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Abstract. Monte-Carlo methods to asses a statistical validity of the relationship between coefficients of 
time series regression model were proposed. In economics such a relationship is present in the case when 
constant return to scale in production functions is assumed. The techniques being discussed here are 
virtually free from assumptions about underlying probability distributions and may be used in the case, 
when target variable or regressors are time series with random walk. This is achieved by comparing the 
regression model built on truly multivariate time series with those built on simulated time series with 
random walk. It has been shown that for the production functions of most Russian regions, the returns to 
scale significantly differs from a constant value at p<0.05.

1 Introduction 
The choice of models of optimal complexity is an 
important task in a wide variety of research fields a. A 
number of studies e, are devoted to the selection of the 
optimal set of variables in regression models (see [1, 2] 
and references therein). This problem can be solved by 
testing null hypotheses stating equality of corresponding 
regression coefficients to zero. Another class of 
problems is assessing if some constraints on regression 
parameters are hold.  

The most well-known tools that are commonly used 
to verify the existence of constraints are the Lagrange 
multiplier, the Waldand the likelihood ratio tests. These 
tests are based on a number of ”hard-to-guess” 
assumptions such as, for example, that about the 
asymptotic normality of the estimates. Such assumptions 
are doubtful when they are related to time series that 
follow a random walk. Our approach is based on Monte 
Carlo simulations. This approach requires a high amount 
of computations, but gives adequate and clear results. It 
is applicable to samples of a relatively small size and is 
free from assumptions about distributions. 

Paper [3] discusses a number of alternative models of 
production functions that describe the economy of the 
Russian Federation using standard methods for 
estimating linear regression parameters. The work [4] is 
devoted to the application of Monte Carlo methods for 
studying the production functions of the regions of the 
Russian Federation. Reliability of the Cobb-Douglas 
function 

Y=AKαLβε     (1) 

was thus confirmed. 

In (1), in the general case, the values are interpreted 
as follows: Y is “output”, K is “capital”, L is “labor”, A, 
α, β are calculated parameters, ε is the «multiplicative 
noise» characterizing the mismatch between the models 
and data, often in the formulas for production functions 
omitted. It must be noted that different economical 
indicators may be used as variables Y, K, L. For example, 
L may be number of employers or average annual 
number of people employed in the economy of regions, 
multiplied by the average monthly nominal accrued 
wage of employee. 

An important characteristic of (1) is the parameter 
α+β, characterizing the returns to scale of production. It 
can be of three types - decreasing, constant or increasing 
when the relevant conditions are take place: 

α+β<1,    (2a) 

α+β=1,    (2b) 

α+β>1.    (2c) 

An interesting feature of α+β is that if condition (2b) 
is satisfied, then multiplying Y, K, and L by the same 
constant leads to its reduction in (1). It follows that, 
combining a number of subsystems described by (1) with 
common α and β, we obtain a system described by the 
same formula (1) with the same coefficients. Obviously, 
this is an important reason why some authors, see, for 
example, [5], consider condition (2b) as a necessary 
complement to (1). If (2b) is not take place, then the 
aggregate output of combination of several equal 
subsystems will be more or less than sum of the outputs 
of considered separately subsystems. So significant 
deviation from (2b) requires additional explanation. This 
can be considered as the presence in the system of 
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additional factors that impede, or contribute to an 
increase in output with increasing values of production 
factors. Emergent properties can be determined by 
competition or cooperation between subsystems, self-
organization processes characteristic of complex 
nonlinear systems. 

Wald test was used to verify the hypothesis of the 
constant returns to scale of production functions [6, 7]. 
The calculations in these publications reliably testified 
that returns to scale are not constant. A significant 
increasing returns to scale of production for Russia as a 
whole was shown in [3]. 

In this article, a new methodology is used to verify 
the constancy of returns to scale for specific Russian 
regions as well as for all Russian regions as a whole. The 
proposed verification methods are based on the property 
that model (1), when condition (2b) is take place by 
transforming variables, can be reduced to a paired linear 
regression model in two ways. The first way is using the 
variables: 

y=Y/K, l=L/K.     (3) 

If we substitute variables (3) in (1) and calculate 
logarithm of the result, we obtain the following 
expression: 

Ln(y)=Ln(A)+β Ln(l)+(α+β-1)Ln(K)+ε.    (4a) 

If condition (2b) is satisfied, we obtain the equation: 

Ln(y)=Ln(A)+β Ln(l)+ε,  (4b), 

since the coefficient of Ln(K) is zeroed. 
Thus, verification of the constant returns to scale 

condition by transformation of variables (3) is reduced to 
the task of verifying that the corresponding coefficient is 
zero in the linear regression equation. 

