiS thesis attempts a fundamental description of lignin thermolysis.

A series of 20 different lignin model compounds were pyrolysed in the ex-

perimental portion of this work. A mathematical lignin thermolysis model

was developed, based on both the experimental model pathways and a theo-

retical interpretation of lignin structure.

The investigation comprised three major components. First a critical

examination of lignin and lignin chemistry was undertaken, aimed at dis-

cerning likely thermolysis reaction pathways. On the basis of this theo-

retical analysis, model compounds mimicking the essential reactive units

of the whole-lignin substrate were selected and pyrolysed. The reaction

pathways suggested by the model compound pyrolyses were then coupled with

the structural analysis of whole- lignin to formulate a mathematical sim-

ulation model for whole-lignin thermolysis. Hence, the experimental model

compound results were coupled with the theoretical analysis in an effort to

describe the essential features of whole-lignin thermolysis.

1.2 Motivation

The increased utilization of biomass and coal resource bases must

be accompanied by an enhanced understanding of the fundamental events

effecting their thermal processing. The elucidation of these fundamentals

should greatly assist in the selection of catalysts, solvents, and process

operating conditions for optimal substrate conversion, as well as provide

insight into the expected results of operating in regions devoid of ex-

perimental detai-ls. The objective of this investigation is an elucidation

of the important reaction pathways and mechanisms involved in lignin

pyrolysis, with an aim toward providing a rationalization and prediction



of observed lignin pyrolysis products and kinetics.

Lignin is a major component of biomass, accounting for up to

about 36% of wood by weight. The U. S. coal reserve is composed of pre-

dominantly lignite, subbituminous, and bituminous coals, the respective

percentages being 28%, 27%, and 43%.2  In view of the evolutionary linkage

of lignin to low rank coal, the high percentage of low rank bituminous

and lignitic coals suggests that lignin therm)olysis may be relevant to

many aspects of coal pyrolysis.

Both coal and lignin are ill-defined refractory'substrates which

lack unequivocal chemical structures. Their pyrolyses yield complex and

poorly characterized product spectra. Thus, the reaction pathways and

mechanisms involved in the pyrolyses of these complex substrates have re-

mained obscure. This motivated the use of model compounds, where the

products from pyrolysis of ; awll defined substrate may be used to infer

reaction pathways, kinetics, and mechanisms.

1.3 Lignin

Pure lignin is a natural phenolic polymer composed of carbon,

hydrogen, and oxygen. The ultimate lignin precursors are carbon dioxide

and water, biosynthetic fixation of which4 produces coumaryl, coniferyl,

and sinapyl alcohols, shown below. These three alcohols are the sole

CONIFERYL SINAPYL COUMARYL

monomeric precursors to lignin, with coniferyl alcohol predominant.

Natural lignification can be artificially duplicated by the en-

zymatic, oxidative dehydrogenation of coniferyl alcohol, which eventually

yields an amorphous polymer very similar to conifer lignin. The mechanisms
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and pathways of lignin growth have been ascertained by the isolation of

intermediates, termed lignols, of this process. According to Freudenberg4,

the classic reference on the subject, lignification proceeds thus.

Under the action of enzymes like laccase, the phenolate anion of

coniferyl alcohol is converted to a phenoxy radical. This radical enjoys a

half life of about 45 seconds5, being stabilized by resonance as depicted

in Figure 3.3. The major lignification growth mechanism is the coupling

of these free-radical species, the most important coupling mode being the

combination of an Ra and Rb radical. This is shown in Figure 3.4. The re-

sulting quinonmethide (IV) will generally add water in a nucleophilic manner

to yield the guaiacyl-glycerol-B-coniferyl ether (V). This B-ether is the

most prevalent link in the lignin macromolecule. However, the nucleophilic

component of this reaction can be varied considerably. For example,

Suiacyl-glycerol-a,B-diconiferyl diether (VI) represents the addition of

coniferyl alcohol to the quinonemethide. Plant sugars and polysaccharides

also compete for addition to the quinonemethide, representing the main

pathway for formation of lignin-carbohydrate covalent bonds. Similar

coupling reactions of each radical form Ra-Rd , as well as coupling of the

higher lignols, accounts for the moleculat weight increase attending lig-

nification.

Of direct importance to this investigation is a representation of

the types and proportions of the moieties and bonds which constitute lig-

nin. This information is conveyed in the classic schematic structural

representation of Freudenberg4 , shown in Figure 3.5. This formula is not

to be interpreted as a literal, unequivocal chemical structure for lignin,

but rather as a schematic depiction of the structural insights gleaned

from experiment. Harkin 5 draws an analogy between lignin and playing cards,
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emphasizing the existence of a broad statistical distribution of well

known but also well shuffled chemical structures that cannot possibly be

represented in one formula. Only in the limit of infinite statistical

sampling, or infinite schematic forimula size can lignin structure truly be

realized. This emphasizes the importance of bond and moiety-, types and

their frequency distributions in lignin description. Note, for example,

that the linkages between units 1-4, 4-5, 5-6, 7-8, 10-11, 12-15, and 15-16

in Figure 3.5 are all of the B-ether type. This is clearly the single most

predominant interunit linkage.

For the present purposes the best characterization of Freudenberg's

structure was effected in terms of the phenolic units and the propanoid

side chains of each monomer. Figure 3.7 schematically represents the types

of methoxyphenol units in Figure 3.5. The three monomer alcohols are

divided into two types, those with etherfied hydroxyls and those with free

phenolic hydroxyls. The former category is further subdivided according to

ether type. Because of the large percentage of coniferyl alcohol monomer

incorporated into the lignin macromolecule, "guaiacols, either free or

B-etherified, account for the largest proportion of the methoxyphenol units

in a spruce lignin. The propanoid side chains occuring in Figure 3.5 are

shown in Figure 3.8. Despite the apparent complexity of the Freudenberg

structure, there exist but eight side chain types. The most prevalent of

these is the B-etherified guaiacyl-glycerol moiety, which occurs, e.g., as

the siae chain to unit 6. The mechanisms of lignification suggest that

while the side chain of one aromatic unit may be involved in a lignin link-

age with the guaiacyl moiety of another monomeric unit, it cannot be in-

volved in bonding with its own guaiacyl moiety. With regard to the

Freudenberg structure, this point implies that the side chain shown for
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unit 6, for example, might be associated with any of the methoxyphenol

moieties shown for units 6, 7, 8, and 3, in proportions related to the

probabilities of the given methoxyphenol and side chain unit derived from

Figures 3.7 and 3.8.

1.4 Previous Work

A major goal of the present work was elucidation of the fundamental

reaction pathways involved in lignin pyrolysis. This section will consider

previous pyrolyses of lignin and lignin model compounds.

1.4.1 Previous Lignin Pyrolyses

Figure 4.1 is a summary of major lignin pyrolysis products and Table

4.1 is a representative listing of the major pyrolysis products reported in

the literature.
Gases

As illustrated in Table 4.1, total gas yields average 15% by weight

of lignin pyrolysed, the major product gases being CH4, CO, CO2 , and ethane.

Heuser and Skioldebrand 23 obtained a gas consisting of 50.9% CO, 37.5% CH4,

9.6% CO2, and 2% ethane from pyrolysis of an HC1 spruce lignin, while

Gladkova, et al.25, reported 25% CO, 48% CH4, and 11% CO2 in the product

gas from pyrolysis of a hydrolysis hardwood lignin. In both cases the

high contents of CO and CH4, and the rather low content of CO2, are note-

worthy. latridis and Gavalas26 pyrolysed a Douglas fir Kraft lignin;

the major gaseous products were CH4 , CO, and CO2 , with minor amounts of

other hydrocarbon gases also. The ratio CO/CH4 exhibited an interesting

variation with temperature. At 400 C, CO/CH4 was approximately 2.3 while

at 500 C this ratio dropped to roughly 0.85, and finally at 550 through

650 C the ratio climbed to values approaching 2. The relatively large

CO2 content, typically 6%, observed by these authors is inconsistent with

previous literature citations, and likely arose from modification of
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Keterence

(52) 1975
(35) 1938

(34) 1929

(31) 1928

23) 1919
53) 1918

(24)
1907

(32) 1925
(25) 1974
(29)
(27) 1975
(54) 1932
(55) 1920
(56) 1921
(57) 1923
(58) 1952
(59) 1955
(60)

1950
(61) 1958

62 1947
1970

(63) 1970

Material
Pyrolysed

Lignin '
Alk. corn
stlk. Lig
Alk.Lig
HCL Lig
H2SO4Lig

Oak Lig
Birch Lig
Beech Lig
Spruce Lig
Aspen Lig
Cellulose
Wood
HC1 Aspen
Hydr. Lig

Alk. corn
HC1 Lig
HC1 spruce
HCI spruce
HC1
H2S04
HC1

.Cnar I I ar

63.5
57

52.2
58.5
65.5

50-6
50-6
50-6
50.6
45.0
34.9
37.8
44.3
40.5

50.5
57.2
53.8
52.0
60
56

44-8

55.66
63.5
54.7
51.0
42

7.2
19.5

17.7
7.5
7.4
3
4
5
113
9.6
6.3
8.1
'14.3
14.2

28.3
12.5
10.21
15
7

Aqueous

16.4
11.8

15.5
15.1
15.0

11.7
13.2
14.2
21
20
19

35-7
8.7

13-21
16.4
20.4
22.1
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MfeUH Acetone
of Li nin-

.4

.43

.05
1.1
.9

1.3
1.3
1.3
1.1
.64
2.8
3.2
1.3

.3

.3

co CHi 4  C2  Other
4-- - Gas I ; )

12.9
11.7

13.5
19.1
11.5

9.3
17.0

1.5
10-3

17-8

12.9
17.4
20.4
20

50.9

32.4
32.6

23-7
+
+

37.5

3.12
9.3

44-52

+

9.6

62.9
56.5

10-2
+

+

C2H6

C H
C2H6C 2H

C2H2 18
H2

Table 4.1 Representative products from lignin pyrolysis.
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their lignin during Kraft pulping.

Aqueous Distillate Products

Aqueous distillate yields !from pyrolysis amount to roughly 20% by

weight of the lignin charged, Its main constituents are water, methanol,

acetic acid and acetone.

Methanol is formed in yields ranging from 0.3% to 3% of the lignin;

this corresponds to about 10% of the lignin methoxyl content.19  Klason 24

.pyrolysed wood from birch, beech, pine and spruce and found the yield of

methanol from the former two hardwoods twice as high as that from the lat-

ter two softwoods. Other observations23931 also.show that hardwood lig-

nins yield more methanol than softwood lignins. Because hardwood lignins

incorporate a larger proportion of dimethoxylated sinapyl alcohol monomer

units than do softwoods, Allan and Matilla 30 have suggested that: methanol

originates from methoxyl moieties in lignin.

The acetic acid and acetone produced from lignin pyrolysis pre-

sumably originate in the three carbon phenylpropane unit. Allan and

Matilla 30 report that the yields of acetic acid from hardwoods are sig-

niftantlyhigher than those from softwoods. This is attributed to the

hardwoods possessing a less condensed lignin polymer than the softwoods.

In general, as seen in Table 4.1, acetone yields are considerably lower

than those of acetic acid and methanol. The data of Iatridis and Gavalas26

show significant yields of methanol and acetone, but do not include acetic

acid.

Water is the major component of the aqueous distillate fraction;

water yields of 10%-20% of the lignin are typical, as shown in Table 4.1.

Extensive hydrogen bonding between hydroxyl groups and other oxygen

moieties in lignin is likely responsible for the rather facile loss of



water during pyrolysis. However,the mechanistic aspects of water release

are poorly understood. Also, interpretation of water yield data is com-

plicated by the inevitable presence of physically bound water in lignin

samples.

Tars and Oils

The tar fraction resulting from lignin pyrolysis has received con-

siderable attention due to the high proportion of valuable phenols in it.

