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Introduction

A critical issue in epidemiological studies of ambient air pollution

is the measurement of pollutant exposure in the study population.

Accurate characterization of air quality is necessary in any study

relating exposure to health effects, and is essential in attempting to

quantify risk estimates for specific exposure concentrations. Despite the

importance of accurate air quality data, most epidemiological

investigations have used relatively crude estimates of pollutant

exposure. 1 Results from such investigations may be only qualitative at

best.

Early studies of air pollution health effects were limited by a lack

of air pollution monitoring sites, and thus, exposures were often based

on surrogate measures such as tons of coal consumed.2  With the

introduction of reliable and reasonably accurate measurements of

pollutant concentrations, several important constraints remained. These

limitations include the relatively sparse siting of monitor sites and the

variable relationship of monitor concentrations to the exposure

experience of the study population. Other considerations in using monitor

data include the selection of the pollutant specie(s), the duration of

the sampling period, the use of short-term versus long-term averages,

peak versus mean concentrations and the cyclical variation in pollutant

levels.

\The Chestnut.Ridge region of Pennsylvania is the site of an ongoing

study of health effects from air pollution. This site was selected in

part because of the extensive and well maintained air pollution

monitoring network, and the previous studies of pollutant dispersion in
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the area.3  Several studies of respiratory symptoms and pulmonary

function in women and school age children have been carried out in the

area. The current study evaluated aspects of air pollution exposure

estimates which are relevant to these epidemiologic studies. Subsequent

papers will discuss findings of the various epidemiologic studies which

employ these air pollution measures.

Methods

The Study Area

Chestnut Ridge is a hilly rural area of mid-western Pennsylvania

located about 100 kilometers east of Pittsburg and about 50 kilometers

northwest of Johnstown. The area covers approximately 6400 square

kilometers and includes the lower half of Indiana County and portions of

Westmoreland and Armstrong Counties (Figure 1). Seventeen air quality

monitors have been set up and are maintained by the local electric

utility. The monitors were established by the utility, in part to fufill

initial licensing requirements for the construction and operation of the

several large electric power plants in the area. However, the

capabilities of this monitoring network go beyond state requirements. The

network forms part of the Pennsylvania Electric Association's data base,

which is aimed at collecting all meteorologic and pollution information

in a common accessible data base. Each monitor site collects hourly

sulfur dioxide and coefficient of haze data, and either daily or every

sixth day 24-hour samples of total suspended particulates. In addition,

six of the sites monitor nitrogen oxides and ozone. Meterologic

- 3 -



information for the area comes from the Penview meteorologic tower (Tower

in Figure 1).

The four mine-fed coal-fired power plants in the Chestnut Ridge area

have a total peak generating capacity of 4,700 MW(e), making this one of

the largest concentrations of coal fired electric generation in the U.S.

In addition, a coal gassifier is located near Homer City. Each power

plant presently is equipped with tall stacks, from 797 to 1000 feet in

height. The stack at the Connemaugh plant was raised to 1000 feet from

230 feet in 1976. Two of the power plants, Connemaugh (1700 MW) and

Seward (218 MW), are located in a valley formed by the Laurel Hills to

the southeast and the Chestnut Ridge to the northwest, two roughly

parallel ridges approximately 2000 to 2500 feet in height. The Homer City

(1200 MW) and Keystone (1640 MW) power plants are located in more gentle,

rolling terrain in the north-western part of the region.

Pollutant Representation

Over four years of hourly sulfur dioxide (1975-1978) and over five

years of daily to approximately weekly total suspended particulate

(1974-1978) concentrations at each of the 17 monitors were condensed into

a data format known as the "arrowhead profile"4 (Figure 2). In contrast

to the work of Larsen4 which used non-overlapping or "block" averages,

the arrowhead curve used in the Chestnut Ridge investigation uses running

averages. The arrowhead profile or curve is a concise way of expressing

concentrations and frequency of occurrence at various averaging times.

This analytic and display technique permits the convenient construction

of various pollutant measures for estimating population exposures. Other
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advantages to operating in the arrowhead format include computational

speed, ease of data handling and transformation, greater accuracy of

spatial interpolation, and significantly reduced data storage

requirements.

The study area was divided into 36 numbered districts using township

and highway boundaries to localize the residence of subjects. An

triangulation scheme using three monitors estimated the concentration at

the population-weighted centroids of the districts. The same procedure

was used to derive pollutant scores at the exact location of each of the

14 schools in the children's study. This scheme used the three closest

(terrain-adjusted) monitors, that formed a triangle in which the minimum

angle was 10 degrees, in a planer interpolation (distance squared and

normalized) and half gradient extrapolation. Terrain-adjusted distance is

the actual distance plus 1/4 km for every 100 feet of cumulative distance

elevation distance.

