
An O(log n/ log log n)-approximation Algorithm for the
Asymmetric Traveling Salesman Problem

Arash Asadpour∗ Michel X. Goemans† Aleksander M ↪adry‡ Shayan Oveis Gharan§

Amin Saberi¶

Abstract
We consider the Asymmetric Traveling Salesman problem
for costs satisfying the triangle inequality. We derive a ran-
domized algorithm which delivers a solution within a factor
O(log n/ log log n) of the optimum with high probability.

1 Introduction
In the Asymmetric Traveling Salesman problem (ATSP) we
are given a set V of n points and a cost function c : V × V →
R+. The goal is to find a minimum cost tour that visits every
vertex at least once. Since we can replace every arc (u, v) in
the tour with the shortest path from u to v, we can assume c
satisfies the triangle inequality.

When the costs are symmetric, i.e. when for every
u, v ∈ V , c(u, v) = c(v, u), there is a factor 3/2 approximation
algorithm due to Christofides [8]. This algorithm first finds a
minimum cost spanning tree T on V , then finds the minimum
cost Eulerian augmentation of that tree, and finally shortcuts
the corresponding Eulerian walk into a tour.

In this paper, we give an O(log n/ log log n) approxima-
tion algorithm for the general asymmetric version. This fac-
tor finally breaks the Θ(log n) barrier from Frieze et al. [12]
and subsequent improvements [3, 16, 11]. Our approach
for ATSP has similarities with Christofides’ algorithm; we
first construct a spanning tree with special properties. Then
we find a minimum cost Eulerian augmentation of this tree,
and finally, shortcut the resulting Eulerian walk. For undi-
rected graphs, being Eulerian means being connected and
having even degrees, while for directed graphs it means be-
ing (strongly) connected and having the indegree of every
vertex equal to its outdegree.

A simple flow argument using Hoffman’s circulation

∗Stanford University, Department of Management Science and Engi-
neering. asadpour@stanford.edu.
†MIT, Department of Mathematics. Supported by NSF contract CCF-

0829878 and by ONR grant N00014-05-1-0148.goemans@math.mit.edu.
‡MIT, Computer Science and Artificial Intelligence Laboratory. Sup-

ported by Fulbright Science and Technology Award, by NSF contract CCF-
0829878, and by ONR grant N00014-05-1-0148. madry@mit.edu.
§Stanford University, Department of Management Science and Engi-

neering. shayan@stanford.edu.
¶Stanford University, Department of Management Science and Engi-

neering. saberi@stanford.edu.

theorem [24] shows that if the tree chosen in the first step is
“thin” then the cost of the Eulerian augmentation is within a
factor of the “thinness” of the (asymmetric) Held-Karp linear
programming (LP) relaxation value (OPTHK) [17]. This flow
argument works irrespectively of the actual directions of
the (directed) arcs correponding to the (undirected) edges
of the tree. Roughly speaking, a thin tree with respect to
the optimum solution x ∗ of the Held-Karp relaxation is a
spanning tree that, for every cut, contains a small multiple
(the thinness) of the corresponding value of x ∗ in this cut
when the direction of the arcs are disregarded.

A key step of our algorithm is to find a thin tree of small
cost compared to the LP relaxation value OPTHK. For this
purpose, we consider the distribution with maximum en-
tropy among all those with marginal probabilities obtained
from the symmetrized LP solution (scaled by 1− 1/n). From
the optimality conditions of a convex programming formula-
tion, we derive that this maximum entropy distribution corre-
sponds to sampling a tree T with probability proportional to∏

e∈T λe for appropriately defined λe’s for e ∈ E. We develop
a simple iterative algorithm for approximately computing
these λe’s efficiently. An important property of this scheme
is that the events correponding to edges being present in the
sampled tree are negatively correlated. This means that the
well-known Chernoff bound for the independent setting still
holds, see Panconesi and Srinivasan [23].The proof of the
O(log n/ log log n) thinness of the sampled tree is based on
this tail bound.

The high level description of our algorithm can be found
in Figure 1. The proof of our main Theorem 6.3 also gives a
more formal overview of the algorithm.

2 Notation
Before describing our approximation algorithm for ATSP in
details, we need to introduce some notation. Throughout this
paper, we use a = (u, v) to denote the arc (directed edge)
from u to v and e = {u, v} for an undirected edge. Also we
use A (resp. E) for the set of arcs (resp. edges) in a directed
(resp. undirected) graph.

For a given function f : A → R, the cost of f is defined

379 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4424735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INPUT: A set V consisting of n points and a cost function c : V × V → R+ satisfying the triangle inequality.
OUTPUT: O(log n

log log n)-approximation for the Asymmetric Traveling Salesman Problem on V .

ALGORITHM:

1. Solve the Held-Karp LP relaxation of the ATSP instance to get an optimum extreme point solution x ∗. [See
LP (3.1).] Define z ∗ by (3.5); z ∗ can be interpreted as the marginal probabilities on the edges of a probability
distribution on spanning trees.

2. Sample Θ(log n) spanning trees T j’s from a distribution p̃(·) that approximates the maximum entropy distribution
among all the distributions that approximately preserve the marginal probabilities imposed by z ∗. Let T ∗ be the
tree with minimum (undirected) cost among all the sampled trees. [See Sections 4 and 5.]

3. Orient each edge of T ∗ so as to minimize its cost. Find a minimum cost integral circulation that contains the
oriented tree ~T ∗. Shortcut this multigraph and output the resulting Hamiltonian cycle.

Figure 1: An O(log n/ log log n)-approximation algorithm for the ATSP.

as follows:
c(f) :=

∑
a∈A

c(a) f (a).

For a set S ⊆ A, we define

f (S) :=
∑
a∈S

f (a).

We use the same notation for a function defined on the edge
set E of an undirected graph. For U ⊆ V , we also define the
following sets of arcs:

δ+(U) := {a = (u, v) ∈ A : u ∈ U, v < U},

δ−(U) := δ+(V\U)
A(U) := {a = (u, v) ∈ A : u ∈ U, v ∈ U}.

Similarly, for an undirected graph G = (V, E), δ(U) denotes
the set of edges with exactly one endpoint in U, and E(U)
denotes the edges entirely within U, i.e. E(U) = {{u, v} ∈ E :
u ∈ U, v ∈ U}.

Throughout the paper, log denotes the natural logarithm.