As seen in Table 4.1, the tar yield is typically 15%-20% by weight of the

lignin. The lignin isolation method exerts a significant influence on tar

yields34'39. Thus pyrolysis of alkali, HC1, and H2SO4 lignins 34 yielded

17.7%, 7.5%, and 7.4% tar yields, respectively. In the rapid thermolysis

of alkali, HCI, and H2SO4 lignins39, the alkali lignin yielded the largest

proportion of phenols; it was also noteworthy that lignins from different

woods isolated by the same method were much more similar than lignins from

the same wood isolated by different methods.

Table 4.5 is a representative listing of phenols identified in the

tar product. The phenols detected mirror the constituent lignin monomers.

Thus, guaiacol and catechol derivatives predominate, with sinapyl and

coumaryl units in evidence as well. The singly oxygenated phenols likely

arise from reactions of the guaiacyl and sinapyl moieties and also from

degradation of coumaryl alcohol monomers. Phenol substitution is in-

variably in the para position, and often includes all three carbons of the

original propanoid side chain.

The Carbonaceous Residue

A carbonaceous residue is a prevalent lignin pyrolysis product.

Chemical analysis of this product has rarely been effected, though Gillet

and Urlings48 found that coke from a Brauns and from an ethanolysis lignin



Table 4.5 Phenols Reported From Lignin Thermolysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

PHENOL
Phenol
o-cresol
m,p-cresol
m-ethyl phenol
p-ethyl phenol
p-propyl phenol
xyl enol s
guaiacol
p-methylguaiacol
p-ethyl guaiacol
p-propyl guaiacol
eugenol
isoeugenol
vinylguaiacol
coniferal dehyde
vanillin
acetovanillone
propiovanillone
vanillic acid
catechol
p-methyl catechol
p-ethylcatechol
syringol (DMP)
p-methyl syri ngol
p-ethyl syringol
p-propyl syri ngol
vinyl syringol
allylsiringol
syri ngal dehyde
acetosyringone
propiosyringone
methoxycatechol

SEE ACCOMPANYING ILLUSTRATION FOR CHEMICAL STRUCTURES

1I, 26
26,54,41

REFERENCE
43,35,39,58,62,54, 42,4
f43,40,35,39,42,58,62,

40
43,49,- 40
40
40,35,58,62, 42,41
43,40,35, 41,39,58,62,
35,39, 58,41,62, 44,
30,58,62,44,26,41,42
39,54,41,42
39,32,41
39,41
39,54,38,41
38
38,41,42
39,42
41
41
39,38,65,41,54
39,38,41
39
39, 42,44, 41
39,44, 41,42
42
38,41,42
39,41
39
38
41
41
38,41

42,2634,44,
42,26
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each had an elemental composition similar to that of a Rhenish lignite.

Their elemental formula of (C40H30011)2 is represented in Figure 4.2 by

their speculative coke structure.

1.4.2 Previous Model Compound Pyrolyses

Previ'ous model compound studies may be organized into three groups:

the lignin interunit linkages, the methoxyphenols, and the 3-carbon side

chain units.

Lignin Interunit Linkages

The most prevalent lignin interunit linkage is the B-ether linkage,

which can be .epresented, in the lignin, as:

OR,

Th.e thermal behavior of these B-ether linkages has been studied by two in.-

vestigators75'76. Domburg75studied the substituted B-ethers I, II, and III.

The temperature for 50% weight loss for each of these were reported, from

Differential Thermal Analysis (DTA) experiments conducted at 12C/min, as

I 11 II

HOO O

1(280 C)<II(310 C)<III(365 C). Activation energies of 16, 15, and 82 kcal/

mol were also reported for I, II, and III respectively. The product spectra

consisted of guaiacol, methyl-, ethyl-, and propyl-guaiacols, cis- and

trans-isoeugenol, vanillin and acetovanillone, the latter two forming in

much larger quantities from III than either I or II. The large predominance

of guaiacol products appears indicative of'a formal scission of the B-carbon
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Figure 4.2 Schematic coke structure of Gillet & Urlings 48



oxygen linkage:

Savinykh76 probed the effect of methoxyl and phenyl substituents on

the thermal behavior of lignin B-ethers. They heated compounds II, IV and V

to 500 C at a rate of 5C/min. The temperatures for 10% weight loss were

1I IV v

II(300C)<<V(380C)<IV(400C). The most pronounced effect is that of veratryl

substitution(cf V,IT); compound II also differs from V in methyl substitution

at the B carbon of II, but this is likely a minor factor in comparison with

the veratryl substituent.

Another prevalent link in the lignin macromolecule is the a alkyl

aryl ether bond, as in:
0

The decomposition of a-aryl alkyl ether bonds, as in benzyl phenyl ether

(BPE), appears to be a rather facile process for the conditions of interest

here79'80'81  A conversion of 31% at 320 C and 30 minutes holding time

was reported79 , -with phenol, toluene, and benzylphenol as predominant

products.

Methoxyphenol s

The aromatic methoxyl unit is a charateristic moiety of lignin.

Pyrolyses of several related model compounds have been reported, including
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guaiacol' 92 93 94and veratrole 1 '92 which model free hydroxylic and

etherified methoxyphenols, respectively. Pyrolyses have also been re-

ported for anisole 91 95,96,97,82 and 2,6-dimethoxyphenol(DMP)91. In

these previous pyrolyses of veratrole, anisole and guaiacol, demethylation,

demethoxylation, and isomerization reactions have been found to occur.

In the temperature range 400-600 C, demethylation seems modestly pre-

dominant for guaiacol and veratrole, but overwhelmingly predominant for

anisole. However, the literature pyrolyses have been effected at rather

high conversions, which permit significant secondary reactions and thus

provide product spectra little indicative of reaction pathways.

Side Chain Units

Previous experiments relating to lignin side chain unit pyrolyses

arise both from lignin-related and other experiments. In general,

hydroxylic side chain units appear to undergo dehydration99 100 ,101 and

isomerization reactions100, with reactivity dependent upon the structure

of the side chain and substituent groups. Carbonyl side chains are re-

ported to undergo decarbonylation with evolution of CO; e.g.,benzaldehyde

yields CO and benzene at temperatures of 400-500C, by a mechanism quite

likely molecular in nature.
98 982

1.4.3 Limitation of previous work

Previous lignin pyrolyses provide little fundamental insight into

the mechanisms and pathways of degradation. This is due, in part, to the

wide range of lignin types, lignin isolation methods, and lignin pyrolysis

reactors employed. Further, the complex product spectra obtained have

thus far defied efforts to unequivocally elucidate the origins of individual

products..

Previous model compound pyrolyses provide some insight into possible
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lignin pyrolysis reactions, but fail to detail either product spectra or

primary reaction pathways. Few kinetic parameters are reported. Further,

many studies employ non-isothermal DTA and DTG techniques, the latter being

particularly difficult to interpret since chemical transformations, e.g.

isomerizations, need not be attended by weight loss. Finally, it is.sig-

nificant that previous model compound studies have never hitherto been

applied to describe whole-lignin pyrolysis.

1.5 Present Approach

The present approach involved analysis of the lignin to suggest

formal reaction pathways for lignin thermolysis. This permitted develop-

ment of a list of model compounds to be experimentally pyrolysed. Pyrolysis

results, combined with the earlier lignin structural analysis, then allowed

a mathematical simulation of whole-lignin thermolysis in a manner comparable

with available experiments.

1.5.1 Analysis of Lignin Structure

Lignin is a random co-polymer of coniferyl, sinapyl and coumaryl

alcohol monomers. The single ring aromatic units in lignin possess,at

positions 1, 3, and 4, respectively, a 3-carbon chain, methoxy, and phenol

substituents. These aromatic units are connected by interunit linkages of

( in descending prevalence) s-ether, a-ether, diphenylmethane, diarylether,

diaryl, pinoresinol, and phenylcoumaran types. Thus lignin is simply an

ensemble of single ring aromatic units, linked by seven types of interunit

bonds.

An essential feature of lignin constitution, noted earlier, is that

while the methoxyphenol of a given aromatic unit may be involved in bond-

ing with the 3-carbon chain or methoxyphenol of an adjacent unit, it is

never involved in bonding with the 3-carbon chain of the same aromatic



unit. Thus the nature of methoxyphenol substitution on a given aromatic

unit is independent of the nature of 3-carbon side chain substitution on

the same unit. Thus, as illustrated below, the probability of the

occurrence in lignin of a given aromatic unit must be equal to the prob-

?JO . OH

Ph
TYPICAL
L16NIN 3C.C MP
UNIT

ability of the proper side chain multiplied by the probability of the

proper methoxyphenol. This is the probability of the simultaneous occur-

rence of two independent events, namely the product of the individual

probabilities, i.e., PA and B= PAxPB.

The present probabilistic interpretation of the Freudenberg lignin

structure can now be elaborated. Figure 5.1 is a numerical summary of the

types of aromatic units present in the Freudenberg structure of Figure 3.5.

The grid points in Figure 5.1 show the 18 aromatic unit types depicted in

the Freudenberg structure, and are positioned in the grid so as to rep-

resent the appropriate match of methoxyphenol and 3-carbon side chain

substituents. The present interpretation of the Freudenberg structure is

schematized in Figure 5.2. Using the distributions of 3-carbon

side chains and methoxyphenols detailed in Figures 3.7 and 3.8, a

grid of 18 total aromatic units has been generated by multiplying

all possible methoxyphenol types against all possible 3-carbon side

chain substituent types. Thus, many of the grid points with zero

entries in Figure 5.1 now have non-zero entries in Figure 5.2;
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correspondingly, the proportions of certain overemphasized aromatic units

in Figure 5.1 have been reduced.

This investigation will use the preceeding statistical matching

approach to describe whole lignin.

1.5.2 Formal Pathways in Lignin Thermolysis: Selection of Model Compounds

At the temperatures of interest in most lignin thermolyses, the

aromatic units will persist. Thus, the essential reactivity of whole-

lignin will be that of the methoxyphenols, 3-carbon side chains, and

interunit linkages. Consideration of such units present in the Freudenberg

structure generated a set of compounds capable of describing the essen-

tial features of lignin pyrolysis. Table 5.1 lists these model compounds.

A complete discussion of the logic used to arrive at this list is pre-

sented on the main text of this thesis.

The prevalent guaiacyl O-ether link, structure I, was modelled as

phenethyl phenyl ether(PPE), compound 1. PPE contains the essential s-ether

carbon-oxygen link but does not possess the a-hydroxy, B-methylol and

guaiacyl substituents present in the actual lignin moiety, The effects of

these substituents (which can be accounted for theoretically and exper-

imentally) should be of second order importance75 '76 as compared to the

basic reactivity of the B-ether link.

(I) . (1) phenylethyl-
phenylether, PPE.

Of particular significance are the reactions of the B-ether. Formal

reversion of, theguaiacyl-glycerol-$-ether may generate a guaiacol type



Table 5.1 Model Compounds to be Pyrolysed

Interunit linkages

1. Phenethylphenylether PPE
2. o-hydroxydiphenylmethane OHD
3. phenylether PE
4. biphenol BPhOH
5. biphenyl BP

Methoxy phenols

6. guaiacol G
7. veratrole VE
8. anisole AN
9. 2,6-dimethoxyphenol DMP

10. isoeugenol I
11. vanillin VA

Carbonyl Units

11. vanillin VA
12. benzaldehyde BA
13. acetophenone AP
14. cinnamaldehyde CAD

Propanoid side chains

14. cinnamaldehyde CAD
15. cinnamylalcohol CAL
16. saligenol SAL

CO2 precursors

17. ferulic acid FA
18. cinnamic acid CA
19. 1-napthoic acid 1NA
20. 2-napthoic acid 2NA

SEE ACCOMPANYING ILLUSTRATION FOR CHEIICAL STRUCTURES
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methoxyphenol from a veratrole type unit, as in:

0- HO"
Hence, the relative reactivities of veratrole and guaiacol are of interest.