Several additional schemes, e.g. closest monitor, to estimate

pollutant concentrations at the districts were also used. All schemes

were evaluated by the "jack-knife" technique. Predictions of

concentrations at each of the 17 monitors were compared with actual

concentrations using correlations, analysis of variance and graphical

techniques.

Exposure Measures

The arrowhead profile permitted the construction of four types of

exposure measures. These include pollutant concentrations at various

averaging times and percentiles, such as the National Ambient Air Quality
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Standards, represented by indices 4, 5, 6 and 11 in the study (Table 1).

"Exceedence measures" are the second type of exposure measure, which

estimate the amount of time that a particular concentration is exceeded

(indices El and E2). Thirdly, "arrowhead indices," which combine

concentrations at selected averaging times and percentiles, provide a

relative indication of pollutant patterns such as "cleansing" or "acute"

(high level) periods (indices 3 and 8). The fourth type of exposure

measure is a true cumulative exposure measure, that is, the product of

concentration and exposure time at that concentration. Assuming a linear

dose-response relationship, the simplest case, a cumulative exposure

measure is simply an average concentration. In addition, several

non-linear exposure-response functions were modeled by giving either

increasing or decreasing weight to high percentile concentrations,

resulting in a linear risk measure. All together, over seventy pollutant

measures for both TSP and sulfur dioxide at the Chestnut Ridge site were

analyzed, only a few of which are described here. A complete description

and evaluation of the pollutant measures may be found elsewere. 5

Analysis of Stability of Pollutant Measures

The annual variation in pollutant measures was evaluated by comparing

correlations and isopleths of concentrations of individual years of the

various pollutant indices with long term (four or five year) averages of

the' same indices. Two weighting schemes, which gave either increasing or

decreasing weight to more recent years, also were used to reflect

long-term changes in pollutant patterns.

The coefficient of variation (COV) of each monitor and the mean COV
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of the 17 monitors was used to assess the stability of the pollutant

measures. In the absense of major changes in source emissions and

long-range transport, low COVs should indicate pollution measures which

are stable over time.

Computer Facilities

The arrowhead profiles were constructed using the TROLL statistical

package in conjunction with the VS/I batch processsing system at the

M.I.T. Information Processing Center. The program provides data smoothing

and interpolation to supplement missing data. Fortunately, monitor

availability was good, and missing data was generally less than 20%.

TROLL was also used for developing the exposure measures and

interpolations, and for the statistical analysis of these measures.

Results

Pollutant Patterns

Air quality monitoring data in the Chestnut Ridge area show

considerable diversity and complexity in the levels of pollution,

gradients, and temporal relationships. Several monitor sites have

exceeded the National. Ambient Air Quality Standards (NAAQS) for both TSP

an' sulfur dioxide in recent years. However, the region presently is

classified as an "attainment area" by the Commonwealth of Pennsylvania.

The long term mean sulfur dioxide concentration at the 17 monitors is 70

micrograms per cubic meter (ug./c.m.), which represents 88% of the annual
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NAAQS of 80 ug./c.m. (Table 2). The corresponding average for TSP

concentrations is 67 ug./c.m., or 90% of the annual NAAQS of 75 ug./c.m.

Yearly averages at the 17 monitors of sulfur dioxide concentration

increased from 1975 to 1977, and then decreased slightly, and

concentrations of TSP decreased slightly from 1974 to 1978. One way

analysis of variance showed significant changes in annual mean sulfur

dioxide concentrations, but not TSP concentrations. Two way analysis opf

variance showed significant differences across monitors and years for

both pollutants. Running annual averages show similar but slightly more

dramatic behavior during this period.

In general, the Chestnut Ridge area experiences a pollution gradient

which increases to the south and east, and small changes in distance may

produce substantial variations in pollutant concentration (Figure 4).

This gradient is most pronounced in the south-eastern part of the area

due to the complex terrain and the importance of local sources. For

example, the 1976 sulfur dioxide concentration varied from 120 ug./c.m.

at monitor 17 to 54 ug./c.m. at monitor 15, which is only 6 kilometers

away. Each power plant forms a localized "hotspot," with occasional, high

peak pollutant concentrations due to downwash from the stacks and

stagnant air conditions. Also, because prevailing winds originate from

the SW to WNW sector approximately 53% of the time (as measured at the

Penview Tower), west facing slopes, particularly of the Laurel Hills,

tend to be be in the direct path of exhaust plumes which originate from

the Connemaugh and Seward power plants (Figure 1). Therefore, these areas

experience high average annual concentrations, although only moderate

peak concentrations.

