
Performance and Energy Efficiency in Simple

Simultaneous Multithreading Processor Cores

by

Richard Stephen Uhler

B.S. Electrical Engineering
University of California, Los Angeles 2008

MASSACHUSETTS INS' U E
OF TECHNOLOC"

JUL 12 2010

LIBRARIES

Submitted to the Department of ARCHNES

Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

Author ...
Department of

Electrical Engineering and Computer Science
March 15, 2010

Certified by
Jack B. Dennis

Professor Emeritus
Thesis Supervisor

Accepted by -

Terry P. Orlando

Chairman, Department Committee on Graduate Students

Performance and Energy Efficiency in Simple Simultaneous

Multithreading Processor Cores

by

Richard Stephen Uhler

Submitted to the Department of
Electrical Engineering and Computer Science

on March 15, 2010, in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

Simultaneous multithreading, where instructions from different threads share proces-
sor resources, has shown promise in delivering high throughput with little area and
power overhead. We compare where in the performance energy-efficiency space al-
ternative simple simultaneous multithreading configurations lie, leveraging standard
industry tools to estimate area and power from high level hardware descriptions.

We find sharing function units among threads can improve energy efficiency over
duplicating the function unit set for each thread. A good choice for the number of
threads sharing a function unit ensures the function unit is not overloaded. Sharing
front-end pipeline logic does not improve performance or energy efficiency over either
duplicating the full pipeline or just duplicating the front-end pipelines for each thread.
Different arbitration policies for use of function units do not impact performance
much, but they do have a large impact on the power of the core, so the simplest
arbitration policy should be used to maximize energy efficiency. Operand bypassing,
an obvious optimization for a pipeline which does not share function units, is not
obviously better when function units are shared, improving performance at the cost
of reduced energy efficiency.

Thesis Supervisor: Jack B. Dennis
Title: Professor Emeritus

Acknowledgments

The Microsystems Technology Laboratories provided CAD tools. This research is

supported in part by NSF grants CNS-0719753 and CCF-0937832.

Contents

1 Introduction

2 Experimental Design

2.1 Base Configuration

2.1.1 Fetch

2.1.2 Decode

2.1.3 Issue

2.1.4 Function Units

2.1.5 Register File

2.2 Methodology

2.2.1 Evaluating Performance and Energy

2.2.2 Measuring Performance and Energy

2.3 Benchmarks

2.3.1 M ULT

2.3.2 IDOT...

2.3.3 IDOTLU.

2.3.4 FDOT

2.3.5 FDOTLU

2.3.6 Workloads

3 Initial Multithreaded Configurations

3.1 SEPARATE Configuration

3.2 FUSHARED Configuration

14

. 14

. 15

. 17

. 17

. 18

. 19

. 20

Efficiency 20

Efficiency 23

. 25

. 26

.. 26

. 26

. 27

. 2 7

.. 27

3.3 ALLSHARED Configuration 36

3.4 Evaluation of the Initial Configurations.. 37

3.5 Improving FUSHARED . 41

3.6 Improving ALLSHARED . 45

4 Expanded Configurations 51

5 Arbitration for Function Units 60

6 Operand Bypassing 64

6.1 Integer Bypassing . 64

6.2 Condition Code Bypassing . 66

6.3 R esults . 67

7 Conclusion 75

7.1 Future W ork . 76

Bibliography 78

List of Tables

2.1 Definition of workloads. 33

3.1 Load balance of MIX workload on initial configurations 39

4.1 Load balance of MIX workload of expanded configurations. 51

5.1 Load balance of MIX workload under different arbitration. 61

6.1 Load balance of MIX workload with bypassing. 67

List of Figures

2-1 Single thread core base configuration.

2-2 Fetch stage in base configuration.

2-3 Toolflow for measuring performance, energy efficiency, area. . .

2-4 Pseudocode for MULT program.

2-5 Assembly for MULT program.

2-6 Pseudocode for IDOT program.

2-7 Assembly for IDOT program.

2-8 Assembly for IDOTLU program

2-9 Pseudocode for FDOT program

2-10 Assembly for FDOT program.

2-11 Assembly for FDOTLU program.

3-1 SEPARATE configuration. .

3-2 FUSHARED configuration.

3-3 ALLSHARED configuration.

3-4 Performance of SEPARATE, FUSHARED, ALLSHARED.

3-5 Core area of SEPARATE, FUSHARED, ALLSHARED.....

3-6 Energy efficiency of SEPARATE, FUSHARED, ALLSHARED.

3-7 IPC IPJ plot of SEPARATE, FUSHARED, ALLSHARED. ..

3-8 FUSHARED function unit utilization...

3-9 SEPARATE function unit utilization.....

3-10 FUSHARED function unit conflicts.

. . . . 15

. . . . 16

. . . . 24

. . . . 27

. . . . 28

. . . . 29

. . . . 29

. . . . 30

. . . . 30

. . . . 31

. . . . 32

. . . . 35

. . . . 36

. . . . 37

. . . . 38

. . . . 40

. . . . 42

. . . . 43

. . . . 44

. . . . 46

. . . . 47

3-11 FUSHARED2 configuration.

3-12 ALLSHARED function unit utilization. 49

3-13 ALLSHARED2 configuration. 50

4-1 Performance with FUSHARED2, ALLSHARED2 configurations. . . . 52

4-2 FUSHARED2 function unit conflicts... 53

4-3 Area with FUSHARED2, ALLSHARED2 configurations. 55

4-4 Energy efficiency with FUSHARED2, ALLSHARED2 configurations. 56

4-5 IPC IPJ plot of FUSHARED, FUSHARED2 57

4-6 IPC IPJ plot of SEPARATE, FUSHARED2, ALLSHARED2 58

5-1 Performance of FUSHARED2 using different function unit arbitration. 62

5-2 Energy efficiency of FUSHARED2 using different function unit arbi-

tration . 63

6-1 Example of back to back dependent instructions. 64

6-2 Example of condition code dependency. 66

6-3 Performance of SEPARATE and FUSHARED2 with bypassing. . . . 68

6-4 Area of SEPARATE and FUSHARED2 with bypassing. 69

6-5 Energy efficiency of SEPARATE and FUSHARED2 with bypassing. . 70

6-6 IPC IPJ plot of SEPARATE with and without bypassing 72

6-7 IPC IPJ plot of FUSHARED2 with and without bypassing. 73

6-8 IPC IPJ plot of SEPARATE and FUSHARED2 with bypassing. 74

Chapter 1

Introduction

In the past few decades significant work has gone into building high performance

computer processors. The availability of ever increasing numbers of transistors in

processor designs has allowed us to go beyond the scalar pipelines of the 1980s into

a whole new realm of superscalar architectures[12]. Complex techniques such as out-

of-order issue and execution, register renaming, branch prediction, and speculative

execution put those extra transistors to work squeezing out every last bit of single

thread performance, exploiting instruction level parallelism to bring us to the heroic

processors of the 1990s.

However, this form of instruction level parallelism could take us only so far, leading

people to investigate another form of parallelism, that of thread level parallelism

through multithreading. Rather than sitting idle for those long latency operations

common in single thread execution, the latency can be effectively hidden by a fast

context switch to a different thread. In [22], Tullsen, et al., note multithreading can

reduce what they call wasted horizontal space, where no instructions are available

for issue because of dependencies, but they also argue multithreading does little to

reduce wasted vertical space, where function units are not utilized because the single

thread considered for instruction issue still has limited instruction level parallelism.

Tullsen, et al. then introduce a technique they call simultaneous multithreading,

which allows instructions from different threads to be considered for issue in the

same cycle. They present in [14] an adaptation of a heroic out-of-order superscalar

processor for simultaneous multithreading and demonstrate it can achieve both the

single thread performance of single thread superscalar processors and the latency

hiding of multithreading processors while taking advantage of increased function unit

utilization. The technique of simultaneous multithreading has opened the door to the

next generation of high performance processors in the new millennium.

With the new millennium comes a changing landscape for computing. Embedded

and mobile devices are dominating the market once centered around desktop and

server systems. Cell phones, smart phones, mp3 players, all strive to run programs

with the high performance we have come to expect from our computers, but now a

new constraint has come to the forefront: energy. A device with unrestrained energy

consumption eats through battery life or heats up to unacceptable temperatures,

becoming unusable and costly.

The complex techniques used in out-of-order superscalar processors, attractive

in their ability to enhance performance, are suddenly under scrutiny where energy

efficiency is desired. Is it worth the excess energy consumption to execute speculative

instructions whose results may ultimately be discarded?

Fortunately simultaneous multithreading, the technique used to push performance

even beyond what a single threaded superscalar architecture achieves, also shows

promise in improving energy efficiency. Burns and Gaudiot in [2] demonstrate the

high performance improvements from simultaneous multithreading come with just

small to moderate area overhead. Seng, et al. suggest in [20] simultaneous multi-

threading is inherently energy efficient because of less energy wasted on wrong path

instructions for misspeculation and less waste of underutilized resources, and Li, et al.

find simultaneous multithreading to provide a substantial benefit for energy efficiency

metrics such as the energy delay square metric.

Simultaneous multithreading is not limited to being applied to heoric superscalar

architectures as studied in the previous works mentioned. With the trend in com-

puting towards massive parallelism for high performance, where throughput is more

important and there are always more threads to work on, it makes sense to apply

simultaneous multithreading to simple scalar pipelines, which sacrifice single thread

performance but also do not have the complex, energy hungry structures required

by superscalar achitectures. The joining of simultaneous multithreading and sim-

ple pipelines, which we refer to as simple simultaneous multithreading, shows huge

potential for high performance, high energy efficient architectures.

