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Interfacial Exchange Relations for

Two-Fluid Vapor-Liquid Flow:

A Simplified Regime Map Approach

Abstract

A simplified approach is described for selection of the constitutive

relations for the inter-phase exchange terms in the two-fluid code, THERMIT.

The approach used distinguishes between pre-CHF and post-CHF conditions.

Interfacial mass, energy and momentum exchange terms are selected and

tested against one dimensional measurements for a wide range of mass

flow rate, pressure and void fraction conditions. It is concluded that the

simplified regime map approach leads to accurate predictions for LWR applica-

tions, excluding depressurization events.
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NOMENCLATURE

A. Interfacial Area

Cd Drag Coefficient

Ci  Interfacial Momentum Exchange Coefficient

C Specific Heat

D Diameter

F. Vapor-Liquid Interfacial Momentum Exchange Rate

g Gravitational Constant

G Mass Flux

H Heat Transfer Coefficient

i Enthalpy

k Thermal Conductivity

P Pressure

Pr Prandtl Number

Qi Interfacial Heat Transfer Rate

QW Wall Heat Transfer Rate

q Power

q" Heat Flux

Rb Bubble Radius

Re Reynolds Number

S Slip Ratio (V /V )

t Time

T Temperature

Td Bubble Departure Temperature

V Velocity
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Nomenclature (continued)

Vr  Relative Velocity (Vv - V)

We Weber Number

X Quality

aVoid Fraction

a Surface Tension

F Vapor Generation Rate

p Density

I Viscosity

T Shear Force

6Droplet Diameter

Subscripts

c Continuous Phase

d Droplet

e Equilibrium

f Saturated Liquid

g Saturated Vapor

i Interfacial

a Liquid

s Saturation

v Vapor

w Wall

cr Critical Point
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Introduction

The physical phenomena encountered during transient two-phase coolant

flow in nuclear reactors have been shown by several authors to require

modeling of the liquid and vapor as separate but coupled flow fields. The

coupling of the flow fields is done through interfacial exchange terms for

mass, energy and momentum. This two-fluid approach to the flow represen-

tation has the advantage of allowing flexibility for unequal temperatures

and unequal velocities of the two phases, as well as bidirectional flow of

vapor and liquid. Unfortunately, the mathematical formulation of the

exchange terms is complicated by the microscopic nature of the transfer

processes. In fact, precise modeling of these processes on a local basis

is virtually impossible.

From a practical point of view, what must be modeled is usually the

net effect of all microscopic transfers within a finite control volume.

This task is easier, although it introduces certain arbitrariness [1].

Increasingly, a number of investigators argue for the need to improve the

accuracy and/or the numerical efficiency of the two-fluid calculations by

introducing coupling terms that reflect the details of the microscopic

nature of the transfer processes. This approach leads directly to a

complicated choice of constitutive relations that rely heavily on a priori

determination of several flow regimes [1,2].

The complexity of the search for constitutive relations is sometimes

shown not to affect the physical results but improve the numerical

efficiency [3]. For a wide range of transient applications, it may be more

efficient to simplify the search for the constitutive equations, by selecting

the interaction terms to apply over a spectrum of flow regimes.
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In this paper it will be shown that through relatively straightforward

but careful consideration of the physical phenomena appropriate macroscopic

exchange terms can be formulated for applications over a wide range of

conditions. This allows a simple flow map to be used. The interfacial

exchange models described here have been incorporated in the computer code

THERMIT [4,5], which is based on a two-fluid model for two-phase flow (see

Table 1 for equations). These models were then assessed and improved

using experimental measurements available in the open literature. The

measurements used in the assessment of these models were typical of LWR

operating conditions. Consequently, the models described here should be

applicable for conditions of practical importance in LWR operation and

safety.

However, other two-fluid models in computer codes such as TRAC-PIA [6]

and UVUT [7] use elaborate flow regime maps to determine the appropriate

interfacial exchange models for a given set of flow conditions. The inter-

facial exchange models in TRAC have recently been reviewed by Rohatgi and

Saha [8], and the vessel module interfacial exchange models are summarized

in Table 2. The complexity introduced by using a flow regime map is

evident by the large number of constitutive relations which are needed.