Another source of air pollutants in the Chestnut Ridge area
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originates from the Pittsburg urban area which is 60 kilometers to the

west. Prevailing winds carry emissions from Pittsburg, as well as those

from the Ohio River Valley, directly over the region. The north-western

part of the region shows moderately high annual concentrations of both

TSP and sulfur dioxide, but generally low peak concentations of these

pollutants (monitor 9, Figure 4). The high annual concentrations may be

attributed to medium range transport of pollutants from the Pittsburg

area. Only major local sources, e.g., the power plants, would be expected

to produce high peak concentrations.

Relationship between TSP and Sulfur Dioxide

Pollutant patterns of TSP are very different than those of sulfur

dioxide, probably reflecting fugitive dust and not power plant emissions.

Annual averages of TSP and sulfur dioxide concentrations for the years

1975-1978 had a correlation coefficient of 0.341 (Table 3). There was

little correlation between 24-hour peaks of the two pollutants:

correlation coefficients range from 0.015 in 1975 to -0.140 in 1976. Few

districts have high concentrations of both sulfur dioxide and TSP (Figure

5). Several observations besides low correlations suggest that TSP

measures at the monitors are only partially related to power plant

emissions, including (1) less dramatic long-term variation of TSP levels

than sulfur dioxide levels, (2) less defined gradients of TSP around

powqr plants and lower overall variation, as reflected by a coefficient

of variation of 6.15, versus 0.20 for sulfur dioxide for annual average

concentrations, and (3) relatively high TSP and low sulfur dioxide levels

in the northwest area of the region, away from known major fossil fuel
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emission sources.

Different measures of the same pollutant are not necessarily closely

correlated. Using the short-term NAAQS for example, correlation

coefficients for 3 and 24-hour second highest peak to calendar year

average of sulfur dioxide concentrations are 0.626 and 0.764,

respectively (Table 3). The correlation coefficient for 24 hour peak to

annual TSP concentrations is 0.402, considerably lower and less

consistent on a yearly basis.

Year to Year Variation

Changes in pollutant patterns over the study period were large,

presumably due to meterological effects and emission source alterations.

For example, the exhaust stack of the Connemaugh power plant was raised

to 1000 feet from 230 feet in 1976, causing a significant shift in

pollutant dispersion in the south-eastern section of the Chestnut Ridge

area. Even air pollution monitors which are not affected by known changes

in source emissions also show considerably fluctuation from year to year.

The TSP arrowhead profiles seen earlier for monitor 1 (Figure 3) for the

years 1974 to 1977 demonstrate dramatic differences in the shape,

sharpness, asymmetry, and spread of the profile. This causes instability

and uncertainty in characterizing a study district as "clean" or "dirty"

with respect to other districts (Figure G). Annual variation in

concentrations causes low correlations among measures of different years,

as well as significant changes in ranking of the geographic units when

data from any particular year are used. For example, mean 1975 sulfur

dioxide levels correlated only 0.205 with 1978 levels. 1975 levels have a
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correlation coefficient of 0.765 with the mean of 4 years of sulfur

dioxide levels. The corresponding correlation coefficient for 1978 with

the four year average is 0.558. Peak measures change yet more

significantly. For example, the correlation coefficient for 24 hour

second highest peaks between 1975 and 1978 of sulfur dioxide is only

-0.153. Thus, stability was deservedly a prime criterium of the pollutant

measure used to estimate polllutant exposure.

Stability of Pollutant Measures

The coefficients of variation (COV) for the year to year fluctuations

of pollution scores ranged from about 0.10 to 0.30 (Table 4). However,

the highest COV among the 17 monitors was generally several times the

average, and was usually from monitor 17, near the Connemaugh and Seward

plants, the latter of which had its stack raised during the study period.

Annual means and the cleansing index (index 8) have a much lower COV than

peak measures. In general, longer averaging times and percentile

concentrations near the median tend to show less year to year variation.

The calendar year average (index 11) is slightly more stable than the

running annual average (index 6), as expected, since the running average

is designed to discern peaks that are not necessarily confined to the

calendar year.

Exceedence measures (El and E2) were stable at short averaging times

and had a smaller COV than all other sulfur measures. Long averaging

times of these measures resulted in a lack of exceedences at several

monitors and thus high COVs. Correlation coefficients for exceedence

meaures at the lowest concentration (80 and 75 micrograms per cubic meter
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for sulfur and TSP respectively) and shortest averaging time (one hour

for sulfur) to annual concentrations are 0.855 for sulfur dioxide, and

0.921 for TSP. However, correlations for sulfur dioxide exceedence

measures at higher concentrations are much lower (Figure 7). The

variation in exceedences at different concentrations shows that a measure

based on the frequency of peak concentrations may be considerably

different than one based on the concentrations.