Since the variables K and L enter the same way in 
equation (1) (that is, if L and K in (1) are interchanged, 
the calculation results will not change), an alternative to 
transformation (3) is the change of variables: 

y=Y/L, k=K/L,    (5) 

as a result of which we obtain a model of the form: 

Ln(y)=Ln(A)+αLn(k)+(α+β-1)Ln(L)+ε   (6a) 

and when (2b) is satisfied, respectively 

Ln(y)=Ln(A)+αLn(k)+ε.  (6b). 

Models (4a) and (6a) are called long models with 
respect to the corresponding short models: (4b) and (6b). 
Without a priori information about which of the 2 
options for replacing variables is preferable we consider 
below the results of calculations using both options. 

2 Methodology of statistical reliability 
assessment 
The production functions were calculated for 79 federal 
subjects (regions) of the Russian Federation, for which 

there is the required data set for the period under review 
(according to data for 1996-2014) ([9] and the same 
digests were used). The following specific indicators 
were used as variables in (1): Y is the gross regional 
product, K is the investment in fixed assets. In the 
literature beech K is usually used to denote capital and 
investments are denoted by the letter I. We decided to 
use notation which is more common when Cobb-
Douglas functions are discussed. Letter L is used to 
denote the average annual number of people employed in 
the economy of federal subjects multiplied by the 
average monthly nominal accrued wage of employee. 
Investment production functions were previously used, 
for example, in [10-12]. All indices were calculated at to 
constant prices using consumer price indices. Statistical 
significance of regression models (4a), (4b), (6a), (6b) 
for some region may be assessed by time series for this 
region. 

In this paper statistical verification was based on 
Monte Carlo techniques that are similar to methods used 
previously in [4, 8]. Pseudo-samples are generated to 
simulate Ln(Y), Ln(K), Ln(L) independently of each 
other. There are 4 types of generating pseudo-samples 
with row lengths equal to the length of the rows of the 
used real data: 

I) series Xt=et - white noise time series, where noise 
terms e t are iid and are sampled from normal distribution 
N(m, d). Mathematical mean m and variance d are taken 
equal sample average and sample variance of 
corresponding indicator at observation period. 

II) series Xt+1=Xt+et, - time series following a 
random walk, where noise terms e t are iid and are 
sampled from normal distribution N(m, d). Mathematical 
mean m is taken equal 0, variance d is taken equal 
sample variance of corresponding indicator increments at 
observation period. The simulated initial values are taken 
equal observed initial values. 

III) iid series obtained by bootstrap method (mixing 
empirical data values in time “with return”, that is, with 
the possibility of duplicating any data values at the 
expense of others). 

IV) iid series obtained by application of bootstrap 
method to increments Xt+1-Xt. The initial values and 
variances are equal to the corresponding values for the 
increments of the studied regions, the average values are 
zero. 

A comparative analysis of types I with III and II with 
IV allows us to understand what role the deviation of the 
distributions from normal plays in the data under study. 
It is believed that bootstraps more accurately describe 
data in small samples with distributions significantly 
different from normal ones. 

A comparative analysis of types I with II and III with 
IV allows us to estimate the contribution of the spurious 
regression effect due to the nonstationarity of the data 
series, which was described in more detail in [4]. 

The validity of the dependences is verified by 
generating a large number (in our case, 5000 for each 
region) of simulations. Models (1), (4), (6) calculated by 
simulated time series are ranked descending R2. It makes 
no sense to compare models if they all describe the data 
poorly. Therefore, at first statistical significance of 
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models (1), (4), (6) is evaluated.   To assess the 
reliability of these models corresponding values of R2 for 
observed time series are compared with R2 for simulation 
with rank 250 out of 5000 possible ranks. Hereinafter, 
we will call them 95% quantiles, since 95% of the values 
have a lower measured value. The exceedance of 95% 
quantiles by R2 for observed time series may be 
interpreted as a fact that probability of random arising of 
observed pattern is less than 5%. Statistical significance 
was evaluated when methods I - IV a used to generate 
target variable and covariates according null hypothesis 
about their independence. 