As will be shown in this paper, a simpler approach to the flow regime

dependence of the interfacial exchange models reduces the number of

required constitutive equations (and associated logic) while maintaining

good representation of the available data.
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Interfacial Mass Exchange

Background

The exchange of mass across liquid-vapor interfaces must be explicitly

modeled in the two-fluid model. In reactor applications, this exchange

usually takes the form of vapor generation so that the mass exchange model

is also referred to as the vapor generation model. This exchange of mass

is strongly dependent on the flow conditions and for BWR conditions at

least three different vaporization regimes can be identified (Flashing

is not considered in this model). The first, termed subcooled boiling,

occurs even though the bulk liquid is subcooled provided the heat flux

is high enough to allow vapor bubbles to grow and detach from the heater

surface. However, since the liquid is subcooled, condensation of the vapor

in the bulk fluid may also occur. Consequently, for subcooled boiling

conditions, both vaporization and condensation need to be modeled.

The second vaporization regime, termed saturated boiling, occurs when

the bulk liquid is at saturated conditions. For steady-state saturated

conditions, all of the wall heat flux produces vapor (i.e., neither phase

temperaure is increased). Hence, if the wall heat flux is known, the

determination of the vapor generation rate follows from an energy balance.

The third type of vapor generation is that which occurs when a super-

heated vapor transfers heat to liquid droplets thus evaporating the

droplets. This form of vaporization dominates after the critical heat flux

(CHF) has been exceeded when the liquid can no longer wet the heater surface

and, therefore, the entire wall heat flux is transferred directly to the

vapor. Due to the relatively low conductivity of the vapor, a portion of

the heat flux will superheat the vapor with the remainder vaporizing the

liquid droplets.



-7-

By excluding depressurization transients, only these mechanisms need

to be considered. Furthermore, the range of application of each vaporiza-

tion mechanism can be defined according to the heat transfer regime. For

pre-CHF conditions either subcooled or saturated boiling will occur.

Hence, it is advantageous to describe both types of boiling in a single,

continuous model so that the gradual transition from subcooled to saturated

boiling is well represented. However, for post-CHF conditions a different

vaporization model will be needed.

This approach of using the CHF condition to determine the appropriate

vapor generation rate has been incorporated into THERMIT. The use of this

simple selection scheme eliminates the need to have a more elaborate flow

regime map.

Pre-CHF Vapor Generation Model Formulation

The pre-CHF vapor generation model in THERMIT accounts for both

subcooled and saturated boiling. Since it is relatively easy to formulate

a model to describe saturated boiling, the main difficulty lies in

representing vapor generation for subcooled conditions.

On a microscopic scale, the subcooled vapor generation can be directly

related to the vapor bubble rate of growth when the wall temperature

exceeds the saturation temperature. Vapor bubbles are formed at nucleation

sites on the heated surface and grow since superheated liquid exists near

the wall. The bubbles remain attached until reaching a critical size

which corresponds to a bulk liquid temperature equal to the bubble

departure temperature, Td. Once Td has been exceeded the bubbles detach

and flow into the main flow stream.

The value for Td is found to be strongly dependent on the heat flux

and flow conditions and has been correlated by many authors [9-11].
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The correlation of Ahmad [9] has been selected for use in THERMIT. In this

correlation, Td is related to the heat flux through a heat transfer coef-

ficient. The expressions for this relationship is given by

Td = Ts - qW/HA  (1)

The heat transfer coefficient HA has been correlated using a large number

of experimental measurements and is given by

HA = - 2.44 Re Pr 1/3 1/3 (2)
Af I f

For a given set of flow conditions (i.e., HA and Ts constant), if the heat

flux is increased, Td decreases as expected.

With Td well defined by correlation, the vaporization rate based on

bulk flow properties can be constructed using the following physical

picture. For bulk liquid temperatures below Td, bubbles do not detach and

the net vaporization rate is zero. At the saturation limit, that is

T = Ts, all of the wall heat flux leads directly to vapor generation so

that the equilibrium vaporization rate, re, may be written as

r q w (3)e ifg

where qw is the power transferred to the coolant and ifg is the heat of

vaporization. If it is then assumed that the vaporization rate increases

linearly from Td to Ts the gross vapor generation rate, rv , may be written

as:
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0 if T < Td

v T - T e d s

r if T >e -

It is seen that this model correctly defaults to the saturated boiling

model once the liquid becomes saturated. Although the assumption con-

cerning the linear increase in r may not be strictly valid for all cases,

it is seen as practically appropriate for most cases of interest.