The approximately log-normal distribution of pollutant concentration

results in considerable heteroscedasticity in peak measures, that is, an

increasing variance with increasing mean concentration. COVs of the 90th

percentile concentrations are significantly lower than that of the 99th

percentile, while COVs of logarithms of both percentile groups are

approximately equal (Table 6). A two-way analysis of variance at various

averaging times shows that all measures have significant differences

across monitors (Table 6). However, only the 99th percentile showed no

significant differences (p(0.05) across 4 years of data for averaging

times less than 24 hours. Thus, the variance is too large at averaging

times less than 24 hours to observe yearly differences in 99th percentile

concentrations which are seen in 90th percentile concentrations.

Interpolations between Monitors

The time independence of the arrowhead profile permits accurate

interpolation of peak and low percentile concentrations. Several

interpolation schemes using arrowhead data were evaluated using the "jack

knife" technique. These included (1) the use of the closest monitor, the

most common technique, (2) averaging schemes using 2, 3, 4, or 5
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monitors, where monitor scores are weighted by inverse of distance to

interpolation point and normalized, and (3) several triangulation

extrapolation/interpolation schemes including full, half, third, and

quarter planer, several transformations of the distance correcting term,

and 10 and 25 degree minimum angle criteria (for the selection of 3

monitors used). Attempts to optimize the parameters in the triangulation

scheme by non-linear least squares regressions failed, because the series

frequently diverged. When it did converge (only on very small data sets),

results varied greatly depending on which pollutant was used. The

triangulation scheme that resulted in the highest correlations for both

TSP and sulfur dioxide used half planer extrapolations, planer

interpolations, distance squared correction terms, and the 10 degree

criteria. Using an inverse distance squared term gave just slightly

higher correlations than the nominal or cubed value. Full planer

extrapolations resulted in several negative concentrations, and lower

correlations. Third and quarter extrapolations reduced the range of

predictions, and had a slightly lower correlation coefficient than the

half planer scheme. Using a triangle with minimum angle criteria of 25

degrees severely reduced the correlations, and forced the average monitor

to predictor point distance to increase greatly.

No schemes were able to predict 24 hour peak concentrations of TSP

(indice 4) in the region (Table 7). As more monitors are used in the

nondirectional averaging scheme, correlations generally decrease, as does

the overall range of the predicted scores. The use of the closest monitor

had the highest correlations with actual peak and annual scores of sulfur

dioxide, although the planer scheme did as well with annual averages of

this pollutant. However, the triangulation procedure is able to produce
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distinct pollution scores at the population weighted centroid of each

district or school location. These scores were in close agreement with

hand drawn isopleths in all but one instance, which concerned a school

location where the first choice of the algorithm used a very acute

triangle (11 degrees), and produced clearly erroneous results. The second

triangle, with less extreme angles, produced expected scores.

Thus, pollution scores for both schools and district centroids were

available using the planer technique. This detail permits considerable

flexibility in estimating pollutant exposure. For example, school and

residence pollution scores may be combined to reflect the proportion of

time a child spends at school and at home. Since most rural schools are

regional schools and many children are bused out of their township (and

district), exposure scores did vary significantly depending upon which

location was used to characterize exposure.

Discussion

The study demonstrates that efforts to characterize the air pollution

burden in epidemiological investigations of geographic areas may be

drastically influenced by the use of different types of pollution

measures. Different air pollution measures which used the same data may

have a large effect on both the stability of the pollution measures and

the interpretation of relative pollutant levels. Moreover, the

determination of ambient pollutant levels in geographic units, selected

to give representative (population weighted) pollution scores, may be

very sensitive to monitor location and/or interpolation scheme.

Short averaging times (less than 24 hours), and high percentile
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concentrations (peaks, second highest peaks, and even 90th percentile

concentrations), tended to vary greatly from year to year. Such high

concentrations are caused by stack downwash, fumigation and plume

centerline impaction at monitoring sites. These events are likely to

happen several times each year, usually in the proximity of the emission

source. However, they may not be representative of the exposure

experience of the population in the geographic unit. Very high peak

concentrations do indicate which areas may be very polluted at times, but

the frequency of such episodes can only be determined by examining lower

(90th, 84th) percentile concentrations. Exceedence measures may serve the

same purpose, and with an appropriately selected concentration threshold

(to give about 15 to 45% exceedence), such measures were somewhat more

stable estimates than the annual average and peak concentrations. This

suggests that measures derived from two or more percentiles, perhaps the

50th and 84th, will provide more stable estimates than measures based on

one concentration. In addition, exceedence measures are largely

insensitive to averaging time although short averaging times appear to be

slightly more stable, possibly due to the greater frequency of

exceedences that occur. (High thresholds and long averaging times result

in an excess of "zeros" in these measures, thus increasing the COV.)

