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Abstract. Government subsidies are an important policy tool that can help firms develop techno-
logical learning, and this technological learning effect plays a key role in firms’ research and devel-
opment (R&D) efficiency. Thus, this study develops a two-stage approach to illustrate the effect of 
subsidy policies and technological learning on R&D efficiency in the information technology (IT) 
industry. The technological learning effect in 128 firms in the IT industry from 2008 to 2015 was 
measured using the learning experience curve. Subsequently, government R&D subsidy intensity 
was considered as a categorical variable, and this estimated result was treated as an intangible input 
into a data envelopment analysis (DEA) structure to evaluate R&D efficiency in 2015. This study 
makes three major contributions. First, the developed approach incorporates the effect of subsidy 
policies and technological learning into the DEA structure. Second, the empirical results demon-
strate the appropriateness of incorporating subsidy policies and technological learning into evalu-
ations of R&D efficiency. Finally, our results identify the key sources of inefficiency as a shortfall 
in the number of patents and a lack of technological learning. Based on these key findings, some 
improved strategies were recommended to decision makers.

Keywords: data envelopment analysis, government subsidies, information technology industry, 
learning experience curve, technological learning, R&D efficiency.
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Introduction 

Research and development (R&D) has been one of the key driving forces of technological 
progress, and it contributes to increased productivity and profit growth (Barreto & Kypreos, 
2004). The main source of productivity growth in the information technology (IT) industry 
is the technological learning effect (Patibandla & Petersen, 2002). Technological learning 
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has been defined as the learning experience by which a technology-oriented firm can create, 
renew, and upgrade its intangible capital based on its stock of knowledge-based resources 
(Hitt, Ireland, & Lee, 2000). Thus, the technological learning effect can represent the cu-
mulative stock of knowledge, which is a type of intangible capital (Coccia, 2009). Dodgson 
(1991) considered technological learning as encompassing a firm’s build and supplement the 
knowledge base that is related to their technologies, products, services and processes and how 
they develop and use the broad skills of their workforce. The learning experience may also 
involve a new technology or be a product of an experience that allows employees to obtain 
the required knowledge (Ngwenyama, Guergachi, & McLaren, 2007). This knowledge can be 
accumulated through continuous learning over a certain period of time, and this cumula-
tive result can be considered a stock of knowledge at a certain time point. Previous studies 
have shown that technological learning can reduce R&D expenditures and further improve 
R&D efficiency over time (Wang, H. Li, R. Li, B. Li, & Zhu, 2016). A firm’s technological 
learning experience curve is determined both by knowledge accumulation resulting from 
informal R&D (through gaining experience from an increase in production) and by formal 
R&D expenditures (which indicate the level of past support). Technological learning can be 
investigated using a learning experience curve, which is one of the tools used to quantify 
the technology developed through the technology learning process (Nakata, Sato, Wang, 
Kusunoki, & Furubayashi, 2011). 

To gain sustainable competitive advantage, many governments are interested in attracting 
new technology investment projects by offering various incentives (Chen, Wen, Wang, & Nie, 
2017; Czarnitzki & Hussinger, 2018; Okamuro & Nishimura, 2018; Yang, Nie, Liu, & Shen, 
2018). With these incentives, governments have invested heavily in R&D activities in the IT 
industry (Sohn & Moon, 2004). Government subsidy policies are not controlled by corporate 
decision makers. Because the R&D subsidies that are sponsored by the government are only 
a small portion of R&D expenditures at most firms, not all output comes from government 
financial support (Hsu & Hsueh, 2009). However, government financial support for R&D can 
facilitate firms’ technological learning, which enhances firms’ ability to develop R&D output 
(patent counts) and build their core technological competencies (Lall, 2000). Government 
subsidy policies may have benefits for local firms’ R&D efficiency through their positive effect 
on the firms’ technological learning capabilities.

Assessing R&D efficiency helps inefficient firms identify the best practices for bench-
marking and provides these firms with appropriate strategies to improve their efficiency by 
emphasizing areas of weakness. Data Envelopment Analysis (DEA) structure is a nonpara-
metric  technique which has advantages over other mathematical methods in assessing the 
efficiency of R&D activities. The nonparametric approach does not need to impose explicit 
production functions or an explicit distributional assumption. In addition, DEA can simul-
taneously handle multiple inputs and multiple outputs that are expressed in different units of 
measurement, and it allows each decision-making unit (DMU) to choose its most beneficial 
weights for the inputs and outputs under its own circumstances. The estimation of relative 
R&D efficiency using the DEA model should be made in a homogeneous subsidy policy 
because the lack of categorical environmental variables could lead to results of the efficiency 
scores that may reflect the underlying differences in the business operating environment rath-
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er than their actual inefficiency (Haas & Murphy, 2003). The categorical DEA model is con-
sidered in this paper such that each category of DMU is evaluated against DMUs in the same 
environmental category or in categories that face the worst business operating environment. 