After Tullsen, et al. originally introduce the technique of simultaneous multi-

threading in [22] they then demonstrate in [14] how it can be implemented as a

straightforward extension to a conventional high performance out-of-order superscalar

architecture. As a result of this, much research effort on simultaneous multithreading

has been on simultaneous multithreading in a heroic processor [9] [6] [10].

Hily and Seznec in [11] consider simultaneous multithreading in a simpler archi-

tecture, suggesting that as the number of threads increase there is less advantage to

having out-of-order execution over in-order execution.

Davis, et al. in [4] suggest if you fix area, to maximize throughput it is better

to use many scalar multithreaded cores, which they call mediocre cores, than a few

heroic cores.

It is argued by Laudon in [13] that using many simple multithreading cores for

throughput oriented server applications has a significant performance per watt advan-

tage over high performance superscalar processors. Both Intel's Atom [8] and Sun's

Niagara [16], which target low power, use simple simultaneous cores to do so while

still supporting decent throughput.

In this work we take a closer look at the performance and energy efficiency of

simple simultaneous multithreading cores.

After describing our experimental design and methodology in chapter 2, we look

specifically at

* How the performance and energy efficiency of multiple threads sharing function

units compares to that of duplicating multiple simple single thread pipelines,

each with their own separate set of function units. Chapters 3 and 4.

" Whether sharing the front end pipeline logic among threads leads to similar

performance benefits as sharing function units. Chapters 3 and 4.

" Under what circumstances a function unit should be shared by all threads, only

some threads, or not at all. Chapters 3 and 4.

" How different policies for arbitrating threads' use of function units affect per-

formance and energy efficiency. Chapter 5.

* How sharing function units interacts with the high performance optimization

technique of operand bypassing, an obvious technique to apply in single thread

architectures. Chapter 6.

We conclude with a summary of our findings.

For our evaluation we have implemented in a high level hardware description lan-

guage a variety of configurations all derived from a single common base configuration

described in section 2.1. We limit our configurations to the core pipeline logic needed

to execute simple kernels with straight line code and branches, we model memory as

taking a fixed small latency, and threads each operate in their own instruction and

data memory spaces.

Using standard industry tools we simulate our hardware description for cycle ac-

curate performance results. We synthesize, place, and route our hardware description

to get estimates of the area of the various components of our designs and take ad-

vantage of low level power simulation tools to estimate average power consumption

of our architectures.

We present our evaluation of performance and energy efficiency for the various

configurations by plotting them in a performance energy-efficiency space which makes

clear which configurations are best and how performance and energy efficiency are

traded off without prescribing preference to performance or energy efficiency.

We find sharing function units among threads can improve energy efficiency over

duplicating the function unit set for each thread, though the performance can at most

match that of duplicating the function unit set for each thread. A good choice for the

number of threads sharing a function unit ensures the function unit is not overloaded.

Sharing the front end pipeline logic does not improve performance or energy efficiency

over either duplicating the full pipeline or just duplicating the front end pipelines for

each thread. Different arbitration policies for use of function units do not impact

performance much, but they do have a large impact on energy efficiency, so the

simplest arbitration policy should be used to maximize energy efficiency. Bypassing,

an obvious optimization for a pipeline which does not share function units, is not

obviously better when function units are shared, improving performance at the cost

of reduced energy efficiency.

Chapter 2

Experimental Design

This chapter describes the experimental design used in our investigation of the per-

formance and energy efficiency in simple simultaneous multithreading cores.

Section 2.1 describes the simple scalar pipeline used as a common base for all

of the multithreaded configurations we experiment with. Section 2.2 describes the

methodology we use to evaluate and measure the performance and energy efficiency of

our multithreaded configurations, and section 2.3 describes the benchmark programs

and workloads we use.

2.1 Base Configuration

This study is motivated by the desire to choose a processor architecture suitable for a

multi-core chip capable of supporting composable parallel programming, which is the

goal of the Fresh Breeze Project led by Professor Dennis in the CSAIL Computation

Structures Group[5].

Each of the configurations we experiment with is a mulitithreaded variation on

a single threaded base processor core configuration. The base configuration is a

simple, single threaded, pipelined, in-order scalar processor core for the Fresh Breeze

instruction set architecture. The Fresh Breeze instruction set architecture, modified

with load and store instructions to give it a more traditional memory model, is a

typical RISC architecture[18).

Figure 2-1: Single thread core base configuration.

Two notable features of the Fresh Breeze instruction set are the use of a condition

code register for branching, where the condition code register can optionally be set

as a side effect of common arithmetic operations, and absolute target addresses in

branch instructions, which simplifies the implementation of branch speculation.

Because we are focusing on the processor core, we limit the instructions supported

to just those required for straight line code and branches. Instruction and data

memory are modeled as taking a small fixed latency.

A high level view of the base configuration is shown in figure 2-1. The core consists

of a fetch stage, decode stage, issue stage, an integer function unit (INT), floating

point unit (FPU), and a load-store unit (L/S).

2.1.1 Fetch

The fetch stage makes requests for instructions from the off-core instruction memory

and forwards the responses to the decode stage. The instruction memory is pipelined

and takes two cycles to retrieve an instruction. Figure 2-2 shows the layout of the

fetch stage.

To reduce bubbles in the pipeline, fetch has a branch predictor which predicts the

next program counter every cycle. The branch predictor makes predictions for all

types of instructions, including jumps, branches, and nonbranch instructions. This is

because it may take many cycles for the instruction memory to respond to a request,

so we do not know at the time of prediction what type of instruction we are predicting

Misprediction
Fetch

Encoded Instruction

Figure 2-2: Fetch stage in base configuration.

for.

Different branch prediction algorithms can easily be swapped into the configu-

ration. The branch predictor we use throughout our experiments is a simple four

entry branch target buffer, mapping the address of previously taken branches to their

targets. This branch predictor is sufficient for our benchmark programs to correctly

predict most loop branches in steady state.

When the instruction memory response arrives, before fetch forwards the instruc-

tion to decode, a simple analysis of the instruction is performed which we refer to as

the fetch analysis. This analysis checks to see if the instruction is a jump instruction,

branch instruction, halt instruction, or other.

If the instruction is a jump instruction, the target is encoded directly in the

instruction. If our branch predictor predicted correctly we will already have performed

the jump and can drop the instruction, otherwise we notify the branch predictor that

it mispredicted the jump and perform misprediction recovery. Jump instructions are

never forwarded to the decode stage.

If the instruction is a non-branch instruction, we know it will not branch. If the

branch predictor predicted a branch, it predicted incorrectly. We notify the predictor

and begin misprediction recovery. The instruction is then forwarded to the decode

stage.

Branch instructions are forwarded as is to the decode stage. They do not give any

immediate feedback to the branch predictor. Later the issue stage will resolve the

branches and notify the fetch stage if there was a branch misprediction.

When we discover a branch misprediction we have to do some recovery. Branch

misprediction recovery involves restoring the program counter, notifying the branch

predictor for training purposes, and killing all outstanding instructions requested from

the instruction memory. To easily kill outstanding instruction requests we associate

with each instruction a single bit fetch epoch. On mispredict we toggle the fetch

epoch, and in fetch analysis we drop any instructions that are not of the current

epoch.

For the issue stage to know if we made the correct branch prediction for branch

instructions, fetch passes the branch prediction made, either branch taken or not,

along with the encoded instruction. There is also a single bit issue epoch used in

exactly the same manner as the fetch epoch for killing instructions between fetch and

issue when issue discovers a branch misprediction.

2.1.2 Decode

The decode stage is simple combinational logic which extracts interesting fields from

an encoded instruction. For a branch instruction these fields are the branch operation

and target. For a nonbranch instruction these fields include the operation, precision,

location of operands, the destination, and whether or not to write to the destination

or condition code register.

2.1.3 Issue

The issue stage stalls instructions until their dependencies are resolved, resolves

branch instructions, gathers operands, and dispatches nonbranch instructions to their

appropriate function unit.

Instructions are issued one at a time and in order. To respect read-after-write and

write-after-write dependencies an extra bit for each register, including the condition

code register, is used to indicate whether a currently executing instruction is pending

a write to that register. To respect write-after-read dependencies operands are read

from the register file at the time of issue.

Specifically, a nonbranch instruction is stalled for issue if it

" Writes a destination register or condition code register which already has a

pending write

" Reads an operand from a register which is pending a write

When none of the above conditions are met and there is space at the appropriate

function unit, destination registers are marked pending, condition codes are marked

pending if written, register operands are read from the register file, and the instruction

is dispatched to the appropriate function unit based on the instruction opcode.

Dispatching of the instruction to the appropriate function unit consists of bundling

together the operands, destination and other pertinent information and putting the

bundle on a queue for the destination function unit. As soon as the function unit is

ready to execute another instruction it will read the bundle off the front of the queue.

The issue stage is also responsible for resolving branch instructions. Branch in-

structions can be resolved if the condition code register is not pending. To resolve

branches the issue stage reads the condition code register to determine if the branch

should be taken based on the branch type. The issue stage then compares that re-

sult with the original branch prediction formed in the fetch stage. If the branch was

correctly predicted, the issue stage does not have to do anything. If the branch was

incorrectly predicted the issue stage notifies the fetch stage of the misprediction and

increments the issue epoch.

Any instructions from an old issue epoch are dropped.

2.1.4 Function Units

There are three function units, each of which handles different types of instructions.

The integer unit performs single precision integer addition, subtraction, multipli-

cation, bitwise AND and OR, left and right shift, and load immediate instructions.