Sulfur dioxide gave results more consistent with known power plant

emission and dispersion patterns in the region than total suspended

particulates (TSP). TSP does not seem to be a good indicator of power

pla'nt emissions. and has a low correlation to sulfur dioxide

concentrations in this study region. Fugitive dust, from agricultural,

roadway and other open sources sources, is a large component of TSP

measurements. Measures of fine or respirable particulates would probably
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give more useful exposure estimates for epidemiologic studies of health

effects.

Choice of Pollution Measure

These complexities point out several areas of major uncertainty in

determining ambient pollution levels to represent exposure in health

effects research. Foremost among these is the selection of the proper

measure of ambient air pollution. A population's exposure to pollution or

pollutant dosage is usually expressed as a concentration measure.

Typically, the annual mean, 3 and 24 hour peak concentrations are used,

reflecting the National Ambient Air Quality Standards (NAAQS) in the

Clean Air Act. One or two exceedences of these measures per year

represents a violation of ambient standards. However, pollution measures

for epidemiological purposes have a significantly different use than the

determination of compliance with standards. Exposure estimates should be

clinically significant, that is, related to the exposure-response

relationship, and address the pattern of exposure, or the exposure

history of the population to the pollutant(s). Running averages were used

in this study because the health response should not be sensitive to the

arbitrary boundaries of calendar years or months. Running annual averages

tended to better depict changes in pollutant patterns than calendar year

averages. However, four or five year averages of the two were similar.

bThe second consideration, concerned with the pattern of exposure, is

easier to handle. Ideally, exposure estimates would provide a measure of

pollutant exposure during the critical induction or disease initiation

period. The association between pollutant levels and health effects will
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be diluted to the extent to which inappropriate time frames for health

and air quality data are used. For example, if the prevalence of a

chronic respiratory symptom such as chronic mucus hypersecretion is

related to several years of high level pollutant exposure, a measure of

air pollution in the most recent year may not provide an accurate

estimate of exposure, especially if pollutant patterns have changed.

Thus, air quality information must be collected over an appropriate time

period. Also, several years of data should be collected, to determine

both typical peak concentrations and the overall trend in ambient levels.

Peak concentrations at monitors are relatively rare events, since it is

unlikely that when a plume centerline touches the ground it will effect

impact a monitoring site, given low monitor site densities. Three to five

years of data can probably establish 99th percentile peaks with

acceptable accuracy; 90th percentile concentrations require perhaps one

year of data.

Pollutant trends may be identified with annual pollutant averages, as

well as peak measures. For example, changes in dispersion due to the

increased height of the Seward stack were dramatically illustrated by an

examination of 24-hour peak concentrations (Figure 3). Concentrations in

the valley were lowered as the plume tended to disperse over a larger

area and "punch through" the ceiling level more frequently (resulting in

little dispersion in the area). This new pollution pattern tended to have

an impact on ridgetops over a large area rather than the valley floor.

SuCh changes could only be identified through an examination of several

years of data.
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Characterizing Geographic Units

This study highlights the difficulty of accurately characterizing

geographic units and individual exposures, even with a high monitor

density. The effect of uncertainty in estimating an individual's exposure

may have been increased, due to the relatively small size of the Chestnut

Ridge region, the complex terrain and the sharp pollution gradients.

However, this small size gives power to the health estimates, since

potentially confounding factors which exist between geographic regions

tend to be minimized.

Pollution scores for populations may be defined using the nearest

monitor, interpolations between two or more monitors, isopleths, and

dispersion models (preferably supplemented with monitor data). The

triangulation scheme used in the study provides an imperfect estimate of

pollutant concentrations for population-weighted exposures, especially

for peak measures. In some cases, the procedure was very sensitive to

monitor selection. Potential error increases as distances increase, or if

the extrapolation point lays outside the triangle formed by the three

monitors. Also, the use of several monitors tends to decrease the

magnitude of extreme observations, and thus reduce the range of district

pollution scores as compared to that of monitors.

Despite its approximate nature, the triangulation scheme may provide

more valid exposure estimates than other methods, such as the use of the

nea,rest monitor ,site. Measurements from any particular monitor are

influenced by the site location and meteorology, with respect to the

location of emission sources. For example, with the consistent

directional winds in the Chestnut Ridge area, a monitor which is not
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located downwind of primary emission sources will not accurately

characterize pollutant levels for downwind populations, despite otherwise

close proximity to the population. Incorporation of wind rose information

could further refine the triangulation procedure. On the other hand, the

planer technique will give poor results when no consistent pollution

gradient exists, as in the case of peak TSP measures in this area.

