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Section 1

INTRODUCTION

Electric utility planning has undergone significant changes during the

past decade. From a period in which capacity expansion planning was

based upon cost minimization techniques operating in an environment of

relative certainty, expansion planning has evolved into a complicated

arena. Management decisions now require weighing short- and long-term

policies for supplying electrical power, balancing present certainties in

generating alternatives with future uncertainties in new technologies, as

well as analyzing complex environmental regulations and siting

constraints in the utility's decisions to develop generating capacity.

In addition, there is now far greater uncertainty in both the rate of

growth of demand for electrical power and the potential for power

generation by both small and large cogenerators.

Within this background of evolution and uncertainty EGEAS is planned to

provide a state-of-the-art flexible software system for electric utility

capacity expansion planning which will utilize a common data base and

control program for both a set of core analysis alternatives and a set of

modular, advanced feature packages. The system will be based upon

selected existing operating and capacity expansion software as well as

upon software developed during the length of the contract.

EGEAS is based upon two currently available but independent optimization

packages, GEM (linear programming) developed at MIT and OPTGEN (dynamic

programming) developed by Stone and Webster Engineering Corporation. In

addition, EGEAS will utilize the operating system model SYSGEN developed

at MIT. The complete EGEAS structure will incorporate a third

optimization algorithm, Generalized Benders' decompositon, and two other

analysis options, Year-End Optimization and Prespecified Expansion
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Pathway as portions of the overall system giving five analysis options.

The data structure of the MIT GEM model will be expanded and evolved to

be accessed by all five analysis options.

In addition to the core structure, EGEAS will contain a highly flexible

interface structure to incorporate submodeling capability in analysis of

renewable energy technologies such as solar and wind; storage

technologies; financial data beyond that traditionally included in

capacity expansion models; two region interconnections; environmental

screening capability and alternatives for load modification. Each of

these advanced features are to be developed with interface

characteristics capable of being adapted to varying levels of detail in

modeling sophistication. While not included as a portion of the current

development work the modeling structure is designed such that at a later

date a portion of or the total EGEAS structure can be made interactive.

A description of the objectives of each of the major components of EGEAS

can be found in Section 11.2. These objectives are the yardstick against

which the success of EGEAS will be measured.

The report which follows covers the progress during the first four months

of the project. It summarizes the review and analysis of the utilities'

requirements for capacity analysis tools, presents the status of

development of the EGEAS data base and optimization development, reviews

the work to date on development of advanced features for financial

analysis, storage, interconnection, load modification, and other concerns

such as enviroronmental issues. The report has been written to represent

a cut through work in progress. It is however intended to be a stand

alone document that will allow the reader sufficient information both to

understand the underlying structure of EGEAS and to evaluate the first

steps in carrying out its overall objectives.

Throughout the project we will be maintaining a consistent vocabulary.

The two most significant terms used within the report are:

A. Expansion Alternative: The set of data developed to describe one of

the choices available to the utility for meeting its long-range planning

requirements. This includes such data as:
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Physical Description

Financial Characteristics

Environmental Restrictions/Costs, etc.

B. Analysis Option: One of the five optimizing/nonoptimizing tools

included within EGEAS.

Linear Programming

Dynamic Programming

Generalized Benders' Decomposition

End Year Optimization

Prespecified Expansion Pathway
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Section 2

UTILITY NEEDS ASSESSMENT

2.1 INTRODUCTION

The original EGEAS proposal contained an overall concept that was based

on combining the past experience of MIT and Stone and Webster in capacity

expansion planning to meet the future planning needs of the utility

industry. Prior to the final design of the EGEAS system a set of

discussions were held with advisory board members to assess their

projected modeling needs into the decade ahead. A number of such

discussions have taken place (see Appendix B for a complete listing);

this chapter summarizes the results of these conversations and discusses

briefly the changes in EGEAS proposed as a result of this needs

assessment. This chapter does not attempt to summarize explicitly the

statements of the individuals or institutions contacted and should not be

interpreted as a consensus of their opinions. It also does not purport

to cover all of the issues discussed in the meetings but rather

concentrates upon those issues which arose several times either at the

suggestion of MIT/SWEC or the host utility. Everyone viewed the problem

areas discussed from a different perspective and, quite naturally, would

like to see EGEAS evolve in somewhat different directions. This chapter

represents an MIT/SWEC perspective which takes into consideration the

basic building blocks, GEM and OPTGEN.

Discussions will be presented in terms of the following categories:

- Common Data Base, Multiple Options

- Renewable Technologies, Nonexpansion Alternatives

- Financial

- Environmental

- Interconnections
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- Sensitivity Analysis, Uncertainties

- Input/Output

- Maintenance of Code, User Training

This chapter concludes with a summary of those points and recommendations

which will affect the final shape of EGEAS.

2.2 COMMON DATA BASE, MULTIPLE OPTIONS

The basic philosophy underlying EGEAS is to have multiple expansion

analysis options built into the codes, all working from a common data

base.

In general, the discussions indicated that the common data base, multiple

options concept was potentially extremely desirable although there was

some concern expressed about its feasibility. A major concern was

expressed on whether inexperienced users could and/or would make

intelligent choices among the various options and thereby correctly model

their expansion problem. With the present design philosophy it is clear

that inexperienced users will be able to misuse the options and generate

bad results either in terms of wasting computer time-choosing too

sophisticated a modeling procedure--or worse, generating invalid output

by using an overly simplified option that does not yield acceptable

results for the problem of concern.* Safeguards will be considered,

though, as discussed below, user education is likely to be the more

efficient solution.

2.3 RENEWABLE TECHNOLOGIES, NONEXPANSION ALTERNATIVES

EGEAS is designed explicitly with the ability to study renewable

technologies with a particular emphasis on solar.

*It should be noted that even a computer code with only one fixed option
can also be misused if put in the hands of an inexperienced user, because
if there is only option, the user may be tempted to apply it to answer
all problems.
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The discussions strongly emphasized the importance and need for an

ability to study renewable technologies and it was stated that such a

capability would make EGEAS much more desirable than any existing

computer code. There was also a particularly strong expression of a

need for utilities to be able to explore nonexpansion alternatives, such

as load management, customer generation, and fuel switching.

As a result of these discussions and our own thought in this area, we

propose to restructure our general approach and software development so

that nonexpansion alternatives and renewable technologies are given equal

weight in the overall concept along with traditional, central-station

fossil, nuclear, etc.. This does not imply a need to start all over with

the EGEAS concept but it does indicate a real change in point of view and

philosophy, as was corroborated during the January 1980 review meeting.

2.4 FINANCIAL

The EGEAS project is funded to provide a paper study which will describe

alternatives on how financial considerations can be modeled and factored

into the EGEAS structure. Furthermore, the EGEAS data base structure is

to be developed so that a financial modeling capability can be added

later.

The discussions showed that the degree and type of interactions presently

existing in utilities between expansion analysis and financial modeling

are highly variable (ranging from being very important to being

effectively nonexistent). It was universally agreed that incorporation

of some financial modeling capability within the EGEAS structure would be

highly desirable. However, there was no clear indication of the best

alternative. Chapter 6 presents initial proposals for incorporation of

financial considerations into the EGEAS optimization options.

2-3



2.3 ENVIRONMENTAL

EGEAS is to have an environmental impact modeling capability based on the

concept of generic sites which have specific air, water, land use, etc.

characteristics and limitations but which are not explicitly located.

The discussions did not emphasize or concentrate on environmental issues;

there was general agreement that the generic siting approach was the most

functional and implementable way to proceed within the EGEAS structure.

2.6 INTERCONNECTIONS

EGEAS is to be developed to have one or more forms of interconnected

system modeling capability.

The discussions indicated that interconnected modeling capability is

important to many utilities. However, the technical issues on how this

modeling capability should be implemented were not covered. Chapter 9

presents the current approach for EGEAS.

2.7 SENSITIVITY ANALYSIS, UNCERTAINTY

EGEAS is to have automatic sensitivity analysis capabilities in order

that the user may analyze how uncertainties in inputs propagate through

the optimization and affect outputs.

The discussions indicated a wide variation in the types of sensitivity

analyses presently being carried out by the utilities with apparently no

one attempting to follow a formalized procedure. There appeared to be

agreement that automatic sensitivity analysis would be useful. It was

not clear whether or not it is desirable to provide "ultimate decision

makers" with simple, single solutions or with a range of solutions that

have uncertainty associated with them. The value to the decision maker

of working within a formal, probabilistic framework was not clear.

Chapter 10 discusses uncertainty and sensitivity analysis in greater

depth.
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2.8 INPUT/OUTPUT

EGEAS is to be explicitly coded only to run in a bulk process fashion.

However, the software is to be developed such that an interactive

capability can be added later if desired.

The discussions emphasized the need for an input process that is simple,

self-correcting, error-detecting, etc. There was real fear that

inexperienced or sloppy users would generate bad output unless the input

procedures were "almost foolproof." A relatively small amount of time

was spent discussing output options although this is, of course, an

important area in the overall success of the EGEAS project.

2.9 MAINTENANCE OF CODE, USER TRAINING

The original EGEAS proposal and the present EGEAS contract does not cover

or consider the maintenance of the code and user training requirements

after the code has been developed and delivered.

The discussions indicated serious concern on how the code would be

maintained and users trained. It was felt that one institution should be

responsible and that this would not be a trivial task. If the code is as

successful as it is intended to be, various users will develop their own

specific variations on the options, and hence after a while there will be

multiple versions of EGEAS. Some mechanism to maintain cohesion and to

facilitate exchanges between users will be needed.

2.10 SUMMARY AND RECOMMENDATIONS

Two main points and issues came from the utility needs discussions. The

first main point is that it is necessary, in all likelihood, to modify

and restructure our thinking and code development so that renewable

generation technologies and nonexpansion alternatives are given equal

weight in the development of EGEAS along with the more conventional

central-station, fossil, nuclear, pumped hydro, hydro, etc. This by no
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means implies a starting over of the concepts but it does imply a change

in emphasis and philosophy.

The second area of concern centers on the basic philosophy of EGEAS being

a multiple option software package; the problems associated with

developing appropriate intput/output data interfaces for such a code; and

the dangers of placing such a sophisticated software package in the hands

of what could be relatively inexperienced users. This, combined with the

express need for someone to be in charge of maintenance of the code,

leads to the following recommendation.

EGEAS will remain a multi-option code. The input and output will be made

as versatile as possible consistent with the constraints of a bulk

processing computer code. Some generalized error-detecting procedures

will be incorporated for the inputs but no hard, problem-specific

constraints and tests will be incorporated. After the code is delivered,

EPRI should specify one organization with both software and generation

expansion analysis technology capabilities to maintain the code and to

conduct user training sessions. This organization should also furnish

services whereby they will talk with specific utilities to learn their

specific needs, and on the basis of those needs determine which

particular option or combination of options are most appropriate for that

utility. The maintenance organization will, for a small fee, develop an

input capability which is tailored specifically to the needs of the

specific utility and the options that are appropriate to that utility.

The actual computer code given to that utility would then be much safer,

much smaller, have fewer options, and would have a more foolproof input

capability. This organization could also adapt the output software needs

of particulary utilities. Such a function could be located at the

Software Center at EPRI, at an individual lead utility, or within a

private firm or organization.

In summary, the Utility Needs Assessment phase of the EGEAS project

focused the project more tightly to its basic structure but did not serve

to alter dramatically the perceived EGEAS structure or modeling

requirements other than as stated above. These points have been

discussed in greater detail at the January 1980 review meeting.
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Section 3

REVIEW OF SELECTED UTILITY PLANNING MODELS

3.1 INTRODUCTION

The objective of this chapter is a review of selected capacity expansion

models. The review of six representative, state-of-the-art capacity

expansion models by S. Lee et al., (8) is attached as an appendix to

this report. Lee et al. is the result of an extensive study which need

not be duplicated. We therefore assume that this chapter will be read as

an addition to the review of WASP, OPTGEN, U. Mass Model, MIT Model, PUPS

and MNI-GRETA by S. Lee et al.

3.2 SCOPE

Six capacity expansion models are briefly presented here, selected

because they include features that represent the state of the art and

deal with issues of cardinal interest to the EGEAS project, like system

reliability, uncertainties, financial considerations, environmental

effects, interconnections, transmission costs, treatment of end effects,

and siting. The following models will be compared in a matrix of

attributes followed by short individual model descriptions:

o GMP - A Generation Mix Planning package which is an adaptation of WASP

by the Southern Company.

o WAGP - An automatic expansion program recently developed by

Westinghouse which utilizes a combination of screening and branch and

bound logics to select the optimum capacity expansion plan.
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o OGP - An Optimized Generation Planning program developed by General

Electric which utilized operation models together with a myopic

one-future-period (year) optimization technique repeated to describe a

20-year capacity expansion plan.

o 0/U - A model developed by Decision Focus, Inc. for EPRI with the

objective of studying costs and benefits of Over/Under Capacity in

Electric Power Systems Planning.

o The RPI model - An energy appraisal model developed at Rensselaer

Polytechnic Institute which utilizes an LP formulation to study the

effects of environmental constraints on the optimal capacity expansion

plan.

o The BNL - REFS Model - A siting LP model developed by Brookhaven

National Laboratory to allocate capacity to counties based on

environmental impacts, transmission, and coal transportation costs.

3.3 MATRIX OF INTER MODEL ATTRIBUTE COMPARISON (attached)

3.4. MODEL SUMMARIES

3.4.1 The Generation Mix Planning Package (GMP)

The Generation Mix Planning Package (GMP) is an adaptation of the Wien

Automatic System Planning Package (WASP) program developed by the

Tennessee Valley Authority (TVA). GMP evaluates alternative generation

sources from three standpoints: reserve or reliability, operating cost,

and investment cost. The basic structure of the Generation Mix Planning

Package is represented in Figure 3.1.

The Generation Mix Planning Package was developed as a series of six

separate programs to allow the user to monitor the step-by-step results

of data gathering and processing during the conduct of a generation mix

study. Each program may be run as a "stand-alone" program, or any number
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MODEL

ATTRIBUTE GMP WAGP OGP 0/U RPI Model BNL-REFS

Solution Meth. Dynamic Pr. Screening & Myopic one future Prespecified LP (simult. LP
Branch & bound period opt. mix. min. cap. and O&M)

Prob. Size Limited Limited Limited Limited Limited Limited

Available Under devel- NO NO NO NO NO
subopt. plans opment

Reliability LOLP Options, determ. LOLP Unserved * NONE
Est. Probabilistic or probabilistic Probabilistic Energy

LOLP Probabilistic

System Reliab. Exogenous Exogenous Exogenous Exogenous Exogenous Reserve Marg.

Variable Costs Probabilistic Determ. or Prob. System Operation Probabilistic Sequential Exogenous
Prod. costing Prod. costing simulation* Prod. costing Multiple Objective

Technique

End Effects NO (?) NO YES * NO
Accounting

Financial YES, post plan YES, Constraints YES, post plan YES, detailed NO NO
Considerations selection selection inter-

interphase phase with
with financial financial model
model

Environmental YES, Constraints Reporting only YES, objec- YES, objec- YES,
Effects tive function tive function Constraints

3.3. Matrix of Inter Model Attribute Comparison
*insufficient information available



MODEL

ATTRIBUTE GMP WAGP OGP 0/U RPI Model BNL-REFS

Siting NO NO NO NO NO YES

Hydro YES YES YES * YES* YES
Alt.

Storage YES * YES * NO* YES

Thermal YES YES YES YES YES YES
Alt.

Unconvent. NO NO NO NO NO NO
Alt.

Inter- YES * NO NO* NO* NO*
connection

Comput. High Moderate to High Moderate Moderate Moderate Moderate
Burden to Low

3.3. Matrix of Inter Model Attribute Comparison
*insufficient information available

(continued)
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of programs may be run sequentially as individual steps in a production

job stream.

The Expansion Configuration Generator Program allows the planner to

direct the area of study to expansion alternatives which he believes to

be most economic or necessary to satisfy defined constraints. This can

be accomplished by specifying minimum and maximum reserve requirements,

setting restrictions on the periodic and annual loss-of-load

probabilities, and/or limiting the minimum or maximum number of units of

a particular expansion alternative that can be installed in any given

year. This program forms a list of all allowable system configurations,

based on constraints defined for each year in the study.

The Merge and Simulate Program calculates total yearly operating costs of

each of the configurations generated by the Expansion Configuration

Generator program using a probabilistic simulation technique.

Files generated by the Fixed System, Variable System, Expansion

Configuration Generator, and Merge/Simulate programs are then used by the

Dynamic Program to determine optimal generation expansion policies. A

dynamic programming algorithm is used to calculate the best expansion

policy.

3.4.2 The Automatic Expansion Program (WAGP)

The automatic expansion program (WAGP) has been recently developed by

Westinghouse. It uses a combination of screening and branch-and-bound

logics to perform the optimal capacity selection task. The program can

handle up to seventy unit addition types with varying running times,

depending on the subalgorithms used. It is modular by design and allows

the user to choose from a range of algorithms depending on the accuracy

of the answer desired and the assumptions built into the input data.

Thus a deterministic or probabilistic production costing routine may be

used, while on the capacity selection side a global optimization or a

year-by-year optimization algorithm may be chosen.
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The objective function minimized is the present worth of capital and

operating costs, while transmission costs may be included if desired.

Constraints include reliability, retirement-commitment, production, cash

flows, environmental, and mix-constraints. The interaction of the seven

modules contained in WAGP is depicted in Figure 3.2.

3.4.3 The Optimized Generation Planning Model (OGP)

The Optimized Generation Planning Model has been developed by General

Electric and employs a year-by-year optimization routine which ranks

various alternatives to work through a 20-year expansion plan.

Three submodels dealing with reliability evaluation, production costing,

and investment costing are used in an iterative fashion in the process of

determining minimum cost additions of generating capacity in each year.

The structure of OGP and the interface of the submodels is presented in

Figure 3.3.

3.4.4 The Over/Under Capacity Model (0/U)

The 0/U model was developed for EPRI by Decision Focus, Inc. during a

study of costs and benefits of Over/Under capacity in electric power

system planning.

The study emphasizes decisions concerning the alternative levels of

capacity additions required to meet uncertain future demand. Alternative

levels of capacity additions can be characterized by a range of

alternative planning reserve margins. The effects of alternative

planning reserve margins are captured in the model that computes such

terms as outage cost, environmental cost, and revenue requirements (fixed

and variable costs charged to customers).

The structure of the computer model is summarized in Figure 3.4. As

illustrated, the model consists of four main component models: the

demand uncertainty, capacity expansion decision, electric system, and the

consumer preference models. The overall model is used to evaluate
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different planning reserve margins shown at the bottom of the figure.

The model computes the total cost to consumers of various levels of

planning reserve margin and summarizes this information in the form of a

U-shaped curve, as illustrated at the right of the figure.

Capacity expansion decisions and consumer cost calculations are both

based on an explicit representation of demand uncertainty. Instead of

assuming a single demand forecast for each tuture year, as is the current

practice in power system planning, the demand uncertainty model

explicitly models a large number of possible demand trajectories over

time that specify the high, medium, low demand growth outcomes in each

future year. The range of uncertainty is determined using a formal

interview process for quantifying expert information in terms of

probabilities.

Based on the range of demand uncertainty, the resolution of that

uncertainty over time, the input planning reserve margin, and an input

planning technology mix, the capacity expansion decision model simulates

the capacity decision process over time. Flexibility in the planning

process to respond to higher or lower than expected demand growth is

explicitly represented as new units pass through separate planning stages

of studies, licensing, and construction. For each planning reserve

margin, the capacity decision model simulates this planning process in

each time period of each possible demand trajectory.

Based on the resolution of demand uncertainty and the installation of new

capacity over time, the electric power system and consumer preference

models compute the cost to consumers. The electric system model has two

parts. First, a probabilistic production simulation model computes

system variable costs over time using a method currently employed by many

utilities. Outage energy and environmental effects are also computed.

Second, a fixed-charge (financial) model computes the fixed charges to

customers over time. The fixed charges may include extra financial

charges which customers must bear if the capacity expansion plans under

evaluation strain the utility's financial resources.
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In the consumer preference model, critical subjective value judgments,

which ultimately cannot be avoided in capacity planning, are explicitly

represented and used to determine a single "bottom line" consumer cost.

To determine this cost, trade-offs must be made among the cost of

electricity (fixed plus varable costs), outage energy, and environmental

effects; among consumers costs in different time periods; and between

certain and uncertain consumer costs.

3.4.5 The Energy Appraisal Model Developed at RPI

The objective of the Energy Appraisal Model developed at Rensselaer

Polytechnic Institute is to find a generation expansion plan for an

electric system which minimizes the present worth of power production

costs, subject to a set of constraints, including (among others)

1. Coal and/or oil consumption,

2. Emissions of a number of pollutants,

3. Expected emission-related mortalities, and

4. Expected property damage;

or which minimizes one of these listed factors without increasing the

present worth of power costs by more than a specified percentage above

its value from a prior run.

The algorithm used is a linear program (LP) which optimizes both

generation capacity expansion and operating policy simultaneously, using

a "sequential multiple objectives" technique. A set of routines

disaggregates some of the inputs.

Input requirements include 12 categories of aggregated supply variables

(including the fuel costs, capital costs, 0 and M costs, forced outage

rate, and plant outage rate for each expansion candidate) and two

categories of demand variables (growth rate of peak load, load duration

curves).
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The output capabilities consist of a set of factors specifying the

expansion plan and operating characteristics selected, including:

1. Installed generation schedule by year.

2. Operating schedule by year for each plant type.

3. Coal consumption schedule.

4. Oil consumption schedule.

5. Expected emission-related mortalities.

6. Expected property damage.

(The last 4 factors are calculated as simple functions of the first 2.)

3.4.6 The BNL-REFS Model

The Regional Energy Facility Siting Model developed at Brookhaven

National Laboratory focuses on determining general future siting patterns

for power generating facilites. It allocates generating capacity to

counties based on a minimization of coal transportation and transmission

costs and subject to constraints of physical resources and environmental

quality.

The model uses a linear programming algorithm, and has the following

input requirements:

o Generation mix,

o Demand per county,

o Inter-county transmission costs,

o Existing railroad capacity limits by gateway county,

o Stream flows,

o Environmental standards (NSPS), and

o County Exclusions.

The output capabilities consist of generation capacity by generation type

(and cooling technology) for each county. Mapping capabilities are under

development.
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3.5 CONCLUSIONS

The following conclusions could be drawn from the comparison of the

models summarized above.

- A modular structure allowing either independent use of code components

to perform partial analyses or choice of the level of detail/accuracy to

be applied to generation expansion analysis is a desirable feature. GMP

and WAGP seem to make good use of that feature but it is not clear

whether all modules can operate from a common data base.

- Solution methods are related to trade-offs between accuracy in the

problem's representation/solution and the computational burden.

Simplification in the optimization routines often allows increased detail

in dealing with other than strictly engineering-economic aspects of

capacity expansion. For example, the 0/U model looks at financial

considerations and deals with uncertainties and consumer preferences at a

relatively advanced level of detail. The price for doing that, however,

is the use of a simplified simulation routine to determine new capacity

additions.

- None of the models reviewed has the capability of providing the user

with suboptimal plans. This capability is related to the solution method

used. Dynamic programming as well as similar algorithms, which construct

an enumeration of alternatives before selecting the optimal one, are more

apt to modification so that near-optimum plans are described.

- System reliability estimates are internal to those models that utilize

a separate production simulation model. The same holds for variable

costs.

- Environmental effects are treated in detail and are embedded in the

optimal plan selection algorithm only by the RPI and the BNL models.

These models, however, utilize linear programming to derive the optimal

plan, and thus contain a limited representation of production costing

considerations.
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- Various other aspects of interest in capacity expansion analysis like

transportation costs, uncertainties, siting, pumped hydro and storage,

interconnections, transmission and distribution are addressed by some

models, but no model exhibits adequate representation of all of them.

- Unconventional alternatives like solar and wind energy transformation,

load management, cogeneration, and others which are not related to

generation capacity with constant availability, are not addressed by any

of the models summarized. A survey of production cost models has pointed

at two models which have been modified to handle solar energy capacity

additions; they are SYSGEN developed at MIT and PROMOD developed by

Energy Management Associates and augmented with a solar model, designed

as a cooperative effort with Stone and Webster and Southern California

Edison Company. The incorporation of solar energy alternatives into a

capacity expansion model may certainly be achieved through the use of a

proper production cost model as part of a generation expansion code.

Chapter 7 of this report presents the general approach to be implemented

in EGEAS which will allow analysis of unconventional alternatives.
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Section 4

DATA BASE DESIGN

This chapter focuses on the issues and trade-offs to be considered in the

design of the EGEAS data base. A very general data structure is then

presented. Some of the issues presented here stem from discussions held

during the Utility Needs Assessment Task; others from the Review of Other

Models and the Code Breakdown Tasks.

4.1 DESIGN CONSIDERATIONS

Ideally, the data base designed for a given model should contain only the

parameters which are necessary and sufficient to allow for the analysis

to be performed. The structure and detail should reflect the certainty

of the available input data and the modeling assumptions to be used.

The EGEAS data base is particularly difficult to design in this regard,

since multiple models of similar scope are to access this data base, each

with drastically different model assumptions and each with different

levels of detail required in various areas. Further, multiple

independent users are to access this model, each of whom has different

data availability as well as different types of analyses to be

performed. The tendency to be "all things to all people" must be

mitigated by finding unifying data base assumptions and requirements and

by externalizing wherever possible (with well-defined interfaces) issues

relating to but not directly within the scope of usual expansion planning

analysis performed by utility system planners (e.g., financial/corporate

modeling, demand forecasting, etc.). Special considerations required by

specific users cannot be dealt with as design constraints but rather as a

lower-priority design consideration.
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The following section discusses some of the design considerations used in

structuring the EGEAS data base.

4.2 SCOPE

EGEAS is designed to focus on the analytic needs of the utility system

planner. Growth patterns, the world oil situation, increased regulation,

growing levels of interconnection, environmental issues, the changing

financial picture, make a utility system planner's job closer to one of

finding any feasible capacity expansion plan at all as opposed to one of

finding a near optimal, risk-averse solution out of a set of many

feasible ones. These considerations which lie outside the conventional

analyses for reliability analysis, production cost simulation, and

standard engineering/economics must in some way be addressed by EGEAS.

Conversely, the costs, complexity, and other problems associated with

massive, diverse data requirements cannot be justified in many of the

analyses which planners might perform. (A utility with predominantly

hydro capacity might not be interested in environmental issues regarding

thermal emissions from nuclear power plants.)

To minimize the impact on the basic EGEAS data base and increase

flexibility, increases in scope will be handled by creating interface

extensions of the data base which can be turned on or off in much the

same way as the GEM data base handles the environmental extension to the

conventional expansion planning parameters. Figure 4.1 shows the general

structure of the GEM data base. GEM could be run as a conventional

planning tool if given only the data structure of the economic branch of

the tree. For environmental issues to be handled, the environmental data

structure would have to be established in core. No change to the

economic structure would be incurred by adding the environmental

structure. Figure 4.2 shows how the programs access the data base. The

areas inside the dotted line represent the environmental portions of the

GEM model.
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Financial considerations (i.e, beyond that of standard

engineering/economics) can be handled in a similar manner as can

generation profiles for solar technologies and perturbations to load

given schemes for load modification. Thus, in terms of scope, the EGEAS

data base structure could evolve into a structure as shown in Figure 4.3.

4.3 LEVEL OF DETAIL

Figure 4.2 shows two areas boxed in by dotted lines. These represent

different levels of detail which can be accessed within the environmental

data base. The box showing the input into the LP is composed of data

required for simple representation of environmental emissions and

constraints. If full environmental screening is to be performed using

dispersion models to calculate ground-level concentrations, maximum

temperature rises in water plumes, etc., the more extensive site data are

required. These site data are not required if the environmental

screening models are not to be run.

The same type of approach will be used in structuring the EGEAS data base

and its interface extensions. For example, an interconnection could be

input in the form of a very reliable unit or it could be represented in

much more detail as described in the section on Interconnections. The

level of detail employed for a given analysis would depend on the data

availability, reliability, and on the modeling constraints.

There must be consistency of assumptions between the various levels of

detail (e.g., if both load duration curve and energy are supplied along

with a peak load forecast then the area underneath the load curve should

equal the energy). Also the trade-offs between complicated data

retrieval routines and complicated data structure must be evaluated.

4.4 RELIABILITY OF DATA-MAINTAINABILITY-EASE OF MODEL USE

Another consideration in the design of the EGEAS data structure is the

extent to which certain types of data can be validated. Whereas last
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year's hourly loads can be verified, the loads projected for the 20th

year of a 20-year forecast are at best an educated conjecture. The EGEAS

structure will attempt to categorize data as known, base projection, or

study variations.

By so doing, the information on the known system can be accumulated and

maintained in a data base which is different from that containing
scenario data. Projections based on extensive study or which simply

represent "best engineering guess" can be established and reviewed in a

similar manner. These categories of the data base will be relatively

stable. The study variation category is where perturbations to the known

and base projection categories will be input for a particular study.

Data accessing routines would automatically substitute information in the

study variation data base for that in the known and the base projections

data bases when such data is called for during program execution. This

approach minimizes the set-up time required for a particular run, while

also minimizing sources of error due to data handling.

To facilitate information retrieval, data accessing routines should be

developed. These low-level routines could be called by user-written

programs thus allowing special programming requirements of specific

utilities to be modeled more precisely and to be interfaced more easily
with components of EGEAS. The data base reporting routines would be

provided to list information in the basic data base and its interface

extensions as well as to create summary reports. Plotting capabilities

should also be used for better data base checking, as well as for output

analysis. This, however, is beyond the scope of this contract. Routines

which will check the data base or internal consistency (checking cross

references, and ensuring consistency between levels of detail, etc.) as

well as reasonableness of data (range checking) will be provided.

4.5 SUMMARY

Considerations being studied in designing the EGEAS data bases have been

presented above. Modularity has been proposed, addressing scope

(interface extensions to data base), reliability of information (known,
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base projection, study variation), and levels of detail. Data accessing

routines are proposed to insulate programs from the data structure

complexity, when needed, and to facilitate development of programs by

EGEAS users to address the specific analytical needs of individual

utilities. Using the above guidelines, the EGEAS data base will

hopefully develop into a flexible, adaptable, easy to access/use data

system for utility planners.
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Section 5

OPTIMIZATION TECHNIQUES STATUS

The following is a summary description of the three optimization

techniques which will be available to the EGEAS user and a report on

their status. The optimization techniques comprising separate modules

within EGEAS are Linear Programming (GEM), dynamic programming (OPTGEN)

and an application of Generalized Benders' Decomposition. Discussion of

terminal effects treatment and a comparison of the three optimization

options follows.

5.1 LINEAR PROGRAMMING

5.1.1 Status

The MIT Generation Expansion Model (GEM) is a set of generation expansion

planning programs which can be used to analyze and select capacity

expansion plans for electric utility systems. GEM is written in FORTRAN

and has been implemented on the MIT Information Processing Center's

IBM-370/85.

GEM has undergone substantial modification and has been tested in its

modified form on utility data. Further improvements are under

development as part of the EGEAS project, including the possible

integration of financial considerations (constraints and/or objective

function modifications) into the model's structure. GEM in its present

form is scheduled to be used for preliminary test runs by the end of

January 1980, so that the actual inclusion of modifications into the

program's code are subsequently implemented. Modifications are presently

in the conceptualization stage.
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5.1.2 General Description

Among capacity expansion models, GEM exhibits the following unique

characteristics:

o Expansion alternatives are characterized by a plant
type, fuel type, nominal capacity, site type, thermal
pollution abatement technology and air pollution
abatement technology.

o The cost and performance characteristics of air
pollution controls are explicitly incorporated.

o The feasibility of expansion alternatives may be
tested by comparing performance to emission and ground
level air quality standards.

o The required minimum stack height for meeting air
quality standards may be determined by an outside
routine and input into the model.

o The cost and performance of water pollution controls
are explicitly incorporated.

o The feasibility of expansion alternatives may be
tested by comparing performance to water quality
standards in an outside routine.

o The required design characteristics of water quality
control technologies may be determined by an outside
routine and input into the model.

o The incorporation of a site availability constraint.

The following characteristics apply to the more conventional aspects of

the package:

o Plant types can include hydro and pumped storage.

o Incorporates both capacity and energy constraints in
determining the need for new units.

o Incorporates fuel availability constraints.

o Utilizes separate production cost model.
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GEM utilizes a linear programming algorithm to minimize investment, fuel,

and operating costs over the planning period. Operating costs are

represented as a linear function of the capacity of new and existing

plants by means of a capacity factor supplied for each plant during each

time period by an exogenous to the LP production cost model. The

capacity factor is equal to total energy produced by each plant in each

time period, over the length of that time period multiplied by the

plant's capacity. Thus the investment decision is optimized to define an

investment plan consisting of a schedule of plants to be built during the

planning horizon. For each time period in the planning horizon, GEM

simulates the operation of the scheduled system to determine expected

energies and capacity factors. These become new assumptions for a

revised investment optimization, and the iterative process continues

until the investment and operating solutions converge to a consistent,

minimum-cost design.

The linear program contains constraints on peak power, energy, fuel and

emissions/resources. Peak power constraints force capacity addition each

year together with existing capacity, to satisfy an exogenously set

reserve margin. Energy constraints utilize the capacity factor supplied

by the production cost model, to ensure that energy produced each year by

new and existing plants net of pumped hydro losses, does not fall below

expected total energy demand. Similarly fuel constraints use capacity

factors to impose limits on yearly and overall consumption of each fuel.

Finally, emission/resource constraints are also expressed as linear

functions of existing and new plant capacities using capacity factors.

The investment plan is produced as a set of continuous decision variables

representing capacities of various available expansion alternatives added

each year. The production cost model simulates the system operation in

each year to yield new capacity factors different from those used by the

LP. The LP is solved again using the new capacity factors. Upon

convergence, the primal and dual solutions and slack variables are

summarized and made available to the user.
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5.1.3 Technical Description

As already described above investment decisions are made by a linear

programming algorithm while the capacity factors of alternative plants

are determined exogenously to the linear program. Iterative updating of

capacity factors is an option to the user. The capacity factor of

alternative i, installed in period j, during period t is defined as:

ICAPFC Energy produced during time period (t)ICAPFCijt = Length of time period (t) x capacity

The objective function and constraints utilized by the model are

described below.