In summary, government financial subsidies can help give firms more technological 
learning opportunities, and this technological learning effect has a significant impact on 
firms’ R&D efficiency. Currently, there is a gap in the literature concerning how to integrate 
the effect of subsidy policies and technological learning into R&D efficiency measures. Thus, 
existing methodologies are insufficient for investigating this relationship and discussing the 
methods of formulating improved R&D strategies for inefficient firms. The contribution of 
this study is threefold. First, this study develops a methodology that integrates the effect of 
subsidy policies and technological learning into the categorical DEA model. Second, this 
study describes the empirical application of the proposed DEA model to evaluate R&D ef-
ficiency in IT industry. Finally, the results obtained from the DEA approach can help inef-
ficient firms to identify the key sources of inefficiency and provide appropriate mechanisms 
to enhance their R&D efficiency.

1. Methodology

The main contribution of this study is to develop a methodology that integrates the effect 
of technological learning ( )TLx  and subsidy policies (zh) into the categorical DEA model. 
Through continuous learning by doing, firms possess the ability to effectively initiate the 
accumulation and creation of intellectual capital or knowledge energy (Peters & Waterman, 
1985). Learning ( )TLx  in the form of acquiring technological knowledge is valuable and 
unique because it leads to product innovation (Kessler, Bierly, & Gopalakrishnan, 2000). 
Technological innovation is considered to be an important driving force in economic growth 
(y1) (Nie & Wang, 2019; Nie, Wang, Chen, & Yang, 2018; Wang, Nie, Peng, & Li, 2017). More 
learning input ( )TLx  can improve technology, increase future economic outputs (y1) and 
result in superior efficiency (Lyu, Bian, & Yu, 2018). The technological learning effect ( )TLx  
was thus treated as an intangible input in the proposed DEA methodology. Generally, DEA 
models are assumed to be based on a set of observed variables. The technological learning 
effect ( )TLx  is an unobservable variable and reflects the cumulative knowledge that results 
over a particular period of time. This paper adopts a two-stage approach. In the first stage, 
the technological learning effect ( )TLx  at time t is estimated for each firm, i.e., DMU, respec-
tively. The prior literature such as Chung (2001), Lyu et al. (2018), Ngwenyama et al. (2007), 
Wong & Govindaraju (2012) reveals that the ordinary least-squares method is widely used to 
estimate learning effects. Especially, Papineau (2006) showed that the panel data regression 
approach may suffer from correlation between the firm specific effects captured in the error 
term and other variables. Therefore, following the existing studies, this study uses the ordi-
nary least-squares method to estimate the technological learning effect ( )TLx  rather than 
the panel data regression approach. In the second stage, the estimated technological learning 
effect ( )TLx  is treated as an intangible input into the DEA model evaluations.

Environmental categorical variables have a direct influence on efficiency such that if these 
variables are ignored, the efficiency measurements will be biased. These results will not pro-
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vide appropriate strategies for inefficient DMUs. For subsidy policies that are not under the 
direct control of corporate decision makers, the categorical DEA model may be an appropri-
ate approach for R&D efficiency evaluation because through this approach, one can fairly 
evaluate each inefficient firm included in the study. This model is based on multiple DEA 
model evaluations and expands the reference set of DMUs in increments of one environmen-
tal category. Government R&D subsidy intensity (zh) is thus considered an environmental 
categorical variable in the proposed DEA methodology.