3 The Held-Karp Relaxation
Given an instance of ATSP corresponding to the cost func-
tion c : V×V → R+, we can obtain a lower bound on the opti-
mum value by considering the following linear programming
relaxation defined on the complete bidirected graph with ver-
tex set V:

min
∑

a

c(a)xa(3.1)

s.t. x (δ+(U)) ≥ 1 ∀U ⊂ V,(3.2)
x (δ+(v)) = x (δ−(v)) = 1 ∀v ∈ V,(3.3)
xa ≥ 0 ∀a.

This relaxation is known as the Held-Karp relaxation [17]
and its optimum value, which we denote by OPTHK, can
be computed in polynomial-time (either by the ellipsoid
algorithm or by reformulating it as an LP with polynomially-
bounded size). Observe that (3.3) implies that any feasible
solution x to the Held-Karp relaxation satisfies

(3.4) x (δ+(U)) = x (δ−(U)),

for any U ⊂ V .
Let x ∗ denote an optimum solution to this LP (3.1); thus

c(x ∗) = OPTHK. We can assume that x ∗ is an extreme point
of the corresponding polytope. We first make this solution
symmetric and slightly scale it down by setting

(3.5) z ∗{u,v} :=
n − 1

n
(x∗uv + x∗vu).

Let A denote the support of x ∗, i.e. A = {(u, v) : x∗uv > 0},
and E the support of z ∗. For every edge e = {u, v} of E, we
can define its cost as min{c(a) : a ∈ {(u, v), (v, u)} ∩ A}; with
the risk of overloading the notation, we denote this new cost
of this edge e by c(e). This implies that c(z ∗) < c(x ∗).

The main purpose of the scaling factor in the definition
(3.5) is to obtain a vector z ∗ which belongs to the spanning
tree polytope P of the graph (V, E), i.e. z ∗ can be viewed
as a convex combination of incidence vectors of spanning
trees, see Lemma 3.1. In fact, z ∗ even belongs to the relative
interior of P.

L 3.1. The vector z ∗ defined by (3.5) belongs to
relint(P), the relative interior of the spanning tree polytope
P.

Proof. From Edmonds’ characterization of the base poly-
tope of a matroid [10], it follows that the spanning tree

380 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

polytope P is defined by the following inequalities (see [24,
Corollary 50.7c]):

P = {z ∈ RE : z (E) = |V | − 1(3.6)
z (E(U)) ≤ |U | − 1, ∀U ⊂ V(3.7)
ze ≥ 0 ∀e ∈ E.}(3.8)

The relative interior of P corresponds to those z ∈ P
satisfying all inequalities (3.7) and (3.8) strictly.

Clearly, z ∗ satisfies (3.6) since:

∀v ∈ V, x ∗(δ+(v)) = 1 ⇒ x ∗(A) = n = |V |

⇒ z ∗(E) = n − 1 = |V | − 1.

Consider any set U ⊂ V . We have∑
v∈U

x ∗(δ+(v)) = |U | = x ∗(A(U)) + x ∗(δ+(U))

≥ x∗(A(U)) + 1.

Since x ∗ satisfies (3.2) and (3.3), we have

z ∗(E(U)) =
n − 1

n
x ∗(A(U)) < x ∗(A(U)) ≤ |U | − 1,

showing that z ∗ satisfies (3.7) strictly. Since E is the support
of z ∗, (3.8) is also satisfied strictly by z ∗. This shows that z ∗
is in the relative interior of P.

One implication of being in the relative interior of P
is that z ∗ can be expressed as a convex combination of
spanning trees such that the coefficient corresponding to any
spanning tree is positive.

Regarding the size of the extreme point x ∗, it is known
that its support A has at most 3n − 4 arcs (see [14, Theorem
15]). In addition, we know that it can be expressed as the
unique solution of an invertible system with only 0 − 1
coefficients, and therefore, we have that every entry x∗a is
rational with integral numerator and denominator bounded
by 2O(n log n). In particular, z∗min = mine∈E z∗e > 2−O(n log n).

4 Maximum Entropy Sampling and Concentration
Bounds

Our aim in this section is to round z ∗, as a point in the
relative interior of the spanning tree polytope, to a spanning
tree. Suppose that we are looking for a distribution over
spanning trees of G that preserves the marginal probabilities
imposed by z ∗, i.e. PrT [e ∈ T] = z∗e for every edge e ∈ E.
There are plenty such distributions. The approach we use is
based on sampling from the distribution that maximizes the
entropy among all marginal preserving distributions. Such a
maximum entropy rounding scheme has been used in [2] for
sampling a random matching in a bipartite graph with given
marginal probabilities.

In Section 4.1, through a convex program, we formally
define the maximum entropy distribution over the spanning
trees with respect to the marginal probabilities given by z (an
arbitrary point in the relative interior of the spanning tree
polytope). From the optimality conditions for this convex
program and its dual, we show that this distribution generates
a λ-random spanning tree for some vector λ ∈ R|E|, where
any tree T is output with probability proportional to

∏
e∈T λe.

Section 4.3 explains the main implication of such distri-
butions. The events corresponding to the edges of G being
included in a sampled λ-random tree are negatively corre-
lated. This enables us to use Chernoff bounds on such events.
We use these tail bounds to establish the thinness of a sam-
pled tree. (Roughly speaking, a tree is said to be thin if the
number of its edges in each cut is not much higher than its
expected value; see Section 5 for a formal definition of thin-
ness.)

It is possible to approximately find the γe’s efficiently.
In fact, we have a rather simple and iterative algorithm that,
after a polynomial number of iterations, finds approximate
λ̃e’s with new marginal probabilities z̃e, where for all edges e,
z̃e ≤ (1+ ε)ze. We postpone the description of this algorithm
and its analysis to Section 7. Instead, in Section 4.2 we
show how to efficiently sample a tree from such a distribution
given any vector λ.

4.1 Maximum Entropy Distribution. Let T be the col-
lection of all the spanning trees of G = (V, E). The maximum
entropy distribution p∗(·) with respect to given marginal
probabilities z is the optimum solution of the following con-
vex program CP:

inf
∑
T∈T

p(T) log p(T)(4.9)

s.t.
∑
T3e

p(T) = ze ∀e ∈ E,

p(T) ≥ 0 ∀T ∈ T .

This convex program is feasible whenever z belongs to
the spanning tree polytope P defined on G = (V, E). As
the objective function is bounded and the feasible region is
compact (closed and bounded), the inf is attained and there
exists an optimum solution p∗(·). Furthermore, since the
objective function is strictly convex, this maximum entropy
distribution p∗(·) is unique. Let OPTCP denote the optimum
value of this convex program CP.