5.1.3.1 Objective Function. The objective function for the investment

decisions is the total present worth of all capital, operating and fuel

costs that are incurred with the chosen generation expansion plan. The

capital charges of the existing and committed system are not included

since they are clearly beyond the control of the new plan. Since the

investment decision uses fixed capacity factor assumption, the operating

and fuel costs of the existing and committed system can also be ignored.

The objective function is:

NALT NTP
Min Z = Cij.. * Xij

i=1 j=1

where

NALT = number of alternatives

NTP = number of time periods

C.. = the present worth at the start of the study of all capital,
1 operating and fuel charges incurred for a plant alternative

i installed in the time period j.

Xij = continuous decision variable representing the number of
plants of alternative i beginning operation in period j.

An "alternative" is a combination of several technologies and

environmental choices, and is specified by:
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1. Generation Class

2. Plant Site

3. Fuel Grade

4. Air Pollution Abatement

5. Water Pollution Abatement

Specification of generation class directly implies assumptions on

technology, plant size, fuel type, costs, escalation rates, plant

lifetime, forced outage rates, maintenance and seasonal deratings.

"Periods" are usually, but not necessarily, years. They must be

uniform. An alternative begins operation on the first day of a period

and is retired on the last day of a period.

The costs C.. can be expanded into components as follows:

C (c b + C air + cwater +Cij =c ij c ij c ij r

(Cb + Cair + ater + ext
o j o ij o ic ij

where

b
C.. = present worth total of basic (b) plant capital and fixed
c 13 operating costs (c) for alternative i installed in period j.
cair(ar
C ai = present worth total of air pollution abatement related (air)
c 1 plant capital and operating costs (c) for alternative i

installed in period j.

cwa ter = present worth total of water pollution abatement related
c 13 (water) plant capital and operating costs (c) for

alternative i installed in period j.

b
C. = as above but plant variable operating and fuel costs.O 13

air
Cij = as above, but plant variable operating and fuel costs.o ij

Cwater
i = as above, but plant variable operating and fuel costs.

0 13
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Cext.. = extension period cost. Can be expanded in six components
lJ similar to the above only referring to the extension period.

It is important to note that objective function costs have two components

due to basic alternative costs and environmental costs. In a purely
b b

economic study GEM drops all costs except Cij and C . The extension

period costs are intended to even out distortions which may be introduced

by terminal effects. Extension period costs represent the present value

of an infinite stream of levelized investment costs and operating costs

starting at the end of the planning period. In the present version of

GEM levelized costs and operating costs during the extension period are

taken to be equal to those during the unit's year of installation and the

last year of the planning period respectively. Revising extension period

costs so that they reflect capital and operating cost (fuel, etc.)

escalations during the extension period, is investigated.

5.1.3.2 Peak Power Constraints. These constraints are written to

guarantee that sufficient capacity is available in each period to meet

the demand with an acceptable reliability. The effect of an exact

reliability constraint, which is highly nonlinear, is approximated by

specifying a reserve margin in period t, Mt(O<Mt). The peak power

constraints can be expressed as:

NALT t NCEX
SCAP i * Xij - PEAKt(1 + Mt ) - z CAPCEX k > 0

i=1 j=1 k=1

where

CAP. = peak capacity of alternative i.
1

PEAKt = peak load in period t.

NCEX = number of committed and existing units.

CAPCEXk = peak k capacity of existing and committed units.

Units which have been retired before period t are not included in this

constraint. In effect this constraint causes sufficient new capacity to

be built in a time period to fill the gap between existing and committed

capacity and the peak plus margin requirements. Note that capacity of a

unit does not change with time.
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5.1.3.3 Energy Constraints. This constraint, which ensures adequate

energy is supplied to the customers, resembles the peak power

constraint. Pumped hydro must be handled with care since its energy

comes from other units on the system. The constraint requires that

energy produced in period t minus the losses in energy storage must

exceed energy demand in period t. Algebraically:

NALT t
E z HOURS * ICAPFCij t * CAP. * X -

i=1 j=1

t
E (1/n- 1) * HOURS * ICAPFCijt * Xij >

iePS j=1

NCEX
ENERGY - Z NRGCEXkt

k=1

where

HOURS = hours in time periods.

ICAPFC = capacity factor of alternative i, installed in period j
during period t.

ENERGY = energy demand in period t.

NRGCEXkt = energy of existing or committed unit k in period t.

n = pumped hydro efficiency.

Units which have been retired before period t are not included in this

constraint. The constraint does not allow energy to be stored in one

time period for use in another. It does not limit the pumped hydro

energy supply to base loaded plants.

5.1.3.4 Fuel Constraints. These constraints limit the amount of fuel

which can be consumed by the system in any period t. Fuels are

constrained by grade and type. The constraints are:
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S iFLHR * HOURS * ICAPFCij t * CAP i  ij

j=1 FHCmn

NCEX
< FULMASmn t - E

k=1
FULCEXmnkt

FLHR.1
FHC

mn

FULMASmnt

FULCEXmnkt

= full load heat rate of alternative i.

= fuel heat content for type m and grade n (associated
uniquely with alternative i).

= fuel mass of type m and grade n available in period t.

= fuel mass of type m and grade n used by committed or
existing unit k in period t.

Retired units are not considered. Period fuel constraints, like the peak

load and energy constraints, remove the effects of existing and committed

system from the right hand side and allow the alternatives to use the

remaining fuel supply. Unlike peak load and energy, a total system

constraint can be applied for fuel:

NTP NALT t
E t E i * HOURS * ICAPFCi t

t=1 i=1 j=1 FHCmn
* CAPi * Xij

1 i

< FULMASm-- mnT

NTP NCEX

t=1 k=1
FULCEXmnkt

FULMASmn T = total fuel mass available in planning horizon, type m,
grade n.

5.1.3.5 Emission Resources Constraints. Constraints on the period, or

system planning horizon: total SO2, particulate or heat emissions or

water or land consumption, are similar in form to the fuel constraints.

For example, the amount of SO2 emitted during any period is constrained

to be less than some value. One difference is that the effect of
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existing and committed units is not accounted for. The general form of

the constraint is

NALT t
E ' Q * HOURS * JCAPFCij t * CAPi * Xij < QLIMITtr V r
i=1 j=1 r

where

Qir = emissions or consumption of r-th quantity (SO2,
particulates, heat, land, water) per unit energy for

alternative i.

QLIMITtr = maximum allowable emissions or consumption of r-th
quantity in period t.

Retired units are not considered. The form of the general system

constraint is:

NTP NALT t
Z Z E1 Q * HOURS * ICAPFCij * CAP * X ij < QLIMITTr

t=1 i=1 j=1

where

QLIMIT = maximum allowable emissions or consumption of r-th

Tr quantity during planning horizon.

5.2 DYNAMIC PROGRAMMING

5.2.1 Status

OPTGEN is a dynamic programming capacity-expansion program developed by

Stone and Webster Engineering which has been repeatedly tested on

electric utility data. Test runs in the context of the EGEAS project are

scheduled by the end of January 1980. Work is in progress to incorporate

OPTGEN in the EGEAS structure and make it compatible with the EGEAS data

base common to all modular EGEAS components. Modifications of the OPTGEN

code and/or adaptation of the EGEAS data representation and retrieval

will be implemented to that end.
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5.2.2 General Description

The basic problem solved by OPTGEN is that of developing a generation

expansion plan which minimizes the present worth of the revenue

requirements subject to specified reliability and reserve constraints.

Such a plan is called optimal. There are many other plans, often

numbering in the millions, which also satisfy the constraints. Only one

is optimal, but there are many top plans which cost only slightly more.

One hundred such plans are available for output. However, with the

exception of the optimal plan, there is no guarantee that they form the

true top 100. Backward as well as forward dynamic programming procedures

are used to broaden the number of plans considered. The number of states

allowed in a given year is limited to 200 and optimality is not

guaranteed if the number of states is truncated; however, in most cases,

the best plan is still obtained.

Revenue requirements are made up of two components, the capital costs and

the production or operating costs. The capital costs are the fixed

charges and property taxes of new generating units. The operating costs

include the fuel costs of all generating units and the operating and

maintenance costs of new units. The present worths of these annual costs

are cumulated over the study period and the reference date is the first

year of the period. For comparison of different expansion plans which

may have different capacities in the last year, the capital costs of the

last year are adjusted according to a common criterion, either minimum

reserve percentage or minimum reliability index. The annual costs of the

last year can be projected for a stated period and its present worth

added to the total cost of the expansion plan. This total cost is used

as the objective function of the program, i.e., the program attempts to

minimize this total cost.

A maximum of five alternative types of generating units are allowed by

the program at any one run to develop the optimal expansion plans. Any

differentiation in capacity, energy cost, investment cost, or forced

outage rate constitutes a different type. Thus one may compare units of

the same fuel but of different sizes or one may compare units of
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different types of fuel. By running different combinations and using

engineering judgment, five types are generally sufficient to find the

optimum mix.

The production cost method used is the loading trapezoid. This is a

heuristic method wich models the effect of random forced outages,

maintenance outages, and other operating peculiarities of the system on

the loading of units. Even though the loading trapezoid method does not

treat the forced outages rigorously, it lends itself easily to the

calibration procedures to fit observed data. Committed units may be

installed at any time during the expansion period and existing units may

be retired at any time.

5.2.3 Technical Description

Following is a more detailed description of the objective, constraints,

solution method and production costing of the existing version of OPTGEN,

adapted from S. Lee et al., "Comparative Analysis of Generation Planning

Models for Application to Regional Power System Planning."

5.2.3.1 Objective Function. The objective of the program is to minimize

the present worth of the annual revenue requirement over a selected

period. Two periods for defining the objective function are allowed:

(1) Simulation period only, i.e., only those years in which actual

load growth and unit additions are simulated.

(2) Simulation period plus an evaluation period of any duration. In

the evaluation period, load growth is assumed to be stopped and

generating units are replaced in kind.

Revenue requirement consists of fuel costs, 0 and M costs, depreciation,

interest payment, insurance, taxes (if any), and return on equity. A

levelized fixed charge rate is used to represent the equivalent uniform

annual cost of owning a particular facility. Fixed charges include those

for generating facilities as well as for site-related transmission

facilities.
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Escalation rates can be specified for capital investment (one rate for

all types), separately for three fuel types, and for all operating costs.

Only one discount rate for present worth calculation is allowed and it

cannot be time-varying.

5.2.3.2 Reserve Constraints. The reserve constraints used in the

program define a minimum and a maximum percentage reserve in which

feasible expansion plans are sought.

5.2.3.3 Reliability Constraint. A reliability index is calculated for

each potential state of expansion and a minimum reliability index based

on the benchmark year performance is used to reject unreliable expansion

plans. This constraint may be nullified in which case the minimum

reserve percentage becomes the binding constraint.

The calculation of the reliability index is based on a simplified and

approximate method of estimating the probability of loss of load (LOLP).

For the benchmark year, the cumulative probability distribution of forced

outages is computed by the usual convolution process. The LOLP based on

the peak load for the benchmark year is calculated. Its value is

normalized to 1.0 and is the minimum required reliability index.

The cumulative distribution of forced outages is then approximated by

four log-linear segments evaluated at intervals equal to the standard

deviation of the distribution. The reliability index of a future state

is estimated by computing the mean and standard deviation of forced

outages, expressing the reserve of that year in terms of standard

deviations above the mean value of forced outages, and obtaining it from

the log-linear approximations of the distribution function for the

benchmark year.

5.2.3.4 Maximum Number of Units. Each generation alternative can be

restricted by a maximum number of units which are allowed to be installed

during the entire expansion period.
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5.2.3.5 Solution Using Forward Dynamic Programming. The basic problem

of generation expansion is formulated as follows. Each year in the

expansion period is a stage. In each year, there are many combinations

of new units which form feasible states, e.g., in the first year there

may be three states, one being one 900 MW nuclear unit, the second being

one 600 MW coal-fired unit, and the third being three 100 MW gas turbines.

As the years progress, the number of states increases because more new

capacity is needed, and there are many different combinations of the

different types of units which can meet the requirement. This is the

so-called "curse of dimensionality" because the computational requirement

increases with the number of states, which increases roughly

exponentially with the number of alternative types of units.

Without some heuristic scheme of truncating the number of states, it is

impractical to solve a problem with more than three alternative types.

The heuristic truncation method which allows four or even five

alternatives to be run simultaneously will be described later.

Figure 5.A shows an example with two types of alternatives, a 400 MW

fossil unit and a 54 MW gas turbine, and a four-year expansion period,

not counting the benchmark year which is denoted by the left-most circle

with two zeros. In the first year, the program finds two states which

result in reserves between the specified minimum and maximum and satisfy

the reliability index. They are (0,4) and (1,0), indicating four gas

turbines and one fossil unit, respectively.

For each state, the program simulates the production cost of the system

and finds the state among all states in the previous year which, when

proceeding to the present state, does not necessitate a deletion of a

unit, and which results in a minimum cost incurred up to the present

year. For the first year, the only feasible transition is from (0,0) and

the minimum cost is just the cost incurred in the first year. This

so-called cost-to-date is the total operating and production costs and

the fixed charges, present-valued and cumulated up to and including the
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present year. Thus the state (0,4) requires a minimum of 76.3 million

dollars to reach it from the beginning.

The program then proceeds to the second year and finds four feasible

states, (0,10), (1,2), (1,4) and (2,0). It simulates the production

costs and for each state, it looks back one year and from the two

previous states it determines which of them can proceed feasibly to the

present state. For instance, (1,4) can come from both (0,4) and (1,0).

Among these feasible prior states, the program computes the additional

costs for the present and adds them respectively to the minimum costs of

the prior feasible states. From these costs-to-date, it selects the

minimum cost-to-date and remembers the transition from the prior state

which yields the minimum. This is called the backward pointer. For

example, (1,4) has a minimum cost-to-date of $164.4 million and the

backward pointer is shown as an arrow coming from (0,4). The dotted line

from (1,0) shows the other feasible transition.

The program proceeds in like fashion to the last year. At this point,

the minimum cost-to-date for each state in the last year is calculated

and then sorted to determine the minimum cost for all feasible

transitions. In the example, (2,7) is the best state in the last year

and the minimum cost is $359.4 million. To find the expansion schedule,

it is only necessary to retrace the backward pointers. Thus the optimal

plan is the following sequence of states: (0,0) - (1,0) - (1,2) - (2,2)

- (2,7). Subtracting one state from the following state gives the unit

added each year. The optimal installation schedule thus determined is

listed below.

Units Added

Year 400 MW 54 MW

1 1 0

2 0 2

3 1 0

4 0 5
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5.2.3.6 Derivation of 100 Best Plans. If the objective is to find the

optimal plant only, forward dynamic programming is sufficient. A plan

can be traced backward from each of the terminal states with the backward

pointers or solid arrows in Figure 4. This does not give too many

suboptimal plans. Backward dynamic programming is used to increase the

number of such plans.

In backward dynamic programming, the algorithm starts from the

next-to-last year. For each state, it finds the feasible transitions to

the following year and determines the transition which results in the

minimum cost-to-go. The forward pointer indicates the cheapest forward

transition from that state. The program then sweeps backward and repeats

for all years until it reaches the beginning. In essence, it is the same

as forward dynamic programming except for the reversal of direction.

Since the screening process of determining whether a state satisfies the

reserve and reliability criteria and the production costing have already

been done in the forward algorithm, this part takes much less time. When

both methods are combined as in this program, the number of suboptimal

plans which are available is limited only by the storage requirement.

Many of these plans may be identical for most of the years and are simply

minor variations in the last two or three years. In order to obtain the

significant suboptimal plans in the output, a number equal to the number

of years in the end of the period for which minor variations may be

ignored, can be specified. For each group of plans which are identical

up to the specified end years, the program will print only the cheapest

plan. In this way, the top 100 plans will include a lot more plans with

significant variations.

5.2.3.7 Production Decisions. Two methods of production costing are

available: probabilistic and deterministic. This probabilistic method

is similar to that in WASP. For computation efficiency, the

deterministic method is usually used.
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The deterministic method uses a trapezoidal approximation of the annual

plant duration curve. The trapezoid's vertical height equals the system

generation capacity, its width equals 8,760 hours (a year) times the

maximum capacity factor of the base load units, and its area equals the

energy demand (MWhr) for that year. The energy generated by the

individual units is approximated by horizontal strips of the trapezoid if

the vertical axis is subdivided according to the rated capacities of the

units arranged in order of their energy cost with the inexpensive base

load units at the bottom and the peaking units on top. The resulting

capacity factors fit the actual data better than the conventional method

of stacking units on the load duration curve, because all units including

peaking units are loaded to various degrees.

It should be pointed out that this is a heuristic method which attempts

to model the effect of random forced outages, maintenance outages and

other operating peculiarities of the system on the loading of units.

The accuracy can be further improved by two calibration factors. A

peaking constant which is used to increase or decrease the rated capacity

of peaking units in the formation of the trapezoid can be adjusted to

change the loading of peaking units. Similarly, a cycling constant is

specified to change the loading of cycling units.

The individual loading of all units can be fine-tuned by the use of

individual maintenance factors, which derate the units in the loading

triangle. The relation of the derated capacity of a unit used in the

loading trapezoid to the maintenance factors is detailed in the following

equation.

Maintenance Factor
Derated Capacity = Rated Capacity x (1 - Base Value

In this fashion, the loading of a unit can be adjusted by varying the

maintenance factor.

After the capacity factor of a unit is determined by the loading

triangle, the energy cost is calculated by a reciprocal curve shown in

5-17



Figure 5B. Hmax and H0 are specified for each unit. Hmax is the heat

rate at maximum loading multiplied by the fuel cost. H0 can be adjusted

to obtain the correct energy cost for lower capacity factor.

5.2.3.8 Truncation of Non-Optimal States. The theory of state

truncation is based on the assumption that the optimal plan is fairly

close to being of minimum cost-to-date in each year up to the last year.

This is especially true if the cost-to-date for each state is adjusted to

account for the differences in the installed capacity, e.g., a state

representing the addition of a big nuclear unit may have excess capacity

for that year resulting in a high cost-to-date, which when prorated by

the minimum required capacity, may actually be less than the adjusted

cost-to-date of a state with small units. The criterion for determining

the minimum required capacity is either minimum percentage of reserve or

fixed LOLP index.

The method of state truncation is to eliminate states in years when the

number of states exceeds a specified number by first determining the

minimum adjusted cost-to-date in the previous year. States in the

previous year which have adjusted costs above a certain ratio to the

minimum are then flagged. States in the present year whose backward

pointers indicate a transition from a flagged state are then eliminated.

If the resulting number of states in the present year still exceeds the

maximum, the cost ratio is reduced by a factor more than once if

necessary, and the elimination process repeated.

5.2.3.9 Adjustment for End Effects. Since different expansion plans may

have different system capacities in the last year of the study period, it

is not correct to compare their revenue requirements without some

adjustment to account for the end effects. The reserve and reliability

constraints are used to adjust the capacities in the last year to an

equal basis, either minimum reserve percentage or fixed LOLP index. The

fixed charges in the last year associated with the units newly installed

in that year are prorated according to the adjustment in capacity. In

other words, it is assumed that only portions of these units are

installed in the last year.
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Furthermore, the adjused cost of the last year can be projected for any

number of years and the present worth revenue requirements for this

evaluation period is added to the objective function for minimization.

5.3 GENERALIZED BENDERS' DECOMPOSITION

5.3.1 Status

An algorithm utilizing Generalized Benders' Decompositon was developed at

MIT by J. Bloom. A preliminary, basic version of the algorithm has been

coded and is available on the MIT computer system. Work is well under

way on both improving the logic of the algorithm (particularly as regards

the incorporation of the reliability constraints in terms of unserved

energy) and extending its scope to deal with

- hydro units

- pumped hydro

- cogeneration

- new energy technologies (solar, wind)

- load modification.

While substantial progress has already been made in properly incorprating

the unserved energy reliability constraint and handling hydro units, work

concerning the other items is still in the conceptualization stage. Test

runs of the code and derivation of preliminary computation results are

scheduled by the end of January 1980. 'Further development of the

algorithm and the code will continue throughout the first months of 1980.

5.3.2 General Description

The problem considered by the Generalized Benders' algorithm is the

determination of a minimum-cost capacity expansion plan which meets

forecasted loads over a 20-30 year horizon. Cost in this problem

consists of two components, the initial capital cost of building the

generating plans which can be expressed as a linear relationship of added

capacity, and the continuing cost of operating the generating system to

meet the demand of customers which can only be expressed as a complex
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nonlinear relationship of available capacity. In addition, because of

random load fluctuations and random plant outages, to ensure that

customer demand is met with the desired reliability, a standard of

service defined in terms of a probabilistic measure of expected unserved

energy is imposed. This reliability constraint can again be represented

only as a complex nonlinear relationship of available capacity.

The above complex nonlinear program is broken into two parts, the

determination of optimal investments in new generating capacity (master

problem) and the determination of the operating cost and reliability of

the generating system (subproblems). It is then solved using generalized

Benders' decomposition, a mathematical programming technique summarized

below.

The subproblems are used to determine the minimum cost of operation and

the reliability of a trial system (initially specified by the user, then

supplied by the master problem) in each period of the planning horizon.

Though it has the form of a difficult nonlinear optimization, the

subproblem is solved, without resorting to nonlinear programming, by

using a standard production costing technique, the probabilistic

simulation of Baleriaux and Booth. Associated with the solution of the

subproblem is a set of Lagrange multipliers which measure the changes in

system operating cost (x) and reliability (p) caused by marginal changes

in the trial plant capacities. These multipliers are then input to the

master problem to provide a first order Taylor expansion linear

representation of the nonlinear operating cost component of total cost

(the objective function in the master problem) and the nonlinear

reliability constraint. Using this linear approximation of operating

cost and reliability around the trial solution, the master problem

provides a new trial solution. The subproblem is then used to provide

the master problem with an additional linear approximation around the new

trial solution. As iterations between the master and subproblem proceed,

the number of constraints addressed by the master problem increase

providing an ever-improving piecewise linear representation of operating

cost and system reliability, until convergence is obtained. At any
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iteration the current piecewise representation of the system cost

provides a lower and an upper bound on the optimal cost. Hence, provided

that the current trial solution is feasible, the algorithm can be

terminated if desired prior to optimality with known error bounds. A

graphic representation of the master problem-subproblem interaction may

be found in Figures 5.1 and 5.2 that follow.

5.3.3 Technical Description

Following is a mathematical description of the general long-range

planning problem and the way it is handled by an application of

Generalized Bender's algorithm. The application is formulated and the

computation of variables by means of which the master and subproblems of

the decomposition communicate is also described.

5.3.3.1 Formulation of the Long-Range Planning Problem. The long-range

planning problem for a system of thermal generating plants can be stated

as follows:

T
minimize Z = C'X + E EFt(Yt )  (1)

X,Y I,... ,T t=1

subject to EGt(Yt) < t  t = 1,...,T, (2)

0 < Y < 6X t = 1,...,T, (3)

where

X = vector of unit capacities, X. MW (decision variable),

j = unique index for each unit,

C = vector of unit present-value capacity costs, C $/MW
(note Cj = 0 if j is an existing unit and X i i fixed),

it
Y = vector of unit utilization levels in period t, Yit MW

(decision variable),

i = loading order position of unit in period t,
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EFt(Y t) = present value expected operating cost function in period t,

EGt(Yt) = expected unserved energy function in period t,

St = desired reliability level in period t, measured in
expected MWh of demand not served,

at = matrix which selects and sorts units, indexed by j, into
economic loading order, induced by i, in period t, and

T = number of periods in planning horizon.

In this formulation, the expected unserved energy is used as the

reliability measure. Recent discussion has suggested that this measure

more realistically represents the loss to customers than the more commonly

used loss of load probability. The expected unserved energy weights the

probability of each loss of load state by the size of the shortage in that

state.

The expected operating cost and unserved energy are determined in the

production costing model, which can be stated as follows:

I
minimize EF(Y)= F Pi Gi(L)dL (4)

1 yI i=1 -1
Y ,. U

subject to EG(Y) = GI+1(L)dL < c (5)

0 < Y < X , (6)

where

i = index of unit in loading order,

I = number of units in loading order,
iY = utilization level of i-th unit, MW (decision variable)

(component of vector Y)
Xi = capacity of i-th unit MW (regarded as fixed in the

operating problem),
Fi

F = operating cost of i-th unit, $/MWh,

Pi = 1-qi = availability of i-th unit,

qi = forced outage rate of i-th unit,

G. = equivalent load duration curve faced by i-th unit, and
1
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iU = cumulative utilization of first i units in loading order

(Ui-1 is the loading point of the i-th unit).

The unit loading points are determined by the equations

U - Ui- = y , i = 1,...,I, (7)

U0  = 0.

The equivalent load duration curves are determined by the recursive

relationship of probabilistic simulation

Gi+1 (L) = piGi(L) + qiGi(L - Y ) i = 1,...,I (8)

where GI(L) is the system load duration curve, the expected time in hours

per period during which the load exceeds the level L. Thus, the

equivalent load duration curve Gi(L) gives the expected time during which

the load plus the capacity on outage of the units below i in the loading

order exceeds level L. Equation (8) is just a special case of the more

general convolution equation

ui-1

G i(L) = G1(L - x)hi(x)dx

where h i(x) is the unit outage distribution. hi(x) = probability of an

outage of size x among the first i-1 units in the loading order.

There is a production costing problem of the form (4)-(6) for each

period t in the planning horizon. The index t has been dropped above

for clarity of notation; however, the unit operating cost Fi,

availabilities pi, utilization levels Y , and the loading order i itself

as well as the system load duration curve Gi all depend on the time

period t.

The use of the utilization levels Yi is, in a sense, an artifact of

the model, since it implies that plants that would cause the system to

exceed the reliability standard are not operated. However, in the
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optimal solution, capacity in excess of that required to meet the

reliability standard is usually not built.

5.3.3.2 Solution of the Long-Range Planning Model by Generalized

Bender's Decomposition. The algorithm proposed for solving the

long-range planning problem (1)-(3) is generalized Benders'

decomposition. As described in the introduction, this algorithm divides

the problem into a master problem, which replaces the nonlinear problem

(1)-(3) with a linear program, and a set of production costing

subproblems of the form (4)-(6). The master problem is solved to

generate a set of trial unit capacities (X); its structure will be

considered in detail below. Consider first the subproblems, which are

solved to determine the expected operating cost and reliability of the

trial system.

The optimal solution to the operating problem (4)-(6) is

straightforward. The loading order is defined as the economic merit

order in which the units are loaded in order of increasing operating

costs. Hence, the indices i are defined so that

FI < F2 < ... < F .

The the optimal solution is to set

y = X

in merit order i = 1,2..., until the reliability constraint (5) is

satisfied. The last unit used, n, will generally not be used to

capacity. Thus, n is defined so that

fo Gn+1 (L)dL =
un-l+yn

yn yn Xn
for n such that 0 < Y < X , and

Xi i < n
Yi >n. (9)

O , i > n.
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It will sometimes happen that the capacities Xi will be insufficient to

meet the reliability constraint (5), in which case n = I,

Yi = X for all i = 1,...,T,

and
co

f GI+1(L)dL > E
UI

In this case, the production costing problem is infeasible.

Associated with the solution of this problem are Lagrange

multipliers, which measure the value of small changes in the capacities
i i

X . Let x be the Lagrange multiplier associated with the i-th

capacity constraint (6) and r be the multiplier associated with the

reliability constraint (5). Then these multipliers must satisfy the

Kuhn-Tucker conditions

i aEG aEF1 + i  ,yi'  = 1,..., n-1

aYi 1 ~

i
= 0, i = n,...,I (10)

= Fn

where the derivatives are evaluated at the optimal solution Y.

Formulas for computing these multipliers are given in the next section.

If the operating problem is infeasible, then it is necessary to

compute Lagrange multipliers which measure the change in reliability
1

caused by small changes in the capacities. These multipliers 9 must

satsify

i aEG
- i = ,...,I ( )

aY1
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Formulas for computing these multiplers are also given in the next

section.

The Lagrange multipliers are used to build the master problem, which has

the following form

minimize Z (12)
Z,X

subject to
T T k k k

Z > C'X +E [EFt + t6t(X - X)], k = 1,...,K, (13)
t=1

k k k
I EG + (X - X) < E t , k = 1,...,K, (14)

tcrk ter k

where

k = index of trial solutions

K = number of trial solutions generated so far,

Xk = vector of unit capacities of k-th trial solution,

X = unit capacities of current trial solution to be determined
(decision variable)

Z = total cost of current trial solution (decision variable),

EF k = expected operating cost of k-th trial solution in period t,
t
k
t = vector of Lagrange multiplers associated with k-th trial

solution in period t,

EGk = expected unserved energy of k-th trial solution in period t,
t

rk  set of period t in which k-th trial solution is infeasible,

kk = vector of multipliers associated with infeasible subproblems in
period t for trial solution k.

k k k k
The data EFt, -t EGt, rk , and -t, are generated by solving the

subproblem for period t with the k-th trial unit capacities Xk.
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The master problem (12)-(14) is actually a linear approximation to the

long-range capacity planning problem (1)-(3). The constraint (13)

can be regarded as a linear approximation to the objective function (1)

evaluated about the trial solution X k, with the multiplers k
- -t

representing the derivatives of the operating cost function at that

trial solution. Similarly the constraint (14) can be regarded as a

linear approximation to the reliability constraint (2) evaluated at the
k

k-th trial solution with the multiplers - representing its derivatives

at that point.

As each new trial solution is generated, new constraints of forms (13)

and (14) are added to the master problem. Thus the master problem

increases in size as the algorithm proceeds. As long as the trial

solution is infeasible or it violates the new constraints it generates,

it is not the optimal solution. However, when a trial solution is found

which is feasible and which satisfies the new cost constraint (13) it

generates, it is the optimal solution to the problem. At any iteration,

the value of Z is a lower bound on the optimal cost, and if the trial

solution found is feasible, then the value of right-hand side of the

cost constraint (13) it generates is an upper bound on the optimal

cost. Hence, the algorithm can be terminated prior to optimality with

known error bounds.

5.3.3.3 Computation of the Lagrange Multiplers. The Lagrange

multipliers are computed for the optimal solution to the operating

subproblem, which is given by (9).

In the case that the subproblem is feasible, the Lagrange multiplers are

given by the Kuhn-Tucker conditons

Fn aEG aEF i < n
F 'i i < n.

i ay aY
0, =

0 , i >n.
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In the case that the subproblem is infeasible the multipliers are

defined by

i aEG
a , i = 1,..., I.

aYi

Define the function Hij (U)
13

Ui with i > j.

Gi(L)dL, where U stands for any

Then

Hij (U) = 0 for i < j,

and

Ip.G.(U)
PiHij(U) + qiHij(U-Y )

AjjGi (U ) z AiPiHij
i=J+l

(
1=

and

aEG

I

n+ 1 1 n+1,j )
n+1

I+1,j U

= Fj - 1 - F + qAj
Aj-1

I=F

The coefficient Aj is the expected difference in operating cost between
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plant j and the next available plant in the loading order, which can be

seen by expanding its definition

A3 = Fj - p Fj+ -j+qj+2 " qI+1PIF I.

Then, finally

n

-jpj G (Uj ) - E
0 =j+1

(0

aPiHij (U ) + Hn+,j(Un), j < n,

, j >n,

J (UIP = HI+1,j( ).

In actual computation, the functions Hij(U) can be more efficiently

determined by the recursion

Gi(U) -j -Hij(U - Yj),

Hij (u) = pj
U yi,

where S = G1(o) = number of hours per period.

5.4 ANALYSIS OF TERMINAL EFFECTS

The need for handling terminal effects arises because of the finiteness

of planning horizons in utility expansion planning models. The costs

and benefits associated with plants continue to accrue in the years

beyond the plan period. These and related factors constitute the

terminal effects which should be taken into account in the search for an

optimal expansion plan.

Most terminal effects can be grouped and analyzed under one of the

following categories:
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1) Issues that relate to the treatment of capital that is unused

at the end of the planning horizon

2) Issues concerning shifts in the relative economics of plants

caused by differential rates of inflation for the cost

components of various types of plants, changing system

characteristics due to non-steady state conditions of relative

prices, emergence of new technologies, etc.

5.4.1 The Valuation of Unused Capital

Standard, well-established practices exist for the valuation of unused

capital. The two main methods for dealing with this are outlined below.

1) A salvage value can be assigned to the capital stock which continues

to generate benefits, along with associated costs, beyond the plan

period. This salvage value can be determined in a variety of ways.

The amount of undepreciated capital can be used as one indicator of

the salvage value. It could also be evaluated by prorating the

capital investment over the plant life on the basis of expected

yearly energy generation. This approach is generally adopted in

dynamic programming models, where the condition of discrete plant

size leads to excess capacity in the last year of the plan period.

Once determined, the total salvage value of all the units installed

during the plan period is subtracted from the total capital

investment and this reduced capital base is used for minimizing the

cost of expansion. Reference 1 presents a sophisticated formulation

of the salvage value technique based on the dual equilibrium

approach. This method has been shown to lead to significant

reductions in the required length of the planning period while

retaining the accuracy of the optimization results.

2) The stock represented by the total capital investment on a plant can

be converted into a series of yearly flows by applying a levelized

fixed charge rate. These uniform yearly flows are charged off
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during the life of the plant, which may extend beyond the plan

period, and thus the problem of unused capital at the end of the

planning horizon is cicrumvented.

5.4.2 Shifts in Economics After Planning Period

In contrast, there is no standard, widely accepted technique for dealing

with the disequilibrium issues arising from differential inflation rates

and non-steady-state behavior of relative prices. A consideration of

total costs beyond the planning horizon could well lead to an expansion

plan different from the one indicated by an analysis of plan period

costs only. This could be caused by such circumstances as steeper

escalation of fuel costs associated with particular plant types, costs

introduced by regulation, etc., in the years after the plan horizon.

5.4.3 Replacement

Another related issue is the replacement of plants when they are retired

after the plan period. The two-way linkage between decisions made

during and after this period makes it necessary to develop a terminal

effects model that can simulate replacement also.

5.4.4 Approaches for Handling Time-Dimension

The time-dimension underlying terminal effects can be modeled in two

ways:

1) A long planning horizon can be specified so that terminal effects

become relatively insignificant when discounted to the present. The

length of the plan period could typically be chosen to be twice or

thrice the operating life of the longest-lived plant in the system.