The integer unit takes a single cycle to execute any type of operation. Operations are

implemented using their corresponding Verilog operators. The synthesis tool recog-

nizes these operators and uses optimized library implementations for their synthesis.

The floating point unit performs single precision floating point addition, subtrac-

tion, and multiplication. Each operation is performed in 4 cycles, fully pipelined. The

implementation of the floating point unit is from OpenCores [23] with the division

logic removed.

The load-store unit communicates loads and stores to the off-core data memory.

It is fully pipelined, taking two cycles for a load.

Each of the function units performs a computation, then uses the result to either

write a register, set condition codes, or both. Results are buffered until the actual

writeback can occur based on whether they are destined for a left register, a right

register, or the condition code register. The results of a single instruction execution

may be written back on different cycles depending on the availability of register file

write ports.

2.1.5 Register File

The register file contains 32 registers and is broken down into two banks of 16 registers

each, corresponding to left and right sides as described by the Fresh Breeze instruction

set architecture. Each bank has a single write port and two read ports.

The register file is designed to support writeback of a double precision value each

cycle. While our pipeline was designed for and is capable of double precision opera-

tions, because our floating point unit only implements single precision operations, we

have removed the logic for double precision integer operations, and do not exercise

any double precision operations in the programs we use.

After instructions are executed in the function units they wait for a write port

to become available then write back their results. Instructions can complete out of

order, in which case they may be written back to the register file out of order. When

a register is written it is marked as no longer pending a write.

2.2 Methodology

2.2.1 Evaluating Performance and Energy Efficiency

There have been a number of different proposals for a figure of merit to use to compare

the performance and energy efficiency of different architectures. A nice summary of

some of those proposals is given in [1], which suggests different choices may be valid

under different circumstances. A commonly used metric is the energy delay product

ED, the product of the energy per instruction and number of cycles per instruction,

used in [24], [3] and [7]. The energy delay square product, ED2 , is used as the metric

in [15]. The ED 2 metric gives more preference to performance than does the ED

metric.

Rather than choose a single figure of merit to describe both the performance

and energy efficiency of an architecture, we keep separate measures of performance

and energy efficiency and plot them in a 2D space to get an idea of the tradeoffs our

microarchitectural variations have on both performance and energy efficiency without

suggesting whether performance or energy efficiency is more important. Our plots

are similar to those in [24], except we look at energy per instruction instead of energy

per cycle, and we do not draw curves of constant energy delay, though one certainly

could on our graphs if they had decided the energy delay metric was appropriate for

them and wanted to see what the best configuration under that metric is.

Evaluating Performance with IPC

The performance of an architecture is a measure of how much time it takes to run

a program on it. To make it possible to compare the performance under different

benchmarks programs, which may have different numbers of instructions in them,

we normalize the time it takes to execute a program by the number of instructions

executed in the program, resulting in the amount of time it takes to execute a single

instruction on average for that program.

For this work we assume all the configurations we compare have the same cycle

time. This means we can look at performance in terms of the average number of cycles

it takes to execute a single instruction. This is commonly known as CPI, cycles per

instruction. Because we expect our architectures to execute multiple instructions per

cycle on average, it is convenient to look at the reciprocal of CPI, which is the IPC,

or instructions per cycle.

IPC of multiprogram workloads

There is some question as to whether IPC is a good metric for comparing the perfor-

mance of two different multithreaded architectures, where a single workload consists

of multiple programs running on different threads. To make a fair comparison, for

a given workload each architecture should execute the same amount of work, so we

fix the total number of instructions executed. The problem is, different architectures

may devote more of the total instructions executed to one thread over another in

the workload, meaning in the end the architectures may not have executed the same

amount of work.

For example, consider a workload of two threads where single thread performance

of the first thread is 2 IPC and single thread performance of the second thread is

1 IPC. We could imagine a simple multithreaded architecture which simply time

multiplexes the two programs on a single thread. A version of this architecture which

devotes all the workload instructions running the first thread will have an IPC near 2,

while a version of the architecture which devotes all the workload instructions running

the second thread will have an IPC near 1. But if the architecture is the same, how

can IPC be so different?

One way to get around the problem would be to force each thread in a workload to

execute a fixed number of instructions, but then threads may not all finish at the same

time, failing to take full advantage of the throughput capabilities of a simultaneous

multithreading architecture.

The difficulties of IPC with multiprogram workloads are raised in [19], [21], [15],

and [3]. Sazeides and Juan in [19] propose the SMT-speedup metric

speedup Z1 Li
L

to account for different load balances among threads in a workload, where L is the

number of cycles for the multithreaded workload to complete, Li is the number of

cycles for the single-threaded base configuration to execute Is instructions from thread

i, and Ii is the number of instructions for thread i executed in the multithreaded

workload.

Snavely and Tullsen in [21] propose their own SMT-speedup metric

speedup IPCsmti
Cnonsmti

which is adopted in [15] and [3].

Seng, et al., in [20] fix the number of instructions run in each thread, meaning not

all threads will complete at the same time.

We stick with IPC for our measure of performance. For all our workloads except

MIX, each thread in the workload runs the same program, so changing the load

balance should not have any affect on IPC. For the MIX workload we will present

the different load balances which occur naturally from the different configurations

along with the speedup metric presented in [19] and explicitly note based on that if

it appears load balance was a major contributor to the different IPC.

Evaluating energy efficiency with IPJ

The energy efficiency of an architecture is a measure of how much energy it takes

to run a program on it. Using the same argument given for IPC, we normalize the

total energy it takes to execute a program by the number of instructions executed

and get the amount of energy it takes to execute a single instruction on average. If

we represent energy in joules this gives us the number of joules per instruction. To

be consistent with IPC we take the reciprocal to get the number of instructions per

joule on average, or IPJ.

Once we have measured the IPC and IPJ of two different architectures, we say

the overall performance or overall efficiency of one is better than the other if it has

both better IPC and better IPJ. If IPC is better in one architecture and IPJ better

in the other, we can not make any claims about which architecture is better without

deciding whether IPC or IPJ is more important, something we want to avoid in this

project.

The energy delay product, ED, gives equal weight to IPC and IPJ, as it is just the

reciprocal of the product of IPC and IPJ. Using ED2 is the reciprocal of the square

of IPC and IPJ, putting more weight on IPC than IPJ.

2.2.2 Measuring Performance and Energy Efficiency

To obtain measurements of performance, energy efficiency, area, and other features

of each configuration, we use our own design and implementation of the different

processor configurations.

We have implemented each configuration using Bluespec System Verilog[17], a

high level hardware description language. Figure 2-3 shows the toolflow we run on

the Bluespec implementations to gather the measurements we are interested in. Blue-

spec's support for modularity allows us to easily share code common across all con-

figurations without adding any unfair overhead in the generated logic. It is simple to

describe new configurations by choosing parameters and instances of the generic, pa-

rameterized modules already implemented for previous configurations and connecting

them together appropriately.

Bluespec comes with a cycle accurate simulation framework called Bluesim. Bluesim

can be controlled with Tool Command Language (Tcl) scripts and provides access

to register values and debug output. We use Bluesim for measuring IPC and other

timing related information.

To calculate IPC for a configuration given a set of programs to run, we load

each thread with its program and simulate the configuration using Bluesim until

the number of instructions from each thread issued sums to 100,000. For example,

on an architecture which is fair to each thread, each of the four threads will have

issued 25,000 instructions, for a total of 100,000 instructions. For unfair architectures,

some threads may end up executing more or less than 25,000 instructions. Registers

implemented in the core keep track of how many instructions have been issued, so we

Figure 2-3: Toolflow for measuring performance, energy efficiency, area.

24

know when to stop the simulation. The IPC for the configuration is 100,000 divided

by the total number of cycles simulated.

The Bluespec compiler can also be directed to compile the configurations to syn-

thesizable Verilog, maintaining module hierarchy information where directed. After

compiling to Verilog, we synthesize each configuration separately using Synopsis De-

sign Compiler with Taiwan Semiconductor Company (TSMC) 0.13 pm technology

libraries. Once synthesized, the configurations are placed and routed with Cadence

Encounter, again using the TSMC libraries. Once the design is placed and routed,

Cadence reports core area, which we use as our measure of the area of a configuration.

To measure energy efficiency, we first simulate the Verilog code generated by

Bluespec using the Synopsys Verilog compiler VCS under the chosen set of programs,

generating switching activity for each net in the form of a value change dump(VCD)

file. The simulation is done exactly as it was for measuring IPC, 100,000 instructions

are run, with each program looped so that it starts over again as soon as it finishes.

The VCD file output by VCS is then supplied to Cadence Encounter, which uses it

to generate an overall estimate for average power consumed by the configuration.

Once we have power estimates IPJ can be calculated as 100,000 instructions di-

vided by the average power times the total number of seconds taken to execute all

100,000 instructions. For the IPJ results shown we assume an operating frequency of

100 MHz. Mostly we are just interested in relative IPJ and not absolute IPJ.

2.3 Benchmarks

We have selected a handful of benchmarks to exercise our processor cores. Because

our cores are multithreaded they can run mixtures of different programs all at once.

To avoid confusion we refer to a program as the code running on a single thread and a

workload as the collection of programs run together on a multithreaded configuration.

Because we are focusing on core processor performance without considering mem-

ory hierarchy issues from caching or paging we limit our programs to simple kernel

codes designed to span integer and floating point computations and the effect of

intense arithmetic use through loop unrolling.

The programs are presented with both high level pseudocode and an assembly

representation of the specific instructions in the programs. In the assembly represen-

tation arithmetic operations can be marked with Res to indicate they set the result

register but do not update the condition code register, Cnd to indicate they update

the condition code register but do not change any other register, or unmarked to

indicate they both update the destination register and the condition code register.

