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Abstract. We consider a fractional boundary value problem with Caputo-Fabrizio
fractional derivative of order 1 < α < 2. We prove a maximum principle for a gen-
eral linear fractional boundary value problem. The proof is based on an estimate
of the fractional derivative at extreme points and under certain assumption on the
boundary conditions. A prior norm estimate of solutions of the linear fractional
boundary value problem and a uniqueness result of the nonlinear problem have been
established. Several comparison principles are derived for the linear and nonlinear
fractional problems.
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1 Introduction

Recently, Caputo and Fabrizio have introduced a new fractional derivative with
nonsingular kernel [12]. They replaced the power-law kernel by a decreasing
exponential kernel. The new fractional derivative has been applied to model
several science and engineering problems [1,11,15,16,17,18,21]. The novelty of
the new derivative is that, there is no singular kernel and it has the ability to
describe the material heterogeneities and the fluctuations of different scales [9,
10,14], which cannot be well described by classical local theories or by fractional
models with singular kernel [12,13]. Recently, certain classes of Caputo-Fabrizio
differential equations were transformed to differential equations with integer
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derivatives. And the theory of second order differential equations can be used
to study such classes, see [5,21,24]. However, it is not possible to transform all
types of Caputo-Fabrizio differential equations to ones with integer derivative.

In this paper, we consider the following fractional boundary value problem
of order 1 < α < 2,

(CFCDα
a z)(t) + k1(t)z

′
(t) + k2(t)z(t) = f(t, z), t ∈ (a, b), (1.1)

z(a)− βz
′
(a) = 0 and z(b) + γz

′
(b) = 0, β, γ ≥ 0, (1.2)

where f(t, z) is a smooth function, k1, k2 ∈ C[a, b], and CFCDα
a is the Caputo-

Fabrizio fractional derivative of order α. The problem was discussed at first
by Al-Refai [3] and it is a particular case of the wide class of boundary value
problems considered in Pedas and Tamme [22]. The maximum principle is an
important analytical tool to study fractional differential equations. Several ex-
istence and uniqueness results have been established using maximum principles
for linear and nonlinear fractional diffusion equations, see [3, 6, 7, 8, 19].

The aim of the manuscript is, to analyze the solutions of the above problem
analytically by applying certain maximum principles. The paper is organized
as follows. In Section 2, we estimate the fractional derivative of a function at
its extreme points and obtain a new maximum principle for a linear fractional
boundary value problem of order 1 < α < 2. In Section 3, we apply the
obtained maximum principle to study linear and nonlinear fractional boundary
value problems. Certain comparison results, norm estimates of solutions and
uniqueness results will be discussed. Finally, we close up with some concluding
remarks in Section 4.

2 A maximum principle

We start with the definition of the Caputo-Fabrizio fractional derivative.

Definition 1. For p ∈ [1,∞] and Ω an open subset of R, the Sobolev space
Hp(Ω) is defined by

Hp(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω), for all |α| ≤ p}.

Definition 2. [12] Let z ∈ H1(a, b), a < b, a ∈ (−∞, t), 0 < α < 1, the
Caputo-Fabrizio fractional derivative of Caputo sense is defined by

(CFCDα
a z)(t) =

N(α)

1− α

∫ t

a

z′(s)e−
α

1−α (t−s)ds,

where N(α) > 0 is a normalization function satisfying N(0) = N(1) = 1.

For n ≥ 1, and 0 < α < 1, the Caputo-Fabrizio fractional derivative
(CFCDα+n

a z)(t) of order (n+ α) is defined by

(CFCDα+n
a z)(t) = (CFCDα

a z
(n))(t).
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Thus, for z ∈ H2(a, b), a < b, 1 < α < 2, the Caputo-Fabrizio fractional
derivative of Caputo sense is defined by

(CFCDα
a z)(t) =

N(α− 1)

2− α

∫ t

a

z′′(s)e−
α−1
2−α (t−s)ds.

Let B(α) = N(α)
2−α , and µα = α−1

2−α , then

(CFCDα
a z)(t) = B(α)

∫ t

a

z′′(s)e−µα(t−s)ds, 1 < α < 2.

We refer the reader to [2, 12, 13], for more details about definition and prop-
erties of higher order Caputo-Fabrizio fractional derivatives. In the following
result, we estimate the Caputo-Fabrizio fractional derivative of a function at
an extreme point. The result is analogous to the ones obtained in [4] for the
Caputo and Riemann-Liouville fractional derivatives.