Within such a framework, either of the following options can be adopted:

i) All the time-periods during the plan horizon can be assumed to

be of the same length and detailed cost computations can be

done for all these periods.
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ii) The time-periods could be increased in finite steps so that a

more aggregated analysis can be done for later years.

2) Extension Period Approach. An extension period, which follows the

planning horizon, can be introduced as an artifice to capture terminal

effects. Escalation rates, costs of new plants at the point of

replacement and such other parameters could be projected and specified

as inputs for the extension period. Detailed production costing and

similar extensive analyses would not be made for the extension period,

but cost-related computations would be done by projecting at

pre-specified escalation rates the costs of the last plan year.

The structure and sophistication of a model using an extension period

would depend on trade-offs among the following factors:

a) The quality of decisions during the extension period--a number of

options exist, ranging from a treatment similar to plan period

optimization to prespecified decision rules.

b) The length of the extension period--this could be finite or infinite

c) Computational time and cost

d) Model complexity

5.4.5 Treatment of Terminal Effects in Some Existing Models

A. GEM: The levelized cost approach is adopted in GEM to handle

capital stocks. An infinite extension perod is used during which the

total costs as of the last year of the planning horizon are assumed to

continue. The levelized fixed charges and operating costs associated

with a unit that is being retired are assumed to hold for the plant that

replaces it. The total of present-worthed planning and extension period

costs is used for optimization.

5-35



B. OPTGEN: Levelizing and a finite extension period are used in

OPTGEN. Excess capacity in the last year of the study period, resulting

from the discrete plant size condition required for dynamic programming,

is prorated on the basis of reserve or reliability constraints. The

fixed charges associated with plants installed in the last year are also

prorated according to the adjustment in capacity. In practice, end

effects which affect the selection of units in the last years of the

plan period are minimized by specifying a longer plan horizon than is

actually desired.

5.4.6 Terminal Effects Model Proposed for EGEAS

The main features of the terminal effects model proposed for development

for EGEAS are outlined below:

1) Capital stocks will be converted into flows by using levelized fixed

charges.

2) An extension period will be used for capturing terminal effects.

3) Fuel and other operating costs will be escalated during the

extension period also.

4) The levelized fixed charges will be escalated when a plant is

replaced.

5) The level of detail and aggregation of data would be lower during

the extension period, to realistically reflect a lower accuracy

associated with increasing remoteness in time period.

6) Data would be so specified as to minimize the effect of plan horizon

length on the decision results and model output during the planning

horizon.
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5.5 EGEAS OPTIMIZATION OPTIONS: A COMPARISON

As can be deduced from the above presentation of the three optimization

techniques, there is some overlap but more often than not a unique

treatment in modeling various aspects of the capacity expansion problem

(namely, production cost reliability, environmental, actual unit size,

etc.) and in output capabilities (number of alternative solutions,

investment in non-expansion alternatives, etc.). Further, differences

and similarities in data requirements and computational time requirements

should also be noted.

An account is given below of some key similarities and differences among

the available optimization options, and some preliminary recommendations

are offered as regards the type of analyses which could be performed best

by the various options. Figures 5.3 and 5.4 summarize this section.

5.5.1 Modeling Capabilities

- Production Costing/Reliability

The Generalized Benders' option includes the most extensive modeling

of the production costing/reliability aspect of the capacity

expansion problem. It utilizes a probabilistic simulation production

costing submodel which can adequately treat storage and limited

energy units as well as new energy technologies and system

reliability in terms of expected unserved energy. The DP option

exhibits a less detailed production costing modeling capability, but
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still treats capacity factors endogenously, while the LP option

requires exogenously determined capacity factors.

- Number of Expansion Alternatives

The number of expansion alternatives which can be simultaneously

analyzed by the DP option may not exceed five. The other two

options, and certainly the LP option, may analyze a considerably

larger number of expansion alternatives without excessive

computational requirements.

- Storage

The modeling of storage is fair in the DP and LP options while the

Generalized Benders' option treats storage adequately in the context

of a detailed load duration curve type probabilistic simulation

production cost subproblem.

- Actual Unit Size

Investment decisions in the LP and Generalized Benders' options are

represented in terms of continuous variables. Despite the fact that

actual unit sizes may be reflected in system reliability calculations

in the Benders option, optimal investment schedules in both options

usually contain fractions of actual plants, thus making the optimal

solution realizable, in a strict sense, only if shared plants

purchases are possible. In contrast, the DP option models investment

decisions in terms of discrete (integer) variables, thus making the

study of actual unit sizes possible.

- Non Expansion Alternatives

While given levels of effort in renewable and expansion alternatives

may be represented in the LP and DP options through load

modification, the actual choice of optimal levels of effort in

renewable and non-expansion alternatives is only possible in the

Generalized Benders' option.
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- Financial Considerations

While financial considerations may be analyzed in all three options,

modeling the actual interaction of financial constraints and optimal

capacity expansion choices, is possible only in the LP option.

- Environmental

Environmental/resource constrai

option.

5.5.2 Types of Analyses

nts are adequately analyzed in the LP

- Individual Utility

Many individual utilities have been traditionally resorting to shared

plant ownership in order to benefit both from economies of scale and

lack of excess capacity. Hence, a fraction of a plant is a real

investment decision, and the continuous variable representation of

capacity expansion choices in the LP and Generalized Benders' options

is appropriate.

- Power Pool

Capacity expansion analysis at the power pool level or for a large

individual utility that does not enter into joint plant ownership,

requires actual plant sizes reflected in optimal expansion choices.

Hence the DP option could be appropriately used to either define the

actual plant sizes to be added or to define a continuous variable

expansion plan obtained from either the LP or the Generalized

Benders' options, by analyzing actual plant size tradeoffs among a

few alternatives.

- Sensitivity Analysis

Often planners wish to analyze a good spread of near optimal

solutions by further evaluating them by means of post processors,
with respect to financial, regulatory, uncertainty, and other

considerations external to the optimization logic. The DP logic

would lend itself for this analysis without the need for multiple

runs. On the other hand, it is often also desired to perform
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sensitivity analysis on the optimal expansion path by widely varying

inputs like fuel and capital costs, lead times, environmental and

regulatory constraints, new technology availabilities, etc. In this

case where the broad behavioral characteristics of the optimal path

as a function of wide input variations is to be analyzed, a less

detailed but computationally efficient option like the LP option may

prove advantageous.

- Actual Plant Sizes

Whenever the actual plant capacity expansion choices may not

represent shared plant ownership, the planner is interested in

optimal plans in terms of discrete unit sizes, a capability available

only with the DP otpimization option. The DP option will also be

prefereable for analyses which focus on trade-offs between actual

plant sizes in terms of cost versus reliability or excess capacity

versus economies of scale and insurance against inflation. However,

it should be noted that system reliability calculations in the

Generalized Benders' option may reflect actual plant sizes, or actual

numbers of units chosen of a particular capacity expansion

alternative.

- Time Dependent Generation Alternatives

A complete analysis of new energy technologies (solar, wind, etc.)

and load management requires detai led representation of the

production costing/reliability outputs of the general capacity

expansion problem. Among the available options, the Generalized

Benders' optimization technique meets the above requirement and would

hence be the preferred option for analyses which focus on time

dependent generation/non-expansion alternatives.

- Financial, Environmental

Financial analysis will be possible with all optimization options as

outlined in a subsequent chapter. However, environmental constraints

analysis could be peformed best with the LP option.
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Section 6

FINANCIAL AND REGULATORY INTEGRATION

EGEAS is designed to find cost-minimizing capacity expansion plans, where

cost is taken to be the discounted present value of all expenditures.

For some utility planning purposes it will be useful to consider also the

financial implications of different expansion plans. For example, if

some plans lead a utility to violate financial constraints in its bond

indentures, they are not feasible.

To the extent that financial and regulatory considerations are included

in the model, they may change the model output away from "minimum present

value" expansion plans. All of the approaches presented here will allow

the user to determine the magnitude of these eftects, by running the

model with and without the Financial/Regulatory option. For example, if

the model is constrained to grow revenues according to a specified

pattern, the impact of this constraint on total costs and on choice of

equipment types can be determined. The financial health of a utility

depends ultimately on the prices its regulators allow it to charge.

Therefore a financial model should also model regulatory behavior,

whether implicitly or explicitly. Unfortunately the behavior of

regulators is not completely predictable. Therefore all of the options

discussed below will allow users to specify their own assumptions about

what cost pass-throughs and other rate changes will be allowed. These

assumptions will then be reflected in the revenue consequences of

alternate expansion plans.

Several options have been identified for encompassing financial and

regulatory considerations in the capacity expansion planning process.

These options reflect variations in treatment due to the characteristics

and requirements of the diverse optimization techniques offered in the
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EGEAS system as well as differences in the level of integration of

financial and regulatory factors into the optimization algorithm. As

must be expected, the alternatives involve various trade-offs between the

accuracy with which complex Financial/Regulatory interactions are

captured and the difficulty and cost of obtaining such accuracy.

6.1 DYNAMIC PROGRAMMING OPTIONS

There are two major alternatives for integrating regulatory and financial

conditions with the dynamic programming optimization process. The first

of these involves no changes to the dynamic programming process itself,

but provides for detailed ex post analysis and/or screening of the

optimal and near optimal expansion plans generated by the DP. This would

be accomplished through the use of a post-processor which would assess

the candidate plans output by the DP on the basis of financial and

regulatory considerations, and provide sophisticated financial analysis

to reporting of plans surviving the screening process.

The post-processor approach takes advantage of the fact that the DP model

(OPTGEN) in the EGEAS system provides information on 100 plans which meet

reserve requirements and which are ranked by the DP algorithm on the

basis of cost. This multiple plan feature of the DP allows meaningful

consideration of Financial/Regulatory concern outside the optimization

algorithm entirely. While not assuring identification of a global

optimum this method will provide near optimum plans which are feasible

with respect to Financial/Regulatory requirements.

In addition, post-processing would permit Financial/Regulatory analysis

at any desired level of sophistication due to the fact that the processor

would need to be applied to a relatively small number of candidate

plans. The algorithm could, for example, simply eliminate candidate

plans on the basis of considerations such as interest coverage, quality

of earnings, internal to external financing, etc. On the other hand, the

post-processor could go beyond elimination of infeasible plans and, in a

manner similar to EPRI's Over and Under Model, adjust costs upon the

basis of Financial/Regulatory factors thus possibly altering the ranking
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of the various plans.* Financial reports provided by the model in the

form of balance sheets, income and funds flow statements can also be at

various desired levels of detail.

The post-processor would be based upon a utility pro-forma accounting

model. This model would use return and investment assumptions and

utility accounting conventions to simulate the financial performance of

candidate plans as shown in Figure 6.1. The financial reports generated

for each plan could then be tested against various Financial/Regulatory

criteria to eliminate infeasible plans or to make cost adjustments as

noted above.

The advantage of the post-processor approach is obvious. It provides a

relatively simple method of effectively incorporating Financial/

Regulatory concerns. No modification of the DP coding would be

necessary. The processor itself could incorporate any desired level of

detail and sophistication, and because the model is accounting-based it

might be adapted from existing commercial software.

The second dynamic programming option is to embed physically the

financial and regulatory considerations as constraints within the

program. Currently the number of plant types that can be evaluated in

the DP is quite modest, and is limited by the number of feasible states

and paths that result. Thus, additional constraints within the DP which

reduce the number of feasible states and paths would increase the number

of plant types that could be evaluated using the DP.

Practically, there are a number of difficulties with this approach.

First, the data requirements and the dimensions of the problem increase

dramatically. While the current dynamic program requires only a fixed

financial charge for each plant type, embedding financial constraints

would require more data items per plant type (cash flows, interest

*The Over and Under Model adjusts annual revenue requirements to reflect

higher equity returns and interest charges resulting from financial
distress as reflected in interest coverage ratios.
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coverage), the maintenance of these data over time, and the maintenance

of these data by path rather than by state.

Data and dimensionality problems aside, the programming algorithm itself

would require modification. Currently, the DP maintains only the

preferred path to each state. With financial constraints it is possible

that the preferred path might become infeasible, while the other path

(feasible, but not optimal) is no longer maintained. Hence, the

algorithm would have to be modified to avoid the exclusion of feasible

paths. In addition, the backward DP algorithm would require

modification. As currently specified, this algorithm could generate

resource plans which are infeasible, as there is no check for path

feasibility.

Finally, even if these problems could be overcome, the payoff is quite

uncertain. Financial constraints are path-oriented. Hence. it is

possible that the financial constraints would not significantly reduce

the number of feasible states, and thus make little or no contribution to

the capabilities of the dynamic program. While this option will be

further investigated, it does not appear to be promising. Most financial

and regulatory considerations can be more easily incorporated through the

use of a post-processor for screening, financial analysis, and financial

reporting.

6.2 LINEAR PROGRAMMING OPTIONS

Again, there are two major alternatives for integrating Financial/

Regulatory considerations with linear programming optimization. Ex post

screening as described for the DP option is not helpful in the context of

an LP and, therefore, does not provide a realistic alternative. If the

post-processor indicates the optimal plan is financially infeasible,

there is nothing to be done. The LP generates only the optimal solution,

and cannot be rationally modified to generate a solution which is

financially infeasible, unless financial and regulatory considerations

are built into the LP.
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The first reasonable option, then, is to incorporate Financial/Regulatory

considerations into the LP as constraints only, leaving the objective

function unchanged. Constraints could reflect a broad range of

Financial/Regulatory concerns and requirements including the following:

o Interest coverage

o Cash/non-cash earnings

o Internal/external financing

o Growth of required revenues; and

o Electricity price increases.

Such constraints, while not encompassing all of the Financial/Regulatory

concerns of interest to the planner, nevertheless would assure that the

LP's selection of an optimum would take into account fairly precise and

realistic standards of financial and regulatory feasibility.

Because of the temporal nature of Financial/Regulatory factors, their

inclusion in the LP requires development of annual financial data. These

data would be generated for each plant type by a pre-processor reflecting

utility accounting conventions, investment and return assumptions. From

the annual profiles, coefficients representing annual revenue

requirements and other financial measures (cash earnings, interest

expense, etc.) would be developed and carried into the LP. The

pre-processor would be utility accounting based and like the

post-processor in the DP case, might be adapted from available software.

However, because of the pre-processor's application to single plant types

and the need to interface with the LP matrix generator, the development

of a special purpose code may be more effective than attempting to

correct available financial models.

This option offers the capability to constrain selection of an expansion

plan in such a way as to reflect real world Financial/Regulatory concerns

of interest to the planner while requiring a reasonable amount of

effort. It cannot, however, capture certain complex financial impacts

that may result from selection of plans which, while not violating

financial constraints, nevertheless tax the financial resources or health

of the utility company.
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The second method for incorporating Financial/Regulatory factors into the

LP is to include these factors in the objective function as well as

characterizing them as constraints. This would allow consideration of

alterations in capital structure, changes in the riskiness of the

resource plan and financial health of the company as mentioned above.

Because this is a complex task, the increase in modeling accuracy over

the previous alternative would require substantial effort.

Two approaches might be taken to incorporating Financial/Regulatory

impacts into the objective function. First an increased/decreased cost

factor (or set of factors) could be added to the objective function.

This would require development of a linear function or set of functions

to relate Financial/Regulatory factors to cost increases or decreases.

Since these factors interact in a complex and likely non-linear fashion,

over time the development of reliable linear approximations could prove

very difficult. A second approach to the incorporation of

Financial/Regulatory considerations might focus upon altering the cost

coefficients in the objective function to reflect the financial impacts

of the selection of a particular plan. This would probably require some

iterative process between the LP and a separate financial model. This of

course would not only require alteration of the LP coding but would no

doubt also substantially increase computation time.

Either of these methods of treating Financial/Regulatory impacts in the

objective function would require substantially more effort than would be

necessary for a constraints only approach. At the same time it is not

clear that this increased effort would substantially improve the

effectiveness of the LP as a planning tool. This is particularly true if

the LP is to be used primarily as a screening device to identify

candidate plans for further study.
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Section 7

LOAD MODIFICATION AND RENEWABLE TECHNOLOGIES

Traditional generation expansion optimization methodologies use the

assumption that plants have constant generation availability. That is to

say, whenever the capacity is needed during the load period it can be

turned on with a given reliability. Such an assumption does not apply

for solar or wind electric power generators. The capacity available from

the solar plants is a function of time of day, time of year, weather, and
actual plant locations. Production cost capabilities have recently been

developed at Stone and Webster and at MIT in which hour by hour analysis

of solar units yields a net equivalent load duration curve on the thermal

units in such a way that the stochastic nature of the solar generation

sources is accounted for.

The decision variables in the Generalized Benders' Decomposition approach

can be anything for which Lagrange multipliers can be calculated with

regard to system revenue requirements and system expected unserved

energy. An algorithm has been designed but not yet implemented which

calculates these multipiers for expansion alternatives that cause

incremental changes in load shape which are not the result of generation

with constant availability over the load period. This is called the load

modification algorithm. One proposed handling of solar within EGEAS is

simply to find changes in load shape due to solar using a procedure

similar to that in Figure 7.1 and then to calculate the multipliers

associated with these changes in accordance with the load modification

algorithm. The multipliers can then be input directly into the master

problem in the Generalized Benders' formulation. Another approach is to

compute numerically the change in system operating cost and reliability

with respect to an incremental change in solar or other unconventional

expansion alternatives. Thus numerical estimates of the Lagrange

multipliers associated with those alternatives are obtained and interface

with the master problem is possible (see Section 5.3 of this report).
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Notes to Figure Figure 7.1. Production Cost/Reliability Module for

Systems With Solar Generating Sources

Basic Assumptions

1. The variable operating expense for each Renewable Resource Generation
Technology (RRGT) will be less than that of any conventional units.

2. There is no predetermined dispatch order for RRGT's except that they will
all be operated before any conventional units are operated.

3. Storage associated with a particular RRGT will be dedicated to that
particular plant (i.e., cannot be used like a pumped hydro plant which can be
charged by any plant on the system).

4. The expected operating cost of a conventional unit (A) is a function of
the native customer demand, and of the capacities and forced outage rates
(probabilities of outage) of units which will be loaded onto the system before
(A).

Description of Modules
WTP: Weather Tape Preprocessor

WTP accepts weather tapes in TDF-14 format from the National Climatic
Center (Asheville, N.C.), or in Hourly Insolation Climatology Data Base
format from the Aerospace Corporation (El Segundo, Cal.), and performs
the following functions:

1 - Converts all data to metric units (MKS)
2 - Adjusts data to account for differences between Solar Time

and Local Standard Time at the Weather Station
3 - Creates an hourly database to be used in ROSPAM.

ROSPAM: Run Of the Sun Power Availability Module
For each type of Renewable Resource Generating Technology, on each site
in each month of a year, ROSPAM outputs a discrete random variable for
power available for generation or storage as a function of time of day
and weather condition. Full unit forced outage rates are ignored in
this Module (see LAM).

LAM: Load Adjustment Module
1AM calculates the net equivalent load curve that will be seen by the
conventional units in the utility system. It does this by optimizing
the operation of the Renewable Resource Generators (storage allocation)
and by accounting for the mechanical forced Outage Rates of these units
in a probabilistic manner. LAM also determines the operating cost of
the Renewable Resource units.

SYSGEN: Electric Utility System Generation
SYSGEN calculates the production cost for each conventional unit in a
utility system and the total system reliability, based on the net
equivalent load curve calculated by LAM.

PWRR: Present Worth of Revenue Requirements
PWRR finds the present worth of revenue requirements for the utility,
based on the producton costs calculated in LAM and SYSGEN, investment
costs and financial data supplied by the utility.
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It should be emphasized that solar capabilities as shown in Figure 7.1,

regarding production costs and reliability analysis will be available in

EGEAS for prespecified pathway analysis regardless of the feasibility of

including such technique into the Generalized Benders' formulation.

Using the methodology described above, load modification techniques which

involve an initial cost and some low operating costs to implement can be

included into the problem formulation. That is to say, if a cost may be

assigned to a load modification strategy as well as load modification

profile resembling that of solar or wind generation profiles, then this

load modification strategy can be one of the decision variables

(expansion alternative) within the Generalized Benders' program, or can

be analyzed using a prespecified pathway approach.
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Section 8

STORAGE

8.1 PROBABILISTIC PRODUCTION COSTING-RELIABILITY

Storage will be treated in EGEAS in the context of a probabilistic

simulation production cost reliability model developed by MIT.* Some key

characteristics of the model are summarized here and its treatment of

storage is presented.

8.1.1 The Load Duration Curve

Electric power systems are operated with the goal of meeting the electric

demand at minimum cost. For a fixed set of generators, the dispatch

strategy that results in the minimum operating cost is to use the

generators in order of increasing marginal cost. In practice, this

strategy may be modified to account for operating constraints such as

spinning reserve requirements, high startup or shutdown costs and

transmission constraints. The final ranking of generators is called the

merit order or the economic loading order.

The power demand on an electric utility varies with the season and the

time of day. Figure 8.1a shows a typical daily variation in power

demand. Although the overall pattern is predictable, there is a large

random component that makes hourly predictions difficult. For this

reason, most planning studies use load duration curves that give just the

*Finger, S., "Electric Power System Production Costing and Reliability

Analysis, Including Hydro-Electric, Storage, and Time Dependent Power
Plants," MIT-EL 79-006, February 1979, and "SYSGEN: Production Costing
and Reliability Model User Documentation," MIT-EL 79-020, July 1979.
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percent of time that each demand level occurs. Figure 8.1 shows how a

time-dependent curve can be converted into a load duration curve.

Although detail is lost in the conversion, the load duration curve is

easier to work with for time periods longer than a day and for future

time periods for which there is not enough information to create hourly

curves.

If all available generating units were completely reliable, the operation

of the power system could be modeled by plotting the capacity of the

generators, in merit order, along the vertical axis of the customer

demand curve as shown in Figure 8.2a. The energy that a unit generates

would then be the area under the customer demand curve between its

loading point and the loading point of the next unit. Converting the

time-dependent curve into a load duration curve, as shown in Figure 8.2b,

leaves the loading point and the energy the same as in 8.2a.

However, generating units are not completely reliable, and hence their

forced outages have to be taken into consideration. Furthermore, hydro

and other limited energy plants, storage units, and time dependent

generation alternatives (solar, wind, cogeneration) are not dispatchable

the same way that conventional thermal units are. In order to handle

these issues, both customer demand and plant generation are treated as

random variables. The load duration curve is thus converted to a

probability distribution of customer demand exceeding a certain load

level as exhibited in Figure 8.3.

8.1.2 Treatment of Plant Outages Convolution

The load duration curve could be used as shown above to determine the

demand on a particular unit in the loading order, if it could be modified

to reflect the outages of all previously loaded units. This may be done

by computing the "equivalent demand" on a particular plant as the sum of

customer demand and outages of previously loaded units.
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For the case in which the forced outage rate of each plant with

capacity Ki is a discrete random variable DF with a probability mass

function

p. if D = 0
1F

PF(DF =1 qi if D K.
1F i

Pi + q. = 1

The "equivalent demand" on a unit given that di is the demand on unit i

immediately preceding it in the loading order, is di + DF. . The

"equivalent load duration curve" would then be for that u it,

Fi+1(d) = piFi(d) + qiFi(d -K i )

The above equation is the result of the addition of "convolution" of

two random variables, di and DF.. Figure 8.4 illustrates graphically how1

the "equivalent load duration curve" on the second unit in the loading

order may be found using convolution. This curve is used to find the

expected energy generated by a particular unit as the product of the

unit's availability (pi) and the area under the curve between the unit's

loading point and the loading point of the next unit. A new curve is

computed each time a unit is brought on line. Finally, after the outages

of all available units have been "added" to customer demand, the expected

unserved energy may be obtained as an area under the curve, thus

providing a measure of system reliability.

With time dependent units, the "addition" of unit outages is no more

equivalent to the addition of independent random variables which is in

effect the case with conventional plants. The dependence between

customer demand and time dependent generation, as well as between

alternative generations has to be carefully accounted for. However, the

basic notion of the "equivalent load duration curve" remains in effect.
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8.2 STORAGE IN A LOAD DURATION CURVE PRODUCTION SIMULATION MODEL

As was done with production costing, the treatment of storage units is

briefly presented below assuming first completely reliable thermal

generating units and then proceeding to the complete probabilistic

treatment.

8.2.1 Storage with Completely Reliable Units

Electric utilities use storage plants to shift demand artificially from

high marginal cost plants to low marginal cost plants. Currently, pumped

hydro-electric storage is the only practical method available. Although

the following section will refer to pumped hydro, the analysis is

applicable to any central station storage unit that can be charged by all

plants on the system.

Stored energy is generated by units which are low in the economic loading

order, but that are not needed 100 percent of the time to meet the direct

demand. Thus, an artificial demand is placed on these base loaded units

by storage units . This stored energy can be released during periods of

high demand when more costly units would normally be generating. Since

the charging and discharging operations are not completely efficient, the

energy available to meet demand using storage units is less than the

energy generated by the base loaded units. Storage units are similar to

conventional hydro units in that the amount of energy available is

limited. However, modeling storage is complicated by the fact that the

energy is not free and that the energy is generated on one part of the

curve and discharged on another.

The total energy potentially available from a base loaded unit for

storage can be found by computing the area above the load duration curve

for the base loaded unit. Due to the limited capacity of the storage

unit, some of this energy may be unavailable (see Figure 8.5a). Another

limiting factor is the size of the reservoir. When the energy above the

curve, subject to the limited capacity and the charging inefficiency, is

equal to the storage capacity of the reservoir, then charging stops.
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Taking into account the inefficiencies of generating from storage, the

total energy available to meet customer demand will be about two-thirds

the energy generated for storage. This results in a marginal generating

cost about one and a half times that of the base loaded unit used for

storage.

Depending on the system and shape of the load curve, several base loaded

units may fill a single storage unit, or one base loaded unit may fill

several storage reservoirs. For the completely reliable thermal units

case, the marginal cost of the storage will be taken to be the average of

the base loaded costs (with the inefficiencies factored in) weighted by

the amount of energy each base loaded unit provides. If the storage

units are ranked in order of decreasing number of hours at full capacity,

then the first unit will be filled by the least expensive base loaded

plant. Consequently it will be the first storage unit in the merit order

after the storage units are sorted into the economic loading order based

on the energy costs. When the first loading point is reached, the storage

unit may have sufficient energy to discharge at full capacity, or it may

not. The operating cost of the system is reduced by delaying the pumped

hydro in the loading order until the demand can be met by using the

pumped hydro at full capacity. The same is true for conventional hydro

or other limited energy plants, even though the energy is no longer

free. An illustration of the loading of pumped hydro is given in Figure

8.5.

8.2.2 Storage With Random Unit Outages

Once the energy available for storage has been computed, its treatment is

similar to that of a limited energy plant. Namely, its loading point is

chosen so that "equivalent demand" is met by using the pumped hydro at

full capacity, provided that its cost is smaller than that of the

cheapest competing in the loading order thermal plant. However, in order

to find the energy available, the following values must be computed:

(1) the expected excess energy available from base loaded units, given

that each unit has a probability of failing; (2) the probability that a
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storage unit has sufficient energy available and the generator does not

fail; and (3) the expected cost of the stored energy.

A storage unit creates a demand on base loaded units; however, unlike the

customer demand, the storage demand does not necessarily have to be met.

Also, storage units do not impose outage demands on other units until

their place in the merit order is reached and they are called on to

generate. Therefore, a separate curve that includes the demand from

storage units on base loaded plants is created. This curve is used only

to generate information on the availability and cost of stored energy and

is unnecessary for the rest of the analysis.

The notation used in this section is the following: In general, the

letter 'f' is used for probability density functions, 'fq' for frequency

curves, 'd' for duration curves, 'G' for cumulative probability

functions, and 'F' for reverse cumulative probability functions. The

subscript of the function tells which random variable the function

describes. Thus fc(d) is the probability density function for the

customer demand, DC. By definition:

fc (x) = Probability [x < DC < x + dx]

Gc(X) = Probability [DC < x] = f C (y) dy

0

F(x) = 1 - Gc(x) = Pr [DC > x] = x fC(y) dy.

x

The storage units are ranked so that the unit with the most hours of

generation at full capacity is the first to be filled. The ranking of a

storage plant relative to other storage plants is denoted by 'u' and is

distinct from the plant's ultimate place in the loading order, denoted by

'r.

Each storage unit has the following characteristics:

8-11



D = demand for storage by unit usu

=Pcu if Dsu = KCuPs(Dsu) = 1(1)
qcu if Dsu = 0

where

cu = probability that the charging cycle of unit u fails
KCu = charging capacity of unit u.

Note that the storage units impose demand on the base loaded units when
they work. This is the reverse of generating units that impose outage

demands when they fail.

- Energy Supplied to Storage

The demand imposed by storage units can be modeled as an increase in the

customer demand. The equivalent augmented demand, 0', can be defined as:

D'- = D Er+ KCu (2)Er Er u

The distribution of KCu is given in (1) and the distribution of DEr is
given by FEr , the equivalent load curve for unit r. Convolving these
distributions results in the distribution for the augmented demand:

Fru = q F (d) + p cuFEr(d - KC ) (3)
ru cu Er cu Er u

The expected capacity available for charging storage unit u from base

load plant r is the area between FEr and F' as shown in Figure 8.6.Er ru
This can be written as

S Ur+1 Ur+ I
E(C ru) = F ru(x)dx - di FEr(X)dx (4)

i n mi n
where
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dmin = minimum demand. This is the first point where
p[demand < x] < 1.0

C' = excess capacity available from unit r for storage
unit u.

Combining equations (3) and (4):

U

E(Cru) = Pcu d . FEr(x - KCu) - FEr(X dx. (5)

1iin
This capacity is available with the probability of pr' the availability

of the base load unit. The expected energy available to the storage unit

is the expected capacity multipled by the time length and the

availability of the base load plant.

aI

aru = Pr E(Cru) T (6)
where

aru = expected energy available from
plant r for storage unit u.

Equations (2) through (5) imply that the storage demand is constant

through time. However, the storage unit has a limited capacity and once

the reservoir is full, the demand stops. Due to inefficiencies, the

storage unit consumes more energy than its rated size, so pumping stops

when the area between the curves, equals the total energy requirement, Zu:

Zu = zu/eu (7)

where

Zu = total energy required by storage unit u

zu = size of storage reservoir u

eu = efficiency of storage unit u
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The equivalent augmented demand curve can be written as:

and

F' (d) = q F (d) + p F (d - KC
ru cuFEr cu Er u

F' (d) = F (d)
ru Er

for d < d'u+u- u+1

for d > d'
(8u+)(8)

where d' is determined such that:

Z = T pcU d [FEr(x - KCu) - FEr(x)]dx.

min

(9)

The resulting curve is shown in Figure 8.6c. This same curve could have

been derived by adding the capacity of the storage unit to the original

customer demand. However, the demand level at which storage starts and

stops depends on the capacities and outage rates of earlier plants, so it

is not possible to predict ahead of time when the storage demand will

occur.

If there are additional storage plants, then they must also be added to

the augmented demand curve. If the first storage plant were to fail,

then the base load plant would supply the second storage plant instead.

F' (d) = +F' (d) + p+F'(d - KCU+ 1 )
ru+1 = cu+1 ru cu+1 ru

F' (d) = F' (d)
ru+1 ru

for d < d'
u+1

for d > d'
u+1

(10)

where d' is determined such that:

uZu+ 1 = T pcu+1 d5  [FEr(X - KCu) - FEr(x)]dx

min

(11)

All storage units are loaded using equations (10) and (11).

The expected capacity available from base plant r for the first storage

unit is given by:
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I

E(Crl) Pc1 Ur
FEr(X - KC1 ) - FEr(X) dx

The expected energy available is:

arl = Pr T E(Crl) (13)

and the expected cost is:

Crl = arl Cr (14)

To find the expected capacity available to the second storage unit, the

equivalent loading point is increased by KC1, the capacity of the first

storage unit. Then,

Ur+1+KC1

E(Cr 2) = Pcl UKC
I I

[Fr 2 (x - KC1 ) - Fr2 (x)]dx

a = pr T E(C'2)r2 r r2 (15)

and the expected cost is:

cr2 = ar2 c .r2r2 r

Equation (15) is repeated until the expected energy supplied to each of

the storage plants by plant r is found.

The next base plant in the loading order must supply whatever energy the

first one could not due to outages, insufficient capacity, or

insufficient energy. For the first storage plant, the augmented demand

curve is given by

Fr+l,l(d) = PrFrl(d) + qrFr(d - Kr) (16)

and the expected capacity is:
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I r+2 I I
E(Cr+1,I) qr+1 [Fr+1 (x) - Fr+1 (x - Kr)]dx (17)

r+1

Equations (16) and (17) are much simpler than equations (10) and (12)

because the demand due to storage is already included in Frl1 The

only additional factor that must be included is the probability that the

first base unit fails and that the second must supply the additional

energy to the storage unit.

In general for the first base load plant with excess energy

I I

Fru+(d) = qcu Fru(d) + pu F (d - KCu) (18)
ru+1 cu u curu

U +KCu

E(C) = [Fru (x - KCu) - Fru (x)]dx (19)
ru) = Pcu Uru u ru

r u-1

aru = Pr T E(Cru)
cru = cr aru

Finally, the expected energy and its cost for each storage plant are

computed.

Au = ( E aru) . eu (20)
r

Cu = ( z aru cr )/Au

r

The total expected energy and cost for the storage units cannot be found

until all the base units have been loaded. There is an implicit

assumption that the storage units will not be used before the base load

units.

- Energy Supplied by Storage

The expected energy cost for storage unit u, as computed in equation (20)

dictates the minimum spot it will have in the economic loading order.

However, because the storage plant has limited energy, its use
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may be postponed until all its energy can be dispatched at full

generating capacity in order to minimize the use of expensive fuels.

When a storage plant is loaded as a generator in position r in the

loading order, it has the following characteristics:

q = probability that the generator part of the cycle fails

Kr = capacity of the generator
Ar = expected energy available
cr = expected cost per unit energy

Xr = average forced outage occurrence rate

In theory the average forced outage occurence rate should be modified to

include the effects of the outages of base load units and other storage

plants. However, these effects are negligible and difficult to compute,

so they are ignored.
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Section 9

INTERCONNECTIONS

Most electric power systems are involved to some extent with reserve

sharing and economy interchange with neighboring systems. The objective

of this task is the development of computer models within EGEAS that will

reflect the effect of ties to neighboring systems on reserve requirements

and fuel costs. The importance attached to effects of interconnections

on expansion planning of individual power systems will vary widely among

utilities.