If the bulk liquid is subcooled, the loss of vapor due to condensation

must be accounted for. The model used to represent the condensation is

relatively simple. The condensation rate, ,c' is modeled as a conduction-

based term divided by the heat of vaporization. This can be written as:

rc = AiHi(Tk - Tv)/ifg (5)

The term A. represents the interfacial area per unit volume which for

spherical bubbles of radius Rb may be written as

Ai = 3a/R b  (6)

where [9]:

Rbo a < 0.1

Rb = (7)

R 1 a > 0.1
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and

Rbo = 0.45 /  a
Pk- Pv

[1+ 1.34((l- a)Vk )1/3 -I

The interfacial heat transfer coefficient, Hi, is based on the

effective conductivity of the two phases, and is given by

kY

0.15Rbo

Hi=

kvk + 0.015R k
O.ORbo k9 + O.Ol5Rbo kv

Tv< T (evaporation)

(9)

(condensation)

Both the vaporization and condensation terms can be combined to

obtain the net vaporization rate:

0

TT - Td

2 : Ts - Td re + AiHi(T,- Tv)/ifg

if TRk< Td

if Td< T < Ts

if T> T-- s

(8)

(10)

I --~I ~ I HIM1
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Subcooled Vapor Generation Model-Assessment

From the previous discussion it is seen that this model is physically

correct. The main characteristics of the model which have been assessed

include the boiling incipient point and the vapor generation rate for

subcooled conditions. Both of these characteristics have been assessed

using steady-state, one-dimensional void fraction measurements. The

boiling incipient point, which corresponds to the bubble departure

temperature, can be clearly identified in the measurements which make

the assessment of this characteristic rather straightforward.

The vapor generation rate in subcooled conditions can be directly

related to the void fraction if the liquid and vapor velocities are nearly

equal. This condition will be appropriate for void fractions at low

quality and high pressure. For these cases the expression for the void

fraction is

a (11)
1-X Pv1 +
X p

The quality, in turn, can be related to the vapor generation rate via

the vapor mass equation (simplified for one-dimensional, steady-state

conditions):

ax r
(12)az G

Hence, the vapor generation rate is directly related to the void

fraction and can be assessed with one-dimensional, steady-state void

fraction measurements.
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In the assessment effort, over 30 one-dimensional steady state void

fraction comparison cases have been made. The data of Maurer [12],

Marchaterre [13], and Christensen [14], have been used in this study.

These data cover a wide range of flow conditions as seen in Table 3.

For assessing the vaporization rate, only comparisons at low

qualities have been used. Excellent agreement has been found in these

comparisons for both the boiling incipient point and the subcooled void

fraction. Typical comparison cases, covering a range of pressures, are

illustrated in Figures 1-3. The location where boiling begins is seen

to be well predicted in each case. This good agreement indicates the

appropriateness of Ahmad's correlation for the bubble departure temperature.

The void fraction for subcooled conditions is also well predicted.

In view of the above comparisons and the inherent physical attributes

of the subcooled vapor generation model, it can be stated that the model

satisfactorily predicts subcooled boiling. Extending this model to three-

dimensional cases also seems to be appropriate due to its mechanistic

nature. Therefore, the subcooled vapor generation model should be applicable

for all pre-CHF conditions except for depressurization transients (in which

flashing becomes the significant vaporization mechanism).

It should be noted that the TRAC-PlA model cannot predict vaporization

unless T > Ts. Thus, subcooled boiling cannot be modeled. However, the

TRAC-PlA is capable of predicting vaporization during depressurization

which leads to the fact that the primary application of TRAC-PlA would be

LOCA analysis.