Reversion of ether I might result in the formation of hydroxy enol

side chains, as in: I

B B 9 R +

The hydroxy enol type moiety, IA or IB, is modelled by saligenol, as in-

dicated below: IV Ih BR

ROH H p,

SALIGENOL LIGNIN ENOL

To summarize, the selection of model compounds was effected in two

ways. First, compounds which mimic the functionalities and moieties

known to exist in the unreacted lignin substrate were selected, The sec-

ond method of selection was to choose compounds reflecting likely pyrolysis

intermediates.

1.5.3 Simulation of Lignin Thermolysis

Whole lignin pyrolysis was modelled using the experimental results

obtained from the model compound pyrolyses. The task involved depiction

of the lignin substrate in terms of the model moieties, followed by de-

lineation of the consecutive and parallel reactions of this substrate in

terms of the model pathways. Finally, the products obtained in the model

compound pyrolyses had to be related to those of whole-lignin.

Each aromatic unit in lignin was assigned a 3-carbon side chain

and methoxyphenol substituent. Consider the structural transformations:

I (t=O) (t ,) 11 (-t>2)



Unit I depicts a typical aromatic unit as found in lignin. Reversion of

the S-ether on the side chain followed by subsequent side chain dehydration

and methoxyphenol ether cleavage may alter the aromatic unit to II. The

original hydroxyl and ether substituents are no longer considered as part

of the 3-carbon chain or methoxyphenol, but are either in separate stable

products or associated with the 3-carbon chains or methoxyphenol of another

aromatic unit. Further reaction could alter the aromatic unit to III.

Thus, while the aromatic unit remains intact, changes in the 3-carbon side

chain and methoxyphenol substituents chronicle lignin pyrolysis.

The pyrolysis products were then found from a statistical' matching

of the corresponding products from methoxyphenol and 3-carbon side chain

pyrolyses, dictated by the kinetics of each reaction. For example, guaiacol

pyrolysis might yield phenol and catechol, whereas cinnamaldehyde might

yield styrene. Thus a coniferaldehyde lignin aromatic unit might be ex-

pected to yield all of the products shown below. The proportions B;D, C.D,

A.D, B.E, C.E, and A.E are dictated by the individual yields of products

A through E in experimental pyrolyses of the models guaiacol and cinnamal-

dehyde. Integration (summation) over the entire distribution of aromatic

B.D C-D AD0 P P c B A

SU6NN ODEL

S.E C.E A.E



units should then describe the products from whole-lignin pyrolysis.

Mathematics of the Simulation

Ordinary linear differential equations describing the variation

with time of each methoxyphenol and 3-carbon side chain moiety were used

to describe a constant volume batch pyrolysis. The rate of change of each

product was, in general, proportional to the number of mols of each other

product, or in vector form,

dI K L d (t=O)= o
dt - dt - -.

- - (t=)= ?

where the vector X represents all methoxyphenol products, and Y is the

3-carbon side chain. product vector. The equations were numerically in-

tegrated forward in time via a fourth order Runge-Kutta technique. The

initial conditions required for the solution of these equations were

obtained from the distribution of methoxyphenols and 3-carbon side chains

depicted in the Freudenberg structure for spruce lignin, given in Figure

5.2. These conditions reflect the molar, or moiety, fraction of each

methoxyphenol or 3-carbon chain in the initial lignin structure. Note

that the initial conditions are a function of lignin origin. As light

gases, water, and MeOH are evolved in pyrolysis, total simulation mols

are not conserved. However, the total number of methoxyphenol and 3-

carbon side chain moieties is conserved while being chemically altered

in pyrolysis; total aromatic units are also conserved. Formation of

single ring aromatic products necessitates that all interunit linkages

of the side chain and the methoxyphenols be cleaved. Two types of sub-

stituents arise, those entirely free of interunit linkages, designated

as S, and those involved in interunit bonding, designated M. Since a

single ring aromatic will form only when an S-type 3-carbon chain and an



S-type methoxyphenol are formed, the probability of single ring aromatic

, IG pMP. 3CCformation from lignin, PLIG, is PLIG = pP.p . Any other combination

involving P or p3C represents the formation of a multiple aromatic

ring product.

In summary, the simulation numerically solved a set of first order

differential equations which described the variation with time of the num-

ber of each type of 3-carbon side chain and methoxyphenol moiety per .unit

weight of lignin substrate. The initial concentration of each moiety was

obtained from the distributions depicted in the Freudenberg structural

model for lignin. Statistical matching of methoxyphenol and 3-carbon

side chain substituents at any time then described the products expected

from whole-lignin thermolysis.

1.6 Experimental Methods

Table 6.1 is a summary detailing the range of operating con-

ditions for the experimental pyrolyses. Listed are the model compound,

structure, purity, and the temperature, time and concentration range

studied. The experimental details are conveniently grouped-into three cat-

egories, namely, the source of the chemicals used for pyrolysis, the actual

apparatus used to effect the pyrolyses, and the chemical analysis system

used for product characterization.

Chemicals Used

All but one of the compounds were available commercially and were

used as received. PPE was not commercially available and this substrate

was synthesized by the method of Mademov and Khydyrov164. Structural

details of the synthesis product were confirmed by NMR. Analysis by GC

on OV-17 showed the ether to be 95% pure, with phenol, the main impurity,

amounting to 1%.



Table 6.1 Experimental Grid for Model Compound Pyrolyses

COMPOUND

GUAIACOL

ANISOLE

VERATROLE

ISOEUGENOL

2,6-DIMETHOXY-

PHENOL

STRUCTURE PURITY
Wt%

99

TEMPERATURE
RANGE C

250-535

344-550

.350-550

300-500

300-500

HOLDING
TIMES s

110-6000

CONCEN-
TRATION
mol/l
0.46-3.07

180-1500 0.46-3.07

60-1500

60-1560

0.33

0.33

120-1800 0.32

VANILLIN

IENZALDEHYDE

ACETOPHENONE

CINNAMALDEHYDE

CINNAMYL
ALCOHOL

CINNAMIC ACID

0

$9

~p~J"

I~

;~"o

SALIGENOL

PHENYL ETHER

O-HYDROXY-
DIPHENYL
METHANE

99

* 175-350

S5oo00-587

* 400-550

120-1500 0.85

120-3600 0.16-3.3

120-4980 0.14-1.4

120-1500

60-1500

120-1800

60-1500

240-9000

120-6000

0.38-1.3

0.37-1.1

.20

.37

.3-

.27

300-500

300=500

350-550

250-400

300-500

300-400

~u~7

~ "OH

Io

".



Table 61 Experimental Grid for Model Compound Pyrolyses (cont'd)

STRUCTURE

0 0

PURITY TEMPERATURE
Wt% RANGE C

400-587

400-587;

350-450I-NAPTHOIC ACID

HOLDING CONCEN-
TIMES s TRATION

mol/l

360-1380 0.40

600-1500

60-1500

.34

2-NAPTHOIC ACID .

PHENETHYL
PHENYL ETHER

- 97 300-550 30-1.4400 0.083-1.68

120-1500 .5

COMPOUND

BIPHENYL

BIPHENOL

350-450 60-1500 .3±.2
mv H

.200-350FERULIC ACID

o. I



Apparatus

A batch reactor system was employed for all pyrolyses. The batch

reactors were stainless steel "tubing bombs" fashioned from Swagelok

components. Four different size r6actors were used, having volumes of

0.2, 0.6, 3.5, and 10.6 cm3 . Kinetic studies were confined to the reactors

of 0.2 and 0.6 cm3in an effort to minimize the effect of heat-up time.

The larger reactors were used for quantitative gas and liquid stoichiometry

studies.

The batch reactors were either loaded and sealed in a glove box

maintained with a nitrogen or argon inert atmosphere, or were externally

loaded and slowly purged with an inert flow before closure. The inert

served as an internal standard for later gas analyses, Loaded reactors

were then immersed in a constant temperature fluidized sand bath for the

duration of reaction, and finally quenched in an ice-water bath. After

quenching, the reactors were dried, opened, and septum-capped in a helium

environment for GC gas analysis. The liquid and solid products were then

solvent-collected for later GLC/GC analyses.

Chemical Analysis

The pyrolysis products were identified and analysed by Gas Chrom-

atography. Gases were separated by either molecular sieve(l0'), silica

gel(6'), ar porapak Q(6') columns. Analysis for light liquids, such as

H20, MeOH, EtOH, and up to about toluene and phenol was effected on

porapak Q and principally porapak P(6') columns. The heavier compounds,

including alkylbenzenes, phenols and the model compounds were separated on

an OV-17 column (6'). Product identification was primarily by GC with

standard coinjection. Quantitative product mol fractions were determined

from calibration factors obtained from standard samples of known composi-



tion.

1.7 Experimental Results

For each model compound, it was desired to:

1. Characterize and quantify pyrolysis product spectra

2. Develop product relationships and stoichiometries

3. Identify likely reaction pathways

4. Determine reaction arders

5. Measure reaction kinetics and derive Arrhenius parameters.

Experimental results are described for each compound, listed in

order of descending importance. Detailed description is limited to

Phenethyl Phenyl Ether (PPE) pyrolysis. Kinetic parameters and reaction

pathways for each pyrolysis are summarized in Table 1.7.1.

1.7.1 Phenethyl Phenyl Ether (PPE)

The pyrolyses were effected over the range of operating conditions

detailed in Table 6.1. The experiments were conducted at temperatures

from 300-550 C, with holding times of 1-240 minutes. Substrate conversions

were generally held to less than 30% in an effort to emphasize primary

reactions; hovever, kinetic data were obtained at conversions as high as 90%.

Initial substrate concentrations ranged from 0.083 to 1.66 mol/l in the

gas phase.

PPE was also pyrolysed in tetralin at 350, 400, and 450 C, at sub-

strate concentrations of 0.25mol/l. The effect of tetralin was examined

in detail at 400 C, where the mol ratio of tetralin to PPE, called S, was

varied from 0.245 to 9.8.

Care was taken to monitor material balance closure, quantified

by the determination of the parameter <M>, physically the average molecular

weight of the pyrolysis products, defined below. In this expression Xi is



Tablel.7.1 Summary of Reaction Pathways and Kinetic Parameters

Substrate

PPE

,St

OHD

PE

BP

BPhOH

GUA

I

DMP

VA

VE

AN

CAL

SAL

BA

AP

CAD

CA

FA

1-NA

2-NA

Pathway: Products

R1: PhOH + St

: PhH, Tol, EB

R1: Tol + PhOH

R1: PhH + PhOH

R1: 2PhH

N.R.

R1: CAT + CH4
R2: PhOH + CO

R1: PC + CH4
R2: PP + CO

R1: MC + CH4
R2: GUA + CO

RCH : DHB + CH4

RlCO : GUA + CO

R3: GUA + CH4
R3': PhOH + CO + CH4
R4: AN + CO

R5: oC + CO

R3: PhOH + CH4
R4: PhH + CO

R5: oC

R1: CAD

R1: QM + H20

R1: PhH + CO

: Tol

: PhH

R1: St + CO

R2: Phenols

R3: Dimers

R1: St + CO2
R1: VG + CO2
R1: N + CO2
RI: N + CO2

log10 A(s- )

11.1

5

9.6

14.8

10.9

11.5

10.8

11.3

10.4

11.1

12.2

10.2

13.9

14.1

14.8

11.2

13.0

14.5

7.9

.4.2

13.4

9.5

10.9

9.6

12.1

8.5

8.6

8.0

5.2

4.5

7.9

E (kcal/mol)

45.0

22

43.4

72.1
-

43.7

47.4

.42.9

46.2

42.2

45.5

47.3

38.5

55.9

58.4

60.1

49.2

54.7

61.0

40.5

21.8

33.4

41.5

56.4

50.5

48.2

34.5

33.7

31.0

19.8

24.0

36.5



n
<M> E E X .M .n= total number of

i=2 products, including
PPE

n
Z X. i=I=PPE

i=2 1

the mol fraction and M.i the formula weight of product i. Thus only true

products are considered in the <M> calculation, with unreacted ether ex-

cluded. An ideal production of two product mols from each ether substrate

mol would thus yield <M> =198/2=99. The 157 experimental PPE pyrolyses

yielded a mean value <> = 100.5 ± 3.98 as a quantitative measure of path-

way closure to two product mols. Carbon, hydrogen and oxygen atom balances

were effected and the ratios H/C and 0/C were within +3.2% and +11.7% of

those for the unreacted substrate; the latter provide a measure of over-

all material balance. The results will be described in two parts, neat

pyrolyses and pyrolyses in tetralin.