1.1. Estimated technological learning effect

Technological learning phenomena were first observed by Wright (1936), who found that 
unit costs declined significantly when accumulated knowledge stock was measured based on 
the cumulative volume of production or technology (the output). Wright’s one-factor learn-
ing experience curve, which considered cumulative output, is among the best empirically 
corroborated models that characterize technological change in industry (Papineau, 2006). 
Several authors, however, have argued that Wright’s one-factor curve may not be suitable for 
analyzing technologies. For instance, Söderholm and Sundqvist (2007) identified the problem 
of omitted variable bias: R&D cost reductions can also result from past efforts, leading to an 
overestimation of technological learning if R&D expenditures (which indicate the level of 
effort) are ignored. To solve this problem, Kouvaritakis, Soria, & Isoard, (2000) introduced 
a two-factor curve to explicitly examine R&D efforts in technological learning. The two-
factor learning experience curve adds cumulative R&D expenditures as a control variable 
and processes the omitted variable bias. This two-factor learning experience curve has been 
commonly used to empirically assess technological learning and is generally recognized as 
the basic model to measure such learning.

The two factors are the cumulative effect of technological learning ( )TLx  and cumulative 
R&D expenditures (CEt). R&D expenditures (x1) are invested in R&D activities, which are in-
tended to produce valuable knowledge. Because this knowledge is unobservable, the number 

of patents (y1), which is a quantitative indicator, is considered an acceptable estimate of R&D 
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where x1t equals the R&D expenditures in period t, A denotes a constant parameter, y1 de-

picts the number of patents, 1
1

s t

s
s

y
=

=
∑  measures the cumulative number of patents (and means 

cumulative prior patenting knowledge) over the time period from 1 to t, a is the learning-by-
doing coefficient, b is the sum of the R&D expenditures coefficient, and CEt is the cumula-
tive R&D expenditures at period t. The cumulative R&D expenditures (CEt) are defined as a 
function of past R&D investment that includes depreciation (d) and time lag (g) factors. The 
cumulative past R&D expenditures (CEt) can be expressed as

 ( ) 1 1 ,1t t t gCE CE x− −= − d × +   (2)

where d is the depreciation rate, and g is the time lag between R&D investment (x1) and its 
R&D effect. For IT technology, Han (2007) assumed that a typical value that is used for the 
annual depreciation rate d is 13%, and there is no R&D time lag g. We can take the logarithms 
of the both sides of Equation (1).
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When the technological learning curve occasionally comes to an abrupt stop, graphically, 
the curve jumps up, the curve jumps down, or it is truncated. This jump may cause a too large 
or too small learning coefficient. As technology matures, productivity growth is limited and 
even declines, perhaps because knowledge is forgotten or learning motivation wanes. Some 
scholars have argued that the depreciation of technological knowledge or experience is the 
main reason for negative learning (Pellegrino, Costantino, Pietroforte, & Sancilio, 2012). 
Thus, when the learning coefficient is equal to or less than 0, the learning situation is no 
learning or negative learning. In our model, this lack of learning or negative learning leads 
to very small positive effects of technological learning. In contrast, when the learning coef-
ficient is more than 1, it represents that the learning situation is a new technology learning 
experience. This situation can occur if, for example, a firm can learn the upgrade or imple-
ment a new technology that can yield better productivity outcomes, which may result in a 
new learning curve (Ngwenyama et al., 2007). In general, the learning-by-doing coefficient 
a is equal to or less than 1. If the estimated value of the learning-by-doing coefficient a is 
more than 1, we set it to be 1.

1.2. Incorporating the effect of subsidy policies and technological  
learning into the categorical DEA model

Calculate R&D efficiency considering a technological learning input ( )TLx , m inputs xij and 
p outputs yrj at time t. To determine the total number of possible categories such that each 
DMU can be assigned to precisely one category, assume that there are n DMUj (j = 1, …, n)  
that can be grouped into L hierarchical categories of R&D subsidy intensity while L ≤ n, 
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and indicate the number of DMUs in the hth category by zh (h = 1, …, L). It must hold that 
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level of R&D subsidy intensity. Thus, the DMUs that belong to the first category are evaluated 
with respect to the units in z1, the DMUs in the second category are evaluated with respect 
to the units in 1 2z z∪ , etc. Lo and Lu (2009) suggested utilizing a slacks-based measure 
(SBM) to increase discrimination between efficient and inefficient DMUs. The SBM model 
with environmental categories of R&D subsidy intensity (zh) and a technological learning 
input ( )TLx  is as follows:

Minimize 
1 0 0

0

1 0

11
1

11

h

TLm i
i TLiz

p r
r r

s s
m x x

s
p y

− −

=

+

=

 
 − +
 +  r =
+

∑

∑
  (4)

Subject to

0 ,
h

j ij i i
j z

x s x−

∈

λ + =∑  1, , ,i m= …    (4.1)

 

0 ,TL TL TL TL
j jx s x−λ − =  hj z∈ ,                                                                                 (4.2) 