Post-CHF Vapor Generation-Formulation

After CHF has been exceeded the wall temperaure will rapidly increase

and in a short period of time the minimum stable film boiling temperature,
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Tmsfb' will be exceeded. Once this temperature has been attained, the

liquid can no longer wet the wall. Only by vapor-to-liquid heat transfer

can the liquid be heated and evaporated. Hence, the rate of vapor

generation is directly dependent on the rate of heat transfer from the

vapor to the liquid. However, due to the low conductivity of the vapor,

the vapor becomes superheated by a significant amount (e.g., 150 'K [15].

Once the correct heat transfer rate between phases is determined,

the vaporization rate is found by simple dividing by the heat of

vaporization:

r = AiHi(Tv - TZ)/ifg (13)

where Ai and Hi are the appropriate interfacial area and effective heat

transfer coefficient. As discussed by Saha [16] each of these parameters

may be written as a function of the flow variables, but ultimately a

correlation is required to complete the function. To illustrate this

point, the interfacial area per unit volume may be written as

A 6(1- a) (14)Ai = (14)16

where 6 is the droplet diameter and the interfacial heat transfer

coefficient can be correlated as a Nusselt number based on the droplet

diameter:

kv= - (P (V )6 055 0.33Hi - 2+ 0.459 v Pr 0.33 (15)
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However, 6 needs to be determined from a correlation effectively causing

both Ai and Hi to be correlated as functions of the flow conditions.

In view of this difficulty, Saha has combined the two parameters, Ai

and Hi , into a single parameter K1 which is then correlated as a function

of the flow conditions. This approach eliminates the need to use two

correlations which may be difficult to determine separately. The final

form of this vaporization rate correlation is given by

F2 p V2D 112 k (T - T)
r = 6300 Ll1- ]D 2 . (1-a) (16)

D 1fg

The droplet diameter has been assumed to be proportional to the hydraulic

diameter, D. The interfacial area per unit volume is seen to be inversely

proportional to D with the heat transfer coefficient being proportional

to k /D. As the vapor velocity increases, the droplets become smaller,

increasing the interfacial area and increasing r. Hence, this model

apparently contains sufficient physical characteristics to predict the

vaporization of liquid droplets.

Droplet Vaporization Model - Assessment

Obviously, the important quantity which this model is intended to

predict is the rate of vapor generation for post-CHF conditions (or

whenever vaporization of liquid droplets is significant). Unfortunately,

this rate cannot be directly measured. Consequently, the assessment of

the Saha model has required indirect methods. This assessment relies on

the tight coupling between the degree of vapor superheat and the vaporiza-

tion rate. When the total wall heat flux is known, an indirect assessment

I___ __ __I IRA_
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of the vaporization rate can be made if the fraction of the heat flux

which raises the vapor temperature can be determined.

This fraction is easily calculated if the vapor temperature is known.

Unfortunately, the vapor temperature is not easily measured [15]. However,

the vapor temperature can be inferred from wall temperature measurements

using the known heat flux and an appropriate heat transfer coefficient.

This method is straightforward provided the heat transfer coefficient is

judiciously chosen. Since the heat transfer mechanism is primarily

forced convection to the vapor, Saha recommends the use of a single-phase

vapor forced convection heat transfer correlation.

Hence, wall temperature comparisons give a direct indication of the

vapor temperature predictions which, in turn, relate to the vapor genera-

tion rate. Even though this procedure is indirect, it is the only viable

method for assessing the post-CHF vapor generation rate, which is not

measured directly.

For this study, the steady-state, one-dimensional wall temperature

measurements of Bennett [17] have been used. A number of representative

cases have been simulated. Comparison of measured and predicted post-CHF

wall temperatures are in overall good agreement even though a range of

conditions have been considered. Example comparisons are illustrated in

Figures 4-6 for a range of mass velocities. It should be noted that the

predicted CHF location has been adjusted to correspond with the measured

value in order to accurately assess the post-CHF regime. In each case,

the trend in the data is correctly predicted and good agreement is found

except near the test section exit. These discrepancies are probably

due to axial conduction effects which were not modeled in THERMIT.
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Two other vapor generation models which represent limiting values are

compared with the Saha model and measurements in Fig. 7. The first model,

termed the equilibrium model, assumes that all of the wall heat flux

leads to vapor production and may be written as

F = g (17)
Sfg

When this model is used, the vapor does not superheat until all the liquid

is evaporated and consequently the wall temperatures are underpredicted.