Neat Pyrolysis

A. Primary Products

The products from representative pyrolyses at various temperatures

and times are listed in Table 7.1.1. Two striking observations emerge.

First, while 13 pyrolysis products were detected and quantified, the major

products were limited to phenol and the hydrocarbons styrene, ethylbenzene,

toluene, and benzene. The remaining products, in sum total, amounted

to at most 6% of the ether converted. Of the hydrocarbons, styrene was

predominant at low conversions, with increasing amounts of toluene as con-

version increased. Secondly, the details of the product spectra were

relatively insensitive to temperature, and showed a slight dependence

on initial substrate concentration and a strong dependence on substrate
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Table 7.1.1 Representative product spectra from PPE pyrolysis.

.25
240
40
.894.
.064
.036

.25
325
115
.9821
.0603
.0151
.0031
.0077
0

0
0
0
00
0

0- 00

.0037

.0004
0
.0008
0
0
.0002:
0

0.25
550
2
.0207
.4000
.1380
.206
.112
.0640

.022

.031

.0024

.0083

.0020

.0002

.0020
0



conversion. The latter two observations are reflected most strongly in the

relative proportions of major hydrocarbon product.

The time variation of substrate and major product proportions,in

mols per initial mol of ether for pyrolysis at 400 C and initial ether con-

centration of 0.25 mol/l,are depicted in Figure 7.1.1. The slopes of the

phenol appearance and ether disappearance are suggestive of a stoichiometric

production of phenol from substrate. Figure.7.1.1 further shows the styrene

product produced stoichiometrically with phenol at t=5 minutes and reaching

a maximum at 25 minutes. The maximum yield of styrene, coupled with apparent

initial slopes of zero for toluene and ethylbenzene production is suggestive

of secondary reactions of the styrene to other products, including tol-

uene, ethylbenzene, and benzene.

The stoichiometric implications of Figure 7.1.1 are further de-

veloped in Figure 7.1.2, where product selectivities, i.e., the mol

yields of phenol, styrene, and the hydrocarbon sum (styrene+ethylbenzene

+toluene+benzene)=(HC) per mol of decomposed substrate, are plotted as a

function of substrate conversion. The constant ordinate of unity for

phenol at all conversions in Figure 7.1.2 shows that for each mol of ether

decomposed a mol of phenol was always produced. For styrene the ordinate

decreases monotonically with increasing conversion, from about 0.8 at a

fractional conversion of 0.1 to about 0.2 at fractional conversions of 0.8.

Thus, at low substrate conversions, one mol of styrene is observed per mol

of ether decomposed, but this styrene selectivity decreases with increasing

conversion. This is indicative of secondary styrene degradation. Finally,

it is observed in Figure 7.1.2 that the hydrocarbon sum HC is essentially

unity at all substrate conversions. In summary, then, Figure 7.1.2 shows

that decomposition of one mol of ether always yielded one mol of phenol and
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one mol of total hydrocarbons. At low substrate conversions, the hydro-

carbon is solely styrene, the primary product, which undergoes secondary

reactions to the other hydrocarbons at higher conversions. The correspond-

ing pathway for PPE decomposition is the of the type Rl:

mols 1 1 1 1

The order of reaction Rl was examined in a series of experiments at

400 C with initial substrate concentrations ranging from 0.083 to 1.66 mol

per liter. Figure 7.1.3 plots the variation with time of -InE/E 0 for each

initial concentration studied, where E is an abbreviated symbol for PPE.

A reaction with rate expression r=kEa, i.e., rate constant k and order a ,

would yield an initial slope Idln(E/E )/dtlt+0 = kE 0 -1. The data of Fig-

ure 7.1.3 show no systematic dependence on Eo and are described by a sin-

gle average slope, implying a=l, i.e., first order kinetics. The linearity

of -InE/E vs. t up to fractional conversions of 0.7 is further indicative

of first order kinetics. First order rate constants separately determined

from Figure 7.1.3 for each initial substrate concentration are plotted in

Figure 7.1.4, as k(s- ) versus E (mol/l) on doubly logarithmic coordinates.

The rate constant is seen to be substantially independent of Eo over a

twentyfold range of the latter.

Further pyrolyses at temperatures from 300-500 C revealed the ac-

tivation parameters of the first order rate constant. These data are shown

in Figure 7.1.5, an Arrhenius diagram with coordinates of log10 k(s -l )

vs O- , where 0=4.576x10- 3 T, with T in Kelvins. On these coordinates, an

Arrhenius relationship is described by a straight line log10k = log10A -

E/O, where the pre-exponential factor A has units of the rate constant
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and the activation energy E is expressed in kcal/mol. It is evident from

Figure 7.1.5 that logl0k follows the Arrhenius relationship over a range

of five orders of magnitude in k. The best fit of these data yields

Arrhenius parameters (logloA(s-1 ),*(kcal/nol))=(11.1±0.9,45.2.7).

B. Secondary Products

Table 7.1.1 and Figures 7.1.1 and 7.1.2 suggested that ethylbenzene,

toluene and benzene were secondary products from styrene degradation. The

secondary reaction of styrene was concentration dependent, as depicted

in Figure 7.1.6, a plot of product appearance vs. substrate conversion at

400 C for initial PPE concentration, E , ranging from 0.083 to 1.66 mol/l.

While the ratios PhOH/(EoE ) and HC/(E -E) were substantially unity, in-

dependent of Eo and substrate conversion, a definite trend of decreasing

St/(E 0-E) with increasing Eo could be discerned at all conversion levels.

This is indicative of reaction order in excess of unity for the overall

secondary styrene reaction. From Table 7.1.1, the higher order reaction

path can be linked with toluene production, which increases with in-

creasing E ; in contrast, the ethylbenzene appearance was relatively in-

0

of the type:

The rate for secondary styrene degradation was estimated from the

consecutive reaction series:

ki 0 kz

+~p



49

1.4 PhOH St Q/c
0 0 0 0.083
@ 0.25

1.2 oI0 .7O 5
.2- 0 0.83
9 ~ 1.66

1.0

.8 - oi 0

Q 0 0 * *
0 oBO8 00- 0

.6 -O
.083

0.25
.4

.75

.2-

0.8
1.66

0

I I _____
0 .2 .4 .6 .6 1.0

1-E/E 0 -- CONVERSI0N---

Figure 7.1.6 Product relationships in PPE pyrolysis, T=400 C.



An overall pseudo-first order rate constant k2 for secondary styrene

degradation was obtained from the maximum concentration:

StMAX k1 (k2 /(k 2 -k 1))

Eo k2

These calculations were made for all PPE pyrolyses where a styrene maximum

was apparent, with the results given in Table 1.7.2.

Table 1.7.2 Styrene Pyrolysis Kinetics

T(C) PPE (mol/l) k2/k1  k2 ( )s-
400 0.083 4.42 0.00172
400 0.25 5.78 0.00310
400 0.25 5.78 0.00225
400 0.75 '10.0 0.00585
400 0.83 11.0 0.0037
400 1.66 13.5 0.01
450 0.25 3.15 0.006
500 0.25 2.02 0.018
500 0.75 4.03 0.0655

At a given temperature of 400 C, the ratio k2/k1 increased with increasing

initial ether concentrations; this reflects the higher order character of

styrene degradation relative to ether reversion. The increase in k2/k1

with an increase in PPE o was also apparent at 500 C. Further, for a given

initial ether concentration at 0.25 mol/l, comparison of the data at 400,

450 and 500 C showed that k2 increased with increasing pyrolysis temper-

ature. The pseudo-first order rate constant k2 had apparent Arrhenius

parameters (loglOA,E*)=(5,22); thus, secondary styrene degradation was con-

siderably less activated than the primary reversion of PPE.

Pyrolysis in Tetralin

The ether was pyrolysed in tetralin at temperatures of 350, 400 and

450 C. The primary product spectra were substantially similar to those



for neat ether pyrolysis, as illustrated in Figure 7.1.7, a plot of

product yields as a function of reaction tinm at 400 C, initial tet-

ralin to PPE ratio S=1.48, and initial ether concentration Eo = 0.25 mol

per liter. The only significant change was in the secondary reaction of

styrene, where the presence of tetralin shifted the secondary selectivity

toward ethylbenzene. Product relationships were further examined in Figure

7.1.8, where the mol ratios PhOH/(E -E), St/(E -E) and HC/(E o-E) are

plotted as a function of ether conversion. As was the case with neat

pyrolysis, both the ratio PhOH/(E -E) and HC/(E -E) were near unity for

all conversions attained, while the ratio St/(E o-E) dropped rapidly with

conversion. Hence, the primary pathway for ether decomposition to phenol

and styrene was unchanged. The rate of styrene decrease was higher in the

presence of tetralin than in its absence. Thus, in Figure 7.1.8, the open

circles depicting neat pyrolysis indicate a higher styrene concentration

at each conversion than do the closed circles representing cases with

S>O. This is characteristic of a higher order reaction of styrene and

tetralin to ethylbenzene, earlier noted as the major secondary pathway

for S>O.

The kinetics of ether pyrolysis in tetralin were examined for vary-

ing values of S at 350, 400, and 450 C. These data are presented in Fig-

ure 7.1.9, a plot of the first order rate constant vs. the mol ratio S

for each temperature studied. A scale change in the abcissa of Figure

7.1.9 allows inclusion of the rate constant from neat pyrolysis for com-

parison. At 350 and 450 C rate data were obtained over two orders of

magnitude of S. It is evident the rate constants were virtually indepen-

dent of the presence and amount of tetralin. More comprehensive study

at 400 C revealed a s!igha diminution (f the rate constant with increasing
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tetralin proportions, of the order of 0.2 log1 0 k units for the range S=O

to S=9.8. Statistical analyses of the neat and tetralin pyrolyses for all

S revealed that the difference in the means of each was. less than the

standard deviation of this difference. Further comparison of the neat and

in-tetralin ether pyrolyses was presented in the Arrhenius diagram

Figure 7.1.5. The dark circles representing data for pyrolysis in tetralin

were identical with the neat values.

In summary, PPE was pyrolysed both neat and in the presence of tet-

ralin. Neat ether pyrolysis resulted in the primary stoichiometric prod-

uction of phenol and styrene, with secondary degradation of the latter.

Overall ether pyrolysis was substantially first order, and was fit by

Arrhenius parameters (loglOA,E*)=(11.1,45.0). Secondary pyrolysis of

styrene was of reaction greater than unity, and proceeded with apparent

pseudo-first order Arrhenius parameters of (loglOA,E)=(5+2,22+3). Pyrol-

ysis in tetralin was similar to neat ether pyrolysis, the only significant

difference arising as an increased selectivity of secondary styrene con-

version to ethylbenzene. The kinetics of neat and in-tetralin pyrolyses

were identical.

1.7.2 Summary of Experimental Results

Guaiacol

Two parallel pathways described guaiacol pyrolysis, these being de-

methanation to catechol and methane and demethoxylation to phenol and CO.