0  ,  1, ,
h

j rj r r
j z

y s y r p+

∈

λ − = = …∑ , and   (4.3) 

0, 0, 0, 0,TLs s s− − +λ ≥ ≥ ≥ ≥
where is−  is the slack in the ith input, and rs+  is the slack in the rth output. TLx  denotes the 

estimated cumulative effect of technological learning, which is expressed as  1

ˆ

0

as t
TL

s
s

x y
=

=

 
 =
 
 
∑

 

, 

and TLs−  represents the slack in the technological learning input. By using the optimal results 
( )* * *, ,TL

i rs s s− − +  in Equation (4), the efficiency score *
0

hzr  can be decomposed as follows:

* 1
0

1

1
.

1
h

m TL
iz i

p
rr

=

=

− α −α
r =

+ β

∑
∑

   (5)

Tangible input inefficiency is 
*

0

1 ,  1, , ,
1

i
i

i

s
i m

m x

− 
α = = …  +    

(5.1)

Intangible input inefficiency is 


*

0

1 ,  and
1

TL
TLE

TL

s
m x

− 
 α =
 +    

(5.2)

Output inefficiency is 
*

0

1 ,  1, , . r
r

r

s
r p

p y

+ 
β = = …  

   
(5.3)

In this model, the efficiency score *
0( )hzr lies between 0 and 1; *

0 1hzr =  represents an ef-
ficient DMU0 in the hth category. By using inefficiency decomposition, a manager can identify 
the major source of inefficiency, indicated by greater slack, and make appropriate improve-
ments.
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2. Defining the output, input and environmental  
categorical variables of R&D efficiency

To measure R&D efficiency, this study selected the appropriate inputs and outputs at time t 
from R&D activities. For the output variables, this study proposed two variables. The total 
number of patents (y1) was used to assess the value that is generated by investment in R&D 
(Guan, Zuo, Chen, & Yam, 2016). Given that the total number of patents (y1) contributes 
revenue (y2) through technology or product dissemination (Hashimoto & Haneda, 2008), the 
output variables included the total number of patents (y1) and revenue (y2).

The input variables were classified as intangible and tangible. Regarding intangible input, 
this study employed an estimate of the technological learning effect ( )TLx . This variable 
represented firms’ accumulated knowledge stock or intellectual capital input. Economically 
tangible inputs (such as cost or expense) should be considered for R&D efficiency assess-
ment (Linton, Walsh, & Morabito, 2002). For tangible input, this study considered R&D 
expenditure (x1); selling, general and administrative (SG&A) expenses (x2); and total assets 
(x3). R&D expenditure (x1) can represent a firm’s past R&D efforts; thus, some scholars 
treat R&D expenditure (x1) as intangible. However, this study considered this knowledge 
in the two-factor learning experience curve. Furthermore, some studies show that learning 
input can effectively reduce R&D expenditures (Grübler & Messner, 1998). Firm R&D in-
vestment decisions do not necessarily result in the desired outcomes (Hashimoto & Haneda, 
2008). Less R&D expenditure input may result in greater R&D efficiency. SG&A expenses 
(x2) were identified as the necessary resources to develop and sustain a tacit knowledge of 
R&D activities (Lev, Radhakrishnan, & Zhang, 2009). Because R&D expenditures (x1)  in-
clude research scientists’ wages, and SG&A expenses (x2) contain the general staff ’s wages 
(Li, 2014, 2017), this study does not consider additional labour inputs such as the number 
of R&D personnel or full-time employees. In general, total assets (x3) represented firm size 
and resources that support more learning opportunities.

For the environmental categorical variable, this study chose the level of R&D subsidy 
intensity (zh), which is adopted as an important factor of the technological learning op-
portunity in an environment (Kelm, Narayanan, & Pinches, 1995). Increasing government 
investment in R&D is considered essential to ensuring knowledge-based economic growth 
(Hsu & Chiang, 2001). In contrast, the level of government investment in industrial R&D can 
be considered in relation to the gross domestic product (GDP) (Almus & Czarnitzki, 2003). 
R&D subsidy intensity (zh) is a commonly used indicator that reflects a country’s industry 
R&D subsidies as a percentage of its GDP. The observed country can be grouped according 
to the mean of the R&D subsidy intensity (zh) into the two categories of low subsidy intensity 
(z1) and high subsidy intensity (z2).

