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We can immediately recognize novel objects – seen only once before -- in  different positions on the 

retina and at different scales (distances).  Is this ability hardwired by our genes or learned during 

development -- and if so how? We present a computational proof that developmental learning of  

invariance in recognition is  possible and can emerge rapidly.  This computational work sets the  

stage  for  experiments  on  the  development  of  object  invariance  while  suggesting  a  specific  

mechanism that may be critically tested.

Position- and scale-invariant recognition in primates depends on representations in inferotemporal visual 

(IT) cortex.  Individual cell responses in IT are themselves invariant to translations of up to ±2º of 

eccentricity (equivalent to ±240 cones) and ±1 octave of scale (2).  Standard models of visual cortex by 

Fukushima and others (1,3,4,5) attempt to replicate this phenomenon.  In these models, units in layers 

corresponding to IT achieve invariance due to the wiring of the model, sometimes described as a 

convolutional architecture (3).

Networks with this architecture achieve invariance using receptive fields that pool together the responses 

to the same set of templates at many different locations.  This operation is repeated in each successively 

higher layer until, in the top layer, unit responses are invariant across a large region (see figure 1).  The 

templates themselves are derived from previously-seen image fragments; a unit's response is a measure of 

the similarity between the image patch it's seeing now and its optimal stimulus -- the remembered image 

fragment.  In the top layer, each unit will respond invariantly to its optimal stimulus no matter where it 

appears.  The combined activities of the top-layer units are the network's representation of an object.  This 

representation is like a fingerprint for the object which can be used by a classifier for recognition;  it 

inherits its invariance from that of its component units.



The problem of developing invariance via this scheme is thus equivalent to the problem of associating 

units representing the same template at different positions and scales in the visual field.  While it is 

straightforward to achieve this in a computational model, for visual cortex it is one of a class of 

notoriously difficult correspondence problems.  One way the brain might solve it is via the trace rule 

suggested by Foldiak (6).  The trace rule explains how many simple cells having the same selectivity at 

different spatial positions could be wired to the same complex cell by exploiting continuity of motion: 

cells that fire to the same stimulus in close temporal contiguity are all presumably selective to the same 

moving stimulus.  The biological plausibility of using the trace rule -- or a similar mechanism -- for 

learning of invariant object recognition by a developing organism depends on the number of templates 

needed to achieve a useful level of performance, as learning each invariant template requires seeing the 

same object patch moving continuously across all positions and scales.  For at least some templates to be 

similar enough to parts of future novel objects, it would seem that many templates would be required. 

Indeed, the full computational model in figure 1 uses thousands of top-layer templates.

We investigated these issues using a reduced version of this class of models, for which simulation 

software is openly available (8).  Surprisingly, it seems that any object can be recognized fairly well by 

using a set of templates which can be very different from it: for instance, templates learned from images 

of random dots can be used to recognize a large number of different objects, such as faces.  Even more 

surprisingly, using a small number of templates is sufficient for good recognition performance.  Figure 1 

shows good invariant recognition performance for identification of  different faces using a network with 

just 10 top-layer templates derived from patches of a face. Figure 1 shows invariance for translation; 

similar results were obtained for scale (7).

We  conjecture  that  a  small  number  of  "primal"  templates  could  be  easily  imprinted  during  early  

development in an invariant way by a mechanism implementing a trace rule.  Patches of a mother’s face  

or patterns derived from spontaneous retinal waves, for instance, could serve as primal templates from 

which the network will inherit invariance for any novel object.  The number of invariant templates could  

later be increased by any of several bootstrapping mechanisms (7), anchored by the initial  invariance  

provided by the primal templates.



Fig. 1.  Invariant recognition via a small number of invariant cells  (A)  Illustration of a generic hierarchical 
model of object recognition in the spirit of Hubel and Wiesel.  In the first layer (S), the “simple” units are tuned to  
oriented edges.  Each “complex” unit in the second (C) layer pools the first layer units with the same preferred 
orientation but from different locations in the visual field.  In the penultimate layer, cells are tuned to patches of  
natural images.  Each high level C unit pools S cells tuned to the same template replicated at different locations. The  
image fingerprint computed by the top level C units is then fed into a classifier.  (B)  Model accuracy: We plot a 
summary statistic of the ROC curve for classifying test images as either containing the same person's face or a  
different person's face (see (7)).   AUC ranges from 0.5, indicating chance performance, to 1, indicating perfect  
performance.  We repeat this classification allowing objects to translate different distances (pixels).  We plot AUC as 
a function of the range over which objects could appear.  The receptive field of the top-level C units was 256x256 
pixels; the faces were approximately 100 pixels horizontally.  In order to introduce variability into the positive class,  
we used 10 test images of the target face under slightly variable pose and lighting conditions; each was replicated at 
every position in a radius of 40 pixels (see panel c).  For distractors, we used 390 different faces presented at the  
same locations.  The simulations were done with a linear correlation classifier using only a single training view 
presented at the center of the receptive field.  One can view the goal of this task as being to determine that all 10 
views of the target face at all positions are more similar to the trained view of the target face presented at the center  
than they are to any of the distractor images.  We repeated the experiment 40 times using different target faces or 
cars.  In panel b we plot the mean AUC over all 40.  Results:  Just  10 top-level C units were sufficient for good 
performance.  Each C cell pooled from ~3000 S cells optimally tuned to the same stimulus at each location. See (7). 
The black trace shows the results from testing on images of cars. In this case there were 5 views of  the target car to  
be associated at each position and 45 distractor cars replicated at each position.  Variability of results:  We repeatedly 
restarted each simulation using a different set of randomly chosen templates.  The standard deviation of the AUC 
(averaged across invariance range) was as follows:  Testing on faces: 2000 face templates: stdev=.0074.  20 face  
templates: stdev=.069.  10 face templates: stdev=.106.  10 random dot pattern templates: stdev=.125.  Testing on 
cars: 10 face templates: stdev=.130  (C)  Examples of test images and top level templates. If the entire 256x256 
image represents a 12 degree IT receptive field then the (~100x100 pixels) targets and distractors would occupy
around 5 degrees of visual angle and the maximum translations considered here (+/- 40 pixels) would be about 2
degrees away from the example location in either direction
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