RI + C9I4-4

The former pathway was tenfold faster. The-.assignment of catechol as a

direct pyrolysis product is as yet tenative. Both of the demethanation and



demethoxylation pathways were first order in substrate, with respective

Arrhenius parameters (loglOA,E )=(10.9±0.5,43.7±1.4) and (11.5±0.5,47.4±1.6).

Substituted Guaiacols:2,6-dimethoxyphenol(DMP), Isoeugenol, Vanillin

Pyrolyses of DMP, isoeugenol, and vanillin probed the respective

effects of electron donating, conjugative, and electron withdrawing sub-

stitution on guaiacol reactivity. The substrates decomposed by pathways

similar to Rl and R2 for guaiacol; vanillin underwent extensive decarbonyl-

ation as well. The kinetics of guaiacol demethanation and demethoxylation

were virtually unaffected by substitution.

Anisole

Anisole pyrolysis probed the effect of ortho-hydroxy substitution on

the reactions of the guaiacol methoxyl group. The effect is marked, as

overall anisole pyrolysis was typically at least an order of magnitude

slower in rate than that of guaiacol. Three pathways described anisole

pyrolysis, leading to the formation of phenol, benzene, and o-cresol:

R3kj OH +CHq -2H
R3 k +.

R5 k

Uequivocal relationships between gas and liquid phase products could not

be discerned. First order Arrhenius parameters were (loglOA,E)=(13.0±1.0,

54.7±3.1),(14.5+1.2,61.0±4.0), and (7.9±1.5,40.5+4.9) for R3, R4, and

R5, respectively.

Veratrole

Four primary reaction pathways were important in veratrole pyrolysis.

These were similar to those previously described for.anisole, and took

the form listed below. The kinetics of pathways R3 and R5 were compar-



R3 -- C414 -ZH

R5 ks,-- -tCO -+ 1

able to those for analogous R3 and R5 anisole pathways. Apparent first

order Arrhenius parameters (loglOA,E*)=(13.9+1.3,55.9±4.0),(14.1+1.0,

58.4±2.8),(14.8±1.8,66.15.7) and (11.2±2.2,49.2±7.1) for pathways R3,

R3', R4, and R5, respectively.

Saligenol

Saligenol underwent facile dehydration at temperatures as low as

175-225 C. Each mol of decomposed substrate yielded one product mol of

water. Thus, a pathway of the type Rl was postulated, where:

R1 HO t

The quinonemethide was not isolated, being a labile precursor to the

only major pyrolysis co-product, an obscure higher molecular weight poly-

mer. Apparent first order Arrhenius parameters for Rl were (log10A,E)=

(13.4+2.9,33.4+6.3).

Benzaldehyde

The major pyrolysis route for benzaldehyde was first order de-

gradation to stoichiometric amounts of CO and benzene, pathway Rl:

Kinetic description of RI at temperatures from 300-500 C provided first



order Arrhenius parameters (loglOA,E )=(9.5±0.8,41.5±2.7).

Vanillin

Vanillin pyrolysis involved two major pyrolysis pathways, de-

methanation to dihydroxybenzaldehyde and decarbonylation to guaiacol; the

latter pathway was faster by a factor of 10. Thus, vanillin pyrolysis

pathways were of the type Rl previously delineated for each of guaiacol

and benzaldehyde. Kinetic analysis of vanillin pyrolysis yielded de-

RlICK4  -' C~ 4- H -I- CH 4 -2'I

RC __ + CO

methanation parameters of (loglOA,E )=(12.2±3.0,47.3±8.6) and decarbonyl-

ation parameters of (10.2±2.1,38.5+5.9). Thus, guaiacol demethanation was

essentially uraffected by carbonyl substitution, whereas bCnzadehyde de-

carbonylation was markedly enhanced by guaiacyl substitution.

Acetophenone

Acetophenone pyrolysis yielded CO, CH4, benzene and toluene as the

major light products, along with appreciable amounts of alkylbenzenes,

phenols and apparent dimers. Becauseof the complexity of the liquid pro-

duct spectra, no clear link could be established between gaseous and con-

densed phase products. An apparent overall acetophenone decomposition

reaction order of 1.2-1.3 was determined, with a reaction order of unity

for toluene appearance and 1.5 for benzene appearance. Pseudo-first order

Arrhenius parameters for overall acetophenone decomposition, benzene

appearance and toluene appearance were (logl 0A,E )=(10.9+1.2,52.1+4.1),

(9.6±1.9,50.5±6.7) and (10.9+2.2, 56.4±7.6), respectively. Overall aceto-

phenone pyrolysis was typically two orders of magnitude slower than benz-



aldehyde pyrolysis for the temperature range studied here.

Cinnamaldehyde

Pyrolysis of cinnamaldehyde yielded styrene, phenols, apparent

dimers, and CO as primary products,- as well as toluene and ethylbenzene

as secondary products. Styrene and CO were formed stoichiometrically at

low substrate conversions. Overall cinnamaldehyde decomposition was de-

scribed in two parts, a set of first and a set of second order reactions,

of the form: -d(CAD)/dt = kl(CAD) + k2 (CAD) 2 , where k accounts for first

order reactions and k2 the second order reactions. Styrene and phenol

appearance were best described as first order, and dimer formation by a

reaction order in excess of unity, likely two. The major cinnamaldehyde

pyrolyses were of the form:

R1 Q tCO

R2 )0 PHENOL, CRESOLS, ALKYL PFENOL5

R3 Q) f DIMERS

RO ALL PRODUCTS

Pseudo-first order Arrhenius parameters for Rl, R2, R3, and RO were

(loglOA,E )=(12.l+0.4,48.2+1.l ),(8.5+0.4,34.5+1 .0),(8.6+1 .4,33.7+3.1)

and (9.7+1.7,35.4+4.6), respectively.

Cinnamyl Alcohol

The products from cinnamyl alcohol pyrolysis fell into one of four

categories: a gas fraction, water soluble light liquids, monoaromatics, and

a polymeric fraction. Significant products were CO, H20, MeOH, cinnamalde-

hyde, styrene, phenols, allylbenzene, and apparent dimers. In spite of
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complex product spectra, several generalizations regarding cinnamyl alcohol

pyrolysis were possible. Lower temperature pyrolysis data suggested that

dimers, cinnamaldehyde, phenols, allylbenzene, water and methanol were pri-

mary products, whereas styrene, toluene, ethylbenzene, and CO likely arose

from secondary pyrolyses. The reaction network was of the type:

DIMERS -- PRODUCTS

0 , DIM E RS

/M H

H4zO , MeOR

Of the primary reactions, cinnamaldehyde, dimer and alkylphewlul formation

were the most facile, whereas methanol formation was typically two orders

of magnitude slower in rate than overall alcohol decomposition.

Orthohydroxydiphenylmethane (OHD)

Pyrolysis of OHD resulted in phenol, toluene, and apparent tri-

phenyl sesquimers as the major products. Of these, phenol and sesquimers

were primary, the latter degrading by secondary pathways to toluene. OHD

degradation pathways were of the type RI:

RI + SESQMUIE R - 4 POLYMER

Apparent first order Arrhenius parameters for OHD. pyrolysis were (logloA,

E ) = (9.6±0.4,43.4±1.4).

Phenyl Ether



The pyrolysis of phenyl ether could be effected only at temp-

eratures in excess of 500 C. The major pyrolysis.products were phenol.

benzene, and apparent sesquimers. Ether pyrolysis appeared to proceed via

primary degradation to phenol and sesquimers, the latter capable of deg-

radation to benzene and polymers. Thus, a pathway of the type Rl was

suggested, where :

Rt SESQUIER Z 4 POLYMER

Apparent first order Arrhenius parameters were (.og10A,E) =(14.8+1.3,

72.1 ±4.8).

Biphenyl

Pyrolysis of biphenyl to benzene occurred only at 587 C. Higher

molecula, weight materials, which were presumably formed to maintain hydro-

gen balance, went undetected in the present analysis. An apparent first

order rate constant -log 10k587 C=3.82 was determined.

Biphenol

Biphenol was pyrolysed to 500 C and 30 minutes holding time. The

compound was quite stable, and no degradation to any light products could

be discerned.

Cinnamic Acid

Pyrolysis of cinnamic acid over a temperature range of 300-400 C

produced CO2 and styrene as major primary products, the latter capable of

secondary degradation to toluene and ethylbenzene. The major cinnamic acid

pathway was thus of the type R1, namely:

RI: r -COZ



Apparent first order Arrhenius parameters of (loglOA,E) =(8.0±1.8,

31.0±5.0) were determined.

Ferulic acid

Pyrolysis of ferulic acid from 200-350 C elucidated the effect of

guaiacyl substitution on cinnamic acid decarboxylation. Initial rates of

CO2 release were a hundred fold higher for ferulic acid than for cinnamic

acid, showing substantial decarboxylation enhancement by guaiacyl substitu-

tion. Apparent first order rate data from the initial rates of CO2 form-

ation yielded Arrhenius parameters of (loglOA,E )=(5.2±2.0,19.8±5.2).

Napthoic Acids

The time evolution of CO2 from 1- and 2- napthoic acids was mon-

itored from pyrolyses at 300, 400, and 500 C.. The pyrolyses were modelled

as a stoichiometric evolution of CO2 and napthalene. CO2 release from

1-napthoic acid was faster than that from 2-napthoic acid. Apparent

first order Arrhenius parameters of (loglOA,E)=(4.51.4,24.0±1.3) and

(7.9±2.7,36.5±8.1) were determined for 1- and 2- napthoic acids,

respectively.

1.8 Implications of Experimental Results

The model compound pyrolysis pathways developed in the previous

section allowed formulation of a primary reaction network to .describe the

essential features of lignin pyrolysis. The network is presented as

Figure 8.1. For illustrative purposes, lignin has been depicted as the

oligomeric unit I. The primary reactions used in Figure 8.1 are PPE

reversion, BPE cleavage, guaiacol demethanaiion, and cinnamaldehyde de-

carbonylation. The veratrole methoxyls of aromatic units 1, 2,. 3, and

4 are considered unreactive. Among the interunit linkages, the diphenyl-

ether between units 4 and 5 is inert. Application of the facile guaiacol,
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cinnamaldehyde, PPE, and BPE R1 pathways to structure I generates the

structures shown as set II. The cinnamaldehyde reaction of unit I released

CO and generated a styrene side chain. Reversion ofPPE andBPE links re-

sulted in guaiacol formation at units 1, 2, and 3, as well as a saligenol

moiety on unit 2 and a cinnamyl alcohol on unit 4. Demethanation resulted

in the formation of a diquinone at unit 5. The net release of gases and

water is tabulated in Figure 8.1; one mol each of CO and CH4 were formed

in transformation of the lignin depicted as structure I to set II. The

aromatics generated in set II are subject to further reactions, resulting

in the products shown as set III. With regard to set III, unit 1 depicts

guaiacyl demethanation as well as the degradation of styrene to toluene,

ethylbenzene, and benzene. The products from whole-lignin pyrolysis, then,

would be catechol, methylcatechol, and ethylcatechol precursors. Units

2 and 3 similarly depict guaiacyl demethanation, greatly facilitated by

ether reversion. Water arose from dehydration of the saligenol moiety of

unit 2, which generated the guaiacyl acrolein as well. Unit 4 depicts

cinnamyl alcohol dehydrogenation to cinnamaldehyde; it also illustrates

the relative stabilities of the phenyl ether link and thus of the assoc-

iated veratrole methoxyl. Further application of the same kinds of

reactions to set III generates the compounds of set IV, of which some

may still further react. However, the veratrole methoxyl of unit 4 is

relatively stable, and the diphenylether is essentially inert; both will

thus concentrate in the carbonaceous residue.