A similar procedure is used to assess if long models 
better describe data than short models. Statistical 
significance evaluating is based on differences between 
determination coefficients for long and short models that 
will be further referred to as ΔR2. By definition, R2 can 
only increase with the addition of a new variable.  
However high ΔR2 may indicate a higher predictive 
ability of long models. To assess statistical significance 
ΔR2 at observed  time series is compared with ΔR2 for 
time series where additional covariate in long model is 
generated by techniques I – IV. 

In addition to calculations for each region separately 
the total significance for all regions was evaluated. To 
assess   total significance sums of R2 and ΔR2 at observed 
time series for all regions are compared with sums of R2 
and ΔR2 at time series that are generated by techniques I-
II.   

3 The results of the calculations. 
Model (1). Evaluation of the reliability of the model (1) 
implementation without imposing a restriction (2b) 
showed that for the majority of regions regularity 
associated with model (1) really exists. At that 95% 
quantile was equal 0.313 for type I simulations while 
minimal R2 for observed time series was 0.78. For type II 
simulations 95% quantile was equal 0.814 and only for 2 
regions out of 79 (for the Magadan and Murmansk 
regions) R2 for observed time series was less than this 
quantile. Thus, the probability that the patterns described 
by formula (1) without imposing condition (2b) are 
actually arose by chance is small if null hypotheses that 
target and covariates are iid noise or follow a random 
walk are true.  

Results of calculations aimed to assess reliability of 
condition (2b) are graphically presented below.  

Model (4b). At Figure 1 values of R2 for models of 
type (4b) built by observed time series are compared   
with the corresponding 95% quantiles for models of type 
(4b) built by simulations generated by methods I-II. For 
each region simple linear regression of Ln(Y)-Ln(K) on 
Ln(L)-Ln(K) is built by least squares method by related 
observed time series and corresponding   R2 is calculated. 

 

Fig. 1. Result for short models of type 4b.  

Following two steps were repeated 5000 times to 
calculate 95% quantiles.  

Step 1. Time series simulating Ln(Y), Ln(K), Ln(L) 
are generated independently using methods I or II.  

Step 2. Simple linear regression of Ln(Y)-Ln(K) on 
Ln(L)-Ln(K) is built by simulated time series using least 
squares technique and corresponding R2 is calculated. 

Calculated 5000 simulations. were ranked 
R2 descending and R2 for simulation with rank 250 is 
considered 95% quantile. 

Values of R2 for models built by observed time series 
and 95% quantiles are given for 79 RF regions that are 
ranked R2 for observed data descending. 

Following notations are used: ■ - 95% quantiles for 
type I simulations, ▼ - 95% quantiles for type II 
simulations, and ♦ - R2 values for production function 
models based on real data. 

It may be seen from figure 1 that values of R2 at 
observed data are greater than 95% quantiles for 35 
regions when simulating of type I is used, but only for 
2 when simulating of type II is used. So for 35 regions 
models of type (4b) may be considered reliable if 
suppositions about independence of observations in 
time series is true. Only for two regions R2 models of 
type (4b) cannot be explained as a spurious 
regressions associated with a random walk effect only 

The sum of R2 far all RF regions, equal to 45.85, 
significantly exceeds the sums obtained in the 
simulation of type I, lying in the range (28.76; 40.26), 
but has a value near the median of the sums obtained 
in the simulation of type II, lying in the range (36.91; 
54.26). 

Thus, the pattern described by model (4b) as a 
whole can be explained as a spurious regression 
associated with a random walk effect only. 

Model (6b). At Figure 2 values of R2 for models of 
type (6b) built by observed time series are compared   
with the corresponding 95% quantiles for models of type 
(6b) built by simulations generated by methods I-II.  

All calculations are the same as in case of model 
(4b). All notations at Figure 2 are the same as at figure 1. 
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Fig. 2. Result for models of type 6b. 

It can be seen from figure 2 that curve of R2 values 
received at observed time series lies lower than 
corresponding curve for calculations for formula (4b). 
Real values of R2 are greater than 95% quantiles for 4 
regions when simulating type I, and for 0 regions when 
simulating type II. 

The sum of R2 for all 79 regions is equal 13.83 and is 
much smaller than corresponding sums obtained for 
simulations of type I and simulations of type II. The sum 
of R2 for simulations of type I lying in the range (18.33; 
28.74) and sum of R2 for simulations of type II lying in 
the range (16.25; 34.69). Low sum of R2 at observed 
data possibly may be related to the peculiarities of the 
transformation of variables. Model (6b) is not suitable 
for describing the data used. 

The following 2 figures are related to studies aimed 
to assess if long models really describe data better than 
short ones. 