2.1. Data sources 

IT industry has become a major driver of economic growth (Wang, W.-R. Lin, S.-S. Lin, 
& Hung, 2017). The analysis in this study was based on the estimated cumulative stock of 
technological learning ( )TLx  that results from patenting experience using a sample of 128 IT  
firms across 8 countries from 2008 to 2015 and on other inputs and outputs for 2015. In 
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estimating the cumulative stock of technological learning ( )TLx , this study used R&D ex-
penditures (x1) with no missing values for the 2008 to 2015 period, and it examined the 
patents that were granted at the beginning of this study period and those that were granted 
in two or more periods. In calculating a firm’s efficiency score, no missing input or output 
values were allowed for 2015. 

The sample data were collected from COMPUSTAT using the Global Industry Classifica-
tion Standard (GICS) to search for IT companies. Our sample of firms was constructed by 
merging the financial data from COMPUSTAT with the patent data from the United States 
Patent and Trademark Office (USPTO). The US represents a huge market for product sell-
ing and technology transactions. Because patent application and protection are governed 
by territorial limitations, many enterprises and research institutions from all over the world 
submit patent applications to the US to protect their intellectual assets and research outputs. 
The USPTO databases have been used extensively in academic research. For the environmen-
tal categorical variable, this study uses countrywide R&D subsidy intensity (zh) rather than 
firm-level subsidy intensity. Government incentives for R&D may take on various forms, 
such as R&D tax credit or financial R&D subsidies. In countries with a simple general R&D 
tax credit, it is likely that firm subsidy intensities are similar; where financial R&D subsidies 
dominate, large differences between firms are to be expected. Financial R&D subsidies are 
more effective in raising private R&D spending and learning outcomes (Söderblom, Samu-
elsson, Wiklund, & Sandberg, 2015). Government funding and other types of funding of 
business enterprise R&D expenditure in the IT industry and the GDP for 2009 were re-
leased and made available by OECD sources. The observed countries are classified into two 
environmental categorical variables based on the R&D subsidy intensity level (government-
financed R&D expenditures relative to GDP): low subsidy intensity (z1) and high subsidy 
intensity (z2). The former includes four countries: the United Kingdom, France, Norway, and 
Germany. The remaining four countries, Taiwan, Korea, Japan and Finland, are classified as 
high subsidy intensity (z2). To examine that the difference of two categories is significant, 
the nonparametric Mann-Whitney U test is conducted. The resulting Z statistic is shown as 
2.3094 (the p-value is 0.0209) which reveals that the observed eight countries can be suitably 
grouped into two environmental categories based on the mean of the R&D subsidy intensity 
(zh). In addition, outlier detection finds without any disturbance of extreme value on the 
R&D subsidy intensity. Note that the number of category on R&D subsidy intensity is limited 
to two for being small number of observed countries

3. Results and discussion

3.1. Stage 1. Estimating the technological learning effect and data

In the first stage, this study estimates the technological learning effect ( )TLx  of the analyzed 
128 firms through an ordinary least-squares method before referring to the past literature to 
choose inputs and outputs. The descriptive statistics of the inputs, outputs and environmental 
categorical variables are compiled in Table 1. This table shows that the technological learning 
effect ( )TLx  was significantly different among countries. For example, the mean of the tech-
nological learning effect ( )TLx  in Japan was relatively high, followed by Taiwan and Norway; 
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this mean in France was relatively low. These technological learning effects ( )TLx  were then 
incorporated into the categorical DEA model to evaluate R&D efficiency. This study uses in-
puts and outputs to obtain additional information (e.g., patent intensity and R&D intensity). 
Firm-level patent intensity and R&D intensity are measured by dividing the total number of 
patents (y1) and R&D expenditures (x1) a firm holds by its annual revenue (y2). IDEX ASA 
located in Norway is found to have a higher patent intensity and R&D intensity, which is af-
fected by the lower revenue. This might be because a firm with a high patent intensity often 
delays introductions and thus reduces potential revenue (Moorman, Wies, Mizik, & Spencer, 
2012). In these two variables, these countries are not similarly characterized with respect to 
their R&D subsidy intensity (zh) level. These countries can be characterized with respect to 
their R&D subsidy schemes. For example, Hall and Van Reenen (2000) found that countries 
with high subsidy intensity levels (z2) have a true incremental R&D tax credit.