The structural moieties and possible reactions of Figure 8.1 depict

only a small number of the pathways involved in whole-lignin pyrolysis. A

more accurate description of lignin pyrolysis must incorporate more of the

structural details of the Freudenberg model as well as account for the



complex set of parallel and consecutive reactions likely important in

lignin pyrolyses. For this purpose, a lignin pyrolysis simulation model

was developed. This model combined the approach outlined in section 1.5

with the experimental model compound pyrolysis results. It possessed the

same logic as displayed in Figure 8.1, but was considerably extended in

scope.

1.9 Simulation Results

Spruce lignin pyrolysis was simulated at temperatures of 300, 400,

500, and 600 C, to holding times of 104 ,104, 102, and seven seconds, re-

spectively. Figures 9.1a, b, and c are graphical presentations of selected

product yields at each temperature studied. The present discussion will

consider the more important aspects of these simulation results, which

will be described in terms of the gas, light liquid, phenolic, and carbon-

aceous coke product fractions.

1.9.1 Gas Evolution

The model presently accounts for methane and carbon monoxide release.

CH4

Simulated pyrolysis to 104 s produced methane in yields of 0.05%

and 6.2% at 300 and 400 C, respectively. The greater yield at 400 C re-

flects not only guaiacol and veratrole activation, but also activation of

the prevalent PPE linkage. At 500 C and 100 s, the simulation predicted

a methane yield of 5.9%, whereas at 600 C and 7s, a yield of 6.1% was pre-

dicted. Thus, these increases in the pyrolysis temperature resulted in a

sharp decrease in the time required to reach a nominal yield of 6%. These

yields compare with a theoretical maximun of about 9%, obtained by assum-

ing each aromatic unit could contribute one methane mol.

CO
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Simulation to 104s at 300 and 400 C produced CO in yields of 0.037%

and 3,5%, respectively. In both cases, these were less than the correspond-

ing methane yield, yet initial rates of formation of CO at 400 C were fast-

er than those for methane as seen at short times in Figure 9.1a. This

early CO arises from the cinnamaldehyde side chains initially in lignin,

which decarbonylate rather easily. At longer times, ether reversions gen-

erate further carbonyl and guaiacol units, the former through rapid sal-

igenol dehydration. However, a large fraction of these carbonyls are of the

acrolein type, which decarbonylate slower than cinnamaldehydes. Hence, CO

release becomes slower than methane release as pyrolysis proceeds, the

ratio CH4/CO exceeding unity for modest conversions at 300 and 400 C. At

the highest temperature of 600 C, however, CO again exceeds CH4 as.seen in

Figure 9.1c, where the respective yields of CO and CH4 are 9% and 6% at 7s.

This occurs because CO producing pathways such as decarbonylation and de-

methoxylation are both more highly activated than the primary CH4 producing

pathway of guaiacyl demethanation. In short, the ratio CO/CH4 is predicted

to vary from greater than unity at low temperatures and low conversions, to

less than one at low to modest temperatures andmodest to long holding times,

and back to greater than unity at high temperatures. This behavior orig-

inates in the dual sites for CO release and the relative kinetics of car-

bonyl, ether, and guaiacyl pyrolyses.

1.9.2 Liquid Products

The present version of the model accounts for only two components

of the aqueous distillate, water and methanol. Simulation water formation

occurs predominantly through saligenol-type unit dehydrations. Cinnamyl

alcohol side chains provide less important precursors. Ultimate water

yields were rather modest, amounting to 0.05%, 5.3%, 4.4%, and 4.4% at

(300C, 104s),(400C, 104s), (500C, 102s) and (600C, 7s), respectively.



Thus, the water yields predicted by the simulation are about 1/3 of the

nominal 15+5% reported in experimental investigations. This discrepancy is

significant, and merits later discussion.

An ultimate methanol yield of only about 0.1% is predicted by the

simulation model. The single methanol forming pathway simulated is through

degradation of cinnamyl alcohol side chain units. These units are rather

rare in whole-lignin and the methanol forming pathway of this unit was it-

self relatively minor. Thus, the simulation model generally underpredicted

methanol yields of the order 0.28-1.5% reported in the literature.

1.9.3 Phenolic Products

The simulation predicts most of the thirty phenols reported in pre-

vious experimental pyrolyses; it also predicts several phenolic products

not hitherto reported in the literature. Overall, the product yields are

within the hand of yields reported in the literature. The simulation pre-

dictions will be discussed by phenol types.

Guaiacols

Guaiacols arise in lignin pyrolysis through degradations of both the

3-carbon side chain and etherified methoxyphenol substitutents. Thus the

products coniferaldehyde, guaiacylacrolein, eugenol, propylguaiacol,

vinylguaiacol, ethylguaiacol, methylguaiacol, and guaiacol represent var-

ious stages of 3-carbon chain degradation. Of these, coniferaldehyde

and guaiacylacrolein are the most primary products, degrading to vinyl-

guaiacols, which, in turn, yield methylguaiacols, ethylguaiacol, and

guaiacol upon further pyrolysis. These trends are reflected in the simu-

lation predictions. At 400C and 100s the ratios (coniferaldehyde:vinyl-

guaiacol:methylguaiacol:guaiacol) were (0.68: 0.13: 0.088: 0.011), whereas-

at 500s the proportions were (0.096:0.02:0,26:0.034) andat 104s (0.000128:



0.000218:0.03:0.0039). By 104 s, the data reflect not only 3-carbon

side chain degradation of the aldehyde, but also secondary pyrolysis of

guaiacols to catechols. Each guaiacol product is both formed and degraded

during pyrolysis, and therefore attains maximal proportions at some time.

Syringols (2,6-dimethoxyphenols)

With two exceptions, the reactions of syringol compounds directly

mimic those of guaiacol compounds. The more.important difference is the

reaction path degeneracy inherent in syringols, on account of the multiple

methoxyl substitution. The second exception involves lignification steric

effects, which prevent the formation of biphenyland phenylcoumaran links in

aromatic units arising from sinapyl alcohol monomers. However, the consec-

utive and parallel nature of -the reaction paths generating syringol prod-

ucts is substantially as described above for guaiacols.

Catechols

Rather substantial amounts of catechols are predicted by the sim-

ulation model, due to the relatively facile demethanation of guaiacol and

substituted guaiacols. The catechols are clearly secondary products,

favored at long holding times. These generalizations are reflected in the

data. At 400 C and 100 s, the proportions (catechol:methylcatechol:vinyl-

catechol), in weight percent, were (5x10-4:4x10-4:610-3), whereas for

pyrolysis to 104 s the yields were (0.2:1.6:0.012). At 500 C and 10 s

holding time the ratios were (0.02:0.15:0.16), changing to (0.38:3.03:0.19)

at 100 s. Finally at 600 C the proportions were (0.069:0.54:1.2).at 1 s

and (0.86:6.8:1.2) at 7s. Thus, the yields of catechol and methylcatechol

increased dramatically with increasing holding time at all temperatures.

Note that this contrasts with the corresponding guaiacol yields, which

reached maxima at short holding times and.decreased monotonically there-



after with increasing time.

Phenols

Phenols arise from two sources, namely, aromatic units initially

derived from incorporation of coumaryl alcohols during lignification, and

from the demethoxylation reactions of guaiacol and syringol units. The

statistical matching procedure demands that the phenol types be analogous

to the guaiacols and syringols. Thus, simple phenol, cresol, ethylphenol,

propylphenol, vinylphenol, allylphenol, coumaraldehyde, and hydroxyacrolein

all arise as products. The simulated yields of phenol (PhOH) and para-

cresols (pCR) were (PhOH,pCR)= ((0.00031, 0.0024), (0.067, 0.55), (0.16,

1.3), (0.39, 3.1)) at temperatures amd times of ((300C,10 4s), (400C,10 4s),

(500C,10 2s), and (600C,7s). The absolute yields of phenols increased with

increasing pyrolysis severity. the greater energy of activation for guai-

acol demethoxylation relative to demethylation shifts the higher temper-

ature selectivity toward phenols, even though absolute phenol yields were

still lower than those of the corresponding catechols.

Carbonaceous Residue

As depicted by the present model, the carbonaceous residue is com-

prised of all aromatic units involved in interunit bonding. It should be

characterized by higher concentrations of the refractory phenylether and

diphenylmethane linkages than the initial lignin. Further, its methoxyl

content should be markedly reduced relative to lignin due to demethanation

and demethoxylation of guaiacyl and veratryl units, Finally, catechol

and diquinone moieties should concentrate in the residue.

Carbonaceous residue formation can be interpreted in kinetic terms.

Most kinetic analyses of lignin pyrolysis focus upon substrate weight

loss, a reasonable operational definition of global lignin reactivity. In



the present simulation, single ring aromatic. units, light liquids, and

gases can be designated as volatile, and multiple ring aromatics as non-

volatile. If the latter group is considered to be 'unreacted lignin', the

model then provides a measure of lignin 'conversion'. Figure 9.2 is a

comparison between weight loss curves simulated in the present work and

the experimental weight loss curves of latridis and Gavalas 26. The ex-

perimental and simulated weight loss curves align best at 500 C, with a

slight simulation overprediction at 600 C and underprediction at 400 C;

overall agreement is within about +10% of the lignin.

1.10 Discussion

Two aspects of the present results merit discussion, namely the

mechanisms of the experimental model compound pyrolyses and the application

of the model pathways to simulate whole-lignin pyrolysis.

1.10.1 The Mechanism of Phenethyl Phenyl Ether (PPE) Pyrolysis

The relatively clean pyrolysis pf PPE to phenol and styrene, earlier

described in sectionl.7.1, suggested an overall pathway of the type R1:

R+

We attempt to interpret PPE pyrolysis in terms of both a free radical

chain mechanism and a pericyclic retroene mechanism.

For neat PPE pyrolysis, a Rice-Herzfeld type of radical chain

mechanism that yields the observed phenol and styrene products is:

I P' h PhO + h INITItTIO N

2 PhO 0 n Ph P PhOl + PphOv'/ PROPA6ATION

3 P'kp PhO* + Ph"
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Figure 9.2 Comparison of simulation weight loss predictions with the experimental

data of latridis and Gavalas 26
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Invoking the steady state hypothesis for the radical species 75 , and

assuming long kinetic chain lengths, an overall PPE decomposition ex-

5 -dE/dt = k2[PhO.][E] = (2k2k3k /k4)1/2.E

5' -dE/dt = k2(2k3/k4, )1/2E 3/2

5" -dE/dt = k3(2k /k4 ) 1/ 2 . E1/ 2

pression can be derived. The kinetic expressions (5) are seen to depend

upon the dominant termination step assumed, with steps (4), (4)', and(4)"

respectively yielding decompcsiticn orders of 1, 3/2, and 1/2 in PPE.

(Note EEPPE) The experimentally observed order of 1 in PPE would thus

imply cross-coupling (4) to be the major termination step. If this is so,

then, from (5), the observed rate constant should equal (2k2k3kI/k4)1 2

Estimated thermochemical parametersl69 for the elementary reactions I, 2,

3, and 4 are (log 10A,E*)=(17.0,70.0),(9.0,15.0),(13.0,25.0) and (9.0,0.0),

respectively. From them, the kinetic expression (5) provides first order

Arrhenius parameters of (15,55). These parameters differ significantly

from the present experimental Arrhenius parameters of (11.1,45.0),

although at 400 C the estimated rate constant log10k=-2.9 is within half

an order of magnitude of the experimental value of log10 k=-3.5.