2.3.1 MULT

The MULT program is a software implementation of integer multiplication using

a common add-shift method. The program pseudorandomly generates two 32 bit

integers to multiply, then multiplies those integers together.

The branch predictor in our base configuration is capable of predicting all the

loop branches in this program, but does not predict well the condition inside the loop

which tests if the product is incremented or not.

Pseudocode for the MULT program is given in figure 2-4. Assembly code for the

MULT program is shown in figure 2-5.

2.3.2 IDOT

IDOT is an integer dot product program. Pseudocode and assembly code is shown

in figures 2-6 and 2-7 respectively.

2.3.3 IDOTLU

The IDOTLU program is a loop unrolled, hand optimized version of the IDOT pro-

gram. It performs dot product on a 1024 element vector, with loop unrolling of four.

The assembly code for IDOTLU is given in figure 2-8.

unsigned int seed = 1;

for (int i = 0; i < 1024; i++) {
unsigned int x = seed * 0x41c64e6d + Ox3039;
unsigned int y = x * 0x41c64e6d + 0x3039;
seed = y;

unsigned int product = 0
while (x != 0) {

if (x & 1) {
product += y;

}

x >>= 1;

y <<= 1;

}
}

Figure 2-4: Pseudocode for MULT program.

2.3.4 FDOT

FDOT performs a floating point dot product. The elements of the two vectors are

initialized in memory ahead of time with randomly generated floats between 0 and 1.

Pseudocode and assembly code is shown in figures 2-9 and 2-10 respectively.

2.3.5 FDOTLU

FDOTLU is the loop unrolled version of FDOT. The assembly is given in figure 2-11.

2.3.6 Workloads

Our processor supports 4 threads, which means multiple programs can run at the

same time. Table 2.1 lists the programs which make up each workload we refer to

when discussing results.

Single Precision Software Integer Multiply

Use shift-adder algorithm.

rO: x an operand
r1: y an operand
r2: s multiply result
r3: 'h41c64e6d constant for use in random

r4: r random number seed
r5: i current iteration

r6: 12345 constant for use in random

// Put 'h41c64e6d into r3
LdImIntSngl 'h41c6 -> rO

LdImIntSngl 'h4e6d -> r1

IShlRes r1, 16 -> r2

IOrRes r2, r1 -> r3

LdImIntSngl 12345 -> r6

// Seed the random
// number generator

LdImIntSngl 1 -> r4

// Main loop
LdImIntSngl 0 -> r5

MAINLOOP:
ISubCnd r4, 1024
BrCmpEq END

// Generate a random
// value for x

// rO <= r4 * r3 + 'h3039
IMultRes r4, r3 -> rO

IAddRes rO, r6 -> rO

number generation

number generation

// Generate a random value for y
// r1 <= r4 * rO + 'h3039

IMultRes r4, rO -> r1
IAddRes r1, r6 -> r1
IAddRes r1, 0 -> r4

// Multiply
LdImIntSngl
ISubCnd rO,

MULTLOOP:

BrCmpEq E
IAndCnd r
BrCmpEq S
IAddRes r

thos
0-

0

NDMUI
0, 1
HIFTS
2, r1

SHIFTS:
IShr rO, 1 ->

IShlRes ri, 1
Jump MULTLOOP

e two numbers

> r2

T

-> r2

rO
-> r1

ENDMULT:

IAddRes 1, r5 -> r5

Jump MAINLOOP

END: Quit

Figure 2-5: Assembly for MULT program.

unsigned int* mem;
for (int i = 0; i < 16; i++) {

mem[i] = i;

}

unsigned int sum = 0;

for (nt i = 0; i < 16; i++) {
sum += mem[i] * mem[i];

}

Figure 2-6: Pseudocode for IDOT program.

LdImIntSngl 16 -> rO
LdImIntSngl 0 -> r1

MEMLOOP:
ISubCnd r1, 16

BrCmpPos MEMEND

StoreW r1 -> Mem[r1]

IAdd 1, r1 -> r1

Jump MEMLOOP

MEMEND:

LdImIntSngl 0 -> r1

LdImIntSngl 0 -> r2

DOTLOOP:

ISubCnd r2, 16
BrCmpPos END
LoadW Mem[r2] -> r3

LoadW Mem[r2] -> r4

IMultRes r4, r3 -> r5

IAddRes r5, r1 -> r6

IAddRes r6, 0 -> r1

IAdd 1, r2 -> r2

Jump DOTLOOP

END:

Quit

Figure 2-7: Assembly for IDOT program.

LdImIntSngl 1024 -> rO

LdImIntSngl 0 -> r1

MEMLOOP:
ISubCnd 1024, r1

BrCmpPos ENDMEM

IAddRes 1, r1 -> r2

IAddRes 2, r1 -> r4

IAddRes 3, r1 -> r6

IAddRes 1, r1 -> r3

IAddRes 2, r1 -> r5

IAddRes 3, r1 -> r7

StoreW r1 -> Mem[r1]

StoreW r3 -> Mem[r2]

StoreW r5 -> Mem[r4]

StoreW r7 -> Mem[r6]

IAdd 4, r1 -> r1

Jump MEMLOOP

ENDMEM:

LdImIntSngl
LdImIntSngl

0 -> r1

0 -> r8

DOTLOOP:

ISubCnd 1024, r8

BrCmpPos END

IAddRes 1, r8 -> r13

IAddRes 1, r8 -> r15

IAddRes 2, r8 -> r19

IAddRes 2, r8 -> r21

IAddRes 3, r8 -> r25

IAddRes 3, r8 -> r27

LoadW Mem[r8] -> r9

LoadW Mem[r8] -> r1O

LoadW Mem[r131 -> r14

LoadW Mem[r15] -> r16

LoadW Mem[r19] -> r20

LoadW Mem[r21] -> r22

LoadW Mem[r25] -> r26

LoadW Mem[r27] -> r28

IMultRes r1O, r9 -> r1

IMultRes r16, r14 -> r17

IMultRes r22, r20 -> r23

IMultRes r28, r26 -> r29

IAddRes r1l, r1 -> r12

IAddRes r17, r23 -> r18

IAddRes r12, r29 -> r24

IAddRes r18, r24 -> r1

IAdd 4, r8 -> r8

Jump DOTLOOP

END:
Quit

Figure 2-8: Assembly for IDOTLU program

int i = 0;

float sum = mem[i++] * mem [i];

while (i < 30) {
sum += mem[++i] * mem[++i];

}

Figure 2-9: Pseudocode for FDOT program

// Single Precision Floating Point Dot Product
// Takes the dot product of floating point values in memory.

// One vector consists of the values from even addresses, the other

// values from odd addresses. Each vector should have 16 elements, for a total

// of 32 floating point values read from memory.

// rO: the dot product sum

// r1: element from first vector

// r2: element from second vector

// r3: i: pointer into vectors.

// r4: r1 * r2

// Step 1. Get the first elements, multiply them, and put the result in rO

LdImIntSngl 0 -> r3

LoadW Mem[r3] -> r1

LdImIntSngl 1 -> r3

LoadW Mem[r3] -> r2

FMultRes r1, r2 -> rO

// Step 2. Iterate over the rest of the elements

LOOP:
ISubCnd r3, 30

BrCmpPos END

IAddRes r3, 1 -> r3

LoadW Mem[r3] -> r1

IAddRes r3, 1 -> r3

LoadW Mem[r3] -> r2

FMultRes r1, r2 -> r4

FAddRes rO, r4 -> rO

Jump LOOP

END:
Quit

Figure 2-10: Assembly for FDOT program.

// Single Precision Floating Point Dot Product
// Takes the dot product of floating point values in memory.
// One vector consists of the values from even addresses, the other
// values from odd addresses. Each vector should have 16 elements, for a total
// of 32 floating point values read from memory.

// rO: the dot product sum
// r3: i

// Step 1. Get the first elements, multiply them, and put the result in rO
LdImIntSngl 0 -> r3

LoadW Mem[r31 -> r1
LdImIntSngl 1 -> r3

LoadW Mem[r31 -> r2
FMultRes r1, r2 -> rO
LdImIntSngl 2 -> r3

// Step 2. Iterate over the rest of the elements
LOOP:

ISubCnd r3, 124
BrCmpPos END
IAddRes r3, 1 -> r5

LoadW Mem[r3] -> r1

IAddRes r3, 2 -> r3

LoadW Mem[r5] -> r2

IAddRes r5, 2 -> r6

LoadW Mem[r31 -> r7
IAddRes r3, 2 -> r8

LoadW Mem[r61 -> rA
FMultRes r1, r2 -> r6

IAddRes r8, 1 -> r1
LoadW Mem[r8] -> r2

IAddRes r8, 2 -> r3

FMultRes r7, rA -> r8

LoadW Mem[r1] -> r9

FAddRes r6, r8 -> rB

FMultRes r2, r9 -> r1

FAddRes rO, rB -> rC

FAddRes r1, rC -> rO

Jump LOOP

END:

Quit

Figure 2-11: Assembly for FDOTLU program.

Workload
MULT4
IDOT4
IDOTLU4
MIX
FDOT4
FDOTLU4

Thread 0 Thread 1 Thread 2 Thread 3
MULT
IDOT
IDOTLU
MULT
FDOT
FDOTLU

MULT
IDOT
IDOTLU
IDOT
FDOT
FDOTLU

MULT
IDOT
IDOTLU
MULT
FDOT
FDOTLU

MULT
IDOT
IDOTLU
IDOTLU
FDOT
FDOTLU

Table 2.1: Definition of workloads.