Model (4a). At Figure 3 values of R2 for models of 
type (4a) built by observed time series are compared   
with the corresponding 95% quantiles for models built 
by simulations generated by methods I-II. For each 
region linear regression of Ln(Y)-Ln(K) on Ln(L)-Ln(K) 
and Ln(K) is built by related observed time series and 
corresponding R2 is calculated. 

Similar linear regression is built by simulated data set 
as it was done when models (4b) or (6b) were studied. 

 

Fig. 3. Results for long model of type (4a). 

Values of R2 at observed data are greater than 95% 
quantiles calculated by simulated data for 60 regions 

when simulating type I is implemented but only for 2 
regions when simulating type II was used. 

The sum of R2 by all regions is equal to 70.70, 
significantly exceeds the sums obtained at simulations of 
type I lying in the range (53.74; 61.13), and the sums 
obtained at simulations of type II, lying in the range 
(54.76; 68.18). 

Thus, in general, the pattern determined by model 
(4a) is confirmed, but only for all regions as a whole. 

Model (6a). At Figure 4 values of R2 for models of 
type (6a) built by observed time series are compared   
with the corresponding 95% quantiles for models of type 
(6a) built by simulations generated by methods I-II.  

For each region linear regression of Ln(Y)-Ln(L) on 
Ln(K)-Ln(L) and Ln(L) is built by related observed time 
series and corresponding R2 is calculated.  

  

Fig. 4. Results for long model of type (6a). 

Values of R2 at observed data are greater than 95% 
quantiles calculated by simulated data for 18 regions 
when simulating type I is implemented but only for 1 
regions when simulating type II was used. 

The sum of R2 by all regions is equal to 59.94, 
significantly exceeds the sums obtained at simulations of 
type I lying in the range (46.95; 56.82), and the sums 
obtained at simulations of type II, lying in the range 
(41.7; 57.83). 

Thus, in general, the pattern determined by model 
(6a) is confirmed but only by all set of regions as a 
whole. 

ΔR2 for (4a) and (4b). Figure 5 compares difference 
between long model (4a) and short model (4b) for 
observed data and simulated data.  For each region 
difference between R2 for long model (4a) and R2 for 
short model (4b) (ΔR2) was calculated.  Then following 
steps were repeated 5000 times to calculate 95% 
quantiles for ΔR2: 

.Step 1. Time series simulating Ln(K) is generated 
independently using methods I or II.  

Step 2. Simple linear regression of Ln(Y)-Ln(K) on 
Ln(L)-Ln(K) is built by observed time series of Ln(Y) 
and Ln(L) and simulated by method (I) or (II) Ln(K) 
using least squares technique. Then corresponding R2 is 
calculated. 

Step 3. Linear regression of Ln(Y)-Ln(K) on Ln(L)-
Ln(K) and Ln(K) s built by observed time series of Ln(Y) 
and Ln(L) and simulated by method (I) or (II) Ln(K) 
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using least squares technique. Then corresponding R2 is 
calculated. 

Step 4. Difference ΔR2 between R2 calculated at steps 
3 and 2 is taken. 

Calculated 5000 simulations were ranked ΔR2 
descending and ΔR2   for simulation with rank 250 is 
considered 95% quantile. 

Figures 5-6 use the following notations: ■ - 95% ΔR2 
quantiles for type I simulations, ▼ - 95% ΔR2 quantiles 
for type II simulations, and ♦ - ΔR2 values between long 
and short models calculated for observed data. 

 

Fig. 5. Results for difference between long models (4a) and 
short models (4b). 

It is seen from figure 5 that ΔR2 values at observed
time series are greater than 95% quantiles for 75 regions 
when described above procedure includes simulating of 
type I and for 57 regions when simulating of type II is 
implemented 

The sum of ΔR2 by all regions is equal to 24.85 and   
exceeds the sums obtained in the simulation of type I 
lying in the range (0.61; 2.17), and the sums obtained in 
the simulation of type II, lying in the range (3.97; 11.88). 

Thus, model (4a) reliably better describes the data 
than model (4b). 

ΔR2 for (6a) and (6b).  Fig. 6 depicts results of 
studies where difference between long model (6a) and 
short (6b) at observed data is compared with difference 
between long model and short models at simulated data.  

All calculations are the same as in case when 
difference between R2 for models (4a) and (4b) was 
studied. All notations at Fig. 6 are the same as at Fig. 5. 

 

Fig. 6. Results for difference between long models (6a) and 
short models (6b). 