The value p∗(T) determines the probability of sampling
any tree T in the maximum entropy rounding scheme. Note
that it is implicit in the constraints of this convex program
that, for any feasible solution p(.), we have

∑
T p(T) = 1

since

n − 1 =
∑
e∈E

ze =
∑
e∈E

∑
T3e

p(T) = (n − 1)
∑

T

p(T).

381 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

We now want to show that, if we assume that the vector z
is in the relative interior of the spanning tree polytope of
(V, E) then p∗(T) > 0 for every T ∈ T and p∗(T) admits a
simple exponential formula. Note that the vector z ∗ obtained
from the LP relaxation of the ATSP indeed satisfies this
assumption.

For this purpose, we write the Lagrange dual to the
convex program CP, see for example [22]. For every e ∈
E, we associate a Lagrange multiplier δe to the constraint
corresponding to the marginal probability ze, and define the
Lagrange function by

L(p, δ) =
∑
T∈T

p(T) log p(T) −
∑
e∈E

δe

∑
T3e

p(T) − ze

 .
This can also be written as:

L(p, δ) =
∑
e∈E

δeze +
∑
T∈T

p(T) log p(T) − p(T)
∑
e∈T

δe

 .
The Lagrange dual to CP is now

(4.10) sup
δ

inf
p≥0

L(p, δ).

The inner infimum in this dual is easy to solve. As the
contributions of the p(T)’s are separable, we have that, for
every T ∈ T , p(T) must minimize the convex function

p(T) log p(T) − p(T)δ(T),

where, as usual, δ(T) =
∑

e∈T δe. Taking derivatives, we
derive that

0 = 1 + log p(T) − δ(T),

or

(4.11) p(T) = eδ(T)−1.

Thus,
inf
p≥0

L(p, δ) =
∑
e∈E

δeze −
∑
T∈T

eδ(T)−1.

Using the change of variables γe = δe −
1

n−1 for e ∈ E, the
Lagrange dual (4.10) can therefore be rewritten as

(4.12) sup
γ

1 +∑
e∈E

zeγe −
∑
T∈T

eγ(T)

 .
Our assumption that the vector z is in the relative

interior of the spanning tree polytope is a Slater condition
and, together with convexity, implies that the sup in (4.12)
is attained by some vector γ∗, and the Lagrange dual value
equals the optimum value OPTCP of our convex program.
Furthermore, we have that the (unique) primal optimum
solution p∗ and any dual optimum solution γ∗ must satisfy

L(p, γ∗) ≥ L(p∗, γ∗) ≥ L(p∗, γ),

for any p ≥ 0 and any γ, where we have implicitly redefined
L due to our change of variables from δ to γ. Therefore, p∗

is the unique minimizer of L(p, γ∗) and from (4.11), we have
that

(4.13) p∗(T) = eγ
∗(T).

Summarizing, the following theorem holds.

T 4.1. Given a vector z in the relative interior of the
spanning tree polytope P on G = (V, E), there exist γ∗e for
all e ∈ E such that if we sample a spanning tree T of G
according to p∗(T) := eγ

∗(T) then Pr[e ∈ T] = ze for every
e ∈ E.

It is worth noting that the requirement that z is in the
relative interior of the spanning tree polytope (as opposed
to being just in this polytope) is necessary (the fact that
being in the spanning tree polytope was not sufficient had
been observed before, see Exercise 4.19 in [21]). Let G be a
triangle and z be the vector (1

2 ,
1
2 , 1). In this case, z is in the

polytope (but not in its relative interior) and there are no γ∗e’s
that would satisfy the statement of the theorem (however, one
can get arbitrarily close to ze for all e ∈ E).

In Section 7 we show how to efficiently find γ̃’s that
approximately satisfy the conditions of Theorem 4.1. More
formally, we prove the following theorem whose result we
use in the rest of the paper. For our ATSP application, zmin is
2−O(n log n) and ε can be chosen to be 0.2.

T 4.2. Given z in the spanning tree polytope of G =
(V, E) and some ε > 0, values γ̃e for all e ∈ E can be found,
so that if we define the exponential family distribution

p̃(T) :=
1
P

exp(
∑
e∈T

γ̃e)

for all T ∈ T where

P :=
∑
T∈T

exp(
∑
e∈T

γ̃e)

then, for every edge e ∈ E,

z̃e :=
∑

T∈T :T3e

p̃(T) ≤ (1 + ε)ze,

i.e. the marginals are approximately preserved. Further-
more, the running time is polynomial in n = |V |, − log zmin
and 1/ε.

The distributions over trees considered in Theorem 4.2
are closely related to the notion of λ -random (spanning)
trees. Given λe ≥ 0 for e ∈ E, a λ -random tree T of G
is a tree T chosen from the set of all spanning trees of G
with probability proportional to

∏
e∈T λe. The notion of λ -

random trees has been extensively studied (see e.g. Ch.4 of

382 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[21]) - note that in case of all λe being equal, a λ -random
tree is just a uniform spanning tree of G. Many of the results
for uniform spanning trees carry over to λ -random spanning
trees in a graph G since, for rational λe’s, a λ -random
spanning tree in G corresponds to a uniform spanning tree
in a multigraph obtained from G by letting the multiplicity
of edge e be proportional to λe.

Observe that a tree T sampled from an exponential
family distribution p(·) as given in Theorem 4.2 is λ -random
for λe := eγe for all e ∈ E. As a result, we can use the tools
developed for λ -random trees to obtain an efficient sampling
procedure, see Section 4.2, and to derive sharp concentration
bounds for the distribution p(·), see Section 4.3.

4.2 Sampling a λ -Random Tree .
There is a host of results (see [15, 20, 9, 1, 5, 25, 19] and

references therein) on obtaining polynomial-time algorithms
for generating a uniform spanning tree, i.e. a λ -random tree
for the case of all λe’s being equal. Almost all of them can
be easily modified to allow arbitrary λ ; however, not all of
them still guarantee a polynomial running time for general
λe’s. We use for example an iterative approach similar to
[20].

The idea is to order the edges e1, . . . , em of G arbitrarily
and process them one by one, deciding probabilistically
whether to add a given edge to the final tree or to discard it.
More precisely, when we process the j-th edge e j, we decide
to add it to a final spanning tree T with probability p j being
the probability that e j is in a λ -random tree conditioned on
the decisions that were made for edges e1, . . . , e j−1 in earlier
iterations. Clearly, this procedure generates a λ -random tree,
and its running time is polynomial as long as the computation
of the probabilities p j can be done in polynomial time.