Further, a free radical chain such as (l)-(4) should be affected

by a hydrogen-donor such as tetralin. The tetralin could cap the chain

carrier radicals, hindering propagation. In the limit of infinite PPE



dilution in tetralin, the 'chain' would essentially be reduced to one of

initiation only, i.e., the unimolecular fission of PPE to phenoxy and ethyl-

benzene radicals as the rate determining step. Such a unimolecular fission

should proceed with an activation energy at least as great as the bond

strength, which is of order 70+5kcal/mol;169 too, the accompanying trans-

ition state would be 'loose', resulting in log1OA>13.5. Experimentally,

ether pyrolysis kinetics were unaffected by tetralin, and the observed

Arrhenius parameters of (loglOA,E*) = (11.1,45.0) were strongly different

from those predicted for unimolecular ether fission.

In summary, the long chain free radical mechanism represented a

plausible possibility that did not accord with the present experimental

observations.

A concerted pericyclic mechanism for the observed pathway Rl is:

_j

where a coiled form of the substrate PPE undergoes a retro-ene reversion;

hydrogen tautomerism in the carbonyl intermediate fragment then regenerates

the aromatic phenol. Such a PPE reversion .to phenol and styrene should be

unimolecular, exhibiting first order kinetics. The transition -.

state of this pericyclic pathway should be 'tight', i.e., ordered, making

log1OA<13.5. Further, as for most pericyclic reactions170, the decomposi-

tionshould be relatively insensitive to solvent effects. Hence, tetralin

should exert little overall effect on a PPE pyrolysis proceeding via a

retro-ene mechanism. The experimental observations of the present work

accord quite well with the postulated retro-ene mechanism.

By the principle of microscopic reversibility, the forward and re-



verse reactions must share a common transition state. If PPE reversion

in fact occurs by the pericyclic mechanism postulated above, then the

reverse reaction should occur with Arrhenius parameters characteristic

of an ene cycloaddition. Estimation of thermochemical parameters for

PPE1 6 9 , coupled with those for phenol and styrene, yields themochemical

parameters of (AHoR(kcal/mol),ASOR(cal/moIK)) = (11.3,33.8) for the re-

version reaction. These may be combined with the experimentally determined

forward activation parameters to yield the reverse cycloaddition parameters

(log 10A(l/mol s),E*(kcal/mol)) = (5.9,35.9). These reverse Arrhenius para-

meters agree well with those of typical bimolecular cycloaddition

reactions1675171

In summary, a pericyclic retro-ene mechanism accords with the

present experimental results for PPE pyrolysis.

75 76
It is instructive to consider some previous B-ether pyrolyses 5-in

light of the present experimental and mechanistic findings for PPE. The

investigation of Domburg75 was previously described in section 1.4.2.

DTA pyrolysis of three substituted B-ethers, I, II, and III (see page 19 )

gave product spectra consisting of guaiacol, methyl-,ethyl-, and propyl-

guaiacols, cis- and trans-isoeugenol, traces of eugenol, vanillin, and

acetovanillone; the latter two formed in much larger quantities from III

than from I. The large predominance of guaiacol product, in their case,

is completely analogous to the large yields of phenol obtained from PPE,

inasmuch as their reactions may be viewed as:

H Ether R1  R2  R3
A I OH H H

+±R, II OH H Me
SefIII O= - H

3 PPE H H H

IV v OR
R3



with appropriate modifications of structure V when emanating from ether

III. Thus it is evident that guaiacol should predominate from pyrolysis

of I-III, just as phenol was found from PPE. For pyrolysis of I and II,

the co-product V can be visualized to suffer dehydration to yield the iso-

eugenols. For pyrolysis of III, co-product V can be envisioned as a facile

precursor to vanillin and acetovanillone. Hence, formation of co-product

V is rather analogous to the production of styrene from PPE. Further,

the methyl-, ethyl-, and propylguaiacols can arise from V in much the

same way that benzene, toluene, and ethylbenzene arose from secondary

pyrolyses of styrene. Thus, the product spectra of Domburg can be almost

completely accounted for by analogy to the present PPE results.

It should be further recalled that for Domburg's a-ethers, the

temperatures for 50% weight loss were in the order I(280C)<II(300C)<<

III(365C). The present work also provides a rationale for thCse observ-

ations. Thus, the pericyclic reversion mechanism is available to both

I and II, but unavaible to III, for lack of an H substituent R2 in III,

which shifts in the retro-ene step. Thus, I. and II may easily participate

in a concerted retro-ene reaction of the type postulated for PPE, whereas

an alternate, higher energy pathway is required for III. Possible higher

energy pathways for III could involve direct scission of the B-carbon and

oxygen atoms of structure IV, or a phenetole-type ether reversion involving

the y-carbon of structure IV. Phenetole is structurally similar to PPE,

differing in phenyl substitution at the a carbon, as shown below:

O -ether R
R PPE Ph

Phenetole H

Phenetole degradation has been studied by Benjamin, et.al. 78 , who report

5% substrate decomposition in tetralin after one hour at 400 C. Major



pyrolysis products included phenol, ethane, and ethylene. This conversion

corresponds to an apparent first order rate constant of og10k(s) =-4.85,

which is over an order of magnitude lower than that for PPE at the same

temperature. The a-phenyl substituent evidently enhances ether reversion

considerably. The data of Savinykh 76 described earlier in section 1.4.2,

also show that phenyl substitution enhances the pyrolysis of B-ethers.

1.10.2 Simulation of Lignin Pyrolysis

Discussion will begin with consideration of those literature cita-

tions which allow comparison with results of the present simulation. Over-

all yields of gas, liquid, phenolic and carbonaceous residue product frac-

tions quoted in section 1.9 will be compared both with the literature

yields and theoretical maximum limits. Individual product yields will

also be discussed.

The matrix in Table 10.2.1 depic.s items predicted by the present

simulation which can be compared with previous literature. In the rows

of this matrix, four major product fractions have been delineated in terms

of overall and constituent component yields; the carbonaceous residue

fraction subheading labled 'kinetics' concerns the time dependency of over-

all lignin pyrolysis. The matrix has six cdlumns, representing our model

predictions and five sets of literature references. The latter include

the collected reports of Table 4.1, the data of Iatridis and Gavalas26, of

Kirshbaum41, of Domburg39, and the DTA/DTG data of Domburg and Sergeeva Z9

In each matrix element, a plus indicates that information relevant to that

row was reported, whereas an 'X' implies that it was not. The present sim-

ulation provides entries for each row save CO2 yield. The overall gas

fraction is the sum of CO and CH4; these are by far the prevalent constit-

uents of the lignin off-gas. The aqueous distillate was composed of water



Item

Gas
Fraction

Overall

CH
4

CO

CO2

Aqueous
Fraction

Overall

H20

MeOH

Model
Prediction

X

Collected
Authors
Table 4.1

latridis
and
Gavalas2

Kirshbaum
4 1

Domburg
3

Domburg and

Sergeeva
129

Phenolic
Fraction
Overall

Individual
Phenolls

Carbonaceous
Residue

Overall

Kinetics

+ relevant information
provided

Table 10.2.1

X no relevant comparison possible

Literature references relevant for comparison
with simulation predictions



and methanol only; acetone, acetic acid and other minor liquid products

were not included in the simulation. The phenolic fraction was the molar

sum of all single ring phenols; this overall yield should correspond best

to the overall tar yield reported in pyrolysis experiments. Finally, the

carbonaceous residue fraction is composed of all multiple ring aromatic

units. The investigations collected in Table 4.1 provide detailed accounts

of gas and aqueous distillate yields, and overall tar and char yields.

Because detailed temperature-time information is lacking for many of these

investigations, entries in this column are best considered the asymptotic

,'ultimate', yields of destructive distillations. The data of latridis

and Gavalas 26 were obtained in a reactor designed to emphasize primary re-

actions, providing detailed temperature-time information and entries for

all save overall aqueous distillate yields and water yields. Kirshbaum41

provided overall gas, phenolics, and carbonaceous residue yields; detailed

phenolic product spectra were provided also. Detailed descriptions of

phenolic product spectra were also given by Domburg39. Finally, Domburg

and Sergeeval29 provide DTA/DTG weight loss information for lignin decomp-

osition.

A numerical summary of the product yields predicted by the simula-

tion and reported in the literature is presented as Table 10.2.2, a matrix

completely analogous to that in Table 10.2.1. The discussion to follow

considers each row of Table 10.2.2; note that all yields are in weight

percent of original lignin substrate.

Gas Fraction

The simulated overall gas fraction rose steadily with increasing

time and temperature and achieved a value of about 15% at 600 C. This

compares favorably with the data of Table 4.1, where gas yields ranged



Item Model Prediction

Gas
Fraction

Overall
yields

CH
4

5: 0 600C

6% 9 600C

X not included
in simulation

Collected Authors: Table 4.1

10-20%, 155 mean

7; based on mean overall
yield of 15%

7% based on overall mean
of 15%

1.5%

Aqueous
Fraction

Overall 6% maximum overall mean 15%

6% maximum 12-15%

LITERATURE

latridis and Gavalas 26

23% max including CO2

4.8% 0 650C

Kirshbaum
41

Do murg

and Sergeeva-
29

5% @ 250C, 18% 9
600C gases and losses

X

9.2% 9 650C

near 6%, all temperatures

X

0.1% maximum 0.2-1.0%

Phenolic SunI of single ring .
Fraction phenols as function

of time : 7-8,
Overall include complex

phenols

Individual Detailed yields
Phenols of Individual

phenols as a
function of time
and temperature

Carbonaceous
Residue

Overall Ultimate residue
yield ?om 0.914
O 300C to 0.335
bsooc

Kinetics multiple ring aro-
matics as function
of time, ultimate
yields as function
of temperature

3-30% 0.3-3.0%,400-650C

only guaiacols and phenols -

40-60% yield. of char weight loss of
53% @ 600C'

3.3-14. 5:475C

detailed yields of
20+ different
phenols

0.2%0250C, 14t
@ 500C

detailed yields of
20+ different
phenols

20% 9 400C, char yield of 91% 9
250C, 26% 0 600C

weight loss for
430-600C as in
function of time

Table 10.2.2 : Quantitative simulation

literature comparison grid.

DTA/tGeperiments
oleld E 26-30

cal/mrl

DTA/DTG.exper1rents
leld E 18-38
cal/mol

H20O
AeOH .3% 9 650C



from about 10-20%. latridis and Gavalas report an overall yield as high

as 23% at 650 C, but this included 7.2% C02. As discussed below, this

rather high CO2 content may be due to their use of a Kraft lignin. Omitting

CO2, their overall gas yield is 16%, in good agreement both with the sim-

ulation and earlier literature. Additionally, Kirshbaum reports total gas

(and losses) yield of n,5% at 250 C and 18% at 600 C.

Theoretically, the maximum overall gas yield should be a function of

temperature. At low temperatures, methoxyphenols prevalently release

methane gas; assuming an ideal release of one mol of methane per methoxy

unit, a maximum methane yield of,9% arises. Further, assuming a release

of one mol of CO per side chain, a low temperature CO maximum of q?5%

arises. At low temperatures, a maximum total gas yield of '24% by weight

of lignin is thus calculated, comprising CH4 and CO in the ratio 2:3.

With increasing temperature, methoxyphenol gas release selectivity shifts

toward CO evolution, and thus in the limit of high temperatures, two mols

of CO will be produced from each aromatic unit in lignin; a corresponding

overall gas yield of ,30% thus arises, composed entirely of CO.

CH4

The simulated time-dependency of methane yield at several temper-

atures was earlier detailed in Figures 9.1a-c. Based on 15% average total

gas yields from DTA and destructive distillation of lignin, Table 4.1

provides methane yields of 7.1%. This agrees quite well with our simulated

yield of 6.2% at 400 C and 104s. Iatridis and Gavalas reported methane

yields of 2.21% at 500 C and 60 s, and 1.3% at 600 C and 10 s. The sim-

ulation predicted methane yields of 5.1% at 500 C and 60 s and 6.1% at

600 C and 7s. Thus our simulation overpredicted methane yield as compared

to the data of latridis and Gavalas. This discrepancy likely arises be-



cause, on the one hand, the pyrolyser of latridis and Gavalas was designed

to emphasize primary reactions, such that primary products could leave the

'reaction zone' without secondary pyrolysis. On the other hand, our sim-

ulation models a batch reactor, where primary products, such as guaiacols,

were subjected to extensive secondary pyrolyses, yielding more catechols

and methane. Also, Kraft lignins, used in this experiment, are known to

have a lower methoxyl content than the simulated spruce lignin substrate;

this contributes to the discrepancy between experimental and simulated

methane yields.