The second model, called the frozen quality model, assumes that r

is zero after the CHF point which prevents the quality from changing.

When this model is used, no evaporation is allowed so that all the wall

heat is transferred to the vapor. Consequently, the vapor superheat as

well as the wall temperatures are significantly overpredicted.

The comparisons with these two limiting models as well as with the

data demonstrate the appropriateness of the Saha model for post-CHF vapor

production. It may also be noted that the TRAC-PlA mass exchange model

for annular mist flow closely resembles this model in form.

Interfacial Energy Exchange Formulation

The interfacial energy exchange rate represents the rate of energy

transfer from one phase to the other. This transfer can be due to either

conduction, which is a function, of the temperature distribution, or mass

transfer. If one considers the interface to be infinitesimally thin and

at saturated conditions, then the energy transfer can be modeled.

Defining the energy transfer as positive when the vapor receives the

energy, the energy transfer rate may be written as:

_ ji ly
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Qi = Hi (T - Ts ) + rif = Hiv (Ts - Tv ) + Fig (18)

where H i is the liquid-to-interface heat transfer coefficient and Hiv

is the vapor-to-interface heat transfer coefficient. This equation shows

that the rate of energy transfer from the liquid to the interface is the

same as the energy transport rate from the interface into the vapor. In

view of the equivalence of energy transfer rates, one may use either form.

In subcooled and saturated boiling conditions, or pre-CHF regime,

the interface-to-vapor energy transfer can be appropriately modeled by

considering the vapor to be at saturated conditions. In order to maintain

the vapor at saturated conditions when the bulk liquid is subcooled, a

relatively high rate of vapor-to-interface heat transfer is required which

means that Hiv must be chosen sufficiently large, to maintain the vapor

at saturation.

Consequently, for pre-CHF regime, the interfacial energy exchange is

modeled as:

Qi = Hiv (Ts - T v) + rigi (19)

where H. is set to a very large value (1011 W/m3 ) in order to force the

vapor to be saturated. It should be noted that since the bulk liquid

temperature is not used in this equation, the liquid temperature is

unconstrained and may, therefore, be subcooled.

For post-CHF conditions, where droplet vaporization is the form of

mass exchange, the superheated vapor is assumed to transfer heat by

conduction to the interface while receiving energy due to the vaporization

of the liquid. In this case, modeling of the vapor-to-interface energy
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transfer is difficult unless the detailed vapor temperature distribution

is known. However, the liquid-to-interface energy exchange can be

adequately modeled since the liquid is assumed to be at or near saturation.

Therefore, by simply choosing a value for Hi. which is sufficiently large,

the liquid will be forced to saturated conditions.

Consequently, for the post-CHF vaporization regime, the interfacial

energy exchange is modeled as a liquid-to-interface energy transfer

mechanism. This exchange rate may be written as

Qi = rif - Hik (Ts - T ) (20)

where Hii is set to a large value (1011 W/m3 ) in order to force the liquid

to saturation. The bulk vapor temperature is not constrained by this

equation which allows the vapor to superheat. Hence, this model allows

for the appropriate liquid and vapor temperatures to be predicted for

the droplet vaporization regime.

.Interfacial Energy Exchange Assessment

Validation of either of the preceeding approaches is difficult since

the interfacial energy exchange cannot be directly related to a

measureable quantity. Therefore, the models can only be assessed qualita-

tively by inference. For example, in subcooled conditions the bulk liquid

temperature should be subcooled while the vapor should be saturated.

Alternatively, for droplet vaporization, the vapor should be superheated

with the liquid saturated. If these results are predicted, then the

interfacial energy exchange rate is at least qualitatively correct.
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These models have been used in all of the mass exchange rate valida-

tion studies and have yielded the expected results in all cases. A

typical temperature profile is illustrated in Fig. 8. It is seen that

the vapor temperature follows the saturation temperature which is

decreasing due to the pressure drop. The liquid temperature is initially

subcooled, but eventually reaches saturation near the end of the test

section. Hence, for subcooled and saturated boiling conditions the

interfacial energy exchange rate given by Eq. (19) seems to be an

appropriate choice.