To compute these probabilities efficiently we note that,
by definition, p1 = ze1 . Now, if we choose to include e1 in
the tree then:

p2 = Pr[e2 ∈ T |e1 ∈ T] =

∑
T ′3e1,e2

∏
e∈T ′ λe∑

T ′3e1

∏
e∈T ′ λe

=

∑
T ′3e1,e2

∏
e∈T ′\e1

λe∑
T ′3e1

∏
e∈T ′\e1

λe
.

As one can see, the probability that e2 ∈ T conditioned on
the event that e1 ∈ T is equal to the probability that e2 is in a
λ -random tree of a graph obtained from G by contracting the
edge e1. Similarly, if we choose to discard e1, the probability
p2 is equal to the probability that e2 is in a λ -random tree of
a graph obtained from G by removing e1. In general, p j is
equal to the probability that e j is included in a λ -random tree
of a graph obtained from G by contracting all edges that we
have already decided to add to the tree, and deleting all edges
that we have already decided to discard.

Therefore, the only thing we need in order to compute
the p j’s is to be able to compute efficiently for a given graph

G′ and values of λe’s, the probability pG′ [λ , f] that some
edge f is in a λ -random tree of G′. This is well-known.
For this purpose, one can evaluate

∑
T∈T

∏
e∈T λe for both G′

and G′/{ f } (in which edge f is contracted) using Kirchhoff’s
matrix tree theorem (see [4]). The matrix tree theorem states
that

∑
T∈T

∏
e∈T λe for any graph G is equal to the absolute

value of any cofactor of the weighted Laplacian L where

Li, j =


−λe e = (i, j) ∈ E∑

e∈δ({i}) λe i = j
0 otherwise.

An alternative approach for computing pG′ [λ , f] is to use the
fact (see e.g. Ch. 4 of [21]) that pG′ [λ , f] is equal to λ f times
the effective resistance of f in G′ treated as an electrical
circuit with conductances of edges given by λ . The effective
resistance can be expressed by an explicit linear-algebraic
formula whose computation boils down to inverting a certain
matrix that can be easily derived from the Laplacian of G′

(see e.g. section 2.4 of [13] for details).

4.3 Negative Correlation and a Concentration Bound.
We derive now the following concentration bound. As
discussed in the next section, this bound is instrumental in
establishing the thinness of a sampled tree.

T 4.3. For each edge e, let Xe be an indicator random
variable associated with the event [e ∈ T], where T is a λ -
random tree. Also, for any subset C of the edges of G, define
X(C) =

∑
e∈C Xe. Then we have

Pr[X(C) ≥ (1 + δ)E[X(C)]] ≤
(

eδ

(1 + δ)1+δ

)E[X(C)]

.

Usually, when we want to obtain such concentration
bounds, we prove that the variables {Xe}e are independent
and use the Chernoff bound. Unfortunately, in our case, the
variables {Xe}e are not independent. However, it is well-
known that they are negatively correlated, i.e. for any subset
F ⊆ E, Pr[∀e∈F Xe = 1] ≤

∏
e∈F Pr[Xe = 1], see e.g. ch. 4 of

[21]1.

L 4.1. The random variables {Xe}e are negatively cor-
related.

Once we have established negative correlation between
the Xe’s, Theorem 4.3 follows directly from the result of
Panconesi and Srinivasan [23] that the upper tail part of the

1Lyons and Peres prove this fact only in the case of T being a uniform
spanning tree i.e. when all λe’s are equal, but Section 4.1 of [21] contains a
justification why this proof implies this property also in the case of arbitrary
λe’s. As mentioned before, for rational λe’s, the main idea is to replace
each edge e with Cλe edges (for an appropriate choice of C) and consider a
uniform spanning tree in the corresponding multigraph. The irrational case
follows from a limit argument.

383 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Chernoff bound requires only negative correlation (or even a
weaker notion, see [23]) and not the full independence of the
random variables.

Since an earlier version of this paper, other ways of
producing negatively correlated probability distributions on
trees (or, more generally, matroid bases) satisfying some
given marginals z have been proposed [7, 26]. Chekuri and
Vondrak [7] use a randomized variant of pipage rounding
while Zenklusen uses a randomized selection based on the
basis exchange property of matroid bases. Both approaches
can also be used in the framework developed in this paper.

5 The Thinness Property
In this section, we focus on the exponential family distribu-
tion p̃(·) that we obtain by applying the algorithm of The-
orem 4.2 to z ∗. We show that the tree sampled from the
distribution p̃(·) is almost surely “thin”. First we define the
thinness property.

D 5.1. We say that a tree T is α-thin if for each set
U ⊂ V,

|T ∩ δ(U)| ≤ αz ∗(δ(U)).

Also we say that T is (α, s)-thin if it is α-thin and moreover,

c(T) ≤ sOPTHK.

We first prove that if we focus on a particular cut then
the “α-thinness” property holds for it with overwhelming
probability where α ∼ log n

log log n .

L 5.1. If T is a spanning tree sampled from distribution
p̃(·) for ε = 0.2 in a graph G with n ≥ 5 vertices then for any
set U ⊂ V,

Pr[|T ∩ δ(U)| > βz ∗(δ(U))] ≤ n−2.5z ∗(δ(U)),

where β = 4 log n/ log log n.

Proof. Note that by definition, for all edges e ∈ E, z̃e ≤ (1 +
ε)z∗e, where ε = 0.2 is the desired accuracy of approximation
of z ∗ by z̃ as in Theorem 4.2. Hence,

E[|T ∩ δ(U)|] = z̃ (δ(U)) ≤ (1 + ε)z ∗(δ(U)).

Applying Theorem 4.3 with

1 + δ = β
z ∗(δ(U))
z̃ (δ(U))

≥
β

1 + ε
,

we derive that Pr[|T ∩ δ(U)| > βz ∗(δ(U))] can be bounded

from above by

Pr[|T ∩ δ(U)| > (1 + δ)E[|T ∩ δ(U)|]]

≤

(
eδ

(1 + δ)1+δ

)z̃ (δ(U))

≤

(e
1 + δ

)(1+δ)z̃ (δ(U))

=

(e
1 + δ

)βz ∗(δ(U))

≤

(e(1 + ε)
β

)βz ∗(δ(U))

≤ n−4(1−1/e)z ∗(δ(U)),

where, in the last inequality, we have used that

log
(e(1 + ε)

β

)β = 4
log n

log log n
[1 + log(1 + ε) − log(4)

− log log n + log log log n]

≤ −4 log n
(
1 −

log log log n
log log n

)
≤ −4

(
1 −

1
e

)
log n ≤ −2.5 log n,

since e(1 + ε) < 4 and log log log n
log log n ≤ 1

e for all n ≥ 5 (even for
n ≥ 3).