3.2. Stage 2. Integrating the effect of subsidy policies  
and technological learning on R&D efficiency measures

The categorical DEA model is utilized as follows. First, the firms in the first category (which 
includes only low subsidy intensity countries) are analyzed. Then, the firms in the second 
category (which include low subsidy intensity and high subsidy intensity countries) are ag-
gregated and analyzed to determine the R&D efficiency of the firms in the high subsidy 
intensity countries. The results of the analysis that is based on this categorization are given 
in Table 2. It can be observed that the firms in the United Kingdom, France and Germany 
have obtained the optimal efficiency score of one in the first category, which means that they 
are at the top performance ranking in the low subsidy intensity countries. Moreover, when 
the second category is applied in which all firms are included, the firms in Taiwan and Japan 
are the best performers, while it is more difficult for firms in the United Kingdom, France 
and Germany to become efficient. For the firms in low subsidy intensity countries, there is a 
significant difference between the means of the efficiency scores (r*) in the first and second 
categories.

Next, this study compared the firms’ technological learning effect ( )TLx  with changes 
in their efficiency scores (r*). The results are given in Table 2. This study used the non-
parametric Wilcoxon signed-rank test to examine the null hypothesis that the overall R&D 
efficiency score (r*) would show no significant difference after technological learning was 
considered. The resulting Z statistic is 5.587839 (the p-value is 0.000000) at the one per-
cent level of significance. Therefore, this result rejects the null hypothesis, and incorporating 
the technological learning effect TL( )x  into R&D efficiency is appropriate. Table 2 shows 
that the standard deviation increased, which indicates that when the technological learn-
ing effect ( )TLx  was considered, the differences in R&D efficiency among countries be-
came more apparent. This finding means that incorporating the technological learning ef-
fect ( )TLx  into the R&D efficiency assessment will enhance the discriminatory power of the 
model. When the technological learning effect ( )TLx  was integrated, the average efficiency 
scores (r*) increased from 0.3641 to 0.6179 for firms in the low subsidy intensity coun-
tries and decreased from 0.2089 to 0.1452 for firms in the high subsidy intensity countries.  
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Table 2. Efficiency scores with and without integration of the technological learning effect using the 
categorical DEA model

Country
(Number of DMUs) Statistics

Category
R&D subsidy 

intensity  
(zh)

Efficiency score, 
technological learning  

effect integrated

Efficiency score, 
technological learning 
effect not integrated

First  
category

Second 
category

First  
category

Second 
category

United Kingdom 
(Number of DMUs: 3)

Mean 

Low Subsidy 
Intensity

0.6206 0.0033 0.3989 0.0152 
Minimum 0.2174 0.0008 0.0786 0.0072 
Maximum 1.0000 0.0064 1.0000 0.0224 
Std Dev 0.3918 0.0029 0.5209 0.0076 

France 
(Number of DMUs: 2)

Mean 1.0000 0.0074 0.5832 0.2174 
Minimum 1.0000 0.0000 0.1664 0.0314 
Maximum 1.0000 0.0148 1.0000 0.4035 
Std Dev 0.0000 0.0105 0.5895 0.2632 

Norway 
(Number of DMU: 1)

Observed 
value 1.0000 0.0003 0.0011 0.0002 

Germany 
(Number of DMUs: 4)

Mean 0.3292 0.0010 0.3192 0.0175 
Minimum 0.0341 0.0001 0.0491 0.0106 
Maximum 1.0000 0.0024 1.0000 0.0337 
Std Dev 0.4533 0.0009 0.4562 0.0109 

Taiwan 
(Number of DMUs: 25)

Mean 

High Subsidy 
Intensity

0.0804 0.0820 
Minimum 0.0000 0.0001 
Maximum 1.0000 1.0000 
Std Dev 0.2768 0.2763 

Korea 
(Number of DMU: 1)

Observed 
value 0.0064 0.0100 

Japan 
(Number of DMUs: 89)

Mean 0.1695 0.2515 
Minimum 0.0000 0.0008 
Maximum 1.0000 1.0000 
Std Dev 0.2963 0.2668 

Finland 
(Number of DMUs: 3)

Mean 0.0133 0.0670 
Minimum 0.0000 0.0056 
Maximum 0.0386 0.1460 
Std Dev 0.0219 0.0718 

Low Subsidy Intensity 
(Number of DMUs: 10)

Mean 0.6179 0.3641 
Minimum 0.0341 0.0011 
Maximum 1.0000 1.0000 
Std Dev 0.4340 0.4415 

High Subsidy Intensity
(Number of DMUs: 
118)