Chapter 3

Initial Multithreaded

Configurations

Simultaneous multithreading is attractive for high performance and energy efficient

computing because instead of duplicating underutilized logic such as the function

units for each thread, the logic is shared by all threads. We expect this sharing

to result in a smaller area and power footprint without a corresponding decrease in

performance because with more independent threads to draw from we can better

utilize the shared logic.

To better understand the performance energy-efficiency trade-off for sharing logic

among threads we begin by looking at three simple multithreaded processor con-

figurations based on the single-threaded processor described in section 2.1. These

configurations differ in how much logic is shared by the threads. In the first con-

figuration no logic is shared, in the second configuration only the function units are

shared by the threads, and in the third configuration the entire pipeline, excluding

memory, is shared by the threads.

Each of our multithreaded configurations throughout this project runs exactly

four threads.

Figure 3-1: SEPARATE configuration.

3.1 SEPARATE Configuration

In the SEPARATE configuration, shown in figure 3-1, no logic is shared by the

threads. We duplicate the single-threaded core configuration verbatim for each thread.

This configuration serves as a baseline which our other configurations can be com-

pared against. We expect this configuration to have the best performance at the cost

of using the most logic, potentially reducing energy efficiency.

3.2 FUSHARED Configuration

The FUSHARED configuration duplicates the front-end pipeline for each thread but

shares a single set of function units as depicted in figure 3-2. This configuration

represents our simple simultaneous multithreading core, which we expect to have

decent performance and energy efficiency.

The fetch, decode, and issue stages of FUSHARED are duplicated verbatim per

thread from the single thread core. Each thread's issue stage has its own dispatch

queue for each function unit. When a function unit is ready to execute another in-

Figure 3-2: FUSHARED configuration.

struction, it searches the dispatch queues from each threads' issue stage for something

to execute.

Priority for the function unit is assigned statically to the threads, so, for example,

if thread 1 and thread 3 both want to use the same function unit in the same cycle,

thread 1 will always win because its identifier is smaller. In chapter 5 we discuss

how different arbitration policies for use of the function units affect performance and

energy efficiency.

The function units are also augmented from the single thread core to pass the

two bit thread identifier from argument to result. Each result is accompanied by the

thread identifier, used to direct the result to the appropriate thread's register file.

3.3 ALLSHARED Configuration

The ALLSHARED configuration has all threads sharing the same pipeline and func-

tion units. If sharing function units can increase energy efficiency without great loss

in performance, perhaps sharing the fetch, decode, and issue logic can too.

Each thread has its own instruction memory, branch predictor, data memory,

condition code register and register file. The fetch analysis, decode, issue and function

units are all shared by the different threads.

Each cycle a fetch is performed for each thread to their respective instruction

Figure 3-3: ALLSHARED configuration.

memories. The fetch analysis operates on threads in a round robin fashion. The

output of the fetch unit now includes the thread identifier for the instruction fetched.

Decode is the same as the single thread core, except it includes the thread identifier

in the decoded instruction. Issue is also the same, aside from now using the thread

identifier to select the appropriate condition code register and register file for the

thread whose instruction is currently under consideration for issue. Issue is still

limited to a single instruction per cycle. Even if we have four active threads, we will

not issue more than one instruction per cycle.

The function units pass the thread identifier with the result to identify the appro-

priate thread's register file just as is done in the FUSHARED configuration.

3.4 Evaluation of the Initial Configurations

Figure 3-4 compares the performance of each configuration on our different workloads.

We expect the SEPARATE configuration to always have the best performance, be-

cause there is no shared logic, which means there are no conflicts for the use of

that logic. We are more interested in knowing how much better the SEPARATE

performance is than the FUSHARED and ALLSHARED performance. If it is only

a little better, sharing logic did not reduce performance too much, suggesting the

FUSHARED and ALLSHARED configurations have good potential for being high

0

LO_
C %

0

0_

LO)

0

MULT4 IDOT4 IDOTLU4 MIX

E SEPARATE
0 FUSHARED
U ALLSHARED

FDOT4 FDOTLU4

Figure 3-4: Performance of SEPARATE, FUSHARED, ALLSHARED.

MULT IDOT MULT IDOTLU Speedup
SEPARATE 22204 20879 22204 34713 4.02
FUSHARED 29650 25906 25410 19035 3.19
ALLSHARED 21349 27889 21348 29414 1.22

Table 3.1: Load balance of MIX workload on initial configurations.

performance, energy-efficient configurations.

What we see in figure 3-4 is for the FDOT4 workload, the FUSHARED configu-

ration performs as well as the SEPARATE configuration, but for the other workloads

there is a drop in performance from SEPARATE to FUSHARED, especially large on

the IDOTLU4 workload. The performance of the ALLSHARED configuration is not

close to either the SEPARATE or FUSHARED configurations.

Table 3.1 shows the number of instruction executed in each thread for the MIX

workload and the speedup, calculated as described in section 2.2. The SEPARATE

configuration executes a number of instructions proportional to the IPC of each pro-

gram run on the base single-threaded configuration. The FUSHARED configuration

gives preference to the threads with lower identifiers, nearer the left in table 3.1, which

have higher priority given our static arbitration policy. The ALLSHARED config-

uration executes less instructions from the MULT program, which has much worse

branch prediction because of the random branch inside the main loop. The speedup

shown for the configurations gives a similar impression as the IPC, with SEPARATE

the best, FUSHARED a little worse, and ALLSHARED much worse.

Figure 3-5 shows the area of each configuration after place and route, broken down

by component. The fetch, decode, and issue logic for each configuration, shown at

the bottom of the bars, takes up the same amount of space in the SEPARATE and

FUSHARED configurations, and a bit less in the ALLSHARED configuration. The

function units dominate the difference in area between the SEPARATE configuration

and the other configuration, because the SEPARATE configuration has four of each

function unit, where the FUSHARED and ALLSHARED configurations each only

have one of each function unit.

Sharing function units saves considerable area going from the SEPARATE config-

L/S
FPU
INT
RF
Issue
Decode
Fetch

SEPARATE FUSHARED ALLSHARED

Figure 3-5: Core area of SEPARATE, FUSHARED, ALLSHARED.

uration to the FUSHARED configuration. Sharing the front end pipeline results in

a much smaller area savings, because the front end area is relatively small compared

to the register file and function units.

Figure 3-6 compares the energy efficiency of each configuration on the different

workloads, measured in instructions per picojoule(IPpJ). The ALLSHARED con-

figuration is always worse than the FUSHARED configuration. The SEPARATE

configuration is better than the FUSHARED configuration for the IDOTLU4 and

MIX workloads.

Figure 3-7 shows a plot of where the configurations are in the performance energy-

efficiency space for each workload. The vertical axis shows increasing performance.

The horizontal axis shows increasing energy efficiency. Lines connect points from

the same configuration. The best configurations will have greater performance and

greater energy efficiency, hovering near the upper right corner of the graph.

For every workload, the FUSHARED configuration has both greater performance

and energy efficiency than the ALLSHARED configuration. The FUSHARED con-

figuration performance never exceeds the SEPARATE performance, but for all work-

loads except IDOTLU4 and MIX the FUSHARED configuration has a better energy

efficiency than the SEPARATE configuration, tending to take up space down and to

the right of the SEPARATE configuration on the plot.

3.5 Improving FUSHARED

We see the FUSHARED configuration is a potentially interesting alternative to the

SEPARATE configuration because for many workloads the energy efficiency of the

FUSHARED configuration exceeds that of the SEPARATE configuration. Is there

something we can do to improve the performance of the FUSHARED configuration to

bring it closer in line with the performance achieved in the SEPARATE configuration?

Figure 3-8 shows the average function unit utilization in the FUSHARED con-

figuration. The integer function unit has great utilization, especially for the integer

workloads. This is exactly what we hoped to see by having threads share function

El SEPARATE
0 FUSHARED
U ALLSHARED

C0

C\j

C0

MULT4 IDOT4 IDOTLU4 mix FDOT4 FDOTLU4

Figure 3-6: Energy efficiency of SEPARATE, FUSHARED, ALLSHARED.

LO
o MULT4

A IDOT4
+ IDOTLU4

d - x mix,-
0 FDOT4
v FDOTLU4

LO

0 'x

X.
10.

6

--- SEPARATE
-.--.- FUSHARED

S- - ALLSHARED

0 2 4 6 8 10

IPpJ

Figure 3-7: IPC IPJ plot of SEPARATE, FUSHARED, ALLSHARED.

EINT
o EZ FPU

0

0

N 0

= Co

C-)

MULT4 IDOT4 IDOTLU4 mix FDOT4 FDOTLU4

Figure 3-8: FUSHARED function unit utilization.

units. The utilizations are much better than that for the SEPARATE configuration

shown in 3-9. The trouble is, the integer function units are being over-utilized.

Figure 3-10 shows the average number of structural conflicts in a cycle for each

function unit. A conflict is counted for each thread with a ready instruction that is

not executed only because an instruction from a different thread is executed instead.

In each cycle there can be at most 3 conflicts. In the SEPARATE configuration there

are no conflicts, because each thread has exclusive access to its own function units.

The FUSHARED configuration has a large number of conflicts over its single

integer function unit for the integer workloads. The most conflicts are seen in the

IDOTLU4 workload, which was one workload where the SEPARATE configuration

was clearly better than the FUSHARED configuration. The FDOT4 workload, where

FUSHARED does as well as the SEPARATE configuration, has almost no conflicts,

neither for the integer nor floating point function units.