We are ready to prove the main theorem of this section.

T 5.1. Let n ≥ 5 and ε = 0.2. Let T1, . . . ,Td2 log ne

be d2 log ne independent samples from a distribution p̃(·) as
given in Theorem 4.2. Let T ∗ be the tree among these sam-
ples that minimizes c(T j). Then, T ∗ is (4 log n/ log log n, 2)-
thin with high probability.

Here, high probability means probability at least 1− 1/n, but
probability 1 − 1/nk can be achieved by sampling 2k log n
trees.

Proof. We start by showing that for any 1 ≤ j ≤ d2 log ne,
T j is β-thin with high probability for β = 4 log n/ log log n.
From Lemma 5.1 we know that the probability of some
particular cut δ(U) violating the β-thinness of T j is at most
n−2.5z ∗(δ(U)). Now, we use a result of Karger [18] that shows
that there are at most n2l cuts of size at most l times the
minimum cut value for any half-integer l ≥ 1. Since, by
the definitions of the Held-Karp relaxation and of z ∗, we
know that z ∗(δ(U)) ≥ 2(1− 1/n), it means there is at most nl

cuts δ(U) with z ∗(δ(U)) ≤ l(1 − 1/n) for any integer l ≥ 2.
Therefore, by applying the union bound (and n ≥ 5), we
derive that the probability that there exists some cut δ(U)
with |T j ∩ δ(U)| > βz ∗(δ(U)) is at most

∞∑
i=3

nin−2.5(i−1)(1−1/n),

384 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

where each term is an upper bound on the probability that
there exists a violating cut of size within [(i−1)(1−1/n), i(1−
1/n)]. Fo n ≥ 5, this simplifies to:

∞∑
i=3

nin−2.5(i−1)(1−1/n) ≤

∞∑
i=3

n−i+2 =
1

n − 1
,

Thus, indeed, T j is a β-thin spanning tree with high proba-
bility.

Now, the expected cost of T j is

E[c(T j)] ≤
∑
e∈E

z̃e ≤ (1 + ε)
n − 1

n

∑
a∈A

x∗a ≤ (1 + ε)OPTHK.

So, by Markov inequality we have that for any j, the
probability that c(T j) > 2OPTHK is at most (1 + ε)/2. Thus,
with probability at most (1+ε

2)2 log n < 1
n for ε = 0.2, we have

c(T ∗) > 2OPTHK. This concludes the proof of the theorem.

6 Transforming a Thin Spanning Tree into an Eulerian
Walk

As the final step of the algorithm, we show how one can find
an Eulerian walk with small cost using a thin tree. After
finding such a walk, one can use the metric property to
convert this walk into an Hamiltonian cycle of no greater
cost (by shortcutting). In particular, the following theorem
justifies the definition of thin spanning trees.

T 6.1. Assume that we are given an (α, s)-thin span-
ning tree T ∗ with respect to the LP relaxation x ∗. Then
we can find a Hamiltonian cycle of cost no more than
(2α + s)c(x ∗) = (2α + s)OPTHK in polynomial time.

Before proceeding to the proof of Theorem 6.1, we
recall some basic network flow results related to circulations.
A function f : A → R is called a circulation if f (δ+(v)) =
f (δ−(v)) for each vertex v ∈ V . Hoffman’s circulation
theorem [24, Theorem 11.2] gives a necessary and sufficient
condition for the existence of a circulation subject to lower
and upper capacities on arcs.

T 6.2. (H’  ) Given
lower and upper capacities l, u : A → R, there exists a
circulation f satisfying l(a) ≤ f (a) ≤ u(a) for all a ∈ A if
and only if

1. l(a) ≤ u(a) for all a ∈ A and

2. for all subsets U ⊂ V, we have l(δ−(U)) ≤ u(δ+(U)).

Furthermore, if l and u are integer-valued, f can be chosen
to be integer-valued.

Proof. [Theorem 6.1] We first orient each edge {u, v} of T ∗

to arg min{c(a) : a ∈ {(u, v), (v, u)} ∩ A}, and denote the re-
sulting directed tree by ~T ∗. Observe that by definition of our

undirected cost function, we have c(~T ∗) = c(T ∗). We then
find a minimum cost augmentation of ~T ∗ into an Eulerian
directed graph; this can be formulated as a minimum cost
circulation problem with integral lower capacities (and no or
infinite upper capacities). Indeed, set

l(a) =
{

1 a ∈ ~T ∗

0 a < ~T ∗,

and consider the minimum cost circulation problem

min{c(f) : f is a circulation and f (a) ≥ l(a) ∀a ∈ A}.

An optimum circulation f ∗ can be computed in polynomial
time and can be assumed to be integral, see e.g. [24,
Corollary 12.2a]. This integral circulation f ∗ corresponds to
a directed (multi)graph H which contains ~T ∗. Every vertex
in H has an indegree equal to its outdegree. Therefore, every
cut has the same number of arcs in both directions. As H is
weakly connected (as it contains ~T ∗), it is strongly connected
and thus, H is an Eulerian directed multigraph. We can
extract an Eulerian walk of H and shortcut it to obtain our
Hamiltonian cycle of cost at most c(f ∗) since the costs satisfy
the triangle inequality.

To complete the proof of Theorem 6.1, it remains to
show that c(f ∗) ≤ (2α + s)c(x ∗). For this purpose, we define

u(a) =
{

1 + 2αx∗a a ∈ ~T ∗

2αx∗a a < ~T ∗.

We claim that there exists a circulation g satisfying l(a) ≤
g(a) ≤ u(a) for every a ∈ A. To prove this claim,
we use Hoffman’s circulation theorem 6.2. Indeed, by
construction, l(a) ≤ u(a) for every a ∈ A; furthermore,
Lemma 6.1 below shows that, for every U ⊂ V , we have
l(δ−(U)) ≤ u(δ+(U)). Thus the existence of the circulation g
is established. Furthermore,

c(f ∗) ≤ c(g) ≤ c(u) = c(~T ∗) + 2αc(x ∗) ≤ (2α + s)c(x ∗),

establishing the bound on the cost of f ∗. This completes the
proof of Theorem 6.1.

L 6.1. For the capacities l and u as constructed in the
proof of Theorem 6.1, the following holds for any subset
U ⊂ V:

l(δ−(U)) ≤ u(δ+(U)).