Mean 0.1452 0.2089 
Minimum 0.0000 0.0001 
Maximum 1.0000 1.0000 
Std Dev 0.2893 0.2738 

Total DMUs
(Number of DMUs: 
128)

Mean 0.1822 0.2210 
Minimum 0.0000 0.0001 
Maximum 1.0000 1.0000 
Std Dev 0.3266 0.2909 
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Therefore, if the technological learning effect ( )TLx  is ignored, then the efficiency score (r*) 
of firms may be underestimated in the low subsidy intensity countries, and the efficiency 
score (r*) of firms may be overestimated in the high subsidy intensity countries. This re-
sult suggests that the effect of technological learning on R&D efficiency is highly sensitive. 
Wilcoxon signed-rank was also used to test the null hypothesis that the overall R&D ef-
ficiency score (r*) would show no significant difference after environmental categories of 
R&D subsidy intensity (zh) were considered. The resulting Z statistic is 3.109912 (the p-value 
is 0.001872) at the one percent level of significance. Therefore, this statistical result rejects 
the null hypothesis, and incorporating the two environmental categories of R&D subsidy 
intensity (zh) into R&D efficiency is appropriate. Choi and Yeniyurt (2015) believe that the 
high intensity of government R&D subsidies may represent greater learning opportunities, 
technological learning capabilities and technological strength of the industry in a country. 
Lall (2000) also avers that subsidy policies play an important role in enhancing firms’ tech-
nological learning because more advanced technologies tend to call for greater government 
support to help these firms overcome technological learning costs. Significant technological 
learning costs are involved in accumulating knowledge stocks and in developing R&D output 
(patent counts) in most firms in the IT industry (Hanna, Boyson, & Gunaratne, 1999). The 
level of subsidy intensity may play a key stimulatory role in firms’ technological learning, 
which increases the R&D efficiency of firms’ activities (Hudon & Traca, 2011). Governments 
should therefore consider increasing their budgetary appropriations or outlays for R&D to 
generate greater R&D efficiency. However, if government subsidies are not used efficiently, 
the government resources that are devoted to stimulating private R&D activities are wasted. 
Governments that administer government-sponsored R&D projects should therefore estab-
lish control mechanisms for tracing and managing the execution of projects at recipient firms 
to ensure the efficient use of subsidies (Hsu & Hsueh, 2009).

Table 3 shows the firms with an efficiency score (r*) of 1.0, which are considered the 
most R&D-efficient  firms; these firms are on the best practices frontier and can serve as 
benchmarks for inefficient firms. These efficient firms in the low subsidy intensity countries 
were relatively R&D efficient and could be referred to as better performers, not the best 
performers in all cases. Oxford Instruments Plc, Riber, Soitec, Idex Asa and Adva Ag Opti-
cal Networking were selected as the most appropriate benchmarks because these firms were 
evaluated only within the category of low subsidy intensity countries. The efficient firms in 
the high subsidy intensity countries are concentrated in Japan and Taiwan. The Taiwanese 
government devotes considerable attention to R&D in related IT fields, demonstrated by the 
fact that most R&D budgets and subsidies have gone to firms involved in the IT industry 
(Hsu & Hsueh, 2009). Many Taiwanese firms in the IT industry were able to enter higher 
value-added R&D activities by tapping government support (Hanna et al., 1999). Meanwhile, 
the government established three major science-based industrial parks with tax subsidies to 
support the high-tech industry’s development (Hsu & Chiang, 2001). Because of pressure 
from globalization trends, the demand for highly skilled workers in Taiwan’s advanced tech-
nology fields has increased. Consequently, many Taiwanese workers have been forced to con-
tinue their education to upgrade their knowledge and skills or to obtain new knowledge and 
skills to maintain their employability and increase their long-term salary prospects (Ho &  
Kuo, 2010). This pressure may enhance the R&D efficiency of firms in Taiwan’s IT industry. 
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Japanese corporate leaders have long argued that R&D expenditures are essential to maintain 
and increase their international competitiveness in the global IT market (El-Mashaleh, Al-
Smadi, Hyari, & Rababeh, 2010). R&D expenditures are important to obtain the new knowl-
edge and skills that are relevant to the development of new IT products, which leads to the 
greater cumulative technological learning effect and further enhances R&D efficiency. These 
firms were evaluated as relatively efficient in all cases and could be considered benchmarks 
for the best performers. Japan Aviation Electronics and Daiwabo Holdings Co Ltd, with set 
frequencies of 112 and 56, respectively, are benchmarks for the best performers and should 
be considered with special care.