Averaging schemes which did not account for gradients proved inferior to

the planer and closest monitor approaches.

The low correlation coefficients for the jack knife analysis are in

part due to the distances which separate the monitors. Predictions of

pollutant levels at the districts, with shorter distances, are more

consistent. For example, the correlation coefficient for district sulfur

dioxide scores using the closest monitor and the planer technique is 0.90

for both annual average and 8 hour peak concentrations, and about 0.73

for both peak and mean TSP scores.

The major problem in using isopleths for characterizing pollution

exposure is their arbitrariness given low monitor site density, complex

terrain, and multiple emission sources. Isopleths (Figure 4) could in

fact be drawn in numerous patterns with quite different results.

Triangulation gives similar results without this arbitrariness.

Lastly, the triangulation procedure permits pollution scores to be

produced at location of interest, a considerable advantage. For example,

air pollution exposures may be evaluated for a school or other daytime

location for particular population groups.
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Conclusion

We cannot suggest a definitive methodology for estimating the

pollution exposure of a population from the Chestnut Ridge Study. Rather,

it seems clear that the investigator should use considerable discression

and caution in using available pollution measures such as the National

Ambient Air Quality Standards (NAAQS). These measures may not provide

sufficient information for the quantification of exposure. Shortcomings

of typical air pollution measures include (1) the inconsistency of

different measures, e.g., peaks and annual averages, as well as

inter-pollutant discrepancies; (2) limited spatial representativeness of

many monitor sites even with high monitor density; (3) lack of temporal

information to identify trends; and (4) uncertainty in the

exposure-response relationship of pollutants, which precludes firm

agreement on the use of measures better than the NAAQS.

The study demonstrates that measures of air pollution exposures, once

taken as a routine and trivial matter, are in fact as complex and

important as other considerations in the epidemiological investigation.

Biased or erroneous air pollution measures produce invalid exposure

estimates as would any other incorrectly measured risk factor. The

selection of the best pollution measure for an area is influenced by

regional characteristics, such as terrain, meteorology, pollutant sources

and monitor location.. Lacking a standardized procedure, good judgement is

ess\ntial in selecting pollutant measure for a particular study.

We feel that the appropriate criteria for selecting a pollution

measure are:
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(1) Appropriateness, in terms of agreement with clinical hypothesis
about exposure-response and exposure history hypotheses. Thus, it is
important that concentrations at different percentile groups be
collected and analyzed. (Arrowhead curves are a convenient analytic
tool.)

(2) Stability or consistency, that is, without major changes in
source emissions, measures should consistently identify clean or
dirty areas with a minimum of year to year variation. It may be
necessary to normalize distributions, combine measures, or average
several years of data, to acheive this goal.

These criteria should help identify geographic areas which are

consonent with known emission and dispersion patterns in the region.

Several procedures are suggested to achieve these criteria:

(1) An indepth investigation of the topography and meteorology of the

region, especially with respect to the locations of major pollution

sources, monitors and the study population.

(2) Based on the above, monitor density should be high enough to
depict major differences in pollution levels which occur in nearby
areas.

(3) Interpolations, averaging or other schemes may be employed to
assure that a pollution score is representative in the geographic
units. If possible, geographic units should be defined on the basis
of pollutant patterns.

'(4) Pollution data should be collected over a long enough period to
(a) indentify trends in ambient levels (b) bound uncertainties in
characterizing levels or making stratifications and (c) and
correspond with the specific disease and population being
investigated.
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(5) Data may be stratified into 2 or 3 exposure classes which

represent the investigators best judgement using all relevant

information.

These efforts should reduce the error and inconsistency which is

likely to exist when monitor data is generalized to reflect the exposure

experience of a population.
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Index Name

3 Short-term
High

4 Short-term
Standard

5 Mid-term
Standard

6 Annual
Running
Standard

11 Annual
Calendar
Standard

8 Long-term
Cleansing

El Low
Threshold
Exceedence

E2 Medium
Threshol d
Exceedence

Description of Sulfur Index

Sum of 99, 84 and 50 for 1,
3, 8 and 24 hours *

Ratio of 99 percentile to
to 3 hour threshold

Ratio of 99 percentile to
24 hour threshold.

Ratio of 99 percentile
to annual threshold

Ratio of calendar year
average to 1 yr threshold

Sum of 16 and 0 for 72,
168, 730 and 2190 hours

Percentage of time above
80 ug./c.m. (Annual NAAQS)

Percentage of time above
210 ug./c.m.