It is seen from figure 5 that ΔR2 values at observed
time seriesare greater than 95% quantiles for 74 regions 
when described above procedure includes simulating of 
type I and for 44 regions when simulating of type II is 
implemented. 

The sum of ΔR2 by all regions is equal to 46.11 and 
exceeds the sums obtained in the simulation of type I 
lying in the range (2.39; 6.86), and the sums obtained in 
the simulation of type II, lying in the range (15.69; 
31.41). 

Thus, model (6a) reliably better describes the data 
than model (6b). 

The sum of ΔR2 by region, equal to 46.11, 
significantly (with a confidence level of p<0.0002) 
exceeds the sums obtained in the simulation of type I, 
lying in the range (2.39; 6.86), and the sums obtained in 
the simulation of type II, lying in the range (15.69; 
31.41). 

Five regions with lowest ΔR2 is are the same    when 
models (4a), (4b) or models (6a), (6b) are considered. 
These regions are namely Moscow, Adygea, Belgorod 
and Tyumen regions and Chukotka.  

The relationship between the feasibility of condition 
of constancy of returns to scale and difference of R2 is 
for long and short models is shown at figures 7 and 8. 

 

Fig. 7. Dependence of the returns to scale of model (1) on ΔR2 
for (4a) and (4b). 

 

Fig. 8. Dependence of the returns to scale of model (1) on ΔR2 
for (6a) and (6b). 

From fig. 7-8 it can be seen that the regions with ΔR2 
closest to zero (primarily Chukotka and the Belgorod 
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region) have returns to scale close to one. For the vast 
majority of regions, returns to scale are less than one. 
All calculations for fig. 1-6 are done both using normal 
distributions and using the bootstrap method. The results 
for both approaches were close.  So at figures only the 
results using normal distributions are represented. 
Nevertheless, some differences are listed below. 

For one region model of type (1) is rejected when 
simulations are generated by based on bootstrap method 
(IV) that generates time series following a random walk. 
At that model of type (1) is not rejected when data is 
simulated by methods (I-III). For short models (4b) and 
(6b) results are exactly the same for both methods (II) 
and (IV) generating time series that follows a random 
walk. For long model (4а) bootstrap based method (III) 
evaluated regressions as valid for 3 regions where 
normal distribution based method (I) failed to confirm 
validity. Also bootstrap based method (IV) failed to 
confirm validity for 1 region where normal distribution 
based method (II) evaluated regressions as valid. For 
long model (6а) bootstrap based method (III) evaluated 
regressions as valid for 5 regions where normal 
distribution based method (I) failed to confirm validity. 
Also for long model (6а) bootstrap based method (IV) 
failed to confirm validity for 1 region where normal 
distribution based method (II) evaluated regressions as 
valid.  For difference between (6a) and (6b) bootstrap 
based method (IV) confirmed validity of better 
performance of (6a) in 11 regions where normal 
distribution based method (II) failed to do so. At that 
only in one region bootstrap based method (IV) 
confirmed validity of better performance of (6a) that was 
confirmed by normal distribution based method (II). 

4 Conclusion. 
Results of researches may be shortly summarized as 
follows. Statistical techniques based on Monte-Carlo 
simulation of time series on was implemented to assess 
if the Cobb-Douglas production functions reliably 
describe ties between output, labor and capital for the 
economics of Russian regions. The second goal was to 
assess if hypothesis of constant returns to scale is in 
accordance with observed dynamic data.  
Two ways of time series generation were used. The first 
one implemented independent sampling of observations 
from standard normal distribution or with the help of 
bootstrap technique. The second one implemented 
independent sampling of increments between 
neighboring observations from standard normal 
distribution or with the help of bootstrap. The second 
method generates time series that follows a random 
walk.  

 To evaluate statistical significance models built by 
observed time series for Russian regions were compared 
with models built by simulated data. Initially method 
was aimed to evaluate reliability of models in time 
series. But modified variant was developed that is used 
to evaluate reliability of models in panel data. This 
variant was used to assess reliability of constant returns 
to scale supposition for all regions as a whole.  

Studies have shown that the hypothesis of constant 
returns to scale is rejected for all set of regions as a 
whole and for majority of specific regions. At that for 
RF regions there is mainly a decreasing returns to scale. 
However, this conclusion concerns only those specific 
interpretation of labor and capital variables that are used 
in the paper. Results may be different for another 
interpretations. 

Developed technique may be used in many tasks 
where it is necessary to assess reliability of models built 
by time series or by panel data. 
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