The EGEAS interconnection model is designed to accommodate this wide

variety of utility requirements by providing several levels of detail and

sophistication to meet different utility needs and data availability.

9.1 GENERAL APPROACH

The interconnection model is designed to be compatible with the basic

structure of EGEAS. In particular, this means that the methodology is

based on the use of load duration curves. The data base for system A

(the system being optimized) is the same as that required by the basic

EGEAS program. Additional data required for system B are prepared in the

same format. Reserve requirements as affected by interconnections are

treated separately from economy interchange. Either or both these

options can be specified by the user.

In all cases, system A is being optimized and the characteristics of

system B remain fixed. For the most detailed formulations of the

interconnected model, system B generation expansion plans must be

specified in detail. For some of the simplified reserve requirement

models, few data are required for system B.
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9.1.1 Economy Interchange

Economy interchange usually involves hour-by-hour interchanges between

two parties based on a sale to one participant, whose running rate energy

cost is high, from the other participant, who has a lower running rate.

The sale price is computed as being midway between the two running rates

so that the seller obtains more than his cost from the sale and the buyer

benefits by replacing expensive generation with less expensive purchased

energy. The total net savings is thus split equally between the

participants.

The amount of the sale will consist of one or more blocks of energy from

different generating units, each block will tend to reduce the

differences in running rates until the running rates are equal, or until

the tie lines reach a maximum transfer limit. The resulting unit

dispatch is the same as that which would result from dispatching the two

systems as though they were one.

It is not necessary to carry out this split savings computation for each

hour to produce the net annual savings due to economy interchange. Each

system may be dispatched for the whole year independently and dispatched

again as one company. The difference in total annual fuel cost between

the combined and independent dispatches will be the same as the savings

produced by the hour-by-hour computations, provided that both

computations are carried out deterministically.

The main difference between simulating economy interchange and the system

dispatcher's hour-by-hour decisions in real time is that the simulated

interchanges must be based on a probabilistic determination of the

availability and cost of economy interchanges.

The basic methodology for determining the effect of economy interchange

of system A fuel costs is based on three annual fuel cost dispatches:

one of system A supplying system A load; one of system B supplying system

B load; and one of the combined systems supplying the combined load. The
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total savings in fuel cost is the difference between the sum of the

independent fuel cost and the combined fuel cost.

The methodology for running three annual system dispatches provides

accurate modeling of economy interchange savings provided that the ties

are not limiting, even though the interchange consists of both purchases

and sales. To make the methodology completely accurate, including tie

line limits would require an hour-by-hour analysis. Even the

hour-by-hour analysis would be further complicated by the probabilistic

nature of the availability and cost of the economy interchange. It is

possible to approximate the effect of limiting ties in the load duration

dispatch methodology by converting the tie limit into an energy limit

(MWH). This works well if the interchanges are all in the same direction

but fails to consider the energy netted out by balancing purchases and

sales. Any practical methodology must recognize the possibility of daily

swings from purchases during off-peak hours to sales during peak load

hours, and seasonal changes from purchases to sales. A compromise

between a single annual load duration curve and hourly, probabilistic

simulation to represent limiting ties will be provided by subdividing the

load duration curve into off-peak and peak loads with further subdivision

into months or seasons. A MWH limit will be applied separately to each

subdivision and the purchase and sales. If ties are limiting, the limit

will be applied first to interchanges that produce the smallest savings.

To this end, the generation of individual units in the purchasing system

that participates in the interchange will be increased enough to reduce

the purchase to an allowable amount. A similar decrease in participating

unit generation in the selling system will also take place. Generation

will be increased on participating units with the lowest fuel cost and

decreased on units with the highest cost until the limit is reached.

Load diversity between the two systems accounts for a large percentage of

the economy interchange and needs to be modeled accurately. To this end,

hourly loads (in EEl format) will be provided for each year of the study

for both systems. These loads will be summed hour-by-hour before the
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load duration curves are formed for systems A, B, and the combined

systems.

The split-savings method for pricing economy interchange may change in

the future. Two additional options will be provided for determining the

distribution of savings; one will consider split savings with a cap on

the seller's profits; the other will provide for seller's cost plus a

fixed percentage.

Storage will be represented in a straightforward manner within the

three-dispatch methodology, i.e., system A storage will be dispatched

with system A generation independently; system B storage will be

dispatched with system B generation independent, and the combined storage

will be dispatched with the combined systems. The resulting generation

on the remaining units will determine the economy interchange.

The general equations and symbols relating to economy interchange are

shown in Tables 9.1 and 9.2, respectively.

9.1.2 Reserve Sharing

When two or more systems are interconnected, the reserves are normally

pooled so that emergency assistance is available to one system up to the

limit of generating capacity reserve available in the remaining system.

The amount of reserves that can be depended upon by a particular system

within the pool may be limited either by transmission tie capability or

by the probability that reserve capacity from the pool will be available

when needed.

Three options will be provided to supply different system requirements.

- Option A

A simple model is justified for a class of small systems connected to

very large interconnections. In these cases, reserves are available
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FA T  =

S 3SA,N =

PA,N

Sale =

Purchase =

Maxsale =

Maxpurchase

If Sale > Maxsale

Modify

Table 9.1

EQUATIONS

F +F -F A  -FFA,I B,I A,C B,C

FAI - 1/2 D

EA,C,N - EA,I,N (Positive)

EAIN - EACN (Positive)

SA,N

PA,N

K H T TK.H.T S

Kp . H . Tp

or Purchase > Maxpurchase,

EA,C,N and EB,C,N
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Table 9.2

SYMBOLS

EA,C = System A annual generation in combined dispatch

FA,I = System A annual fuel cost - Independent mode

FA,C = System A annual fuel cost - Combined mode

EAI N  = Unit "N" generation in Independent mode

EA,C,N = Unit "N" generation in Combined mode

FA,T = Total fuel cost including economy interchange

TS  = Tie Line limit (Sale)

Tp = Tie Line limit (Purchase)

KS  = Tie line capacity factor (Sale)

K = Tie line capacity factor (Purchase)

D = Total savings due to economy interchange

SA,N = Sale from Unit N, system A (Positive)

PA,N = Purchase from Nnit N, system A (Positive)

H = Number of hours in load duration curve
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with almost perfect reliability up to the limits of tie-line capacity.

For these systems, a tie line model may be selected that consists of a

single generator with no forced outage rate and a rating equal to the tie

line capacity. For this simplification to be valid, the tie line

capacity must be small with respect to the available reserves. The

advantage of this simplification is that it requires no data for sytem B.

- Option B

If a small systejm is interconnected with a large system by ties capable

of supplying all or a large part of the load, the model of option C below

may produce unacceptable results. For example, the neighboring systems

could supply the entire load. To supply a practical solution to this

problem, a limit on load to be supplied by the ties is provided. The

application of this option involves subtracting a fixed amount of load

from the load duration curves when computing reserve requirements.

- Option C

The methodology used in this option involves the develdopment of a

probability distribution of reserves available from system B.

For each year of the study a probability distribution of system B

generating capacity will be compiled by conventional methods used in

loss-of-load-probability calculations. From this distribution and the

system B peak load, the probability of available reserve will be

calculated in the form of a probability distribution of reserve

available. This list will be truncated at rated tie capacity. The model

developed from this probability distribution will resemble a multistate

generating unit with a separate forced outage rate for each level of

capability.

This synthetic unit will be added to the system A generator list and will

be loaded last in the probabilistic fuel cost simulation. As a result of

being last in the unit loading order, it will normally supply only
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"energy not served" by the remaining system A generating units. The

tie-line model will be determined based on conditions at the time of

system A peak load, and one model will be used for the entire year. More

reserve may be available during other times in the year but reliability

constraints are most sensitive to peak load conditions, and system B

maintenance will tend to levelize reserves during off-peak periods.

A flow diagram is shown in Figure 9.1 for the development of all three

models for Options A, B, and C. In all three options, a year-by-year

file of the tie-line models will be developed and stored as indicated in

Figure 9.1. Figure 9.2 demonstrates how these files are generated and

used in the overall EGEAS structure.

The same tie line models will be used in OPTGEN and GEM. The models will

be treated as "existing" units in the optimization process, the only

difference being that the model changes each year.
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Section 10

OTHER ADVANCED FEATURES

Additional advanced features of EGEAS include addressing issues of

uncertainty, sensitivity analysis, and environmental considerations.
Work to date has proceeded with the conceptualization of the methodology

to be used in handling these features.

10.1 SENSITIVITY ANALYSIS

Sensitivity analysis can always be carried out via parametric variation,

an option available with all EGEAS modules. However, there are
significant limitations in this approach since it is adequate for the

study of only a limited number of input variations* and no systematic

relation may be derived between complex changes in a set of inputs and

their impact on output values. The method to be used in EGEAS can

provide such systematic relations by utilizing conventional sensitivity

analysis results to calibrate a "describing function" of changes in the

vector of outputs of an optimizing model as a function of a vector of

changes in the input parameters. The "describing function" approach to

sensitivity analysis has been developed by Schweppe and Gruhl** and is

briefly described as follows:

*Interpolation is not applicable when more than one parameter is varied.

**Schweppe, F.C. and Gruhl, J., "Systematic Sensitivity Analysis Using
Describing Functions," published in S.I. Gass (ed.), Validation and
Assessment Issues of Energy Models, NBS 569, February 1980.
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- A range of feasible values for each input whose actual value is

not known with certainty is identified, so that it includes all
"reasonably" probable variations of the input's uncertain value.

- The joint probability distribution of input vector perturbations

is then described and a set of perturbations which span the

range of probable variations is determined.

- Conventional parametric analysis is performed by running the

optimization algorithm for each input perturbation in the above

set to obtain the corresponding output perturbation.

- Statistical estimation is then utilized to derive a polynomial

function which transforms perturbations in inputs to

perturbations in outputs. The statistical estimation technique

uses input-output perturbations obtained by conventional

parametric analysis and the probability distribution of input

perturbations to calibrate the describing function, selecting at

the same time endogenously the necessary complexity of the

polynomial function (degree of polynomial, number of cross

products, etc.). The degree of complexity is chosen to minimize

the difference between the mean square of "predicted" by the

describing function variations and the mean square of "actual"

variations. Finally, the estimation procedure indicates whether

the number of sample relations between input and output

variations obtained through conventional parametric analysis is

sufficient for statistically significant calibration of the

describing function. If needed, additional runs of the

otpimization algorithm are performed to provide a more dense

span of the range of probable input variations.

With an analytic representation of the impact on output of variations in

the inputs, the sensitivity of the optimal decisions on input variations

may be clearly investigated in a systematic and exhaustive manner.
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10.2 UNCERTAINTIES

The following options are currently being investigated as candidates for

the treatment of uncertainties in EGEAS.

10.2.1 Assessment of Uncertainty Impact

The degree to which the optimal plan must be revised as a result of the

realization of different from expected events (demand growth, regulation,

costs, etc.) must be carefully determined. This effort is an extension

of sensitivity analysis discussed above, and will utilize conventional

parametric analysis and the "describing function" approach.
Uncertainties which do not affect the optimal plan significantly may thus

be screened before building the decision tree discussed below.

10.2.2 Sequential Decision Update

A utility has the flexibility to react to the occurrence of actual

outcomes differing substantially from expectations on the basis of which

decisions were taken in the past. The extent to which a utility may

adjust (i.e., suffering a higher or lower cost) depends on the particular

characteristics of the utility, the existing and committed units, the

regulatory regime, the growth of demand, etc. An assessment of a

utility's ability to adjust may be obtained by simulating its sequential

investment decision updating as follows:

- Construction of Decision Tree

On the basis of sensitivity analysis the assessment of uncertainty's

impact may be performed and the variables whose variance affects

investment decisions significantly identified. The uncertainty

associated with possible values these variables may take in the future

will have to be modeled in terms of discrete probability distributions

reflecting dependencies among variables. These discrete joint

probability distributions will then be used to construct a decision tree

representing all possible ways in which uncertainty may resolve itself in

the future. An example of such a decision tree is given in Figure 10.1
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- Simulation of Sequential Decisions Along the Branches of the Decision

Tree

The simulation of sequential decisions involves successive runs of a

capacity expansion option. Each run should have a starting period which

coincides either with the beginning of the initial planning period

(tstart = t o ) or with the time that an uncertainty resolves itself in the

decision tree (tstart = tn). Further, the input on the basis of which

each run will be made should be derived in part from a previous run

(endogenous state variables, EN) and in part from decision tree specified

uncertain variable values (exogenous state variables, EX) corresponding

to the most likely values conditional upon the uncertainty resolution

defining the particular branch of the tree the planner is simulating.

For a more detailed description of sequential decision simulation the

following variables have to be defined:

T: Length of planning period

At (j): The resolution of uncertainty during time period tn is
n described by realization j

EXt (j): Exogenous state variables at time t corresponding to
n the most likely values of the uncertain variables

conditional upon At (j). Such variables may include:

o costs n

o fuel, capital, plants

o reliability

o outage rates

o load demand

o growth

o load shape

o constraints

o fuel, capital availability

o environmental/regulatory/financial

o reliability.

The above variables are exogenously supplied by the user on the basis

of At (j).
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ENt (i): Endogenous state variables at time t corresponding to

n optimal decisions over the period tn- 1 ' tn- 1 + T on the

basis of EXt (i), the most likely values of exogenousn-i

state variables conditional upon an uncertainty resolution

during time period tn- 1 described by Atn-1 (i).

Such variables may be:

o usage to time tn

o fuel, capital, air, water, sites, resources

o large reservoir storage levels at time t n

o installed plants at time t n
o committed plants at time t

n

The above variables are derived from the output of a previous run of the

capacity expansion option used in the simulation, over the period

tn-,' tn- 1 + T with input ENtn-1 (k) and EXtn-1 (j) where k,j are indices

defining the decision tree branch over which the user is simulating.

Dt (i,j): Decision variables over the period t , t + T

corresponding to endogenous state variables ENt (i) and

exogenous state variables EXt (j). Such variables may include:
n

o capacity

o type

o amount

o timing

o dispatch.

The following example describes the uncertainty treatment capability

whose incorporation into EGEAS is under investigation. Referring to the

decision tree in Figure 10.1 in order to simulate sequential decisions

over the branch At (1), At (i), At (3), C, the user would have to

specify exogenousl 9 1 2
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EXt (1): The base case "most likely" values of uncertain variables

over the period t O , T

EXt (1): The most likely values of uncertain variables over the period

1 t1 , t 1 + T conditional upon uncertainty resolution At (1)

EXt (3): Similarly over t2, t2 + T conditional upon uncertainty

2 resolution At (3)
2

ENt (0): The presently committed and existing plants, storage levels,

etc.

The EGEAS control program will then run the user selected optimization

option to generate

a. Dt0 using as input EXt 0(1) and ENt 0(0)

b. Dtl(1,1) using as input EXt (1) and ENt (1)

c. D t2(1,3) using as input EXt2(3) and ENt2(1)

d. ENt (1) and ENt2(1), derived from Dt0 and nt1 1 1) respectively

The user can then recover from Dto, Dtl (1,1), Dt2(1,3) plant installations

and commitments during the period t0, tO0 + T corresponding to sequential

decision updates or reoptimizations which will take place if uncertainties

resolve themselves according to decision tree branch At (1),

At (1), At (3), C3 .
1 2

Upon simulation over all decision tree branches the user can employ

uncertainty resolution probabilities to estimate expected costs of

capacity expansion. It should be noted that each of the successive runs

in the sequential decision simulation is a deterministic decision

algorithm. The use of formal stochastic optimization (expected cost

minimization) is a feasible extension, especially with the Generalized

Benders' capacity expansion option, but one which cannot be realized

under present funding constraints.
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10.3 ENVIRONMENTAL CONSIDERATIONS

The environmental interface extension to the EGEAS database will include

the actual limits on total emissions within a site (or area) and within

the total system. These will be in the form of total mass of SO2 or

particulates allowed, mega-gallons of water consumed, MBTU of heat output

and total acreage of land used. Fuel data pertaining to SO2 (and

particulate) content and emission factor must also be provided as well as

removal efficiencies for various pollution abatement technologies.

The matrix generator of the LP module will allow for any of the emission

constraints, for individual site and/or total system, to be turned on or

off in any year, independently. This will allow the planner to keep the

problem size manageable by turning on constraints selectively. Further,

a constraint limiting total output of any emission type over the entire

planning period will be allowed. A basic assumption used by the LP

approach is that emissions are a linear function of plant capacity and

energy output. Section 4.1.2 provides further detail about the actual

equations used in the LP.

The decomposition technique will treat emission constraints in the same

manner as energy limitations (e.g., fuel availablility constraints). The

same flexibility will be provided in the master problem matrix generator

as will be in the LP, allowing emission constraints to be turned on or

off independently in any year. If fuel constraints are also included

within a run, only the more binding constraint (emission or fuel) will be

written by the matrix generator. The basic procedure has the master

problem selecting plant capacities and energy output limitations, and the

subproblem operating on this set of information, calculating Lagrange

multipliers for the capacities and energies (which are then fed back to

the master problem for the next iteration). An assumption here is that

emissions are a convex function of the energy output of a plant.

The dynamic programming (DP) module may deal with environmental

constraints by performing post-production cost screening of individual

states to ensure that constraints are not violated. The viability of this
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approach is still being researched. Currently it is felt that by

performing the environmental screening, states may be eliminated during a

given year as well as future states which extend from the screened

states. Elimination of future states could even cause a net savings in

computer run time if the screening calculations themselves are not too

costly. Within the DP approach, emissions can be assumed to be any

linear or non-linear function of plant capacity and energy output. Also

under consideration for use in the DP is the use of energy limitations

within the production cost module (similar to the decomposition

approach). It should be emphasized that these DP approaches are still

being researched and are not necessarily going to be included in the

EGEAS package.

The external environmental data base will contain basic site information

which would allow for standard point-source dispersion modeling to be

performed. Such data would include "wind rose" data (wind velocity

vector information), ambient conditions relating to ground level

concentration of SO2 and particulates as well as water flow, depth,

width, temperature, and classification (river, estuary, etc.). Screening

standards can also be input to allow the user written dispersion models

to perform plant/site screening on a generic level, or to perform

trade-off analyses pertaining to the size of abatement technologies

required to meet given standards.

In keeping with contract requirements, the above statements on EGEAS'

handling of environmental concerns do allow for its inclusion as a supply

planning package into a methodology as set forth in the PHASE I final

report by the Massachusetts Energy Facilities Siting Council to the U.S.

Nuclear Regulatory Commission entitled "An Integrated Regional Approach

to Regulating Energy Facility Siting." This basic methodology is

illustrated in Figure 10.2 .
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Section 11

TESTING AND VALIDATION CRITERIA

Once the mathematical model has been developed, it is necessary
to analyze its structure and the data generated by its computer
implementation before the model can be considered credible. In
this task we distinguish three separate activities:

1. Mathematical verification, which is accomplished in the
analytical stage of model building,

2. Computer program verification, which is accomplished during
computer implementation,

3. Model validation.

The purpose of (1) and (2) is to eliminate unintentional logical
errors in the model's structure, the mathematical solution
algorithm and the corresponding computer program. That is, to
make sure that the model is developed and implemented as
intended. To some extent this objective is independent of the

quality of numerical results or their relation to the behavior
of the prototype. Model validation is another stage of
modeling; it usually includes:

1. Analysis of the quality of mathematical formulation,
solution algorithms and numerical results;

2. Comparison of the numerical responses from the verified
model with corresponding responses or measurements recorded from
the prototype;

3. A combination of 1 and 2.*

11.1 INTRODUCTION

The EGEAS system testing procedures will be carried out in accordance

*Samuel Jacoby and Janusz Kowalik, Mathematical Modeling with Computers

(Englewood Cliffs, NJ, Prentice Hall, 1980), p. 216.
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with accepted structured programming practices and will, in general form,

follow the distinctions drawn above by Jacoby and Kowalik. The initial

step in the testing procedure has been to develop a set of behavioral

objectives, one for each major component in EGEAS.

11.2 OBJECTIVES

The discussion below presents the behavioral obectives of each major

component of EGEAS. It is against these initial objectives that the

performance of EGEAS will be measured. They cover, briefly the scope of

the activities, and input and output requirements.

Dynamic Programing

EGEAS shall contain dynamic programming algorithms capable of analyzing

limited numbers of expansin alternatives (up to a limit of 5 with the

most common runs containing only 3 or 4 expansion alternatives). The

dynamic programming algorithms shall be accessed through the central

EGEAS controller and shall access the common EGEAS data base. It shall

be capable of outputting the 100 best solutions.

Linear Programming

One analysis option within EGEAS will be a linear programming

optimization. A matrix generator will be provided which can generate

constraints in any time period (and one for the sum of all time periods

where applicable) for any of the following issues:

o system peak load plus margin

o system total energy served (broken down into at most 3 types -

base, intermediate, and peaking)

o fuel usage by fuel type and grade

o emissions by site for total system for SO2 , particulates and
thermal

11-2



o land use by site or total system

o water consumption by site or total system

o available sites

Any of these constraints can be turned on or off in any year, thus

allowing flexibility of use and computational feasibility. The objective

function is to minimize Present Worth of Revenue Requirements which is

the Present Worth sum of fixed and variable system costs, both within the

planning horizon and in the extensin period. The decision variable will

be continuous, not integer in values for number of plants built.

The linear programming package shall be accessed through the central

EGEAS controller, and shall access the common EGEAS data base.

Generalized Benders'

EGEAS shall contain an algorithm which will provide optimal capacity

expansion decisions based on detailed accounting for fixed and variable

costs as well as satisfying reliability constraints with respect to

unserved energy. The algorithm shall be an extension of Generalized

Benders' decomposition which allows iterations between a linear program

and a simulation production costing program in order to arrive at the

optimal solution. The Generalized Benders' algorithms shall be accessed

through the central EGEAS controller and shall access the common EGEAS

data base.

Data Base

The data base for EGEAS will be structured to allow access by various

analysis options (through a single controller program). It will contain

a central data base, which will include the necessary and sufficient

parameters for performing conventional capacity planning analysis.

Interface Extensions will be provided which can be added if various

advanced features are to be run. The data base will be composed of a

master file and a study variations file, which can temporarily override
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assumptions on the master file without changing the contents of the

master file. The master file will have maintenance routines.

Error-checking routines will be provided. Also, data accessing routines

will be provided to increase flexibility and ease of data base use.

Sensitivity Analysis/Uncertainties

The central EGEAS controller and the common data base shall be designed

so that "automatic" parametric sensitivity analysis is an option to the

EGEAS user with all optimization/simulation modules contained within the

EGEAS code. In addition, the capability to estimate the parameters of a

"describing function" will be included. The "describing function" has

the form of a polynomial and provides an analytic representation of the

impact on output values resulting from changes in the input values.

Storage

EGEAS shall contain algorithms capable of studying/optimizing storage

systems. These algorithms shall consist of a probabilistic production

costing technique utilizing a Load Duration Curve representation of

demand.

Interconnections

The interconnection model will provide capability to model the effect of

tie lines between the user's system and neighboring systems. The ties

may be used to reduce reserve requirements or to provide lower fuel costs

through economy interchange. The neighboring system or systems will be

modeled as one system. Two optimization modes will be provided. One

will optimize the user's sytem based on a fixed, known expansion plan for

the neighboring system. The other will optimize both systems as a pool

and provide an allocation of costs, capacity purchases and sales, and

ownership of new capacity for the user's system. A split savings economy

dispatch will be used for both modes.
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11.3 VERIFICATION

Mathematical verification and program verification (testing) will be

accomplished in parallel with the programming activities. The procedures

used for the testing of the EGEAS program coding will be a synthesis of

top/down and bottom/up parallel testing. The EGEAS system specifications

and functional code specifications developed in Task II will detail the

program modules comprising the system as well as the required module

interfaces. Vertical branches will be developed for all modules defined

in the specifications on a macro level so that top/down testing sequences

can be identified. For example two typical branches would be:

a) Edit Program, Report Program

b) Control Program, Optimization Program, Report Generator Program

This portion of the testing will be performed as the coding is

developed. Only controilled testing will not be undertaken since the

primary purpose for early development and testing of this portion of the

coding is to define and set all program interfaces as soon as possible.

These vertical macro branches such as a) and b) above will be further

defined into more detailed micro branches depicting the major processing

modules within each program such as Input/Output, technical algorithms,

and internal controllers. From these branches subroutines and functions

will be grouped into logical hierarchical chains. These micro branches

will determine the bottom/up testing sequence as a subroutine and then a

module is completed. Test data will be defined by the programmer such

that all processing branches of a module are excercised. The test

results of these terminal routines will be hand verified for:

o arithmetic operations of formulas

o logical decisions

o internal program storage.
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The testing procedure described is wholly consistent with the coding

development scheme planned for EGEAS. Higher level coding will be

constructed in skeleton form in parallel with the development of the

detailed program units in order to facilitate interface accuracy.

Testing will be performed concurrently with development. Since this

testing will be done in parallel and in vertical branches, major portions

of the system will be available for final testing prior to 100 percent

completion of the project.

11.4 VALIDATION

Model validation will follow two paths. The first is an adaptation of

work under way at MIT for EPRI in Model Assessment. The model assessment

procedure at MIT includes the following procedural steps and/or levels of

detail in the verification process:

o Evaluation of Research Models and Issues;

o Literature Review;

o Self Audit;

o Independent Model Audit;

o Controlled Comparative Application; and

o Third-Party Model Assessment.

This procedure has been developed primarily as a logical structure aimed

at defining the steps toward third-party model assessment. For this

reason the model validation process for EGEAS will proceed only as far as

step three though with considerable attention to the ability of the

modeling system to "predict prototype behavior." For this purpose, the

first set of system-level tests will be based upon analyses of the EPRI

synthetic utilities and a thorough analysis of model behavior compared

against perceived or anticipated results from estimation of an expansion

path from a small utility. Data bases for the EPRI synthetic utilities

to be utilized in this component of the validation process are currently

under development as a portion of the EGEAS project. The second set of

system-level tests will be designed to assure that EGEAS can be used at

any of a number of utility size scales. This will be a test for

11-6



dimensionality and will be accomplished by creating a synthetic utility

much larger than that used in the majority of the testing but with

identical generation characteristics and scaled present and future load.

The structure of EGEAS allows for one testing/validation procedure not

available to other expansion models, the ability to test internal

consistency between analysis alternatives. The EGEAS structure allows

for five analysis options for analyzing expansion pathways. These are:

A. Prespecified expansion pathway

B. Year-end optimization

C. Linear programming

D. Dynamic programming

E. Generalized Benders' decomposition.

These five alternatives are different in at least the following

characteristics:

A. Optimization, yes/no

B. Optimization linear/non-linear

C. Level of data detail

D. Ability to handle other analytic options such as

weather-dependent generation sources.

Nonetheless, the basic core purpose of these expansion analysis

alternatives is the same. For this reason, the solutions in which the

analysis alternatives are run head to head would always be at least

marginally different. The differences will be accounted for by

differences in the algorithms used or through differences in basic

assumptions associated with the use of the input data (the input data

will be from a common data base and therefore within itself be

consistent).
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COMPARATIVE ANALYSIS OF GENERATI1C PLANNING MODELS
FOR APPLICAT!OX TO P.EGIOAL POWER SYSTEM ?LA;NI4SG

.eal Stoughton Ned Badertscher

Palo Alto, California

INTRODUCTION

This paper reports the results of a study made
by Systems Control, -Inc. as a subcontractor of the
University of Oklahoma, under the auspices of the
Electric Energy Systems Division of the U.S. Depart-
cent of Energy, to survey the state of the art in
generation planning models and to assess their
applicability to regional power system planning.

Study Objectives

The basic objectives of the study can be surnma-
rized below:

* Define the problems of generation planning
for a regional power system.

* Survey the state-of-the-art models that are
available to address these problems. Per-
foi-m a cc.paeative analysis of representa-
tive models.

* Recommend areas of research and development,
if any, that are needed to perform regional
generation planning.

Study Scope

In this study, emphasis is on models and method-
ologies that represent the state of the art rather
than planning processes. In particular, by the
words " models" and "miethodologies'. we mean mathe-
mnatical procedures that are computer-based for the
most part, with limited human interface. Since
this definition still includes a large number of
different models, we have further restricted the
scope by examining only those aodels which address
the generation investment problem directly in their
formulation.

• Generation planning, being part of the overall
system planning of a power system which includes
generation, transmission and distribution facilities,
should ideally be solved with consideration of the
interface with transmission and distribution plan-
ning. An attempt was made to combine generation and
transmission planning in a.single formulation (21).
However, due to the complexity of the problem, it
is unlikely to be both computationC'ly feasible and
sufficiently accurate. This approach will, there-
fore, not be considered in this paper. Included in
the scope, however, will be the interface between
the generation planning models and plant-site-related
transmission investment.

DATA ANALYSIS

-- -I. ] -- -POWER PLANT SITING
-LONG-TE i INTERCONNECTION PLANNING

I LONG-TERM
GEN ERATION TRASMISSIOt

I EXPANSION PLANNING
PLANNING

I

II

Fig.
with

MEDIUM-TERM PRO
DUCTION COSTING
AND RELIABILITY
ASSESSMET .1

NEAR-TERM
ENERGY
MANAGEMENT I

1. Generation Planning
Transmission Planning

Functions and Interface

Figure 1 shows the major functions of generation
planning and the interface with transmission plan-
ning. The interface with transmission planning
occurs in real life at all levels of planning and
operation. For systems with strong internal trans-
mission capability, most of the interaction is
through power plant siting and the use of intercon-
nection with neighboring systems as a means of
reducing generation requirement. The interconnec-
tion option will not be included in the scope of
this report.
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Excluded from the scope also Is the problem
of near-ter-m energy management which includes schedu-
ling of maintenance and nuclear refueling and sche-
duling of seasonal hydro resources. Data analysis
which provides load forecast, forced outage rates,
hydro inflow data, etc. is likewise not considered.
Corporate financial models which simulate the fi-
nancial state of a utility for a given expansion
plan are also excluded. Detailed production costing
and-reliability assessment models are not analyzed
with the exception of the GRETA model of Electricit*
de France (EDF) which forms part of their overall
planning package.

The criteria for model
cussed in Section II. Six
the comparative analysis.

selection will be dis-
models were chosen for
They are listed below:

* WASP - A dynamic programming model with
probabilistic production costing developed
by Jenkins and Joy.

* OPTGEI - A dynamic progranmning model with
deterministic production costing developed
by Lee.

* University of Massachusetts Model - A mixed
integer linear programing model developed
by Noonan and Giglio.

* MIT Model - An Economic-Environmental System
Planning Package developed by the MIT Energy
Laboratory.

PUPS - A screening curve model developed by
Lee and Dechamps which is capable of treat-
ing unconventional generation.

* MNI-GRETA - An optimal control model (MHI)
and a Monte Carlo simulation model (GRETA)
used by EDF.

In Section III, the models are evaluated accord-
ing to the criteria of Section II. The comparison
will proceed by criteria, so that the contrasts
between features of various models are emphasized.
Finally, in Section IV, the areas that require fur-
ther research and development for the purpose of
application to regional pcwer system planning will
be identified.

Each of the models are described in an appendix
which is a synopsis of the available literature on
the model. The appendices are organized under the
following headings:

* Scope

* Objective

* Constraints

* Method of Solution

* Examples and Test Cases

* Performance Capability

CRITERIA FOR MODEL SELECTION AND EVALUATION

An extensive literature survey on generation
planning models was conducted before the final se-
lection of six models was made. Coth U.S. and Euro-
pean literature were searched. A bibliograpny is
provided at the end of this paper. Because only a
limited number of models can be evaluated and com-
pared in this paper, a set of criteria was used in
the selection process. They are listed below.

Criteria for Model Selection

* The model should be either proven in its
practical application to actual power system
planning or capable of solving real-life
problems.

* The model should-include features that repre-
sent the state of the art.

* The model should solve at least the invest-
ment and production costing problem of gene-
ration planning by an integrated com.puter
package.

* There should be published literature and
documentation available which describe the
methodology in sufficient details to allow
proper evaluation.

* The final set of models selected should pre-
sent a reasonable spectrum of the different
methodologies and capabilities of the state
of the art.

The six models listed previously meet the above
criteria. References to other models are found in
Section V BIBLIOGAPHY. Anderson (22) surveys the
linear programing methodology which is used in the
University of Massachusetts Model and the esting-
house Model GENOP (see Day and Menge (24)). Another
Linear Programuing model similar in character to the
MIT' Model is one developed by Gordian Associates.
Two models in addition to PUPS which use screening
curves in static optimization procedures are OGP
of General Electric (Garver, Stoll, Szczepanski
(26)); and the model of the Central Electricity
Generating Board of Great Britain (Phillips and
Jenkin (28)).

Definition of Regional Generation Planning

The major objective of this study being assess-
ment of the applicability of the models to regional
generation planning, it is necessary to define the
scope of regional generation planning for the pur-
pose of establishing the criteria for model evalua-
tion.

* Production Decisions

* Investment Decisions

* Limitations

A region is taken to mean the
more than one contiguous electric
interpretation of this definition
statement that there is more than
in finalizing the expansion plan,

service area of
utility. A strict
should include the
one decision maker
otherwise the



region would be equivalent to a single power company.
Vhen multiple decision makers from different utili-
ties are involved, they will have their own objec-
tive of minimizing the cost of their own system,
unless they have a coordination agreement whereby
the objective of minimizing the total cost to the
region overrides the individual objectives and a
formula is used to share the costs and benefits on
an equitable basis.

No generation planning methodology is available
to address the regional planning problem with a
multi-dimensional objective function, as would be
the case involving multiple decision makers with
different objectives. Because of lack of method-

-ology, regional planning entities usually resort to
one of two approaches:

(a) A single objective function with subsequent
cost and benefit sharing, or

(b) Coordinated planning by individual utilities
with various degrees of information exchange
which may result in jointly-owned and
jointly-operated generation facilities.

The latter approach is neither well defined nor well
enough understood to allow either exact mathematical
formulation or the development of planning models.
It Is therefore not a suitable definition of regional
planning for the purpose of model evaluation. On
the other hand, all generation planning models con-
sidered in this paper contain a single objective
function and can be used in the former approach,
even though they do not addre.ss the problem of cost
and benefit sharing. Therefore, the following pro-
blem formulation for regional generation planning
is adopted.