Description of TSP Index

Sum of 100, 84 and 50 for
24 hours *

Ratio of 100 percentile
to 24 hour threshold

Ratio of 99 percentile
to hypothetical 15 day
standard of 147 ug/cu.m.

Ratio of 100 percentile
to annual threshold

Ratio of calendar year
average to 1 yr threshold

Sum of 16 and 0 for 168,
336, 730, 1460, 2190,
4380, and 8760 hours

Percentage of time above
75 ug./c.m. (Annual NAAQS)

Percentage of time above
150 ug./c.m.

* Numbers refer to percentile group concentrations on arrowhead
profiles.

Table 1. Pollution indices for sulfur and TSP described in this article.
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Sulfur Dioxide

Concentration St. Deviation Concentration

Year u.g./m3 u.g./m3 u.g./m3

1974
1975
1976
1977
1978

mean

n.a.
65
70
79
66

70

n.a.
21
17
13
11

15

St. Deviation
u.g./m3

9
11
13
12
10

11

One Way Analysis of Variance

F years
probability

2.79
(0.047)

d.f. 3 1.71
(0.161)

d.f. 4

Two Way Analysis of Variance

F years
probability

F monitors
probability

5.49
(0.002)
5.92
(0.000)

d.f. 3

d.f. 16

4.21
(0.004)
8.36
(0.000)

d.f. 4

d.f. 16

Table 2. Mean calendar year averages of pollutant concentrations (index
11) at the 17 monitors, and annual standard deviation of the 17
monitors in the Chestnut Ridge area. Results from one and two
analysis of variance tests show significant differences between
annual concentrations at the same monitor for different years.

Sulfur Dioxide to TSP Annual to 24 hour Averages

Year Annual

1974
1975
1976
1977
1978

mean*

n.a.
0.552
0.358
0.342
0.108

% 0.341

24 hour

n.a.
0.015
-0.140
-0.059
-0.111

-0.028

TSP

-0.067
0.334
0.762
0.512
0.366

0.481

sulfur

n.a.
0.814
0.893
0.675
0.607

0.764

*correlation coefficients for 4 or 5 year mean of pollutant scores.

Table 3. Correlation coefficients for the 17 monitors using annual
calendar year averages and 24 hour peak concentrations.
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Coefficient of Variation for Arrowhead Indices

3 4

.23

.64

.20

.53

.28

.87

.33

.69

5 6 11 8

.28

.49

.23

.63

.22

.41

.10

.24

.16

.34

.11

.22

.22

.55

.16

.20

Table 4. Coefficients of variation and maximum coefficeint of variation
for 17 monitors and 4 (sulfur) or 5 (TSP) years of data. See
Table 1 for definition of indices.

Coefficient of Variation for Exceedence Measures

Averaging time in Hours

1 3 8 24 72 168 336

.15

.46

.15

.38

.16
.47

.16

.42

.18

.50

.28

.61

.22

.58

.73
1.3

n.a. n.a. n.a. .19
n.a. n.a. n.a. .57

.23

.54

1.4
2.0

.35

.89

.29 .35

.99 .99

.56 .81
1.4 2.3

* Not calculated.

Table 5. Coefficients of variation and maximum coefficeint of variation
for 17 monitors and 4 (sulfur) or 5 (TSP) years of data for
exceedence indices. Index El is amount of time above annual
NAAQS. See Table 1 for other definitions.
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90th Percentile

Averaging Time in Hours

1 3 8 24

99th Percentile

Averaging Time in Hours

1 3 8 24

Coefficient of Variation

.17 .18 .18 .18

.043 .044 .044 .046
.28
.041

.29 .30 .29

.045 .053 .061

Two Way Analysis of Variance *

8.8
0

5.0
0

9.0
0

5.2
0

8.8
0

5.1
0

9.3
0

4.6
0

.72

.55

5.8
0

.30

.83

4.5
0

1.2 7.0
.31 .001

4.2 2.2
0 0

* d.f. for years = 3
d.f. for monitors = 16

Table 6. Analysis of 90th and 99th percentile concentrations at different
averaging times. Coefficient of variation and results from two-
way analysis of varience tests.
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Estimation

Technique

Closest

TSP

Index 4 Index 6

-0.022 (.89) 0.383 (.80)

Sulfur Dioxide

Index 4 Index 6

0.324 (.93) 0.480 (1.06)

Averaging
2*
3
4
5

-0.078 (.62)
-0.091 (.51)
-0.060 (.40)
-0.075 (.35)

0.189 (.69)
0.195 (.54)
0.123 (.46)
0.168 (.43)

0.270
0.239
0.279
0.275

(.88) 0.372 (.95)
(.72) 0.443 (.79)
(.64) 0.479 (.73)
(.58) 0.472 (.69)

Triangulation -0.044 (.97) 0.397 (.87) 0.057 (1.08) 0.422 (.97)

* Number of monitors used in averaging scheme.