Clearly another integer function unit would be beneficial in easing the contention

for the sole integer function unit in the FUSHARED configuration. The low number

of conflicts for the floating point and load-store function units suggest there is no

need to include additional floating point or load-store function units.

This suggests an improved FUSHARED configuration to look at, similar to the

FUSHARED configuration except with 2 integer function units instead of one. We

will call that the FUSHARED2 configuration. It is shown in figure 3-11.

3.6 Improving ALLSHARED

The ALLSHARED configuration does not perform as well as the FUSHARED con-

figuration in terms of performance or energy efficiency. The way the configuration is

setup, at most a single instruction can be issued each cycle, capping the overall IPC

at 1. This limit brings down our function unit utilization to only a little better than

in the SEPARATE configuration, as shown in figure 3-12.

Because for the most part the SEPARATE and FUSHARED configurations do not

exceed an IPC of 2, we introduce another configuration, ALLSHARED2, with two

E INT
E2 FPU
= L/S

MULT4 IDOT4 IDOTLU4 MIX FDOT4 FDOTLU4

Figure 3-9: SEPARATE function unit utilization.

0 _

CD-

0 -

-E
MULT4 IDOT4 IDOTLU4 MIX FDOT4 FDOTLU4

Figure 3-10: FUSHARED function unit conflicts.

INT
FPU
L/S

0

UC)

LO

0 O

C;

Figure 3-11: FUSHARED2 configuration.

pipelines, each completely shared by just 2 threads. The ALLSHARED2 configuration

is shown in figure 3-13. The performance limit of ALLSHARED2 is an IPC of 2, which

is hopefully enough to increase its performance to be competitive against the other

configurations while still sharing enough logic to save energy.

El INT
o EZ FPU

ELus

0

0
N0 0
= a

C)

C,~j

0)

MULT4 IDOT4 IDOTLU4 mix FDOT4 FDOTLU4

Figure 3-12: ALLSHARED function unit utilization.

Figure 3-13: ALLSHARED2 configuration.

Chapter 4

Expanded Configurations

In chapter 3 we looked at some initial multithreaded configurations and how well

they performed overall. Here we look at the results of adding the new FUSHARED2

and ALLSHARED2 configurations, and we discard the unsuccessful ALLSHARED

configuration.

Figure 4-1 shows the performance for each of the configurations on our workloads.

We see that the FUSHARED2 has better performance than FUSHARED in all cases,

approaching the performane of the SEPARATE configuration. The ALLSHARED2

configuration, while achieving an IPC greater than 1, still fails to match the perfor-

mance of the initial FUSHARED configuration except on the IDOTLU4 workload,

where it approaches its limit of 2 IPC.

Table 4.1 shows the load balance for the MIX workload. With less contention for

the integer function unit, FUSHARED2 gives less preference to the highest priority

thread under our static arbitration policy for the function units. As before, the

speedups give similar results as the IPC for the MIX workload.

MULT IDOT MULT IDOTLU speedup

SEPARATE 22204 20879 22204 34713 4.02
FUSHARED 29650 25906 25410 19035 3.19
FUSHARED2 23701 22342 22383 31576 3.80
ALLSHARED2 19700 27160 21631 31510 2.62

Table 4.1: Load balance of MIX workload of expanded configurations.

0 SEPARATE
0 FUSHARED
M FUSHARED2
0 ALLSHARED2

MULT4 IDOT4 IDOTLU4 MIX FDOT4 FDOTLU4

Figure 4-1: Performance with FUSHARED2, ALLSHARED2 configurations.

0

Cl
LO

0

U) _

0_

0

FUSHARED
FUSHARED2

I
IDOT4 IDOTLU4 MIX FDOT4 FDOTLU4

Figure 4-2: FUSHARED2 function unit conflicts.

0
C6

LO
C~i

0

0C>

LO

06

0

MULT4

LO

1: -

m

Figure 4-2 compares the average conflicts over integer function units in the FUSHARED

and FUSHARED2 configurations. The FUSHARED2 configuration has many fewer

conflicts, averaging no more than about a conflict every other cycle, compared to the

FUSHARED configuration, which averaged as much as a conflict every cycle.

Along with the decrease in conflicts over the integer unit in the FUSHARED2

configuration, there is a small increase in the conflicts for the load-store unit on the

IDOTLU4 and FDOTLU4 workloads. This is not shown in the figure.

Figure 4-3 shows the area of each configuration, broken down by component. The

FUSHARED2 configuration is only slightly larger in area than the FUSHARED con-

figuration, the added area coming from the additional integer function unit, which is

relatively small. The ALLSHARED2 configuration is a bit larger than the FUSHARED

configurations, because it duplicates all of the function units, including the floating

point unit, which takes up a large fraction of the core.

Energy efficiency is shown in figure 4-4. The FUSHARED2 configuration has a

greater energy efficiency than the FUSHARED configuration in every case, and ex-

ceeds the energy efficiency of the SEPARATE configuration in all but the IDOTLU4

workload. The energy efficiency of the ALLSHARED2 configuration is more vari-

able. ALLSHARED2 appears to have better energy efficiency on the more optimized

workloads. -

Figure 4-5 shows a plot comparing the performance and energy efficiency of the

two FUSHARED configurations. The FUSHARED2 configuration has better overall

performance in all cases, and especially so for those integer workloads which over-

loaded the FUSHARED configuration's single integer function unit.

Figure 4-6 plots the SEPARATE, FUSHARED2 and ALLSHARED2 configura-

tions. The FUSHARED2 configuration is shifted to the right from the SEPARATE

configuration in all workloads except for IDOTLU4, so while it still does not achieve

the performance of the SEPARATE configuration, the energy efficiency is mostly

better.

The ALLSHARED2 configuration is never as good as the FUSHARED2 configura-

tion in terms of performance or energy efficiency. This suggests sharing the front end

L/S
FPU
INT
RF
Issue
Decode
Fetch

SEPARATE FUSHARED FUSHARED2 ALLSHARED2

Figure 4-3: Area with FUSHARED2, ALLSHARED2 configurations.

E SEPARATE
0 FUSHARED
M FUSHARED2
M ALLSHARED2

MULT4 IDOT4 IDOTLU4 MIX FDOT4 FDOTLU4

Figure 4-4: Energy efficiency with FUSHARED2, ALLSHARED2 configurations.

(o -

o J

-- F

Ln
C o MULT4

A IDOT4
+ IDOTLU4

Cd - x MIX
O FDOT4
v FDOTLU4

10

0 +
x .-

LO
0- H

--- FUSHARED
0
65 ... FUSHARED2

I I IIII

0 2 4 6 8 10

IPpJ

Figure 4-5: IPC IPJ plot of FUSHARED, FUSHARED2.

o MULT4
A IDOT4
+ IDOTLU4
x MIX
0 FDOT4 4*
v FDOTLU4

,x -

-ax

LO

C)

0

LO)

LO)

LI)_

I PpJ

Figure 4-6: IPC IPJ plot of SEPARATE, FUSHARED2, ALLSHARED2.

-- - SEPARATE

... FUSHARED2

ALLSHARED2

pipeline in the simple round robin fashion we use for the ALLSHARED configurations

does not improve energy efficiency. Perhaps we would get better energy efficiency if we

chose the number of each function unit in the ALLSHARED configuration to match

that of the successful FUSHARED2 configuration, but that would result in a reduc-

tion of the number of function units, which could only degrade performance. Given

how poor the performance of the ALLSHARED configuration already, it is doubt-

ful that configuration can be competitive with the SEPARATE and FUSHARED2

configurations.

Chapter 5

Arbitration for Function Units

We saw in previous chapters a big factor in whether or not having multiple threads

share a function unit improves overall performance is the number of conflicts for

the function unit. If there are too many conflicts, the performance is degraded,

overpowering the power saved by sharing the function unit logic.

In chapter 3 we mentioned that priority for the use of a function unit in case

of conflict is assigned statically to the thread with lowest identifier. But there are

different policies we could use for arbitrating use of the shared function units, and

these different policies may have an impact on the overall performance of the machine.

We look at three different arbitration policies for determining which thread gets

to use a function unit when there is conflict. The first is STATIC, the policy we have

been using in our FUSHARED and FUSHARED2 configurations so far. If multiple

threads want to use the same function unit in the same cycle, the thread with the

smallest identifier will be allowed to use the function unit and the other threads will

have to wait.

We can imagine such a static priority to be unfair, favoring whatever program is

running in the highest thread slot at the expense of the others, perhaps hurting the

overall performance of the system. We have seen a little of this in the load balancing

of the MIX workload for the FUSHARED configuration. To combat this unfairness,

we look at a round robin arbitration policy, called ROUNDROBIN, where every cycle

priority is assigned to the next thread in round robin fashion. If the thread with

MULT IDOT MULT IDOTLU SPEEDUP
STATIC 23701 22342 22383 31576 3.80
ROUNDROBIN 22836 20922 22834 33409 3.84
LASTUSED 22787 18952 22785 35476 3.73

Table 5.1: Load balance of MIX workload under different arbitration.

priority on a given cycle wants to use the function unit, it will use the function unit.

If there are multiple threads competing for the function unit, none of which currently

have the priority slot, we fall back on our static priority system.

Later, when we introduce operand bypassing into the configurations, we will see

another possible arbitration policy which is convenient to implement, LASTUSED.

In the LASTUSED policy priority is given to whichever thread most recently used

the function unit.

Figure 5-1 shows the performance for the different arbitration policies on the

FUSHARED2 configuration. It appears the arbitration policy has little impact on

the performance of the system except for in the IDOTLU4 workload, where static

priority reduces performance.

Table 5.1 shows the thread load balance on the configurations with different ar-

bitration policies for the MIX workload. Once again what they show mirrors that of

the MIX IPC.