CO

The simulation predicted CO evolution in yields of 0.037%, 3.5%,

4.4%, and 9% at (300C,104s), (400C,104s), (500C,60s), and (600C,7s),

respectively. These yields are in substantial agreement with the litera-

ture citations noted in Table 4.1. As in the case of methane, simulated

CO yields generally exceeded those reported by Iatridis and Gavalas.

These workers report 1l.2%, 2.1%, 2.7%, and 9.2% at (400C,120s), (500C,60s),

(600C,10s), and (650C,120s), respectively, whereas simulated yields were

0.22%, 4.4%, and 9% at (400C,100s), (500C,60s), and (600C,7s), respectively.

Interestingly, the experimental CO/CH4 ratio varied from about 2.3 at 400

C to 0.88 at 500 C and 1.8 at 600 C, which closely accords with the be-

havior of this ratio in our simulation. This was earlier interpreted in

terms of dual carbonyl and methoxyphenol sites for CO release from lignin.

Aqueous Distillate

Based on the sum of water and methanol yields, the simulation pre-

dicted an overall distillate yield of about 6%, rather lower than the

yields of '15% reported by the literature references in Table 4.1. Water

is by far the most prevalent component of the overall aqueous distillate,



with methanol (0.3 to 2%), acetic acid (0.1 to 1.0%), and acetone (0.1 to

1.0%) as minor components. Theoretically,.assumi.ng the release of one

H20 mol per 3-carbon side chain, a maximum water yield of "10% is calculated.

However, aqueous distillate yields higher than 10% are reported in the

literature (.cf Table 4.1); these are likely due to physically associated

water either extant in the plant lignin or introduced during lignin iso-

lation. Another possible source of water is the carbohydrate impurity

invariably present in lignin preparations.

H20

Our simulation predicted ultimate water yields of 6%. Absolute water

yields have not often been experimentally measured. However, taking account

of the minor components methanol, acetone, and acetic acid in the aqueous

distillate, an average water yield of 12-13% can be estimated from Table

4.1. The experimental yield is significantly higher than predicted in our

simulation, which suggests that the latter requires further sources for

water formation in the lignin; kinetic limitations are precluded by the

rapidity of saligenol dehydration. Physically adsorbed water and sat-

urated hydroxyl groups are possible precursors for further water yields.

The former has already been discussed. As for the latter, formal hydroxyl

cleavage could conceivably produce two water mols from guaiacyl-glycerol-

B-ethers, and thus increase net water formation from lignin to as much as

13%.

MeOH

An ultimate methanol yield of 0.1% is predicted by the simulation.

This is substantially less than the yields of 0.28 to 1.5% reported in

Table 4.1 and the yield of 2% obtained by latridis and Gavalas. The

reasons for our smaller methanol predictions are not yet clear, and could



involve both kinetic limitations and alternative lignin pathways. With

regard to the former, the simulated pathway to methanol was through deg-

radation of cinnamyl alcohol side chains. This reaction was subject to

considerable experimental uncertainty and a greater rate constant would

increase the predicted selectivity to methanol. Alternative methanol

forming pathways, not delineated in the present model compound pyrolyses,

may well operate in whole-lignin pyrolysis. This is an area for further

experimental investigation. However the experimental results obtained here

and reported in the literature91'96 do indicate that methanol formation

from methoxyphenols, the obvious moieties for demethoxylation, is not

significant.

Phenolic Fraction

The predicted overall yield of single ring phenols ranged from 7-

80%. These represent lignin aromatic units that were transformed into sin-

gle ring aromatics during simulated pyrolysis. Included in this single

ring phenol yield are substantial amounts of complex phenols, such as

coniferaldehyde and guaiacyl vinyl ketone (or guaiacyl acrolein), which

are not often reported with single ring phenols in experimental pyrolyses.

Experimental overall phenolic fraction yields were 3 to 30% for Kirshbaum,

and 0.2 to 14% for Domburg. These were lower than the simulation for two

likely reasons. First, many complex phenols in the tar fraction were not

experimentally identified. It is cogent to note that tar yields in excess

of 50% have been reported71. Second, the simulation suppressed bimolecular

condensation and polymerization reactions which would have lowered the

yield of single ring phenols.

Individual Phenols

As noted earlier, the present simulation predicts most of the



thirty-odd phenols detected in the previous.experimental pyrolyses. The

accuracy of these individual phenol yield simulations is uncertain, on

account of the wide range of lignin types, isolation methods, and reactor

configurations employed in experimental studies. These provide a rather

generous band for comparison with model predictions. In most cases the

predicted and experimental yield data agreed to within a half-order of

magnitude. Larger deviations, such as those related to guaiacol, catechol

and syringol, could be reasonably explained by inherent differences be-

tween simulated and experimental conditions. In particular, it is note-

worthy that deviations between the present simulation and experiment were

no greater than deviations between individual experiments.

Carbonaceous Residue

The simulated carbonaceous residue yields of 91% at 300 C and 104s

and 40% at 600 C and 7s compare favorably with the literature. In Table

4.1, ultimate tar yields from destructive distillation were 40 to 60% of

lignin. Iatridis and Gavalas report weight losses of 20% and 53% at 400

and 600 C, respectively, corresponding to char yields of 80% and 47%.

Kirshbaum reports a char yield of 91% at 250 C and only 26% at 600 C. In

short, the present operational definition of residue as multiple ring

aromatics provides simulated carbonaceous residue yields that are in good

accord with the experimental literature.

Weight Loss Kinetics

The residue-forming kinetics implied by the time.variation of the

simulated yield of multiple ring aromatic units have earlier been compared

in Figure 9.2 with the data of latridis and Gavalas. The simulated weight

loss curves accorded well with the experimental weight loss curves, with

modest deviations at the lowest and highest temperatures. Furthermore,



these deviations can reasonably be attributed to differences between the

respective lignin substrates. latridis and Gavalas used a Douglas fir

precipitated Kraft lignin, whereas the present simulation was based on

Freudenberg's unperturbed "protolignin". Kraft pulping can alter the

chemical nature of lignin substantially. It results in increased internal

condensations, with the original reactive a- and s-ether linkages trans-

formed into less reactive diphenyl-methane, ethane, and ethylene linkages;

it also introduces carboxylic acid units into the lignin macromolecule.

The low temperature reactivity of a Kraft lignin might be expected to be

greater than its protolignin counterpart because of facile CO2 evolution

from the carboxylic acid units. At higher temperatures and conversions,

however, the reactivity of a Kraft lignin may well be lower than that of

the. protolignin since relatively refractory diphenylmethane, ethane and

ethylene units have replaced the original reactive a- and S-ethers. In the

light of these assertions it is interesting that latridis and Gavalas

report CO2 yields of 5.9% at 400 C and 120s, and 4.1% at 600c and 10s.

These suggest a constant number of easily decarboxylated acid sites in

their substrate. Further, these authors' reported weight loss of 20% at

400 C and 120s exceeds our simulated weight loss of 13% by an amount sub-

stantially equal to their CO2 yield. At 600 C and 10s the experimental

weight loss corrected for CO2 is n50%, somewhat lower than our simulated

value of 60% on account of the reduced reactivity of their Kraft lignin.



1.11 Summary and Conclusions

1. Theoretical analysis of Freudenberg's classical spruce lignin

structure permitted the selection of model chemical compounds that would

mimic the reactivity of lignin during its thermal degradation. Some of

the model compounds chosen, and their attributes relevant to lignoid

moieties, were: Phenethylphenylether (PPE) CT~' , for the prevalent

3-ether linkage: Guaiacol, (@ , for the aromatic methoxyphenol unit:

Cinnamaldehyde @.0 and Cinnamyl alcohol [ th , for the

propanoid side chain and saligenol, W H , for the hydroxy enol that

might form in lignin following B-ether reversion.

2. Experimental pyrolyses of each of 20 model compounds were under-

taken to determine hitherto unknown reaction pathways, kinetics, and act-

ivation parameters. The products from these 'model pyrolyses were closely

naloous to those observed in actual lignin thermolysis, including

methane (from guaiacol), carbon monoxide (from cinnamaldehyde), water (from

saligenol), methanol (from cinnamyl alcohol), and phenol (from PPE).

3. Mechanistic interpretations of pyrolysis pathways were possible in

at least five instances. For example, PPE reverted stoichiometrically to

phenol plus styrene as primary products; at 400 C the reaction was first

order in PPE over a twentyfold range of initial concentrations and un-

affected by tetralin dilution; at temperatures from 300 to 500 C, the

rate constant followed an Arrhenius relationship, with (log10A(s 1 ),E

(cal/mol)) = (11.0±0.9,45.0+2.7). These experimental data were well ration-

alized by a concerted, pericyclic retro-ene reaction mechanism. Similarly,

methane elimination from guaiacol, (loglOA,E )=(10.9,43.7), and water

elimination from saligenol, (13.4,33.4), could both be well interpreted as

concerted, pericyclic group transfers.



4. It appears that the molecular topology of lignin is well suited to.

the occurence of concerted pericyclic reactions, which have not hitherto

been mentioned in the lignin pyrolysis literature. Likely examples of

pericyclic pathways found in the present experiments included:

(i) Retroene reversion of Phenethylphenylether.

(ii) Group transfer demethanation of guaiacols and group transfer

dehydration of saligenol.

(iii) Sigmatropic methyl shifts in anisole and veratrole to o-cresol,

the latter with subsequent retroene release of CO and H2 . An

analogous hydrogen shift for guaiacol demethoxylation is likely.

(iv) Cheletropic extrusion of CO from benzaldehyde, vanillin, and

cinnamaldehyde, with calculated reverse carbonylation Arrhenius

parameters consistent with those of concerted cycloadditions.

(v) Diels-Alder cycloaddition reactions for cinnamaldelyde and

cinnamyl alcohol side chain units, of the type reported in the

literature for styrene and acrolein.

5. Mathematical simulation of whole-lignin pyrolyses, at 300 to 600 C

with holding times of 1 to 104 s,was achieved by combining a statistical

interpretation of lignin structure with experimental results of the present

model compound pyrolyses. The outcome of these simulations, expressed in

terms of product fractions as a percent of initial lignin, was:

(i) Gas Fraction: Simulated overall gas, methane, and CO yields

accorded with previous experimental lignin pyrolyses; respective ultimate

yields typically 15%, 6%, and 9% were in quantitative agreement with the

literature of Table 4.1. The simulated variation of (CH4/CO) ratio with

time and temperature further agreed with that recently reported by latridis.

and Gavalas26



(ii) Aqueous Fraction: Simulated water yields were typically about

half the reported experimental yields of 12%. Simulated methanol yields

were half an order of magnitude lower than the literature yields of 0.3-

1.5 %.

(iii) Phenolic Fraction: Simulated overall phenolic yields were

generally higher than the literature yields by a factor of two. The sim-

ulation accounted for more than thirty individual phenols reported in the

literature. Simulated yields of simple guaiacols, catechols, syringols,

and phenols, each nominally 2%, were within the band of values reported

in the literature.

(iv) Carbonaceous Residue: Simulated curves of weight loss versus

time at 400, 500, and 600 C were nearly coincident with the experimental

curves due to latridis and Gavalas26 for pyrolysis of a Kraft lignin. Also,

the modest disagreements between these curves, at both low and high

temperatures, were traced to structural differences between the respective

lignin substrates.
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