Proof. Irrespective of the orientation of T ∗ into ~T ∗, the
number of arcs of ~T ∗ in δ−(U) is at most αz ∗(δ(U)) by
definition of α-thinness. Thus

l(δ−(U)) ≤ αz ∗(δ(U)) < 2αx ∗(δ−(U)),

due to (3.4) and (3.5). On the other hand, we have

u(δ+(U)) ≥ 2αx ∗(δ+(U)) = 2αx ∗(δ−(U)) ≥ l(δ−(U)),

where we have used the fact that x ∗ itself is a circulation (see
(3.4)). The lemma follows.

385 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

T 6.3. For a suitable choice of parameters, the al-
gorithm given in Figure 1 finds a (2 + 8 log n/ log log n)-
approximate solution to the Asymmetric Traveling Salesman
Problem with high probability and in time polynomial in the
size of the input.

Proof. The algorithm start by finding an optimal extreme-
point solution x ∗ to the Held-Karp LP relaxation of ATSP
of value OPTHK. Next, using the algorithm of Theorem
4.2 on z ∗ (which is defined by (3.5)) with ε = 0.2, we
obtain γ̃e’s that define the exponential family distribution
p̃(T) := e

∑
e∈T γ̃e . Since x ∗ was an extreme point, we know

that z∗min ≥ e−O(n log n); thus, the algorithm of Theorem 4.2
indeed runs in polynomial time.

Next, we use the polynomial time sampling procedure
described in section 4.2 to sample Θ(log n) trees T j from the
distribution p̃(·), and take T ∗ to be the one among them that
minimizes the cost c(T j). By Theorem 5.1, we know that T ∗

is (β, 2)-thin with high probability.
Now, we use Theorem 6.1 to obtain, in polynomial time,

a (2+8 log n/ log log n)-approximation of our ATSP instance.

The proof also shows that the integrality gap of the Held-
Karp relaxation for the Asymmetric TSP is bounded above
by 2+ 8 log n/ log log n. The best known lower bound on the
integrality gap is only 2, as shown in [6]. Closing this gap
is a challenging open question, and this possibly could be
answered using thinner spanning trees.

C 6.1. If there always exists a (C1,C2)-thin span-
ning tree where C1 and C2 are constants, the integrality gap
of the ATSP Held-Karp linear programming relaxation is a
constant.

7 A Combinatorial Algorithm for Approximately
Solving CP

In this section, we provide a combinatorial algorithm to
efficiently find γ̃e’s that approximately preserve the marginal
probabilities given by z and therefore prove Theorem 4.2.

Given a vector γ, for each edge e, define qe(γ) :=∑
T3e exp(γ(T))∑
T exp(γ(T)) , where γ(T) =

∑
f∈T γ f . For notational conve-

nience, we have dropped the fact that T ∈ T in these summa-
tions; this shouldn’t lead to any confusion. Restated, qe(γ) is
the probability that edge e will be included in a spanning tree
T that is chosen with probability proportional to exp(γ(T)).

We compute γ̃ using the following simple algorithm.
Start with all γe equal, and as long as the marginal qe(γ) for
some edge e is more than (1+ε)ze, we decrease appropriately
γe in order to decrease qe(γ) to (1 + ε/2)ze. More formally,
here is a description of the algorithm.

1. Set γ = ~0.

2. While there exists an edge e with qe(γ) > (1 + ε)ze:

• Compute δ such that if we define γ′ as γ′e = γe−δ,
and γ′f = γ f for all f ∈ E \ {e}, then qe(γ′) =
(1 + ε/2)ze

• Set γ ← γ′

3. Output γ̃ := γ.

Clearly, if the above procedure terminates then the re-
sulting γ̃ satisfies the requirement of Theorem 4.2. There-
fore, what we need to show is that this algorithm terminates
in time polynomial in n, − log zmin and 1/ε, and that each
iteration can be implemented in polynomial time.

We start by bounding the number of iterations - we will
show that it is O(1

ε
|E|2[|V | log(|V |) − log(εzmin)]). In the

next lemma, we derive an equation for δ, and prove that for
f , e the probabilities q f (·) do not decrease as a result of
decreasing γe.

L 7.1. If for some δ ≥ 0 and an edge e, we define γ′ by
γ′e = γe − δ and γ′f = γ f for all f , e, then

1. for all f ∈ E \ {e}, q f (γ′) ≥ q f (γ),

2. qe(γ′) satisfies 1
qe(γ′) − 1 = eδ

(
1

qe(γ) − 1
)
.

In particular, in the main loop of the algorithm, since
qe(γ) > (1 + ε)ze and we want qe(γ′) = (1 + ε/2)ze, we get
δ = log qe(γ)(1−(1+ε/2)ze)

(1−qe(γ))(1+ε/2)ze
> log (1+ε)

(1+ε/2) >
ε
4 for ε ≤ 1 (for larger

values of ε, we can simply decrease ε to 1).

Proof. Let us consider some f ∈ E \ {e}. We have

q f (γ′) =

∑
T∈T : f∈T exp(γ′(T))∑

T∈T exp(γ′(T))

=

∑
T :e∈T, f∈T eγ

′(T) +
∑

T :e<T, f∈T eγ
′(T)∑

T3e eγ′(T) +
∑

T :e<T eγ′(T)

=
e−δ

∑
T :e∈T, f∈T eγ(T) +

∑
T :e<T, f∈T eγ(T)

e−δ
∑

T3e eγ(T) +
∑

T :e<T eγ(T)

=
e−δa + b
e−δc + d

with a, b, c, d appropriately defined. The same expression
holds for q f (γ) with the e−δ factors removed. But, for general
a, b, c, d ≥ 0, if a

c ≤
a+b
c+d then xa+b

xc+d ≥
a+b
c+d for x ≤ 1. Since

a
c
=

∑
T∈T :e∈T, f∈T eγ(T)∑

T∈T :e∈T eγ(T) ≤ q f (γ) =
a + b
c + d

by negative correlation (since a/c represents the conditional
probability that f is present given that e is present), we get
that q f (γ′) ≥ q f (γ) for δ ≥ 0.

Now, we proceed to deriving the equation for δ. By
definition of qe(γ), we have

1
qe(γ)

− 1 =
∑

T :e<T eγ(T)∑
T3e eγ(T) .

386 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Hence,

1
qe(γ′)

− 1 =

∑
T :e<T eγ

′(T)∑
T3e eγ′(T)

=

∑
T :e<T eγ(T)

e−δ
∑

T3e eγ(T)

= eδ
(

1
qe(γ)

− 1
)
.

Before bounding the number of iterations, we collect
some basic results regarding spanning trees which we need
for the proof of the number of iterations.