For post-CHF conditions similar results are obtained, as illustrated

in Fig. 9. At the inlet, the liquid is subcooled but quickly becomes

saturated and remains so along the entire heated length. The vapor

remains at saturation before CHF, but quickly superheats after CHF has

been attained. These predictions are the expected results so that the

interfacial energy exchange model given by Eq. (20) seems to be an

appropriate choice for post-CHF conditions.

The TRAC-PlA and THERMIT expressions cannot be compared directly

due to the differences in formulation of conservation equations as well

as the flow regime maps. However, it is seen that in THERMIT the

interfacial heat transfer rate depends on the choice of interfacial mass

exchange rate, r, while the reverse is true for the TRAC-PIA models.

It should also be noted that the choice of exchange model is again

dictated by whether or not the CHF has been exceeded. The advantage of

using this criterion is that it reduces the number of regimes to two.

Also, this parameter is calculated as part of every analysis so that no

additional calculation is required.
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Interfacial Momentum Exchange - Formulation

The third type of interfacial exchange phenomena which must be

modeled is the interfacial momentum exchange. This exchange controls

the relative velocity of the two phases.

As in the case of the other interfacial exchange phenomena, the

interfacial momentum exchange is strongly dependent on the flow conditions,

since the structure of the two-phase flow changes with the flow conditions.

In attempting to model the interfacial momentum exchange, it is necessary

to consider the various forces which can act between the two phases. At

least five different forces can be postulated to exist. These may be

divided into steady flow and transient flow forces. The steady flow forces

include viscous, inertial and buoyancy forces while the transient flow

forces include the Bassett and virtual mass force [2,3]. The Bassett and

virtual mass forces are significant only for rapidly accelerating flows

and are not considered here. Also the buoyancy force should be small

in comparison to the other forces and will not be considered. Hence only

the viscous and inertial forces are retained in the THERMIT interfacial

force model.

The viscous force, which arises due to the viscous shear stress is only

significant at low relative velocities and can be approximately described

by Stokes law. As discussed by Soo [18], modifications of Stokes law

are required for systems in which the droplet (or sphere) is deformable

(such as vapor bubbles in liquid). An example of such a modification

is given by Levich [19].

F. = 6 cDd V r (21)
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where Vr is the relative velocity, Pc is the viscosity of the continuous

phase and Dd is the equivalent diameter of the dispersed phase. This

expression is similar to other expressions [18] and is valid for many

practical droplet or bubble flow situations.

The force given by Eq. (21) represents the force on a single droplet

and is converted to a force per unit volume, by dividing by the volume

of a droplet and multiplying by the void fraction. Performing this

operation yields

361 c a VrF= D2  (22)

d

This expression represents the interfacial force due to viscous effects

within a given control volume.

The second type of force is that due to inertial effects. This force,

also referred to as the drag force, represents the momentum loss due to

the motion of two continuous fluid streams relative to one another. Hence,

this force tends to dominate in annular flow regimes. Following Wallis

[20], the shear stress between the phases may be written as

Ti = 1/2CdPvVr (23)

Since the diameter of the vapor core is given by

Dc = D Y-
(24)

the interfacial force per unit volume is
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2CdvV~2
F. = D (25)D

where Cd is the interfacial drag coefficient. Values for Cd, appropriate

for annular flow, have been formulated with Wallis recommending the

following value [20],

Cd = .005(1 + 75(1 - a)) (26)

Using this coefficient the interfacial drag force can be evaluated.

These two interfacial forces have been combined into a single

expressions which is continuous for all flow regimes. Thus, no flow

regime maps are required. However, the function form of the forces must

be rearranged. Combining the two forces together, the interfacial exchange

model in THERMIT is

( ^\2 p IV IV
F. + r r (27)

aD \aD 2

where

a = max(0.l,a)

and

D = hydraulic diameter

Vr = V - VY

The reason for the restriction on a is to prevent a singularity when a= 0.
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From the previous discussion, it should be obvious that the first

term in this expression represents the viscous force while the second

term represents the inertial drag force. Comparing the viscous term

with Eq. (22), one finds that the following approximation has been made:

36a - 2 (28)

v

where Dv is the vapor bubble diameter appropriate for bubbly flow. Since

this force is only significant in bubbly flow regime, the approximation

here is only appropriate for low void fractions. This fact is illustrated

in Table 4 where the two coefficients are compared for a range of void

fractions assuming representative values for the diameters. For void

fractions of approximately 0.15 and less, the approximated coefficient

is comparable with the Levich model coefficient. However, this range

corresponds to the conditions for which the viscous force is important.