Table 7. Correlation coefficients between predicted scores and actual
pollution scores at the 17 monitors for several estimation techniques.
Correlations for 4 years (sulfur dioxide) or 5 years (TSP) of scores at
the 17 monitors. Averaging schemes use the closest 2, 3, 4 or 5
monitors, with weights equal to inverse of distance. The triangulation
scheme uses 3 monitors in half gradient extrapolation (see text).
Standard deviation of predicted scores/standard deviation of actual
monitor scores in parentheses, giving indication of compression or
expansion of range for the different estimation techniques.
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Figure 1. The Chestnut Ridge area in mid-western Pennsylvania. Sites of
air pollution monitors and power plants are indicated. Study region
is outlined with double lines.
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Figure 2. An arrowhead profile displaying sulfur dioxide concentrations
measured at monitor 8 in 1978. The log of sulfur dioxide
concentration in parts per billion is on the ordinate and log of
averaging time is on the abcissa. Six lines on the plot correspond to
various percentile groups which portray the percentage of time that
ambient concentrations were not exceeded. These range from the
uppermost line, the 99th percentile, representing the second highest
pollutant concentration at that averaging time, to the bottommost
line, the 1st percentile, representing the second lowest pollutant
concentration. Other percentiles are indicated (16, 50, 84, 90). The
16th and 84th percentiles represent one standard deviation below and
above, respectively, the mean, assuming lognormal distribution of
pollutant concentrations. Profile uses running averages for all
averaging time periods.
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Figure 3. Four arrowhead profiles at monitor 1 for TSP. The log of TSP
concentration in grams per cubic meter is on the ordinate and log of
averaging time is on the abcissa. Profiles show six percentile groups:
99th, 90th,. 84th, 50th, 16th, and 1st. These arrowhead profiles
illustrates the relationship of pollutant measures at different
percentile groups and averaging times by providing a visual
interpretation of all pollutant parameters with the exception of the time
sequence of events. The profile in Figure 3a is pointed and "sharp,"
showing a fairly constant level of air pollution. Figure 3b displays a
profile which is "broad" and "blunt," having wide variation in pollutant
concentrations with both both high or "dirty" episodes as well as low or
"cleansing" periods. Figures 3c and 3d show significant cleansing by very
low pollution in low percentiles.

- 31 -



Figure 4a. Pollutant isopleths for 1978 annual average sulfur dioxide
concentrations in the Chestnut Ridge area. Monitor numbers are indicated.
3 hour peak concentrations (Index 4) above annual year averages (Index 6).

Figure 4b. Pollutant isopleths for 1978 annual average TSP concentrations
in the Chestnut Ridge area. Monitor numbers are indicated. 24 hour
concentrations (Index 4) above annual year averages (Index 6).

peak
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Figure 5. Scatterplot of calendar year averages of sulfur
TSP concentrations for 4 years at the 36 districts.
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Figure 6. Relationship of sulfur exceedence measures. Mean of 4 years of
monitor scores. Exceedences at different concentrations versus
lowest concentration exceedence (30 ppm) on log scale. Fluctuations
of exceedences show that the frequency of high peak concentrations
is not highly correlated with the frequency of lower peak
concentrations or averages.

- 34 -



References

1. Douglas, J.W.B., et. al., "Air Pollution and Respiratory Infection in
Children," British Journal of Preventative Medicine, v.20,,pp.l-8, 1966.

2. Lambert, P.M., et. al., "Smoking, Air Pollution, and Bronchitis in
Britain," The Lancet, pp.853-7, April 25, 1970.

3. Ruane, M., et al., "Design And Implementation of a Supplementary Control
System," M.I.T. Energy Lab Report Number 80-033, December 1980.

4. Larsen, R.I., "A New Mathematical Model of Air Pollution Concentrations,"
Journal of the Air Pollution Control Association, v.19, pp.24-30, 1969.

5. Batterman, S.A. "The Characterization of Ambient Air Pollution For
Stochastic Health Models," M.I.T. Masters Thesis, Department of Civil
Engineering, July, 1981.

6. van der Lende, R., et. al., "The Relationship Between Air Pollution and a
Decline in Lung Function," paper presented at the Annual Meeting of the
Air Pollution Control Association, Philadelphia, July 20-8, 1981.

- 35 -

-i I-~- l-iiO IR - - i -- I;r --ft~-~L~i=LP-r-.-- _~_____ ~ _ __ ~