In regional generation olanninc, the objective
function is to minimize tne cost of generation in-
vestment and production to the customers in the
region over a planning period, subject to reliability,
environmental and financial considerations. The
total costs and benefits of the resulting generation
plan will be allocated on an equitable basis to the
participating utilities comprising the region.

Criteria for Model Evaluation

The criteria for model evaluation can be grouped
under five categories, namely, (1) Generation
Alternatives, (2) Methodology, (3) Production Costing,
(4) Problem Formulation, and (5) Comoutational
Pequirements. Each of the categories of criteria
will now be described from the viewpoint of desir-
able characteristics for application to regional
generation planning.

Generation Alternatives:

Generation alternatives are the options consi-

dered by the models in their optimization procedures
for satisfying future expansion at minimum cost.
For a single utility, a limited number of alterna-
tives will suffice. For instance, within the class
of nuclear units, one particular unit size may be
sufficient to consider for an expansion period of
ten years. However, for regional planning, each

participating utility may have its own optical unit
size. Coupled with other distinguishing features
like different capital cost and fuel cost, a region
may require a large number of generation alternatives.

In addition to the number of alternatives, the
types of alternatives that can be considered by the
models are also important. For some regions, hydro
and pwmped storage are not realistic options, however,
they may form a major portion of the generation mix
in other regions. The complete set of generation
alternatives that.are desirable for general appli-
cation should include the following:

* Hydro

-Pumped storage and other advanced storages

* Thermal generation

* Unconventional generation

* Firm purchases

Methodology:

Under this general category, four criteria are
included, namely,

* Method of solution

* Problem size

& Sensitivity analysis

* Availability of suboptimal plans

The method of solution refers to the matherati-
cal technique -used In solving the generation expan-
sion optimization. Depending on the desired opti-
mality, accuracy, and computational speed, several
methods of solution are available. No single method
has a distinct advantage over others for application
to regional planning.

Problem size that can be handled by the models
is an important consideration for regional planning.
An Inherent capability to perform problem size re-
duction is desirable. The ability of a model to
provide sensitivity information or to permit effi-
cient execution of sensitivity cases is very useful
for planners. Of great value also is the availabi-
lity of suboptimal plans which can provide a wider
spectrum of candidate plans for final selection.

Production Costing:

The criteria under the category of production
costing concern the modeling of important variables
for estimation of production cost. They are listed
as follows:

* Load representation

* Hydro and pumped storage modeling

* Treatment of unconventional generation

* Treatment of maintenance



Treatment of forced outages '

Problem Formulation:

This category of criteria concerns the compre-
hensiveness of the problem formulation. They are
designed to evaluate the factors that are either
represented as constraints or part of the cost
function for minimization. Considering tne impact
these factors may have on the resulting optimal
plan, they share equal imoortance with the Methodo-.
logy and Production Costing criteria. They are:

a Reliability

* Environmental effects

* Time horizon

* End effects adjustment

* Interface with transmission planning

Reliability and environmental effects may be
modeled as constraints or part of the objective
function. The time horizon that a model can handle
may restrict its application to long-term regional
planning, The end effects can influence the opti-
mality of the expansion plan in several years before
the terminal period. Since there exists a coupling
between generation and transmission planning, for a
globally optimal expansion, it is necessary to iter-
ate between the generation and transmission plans.
Therefore, a well-defined interface Is desirable.

Computational Recuirements:

Although future computer capability may be so
unlimited that computational requiremnen:s are not
an important consideration, in the near term, there
are practical limits to the affordable computer re-
sources that can be devoted to ieneration planning.
For this reason, it should be considered as a cri-
terion.

MODEL EVALUATION

In this section, the six models are-evaluated
and compared according to the criteria discussed
previously. The most interesting comparisons are
su marized in Table 1. The evaluation consists of
delineating the capabilities, limitations and as-
sumptions of each model and proceed by criteria.

None of the models is directly applicable to
multiple utility regional planning prcoblems al-
though it may be possible to adapt them for this
purpose. Assuming the problem size is manageable,
the important issues become the question of the
reliability of interconnected areas, cost allocation,
and multi-area generation dispatch. Furthermore,
the objective of regional planning is not neces-
sarily the sum of total discounted costs for all
utilities, due to complicated institutional factors
and the inevitable issue of equitable sharing of
costs and benefits over the geographically distri-
buted service area.

Alternatives for Generation Expansion

All six models Include the capability to auto-
matically select a- generation expansion plan from a
set of alternative sources of generation. All models
can handle thermal generating units as alternatives.
That includes nuclear, coal, oil, gas and combustion
turbines. The MIT Model also has the unique caoa-
bility of characterizing the generation alternatives
by thermal and air pollution abatement techqology
and their emissions.

With the exception of the MIT Model, hydro gene-
ration cannot be automatically selected by th.e models
for generation expansion. The difficulty of this is
due. to the site-specific characterization of hydro
units and site availability. The MIT Model incor-
porates a hydro site constraint.

Pumped storage hydro, being similar to regular
hydro, is not included in all models as an alterna-
tive. The University of Massachusetts Model, WAS?,
and the NIT Model do, but OPTGE!1, PUPS and the EDF
Models do not. However, it should be noted that
PUPS and the EDF Models permit the simulation of
prespecified additions of pumped storage.

Unconventional generation sources like solar,
wind, tidal power, etc. which are highly intermit-
tent cannot be auto.atically included as an alter-
native for expansion in any existing model. PUPS
was specifically designed to study the system bene-
fits.of an intermittent generation source like tidal
power. It is, however, only a simulation model as
far as the expansion of tidal power is concerned.
Still, it allows important questions like energy
credit and capacity credit to be answered.:

For some utilities and for regional planning,
firm purchases are often one of the economic options
of meeting load growth. Firm purchase is a diffi-
cult alternative to model because of its dependence
on the generation plans and demand forecasts of
neighboring systems. Firm purchase is available
only during those years when the neighboring system
has excess reserve capacity, therefore, a firm
purchase contract usually has a limited duration.
This temporary nature of firm purchase distinguishes
it from other generation alternatives. If the firm
purchase is in the form of joint ownership with a
fixed percentage of capacity, it may be approximately
treated as a regular generation alternative. If it
is a utilization of the neighbor's surplus capacit'
then none of the six models can consider it as an
expansion alternative.

Methodology

The models are compared under the sub-headings
of Method of Solution, Problem Size, Sensitivity
Analysis, and Suboptimal Plans.

Method of Solution:

The objective functions(sum of operating and
investment costs) for the University of Massachusetts
and MIT Models are similar. They are both linEar in
the number of capacity installations by type, vintage,
and time. Mixed Integer linear programrming and
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Table I. Comparison of Generation Planning M'lodels
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aender's.decompoSition principle are applied to the -

University of Massachusetts Program, taking into
account the separable operating and investment deci-
sions. SIPSX (Mathematical Progra.r-ing System Ex-
tended) Is used by the MIT Model to perform the re-
vised Simplex Method on the linear program whose
coefficients are provided by a simulation program.

Dynamic Progranmming-(OP) is employed in the WASP
and OPTGEN packages. WASP uses forward OP wnile
OPTGEN uses both forward and backward OP. In
forward dynamic programming, each feasible genera-
tion expansion configuration at each stage is
identified with a sequence of unit capacity additions
which yields the minimum.cumulative expansion cost
up to that stage. OPTGEN affords- the opportunity to
explore suboptimal plans by the use of backward
dynamic programing. Associated with each configu-
ration at each stage is a sequence with the minimum
cumulative cost of expansion that will be incurred
from this state until the end of the expansion per-
iod.

Nonlinear prograrnming is applied to the Optimal
Control Problem formulated in the EDF Model. The
nonlinear function of the configuration (cnerating
cost) is provided by the simulated production cost.

PUPS uses a static optimization procedure invol-
ving production cost simulation, screening curves
and existing generation mix to determine capacity
additions required.

Problem Size:

Due to the large number of production cost simu-
lations involved in dynamic programing, the number
of possible generation expansion configurations in
any year is limited to 200 in the case of WASP and a
truncation algorithm is used in OPTGEN to eliminate
plans which are costly in the interim between the
initial and final periods of the study. In this
-latter case, the maximum number of szates for any
year is 200 and the number of generation alternatives
can not be more than 5. Limitations in scope of all-
the models except PUPS are due to their dynamic
nature and the geometric growth in computation as
states or stages increase.

Sensitivity Analysis:.

A useful feature for power systemi planners is the
sensitivity information provided by the dual vari-
ables in the models solved by linear programning.
Thus, for example, In the MIT Model, the effect on
the cost of providing electricity of the constraints
on the number of plant sites corresponding to capa-
city size can be determined.

The EDF MNI Model computes the co-state variable
of the optimal control problem which can be inter-
preted as the "value of use" of a certain equipment
addition. It is in fact the sensitivity of the
total system cost to the incremental change in that
equipment capacity.

The University of Massachusetts Model can be
rerun starting from a base case solution to answer
the "what-if" type of sensitivity analysis while

using only 20 to 40 percent of the normal computer
time to solve a base case.

OeTGEN can be executed in
which the optimal plan or any
simulated without solving the
This permits repeated runs of
sitivity information and must
of parameter.

a simulation mode in
specified plan can be
optimization problem.
the program for sen-
be rerun for a change

Subootimal Plans:

Corresponding to the sensitivity feature of
linear progra.-ing is the feature of the dynamic
programming models (OPTGEN and WASP) that-allows-
direct output suboptimal plans without additional
computation since the simulation for these cases is
already performed in the optimizing process. There
is a difference in the approach of WASP and OPTGEN
in deriving the suboptimal plans. WASP ccmputes the
n-best (up to 10) alternative expansion paths uo to
a given generation configuration during the forward
DP. At the end, the true n-best plans are derived.
However, in practice, these 10 best plans are nearly
identical to one another except for small deviations,
mostly in the last few years of the expansion period.
The value of these suboptimal plans is therefore
questionable.

?OPTGEN does not generate the true 100 consecutive
best plans. However, by combining forward and back-
ward'DP, it can generate a vast number of plans which
are made up of suboptimal trajectories. These plans
are simply sorted in order of their costs to provide -
the 100 best plans. An algorithm is also available
to discard plans that are similar with the exception
of differences occurring in a specified number of
ending years. Results show that these plans exhibit
a much wider range of generation mix.

Production Costing

The methodologies of the models in production
costing are compared under the topics of load repre-
sentation, hydro and pumped storage modeling,
modeling of unconventional generation, maintenance
scheduling, treatment of forced outages, and cost
computation..

Load Reoresentation:

A majority of the six generation planning models
use load duration curves in the production cost
simulation. WASP represents the curve as a 5th order
polynomial while the University of Massachusetts
Model treats it in a linear programming fashion; the
duration parameter specifies the number of hours load
demand is above a certain level. .The EDF MNI Model
also uses a discrete load duration curve with 10
levels corresponding to well-known periodi of tfe day.
OPTGEN uses a trapezoidal approximation of the genera-
tion duration curve based on the specification of peak
and total yearly electric energy demand.

PUPS performs the simulation of non-thermal gene-
ration dispatch, i.e., hydro, pumped storage and un-
conventional generation, on the hourly load data .



over an entire year. The resulting thermal load is
converted to an annual load duration for production
costing.

Hydro and Pumoed Storage Modeling:

Two of the models (University of Massachusetts
and MIT) treat hydroelectric and pumoed storage
plants in a similar manner. The constraint set of
the linear program includes the demand placed on the
system by pumping in addition to consumer load
demnand. Both model the storage plant by an effi-
ciency parameter. The University of Massachusetts
Model includes a constraint which ensures water
levels are returned to the same level at the end of
the period with which they began. Siting con-
straints are included in the MIT Model so that the
total capacity of hydro plants in specific locations
is limited by water flow, temperature, surface dis-
charge, and loading standards.

PUPS uses the weekly load duration curve for
simulation as the peak is shaved by hydro energy.
An iterative approach to the determination of -the
pumped storage charging schedule is found by valley
filling subject to energy storage capacity con-
straints. At the end, hourly schedules are derived.

All hydro units must be combined into a single -
unit in the WASP and the EDF MNI Models. WASP af-
fords the capability of dividing capacity into two
blocks for base loading and peak shaving; in addi-
tion an emergency category may be defined allowing
for units out of service to be backed up by hydro-
electric plants. The more detailed GRETA Model of
EDF represents the hydro system by three equivalent
units (seasonal, weekly, and run-of-the-river) and
allocates energy differently in each case. Pumped
storage, aggregated into weekly and daily cycle
units are scheduled by a linear programiming itera-
tive suboptimization.

Modeling of Unconventional Generation:

PUPS provides the only model in which unconven-
tional electric generation can be treated. Either
an unconventional source may be used to supply load
Just above the must-run generation or storage de-
vices can be employed for retiming. Another impor--
tant feature is the capability of selling residual
unconventional generation in a secondary market,
such as to another power system. Although the
model was specifically developed for tidal power,
any intermittent generation sources can be simulated,
provided an annual sample of hourly generation out-
put can be specified.

Maintenance Scheduling:

Derating is the simplest way of modeling main-
tenance requirements for production costing. The
capacity is effectively reduced by the fractional
amount of maintenance required, but no account is
taken of strategic policies which enable other units
to cover the outages in an optimal manner. OPTGEN
.and PUPS use this derate capacity in the stacking
of units under the load duration curve, while the
capacity as derated appears in the constraint set of
the University of Massachusetts Model.

WASP classifies generating units by their capa-
city magnitude to limit the number of scheduling
variables. The equivalent maintenance blocks are
scheduled in the sequence of decreasing size, each
time fitting a maintenance block to the period of
greatest remaining reserve.

Both the MIT production cost model and the EDF
MNI Model feature optimized maintenance scheduling;
where, in the latter case, the maintenance schedu-
ling variables ar.e included in the set of decision
variables and, in the former case, shutdown can be
accorplished for either economic or environmental.
reasons. In the EDF GRETA Model, because it is a
Monte Carlo simulation, the maintenance schedule
is prespecified input data.

Treatment of Forced Outages:

As in the case of maintenance scheduling, dera-
ting is a popular method of accounting for losses
of generating capacity due to unplanned outages.
PUPS, University of Massachusetts and OPTGEN use
this approach. Actually, this possibility is a
random variable which is conveniently represented
as a Bernoulli process in an approach referred to
as the equivalent load duration curve method. Both
the WASP and MIT Models use this approach. Monte
Carlo simulation is used by the GRETA Model where
samples of available thermal capacities are drawn .
using the Markovian assumptions.

Cost Computation:

Of the models surveyed, three use annual fixed
charges to compute the capital cost. OPTGEI, PUPS
and EDF use this approach. The University of
Massachusetts, MIT and WASP models are similar in
that they represent investment cost by a single cash
outlay at the initial period when the plant goes on
line. Institutional factors accounting for prefer-
ence between domestic and foreign capital are
modeled by a weighting coefficient in ASP.

Problem Formulation

Under this category of criteria, the models will
be evaluated according to their ways of treating
reliability, environmental effects, time horizon
for the planning period, adjustment of results to
account for end effects and their interface with
transmission planning.

Reliability:

Two popular approaches to characterize reliabi-
lity are:

(a) Reserve margin and

(b) Equivalent load duration curve.

As a byproduct of the production simulation using
the equivalent load duration curve (ELDC), the
Loss-of-Load Probability (LOLP) and expected unserved
energy may be computed. In the case of WASP, these
may then be applied to restrict the state space.
OPTGEN approximates the cumulative distribution of
forced outages by four log-linear segments and
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computes the LOLP. MIT uses a reserve margin para-
meter in. the constraint set to ceterine the amount
of over-supply. EDF models failures as a cost which
is added to the operating and investment costs in
the objective function. The University of
Massachusetts Model uses an analytical approximation
of the reliability function based on the mean and
variance of the total available capacity, similar
to the OPTGEU approach.

Environmental Effects:

The effect on the environment is considered
only by the MIT Model. Fuel availability, site-
capacity restrictions, new unit addition rate,
stack emissions; air quality, river flows, tempera-
tures, lake loading and surface discharge are limited
by the constraints in the model. More detailed
modeling over a limited time period is provided in a
nonoptimizing production model.

Time Horizon:

A practical-upper bound for the time horizon for
all models but the static PUPS is about 10 years
since computation time increases geometrically with
the study period length for these models. Computa-
tion time is linear in the length of study period
for PUPS and the study is limited only by uncertain-
ties about future demands and prices. Fifty years
is a reasonable upper bound in that case. If one
accepts time steps of more than one year, the EDF
IHNI Xodel can solve for a longer expansion period.
Likewise, the expansion period may be up to 30 years
using WASP if one accepts the possibility of deri-
ving only a suboptimal plan by means of arbitrarily
reducing the state space for the dynanic programing.
Another artifice is that of decomposing the expan-
sion period into overlapping sub-periods and solve
for each period sequentially with cauoling through
the Initial conditions, as was demonstrated by an
application of the University of Massachusetts Model.
Again, optimality Is not guaranteled In this case.

End EffeLt.s Adjustment:

End effects in a model account for differences
in capacity of alternative plans at the terminal
point of the study period. One way of considering
these I, to artificially extend the planning period"
by a number of years called the evaluation period
in which the system is in steady state, i.e., no
increases in aggregate demand or- changes in the
generation system. The length of this extension is
an input parameter in PUPS, whereas it is equal to
the maximum immature period of all generation alter-
natives in the case of the University of Massachu-
setts Model. The OPTGEN package also allows for the
fixed costs for units in the terminal year to be
prorated according to the adjusted capacity which
will result in a specified LOLP level. The adjusted
cost of the terminal year is then projected for the
evaluation period and added to the objective func-
tion for optimization. WASP, the MIT Model and the
EDF Model do not account for end effects.

interface with transmission planning by modeling the
site-related transmission cost. A site is charac-
terized by a staircase cost curve which relates
transmission cost to generation capacity at the site.
In the forwdard dynamic progra..ming step, new gene-
rating units are automatically assigned to sites
where the incremental transmission cost is least.
Transmission fixed charges are added to the operating
and investment costs of the expansion plans. This
approach is a suboptimization which does not account
for dynamic effects and it requires the pre-speci-
fication of site-related transmission costs.

Ccmutation Recuirements

.Many models require the use of a number-of sub-,:
models serving various functions. When operated in
a modular fashion, analysis may be cumbersome and
time-consuming. Separate models to define unit
types, describe the load duration curve, configure
the expansion plan, simulate the system and optimize
the plan are required for WASP. Similarly, the EDF
package requires the use of an intensive production
costing simulation to check the optimizing program:
after a plan has been determined. The integrated
MIT Model consists of two iterative sections - one
uses operating data to optimize the configuration
and the other finds the optimal operating strategy
given the configuration. A detailed production cost
model is also included. The large linear program-
rming problem in the University of Massachusetts
Model is subdivided and solved iteratively. PUPS
features sequential rather than iterative operation
of its subprograms with a consequent decrease in
user-Imposed burdens. Core storage requirements for
WASP, PUPS and OPTGEN are at least (30-60K words)
wnile the University of Massachusetts'requires -some-
what more (100K words). A source of difficulty may
be the presence of round-off errors which arise in
linear progreaming as in the University of Massachu-
setts Model and the MIT Model. This problem may also
arise in the solution of the optimal control problem
in the MII Model of EDF.

Since computational requirements are difficult
to compare without resorting to benchmark studies.
a qualitative comparison Is made. WASP and the
EDF models require the highest computational burden.
Next comes the MIT Model, followed by approximately
equal computational requirement by the University
of Massachusetts Model and CPTGEN. PUPS requires
the least computation.

Interface with Transmission Planning:

OPTGEN is the only model that provides an



RECO,",ENDATIONS FOR RESEARCH

eased on the survey and the comparative analysis
of six generation planning models, certain deficien-
cies of the state of the art as applied to regional
generation planning have emerged. They are classi-
fied into near term and long term research areas and
described below. Those labeled near term should
require less mathematical development and less
computational breakthrougn than those classified
as long term. Since the relative importance of
these research topics are somewhat subjective, the
order in which they appear below does not reflect
any ranking.

- Near Term Research Areas

(1) Comprehensive Exoansion Alternatives: With
the increasing interest in unconventional
generation resources like solar and wind
power, and also in load management which in-
cludes customer load management as well as
supply management, a larger number of alter-
natives for satisfying expanding electricity
demand will have to be considered, especially
for regional generation planning which may
encompass a service area larger than that
of a single utility. Future research should
consider the modeling of these emerging re-
source options in the context of generation
planning and develop more powerful optimiza-
tion methods.

(2) Problem Size Reduction: In the near term,
before more poweriul computers or matheati-
cal techniques are available, it will be ne-
cessary to reduce the problem size by means
of equivalent representation, space or time
decomposition, etc. for present methodolo-
gies to be practical for regional applica-
tions.

(3) Cost and Benefit Allocation: In real life,
cost and benefit sharing is practiced by
the utilities that coordinate their planning.
However, these practices should be reflected
in the generation planning models to facili-
tate the process and to allow individual
participants to know their own cost and
benefit readily.

(4) Planning Under Uncertainty: The state of the
art in generation planning already includes
modeling the uncertainty of generation out-
ages, hydro inflows and load. Other factors
like construction delay, major disruptions
of fuel supply, etc. are not yet incorpor-
ated in existing models for-automatic gene-
ration expansion. In terms of their conse-
quences, these uncertainties could be equally
or more important than those already modeled.

Long Term Research Areas

(1) Inteoration With Transmission Planning:
Comcined generation and transmission plan-
ning would be a very useful technique if it
is practical and sufficiently accurate. It
would then eliminate the necessity of manual

Iterations between the two planning processes
and would provide assurance of an optimal
expansion plan for both.

(2) Integration With Recional Enery Model: At
the present, generation planning is an open-
loop process. The effect of the cost of
electricity on the load forecast is not con-
sidered. In addition, the cost of fuel is
considered to be given and ,inaffectad by the
region's fuel consumption, a major part of
which is for electric generation. To complete
the loop; the generation planning model should
be integrated with a regional energy model
which should contain a load forecasting mod-

S ule.

(3) Generation Planning With Multiole Objectives:
The 14MIT Model considers the environmental-
economic trade-off for generation planning.
It is one step towards developing methods for
planning with multiple objectives. In the
case of regional planning involving multiple
decision makers, it may be necessary to take
this approach. Recent mathematical develop-
ments in game theory and fuzzy sets may be
applicable.

(4) Extension of Objective Function to Include
Social Costs: If the regional planning
entity is mandated to optimize the social
costs, it would be necessary to consider them

Sin the objective function. The approach of
including a cost of unserviced energy by EDF
is one step in that direction. But other
costs, such as employment, taxation, etc.
should also be considered.
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APPENDIX A
WASP - WIEN AUTOMATIC SYSTEM PLANPINNG PACKAG

R.T. Jenkins
D.S. Joy

Tennessee Valley Authority
Oak Ridge National Laboratory

ScoDe

WASP is designed to find the optimal generation
expansion policy for an electric "utility system
using dynamic programming and probabilistic simula-
tion. The program evolved from the SAGE expansion
program at the Tennessee Valley Authority.

E.

i
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Featured in the planning package are the follow-
ing capabilities:

* User supplied life of new generation projects

a Pumped storage and hydroelectric

- Probabilistic simulation including forced
outages and scheduled maintenance

* Binding constraints

* Separation of financial calculations into
domestic and foreign accounts

* Study period of up to 30 years in length

* Modular configuration allows flexible data
mianipulation

Objective

The objective function is the present worth
discounted sumrmation of capital costs, operating
costs and salvage value. For capital expenditures,
the escalation rate of construction cost and discount
rate of time preference can be combined in the
formula

(1 + k)
p

Q . k 

where Qkj w Combined present worth and escalation
factor for expansion unit k in study
year J

mk a Escalation rate of kth candidate

k a Present worth discount rate for kth

candidate

n W Number of years from present-worth
base year

p - Number of years from escalation base.
year

In the case of a new unit, the capital cost is
considered to be paid at the initial point of a -
specific stage (or year) as is the capacity increase.
A "weighting factor" to reflect preferences with
regard to foreign capital is included in the capital
expenditure calculation.

C [QLkj ILk + FF J QF * IFk]
k

S 4Ck Nk * 103

C - Present worth of capital expenditure
for year j

k J Index number of expansion unit3

QLk. = Local capital present-worth and
3 escalation factor

QF k Foreign capital present-worth and
kj escalation factor

ILL -= Base year local capital cost

IFk =

FF =I

Base year foreign capital cost

Foreign capital "weighting factor"

thMWCk = Megawatt capacity of k. expansion
candidate

Nk  u Number of units added of type k

Credit to the objective function from salvage
value is represented by the discounted residual
capital expenditure

R - Pknyr Ski

k

where R = Credit for all unit additions in year

" Pknyr. (1+i )-nyr
knyr ~ k'

nyr = Number of years from P.W. base year
to end of study

SkJ = Computed salvage value for unit(s) k.
(see below)

If Ckj = Undiscounted capital cost for expansion
candidate k escalated to year j,

then Ck [(1+mk)P Lk + FFI(lk)P (Fk IF

*MWCk Nk * 10 3

and Skj = - Y-k Ckj (Straight Line Depre
k [ kJ ciation)

where Lk = Economic life in years of candidate

a Study life portion of economic life

or Sk =

d Lk+ Yk-Lk
1 - (1+ik) .1 - (1+iklL CkJ

(Sinking Fund Depreciation).



-12-

Operating costs due: to- fuel expenditure5 are as-
sumed to be paid at the mid point of each stage.
Then the combined present-worth and escalation cost
factor for fuel L in year j is:

Q~jn"(+m )n

S( 1+i t)m

Hence operating cost for year j is

> .(CSTZ + NFCSTZ) + QFzj

* EF * FCST

where CST - Local fuel expenditure for fuel type
1 (See Production Decisions)

FCST=

UFCSTL=

Foreign fuel expenditure

Local nonfuel operating expenditures

Finally the complete objective is

t

L(X) " C - R + Q .

j=1

Constraints

Constraints in dynamic programing have a non-
pejorative effect and actually make computation time
feasible. A particular state configuration must
have a minimum and maximum reserve requirement; a
greatly expanded system is not economic. Thus

SCAP > (1.0 + (PSV)min ).PEAK
SCAP <. 1.0 + (RSV) ax) P

Tmax ;

where SCAP - Capacity of state (Mi)

(RSV) min Minimum reserve margin

(RSV)max- Maximum reserve margin

Another means of reducing the number of
is to place a restriction on the number
for each project considered, then

(MIN), - N I KLX i

alternatives
of units

(MAX) = Maximum number of units to be- consi-
dered

Additionally, the actual reliability of the genera-
ting system Is computed in the simulation subprogram
and states which do not meet the critical value are
rejected. User-controlled constraints on state
capacity and alternative selection may be modified
without concomitant loss of state simulation data
when it is found that the constraint is binding for
the optimal solution.

Method of Solution

The WASP package Is composed of six program
modules; each is executed separately and data may
be checked and corrected before implementing the
next step.

The Fixed System Program (FIXSYS) describes the
state of the initial existing power system and in-
cludes data on the number of units of each type,
mlnimum and maximum operating capacities, heat
rates, fuel type and cost, forced-outage rates and
maintenance requirements. Precommitted units and
retirement rates are also specified.

VARSYS (Th Variable System Program) defines the
unit types to be considered in expansion plans.

-This rmay include pumped storage and/or hydroelectric
projects. Data requirements correspond to the in-
puts of FIXSYS.

Generation requirements in each stage of the
study are defined by the Load Description Program
(LOADSY) which develops the load duration.curve
for each period within the year from the load data.

The Expansion Configuration Generator Program
(CONGEN) allows the syst.em planner to direct the
focus of this study to the area of most economic
concern by user-controlled constraints (see Con-
straints).

Simulation of the configuration and computation
of the operating cost is provided by MERSIM (Merge
and Simulate Program). A probabilistic model is
used to calculate unit loadings, system cost (in
local and foreign exchange), probability of not
being able to meet the system load and the probable
amount of unserved energy.

The optimal expansion policy and economic cal-
culation of fuel escalation prices, penalty on
foreign expenditures and present-worth Is determined
by the Optimization Program (DYNPRO). States which
are feasible are those which have a lower LOLP than
the critical value. Constraints used In CO'NGEN
to expedite the procedure which are binding in the
optimal solution are identified by DYNPRO.

where (MIN).=-I Minimum number of units to be consi-
dered

N = Number of units of expansion candi-
date i
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Production Decisions

The shape of the load duration curve is repre-
sented as a fifth order polynomial

5

y n a xi

j20

where y - fraction of peak load

x v fraction of time

The coefficients (a , . . . , a) determine the
0 S

shape and must be modified if a change in shape is
forecasted. Peak loads are specified for each
stage in the study period; fractions of the annual
peak are input. Then the year is subdivided into
periods (at most 12). For use by the simulation
program, the curve is discretized into a partition
with mesh DCM. The following must hold:

(ICAP)rax

590

where (ICAP)max is the maximum installed capacity.

The number of points in the partition may be esti- -
mated by:

ICAPN =
DM

In practice 100-350 discrete points are recommended.

Prior to production costing and simulation an
estimated maintenance schedule must be formulated
to determine equipment availability. The procedure
outlined here classifies generation units by capa-
city magnitude and allocates time for maintenance
for the largest class when reserves are greatest
and correspondingly for the smallest class when
reserves are least. The minimum reserve for each
period:

= ISTCP
i - MAXLDiM1RSV

i



= Minimum reserve in period i

- Installed capacity in period i

= Maximum system load in period i

If PSMAIN i is the previously scheduled maintenance

in period i then available maintenance space for
that period MAINSP i = PNRSV. - PSMAIN .

Each class has total maintenanc requirement

Each class has total maintenance requirecment

MWDAYS

where (MWC)i

(MAINT)
i

S (Mc) (AINT)i

* (NsET s)i

* Actual capacity of unit i

Maintenance require-ment for
unit i

(NOSETS)i Number of units i

The amount of maintenance that can be performed
by removal of a specific capacity for the entire
period (maintenance block)

MAINBK - (MAINCL) (T.)

MAINCL = Capacity of maintenance class

T P ULength of period in days

MWDlAYS
NO MAINK blocks are required for each main-I V AINBYK

tenance class and the blocks are sequentially as-
signed to this period with the largest maintenance
space (MAINSPi). Each class is considered in order

starting with the one of greatest magnitude.

An example is pictured in the accompanying
diagram in which the first two maintenance blocks
were scheduled during the first period, the third
block to the second period and the remaining frac-
tional block to the fourth period. This illustrates
consideration of a fractional block where an esti-R EMAN
mated interpolated capacity MCLL - R MAN allows

p
the maintenance to extend over the entire period.

REMAIN = WDAYS - [N " MAINBK.

PERIOD
Once all the classes have been provided wit

Smaintenance schedules the availability rate for
unit is calculated as follows:

Pt

S Pi

where MNRSVi

INSTCP
i

MAXLD

NI

= Probability of performing mainte-
nance for class in period I

N = Number of maintenance blocks sche-
.duled in period i

Thus expected outage rate

(PM) (AI T) i P i

i T

whereupon the
unit

A1

expected availability rate for each

- (1 - Pmi) (1 - FOR).

Simulation of the effect of random outages is
expressed by means of the equivalent load duration
curve for each period:

ELi() = P1 ELi- 1  + q ELi_1 ( - K 1)

where P + qi = 1

Pi a Availability rate for unit I during
period (see above)

and ELo
= Original load duration curve

Expected generation for unit I is

-14-
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P -1

Jul

ELi- 1 (x) dx.

the LOLP is P and expected unserved energy

U Tf

in the following diagram:

1

a.J
(z.

ELi (x) dx.

UNSERVED
DEMANDO

.. EQUIVALENT LOAD

In the previous discussion, it was assumed that
units would be completely loaded in turn; a more
realistic assumption is that the loading is divided
into base load and peak load blocks. Generally,
base load and cycling units are defined with two
blocks and peaking units only have a load following
component. A heat rate is specified for the base
block as is the average incremental heat rate for
the load following block.

Hydroelectric projects must be combined into a
single unit whose capacity is the sum of each indi-
vidual unit capacity as is the energy of the entire
project. As in the thermal units, capacity can be
divided into two blocks; the base block is placed
in first position in the loading order and the
residual capacity is used for peak shaving. Energy
generation is limited by water supply and reservoir
constraints. In addition, an emergency hydroelec-
tric category may be defined. This is used to in-
crease system reliability by "backing up" units
out-of-service. A penalty cost is associated with
this type of operation. Capacity multipliers are
defined to reflect varying distribution of energy
and capacity availability among periods within the
year.

As in the case with hydroelectric generation,

the capacities and reservoir limits are combined for
all pumped-storage units to yield a combined unit.
The cycle efficiency is the weighted average of the
Individual efficiencies.

Plant types are indexed by five types:

Nuclear

Fossil-fired

Hydroelecteic

Pumped-storage

S'Emergency hydroelectric

Moreover, the fossil-fueled plant can be divided Into
four subgroups with their own unique fuel require-
ments.

Costs are obtained from the heat rates:

FLHTRT = (BHRT)(MWR) + (C.%MHRT)(MwC - MWB)
MWC

BHRT - Heat rate for base block

A.3 - Capacity for base block

CRMHRT Average, incremental heat rate for
load following portion

FLHITRT = Full load heat rate

Then operating cost for fuel,

CC = 10-5 (HR) (FC)

HR n Appropriate heat rate

FC - Appropriate fuel cost

(can be calculated for foreign or local expenditure).

Non fuel expenditure for each unit is

NFCST = MA (PE1 U * C NOSETS 10

+ O, - (ENGB +-IGP)

o 10 3

where NFCST

O~A

NPER

= Non fuel expenditure for unit
operation

SFixed 0 & M cost

= Number of periods in year

ROSETS - Number of identical units

0MS - Variable operating and maintenance
cost

EN;GB Expected generation of base portion
Sof capacity
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ENGP w Expected generation'6fpeak portion-
of capacity

Investment Decisions

The optimization procedure (dynamic programing)
finds the policy which results in a system of desired
reliability with mi.nimum discoqunted cash flow expend-
itures over the study period.

Let D(t) = Decision made between stage t-1 and
stage t

X(t) = State or configuration of nower
system

then X(t) = X(t-1) + D(t).