The inertial force term in the interfacial momentum exchange model

can be compared with Eq. (25). In order to equate the two expressions,

the following approximation must be made.

2Cd V 1- a (29)

These two coefficients are compared in Table 5 over a range of void

fractions. It is seen that at low void fractions the THERMIT model

predicts a higher coefficient which is necessary to have continuity

between the viscous and inertial regimes. However, at higher void fractions

the two are approximately the same. Since annular flow would be expected

for a> 0.6, the approximated inertial drag coefficient in THERMIT seems
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to be appropriate.

Hence, the formulation of the interfacial momentum exchange model

seems to be satisfactory in spite of the approximations which have been

made.

Interfacial Momentum Exchange - Assessment

The assessment of the interfacial momentum exchange model has employed

the same one-dimensional void fraction measurements used to assess the

interfacial mass transfer rate. While the verification of the mass

exchange model was concerned with the low quality void fractions, assessment

of the momentum exchange rate has relied on the high quality data. The

reason for this is that only for thermal equilibrium conditions (i.e.,

non-subcooled conditions), can the momentum exchange rate be independently

assessed with void fraction measurements. This fact can be illustrated by

considering the definition of the void fraction:

SX (30)
PvVv

X + (1- X) v

For a given pressure, the void fraction is seen to depend on the flow

quality and the slip ratio, S(S = Vv/V ). The flow quality has been

shown to depend on the vapor generation rate by Eq. (12) while the slip

ratio depends on the interfacial force. For thermal equilibrium conditions

the vaporization rate is known and the flow quality can be determined from

an energy balance so that the momentum exchange rate can be assessed with

void fraction measurements.
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For assessing the interfacial momentum exchange rate, only the

higher quality data have been used. Generally, the predictions agree

rather well with the measured void fraction values over the range of

flow conditions considered here. Typical comparison cases, covering a

wide range of pressures, are illustrated in Figures 10-12. It is seen

that in the higher quality regimes, the measured void fraction values

are satisfactorily predicted in each case.

Again the TRAC-PlA and THERMIT relations can not be directly compared.

It is seen, however, that what TRAC-PlA attempts to do on a flow regime

basis, THERMIT does on a continuous basis. Due to the uncertainty in

these terms as well as the good agreement with data which the THERMIT

model exhibits it seems appropriate to use the simpler THERMIT expression.

Summary

The simplified approach to interfacial exchange expressions used in

THERMIT have been described here and it is seen that the non-equilibrium

phenomena are predicted in a realistic manner. These models are summarized

in Table 6. It is quite apparent that compared to the TRAC-PlA modeling

approach (Table 2), the THERMIT modeling approach is much simpler.

Furthermore, it is not obvious that the more sophisticated approach

produces more accurate results. In fact, the assessment work has shown

that the simpler approach is indeed appropriate. Also, since the models

are physically based, it is expected that they will be valid for regimes

outside of their data base. This is an important point, since it

justifies the use of these models for transients excluding depressurization.
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TABLE 1

THERMIT Conservation Equations

Conservation of Vapor Mass

a v

Conservation of Liquid Mass

-~- [(1-a)p] + V-[(1-a)p ] = -

Conservation of Vapor Energy

-+ aa
-a (c vev) + V(pe ) + P V( ) + P -- =

= wv + Qi

Conservation of Liquid Energy

-at [(l-a)e k] + V*[(l-a)pe zV ] + P V.[(1-a) ]

- Pof Vapor Momentum

Conservation of Vapor Momentum

av
pvp -+ apV *VV + a VP =-F
St v v v wv

-.

+ ap vg

Conservation of Liquid Momentum

4.