The different arbitration policies for use of the function units do not have a notice-

able impact on the area of the configuration. The ROUNDROBIN and LASTUSED

configurations increase area by less than one percent over the STATIC configuration.

Figure 5-2 shows that in the FUSHARED2 configuration, the ROUNDROBIN

and LASTUSED arbitration policies have worse energy efficiency than STATIC arbi-

tration.

When using a configuration designed with enough function units not to overload

the function units, the number of conflicts for the function units are small. This means

different arbitration policies do not have such a large impact on performance. More

complex arbitration policies do consume more energy, so it makes sense to choose the

simplest arbitration policy to get the best overall performing configuration.

LO_

C\J

0_

LO _

0 _

Cf)_

0

MULT4 IDOT4 IDOTLU4 MIX

E STATIC
0 ROUNDROBIN
N LASTUSED

FDOT4 FDOTLU4

Figure 5-1: Performance of FUSHARED2 using different function unit arbitration.

CO0-

O -

E STATIC
0 ROUNDROBIN
N LASTUSED

MULT4 IDOT4 IDOTLU4 MIX FDOT4 FDOTLU4

Figure 5-2: Energy efficiency of FUSHARED2 using different function unit arbitra-
tion.

I
00
00
00
00
00
10
00
00
00
10
00
00
00
00
00

00
00
00
00
00
00

VA .

C\l -

Chapter 6

Operand Bypassing

In this chapter we look at how operand bypassing affects the performance and energy

efficiency of our configurations.

We implement operand bypassing for the integer function units and bypassing of

the condition code register.

6.1 Integer Bypassing

It is common for an instruction to depend on the result of the instruction immediately

before it. For example, consider the assembly code in figure 6-1.

The add instruction depends on the value in register rO computed by the previous

instruction. Normally this would cause a two cycle bubble in our pipelines. The add

instruction can not be issued until the rO register has been written back to the register

file. Instead of issuing the add instruction the cycle after the multiply instruction is

issued, it must wait a cycle for the multiply instruction to execute, then wait another

cycle for the multiply instruction to write back to the register before it can issue the

add instruction on the following cycle.

IMultRes r4, r3 -> rO
IAddRes rO, r6 -> rO

Figure 6-1: Example of back to back dependent instructions.

This 2 cycle bubble can be eliminated with operand bypassing. We add a path

from the output of the integer function unit back to its input. Now when the issue

stage goes to issue the add instruction and finds some of the operands are not ready,

rO in this case, instead of giving up on issuing that cycle it looks at the instruction

currently executing in the integer function unit to see if the destination of that in-

struction matches the missing operand. If the destination does match the missing

operand, the issue stage can go ahead and issue the add instruction on that cycle

knowing the operand will be ready by the time the add instruction is executed.

The integer function unit is modified to accept bypassed operands. Instead of

having the physical operand available, the operand is marked as bypassed, which

means the function unit will use its most recently computed value for that operand.

The consequence of this bypassing is the add instruction can be issued the cycle

immediately following the issue of the multiply instruction; no cycles are wasted.

This implementation of operand bypassing works as is for a function unit dedicated

to a single thread, but difficulties arise when a function unit is shared by multiple

threads. We need a mechanism to ensure operands will only be bypassed to the thread

they belong to. The issue stage needs to know what cycle a result will be available,

and there is limited space to save computed results in the function unit itself (that is

what the register file is for).

To make sure bypassing still works for function units shared by multiple threads

we require the function unit give priority to the thread which most recently had an

instruction executed in that function unit. This is equivalent to using the LASTUSED

schedule priority discussed in chapter 5.

To see why this arbitration policy allows bypassing to work for shared function

units, consider again the code in figure 6-1. The issue stage issued the multiply

instruction the previous cycle and is now considering whether it can issue the add

instruction. It finds the operand ro is not ready yet, but could potentially be bypassed

from the multiply instruction. If the multiply instruction is not executed this cycle,

because perhaps another thread has priority for the function unit, there is no place

for the add instruction to be issued to, so the issue stage has to wait for the next

ISubCnd r2, 16

BrCmpPos 21

Figure 6-2: Example of condition code dependency.

cycle to issue anyway. If the multiply instruction is executed this cycle, this thread

is guaranteed to have priority for the function unit for the next cycle, so the issue

stage can issue the add instruction knowing it will be executed the cycle following the

execution of the multiply instruction, and the operand rO can be bypassed from the

previous result. If we did not have the scheduling restriction, the issue stage would

not know whether it could issue the add instruction, because an instruction from

a different thread might be scheduled between the multiply and add instructions,

overwriting the bypass operand. If the add instruction followed that, it would get

data from a different thread which is not correct.

We do not perform this sort of bypassing for the floating point or load-store

function units because those operations take multiple cycles to execute. A different

form of bypassing would be needed which allows instructions to be issued on the last

cycle of their predecessor's execution or allows the issue stage to read operands in the

same cycle they are written back to the register file.

6.2 Condition Code Bypassing

As mentioned briefly in section 2.1, the Fresh Breeze architecture uses a condition

code register to indicate which path of a branch should be taken. This register can

be bypassed similar to the way the general purpose registers can be bypassed.

Figure 6-2 shows a common sequence of instructions which demonstrates the ad-

vantage of bypassing the condition code register. The subtract instruction sets con-

dition code register based on the difference between the value in register r2 and 16.

The branch instruction reads the condition code register to determine if it should

branch or not.

Without bypassing there is a two cycle bubble between execution of the subtract

MULT IDOT MULT IDOTLU
SEPARATE 22204 20879 22204 34713 4.02
SEPARATEBY 21591 23422 21591 33396 4.56
FUSHARED2 23701 22342 22383 31576 3.80
FUSHARED2_BY 22142 21538 22142 34179 4.24

Table 6.1: Load balance of MIX workload with bypassing.

instruction and the branch instruction. The subtract instruction takes a single cycle

to execute, then another cycle to write back the condition code register before the

branch can read the condition code register.

We can save a single cycle by allowing the branch instruction to read the new

value of the condition code register in the same cycle the register is updated.

It is harder to remove the remaining single cycle bubble. Unlike the case for integer

bypassing, the branch instruction is executed a stage earlier in the pipeline than the

previous instruction. That single cycle bubble comes because the branch instruction

is blocking the following instruction from being issued while waiting for the condition

codes. For this reason we only perform the simple condition code bypassing.

6.3 Results

Figure 6-3 compares the performance of the SEPARATE and FUSHARED2 con-

figurations with and without bypassing. Both the SEPARATE and FUSHARED2

configurations have improved performance with bypassing.

Figure 6-4 compares the area of the configurations with and without bypassing.

Bypassing results in a small increase in the area of the integer function units.

Figure 6-5 compares the energy efficiency of the configurations with and without

bypassing. The energy efficiency of the SEPARATE configuration improves with the

addition of bypassing, but the energy efficiency of the FUSHARED2 configuration

degrades with the addition of bypassing for all but the MIX workload.

The degradation in energy efficiency under the FUSHARED2 configuration ap-

pears to be partly due to the decreased energy efficiency resulting from requiring the

SPEEDUP

0 SEPARATE
E2 SEPARATEBY
M FUSHRAED2
0 FUSHARED2_BY

I
MULT4 IDOT4 IDOTLU4 MIX FDOT4 FDOTLU4

Figure 6-3: Performance of SEPARATE and FUSHARED2 with bypassing.

0

LO)

0

LO)

LO)

0

i

L/S
FPU
INT
RF
Issue
Decode
Fetch

SEPARATE SEPARATEBY FUSHARED2 FUSHARED2_BY

Figure 6-4: Area of SEPARATE and FUSHARED2 with bypassing.

L SEPARATE
2 SEPARATEBY
* FUSHARED2
M FUSHARED2_BY

MULT4 IDOT4 IDOTLU4 MIX FDOT4 FDOTLU4

Figure 6-5: Energy efficiency of SEPARATE and FUSHARED2 with bypassing.

o J

V/
Oz

J

LASTUSED arbitration policy over the static arbitration policy. The drop in energy

efficiency mirrors that of the drop from STATIC to LASTUSED shown in figure 5-2

back in chapter 5.

Figure 6-6 compares the overall performance of the SEPARATE configuration with

and without bypassing. There is a clear shift toward the upper right corner of the

graph when adding bypassing, suggesting bypassing is beneficial for both performance

and energy efficiency in a configuration where function units are not shared.

Figure 6-7 compares the FUSHARED2 configuration with and without bypass-

ing. In contrast to the SEPARATE configuration, when adding bypassing to the

FUSHARED2 configuration it looses energy efficiency, shifting up and to the left.

Bypassing clearly is advantageous for the single threaded case as seen in the over-

all performance improvement in the SEPARATE configuration when bypassing was

added. It is not as obvious, however, that bypassing makes sense for function units

that are shared among threads. There are two factors detracting from the bypass

overall performance improvement when threads share function units. The first is

sharing threads already partially hides the bubbles bypassing aims to get rid of. It

does not improve performance any to get rid of a bubble which was hidden anyway.

The second is the added complications in ensuring operands are bypassed from the

appropriate thread. In our implementation bypassing required us to use a more com-

plicated arbitration policy for the function units, which we saw from chapter 5 has a

significant impact on energy efficiency.