L 7.2. Let G = (V, E) be a graph with weights γe for
e ∈ E. Let Q ⊂ E be such that for all f ∈ Q, e ∈ E \ Q,
we have γ f > γe + ∆ for some ∆ ≥ 0. Let r be the size of a
maximum spanning forest of Q. Then

1. For any T ∈ T , we have |T ∩ Q| ≤ r.

Define T= := {T ∈ T : |T ∩Q| = r} and T< := {T ∈ T :
|T ∩ Q| < r}.

2. Any spanning tree T ∈ T= can be generated by taking
the union of any spanning forest F (of cardinality r)
of the graph (V,Q) and a spanning tree (of cardinality
n−r−1) of the graph G/Q in which the edges of Q have
been contracted.

3. Let Tmax be a maximum spanning tree of G with respect
to the weights γ(·), i.e. Tmax = arg maxT∈T γ(T). Then,
for any T ∈ T<, we have γ(T) < γ(Tmax) − ∆.

Proof. These properties easily follow from the matroidal
properties of spanning trees. To prove 3., consider any T ∈
T<. Since |T ∩Q| < r, there exists an edge f ∈ (Tmax∩Q)\T
such that (T ∩ Q) ∪ { f } is a forest of G. Therefore, the
unique circuit in T ∪ { f } contains an edge e < Q. Thus
T ′ = T ∪ { f } \ {e} is a spanning tree. Our assumption on
Q implies that

γ(Tmax) ≥ γ(T ′) = γ(T) − γe + γ f > γ(T) + ∆,

which yields the desired inequality.

We proceed to bounding the number of iterations.

L 7.3. The algorithm executes at most
O(1
ε
|E|2[|V | log(|V |) − log(εzmin)]) iterations of the main

loop.

Proof. Let n = |V | and m = |E|. Assume for the sake of
contradiction that the algorithm executes more than

τ :=
4
ε

m2[n log n − log(εzmin)]

iterations. Let γ be the vector of γe’s computed at such an
iteration. For brevity, let us define qe := qe(γ) for all edges
e.

We prove first that there exists some e∗ ∈ E such that
γe∗ < −

ετ
4m . Indeed, there are m edges, and by Lemma 7.1

we know that in each iteration we decrease γe of one of these
edges by at least ε/4. Thus, we know that, after more than τ
iterations, there exists e∗ for which γe∗ is as desired.

Note that we never decrease γe for edges e with qe(·)
smaller than (1 + ε)ze, and Lemma 7.1 shows that reducing
γ f of edge f , e can only increase qe(·). Therefore, we
know that all the edges with γe being negative must satisfy
qe ≥ (1 + ε/2)ze. In other words, all edges e such that
qe < (1+ε/2)ze satisfy γe = 0. Finally, by a simple averaging
argument, we know that

∑
e qe = n − 1 < (1 + ε/2)(n − 1) =

(1 + ε/2)
∑

e ze. Hence, there exists at least one edge f ∗ with
q f ∗ < (1 + ε/2)z f ∗ and thus having γ f ∗ = 0.

We proceed now to exhibiting a set Q such that:

(I): ∅ , Q ⊂ E, and

(II): for all e ∈ E \ Q and f ∈ Q, γe +
ετ

4m2 < γ f .

We construct Q as follows. We set threshold values Γi =

− ετi4m2 , for i ≥ 0, and define Qi = {e ∈ E |γe ≥ Γi}. Let Q = Q j

where j is the first index such that Q j = Q j+1. Clearly, by
construction of Q, property (II) is satisfied. Also, Q is non-
empty since f ∗ ∈ Q0 ⊆ Q j = Q. Finally, by the pigeonhole
principle, since we have m different edges, we know that
j < m. Thus, for each e ∈ Q we have γe > Γm = −

ετ
4m .

This means that e∗ < Q and thus Q has property (I).
Observe that Q satisfies the hypothesis of Lemma 7.2

with ∆ = ετ
4m2 . Thus, for any T ∈ T<, we have

(7.14) γ(Tmax) > γ(T) +
ετ

4m2 ,

where Tmax and r are as defined in Lemma 7.2.
Let Ĝ be the graph G/Q obtained by contracting all

the edges in Q. So, Ĝ consists only of edges not in Q
(some of them can be self-loops). Let T̂ be the set of all
spanning trees of Ĝ , and for any given edge e < Q, let

q̂e :=
∑

T̂∈T̂ ,T̂3e exp(γ(T̂))∑
T̂∈T̂ exp(γ(T̂))

be the probability that edge e is included

in a random spanning tree T̂ of Ĝ , where each tree T̂ is
chosen with probability proportional to eγ(T̂). Since spanning
trees of Ĝ have n − r − 1 edges, we have

(7.15)
∑

e∈E\Q

q̂e = n − r − 1.

On the other hand, since z satisfies z(E) = n − 1 and
z(Q) ≤ r (by definition of r, see Lemma 7.2, part 1.), we
have that z(E \Q) ≥ n− r − 1. Therefore, (7.15) implies that
there must exist ê < Q such that q̂ê ≤ zê.

Our final step is to show that for any e < Q, qe <
q̂e +

εzmin
2 . Note that once we establish this, we know that

387 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

qê < q̂ê +
εzmin

2 ≤ (1 + ε2)zê, and thus it must be the case
that γê = 0. But this contradicts the fact that ê < Q, as by
construction all e with γe = 0 must be in Q. Thus, we obtain
a contradiction that concludes the proof of the Lemma.

It remains to prove that for any e < Q, qe < q̂e +
εzmin

2 .
We have that

qe =

∑
T∈T :e∈T eγ(T)∑

T∈T eγ(T)

=

∑
T∈T=:e∈T eγ(T) +

∑
T∈T<:e∈T eγ(T)∑

T∈T eγ(T)

≤

∑
T∈T=:e∈T eγ(T)∑

T∈T= eγ(T) +

∑
T∈T<:e∈T eγ(T)∑

T∈T eγ(T)

≤

∑
T∈T=:e∈T eγ(T)∑

T∈T= eγ(T) +
∑

T∈T<:e∈T

eγ(T)

eγ(Tmax) ,(7.16)

the first inequality following from replacingT withT= in the
first denominator, and the second inequality following from
considering only one term in the second denominator. Using
(7.14) and the fact that the number of spanning trees is at
most nn−2, the second term is bounded by:∑

T∈T<:e∈T

eγ(T)

eγ(Tmax) ≤ nn−2e−ετ/4m2
(7.17)