- F.
1

(1-c)p, + (1-a)p V'*VV + (1-a) VP = - F - F

+ (1-a)p g



TABLE 2. TRAC-PlA Interfacial Exchange Models

Bubbly Flow

Flow Regime a< 0.3 or
Criteria*

a< 0.5 with

G>2700 kg/m2s

Interfacial Mass
Exchange

= -(QivQi)/i fg

Interfacial
Energy Exchange

Qiv = Hi A(T s - T v )

Qi = Hi Ai(T s - T )it 1 1s £

Interfacial
Momentum
Exchange

C.V r IVrl
F. =
iv apv

C.V V

F -
iZ (1-a)p

Qiv and Qi£ same

below

6ap V2

A. =
i WeT

H.
iv

= 10 4W/m2

We= 50

K

Hk =PM (12(T -T s)POC )I
HD 2+0Max .74 Re

D 2+0.74 Re "

CbD@
2Db

WeD -
b 2

p V r

b = Cb(Re)

We = 50

Slug Flow Annular/Annular Mist Flow

0.3< a< 0.5
2 a > 0.75

with G< 2000 kg/m s

Qiv and Qi same

below

3(0.92-a)p V2

A. =
1 We a

+ (3-0.9) 5
Dh

We= 50

H. and H same as for
ivbubbly flow
bubbly flow

P (Cb (0.9-a)
Ci = Db 21 2D 2

.44(3c-0.9)\
2

Cb and Db same as for

bubbly flow

* N.B. Interpolation is required t

Qiv and Qi£ same as below

6ap V2E
A.H =1 iv We o

k(2+0 .74 Re 0. 5 )

+ 5(1-E)(0.0073 Re k )vD

6ap V E6 rVE k
A.H (1500

1 i We a Dd

k
+ 5(1-E)(0.0073 Re )

kD

We = 2 E = Fraction of

Entrained Liquid

d D

+ (l-E) (0.01(1+300(1-o) (l-E))

We a
D We
d P 2

Cd

We= 2.0

= Cd(Re)

_ I _

--

~c --------

between the v'arious regimes
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TABLE 3

Test Conditions for One-Dimensional

Steady-State Data

i I
Test Pressure Hydraulic Mass Flux Heat Flux Inlet

Range Diameter Range Range Subcooling

2 2 Range
(MPa) (mm) (kg/m s) (kW/m) (kJ/kg)

Maurer 8.3-11.0 4.1 540-1220 280-1900 150-350

Christensen 2.7-6.9 17.8 630-950 190-500 9-70

Marchaterre 1.8-4.2 11.3 600-1490 45-250 9-63
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TABLE 4

Comparison of Viscous Force Coefficients

36at

D
2

v

4.0 x 105

5.0 x 105

5.8 x 105

5
6.4 x 10

6.8 x 105

1. - ] 2

tDJ

8.1 x 1055

8.1 x 10
5

3.2 x 10

1.6 x 10

4
9.0 x 10

5.0 x 10
510 x 107.3 x 105

Assumptions

D 0.01 m

D =2(c / - N)
v 3

with N = 107 bubbles/m3

0.05

0.10

0.15

0.20

0.25

0.30
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TABLE 5

Comparison of Inertial Force Coefficients

0.4

0.5

0.6

0.7

0.8

0.9

______

0.01 ( + 75(1 -a)) /-

L __________________________

0.29

0.27

0.24

0.20

0.14

0.08

1-a
2a

0.75

0.50

0.33

0.21

0.13

0.06



TABLE 6

THERMIT Interfacial Exchange Models

Pre-CHF Regime Post-CHF Regime

0 T <T

Interfacial T -Td V 2D  k (Tv-Ts)Mass Exchange- A + H(T -T)/ifg T<T <T = 6300 - p k(T (1-)MasE cia nge {T .-T d e i H T k v fg d k s P P )2( 2 P D)
s d cr/ D i -

r T >T
e T-- s

Eq. (10) Eq. (16)

InterfacialEnerfagy Exchange Qi = H. (T -T ) + Fi Qi = Fi - Hi (T -T )
Energy Exchange i Iv s v g i f ik s

Eq. (19) Eq. (20)

Interfacial F 2 1- PIVrIVr Same as in Pre-CHF
Fi (V

Momentum Exchange i ( aD 2

Eq. (27)
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Figure 5: Wall Temperature Comparisons for Bennett Case 5253
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