Table 3. The most R&D efficient firms in the sample that are used as benchmarks to measure the ef-
ficiency of the remaining firms

Country
Category

R&D subsidy 
intensity (zh)

Company Name Reference set
frequency

United Kingdom
(No. of efficient DMUs: 1)

Low Subsidy 
Intensity

Oxford Instruments Plc 3

France
(No. of efficient DMUs: 2)

Riber 6
Soitec 6

Norway
(No. of efficient DMUs: 1) Idex Asa 1

Germany 
(No. of efficient DMUs: 1) Adva Ag Optical Networking 4

Taiwan 
(No. of efficient DMUs: 2)

High Subsidy 
Intensity

Quanta Computer Inc 18
Hon Hai Precision Ind Co Ltd 1

Japan
(No. of efficient DMUs: 8) 

Japan Aviation Electronics 112
Daiwabo Holdings Co Ltd 56
Mitsui High-Tec Inc 9
Planet Inc 4
Jastec Co Ltd 2
Shinko Electric Industries 2
Nihon Dempa Kogyo Co Ltd 1
Access Co Ltd 1

The adjustments of the inputs and outputs at the country level can be identified from the 
difference in rates, as seen in Table 4. In the low subsidy intensity countries, most firms show 
the greatest difference in the number of patents. Most firms in the high subsidy intensity 
countries reflect the greatest difference in the rates between the technological learning effect 
( )TLx  and the number of patents. Table 4 also identifies the important sources of inefficiency 

using decomposition. This study finds that the important sources of R&D inefficiency in the 
IT industry are a shortfall in the number of patents and a lack of technological learning input. 
Government policy makers must introduce subsidies to stimulate the technological learning 
of local firms, which increases the number of patents in the IT industry.
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Conclusions 

Government subsidies can help firms develop technological learning, and this technological 
learning input has a significant impact on firms’ R&D efficiency. Such a relationship is dif-
ficult to investigate using traditional approaches. Thus, a two-stage approach was developed 
in this paper that incorporates the effects of subsidy policies and technological learning 
into the DEA structure to assess R&D efficiency. This approach demonstrates to policymak-
ers and managers that government R&D subsidy intensity can facilitate firms’ technological 
learning input, which also enhances firms’ R&D efficiency. The empirical results can also 
help inefficient firms identify an appropriate benchmark under the same subsidy intensity 
and use appropriate strategies to improve their R&D efficiency. The benchmark firms in the 
low subsidy intensity and high subsidy intensity countries, respectively, are concentrated in 
France and Japan. This study decomposed the efficiency scores by identifying the inefficiency 
of the most important variable in the shortage, which is caused by the number of patents 
and technological learning, using a slack variable analysis of inefficient firms to improve 
the input and output of their R&D activities. These inefficient firms need better knowledge 
management to increase the technological learning input and the number of patents. R&D 
subsidies are a very important industrial policy tool in many countries; they incentivize and 
channel R&D investments into technological learning, which increases the number of patents 
in the IT industry. Government R&D subsidies can help give firms more technology learning 
opportunities. Through continuous learning, firms have the ability to effectively initiate the 
creation and accumulation of technological capabilities. Thus, governments should consider 
providing more funding for R&D activities to achieve greater R&D efficiency. However, if 
government R&D subsidies are not used efficiently, the government resources that are de-
voted to stimulating private R&D activities are wasted. Governments that implement and ad-
minister government-sponsored R&D projects should also establish appropriate mechanisms 
for tracking and managing the project execution in recipient firms so that their subsidies are 
used efficiently. Corporate decision makers must be able to effectively manage the money 
that is invested in technological learning to create a continuous learning cycle and to seek 
an adequate R&D subsidy environment. 

Considering the vast number of data presented, which were constructed by combining 
data from the COMPUSTAT, USPTO and OECD databases, this study cannot include more 
detailed data (e.g., IT subsectors). We recommend that future research examine whether dif-
ferent subsectors of IT affect R&D and patent intensities and further explore how this result is 
robust to different patenting propensities in various IT subsectors. However, future research 
on these topics should compare multiple databases. In addition, future researchers should 
consider the use of the dynamic DEA structure to measure changes in R&D efficiency over a 
long time period and to investigate the effects of important factors on technological learning 
or R&D efficiency in different countries.
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