-implies X(t) =
t

X(O) + ~D(j) where X(O) is the
J=1

the initial system state.

The objective function is

number of configurations in the Optimization Program
is lim.ited to 200 requiring the use of restrictive
user imposed "tunnels" that often sharply restrict
global optimality to a local region and require
heuristic methods of constraint modification. The
length of the study period is limited to 30 years.

Exaroles and Test Cases

Not available.

Performance Capability

Maximum core storage required for the WASP pack-
age is 30 K words and 120 K bytes on an IBM computer.
Data may be used from previous iterations to facili-
tate computation time reduction.

APPENDIX 8
OPTGEN - OPTIMAL GENERATION EXPAISIONI

BY DYNAMIC PROGaAM4tNG

Stephen T. Lee Stone and Webster
Engineering Corporation

L(X) C - RJ + 0 (see Objective)

To find the optimal path, the vpti.al path to
every state In each stage is de:erired uo to stage
J-I by the recursive procedure outlined here. The
optimal objective costs to states at stage j-I are
added to the cost of attaining the state uder con-
sideration at stage j to find that state in stage
J-1 that lies In the optimal trajectory to the state
at stage J. Associated with that state in the final
year of the study period which has the minimum cumu-
lative discounted cost is the optimal trajectory
which can be determined by tracing backward to the
initial condition.

Limitations

In the approximation of capacity required for a
fractional maintenance block, a distortion of actual
capacity removed from the system is incurred. The
number of maintenance classes should not exceed 7
for this reason.

Uncertainty is neglected in the load forecast
and hydroelectric capacity. Also, the ability of
hydroelectric power to cover forced outages is
neglected in the model due to the removal of the
peaking portion of the hydroelectric energy directly
from the o.iginal load duration curve. The maximum

This program determines optimal generation expan-
sion plans for an electric utility using dynamic
prograrm:ming. It has the following special features:

* Automatic computation of up to 100 near-optimal
Sexpansion plans

Manually prepared expansion plans can be
simulated using the same program to provie
a consistent evaluation and comparison with
the program-generated optimal plan

* Automatic selection of plant sites with their
associated transmission costs

* Option to use probabilistic or deterministic
production cost simulation

e Automatic truncation of non-optimal plans

* Capacity and cost adjustments to account for
end effects of alternative plans

Objective

The normal practice by a privately-owned utility
company in generation expansion planning is to mini-
mize the present worth of the revenue requireent.
Included In the revenue requirement Is the rate of
return allowed by a regulatory agency.

The objective of the program is to mininize the
present worth of the annual revenue require~Aent over
a selected period. Two periods for defining the
objective function are allowed:

(1) Simulation period only, i.e., only those years
in which ,ctual load growth and unit additions
are simulated.

(2) Simulation period plus an evaluation period of1
any duration. In the evaluation period, load
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growth is assumed to be stopped and genera-
ting units are replaced in kind.

Revenue requirement consists of fuel costs, 0&M
costs, depreciation, interest payment, insurance,
taxes (if any), and return on equity. A levelized
fixed charce rate is used to represent the equivalent
uniform annual cost of owning a particular facility.
Fi.x2d charges include those for generating facili-
ties as well as for site-related transmission faci-
lities.

Escalation rates can be specified for capital
investment (one rate for all types), separately for
three fuel types, and for all operating costs.

Only one discount rate for present worth calcu-
lation is allowed and it cannot be time-varying.

Constraints

The following constraints are considered by the
program to limit the number of feasible states.

Reserve Constraints:

The reserve constraints used in the program de-
fine a minimum and a maximum percentage reserve with-
in which feasible expansion plans are sought.

Reliability Constraint:

A reliability index is calculated for each po-
tential state of expansion and a minimm reliability
Index based on the benchmark year performance is
used to reject unreliable expansion plans. This
constraint may be nullified in which case the mini-
mum reserve percentage becomes the binding con-
straint.

The calculation of the reliability index is
based on a simplified and approximate method of
estimating the probability of loss of load (LOLP).
For the benchmark year, the cumulative probability
distribution of forced outages is computed by the
usual convolution process. The LOLP based on the
peak load for the benchmark year is calculated.
Its value is normalized to 1.0 and is the minimum
required reliability index.

The cumulative distribution of forced outages
Is then approximated by four log-linear segments
evaluated at intervals equal to the standard devia-
tion of the distribution. The reliability index of
a future state is estimated by computing the mean
and standard deviation of forced outages, expressing
the reserve of that year in terms of standard devia-
tions above the mean value of forced outages, and
obtaining it from the log-linear approximations of
the distributton function for the benchmark year.

Maximum Number of Units:

Each generation alternative can be restricted
by a maximum number of units which are allowed to
be installed during the entire expansion period.

Method of Solution

The basic problem of generation expansion is
formulated as follows. Each year in the expansion
period is a stage. In each year, there are many
combinations of new units which form feasible states,
e.g., in the first year there may be three states,
one being one 900 MW nuclear unit, the second being
one 600 MW coal-fired unit, and the third being
three 100 MW gas turbines.

As the years progress, the number of states in-
creases because more new capacity is needed, and
there are many different combinations of the diffe-
rent types of units which can meet the requirement.
This is the so-called "curse of dimensionality"
because the computational requirement increases with
the number of states, which increases roughly
exponentially with the number of alternative types
of units.

without some heuristic scheme of truncating the
number of states, it is impractical to solve-a-pro-,
blem with more than three alternative types. The
heuristic truncation method which allows four or
even five alternatives to be run simultaneously will
be described later.

Forward Dynamic Programino:

The basic algorithm of forward dynamic program-
ming. applied in the generation expansion problem
will now be described. Refer to Figures 1, 2 and 4.
This part of the algorithm is called forward because
it proceeds from the first year to the last, in
contrast to backward dynamic progra.p ing used later-
and shown irn Figure 3 which backtracks from the last
year.

Figure 4 shows an example with two types of
alternatives, a 400 MW fossil unit and a 54 MW gas
turbine, and a four-year expansion period, not
counting the benchmark year which is denoted by the
left-most circle with two zeros. In the first year,
the program finds two states which result in reserves
between the specified minimum and maximum and satisfy
the reliability index. They are (0,4) and (1,0),
indicating four gas turbines and one fossil unit,
respectively..

For each state, the program simulates the pro-
duction cost of the system and finds the state among
all states in the previous year which, when pro-
ceeding to the present state, does not necessitate
a deletion of a unit, and which results in a mini-
mum cost incurred up to the present year. For the
first year, the only feasible transition is from
(0,0) and the minimum cost is just the cost incurred
in the first year. This so-called cost-to-date is
the total operation and production costs and tne
fixed charges, present-valued and cumulated up to
and including the present year. Thus the state
(0,4) requires a minimum of 76.3 million dollars to
reach it from the beginning.

The program then proceeds to the second year and
finds four feasible states, (0,10), (1,2). (1,4) and
(2,0). It simulates the production costs and for
each state, it looks back one year and from the two
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Figure 4. Generation Expans

previous states it determines which of them can

proceed feasibly to the present state. For instance,
(1,4) can come from both (0,4) and (1,0). Among
these feasible prior states, the program ccmputes
the additional costs for the present and adds them

respectively to the minimum costs of the prior feasi-
ble states. From these costs-to-date, it selects
the minimum cost-to-date and remembers the transition
from the prior state which yields the minimum. This

Is called the backward oointer. For examole, (1,4)
has a minimum cost-to-date of $164.4 mrillion and
the backward pointer is shown as an arrow coming
from (0,4). The dotted line from (1,0) shows the
other feasible transition.

The program proceeds in like fashion to the last
year. At this point, the minimum cost-to-date for

each state in the last year is calculated and then
sorted to determine the minimum cost for all feasible
transitions. In the example, (2,7) is the best state
in the last year and the minimum cost is S359.4
million. To find the expansion schedule, it Is
only necessary to retrace the backward pointers.
Thus the optimal plan is the following sequence of

states: (0,0) - (1,0) - (1,2) - (2,2) - (2,7).
Subtracting one state from the following state gives

the unit added each year. The optimal installation
schedule thus determined is listed below.

Year
I--
2
3

Units Added
400 M w

0
1

4 0

54 MW

2
0

;4.9
" N

ion by Dynamic Prograrming

Derivation of 100 Best Plans:

If the objective is to find the optimal plan only,
forward dynamic programing is sufficient. A plan
can be traced backward from each of the terminal
states with the backward pointers or solid arrows
in Figure 4. This does not give too many subcptimal
plans. Backward dynamic prograamming Is used to in-
crease the number of such plans.

In backward dynamic programming, the algorithm
starts from the next-to-last year. For each state,
it finds the feasible transitions to the following
year and determines the transition which results in
the minimum cost-to-go. The forward pointer indicates
the cheapest forward transition from that state. The
program then sweeps backward and repeats for all
years until it reaches the beginning. In essence,
it is the same as forward dynamic programming except
for the reversal of direction. See Figure 3.

Since the screening process of determining whether
a state satisfies the reserve and reliability criteria
and the production costing have already been done in
the forward algorithm, this part takes much less tire.
When both methods are combined as in this program, the
number of suboptimal plans which are available is
limited only by the storage requirement.

Many of these plans may be identical for most of
the years and are simply minor variations in the last
two or three years. In order to obtain the signifi-
cant suboptimal plans in the output, a number equal
to the number of years in the end of the period for
which minor variations may be ignored, can be- -
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specified. For each group of plans which are identi-
cal up to the specified end years, the program will
print only the cheapest plan. In this way, the top

100 plans will include a lot more plans with signifi-
cant variations.

Production Decisions

Two methods of production costing are available:

probabilistic and deterministic. This probabilistic
method is similar to that in WASP. For computation
efficiency, the deterministic method is usually
used.

Deterministic Production Costinq:

The method uses a trapezoidal approximation of
the annual plant duration curve as reported by
K.L. Hlicks in 1959. It was found that the actual
loading of generating units based on historical data
could be approximated by a trapezoid in Figure 5
whose vertical height equaled the system generation
capacity, whose width equaled 8,760 hours (a year)
times the maximum capacity factor of the base load
units, and whose area equaled the energy demand
(MWhr) for that year. The energy generated by the
Individual units could be approximated by horizontal
strips of the trapezoid if the vertical axis was
subdivided according to the rated capacities of the
units arranged in order of their energy cost (heat
rate x fuel cost), with the inexpensive base load
units at the bottom and the peaking units on top.
The resulting capacity factors fit the actual data
better than the conventional method ol stacking
units on the load duration curve, because all units
including peaking units are loaded to various de-
grees.

0.4-
I-

------- ' 8760C hours --

Figure S. The Loading Trapezoid

It should be pointed out that this Is a heuristic
method which attempts to model the effect of random
forced outages, maintenance outages and other oper-
ating peculiarities of the system on the loading of
units.

The accuracy can be further improved by two ca-
libration factors. A peaking constant which is used
to Increase or decrease the rated capacity of peak-

ing units in the formation of the trapezoid can be
adju.sted to change the loading of peaking units.
Similarly, a cycling constant is specified to change
the loading of cycling units.

The individual loading of all units can be fine-
tuned by the use of individual maintenance factors,
which derate the units in the loading triangle. The
relation of the derated capacity of a unit used In
the loading trapezoid to the maintenance factors is
detailed in the following equation.

Derated Capacity = Rated Capacity

S Maintenance Factor
1 - Base Value

In this fashion, the loading of a unit can be
adjusted by varying the maintenance factor.

After the capacity factor of a unit is determined
by the loading triangle, the energy cost is calcu-
lated by a reciprocal curve shown in Figure 6.
Hm and H are specified for each unit. fmax Is

MAX amax
the heat rate at maximum loading multipled by the
fuel cost.- 0 can be adjusted to obtain the cor-

rect energy cost for lower capacity factor.

CAZACIT FACOR C-

Figure 6. Energy Cost vs. Unit Capacity Factor

Investment Decisions

The Investment decisions for generating units
are made using dynamic programing as described
previously. In order to limit the number of states
considered, a truncation algorithm is used.

Truncation of on-Ootiral States:

The theory of state truncation Is based on the
assumption that the optirral plan is fairly close to
being of minimum cost-to-date in each year up to the
last year. This is especially true if the cost-to-
date for each state is adjusted to account for the
differences in the installed capacity, e.g., a state
representing the addition of a big nuclear unit may
have excess capacity for that year resulting in a

-I- -



high cost-to-date, which when prorated by the mini-
mum required capacity, may actually be less than the
adjusted cost-to-date of a state with small units.
The criterion for determining the minimum required
capacity is either minimum percentage of reserve or
fixed LOLP index.

The method of state truncation is to eliminate
states in years when the number of states exceeds a
specified number by first determining the minimum
adjusted cost-to-date in the previous year. States
in the previous year which have adjusted costs above
a certain ratio to the minimum are then flagged.
States In the present year whose backward pointers
indicate a transition from a flagged state are then
eliminated. If the resulting number 6f states in
the present year still exceeds the maximum, the cost
ratio is reduced by a factor more than once if
necessary, and the elimination process repeated.

Selection of Plant Sites:

Generation expansion should ideally be solved
together with transmission expansion. It is, how-
ever, not practical to do so. In most cases, trans-
mission costs can be ignored in the generation ex-
pansion studies because they are small compared to
the cost of generating capacity and.,they may be
roughly the same for different generation expansion
plans. In cases where plant sites are remote and
transmission costs are significant, a model for In-
cluding such costs is available in the program.

For each site, a cost-capacity step curve can
be specified. A typical curve is shown in Figure 7.
In this example, it is assumed that the first set
of transmission additions related to this site costs
$A and is sufficient for 400 MW of generating capa-
city. For the next Increment of 400 K4 capacity,
the total transmission cost for this site jumps to
$B, and so forth. The maximum capacity which can
be built at this site is shown to be 1,600 NMW.

W 04

, I I I
a .I

S I I
I ,.I I

. ! 1 : 4 I I

The program allows a first-available year to be
specified for each site. During forward dynamic
progr-aming, the program assigns the new units to
varicus sites such that the total transmission cost
Is minimized. The fixed charges for the transmission
investment are added to the annual costs. The siting
assign.m.ent, however, cannot be applied in backward
dynamic progra-ming. Therefore, only the best plans
obtair.ed by forward dynamic progra.mning, which in-
clude transmission costs, are available.

Adjustment for End Effects:

Since different expansion plans may have diffe-
rent system capacities in the last year of the study
perioc, it is not correct to compare their revenue
requirements without some adjustment to account for
the end effects. The reserve and reliability con-
straints are used to adjust the capacities in the
last year to an equal basis, either minimum reserve
percentage or fixed LOLP index. The fixed charges
in the last year associated with the units newly
installed in that year are prorated according to the
adjust..ent in capacity. In other words, it is as-
sumed that only portions of these units are installed
in the last year.

Furthermore, the adjusted cost of the last year
can be projected for any number of years and the
present worth revenue requirements for this evalua-
tion period is added to the objective function for
minirization.

Limitations

Although the-loading trapezoid method for pro-
duction costing is extremely fast, its accuracy re-
quires some calibration with a more detailed and
accurate production costing model. No automatic
procedure is available for that calibration and there
is no assurance that the same set of calibrating
factors is valid as the optimal expansion plan
evolves.

Hydro and pumped storage units are not modeled
in.the production costing nor the investment alter-
natives.

Effect of maintenance on system LOLP is not
taken into account in the approximate method of es-
timating LOLP. In fact, the annual distribution 6f
daily peak loads is replaced by the single annual
*peak load.

The maximum number of states in any year-is
limited to 200. The study period cannot exceed
20 years and the maximum number of generation alter-
natives is S.

0 400 800 1200 1600

SITE CArACXTY, MW

Figure 7. Transmission Cost-Capacity Step Curve

Examples and Test Cases

Not available.

Perforrance CaDability

Maximum core storage required for OPTGEN is 2401
bytes on an IBM computer.
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APPENDIX C
U. HASS MODEL - A MAT HE 7TICXL PROGRAM4ING MOOEL.V

LTG-~TIGE PLAWI G OF ELECTRIC PCWR GiE~T T

F. Noonan
R.J. Giglio

University of
Massachusetts

Scooe

This is an optimization program that is used*
for planning investments in.electric power genera-
tion. The program is used to help determine for
each year over some planning norizon what types and
sizes of generating plants should be brought into
a power system in order to meet, reliably, the
system's forecasted demands for electricity. The
planning objective is to minimize the present worth
of all investment and operating costs that are in-
curred for power generation over the horizon. The
mathematical program that is formulated is large
scale and has been both binary and nonlinear con-
straints. The solution algorithm employs Bender's
Decomposition Principle, a heuristic successive
linearization procedure, and a Branch & Bound mixed
integer linear prograimning code. Computation costs
are low and, in the important area of sensitivity
analysis, the program offers additional economies
which promise to make it attractive to power system
planners. Computational results are presented for
a full sized generation planning problem for the
New England region of the United States.

Objective

The objective is to minimize

T G i(t,g)

G IC(t,g,m) Y(t,g,m)

t= ~

T

t=1

gI K

i=1 g=1 k-1

F(i) DUR(k) OC(t,g) XS(t,i,g,k)

SNumber of years on planning
horizon

lNumber of production subproblems
used per year to model seasonal
variations in demand and avail-
able capacity

Number of different demand levels
used in modeling weekly'demand

= Total number of generating
classes

= Number of thermal generating
classes

M(t,g) Number of alternative investment
projects available from the

gth class in year t

-Y(t,g,m) = Number of projects of mth type
to be installed from class g in
year t

Xs(t,i,g,k) = Prod. level in MW of the gth

class for kth demand in ith

operating week for year t

Constraints

th
.If the gth class is to be treated as continuous

since only one relatively small plant site is avail-
.able, M(t,g) I and Y(t,g,1) is continuous. Other-
wise Y(t,g,m) is discrete (0,1) and satisfies

l(t,g)

z~ Y(t,g,m) 1 I Vt

The system reliability constraint is in terms
the probability that the total available capacity
(after preventive maintenance) is less than the
annual peak demand. This is expressed analytical
by the following approximations:

of

ly

where IC(t,g,m)

oc(tg)

F(1)

DUR(k)

SThe investment cost of one enit

of the mth type project from
class g in year t (see method
of solution)

SThe operating cost coefficient

($/M'AH) for the gth class in
year t

= The frequency of the number of

weeks/yr. the 1th operating
week occurs

v The number of hours/week 'the

kth demand occurs

PMF-Ct

G(R*)

where dt

R*

PMF

7t] + G(R*) PMF t +dt 0

1 2* a1 - a2  -

SAnnual peak demand (normal ran-

donvariable with mean T and

variance d )

Max. allow, value for peak risk

= One minu the fraction of instal
led capacity down for preventive
maintenance at the time of the
annual peak.

I-
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al, a2  n Coefficients determined by "fitting"
the analytic constraint to the
actual stochastic constraint

Ct  a Available capacity for peak
demand without maintenance sche-
duling

Ct MMean of above

Ct n Variance of above

If EC(t,r,g,m) and VC(t,v,g,m) denotes the mean and
variance, respectively, of the available capacity
for the (r,g,m) project in year t, and IEC and IVC
refers to existing groups at t=0,

t

C 

l
Cal

G M(i,g)

Z Z EC(t.v,gm) Y(r,g,m)
g-1 m-1

G

+ L IEC(t,g)

g9'l

t

where DEM = Level in 'IA of the demand

Xc(t,i,p,k) - Demand placed on the system by
the pumped hydro class p
(there are P classes).

Power capacity constraints for each subproblem
are

X5(t,i,g,k) I TEC(t,i,g)

TEC(t,i,J+H+P)

H - umber of conventional hydro-
electric generation classes .

TEC(t,i,g) - Total expected available capacity

- PMD(i,g) SVM(i,g) FOM(ig)

t M(%,g)Z Ec(t

T=1 m=1

PMD

SYM
G M(?,g)

g=1 m=1

G
+ IVC(t,g).

g=1

The optional plant mix constraint to restrict
Investment in certain classes is

t M(r,g)

ENC(Tgm) Y(Tgn) + INC(tg)
r=1 m=1

1>/PMIX(g) * TNC t

NC, INC N ame plate capacities

PMIX(g) * Fraction of total installed
capacity (TCt

t G M(r,g) G
TNCt NC(r,g,m) + INC(tg)

ri1 g-1 m-1 g=1

The demand constraint for production in each of
the T-I weekly subproblems is

G P

g- igk) -
gn1 p*1

,r,g,m) Y(t,r,g,m) + IEC(t,g)

= Preventive maintenance derating
factor

- Seasonal variation multiplier

FOM - Forced outage derating multiplier

The usage level
problem are

constraints for each weekly sub-

K
DUR(k) Xs(t,i,g,k) { V(g) TECt,i,g)

k-1

and V(g) * Usage level multiplier which
converts available power capacity
to either a min. or max. weekly
energy level for that class.

Each weekly subproblem has, in addition, pumped
hydroelectric constraints to insure water levels
each week are returned to their former levels.

K

SIXS(tiJ+H+Pk) - E(p) X Xc(ti,p,k)

k-

D M(k) < 0

E(p) Pumping efficiency

Method of Solution

Thernal plants are classified in distinct grdups
in terms of operating costs. Hydroelectric plants
which have no operating costs are classified in terms
of the ratio of weekly energy capacity to power capa-
city. Since system planners are usually limited in
the nuxber of alternatvie investment projects, the
set of available plant sizes is finite. Only one-

Xc(t,f,p,k) _

X c(t,i,p,k ) 1 DEM(t,i,k)
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project'can be chosen from each generation class in

each year.

The structure of the problem may be represented
as follows where y represents the investment decision

vector and x t he operating decision vector:
ti. y T

min. C Ty + ht T ti

Subject to

y c s1
y C S2

D < d

y > 0

xt > 0

where S =  (YjY obeys the nonlinear reliability
constraint}

S= (Y1Y(t,g,m1) = 0 or 1I if g is a discrete
class)

Let S S1U S2 U {yiDx<d,yX>0}

Then given a particular y, it is seen that the weekly

subproblem becomes

min hTt Xt!ti Zti

Subject to

Axti ! (bti - Bti y)

. xt > o
!ti - 0

After an appeal to Bender's decomposition prin-
ciple, the entire program is defined as

max
wnCw

T

t=1

I

i=1l
(bti - Bti Y)

n
-ti-

% n n n n
where w = u u u

- 11 ti P TI

and wn  The nth dual basic feasible solution
to the production subproblem.

S W {Wnnl,2,..;N} {Au hti;uti 0,Vti}

Although the set W Is not available, it is possible
to apply the decomposition principle indirectly

through an iterative algorithm.

Define W U wn +1 W wI n - 1, 2,
n+1 nn ,

Then given Wn, the decomposed master problem is solved

for y using 'a' = Wn. This defines a feasible (although

generally non-optimal) investment plan Y and an upper
bound for the cost. Next, under the investment out-
lined the T-I weekly subproblems are solved and the
total cost derived. In addition, another dual
feasible solution is added to the set Wn to obtain

W for the next iteration. As this algorithm
p~oleeds, W. - W and the cost upper bound converges

to the minimal cost of the original program.

Due to the nonlinear constraints on y, a heuristic
procedure based on successive linearizations is

l 4 Ceach timea the set of dual basir feasible
solutions is augm.ented, the reliability constraints
are re-linearized.

Suppose at the n-1th iteration of the master
program the reliability constraints (S,) had been
linearized and represented as

gt(y) 0 t=1, . . . , T

Then the new constraints for the nth titeration are

t( n ) + (ysn)T vg (ln) > 0

where

n n1 n-1s = ( - c) s' + cn-i a(0,1)

n-i
and yn- is the solution obtained on the n-I Itera-
tion- A mixed integer code is used to implement
the progranmning procedure with the linearized con-
straints. The initial y Is arrived by ansatz and

the set W is initialized with a number of correspond-
ing dual basic feasible solutions.

Production Decisions

For a complete discussion of the role production
plays in the programming method, see above. In
addition, we should note that associated with each
operating subproblem there is a "frequency" parameter"
Indicating the number of weeks during the year that
a particular weekly allocation subproblenm is assumed
to occur. The total cost is the sum of every cost
corresponding to the subproblem weighted by these
"frequency parameters". Each weekly allocation
subproblem is characterized by a weekly demand model
power capacity available from each generating class
and weekly energy capacity for each hydroelectric
class. The duration parameter associated with
the demand level defines the number of hours/week
that demand is at the level specified by the cor-
responding demand level. Available power capacity
in each generation class is given by a linear dera-
ting to represent.preventlve maintenance and forced
outage.

r
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Investment Decisions

The optimal investment program is arrived at
through an Iterative algorithm described in Method
of Solution. All costs are defined in present worth
and investment costs are represented as a single
cash outlay occurring at the time of installation.
Included are property taxes, insurance, depreciation,
fexed 01M costs and other costs independent o'f
operation. End effects are treated by assuming that
demand is constant after the planning horizon and
plants slated for retirement are replaced by iden-
tical plants. Due to increases in reliability as
plants mature, excess capacity may result from
installation of too many plants at the end of
the planning horizon. This problem is alleviated by
an artificial extension of the planning horizon by
an amount equal to the maximum inmmature period of
all generation alternatives.

Limitations

Plantcapacity is not allocated on a plant by
plant basis, rather on the aggregate level of each
generation class. Linearization approximations
are used to derive operating cost coefficients for
fuel and variable 03M. The iterative algoritr.m is
terminated when cost convergence as well as conver-
gence in feasibility occurs. If the cost obtained
from the solution of the linearized master program
is within a specified error of the total cost of
the investm.ent plan, convergence in cost is said to
occur. Feasibility convergence requires that the
linearized and actual reliability constraint func-
tions are sufficiently close at that iteration.
Plant location decisions and necessary investments
in transmission and distribution equipment are not
considered.

Examoles and Test Cases

With the hope of duplicity, a 1971 problem which
had been previously solved was solved using this
approach. A planning horizon of 1977-1995 was
specified. The cost of capital was fixed at 8.6%,
and the maximum allowable peak risk was 0.000385
(no.more than one day of failure per 10 years
elapsed).

# Discrete Gen. Classes = 2
I Conts. Gen. Classes = 2
# Gen. Classes not under invstmt.
altermatives = 10

# Thermal Gen. Classes .= 0
# Conventional hydroelectric classes 

= 3
I Pumped hydroelectric classes a 3

New Investment alternatives:
Nuclear-Discrete
Intermediate Fossil-Discrete
Gas Turbines (245M4)- Continuous
Pumped Hydroelectric (250MW) - Continuous

Twenty alternative investment projects are per-
missible in the discrete classes.

To reduce the excessive computation time, the
linearized masterprogram was decomposed into three
9-year master subproblems with respective starting

date of 1,-6, and 11 years. This results in a
restriction of the solution space and a consequent
increase in minimum cost. Due to uncertainties in
many variables, these introduced errors may not be
significant, however.

Most of the expansion program was made up of
nuclear projects. Total cost was 518499.7"!0' com-
posed of $13201-10' investment costs and 55298-10'
operating costs.

Performa.nce CaDabi lity

The above test case converged with nine iterations
of.the solution method. One hour of CPU time on a
CDC 3600 was required which wis composed of 53% spent
solving production allocation subprograms and 47" in
solving the master programs. It has been implemented
in batch mode on a CDC 6600 cmcrnputer; total ccmputa-
tion time was 426 system seconds and the core re-
quirement was 300 K octal words.

APPENDIX 0
MIT MODEL - ECOUCMIC ENVIRONMENTAL

SYSTEM PLAVNIG PACKAGE

F.C. Schweppe
D.H. Marks
D.L. Farrar
J. Gruhl
M.F. Ruane
.P.F. Shiers
F. Woodruff, Jr.

Massachusetts
Institute

of
Technology

Scope

The Economic-Environmental System Planning Pack-
age is a set of generation expansion planning pro-
grams designed to explicitly consider the feasibility
and cost of meeting environmental standards. Various*
parts of the package have evolved from the ALPS
expansion planning model, developed at the Hanford
Engineering Development Laboratory, as well as
several power system operation and environmental
models developed at MIT.

As a generation expansion planning tool, the
model exhibits several unique characteristics:

SExpansion alternatives are characterized by
a plant type, fuel type, nominal capacity,
site type, thermal pollution abatement tech-
nology and air pollution abatement technology.

* The cost and performance characteristics of
air pollution controls are explicitly incor-
porated.

- The feasibility of expansion alternatives Is
tested by comparing performance to emission
and ground level air quality standards.

* The required minimum stack height for meeting
air quality standards is determined.

*- The cost and performance of water pollution
controls are explicitly incorporated.
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* The feasibility of-expansion alternatives is
tested by comparing performance to water
quality standards.

* The required design characteristics of water
quality control technologies are determined.

* Consumptive water use, land requirements and
environmental residuals are also determined.

s The incorporation of a site availability
constraint.

The following characteristics apply to the more
conventional aspects of the package:

e Plant types can include hydro and pumped
storage.

* Incorporates both capacity and energy con-
straints in determining the need for new
units.

* Incorporates constraints on the rate of
introduction of new unit types.

* Incorporates fuel availability constraints,
including detailed representation of
nuclear fuel requirements.

* Utilizes separate production cost model.

Objective

The objective function is the sum of the present
worth of future capital and operating costs, given
as follows:

Z(T) - Zplant(T) + Zfuel()

T J

Zplant(T) -

v-1
Cjv J XjV

j=1

T t J
Zfuel (T) .F t CAPFAC

t=1 v=-V j=-1

SPER CAPv * X. JV
t iv 3v

where Z(T) Total capital and operation costs
(dollars) associated with a given
system design over time intervalOct<T

v 3 Time at which alternative becomes

operational -V < v < T

J Total number of alternatives

C Jv Present worth of capital and
operating (other than fuel) costs
of an alternative of type j and
vintage v (dollars)

X j furmber of type J alternatives
with vintage v to be built

SCAPFACJvt Capacity factor in period t of
type j alternative with vintage
v 0 < CAPFAC < I

- jvt -

PER,

CAP j

Length of period t (hours)

Capacity of an alternative of
type j and vintage v (kW)

The expansion model selects the decision variables
X and CAPFAC (see section on solution techniques

for the method of determining CAPFAC jvt) which mini-
mize Z(T), subject to the constraints imposed.

Constraints

Several constraints are utilized in the formula-
tion of the expansion planning model which aids in
the reducticn of feasible sets of plant expansion
alternatives.

One of these is an installed capacity constraint
which effectively operates as a reserve margin cri-
teria. It is formulated as follows:

J t

I PAVvt
ji-1 v=-V

where PAVjvt

CAP jV

Xjv.

CAPJv X- AXLOADt 1 - t

t = 1 T

SMean expected availability in
period t of plant type J with
vintage v

= Capacity of plant type j with
vintage v

Slumber of type J alternatives
with vintage v to be built

MAXLOAD t = ean expected maximum system
load in-period t

t 2 Required margin of spare capacity
in period t

The model also utilizes an energy demand con-
straint to ensure sufficient total energy is avail-
able from the installed additions. The constraint
requires that the energy produced in period t by all
plants built before period t (except pumped storage
plants) minus the transmission and pumping losses
associated with the pumped storage plants, must be
greater than or equal to the expected energy demand
in period t.

Algebraically,

I/
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PERt - CAPFACjv t * CAPjv * Xjv

(1/nv -1) - PER t - CAPFAC vt

*CAPj v Xjv

Algebraically,

cHSh v n SAh
jrcHSh V=1

where HSh

> EDt

t .. . T

= Length of period t

Overall efficiency of a pumped
storage hydro plant of type j
and vintage v

= Set of all hydro and pLumped hydro
plants with capacity HSZh or
greater

NHSAh - Number of hydro sites available
which can support hydro or puped
hydro plants of capacity HSZh or
greater

The thermal site constraint is similar, except
that it measures site size in terms of four environ-
mental resources, air pollution, land use, water
use and heat dissipation, as follows:

EDt  = Mean expected energy demand in
period t

Note that this formulation does not allow energy
to be stored from one time period to the next.

The program also incorporates constraints which
permit existing and previously comritted units to
be included in the set of future generation units.
Their respective formulations are as follows:

X j

C E.X w< TSA
eTS alcws v=

where TSalcws

- XC for existing units

> XC for co.mitted units
iv

where XC * Number of plants of type j with
vintage v previously built or
com.mi tted

The program includes a constraint which limits
the rate at which new units of a given plant type
can be added to the system. The following formula-
tion is used:

X < XRiv

JCR
i

where Ri

XR iv

V Set of plant types included in
class I

* Cumulative number of plants in
plant type class i that may be
built in vintage period v

Two different plant siting constraints are uti-
lized in the model; one is for hydro and pumped
storage plants and one is for thermal plants.

The hydro site constraint limits the ntumber of
hydro or pumped storage plants of capacity HSZh or

larger to be equal to or less than the specified
number of sites which can support plants of capacity
HSZh or larger.

The set of all thermal plants
which require site type s with
at least the quantity of environ-
m.ental resources as indexed by
a, 1, c, and w.

SIndex of air pollution level

= Index of land amount

c = Index of consumptive water use

w . Index of heat dissipation capa-
city

NTSAaIs Number of sites of type s avail-
able which can support thermal
plants with the environ.ental
resource requirements indexed
by a, 1, c, and w or greater.

In addition to several constraints relating to
nuclear fuels (not discussed here because of the
detail involved), the program also recognizes two
types of fossil fuel constraints. One concerns
limiting the amount oi fuel available at a given
price level, as follows:

T

NSFP fm< UFAfm
t-1 " - f.

f - 1 ... 13

S- 1 i.. H

where NFPfat

UFAfm

Amount of fuel type f purchased
in period t at price level =

Quantity of fuel type f avail-
able- at price level m-

z1:jtPS

ft
JePS V"'-V

where PERt

"iv

t

E=-



The second fuel constraint works:in6-con=-
junction with the first, and limits the amount of
fuel consumed to the amount purchased in a given
period, or

FCfJvt SX =Z NFPf t

m=Mf

t-I . . .T

f=2... 13

where F = The set of fossil fuel types

FCfjvt The amount of fuel of type f
(f = 2 . . . 13 for fossil fuels)
consumed by a plant of type j and
vintage v in period t

NFPfmt = The amount of fuel type f purchased
in period t at price level m

The preceding constraints are an integral part
of the plant expansion component of the economic-
environmental system planning package. Two related
sub-models which evaluate the air and water environ-
mental performance of expansion alternatives also
contain logic which constrains the choice of future
plant additions.