<
1
2

nne−ετ/4m2

=
εzmin

2
,

by definition of τ. To handle the first term of (7.16), we can
use part 2. of Lemma 7.2 and factorize:

∑
T∈T=

eγ(T) =

∑
T̂∈T̂

eγ(T̂)


∑

T ′∈F

eγ(T
′)

 ,
where F is the set of all spanning forests of (V,Q). Similarly,
we can write

∑
T∈T=,T3e

eγ(T) =

 ∑
T̂∈T̂ ,T̂3e

eγ(T̂)


∑

T ′∈F

eγ(T
′)

 .
As a result, we have that the first term of (7.16) reduces to:(∑

T̂∈T̂ eγ(T̂)
) (∑

T ′∈F eγ(T
′)
)(∑

T̂∈T̂ ,T̂3e eγ(T̂)
) (∑

T ′∈F eγ(T ′)
) = ∑

T̂∈T̂ eγ(T̂)∑
T̂∈T̂ ,T̂3e eγ(T̂)

= q̂e.

Together with (7.16) and (7.17), this gives

qe ≤ q̂e +
εzmin

2
,

which completes the proof.

To complete the analysis of the algorithm, we need to
argue that each iteration can be implemented in polynomial
time. First, for any given vector γ, we can compute effi-
ciently the sums

∑
T exp(γ(T)) and

∑
T3e exp(γ(T)) for any

edge e - this will enable us to compute all qe(γ)’s. This can
be done using Kirchhoff’s matrix tree theorem (see [4]), as
discussed in Section 4.2 (with λe = eγe). Observe that we can
bound all entries of the weighted Laplacian matrix in terms
of the input size since the proof of Lemma 7.3 actually shows
that − ετ4|E| ≤ γe ≤ 0 for all e ∈ E and any iteration of the algo-
rithm. Therefore, we can compute these cofactors efficiently,
in time polynomial in n, − log zmin and 1/ε. Finally, δ can be
computed efficiently from Lemma 7.1.

Acknowledgments. We would like to thank the reviewers
for many insightful comments.

References

[1] D. J. Aldous. A random walk construction of uniform
spanning trees and uniform labelled trees. SIAM Journal on
Discrete Mathematics, 3(4):450–465, 1990.

[2] A. Asadpour and A. Saberi. Maximum entropy selection: a
randomized rounding method. submitted.

[3] M. Bläser. A new approximation algorithm for the asymmet-
ric TSP with traingle inequality. In ACM-SIAM Symposium
on Discrete Algorithms, pages 638–645, 2002.

[4] B. Bollobas. Modern Graph Theory. Springer, 2002.
[5] A. Broder. Generating random spanning trees. In 30th

Annual Symposium on Foundations of Computer Science,
pages 442–447, 1989.

[6] M. Charikar, M. Goemans, and H. Karloff. On the integrality
ratio for the asymmetric traveling salesman problem. Mathe-
matics of Operations Research, 31:245–252, 2006.

[7] C. Chekuri and J. Vondrak. Randomized pipage
rounding for matroid polytopes and applications, 2009.
http://arxiv.org/abs/0909.4348v1.

[8] N. Christofides. Worst case analysis of a new heuristic for the
traveling salesman problem. Report 388, Graduate School of
Industrial Administration, Carnegie-Mellon University, Pitts-
burgh, PA, 1976.

[9] C. J. Colbourn, W. J. Myrvold, and E. Neufeld. Two algo-
rithms for unranking arborescences. Journal of Algorithms,
20(2):268–281, 1996.

[10] J. Edmonds. Matroids and the greedy algorithm. Mathemati-
cal Programming, pages 127–136, 1971.

[11] U. Feige and M. Singh. Improved approximation ratios for
traveling salesman tours and paths in directed graphs. In 10th
International Workshop, APPROX, pages 104–118, 2007.

[12] A. M. Frieze, G. Galbiati, and F. Maffioli. On the worst-case
performance of some algorithms for the asymmetric traveling
salesman problem. Networks, 12:23–39, 1982.

[13] A. Ghosh, S. Boyd, and A. Saberi. Minimizing effective
resistance of a graph. SIAM Rev., 50(1):37–66, 2008.

[14] M. X. Goemans. Minimum bounded degree spanning trees.

388 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

In 47th Annual Symposium on Foundations of Computer
Science, pages 273–282, 2006.

[15] A. Guenoche. Random spanning tree. Journal of Algorithms,
4:214–220, 1983.

[16] N. S. H. Kaplan, M. Lewenstein and M. Sviridenko. Approx-
imation algorithms for asymmetric TSP by decomposing di-
rected regular multigraphs. J. ACM, pages 602–626, 2005.

[17] M. Held and R. Karp. The traveling salesman problem and
minimum spanning trees. Operations Research, 18:1138–
1162, 1970.

[18] D. R. Karger. Global min-cuts in RNC, and other ram-
ifications of a simple min-cut algorithm. In 4th annual
ACM-SIAM Symposium on Discrete algorithms, pages 21–30,
Philadelphia, PA, USA, 1993. Society for Industrial and Ap-
plied Mathematics.

[19] J. Kelner and A. Madry. Faster generation of random span-
ning trees. In 50th Annual Symposium on Foundations of
Computer Science, 2009.

[20] V. G. Kulkarni. Generating random combinatorial objects.
Journal of Algorithms, 11:185–207, 1990.

[21] R. Lyons and Y. Peres. Probability on Trees and Net-
works. 2009. In preparation. Current version available at
http://mypage.iu.edu/˜rdlyons/.

[22] A. Nemirovski. Lectures on modern convex optimization,
2005.

[23] A. Panconesi and A. Srinivasan. Randomized distributed
edge coloring via an extension of the Chernoff-Hoeffding
bounds. SIAM J. Comput., 26:350–368, 1997.

[24] A. Schrijver. Combinatorial Optimization, volume 2 of
Algorithms and Combinatorics. Springer, 2003.

[25] D. B. Wilson. Generating random spanning trees more
quickly than the cover time. In 28th Annual ACM Symposium
on the Theory of Computing, pages 296–303. ACM, 1996.

[26] R. Zenklusen, July 2009. Personal communication.

389 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

	Introduction
	Notation
	The Held-Karp Relaxation
	Maximum Entropy Sampling and Concentration Bounds
	Maximum Entropy Distribution.
	Sampling a -Random Tree
	Negative Correlation and a Concentration Bound.

	The Thinness Property
	Transforming a Thin Spanning Tree into an Eulerian Walk
	A Combinatorial Algorithm for Approximately Solving CP