Figure 6-8 shows a plot on the performance energy-efficiency space of the SEP-

ARATE configuration with bypassing and the FUSHARED2 configuration with and

without bypassing. From the plot we see clearly how performance and energy effi-

ciency can be traded off. The SEPARATE configuration with bypassing offers a higher

performing, worse energy efficiency configuration. The FUSHARED2 configuration

without bypassing has better energy efficiency at the cost of degraded performance,

and the FUSHARED2 configuration with bypassing is between the two.

o MULT4 +
L IDOT4

0 + IDOTLU4
c6 x MIX

0 FDOT4
v FDOTLU4

LO

o,

LO

--- SEPARATE

0

6. SEPARATEBY
I I I I I I

0 2 4 6 8 10

IPpJ

Figure 6-6: IPC IPJ plot of SEPARATE with and without bypassing.

LO)

C6 o MULT4

A IDOT4

+ IDOTLU4
c- x MIX

O FDOT4
v FDOTLU4

C- ,x

o x

LO

cc~i

--- FUSHARED2
- FUSHARED2_BY

Il I I I

o 2 4 6 8 10

IPpJ

Figure 6-7: IPC IPJ plot of FUSHARED2 with and without bypassing.

MULT4
IDOT4
IDOTLU4
MIX
FDOT4
FDOTLU4

A
-.

x*-.

7 7,,
I -

I ~ -

-- I -

--- FUSHARED2
- -- SEPARATEBY

--- FUSHARED2_BY

I PpJ

Figure 6-8: IPC IPJ plot of SEPARATE and FUSHARED2 with bypassing.

10

06

C)i

C60

0O

0

0

Chapter 7

Conclusion

This thesis looked at performance and energy efficiency in simple simultaneous multi-

threading processor cores. The previous focus on solely high performance processors

is shifting to a focus on some combination of high performance and energy efficiency,

both of which the technique of simultaneous multithreading has the potential to

improve. When throughput is more important than single thread performance, si-

multaneous multithreading joined with simple scalar processors looks very attractive

as a way to have high performance and energy efficiency.

To examine the performance and energy efficiency in simple simultaneous pro-

cessor cores we implemented using a high level hardware description various mul-

tithreaded core configurations based on a common single-threaded scalar baseline

configuration. With the aid of standard industry tools we augmented cycle accurate

simulation with area and power estimates derived from layouts of the configurations.

We evaluated the overall performance of the configurations by plotting perfor-

mance and energy efficiency together rather than combining them into a single figure

of merit, allowing us to see how performance and energy efficiency can be traded off.

We focused on the processor core, modeling memory as having a small fixed latency

and using benchmark programs with straight line code and branches.

Specifically we looked at

. How the performance and energy efficiency of multiple threads sharing function

units compares to that of duplicating multiple simple single thread pipelines,

each with their own separate set of function units.

" Whether sharing the front end pipeline logic among threads leads to similar

performance benefits as sharing function units.

" Under what circumstances a function unit should be shared by all threads, only

some threads, or not at all.

" How different policies for arbitrating threads' use of function units affect per-

formance and energy efficiency.

" How sharing function units interacts with the high performance optimization

technique of operand bypassing, an obvious technique to apply in single thread

architectures.

We found sharing function units among threads can improve energy efficiency

over duplicating the function unit set for each thread, though the performance can

at most match that of duplicating the function unit set for each thread. A good

choice for the number of threads sharing a function unit ensures the function unit is

not overloaded. Sharing the front end pipeline logic does not improve performance

or energy efficiency over either duplicating the full pipeline or just duplicating the

front end pipelines for each thread. Different arbitration policies for use of function

units do not impact the performance much, but they do have a noticeable impact on

the energy efficiency of the core, so the simplest arbitration policy should be used

to maximize energy efficiency. Operand bypassing, an obvious optimization for a

pipeline which does not share function units, is not obviously better when function

units are shared, improving performance at the cost of reduced energy efficiency.

7.1 Future Work

This study focused on the performance and energy efficiency in the processor core.

Interesting future work would be to model a more realistic memory hierarchy with

shared caches. Cache misses are a source of latency which can be partially hidden

by simultaneous multithreading, bringing the performance of shared function units

closer to that of separate thread configurations. A more realistic memory hierarchy

may also put into better perspective the significance of the energy savings possible

from sharing function units. If the energy consumed accessing the cache dwarfs that

of duplicating a function unit, perhaps sharing function units makes less sense.

Introducing shared memory also complicates the fetch stage, potentially introduc-

ing alternative configurations which could be evaluated for their trade-offs in perfor-

mance and energy efficiency as we have done for shared function units.

We have shown sharing function units alters the affect operand bypassing has on

performance and energy efficiency. More interesting future work could be done eval-

uating how other optimization techniques change when threads share function units,

techniques such as register renaming, out-of-order issue, and extended speculation.

In this work we focused on the performance energy-efficiency trade-off of various con-

figurations simple simultaneous multithreading cores. It would also be interesting to

see how more complex cores compare.

Bibliography

[1] David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson, Prab-
hakar N. Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban,
Manish Gupta, and Peter W. Cook. Power-Aware Microarchitecture: Design
and Modeling Challenges for Next-Generation Microprocessors. IEEE Micro,
20:26-44, 2000.

[2] James Burns and Jean-Luc Gaudiot. Quantifying the SMT Layout Overhead -
Does SMT Pull Its Weight? In International Symposium on High-Performance
Computer Architecture, volume 6, pages 109-120, 2000.

[3] Jason Cong, Ashok Jagannathan, Glenn Reinman, and Yuval Tamir. Under-
standing the Energy Efficiency of SMT and CMP with Multiclustering. In
ISLPED '05: Proceedings of the 2005 international symposium on Low power
electronics and design, pages 48-53, New York, NY, USA, 2005. ACM.

[4] J.D. Davis, J. Laudon, and K. Olukotun. Maximizing CMP Throughput with
Mediocre Cores. In Parallel Architectures and Compilation Techniques, 2005.
PACT 2005. 14th International Conference on, pages 51-62, Sept. 2005.

[5] Jack B. Dennis. Fresh Breeze: A Multiprocessor Chip Architecture Guided by
Modular Programming Principles. SIGARCH Comput. Archit. News, 31(1):7-15,
2003.

[6] A. Falcon, A. Ramirez, and V. Valero. A Low-Complexity, High-Performance
Fetch Unit for Simultaneous Multithreading Processors. In International Sym-
posium on High-Performance Computer Architecture, volume 10, pages 244-253,
February 2004.

[7] R. Gonzalez and M. Horowitz. Energy Dissipation In General Purpose Micro-
processors. Solid-State Circuits, IEEE Journal of, 31(9):1277-1284, Sep 1996.

[8] T Halfhill. Intel's Tiny Atom. Microprossesor Report, 22, April 2008.

[9] Liqiang He and Zhiyong Liu. An Effective Instruction Fetch Policy for Simultane-
ous Multithreaded Processors. In International Conference on High Performance
Computing and Grid, volume 7, pages 162-168, July 2004.

[10] S. Hily and A. Seznec. Branch Prediction and Simultaneous Multithreading. In
Internaltional Conference on Parallel Architectures and Compilation Techniques,
volume 0, page 0169, Los Alamitos, CA, USA, 1996. IEEE Computer Society.

[11] S. Hily and A. Seznec. Out-Of-Order Execution May Not Be Cost-Effective on
Processors Featuring Simultaneous Multithreading. In International Symposium
on High-Performance Computer Architecture, volume 5, pages 64-67, Jan 1999.

[12] Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, Englewood
Cliffs, N.J., 1991.

[13] James Laudon. Performance/Watt: The New Server Focus. SIGARCH Comput.
Archit. News, 33(4):5-13, 2005.

[14] H.M. Levy, Jack L. Lo, J.S. Emer, R.L. Stamm, S.J. Eggers, and D.M. Tullsen.
Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultane-
ous Multithreading Processor. In International Symposium on Computer Archi-

tecture, volume 23, pages 191-191, May 1996.

[15] Yingmin Li, David Brooks, Zhigang Hu, Kevin Skadron, and Pradip Bose. Un-
derstanding the Energy Efficiency of Simultaneous Multithreading. In ISLPED
'04: Proceedings of the 2004 international symposium on Low power electronics
and design, pages 44-49, New York, NY, USA, 2004. ACM.

[16] H McGhan. Niagara 2 Opens the Floodgates. Microprossesor Report, 20, Nov
2006.

[17] R. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from High-Level
Specifications. In Formal Methods and Models for Co-Design, 2004. MEM-

OCODE '04. Proceedings. Second ACM and IEEE International Conference on,
pages 69-70, June 2004.

[18] David A. Patterson. Reduced Instruction Set Computers. Commun. ACM,
28(1):8-21, 1985.

[19] Y. Sazeides and T. Juan. How to Compare the Performance of Two SMT Mi-
croarchitectures. In Performance Analysis of Systems and Software, 2001. IS-
PASS. 2001 IEEE International Symposium on, pages 180-183, 2001.

[20] John S. Seng, Dean M. Tullsen, and George Z.N. Cai. Power-Sensitive Multi-
threaded Architecture. volume 0, page 199, Los Alamitos, CA, USA, 2000. IEEE
Computer Society.

[21] Allan Snavely and Dean M. Tullsen. Symbiotic Jobscheduling for a Simultaneous
Mutlithreading Processor. SIGPLAN Not., 35(11):234-244, 2000.

[22] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous Multi-
threading: Maximizing On-Chip Parallelism. In International Symposium on

Computer Architecture, volume 22, pages 392-403, New York, NY, USA, 1995.
ACM.

[23] R Usselmann. Open Floating Point Unit. Sep 2000.

[24] V.V. Zyuban and P.M. Kogge. Inherently Lower-Power High-Performance Su-
perscalar Architectures. Computers, IEEE Transactions on, 50(3):268-285, Mar
2001.