The air quality rodel constrains the choice of
alternat ives to those wnich do not meet the following
user-definable criteria:

a Stack emission standard

9 Three-hour ground level air quality standard

* Twenty-four hour ground level air quality
standard

* Annual ground level air quality standard

The logic incorporated in this sub-model
a dispersion model to calculate the revelant
mance measures for various types of sites.

includes
perfor-

The water quality model performs similar types
of constraint actions for alternatives which cannot
meet user-specified water quality criteria, viz:

* The plant requires more than a specified
limit of river or estuary flows

* The dilution flow, if required, is greater
than twice the normal plant cooling water
flow

* The temperature standards cannot be met with-
in defined mixing zone with maximum dilution
flow

* A small lake site has a loading less than or
equal to 0.5 acre per megawatt

* The Froude number for a surface discharge is
less than 3.6 or greater than 25

JCEF v-V

Yetod of Solution

As presently configured, the Economic-Environ-
mental. System Planning Package is comprised of four
major parts, each possessing a number of sub-models.
They are the Generation Expansion Model (GEM), the
Site Evaluation: Air Model, the Site Evaluation:
Water Model and the Production Cost Model.

The expansion planning algorithms themselves are
contained within the GEM portion of the model. Using
estimated capacity factors for generating units, the
sub-models of GEM perform the accounting and some
constraint violation tests and prepare the plant
data for the expansion optimization. The optimiza-
tio.n procedure itself is an IBM-supplied linear
programming code designated MPSX (Mathematical
Program ning System Extended), which uses the revised
simplex method of solution with bounded variables
and range constraints.

SFollowing the optimization, plant additions are
transferred to the probabilistic simulator SYSGEN
to determine optimum capacity factors for these unit
additions. (The use of SYSGEN is not to be confused
with the "Production Cost Model", which has an
envlronmentally-oriented purpose.) The resulting
capacity factors frcm SYSGEN form the basis for a
new capacity factor estimate to be used in the
ootimization routine. The optimization routine and
SYSGEN thus form an iterative loop which is repeated
until the capacity factor estimates converge.

The Site Evaluation: Air Model works in conjunc-
tion with the accounting portions of GEM. It con-
sists of a boiler model, which contains emission
factors for different fuels and boiler firing pat-
terns; a minimum stack height model; and a meteoro-
logical dispersion model using the double Gaussian
dispersion formula. The dispersion and stack height
models aye used iteratively until either the air
quality standards are met or the maximum stack
height is reached. Infeasible solutions are passed
back to the GEM accounting routines. Cost and
operating data are also transferred.

The Site Evaluation: Water Model also works In
conjunction with the accounting portions of GEM.
Various engineering models are used to determine
the performance of plants in different types of
cooling and discharge situations. Infeasible solu-
tions, costs and performance data are transferred
back to GEM.

The Production Cost Model is separate and not
to be confused with SYSGEN, the probabilistic
simulation routine. The Production Cost Model is
a time sequence simulator for more closely analyzing
environmental performance over a limited time period,
such as minimum stream flow conditions during a
specific season.

The Production Cost Model consists of a mainte-
nance scheduler and a unit commitment simulation.
The actual formulation of these sub-models is
unclear from the standpoint of their respective
objective functions. The maintenance scheduler,
which is stated to be formulated as a mixed-integer
progran, is claimed to have the-capability /
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of maintenance scheduling and unit shut-dcwn for
either economic or environmental reasons. The Unit
Co~mitment Model, which is formulated as a linear
program, is said to produce operating costs as well
as air and water environmental impacts.

The exact purpose of the Maintenance Scheduler
and Unit Commitment Model are somewhat unclear
siace, on the one hand, a long-range planning solu-
tion would not involve the associated amount of
detail and, on the other hand, if done more pre-
cisely, would involve a much more refined technique
than is apparently intended in the models described.

Production Decisions

As stated earlier, the Production Cost Model
utilized by GEM is the probabilistic production
simulator SYSGEN. While the iterative procedure
between SYSGEN and the linear programming optimi-
zation is somewhat unique, the actual production
cost code is based on the Booth-3alerieux approach.
Since this approach is well-known, no further dis-
cussion of the particular formulation apoears war-
ranted.

What is unclear, however, is the actual perfor-
mance of the iterative procedure and its ability
to converge with the year-by-year and plant-by-plant
results of SYSGEN. Available documentation does
not permit an evaluation of this aspect of the
model's performance.

Investment Decisions

The linear programming formulation of the opti-
mization procedure will determine a near-optimum set
of system Investments over time frcm the alterna-
tives supplied. Since all time periods are con-
sidered simultaneously, the dynamics of the problem
are properly considered. Some error may be intro-
duced by linearizing the discrete nature of actual
unit additions. As previously discussed, the
actual model performance is deoendent upon the
ability to converge the estimates of unit capacity
factors.

Limitations

Based upon available information, no inherent
program limitations have been identified.

Examoles and Test Cases

Not available.

Performance Capability

Hot available.

APPENDIX E
PUPS - PLANNING OF UNCONVENTIONAL POWER SOURCES

Stephen T. Lee
Claude Dechamps

Scope

Systems Control, Inc.
Systems-Europe, S.A.

PUPS was designed for the purpose of studying

the economic feasibility of tidal power in the Bay
of FunCy. It develops a near-optimal long-range
generation exoansion plan for a region, using
screening curves and snapshot-year analysis. The
resulting plan is, therefore, made up of a series of
static optimizations.

The following combination of features makes it
a unique tool:

* Chronological simulation of hydro, pumped
storage, and system absorption of unconven-
tional power sources

* Mix of therm.,al generation is optimized by
screening curves for the snapshot years

* LOLP criterion is met by adding combustion
turbines

* Expansion plan between snapshot years is
interpolated

* Automatic comparison of an alternative expah-
sion plan against the base case plan to pro-
vide the cost differences

* Up to 500 generating units can be modeled
and 50 years of expansion is still computa-
tionally feasible

Objective

No explicit objective function is used in the
PUPS program because it is only a pseudo optimiza-
tion program. It is, however, equivalent to a series
of static optimizations of the generation mix for
each saDcshot year with interpolation in between.
The static optimization is accomplished using screen-
ing curves which traditionally have been used by
system planners.

The implicit objective of the screening curves
is to minimize the annual cost of the power system
for the snapshot year. The annual cost consists of
the following components:

(1) Annual fixed charge of new generating units
to be added, including fixed O&M

(2) Annual fuel cost and variable O&M for new
generating units serving the entire system
load

The procedure is only a true optimization If
there is no existing generation, the system load
remains constant and unit sizes are not discrete.
Iowever, for long-range studies, the procedure
produces results that closely resemble optimal
expansion plans derived by more sophisticated
dynamic optimization models.

Constraints

For the planning functions of the model, the
following constraints are imposed:

Reliability Constraint:



-30-

The generation system for each snapshot year must

satisfy an LOLP criterion. Two definitions of LOLP
are possible:

(a) LOLP is based on 260 daily peak loads, or

(b) LOLP is based on hourly loads over the
entire year.

In either case the effect of maintenance can be
approximated as an option.

In between snapshot years, the reliability con-
straint takes the form of a minimum reserve percent-
age, linearly interpolated between the reserve re-
quirements of the two snapshot years.

Capacity Factor Constraints:

The addition of nuclear units is limited by a
specified minimum annual factor below which nuclear
units cannot be technically operated. This over-
rides the economic penetration of nuclear units.

A maximum capacity factor can be specified for
combustion turbines to limit their economic expan-
sion.

Method of Solution

The programn uses a snapshot-year approach. The
intervals between snapshots can be varied from snap-
shot to snapshot. For each snapsh.t year, a detailed
hour-by-hour simulation of the eperation of the
non-thermal generation system is mace. This is per-
formed by CATO. See Figure 1 for the functional
block diagram of the sub-models Lsed in a snapshot
year.

Th hydro syst-em and storage expansion are input
dan. The'result of CATO is the annual thermal load
duration curve which is used for both ?OPTMIX-ICC
and PROCOX. GPTMI!X appiies the screening curves to
the thermal LOC and derives the expansion of the
non-peaking thermal generating units from the pre-
vious snapshot to the current snapshot year. The
peaking combustion turbines are added one at a time
by TCC until the LOLP criterion is met. The result-
ing thermal system structure is combined with the
therm-al LDC in PROCOX to compute the annual thermal
production cost.-

After a snapshot analysis is completed, the year-
by-year expansion plan between the previous and the
current snapshot years is obtained by FILLIN which
basically arranges the schedule to match the optical
mix as closely as possible and at the same time
satisfy the minimum reserve constraint.

The annual revenue requirements are computed and
their present worths cumulated as the snapshot ana-
lysis marches forward in time. At the completion
of the last snapshot year, the annual cost of the
last year is projected to any number of years to
form the evaluation period.

Production Decisions

The simulation of the production decisions in
the operation of the generation system is performed
by CATO and PROCOX. Their basic functions and
algorithms are surnarized below.

Scheduling of Non-Thermal Generation by CATO:

The objective of the CATO model is to determine
in each snapshot year, the generation schedule of

TOTIL AwNUAL CIST

Functional Relationships for Snapshot Year AnalysisFigure 1.
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all the .non-thermal resources, in order to Identify
the residual load which is to be supplied by the
thermal system.

The method of approach is a deterministic simu-
lation based on a chronological load model of 8736
hourly loads. No optimization is performed. Rather,
decision rules are applied to approximate an optimal
scheduling policy. The scheduling sequence is as
follows:

(1) Must-run generation

(2) Unconventional generation

(3) Controllable hydro

(4) Storage devices

The absorption from unconventional generation,
the generation from all hydro units and the resti-
tution from storage are deducted from the original
load. The storage pumping schedules from thermal
generators are added to the original load. The
resulting load Is to be supplied by the thermal units.
That load is referred to as the thermal load.

A second result of CATO Is the time series of
residual unconventional generation unabsorbed in the
primary market and available to the secondary market.

Algorithms for Utilizing Unconventional Genera-
tion: CATO applies the following decision rules for
i5mulating the utilization of unconventional genera-
tion.

(a) Direct Absorption: The basic limitation in
determining the direct absorption is the
must-run generation. Three components are
identified in the must-run generation: hydro,
nuclear, and fossil must run. The load above
the must-run generation can be supplied by
direct absorption from tidal generation.

(b) Retiming Policies: Three. different storage
policies can be simulated in CATO, depending
on the characteristics of the storage devices
made available for retiming the residual.

S Policy A
A storage device is dedicated to retiming
of unconventional generation and is operated
on a weekly basis.

* Policy B
SA storage device is dedicated to retiming
of unconventional generation and is operated
on the same cycle as the unconventional gene-
ration.

SPolicy C
All storage devices in the system are used
for peak shaving. Priority is for retiming
unconventional generation. The retimning is
simulated on a weekly basis.

Algorithms for Scheduling Hydro and Storace De-
vices: Hydro generation is scnedulea oy peak snaving
wTth a predetermined amount of hydro energy on a

weekly basis. The basic algorithm for scheduling:
storage cdfevices is similar. The generation schedule
is determined by peak shaving but the amrount.of energy.
is unknown. The charging schedule is found by valley
filling the sareamount of energy divided by the round-
trip efficiency. The a.mount of cycled energy is
deternined iteratively to reach the optimal economic
conditions subject to the energy storage capacity
constraint.

The optimal economic condition is approximated
by the following inequality:

(p - N'UCAP) S y (r - NUCAP)

where p and r are the pumping and restitution load
level, respectively, NUCA? is the total deratednu-
clear capacity in the system and y is the roundtrip
efficiency.

The above assumes that pumping with nuclear
energy is always economical and that the system
incremental cost function is proportional to load
level above the nuclear capacity.

Annual Thermal Prceuction Costing by PROCOX:

The PROCOX model estimates the annual production
cost associated with a given thernal load and a set
of thermal generating units.

The method of approach is based on an annual
therval load duration curve with derated unit capa-
cities for incorporating the effect of forced and
planned outages.

The units are stacked under the thermal LDC
according to average operating cost. Each unit is
derated: base load and cycling units by forced out-
age and maintenance, and peaking units by forced
outage only.

The main result of PROCOX is the annual production
cost for the entire system. Other results are:

* System fuel consumption and cost per fuel type.

* Capacity factor, or equivalently the energy
production of each unit

* Fuel cost and 0.. cost for each unit

Investment Decisions

The investment decisions are made for a snapshot
year by the OPTIX and TCC models. Subsequently,
the decisions for the intermediate years are made
by FILLIN.

Optimization of Thermal Generation Mix by OPThIX:

The OPTMIX model determines for each snapshot
year the mix of non-peaking thermal units based on
economics and operating constraints, given the
thermal mix of the previous snapshot year.

The methodology of OPTMIX is a static optimiza-
tion based on the annual thermal load duration
curve and derated capacities. Discrete unit sizes

; ;
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are considered. -The scale effect is indirectly taken
into account by the snapshot-year approach, if the
load growth between two successive snapshot years
is big enough to allow the installation of large
units. The economic aspects are modeled by the
screening curves and the technical constraints are
reflected on the unit capacity factors.

The screening curve approach to determine the
optimal mix when no technical constraints apply is
shown in Figure 2.

U.10
OR

DEATED
CAPACITY

COSTo/st

CTCLING

CAlRiTflG TIME (FACTICA OF UiEAR)

Figure 2. Screening Curve Approach
Optimal Thermal Generation Mix

Definitions:
Cp X

to Determine the

Annual fixed cost (capital charge plus
fixed O&M) of peaking units in S/kW.

yp Operating cost of peaking units in
$/kW-year at 8760 hours.

Ap = Availability of peaking units.

I (C /A ) Effective annual fixed cost.

Similar notations are defined for base load and
cycling units by changing the subscripts to "n"
and "c", respectively.

The annual cost function of each kW of derated
capacity is shown in Figure 2 as a straight line
with a slope equal to the ooerating cost y and an
intercept equal to the effective fixed cost I. These
screening curves -combined with the annual thermTnal
load duration curve demonstrate the economics of
installing peaking units to serve the portion of the
load with load factor less than H,

where H = (Ic - Ip )(yp - y)

Moreover, they show that cycling units should-be
installed to serve the load which occurs more than
H of the time up to the point where base-load units
take over at load factor Q,

where Q = (I c)/(yc - y).

The load levels which correspond to the load
factors H and Q are denoted by Y* and X*, respective-
ly. Making the assumption that derated capacities
are equivalent to firmn load levels, the value X
represents the optimal amount of derated base load
capacity, and

. (Y - X) = The amount of cycling capacity.

However, technical constraints can override the
optimal conditions. For instance, there is a mini-
mum capacity factor for nuclear units which prevents
them frcm operating in a cycling mode. There may
also be a maximum capacity factor for gas turbines
above which their reliability becomes greatly im-
paired. These constraints modify X* and Y* to

X and Y.

An integer number of base-load units will be

added to the existing ones, up to matching X within
some tolerance. An integer number of cycling units
will be added tothe base-load units and the existing

cycling units up to matching Y within some tolerance.

Peakino Capacity Planninc by TCC:

Once OPTMIX has defined the non-peaking structure,
the system security level can be estimated by a
probabilistic calculation. This is done by -computing
a yearly Equivalent Load Duration Curve (ELDC) on
the basis of the thermal load duration curve and
the forced outages of all the non-peaking units.
Then peaking units are added one at a time until the
loss-of-load. probability reaches the desired relia-
bility level.

The thermal LDC can be based on 8736 hourly loads
or 260 daily peak loads according to the selection of
a reliability index. The impact of maintenance is
approximated by valley filling the LDC with the
1*-days of maintenance outages.

--

K

i
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Interpolation Between Snaoshot Years by FILLIN:

Given the new units which are to be installed
between two snapshot years, and the linearly inter-
polated reserve requirements for the intermediate
years, these new units are scheduled for installa-
tion according to the following criteria:

* The relative mix of the alternative types
of new generation should be close to the •
target mix for each intermediate year. For
example, if the target mix is 1.3 nuclear
units in a particular year, the program
will consider the possibilities of either
one or two nuclear units.

* Of all the possible combinations of alterna-
tive types in each year, that combination
which offers the least installed capacity
and yet meets the reserve reeuirement will
be selected.

The production costs for the intermediate years
are obtained by PROCOX operating on the thermal load
duration curve which is interpolated between the
snapshot years and using the actual thermal system
structure for these internediate years.

Limitations

Because the expansion plan is the result of a
series of static optimizations, it is not dynamically
optimal. This fact limits the application of PUPS
to really long-range studies for which the exact
timing of unit installations is not so critical.
However, combined with judgment, PUPS can still be
used for near-term planning.

. Expansion planning with storage devices is not
an automatic feature in PUPS. It requires the input
of a storage expansion scenario. Similarly, auto-
matic selection of new hydro units to be installed
is not possible.

The production costing method in PROCOX does
not take into account accurately the effect of ran-
dom outages. The effect of maintenance schedules
on the production cost is also not modeled accurate-
ly. The derating procedure (by forced outage rate
and planned outage rate) is only valid for large
systems with many units. However, it may be argued
that this approximation is acceptable if one only
wants the cost differences between alternative ex-
pansion plans whose accuracy should be acceptable
because the alternatives are developed by the same
model with the same set of approximations.

Examples and Test Cases

11o published example and test case are available.
The program was used extensively in the Bay of Fundy
Tidal Power Study for developing 25-year expansion
plans with and without tidal power for two regions,
the Canadian Maritime Provinces and the New England
region. Typically, a snapshot interial of 5 years
was used.

The expansion alternatives considered were nu-
clear, coal, combustion turbines and pumped storage.

Perfor~a~nce Canability

The program requires 57 K words or 230 K bytes
of core storage.

For a test case with 7 snapshot years, 25-year
expansion period, 40 generating units expanding to
120 units, 3 hydro units, and one equivalent pumped
storage unit, the execution time on a UNIVAC 1108
computer was 90 CPU seconds.

APPENDIX F
MNI-GRETA - GENERA4TiO:il LAN'NING MODELS OF

ELECTRICiTE'DE FRHAICE (EDF)

Staff Electricitd de France

Scoce

There are a number of models developed and used
by EDF for long- and medium-term generation and
transmission planning. Two models are described
here, GRETA and MNI. They are not directly inte-
grated into a single computer program. Two other
models, DYNA and MEXICO, are used for transmission
planning. Each of the four models addresses a
sub-problemn of the global generation and transmission
planning problem, as follows:

* 'I for long-tern generation planning

- GRETA for medium-term production costing and
adjustments to the long-term expansion plan

v DYNA for long-term studies of plant location
and transmission network development

s- EXICO for medium-term studies of the trans-
mission network reinforcements

For long-term studies, dynamic models (Mi and
DY A) are used. MNI uses optimal control methods
while DYNA is a linear program encompassing all
the years in the study period. For medium-term
studies static models (GRETA and MEXICO) are used,
rescrting mainly to Monte Carlo simulations for
annual analysis. For the interactions between
these models, see Figure 1.

This synopsis will describe the MNI and GRETA
models only.

Objective

The objective of the MI model is to minimize
the total present worth of investment, expected
production cost and cost of unserviced energy, dis-
counted at a given rate over several decades.
Predicted equipment and fuel prices are entered as
deterministic data, while load, hydraulic inflows
and forced outages are treated as random variables.
The objective function is:

Min t * [Gt(Xt) + KU1
tEa1 + d)i
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model incorporating the failure cost through a
fictitious expensive unit loaded after the last unit
in the system. The objective function is to minimize
the expected annual production cost.

12

Min Z =ZPh ij
Sh 3 t-1

H tR

* Discount rate
subject to:

K = Annual investment cost associated
with class I (constant annuities
and replacement by same type at
end of lifetime)

Ut Capacity investment in class i madeI in year t

Gt(Xt) = The expected production cost during
year t given the system structure

X in that year. The failure cost

is also included.

The production cost Gt is estimated from a sub-

model within RNI which is different from GRETA.

This sub-model is actually a production costing

t

Rt

where HM
1

R t

Wth

< R <. t

= Maintenance status of unit I in
month t

- Hydro release during month t

a Water inflow with probability Ph

= Load level with probability P

stujias

after t 0 h

subject to:

t

Xt+1

X 0

Xi

where d

?

U - L
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The monthly production cost if random

variables are HNh and L and decision

variables are M and Rt.

The objective of GRETA is to simulate the optimal
operation of a power system which contains hydro and
storage devices, taking into account the uncertainty
of load, thermal generation and water inflows. It
is an accurate model suitable for short-term and
medium-term planning. Because of its computational
requirement, it cannot be directly integrated with
the MN! model for generation capacity planning.

Constraints

In the MNI model, the constraints on the optimi-
zation are expressed as upper and lower bounds on
the admissible generation additions for each genera-
tion alternative.

A significant departure frcm the U.S. practice
is the absence of reliability constraints. Relia-
bility is considered as part of the cost function.
A failure cost is computed for the expected unser-
viced energy and added to the generation fuel and
operating cost. Usually this failure cost per kWH
is assumed to be S0.50 to $1.50.

In the GRETA model, the hydro system is repre-
sented by three equivalent units with a limited
capability to model their Interactions. Operating
constraints are ignored. Storage devices are con-
strained by their reservoir voltme.

Method of Solution

The MNI long-term expansion problem is formulated
as an optimal control problem using Pontryagin's
maximum principle. It is solved by a steepest-
descent algorithm.

This approach permits a timewise decomposition
in which co-state variables (in the context of
Pontryagin's maximum principle) play an important
role and provide useful information. A component

t of the co-state vector is the value of use of

equipment I at year t, i.e., the present worth of
expected cost reduction if 1 kW of equipment i is
added to the system in year t.

GRETA is a production costing and security
assessment model which performs Monte Carlo simula-
tions for the three random variables (load, thermal
capacity and water inflows) and applies management/
operating rules to determine annual statistics on
the system operation.

In a sub-model of GRETA called PRODY, dynamic
progranming is used to provide optimal hydro
management rules which can be used for an efficient
simulation of the hydro system.

Production Decisions

In the MNI model, production decisions are made
under a number of assumptions to increase the com-
putational efficiency. On the other hand, the

GRETA -odel examines the effect of uncertainty much
more accurately at the cost of computer time.

Production Costing in MNI:

The maintenance schedule Mt and the hydro release

Rt are optimized decision variables in the problem
formulated earlier. Given these energy management
decisions, the production costing problem is solved
on a monthly basis by deterministic analyses repeated
for several occurrences of the random variables
(load and water inflows).

The load model is a monthly duration curve with
10.1evels corresponding to well-known periods:

* Levels 1, 2, 3, and 4:

* Level 5:

* Levels 6 and 7:

* Levels 8, 9, and 10:

on-peak periods of
work days

on-peak periods of
Saturdays

off-peak periods of
work days.(night)

remainder of weekends

This subdivision is adopted for easier scheduling
of storage devices.

The thermal units are represented by their de-
rated capacity and a single proportional cost (in-
cremental cost).

The- hydro units are aggregated into a single
equivalent unit, and for each water inflow value and
each water release decision, the maximum amount of
energy W1, W2  .... 10 which can be used during each

level of the LOC are determined.

The storage units are aggregated into two equiva-
lent units: one with a daily cycle and the other with
a weekly cycle operation. Both units are charac-
terized by:

- Capacity P

* Round-trip efficiency n

* Reservoir volume V

The generation schedules for the various units
are determined by an iterative process whose object-
ive.is to determine the optimal pumping schedules
given the hydro capability and the thermal cost
function:

STEP 1: Select a marginal pumping cost p

STEP 2: Determine optimal pumping schedules

for A . This is solved by linear

prograrming.

STEP 3: Given the energy stored, optimize the
hydro and restitution schedules (i.e.,
level out the thermal load.) This is
a nonlinear program with linear
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constraints. As a result, the marginal
saving from restitution is known: X rr

STEP 4: Compare Xr and X to determine whether

pumping should be increased or decreased.
Adapt Ap accordingly. Go to STEP 1.

Note that in this production costing model, only
load and hydro uncertainties are considered. Ther-
mal forced outages are represented by capacity de-
ration. Load and hydro uncertainties are treated
by a combinatorial approach: computations are
repeated for selected combinations of loads and
water Inflows to represent their full spectrum of
occurrence and the results are weighted according
to the assocaited probabilities.

The production costing model also determines the
cost gradient vector with respect to all capacities
of equipment considered (thermal and storage). This
result is useful for the "inves-nment" model which
can use them as initial gradients (values of use).

Production Costino by GRETA:

The load model considers an annual energy level
(specified as data), weekly energy levels for ave-
rage weather conditions (Gaussian distributions with
autocorrelation with the two precedi':g weeks), and
daily weather impact (modeled thc':ch load-weather
model and weather statistics).

The hydro system is aggregated into three equi-
valent hydro units (total equivalent capacity less
than actual capacity), with a limited number of
parameters to represent their interactions. (See
Figure 2.)

The storage system is aggregated into two equi-
valent units (weekly and daily cycle). No seasonal
storage is considered. Each unit is defined by
pumping and generation capacities, reservoir volume
and round-trip efficiency. Their scheduling is done
on the basis of the weekly LDC after deduction of
the hydro contribution (in a former version), or by
optimization in the current version.

The thermal units are considered individually
except for old units which are aggregated. They
are defined by their capacity, average production
cost and reliability data (steady-state forced out-
age rate and average duration of outages). The
last thermal unit has a very high cost and is used
to represent the cost of outages. Startup costs
are neglected. Spinning reserve is not mentioned.

The maintenance schedule is prespecified but
the optimal hydro management rules are determined
by the model itself. Unit comnnitment is not con-
sidered on an hourly basis; rather, it is approxi-
mately handled in the weekly load duration curves.

The model is actually a package of five programs:
CONS, THALE, HY RAU, PRODY and GRETA, which performs
-eparate functions as follows:
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CONS: CONS reads elementary load information
and prepares load data samples by Monte
Carlo draws. Autocorrelation and weather
effect are modeled.

THALE: THALE reads characteristics of thermal
system and maintenance schedules.
Samples of available thermal capacity
are drawn by Monte Carlo methods, using
state probabilities depending on pre-
vious state only (Markov assumption,
Koliogorov equation).

HYDRAU: HYDRAU reads hydro system data and
hydro inflows historical data. It
defines the three equivalent hydro units
(one seasonal, one weekly, one run-of-
river) and the inflow sample by Monte
Carlo draws or by selection of past se-
quences. Functions are specified for
defining the must-run energy from
seasonal reservoir according to the
water inflow, and the fractions of sea-
sonal release which increase the down-
stream energy.

PRODY: PRODY uses dynamic programing to define
optimal hydro management rules.

The flowchart in Figure 3 shows the three basic
steps. The following definitions of variables are
needed:

Rt - Water reserve at beginning of
stage t

At * Water inflow during stage t. This
is a random variable with the fol-
lowing probability mass function:

Prob (inflow = Ait it

Qt 4 Water release during stage t (in

MWH)

Gt(Qt) = Thermal saving in stage t resulting
from optimal utilization of release

Qt"

V(R d " Value function of water reserve Rt
is defined as expected
generated by optimally
the system from time t

as initial reserve.

savings
managing
on with Rt

By its definition, V(Rt) can be written as:

V(R ) 3 Max G t(Qt ) + E I V(Rt+)}QtI

The expectation is taken over the random water
inflow distribution.

The optimal water release is obtained by im-
posing:

dV(Rt)
= 0

dQt

Frc, this, one derives the following optimal

condition:

Gj(Qt ) = E V'(Rt+i)

where the ' denotes a derivative w.r.t. the explicit
variable.

The thermal savings G t(Qt ) are determined by peak

shaving the load duration curve, from which Gi(Qt)
can be computed.

The curve V'(Rt+I) can be derived by the follow-

ing backward recursive process:

V'(Rt+I) = V'(Rt - Qt + At)

E V'(Rt+J) = SV'(R t Q + At) * it

For a fixed (known) value of Rt, EIV'(Rt+i)I
can-thus be expressed as a funtion of Qt if V(Rt+,)

is known. Remember that V(RT+1) is assumed to be

known; its derivative V'(R 1 +1 ) can thus be obtained

easily in order to initialize the backward recursive
process.

Knowing the curve EIV'(Rt+I)IRtI as a function

of Qt and the curve Gt(Qt), the optimal Qt will be

obtained at their intersection. Also, the ordinate
of their intersection is the marginal value V'(Rt)
which can be associated with the reserve Rt given

the optimal decision Q*.

The entire solution algorithm can, therefore, be
surmarized as follows:

1 Start with t = T

2 Determine Gi(Qt)

2a Select one value of Rt

s Select one value of Q

**. Compute E V'(Rt+1)IR t] "V'(Rt - Qt + Ait)
i

* it

Repeat for various Qt

* Determine Q* and V'(Rt).
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Appendix B

MEETING NOTES FROM UTILITY INTERVIEWS UNDER TASK I

ANALYSIS OF UTILITY REQUIREMENTS

The meeting notes which follow summarize discussions held with nine

utilities between October 17, 1979 and January 8, 1980 concerning

assessment of the tools currently in use for capacity and financial

planning, the proposed structure of the EGEAS system and additional

requirements or emphases required of the EGEAS structure. In each

instance the format used in the discussion was the same (see attached)

with the meeting beginning with a description of the activities under

way at MIT and Stone and Webster in the development of EGEAS. The

discussions then continued in an open format to cover present activities

in model development within the utilities and/or models currently being

used for utility planning.

The meeting notes which follow do not contain materials, generally

available from the utilities themselves, which were collected in those

meetings. References to these materials have been left in the text to

allow the reader to contact the utility should such materials be of

specific interest.
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PROPOSED UTILITY NEEDS INTERVIEW AGENDA

EPRI/EGEAS

I. Introduction to Purpose of EGEAS

Purpose: Develop a modular and flexible, state-of-the-art software
system for electric utility generation planning, operating
from a common data base

Based upon: GEM, developed at MIT
OPTGEN, developed at SWEC

Advantages of proposed EGEAS structure:

o capable of being made fully interactive
o flexible options in level of detail, generation alternatives

and load management techniques
o sufficiently flexible to allow for addition of other

specific modules as might be required in the future
o advanced handling of uncertainties

II. Proposed EGEAS model structure

Model Structure

- linear programing
- dynamic programing
- Benders' decomposition
- static year end optimization
- prespecified capacity expansion path

Load Representation

- loading trapezoid
- Booth Baleriaux
- for storage analysis, short time sequence chronological checking

system

Reliability Analysis

- loss of load probability
- loss of load hours
- energy not served

Advanced Features:

environmental/siting
interconnections
uncertainties
new technologies and load modification
preliminary analysis of financial/regulatory/environmental

modeling requirements
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IV. Discussion with Host Utility of:

A. Capacity Expansion Planning Models/Methods currently in use
B. Operating System Models in use
C. Financial Planning Models currently in use
D. Interactions between the above
E. Methods used for sensitivity/uncertainty analyses

V. Useful Additional Capabilities Beyond Those Currently Available
and/or Those Proposed by EGEAS
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NOTES OF CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM
ELECTRIC POWER RESEARCH INSTITUTE

Held in the offices of
Arizona Public Service Co.
Phoenix, Arizona

October 17, 1979

Present for:

Arizona Public Service Co. (APS)

Massachusetts Institute of
Technology (MIT)

Mr. Gian Khubchandani
Supervisor of Corporate Models

Mr. Gerhard Steinbrenner*
Manager of Systems Development

Mr. Vince Converti*
Manager of Computer Services

Dr. Richard D. Tabors
Manager of Utility Systems Program
(Principal Investigator)

Mr. Edward J. Moriarty
Research Staff

PURPOSE

Task 1 Analysis of Requirements - First Meeting

The purpose of this meeting was to identify the basic capacity
expansion planning analytical needs and current modeling capabilities of
APS, and to solicit information, experience and recommendations relating
to the proposed EGEAS structure.

*Not present for entire meeting.
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SUMMARY OF DISCUSSION

1. M.I.T. presented a discussion of the EGEAS goals and proposed

structure (see attachment).

2. APS discussed the models it is currently using or developing and way

in which the system planners and financial anlysts utilize the analysis

support group within APS.

a. APS has a Systems Development Department which is used by both

planners and financial analysts.

SYSTEM SYSTEMS FINANCIAL

PLANNERS DEVELOPMENT ANALYSIS

b. APS uses GE's Optimized Generation Planning Model (OGP) and has an

in-hour producton costing (PC) model. Currently APS is developing an

in-house expansion planning model.

c. APS uses a "pre-specified expansion schedule/simulation" approach and

does not currently use the mathematical optimization subroutine in OGP

for analyzing various generation expansion scenarios.

d. APS has an in-house corporate finance model which is based on the

GPOSII model developed by PLANMETRICS. Their contact is:

Gary Ganz, V.P.
Planmetrics, Inc.
5320 Sears Tower
233 South Wacher Drive
Chicago, IL 60606
(312) 876-2700

This model has been used by San Diego, New Jersey, and others and is a

good general purpose operating system.
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e. Currently, APS does not have any direct modeling or analytic links

between financial analysis and system planning analysis.

3. APS had the following concerns/evaluation of EGEAS:

a. Hour-by-hour P.C. is too costly for 20-30 years expansion planning

but analysis based strictly on monthly or yearly load duration curves is

not adequate for addressing some important issues. Need to find

trade-off point.

b. Different optimizations cannot be expected to yield similar

results. However, it must be possible to explain any differences

between optimization results.

c. There was concern about the scope of work extending from research

through production software in a single effort (these concerns were

allayed by a brief discussion by MIT of the project structure/schedule

and the role of Stone and Webster).

d. Better representation of financial considerations should be

incorporated into capacity planning models. Better interfacing between

capacity planning and financial models should also be allowed for.

e. Programs should be able to handle multi-area considerations.

f. The financial representations within the Over-Under model should be

considered. (APS has had some problems in obtaining useful

documentation for running Over-Under.)

g. The ability to find dollar cost to the consumer of Environmental

Regulation (e.g., Clean Air Act) would be useful, but in-depth

environmental analysis would not be feasible due to prohibitive data

requirements.
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NOTES OF CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM

ELECTRIC POWER RESEARCH INSTITUTE

Held in the offices of
Niagara Mohawk Power Corporation
Syracuse, New York

October 31, 1979

Present for:

Niagara Mohawk Power Corporation (NMPC)

Stone and Webster Engineering Corp.
(SWEC)

Massachusetts Institute of
Technology (MIT)

Mr. P.D. Raymond
Manager - Engineering Planning

Mr. K.L. Hicks
Supervisor - System Planning

Dr. F.C. Schweppe
Professor - Electrical

Engineering

Dr. R.D. Tabors
Manager - Utility Systems

Program
(Principal Investigator)

Mr. E.J. Moriarty
Research Staff

PURPOSE

Task 1-A Analysis of Utility Requirements

The purpose of this meeting was to discuss the present and planned
expansion, operating and financial modeling capabilities and practices of
Niagara Mohawk, and to solicit information, experience and
recommendations relating to the proposed EGEAS structure.
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SUMMARY OF DISCUSSION

1 - MIT presented an overview of the EGEAS goals and proposed structure

(see attachment).

2 - NMPC requested further information on environmental aspects of the

EGEAS project, especially the nature of our dependence on the NRC

project. MIT stated that:

o NRC had approved funds--so Phase II of the project should start soon.

o The EGEAS contract states that EGEAS must be able to interface with

the Phase I methodology--and thus does not depend on future work to

be done in Phase II.

MIT then discussed the concept of generic siting, its inclusion in the

Linear Programming component of EGEAS, its usefulness in terms of linking

with "area siting" as proposed in the Phase I methodology and its

usefulness in standalone capacity planning studies (i.e., with no

independent area siting optimization). (For example, a use in studying

the effects of non-attainment issues on capacity planning.)

3 - NMPC requested information on the status of GEM's code. MIT then

presented the history of GEM's development, and stated that

currently, the GEM LP is a working but undocumented tool, that

SYSGEN is well documented and available, that the environmental

screening models would have to be further developed and tested

though this is not within the scope of this project. MIT then

stated that the decomposition technique upon which GEM was

originally designed would not converge to a single optimal solution

but that the structure of the data base and code were such that the

prototype model used in Bloom's thesis was able to be written,

installed, and tested with a relatively minor amount of work (- 2-3

months).
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4 - NMPC raised the question of who would maintain the EGEAS software

after the project concludes. MIT will definitely not do it. The

question is more between EPRI and SWEC and should be discussed

during the January Review Meeting.

5 - NMPC asked how flexible the code will be. MIT stated that the

GEM-based code will be fairly flexible and cited some examples to

substantiate this. SWEC stated that the OPTGEN code is not very

flexible primarily due to the nature of dynamic programming.

6 - Discussion then focused on the planning/financial practices and

tools at NMPC.

o Pool level planning first determines the needed capacity to meet a

22 percent margin (1 day in 10 years LOLP) assuming ties [40 percent

united].

o NMPC is required to meet an 18 percent margin (1 day in 10)

o Once the reliability of the current/committed system is analyzed for

each year of the planning horizon then GE's OGP No. 5 model is used

to determine the best capacity addition schedule and mix.

Transmission studies are then performed.

o NMPC's primary focus is on detailed production cost analysis used to

confirm/fine tune the OGP results.

o NMPC uses PROMOD-3, developed by Energy Management Associates (EMA)

in Atlanta (a wholly onwed subsidiary of Planmetrics in Chicago) for

its production cost analysis. PROMOD is used on average once a

night. Operating people also use PROMOD.

o The pool is currently in the process of installing EMA's multi-area

PROMOD.
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o The New York "Siting Guide" states that the best site should be used

regardless of service area. Joint ownership is, of course, current

standard practice. Thus the Environmental Commission of the N.Y.

Planning Pool and the PUC are identifying sites (> 2000 MW) and

rating them. No trouble has been found with increasing land values

due to the large number of sites identified and to the absence of a

need for near-term expansion.

o NMPC's current plans include (through 1992)

- Oswego 6 (Sister unit > $240/kW!!!) - oil in December - joint

with Rochester

- Nine Mile Nuclear - 1 year away - multiple owners under NMPC.

- Either one of: Sterling (NUC or COAL) - 1988/90 or a Lake Erie

coal site.

o NMPC does not have a "corporate model." Currently it uses a "Bottom

up" financial model in which interest rates, to stockholders are

input and the model determines the rates--and gets coverage ratio.

o NMPC is looking at Planmetrics for a financial model.

o Long Island Lighting is developing a "Bottom up" financial model for

engineers. Contacts: John Weismantle
Tony Nosselelo (sp)

o NMPC has recently installed the Over Under Model.

o The financial and planning people at NMPC have a good working

relationship.

7 - NMPC expressed interest in the new technology (fuel cells, small

hydro, gasifier combined cycle, fluidized bed)* aspects of EGEAS.

*See EPRI 991, Gildersleeve.

B-11



8 - NMPC is also interested in the trade-off between distributed and

central generation and the associated impact on investment in

transmission.

9 - The level of user sophistication was discussed. Whereas a

technician will be able to actually run the model, qualified,

experienced planners will be required to ensure proper use of the

model. The idea of having training seminars was also discussed.

10 - The nature of the financial handling in EGEAS was discussed. NMPC

feels that it must be addressed. The concern was expressed that a

running model's bias toward large capital investment options must be

mitigated by some representation of the difficulties in financing

such options. The feasibility of using annualized fixed-charge

rates was discussed. There is not much gain over levelized fixed

charge rate unless yearly cash flow constraints (or something

equivalent) are used since the objective function is simply present

worth of revenue requirements (which does not in itself capture

timing considerations).

11 - Discussion then focused on the uncertainty issues. MIT discussed

the two fundamentally different types of uncertainty (i.e., that of

input assumptions and that of changing conditions after some

decisions have been made in the planning process). NMPC feels both

are important. NMPC feels uncertainty in load projections and in

construction delays must be able to be addressed.

12 - For testing EGEAS NMPC feels that synthetic systems will be

adequate, but that comparison runs should be made with OGP at some

point since it is available and used by EPRI.

13 - For NMPC, hydro will be base only. The representation of hydro as

currently proposed in EGEAS will be adequate.
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NOTES OF CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM
ELECTRIC POWER RESEARCH INSTITUTE

Held in the offices of
Pacific Gas and Electric Company
San Francisco, California

November 7, 1979

Present for:

Pacific Gas and Electric Co. (PGE) Dr. George
Engineer -

Gross
Computer Application
Department

Mr. Richard Albert
Engineer - Generation

Department

Electric Power Research Institute
(EPRI)

Stone and Webster Engineering
Corporation (SWEC)

Dr. Neal Balu
Electrical Systems Division
(Project Manager)

Mr. Kenneth L. Hicks
Supervisor - System Planning

Massachusetts Institute of
Technology (MIT)

Dr. Fred C. Schweppe
Professor - Electrical

Mr. Edward J. Moriarty
Research Staff

Engineering

PURPOSE

Task 1-D Review of Other Models

The purpose of this meeting was to discuss the present and planned
expansion, operating and financial modeling capabilities and practices of
PGE, and to solicit information, experience and recommendations relating
to the proposed EGEAS structure.
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SUMMARY OF DISCUSSION

1 - M.I.T. presented an overview of the EGEAS Goals and Proposed

Structures (see attachment one).

2 - PGE expressed concern about the EGEAS framework in that more than one

optimization technique could be selected by the user. The primary

concerns were that EGEAS was being designed to be all things to all

people and that the project may indeed be overambitious. Also, since

the different otpimization techniques are based on different assumptions,

PGE thought that this would be very confusing to the normal user.

Further, PGE questioned the level of sophistication required of EGEAS

users in general.

M.I.T. agreed that the development of the EGEAS package as proposed would

take a considerable amount of development effort, but that we were

definitely not starting from ground zero. Only one of these proposed

optimization techniques requires any real theoretical development (the

Benders' Decomposition). The other optimization techniques are based on

programs which have already beeng written at M.I.T. and Stone and Webster

and require no real theoretical development. Further, the reasons for

having the multiple optimization techniques as options were not an

attempt to be "all things to all people," rather, the design of the

system was based specifically on the needs of an electric utility system

planner (not corporate modelers, regulators, etc.). Multiple techniques

allow for flexibility, varying levels of detail, and tailoring of

assumptions to best fit the nature of the different problems facing the

utility planner.

M.I.T. stated that the varying assumptions implied by the different

techniques would require a fairly sophisticated user, but that supply

only one optimization technique would not require any less sophisticated

a user. In other words by providing only one technique and thus only one

set of basic assumptions an unsophisticated user would tend to apply this

tool and analyses where the assumption may not be valid. It was agreed

that EGEAS should in some way emphasize the nature of the different
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assumptions associated with the different techniques for the user, and

that the idea of a detailed training session/seminar or increasing the

level of sophistication of the user should be investigated.

M.I.T. stated that EGEAS is not an optimization package, rather that

optimization is used as a tool within the EGEAS framework. The role of

the utility systems planner is becoming less and less one of finding the

optimal solution, and gradually becoming more of finding a feasible

solution, one that fits within the constraints of the varying interfaces

with the planning problem, such as financial, environmental, etc.

3 - Attachment 2 is a flowchart of the current PGE planning process. A

load forecast in terms of a peak, energy, and load-shape model is given

to the Expansion Planning Department. Reliability analysis is performed

on the current and committed system given the anticipated load. Required

capacity additions are then determined using the one day in ten year
LOLP, a minimum reserve of 12 percent, and a contingency that the system

must be able to support a loss of the two largest units. An expansion

schedule is then determined "by hand" since the number of choices is

limited and since the major issues are those involved with the

constraints on the system, for example, siting issues, lead time, fuel

use act. The planning horizon required by the PUC is roughly ten to

twelve years, which corresponds to the longest lead time which could be

expected for a plant. For studies beyond the planning horizon required

by the PUC, generic alternatives (base capacity, mid-range, peaking) are

used for the analysis. Once and expansion schedule has been determined

it is then given to the corporate modeling department. So far the

financial constraints have not yet proved binding but they are certainly

coming under scrutiny.

4 - PGE then described the models used in the various analyses. For

reliability analysis an in-house model which develops a monthly capacity

outage table and then checks daily peak loads for a year is used. This

is a relatively standard reliability analysis. The production cost tool

used currently, GRATE, is an in-house model which has taken two years to

development and has been used for roughly three months.* It is a

*A meeting was scheduled for November 8 between Dr. Gross and Mr.
Moriarty to discuss the hydro handling of GRATE in more detail.
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Booth-Baleriaux type of analysis, which can handle hydro, pumped hydro,

purchases as well as the thermal system dispatch. Hydro in this model is

dispatched along with thermal units and is not just treated as a load

modifier. PGE has about seventy hydro plants, but these are modeled as

eight equivalent hydro plants in this model. Hydro allocation is an

input since it is far too complicated a matter to be included in a

production cost simulation program. The corporate model used is also an

in-house program which is basically a quick, deterministic bookkeeping

system.

5 - PGE then raised a question about the ease of use of programs such as

EGEAS. M.I.T. then stated that EGEAS was designed to ease the problems

of the system planner in performing analysis and some of the ways which

it would do this would be: (1) having a structured data base from which
to perform analysis, and (2) having well-defined interfaces between the

optimization techniques and the external analyses which impact on the

expansion plan.

6 - M.I.T. then presented the concept of generic siting and told of the

types of analysis which could be performed with such an approach (for

example, non-attainment issues). PGE felt that this type of analysis may

be useful to them.

7 - PGE then asked about the way in which cogeneration could be handled

in EGEAS. M.I.T. responded that if the primary use is indeed steam

production, then it could be handled as a load modifier. M.I.T. stated

that further research would have to be done on the cogeneration issue

before any further modeling approaches could be develodped.

8 - Discusssion then centered on the financial aspects of the EGEAS

system. PGE's corporate model uses annualized fixed charge rates as do

most financial models. Only if something like cash flow constraints are

to be incorporated into the optimization, should annualized fixed charge

rates replace the levelized fixed charge rates, as found in most planning

packages. In these models, all costs are present worthed, thus anualized

information is lost in the process. PGE thought that financial handling
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which is more than that done in the Over/Under model would probably not

be necessary. Stone and Webster stated that an important feature of the

OPTGEN package, which is the dynamic programming basis for EGEAS, is that

it uses integer plant values as decision variables as opposed to

continuous variables in the LP and decomposition techniques. This is

important from a financing point of view since the large blocks of

capacity must be installed in various years, whereas with linear

programming small portions of a type of plant could be installed in every

year exactly following the load growth. Financial considerations are

much more severe when studying blocks of capacity as opposed to

incremental additions.

9 - PGE then expressed concern over the way in which end effects would be

handled in EGEAS, since this can have drastic impact on the results of an

optimization. M.I.T. agreed that end effects did play an important part

in the optimization and cited a thesis done by Carlos Villanueva which

studied the implications of the various options for end effects. Since

there is no agreement on the way in which end effects should be handled,

M.I.T. felt that options should be provided for the user rather than

providing a single type of end effect consideration.

Stone and Webster stated that the OPTGEN package has a very good system

for handling end effects. When reporting the optimal and near optimal

solutions, it provides the costs associated with each solution, both with

and without the end effects included. This allows the user to see if

there are short-term vs. long-term trade-offs between the various

solutions. Thus, if one plant were optimal when considering the

long-range end effects, but another plan were substantially better in the

short run, and not that far off in the long run, then the latter may be

selected by the planner as the better plan.

10 - PGE expressed concern over the testing of the EGEAS system. It felt

that the use of synthetic utility data for testing would not be adequate

and that real utility data should be used in at least one phase of

testing of EGEAS. It was agreed that the use of real utility data would

require more than a utility providing information to M.I.T. or Stone and

B-17



Webster for testing, but that it would involve a considerable amount of

time on the part of the utility to perform the testing itself. The

problem therefore is: 1) can we find a utility that can afford to put

one of its planners on a project to test the EGEAS system, and 2) where

does the funding come from for doing this extensive testing.
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NOTES OF CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM
ELECTRIC POWER RESEARCH INSTITUTE

Held in the offices of
Southern Services Company
Birmingham, Alabama

November 8, 1979

Present for:

Southern Services Company Mr. Sam Daniel
Supervisor, Generation Application
(870-6138)

Mr. R. Sam Shepard
Supervisor, Generation Expansion
(870-6642)

Mr. James C. McNeely
Generation Expansion
(879-6121)

Mr. Fred Williams*
Manager, Generation
(870-6644)

Planning

Massachusetts Institute of
Technology (MIT)

Dr. Richard D. Tabors
Manager, Utility Systems Program
(Principal Investigator)

PURPOSE

Task 1-A Analysis of Utility Requirements

The purpose of this meeting was to discuss the present and planned
expansion, operating and financial modeling capabilities and practices of
Southern Services Company. In addition, the purpose was to discuss the
EGEAS structure and solicit information, experience and recommendations
relative to its development.

*Present only at initiation of meeting.
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SUMMARY OF DISCUSSION

1. MIT presented an introduction to the EGEAS structure and answered

specific questions concerning the status of present work and modeling

capability.

2. Modeling Capability at Southern

Southern Services Company maintains a set of planning models which range

from their MIX model adapted and largely rewritten from WASP I to a

corporate model currently undergoing final field testing. These models

are summarized below and summary statements of their capability are

attached to these notes.

o Probabilistic Production Costing Program: Estimates

Operating cost of generating units within utility in meeting forecasted

load demand. Includes automatic maintenance schedules. May be run for 2

week periods or divided into four day types: peak day, valley day,

Saturday, and Sunday.

o Dynamic load modeling program: Service program used to develop annual

forecasted chronological load demand models for use in other system

planning programs.

o Loss of Load Probability (LOLP) Program: Determines the reliability

of a prescribed generating system using a single area loss of load

probability method.

o Generation Mix Planning Package: Adapted from WASP I to evaluate

alternative generation from three perspectives: reliability/reserve;

operating cost and investment.

o Corporate Model: (Currently being field tested) to allow for the

rapid analysis of corporate policy issued; for us in detailed expansion

planning. Additional inforation presented here as no summary is

available at the present time.
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BASIC STRUCTURE:

Inputs:
Capacity Expansion Input Input Rate

Schedule Loads Schedule

Construction Production Calculate
Cost I Cost Revenues

Intercompany
Interchange

financial Model

Output

Summary of Status: The model was develsoped in APL and currently is in

use in Georgia Power and Gulf Power. Potential user concerns have

expanded the level of detail required to make the model data base

extremely large and therefore, the operation costly. The original

modeling desire of 1 hour turn around is now in excess of a day with

intent of reducing it to this level. The financial model appears highly

useful in level of detail.

o Other financial models. The corporation maintains a detailed

financial model disaggregated to each of the companies which can be

aggregated to the four company area. Data inputs are:

Capitalization rates

Cost of money by component

AFUDC

Tax rates

Revenues by major rate classes (2-5)

In order to:

Calculate rate requirmenets to reach target return on common stock
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explicit rate of relief allowed

To arrive at:

coverages

o An engineering economic model is also maintained to calculate the

levelized cost of fuel and capital for individual facilities which then

become the inputs to the MIX program.

3. Southern Services model use flow.

1. Build expansion plan

2. Production cost run

3. Cost Estimation - Plant, Transmission, etc.

4. Financial planning model including intercompany capacity and energy

exchange

5. Output of position of each of four companies plus parent with full

financial details. Normally updated three times/year and covering

15-year planning horizon.

The above structure tends to be unidirectional. Generation planning

operates with explicit and implicit constraints which act to screen

expansion alternatives. An example would be their inability to finance a

nuclear power plant at the present time.

4. Suggested considerations for EGEAS financial modeling capability.

o Include explicit capital constraint at least for first 5 to 10 years

of model horizon.

o Flexible treatment o CWIP.

o Ability to set coverage constraints (a particular concern of holding

companies such as Southern).
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o Information to calculate earnings per share.

o Level of external financing required.

5. Desirable EGEAS Characteristics

o Development of common data base for access by multiple planing and

operating model structures. Southern currently utilizes more than

four interlinked models not accessing a common base. This leads to

time and accuracy/consistency losses.

o For storage representation the Booth Baleriaux configuration appears

sufficient. Comment on the Schweppe storage paper will be

forthcoming. Must consider limited pumped hydro.

o Hydro: Because little, if any, new hydro will be constructed, this

need not be seen as a tight constraint on the capacity expansion

planning framework.

o Environmental/Siting: Southern Company is interested in extending

the generic siting potential of GEM but not necessarily the

Brookhaven type of analysis. The concern is with the potential for

prescreening and then the identification of a limited (less than 25)

well and carefuly defined expansion alternatives.

o Input data analysis capability that will ease process for

- Identifying errors in input data.

- Identifying assumptions in input data from diverse sources

such as, for instance, assumed fuel price escalation.

- Containing a flexibible data editing routine which automatically

checks for consistency - this should include data range check but

not hard wired ranges.

o Size specification for all parameters whould be a variable to allow

for dimension changes (question: is this acceptable under ANSI

FORTRAN standards )

B-24



o For sensitivity and uncertainty analyses the most significant

variables are:

fuel price

fuel availability

construction cost

cost of capital

availability of plant

load

environmental regulations

6. The model should be able to handle both limited energy facilities and

fixed energy facilities, i.e., a facility with a guaranteed, fixed,

flowing supply such as guaranteed, pipelined coal or SRC.

7. Expansion models using different algorithms will yield different but

explicable results.

8. Additional information on "fast" LOLP may be found in the work of Dr.

Oliver S. Yu of Commonwealth Edison.

9. Southern has had considerable experience in working with Fourier

Transform Expansion and load curves and are willing to share that

information. The contact is James McNeely.
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NOTES OF CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM
ELECTRIC POWER RESEARCH INSTITUTE

Held in the offices of
Public Service Gas and Electric
Newark, New Jersey

December 5, 1979

Present for:

Public Service Gas and Electric William Wood, Manager
Power Supply Planning
System Planning Department

Andrew C. Johnson
Principal Engineering
Electric Planning Department

Dr. Murty P. Bhavaraju
Principal Engineer
Electric System Technology

Massachusetts Institute of Prof. Fred C. Schweppe
Technology (MIT) Co-principal Investigator

Dr. Richard D. Tabors

Co-principal Investigator

PURPOSE

Task 1-D Review of Other Models

The purpose of the initial meeting was to discuss the present and
planned expansion, operating and financial modeling capability of Public
Service Gas and Electric. In addition, the purpose was to discuss the
EGEAS structure and solicit information, experience and recommendations
relative to its development.
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SUMMARY OF DISCUSSION

1. A review of the purpose and structure of the EGEAS package was given

by Tabors and Schweppe to acquaint those individuals from PSG and E who

were not at the kick-off meeting with the purpose of that work.

2. PSG and E currently uses an adapted from of the WASP program

(WASP/SAGE) for their analysis of capacity expansion requirements. They

did not utilize the E.M.A. modeling capability becuase, at the time of

their evaluation, it was too expensive. WASP is used primarily for a

broad-brush solution to PSG and E's capacity planning requirements.

Because it is a single area model, it is difficult to use fully, given

the pooled nature of the system operation.

3. PSG and E, during the late 60's, developed its own production cost

model. This is an hourly simulation, because of an interest in pump

storage. In addition, the model is a two area production cost model, in

which all one thousand generating facilities in the P.J.M. pool may be

analyzed. PSG and E is involved in economy interchanges with the rest of

the pool. The production cost model keeps the company identity while

dispatching a full pool capability.

4. Reliability analysis is undertaken in using standard loss of load

probability modeling techniques based on two area model developed by

General Electric and Baltimore Gas and Electric (GEBGE).

5. Pool planning is done by individual companies given a reliability

constraint set by a pool-wide committee. There is no planning associated

with the pool, only operations and engineering. Reliability is set two

years ib advance based on three criteria; a) fixed outage rate, b) load

shape, and c) large units (this is generally inoperative as it is set at

1300 megawatts which does not exist in the system).

6. The long-range planning is done with a set of models developed at PSG

and E but rationalized by Planmetrics. These models require a committee

interaction to bring together each individual component from planning,
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finance, and operations. The use of this model is directed by the

executive vice-president for corporate planning who has no direct staff,

but rather draws upon the individual line staffs. As a result, the

coordination between finance and planning is extremely high.

7. Uncertainties in the corporate model are handled exogenously, both on

the fuel side and on the operating side. The fuel supply department

takes care of estimates of fuel cost into the future.

8. The need for advanced capability in analysing load management and new

energy technologies was stressed. The issue arose that PSG and E will be

more concerned in the near and mid terms with efficient operation of

available capacity rather than with the addition of new capacity. This

includes the optimization of operations of existing plants through fuel

switching as well as the modification of load through a series of

available load modification tools. PSG and F has developed a model

called ELCS which allows them to analyze customer demand by customer

class on an hour-by-hour basis. This work, when carried out over a

30-year period, allows the planners to evaluate a set of load management

tools within the utility. The utility's needs for new commitment are

well defined out through 1985-1990. Most of their planning will be spent

on analysis of future demand, possibly on consideration of cogeneration

in their large customers, and some consideration of generation

technologies such as garbage burning. Through this, however, load

management, both through economics, such as time-of-day metering and

through macro- and micro-shedding appear to be a major interest.
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NOTES OF CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM
ELECTRIC POWER RESEARCH INSTITUTE

Held in the offices of
Idaho Power Company
Boise, Idaho

December 7, 1979

Present for:

Idaho Power Company

Massachusetts Institute of
Technology (MIT)

Mr. James E. Brett
Generation Planning Engineer

Mr. Michael E. Prendergast
Director of Corporate
Analysis

Mr. Edward J. Moriarty
Research Staff

PURPOSE

Task 1-A Analysis of Utility Requirements

The purpose of this meeting was to discuss the present and planned
expansion, operating and financial modeling capabilities and practices of
Idaho Power, and to solicit information, experience and recommendations
relating to the proposed EGEAS structure.
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SUMMARY OF DISCUSSION

1. M.I.T. acknowledged the receipt of a copy of an internal memorandum
discussing the specifications for a General Planning Model which would

address the needs of Idaho Power.

2. M.I.T. gave Idaho Power a copy of the SYSGEN paper and documentation,

a copy of the ELECTRA documentation, and a copy of the technical portions
of the EGEAS proposal.

3. Discussion followed the agenda focusing first on the nature of the

optimization techniques, primarily the Dynamic Programming Approach.

4. Idaho Power uses an internal load forecasting methodology which is
based on an assume rate forecast. This load forecast is then given to
the expansion generation department where a prespecified mix methodology

is used to come up with the best expansion plan. The Planmetrics GPOS

program is then used for the corporate modeling. A check is then

performed to see if the rates used in the load forecasting methodology

are consistent with the rates required to implement the given expansion
plan as determined in GPOS. If they are not consistent then the entire

process must be repeated. The production cost model used for expansion

planning is deterministic and based on monthly energy load and peak loads.

5. The Idaho Power system is 75 percent hydro by energy and 1100
megawatts of the 1600 megawatts is hydro. The operation of Idaho Power's
hydro power is constrained by many river flow regulations (e.g., minimum
hourly flow, maximum rate of change of flow--both plus and negative,
downstream navigability, etc.).

6. Financial modeling at Idaho Power was then discussed. A list of

definitions used in financial/accounting modeling, sample problems worked

out and a sample computer output for one of these problems were provided

by Idaho Power.
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7. Idaho Power expressed interest in having the following
features/capabilities in EGEAS:

o To measure reliability of a utility which is energy constrained
standard LOLP calculations are not sufficient. Some measure such as
energy margin is needed (or expected unserved energy).

o For hydrosystems such as Idaho Power any planning tool must use time

periods not greater than a month for analysis since the nature of

systems operation varies greatly with hydro availability.

o The ability to interface with corporate modeling and load

forecasting is very important. Rate assumption consisting

throughout the entire methodology can be one major benefit of such

interfacing.
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NOTES OF CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM
ELECTRIC POWER RESEARCH INSTITUTE

Held in the offices of
North East Utilities
Hartford, Connecticut

January 3, 1979

Present for: GeAi 4 .h ip A k " 64

North East Utilities Mr. Robert W. Goodrich
Senior Scientist
(203) 666-6911, X5159

Mr. Frank Sabatino
Generation Planning Engineer

X5824

Mr. Peter Shanley
Generation Planning Engineer

Mr. A.P. Sternberg
EHV Transmission, Planning
Manager X5215

Mr. John Amalfi, Generation
Planning, Associate Engineer

X5854

Mr. James R. Shuckerow, Jr.
Generation Planning Engineer

X5170

Mr. William A. Ryan
Generation Planning Engineer

X5164

Massachusetts Institute of Prof. Fred C. Schweppe
Technology (MIT) Director, Utlity Systems

Program

Dr. Michael Caramanis
Utility Systems Program

PURPOSE

Task 1-A Analysis of Utility Requirements

The purpose of this meeting was to discuss the present and planned
expansion, operating and financial modeling capabilities and practices of
North East Utilities, and to solicit information, experience and
recommendations relating to the proposed EGEAS structure.
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SUMMARY OF DISCUSSION

After a brief description of EGEAS by Prof. F. Schweppe, the following

points were brought up and discussed.

- Mr. Ryan questioned the purpose of creating still "another" capacity

expansion model and pointed out that existing non-propietary models are

hard to use because of poor or nonexisting program documentation. He

suggested that EPRI create a bureau (center) to aid wide implementation

of EGEAS.

Prof. F. Scheppe agreed about the usefulness of setting up such a bureau

and stressed that program documentation of EGEAS shall be very extensive

and is intended to absorb a sizable portion of the budget.

- Mr. Curry and Mr. Goodrich stated the following issues whose analysis

is important for N.E. Utilities:

o Capacity choices like nuclear versus large coal units

o Load management

o Conservation and fuel switching

o General ability to study small system changes

o Financial consideration with feedback to optimizing algorithms,

especially the modeling of actual cash flow profiles (rather than

using levelized costs) and bond coverage constraints

o End effects

Finally, they stressed that the detail with which EGEAS models various

aspects of concern (capacity expansion choices, financial, load

management, etc.), should be compatible and comparable. To elaborate the

above point, the over/under model was mentioned as an example of a model
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containing very satisfactory financial analysis capability but being

unbalanced overall by containing too much definition on one side and too

little on another.

- Most of the other attendees representing N.E. Utilities joined the

discussion generally supporting the above points and adding the following:

o The ability to study uncertainties could be very useful. A formal

probabilistic model for uncertainty analyses seems to be an

appropriate methodology.

o Single utility capacity expansion studies should be able to utilize

a capacity reserve margin, preferably represented as a profile over

time.

o Capacity expansion studies at the pool level should be able to use

unserved energy estimates.

- The capabilities and limitations of EGEAS in satisfying the above needs

were discussed with the purpose of incorporating the concerns voiced

during the meeting into the ongoing model effort of EGEAS, to the extent

that project funding allows and official EPRI project management approves.
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NOTES OF CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM
ELECTRIC POWER RESEARCH INSTITUTE

Held in the offices of
New England Electric System
Westborough, Massachusetts

January 7, 1980

Present for:

New England Electric System

Stone and Webster Engineering
Corporation (SWEC)

Massachusetts Institute of
Technology (MIT)

Mr. Robert E. Charpentier
(617) 266-5805 ext. 3133

Mr. Timothy J. Morrissey
ext. 2594

Mr. George P. Sakellaris
ext. 2593

Mr. Ken Hicks

Prof. Fred C. Schweppe, Director
Utility Systems Program

Dr. Michael Caramanis
Utility Systems Program

PURPOSE

Task 1-A Analysis of Utility Requirements

The purpose of this meeting was to discuss the present and planned
expansion, operating and financial modeling capabilities and practices of
New England Electric System, and to solicit information, experience and
recommendations relating to the proposed EGEAS structure.
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SUMMARY OF DISCUSSION

After prof. F. Schweppe's and Mr. Ken Hicks' introduction on the content

and scope of EGEAS and a discussion on the proposed structure of EGEAS
modules, the following points were presented by Mr. R. Bigelow on the
modeling needs of NEES.

o Load Growth Uncertainties

A formal probabilistic model evaluating purchases and sales is likely to

be useful. Management is willing to listen to formal probabilistic model

anaysis.

Uncertainties in other areas, as for example fuel costs, are also issues
whose analysis is of importance to NEES.

o Load management and Conservation

The impact on capacity additions, production cost and system reliability

of load shifting, trash burning, wood burning, small hydro, solar energy
utilization at the end use, etc., are issues that need to be analyzed.

o Storage

The ability of capacity expansion models to deal with storage is
important.

o Reliability

System reliability considerations are only of interest when the analysis

is performed at the pool level. For an individual utility the ability to
model reserve margin is sufficient.

The dispatcher's ability to modify load through voltage regulation,

control over some industrial customers and appeals to the public through
the media, results in an order of magnitude reduction in the actual loss
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of load probability over that predicted by probabilistic simulation

production models.

The effect of ties on reliability is of interest and further, the

inclusion in the modeling logic of the dependency of outages (memory of

state during previous hour) is also important.

o Financial

Presently, a corporate model developed by NEES's economic planning group

is used for postprocessing of capacity expansion plants utilizing a

production costing model. The inclusion of financial considerations in a

capacity expansion context would be desirable asuming they are not too

complex to model.

o Sensitivity Analysis/Uncertainty

Parametric sensitivity would be adequate for NEES. A formal

probabilistic approach to uncertainties would be useful.
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NOTES ON CONFERENCE

ELECTRIC GENERATION EXPANSION ANALYSIS SYSTEM

ELECTIC POWER RESEARCH INSTITUTE

Held in the offices of
Southern California Edison
Rosemead, California

January 8, 1980

Present for:

Southern California Edison M. Douglas Whyte, Manager
Electric Systems Planning

Aline M. Lew, Planning
Engineer Electric Systems
Planning

Massachusetts Institute of Technology

Dr.Richard D. Tabors, Manager
Utility Systems Program
(Principal Investigator)

Thomas Dinwoodie

Purpose:

Task 1 Analysis of Utility Requirements

The purpose of the initial meetings was to discuss the present and
planned expansion, operating and financial modeling capability of
Southern California Edison. In addition, the purpose was to discuss the
EGEAS structure and solicit information, experience and recommendations
relative to its development.
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SUMMVARY OF DISCUSSION

The primary discussion durina the meetina at Southern California Edison

focused on the modeling structure currently in use at Southern

California Edison for analyzing both operating and capacity expansion

decisions. Southern California Edison has its own model developed in

the mid-60's which utilizes a chronological loading methodology. The

model basically can be used for either long-term fuel analysis or for

mid-range to long-range fixed pathway expansion analysis. The utility

does not use, at this time, any commercially available capacity

expansion models nor any optimization model. They have used, however,

PROMOD with the other utilities in the power pool for California. They

have also tried OGP, but have not been satisfied with the results. In

addition, they have not used any probabilistic load representation, such

as Booth-Baleriaux, in any of the work done to date.

In a long discussion concerning the availability and use of models

within Southern California Edison, the basic concern of the planners

there, is that the modeling structures used to be acceptable to the

remainder of the utility. This meant that they work with a very

detailed model of the Southern California system, and that they work

with hourly or bi-hourly data.

Much of the analyltical work done by Lew over the last six to twelve

months has been in an analysis of load management and fuel-switching

options for the utility. While this has been a useful activity to the

utility, the method used, hourly simulation over a long periods of time,

has been somewhat torturous. For this reason, they expressed an

interest in analytic methods that would be acceptable to the utility as

a whole, but would make such analyses more straightforward. We

discussed at this stage the strengths and weaknesses of the EGEAS

system, and, as a result, derived some considerable interest in the

potential for that modeling tool.

A second point which was of considerable interest to the Southern

California people was the ability to analyze new energy technologies in
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both an operating sense and a capacity expansion sense. Southern

California Edison currently participates in the Barstow Solar Thermal

Electric System experiment, and in the development of a large wind

turbine. Given the current regulatory environment in California, there

is considerable interest in being able, further, to analyze such energy

technologies.

The financial model capability of Southern California Edison is based

upon the Planmetrics model The analyses of the financial work are

shared out among different groups at Southern California Edison, though

the majority of it does not involve the Planning Engineering

Department. As a result, those individuals were less able to discuss

the ramifications of the financial modeling. There was a discussion,

however, concerning inclusion of financial capabilities within the

structure of a capacity expansion model. Here considerable enthusiasm

was expressed for at least a limited reporting analysis.

The meeting ended with a discussion of materials to be sent from M.I.T.

to Southern California Edison for their perusal and further comment.

B-40



Work reported in this document was sponsored by the Department
of Energy under contract No. EX-76-A-01-2295. This report was
prepared as an account of work sponsored by the United States
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