Theorem 1. Let z ∈ H2(a, b) attain its minimum at t0 ∈ [a, b), then

(CFCDα
a z)(t0) ≥ B(α)e−µα(t0−a)[µα(z(a)− z(t0))− z′(a)], (2.1)

for all 1 < α < 2.

Proof. Let t0 ∈ (a, b). We define the auxiliary function h(t) = z(t) − z(t0),
t ∈ [a, b]. Then h(t) satisfies the following on [a, b],

h(t) ≥ 0, h(t0) = h
′
(t0) = 0, and CFCDα

ah(t) =CFC Dα
a z(t). (2.2)

Integration by parts twice of

(CFCDα
ah)(t0) = B(α)

∫ t0

a

h
′′
(s)e−µα(t0−s)ds

yields

(CFCDα
ah)(t0) = B(α)

(
e−µα(t0−s)h

′
(s)|t0a − µα

∫ t0

a

h
′
(s)e−µα(t0−s)ds

)
= B(α)

(
h
′
(t0)− e−µα(t0−a)h′(a)− µα

[
e−µα(t0−s)h(s)|t0a

− µα
∫ t0

a

h(s)e−µα(t0−s)ds
])

= B(α)
(
h′(t0)− e−µα(t0−a)h′(a)

− µα[h(t0)− e−µα(t0−a)h(a)] + µ2
α

∫ t0

a

h(s)e−µα(t0−s)ds
)

Applying the results in (2.2) we have

(CFCDα
a z)(t0) = (CFCDα

ah)(t0) ≥ B(α)
(
− e−µα(t0−a)h′(a)

+ µαe
−µα(t0−a)h(a)

)
= B(α)e−µα(t0−a)

(
µα(z(a)− z(t0))− z′(a)

)
,

which proves the result in (2.1) for t0 ∈ (a, b). If t0 = a, then (CFCDα
a z)(a) = 0,

and by simple maximum principle we have z′(a+) ≥ 0. Thus, the inequality
(2.1) holds true for t0 = a, which completes the proof. ut
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Remark 1. In the above result, if t0 = b, then by simple maximum principle we
have h′(b−) = z′(b−) ≤ 0, and thus

(CFCDα
a z)(b) ≥ B(α)z′(b−) +B(α)e−µα(b−a)[µα(z(a)− z(b))− z′(a)].

Corollary 1. Assume z ∈ H2(a, b) attains its minimum at t0 ∈ [a, b) and z
′
(a) ≤

0. Then (CFCDα
a z)(t0) ≥ 0, for all 1 < α < 2.

Proof. By Theorem 1 we have

(CFCDα
a z)(t0) ≥ B(α)e−µα(t0−a)

(
µα(z(a)− z(t0))− z′(a)

)
.

Since z(t0) ≤ z(a) and z′(a) ≤ 0, we have (CFCDα
a z)(t0) ≥ 0. ut

Consider the linear fractional operator

(Pαz)(t) = (CFCDα
a z)(t) + k1(t)z′(t) + k2(t)z(t) = f(t), t ∈ (a, b), 1 < α < 2

(2.3)
with boundary conditions

B1(z) = z(a)− βz′(a), B2(z) = z(b) + γz
′
(b), β, γ ≥ 0. (2.4)

We have the following maximum principle for the linear fractional boundary
value problem (2.3)–(2.4).

Lemma 1. Let z(t) ∈ H2(a, b) ∩ C[a, b], satisfy the inequalities

(Pαz)(t) =CFC Dα
a z(t) + k1(t)z′(t) + k2(t)z(t) ≤ 0, t ∈ (a, b), (2.5)

B1(z) ≥ 0, B2(z) ≥ 0, β, γ ≥ 0, (2.6)

where k1(t), k2(t) ∈ C[a, b] and k2(t) ≤ 0, t ∈ [a, b]. If β ≥ 1
α−1 , then it holds

that z(t) ≥ 0, t ∈ [a, b].

Proof. Assume that the statement is not true. Since z(t) is continuous, then
z(t) has absolute minimum at some point t0 with z(t0) < 0. Let t0 ∈ (a, b), then
z′(t0) = 0. In the following, we prove that (CFCDα

a z)(t0) > 0. By Corollary 1,
the result is true if z′(a) ≤ 0. If z′(a) > 0, by Theorem 1 there holds

(CFCDα
a z)(t0) ≥ B(α)e−µα(t0−a)[µα(z(a)− z(t0))− z

′
(a)].

Since β(α− 1) ≥ 1, and z(a) ≥ βz′(a), we have

(α− 1)[z(a)− z(t0)] ≥ (α− 1)[βz′(a)− z(t0)]

= β(α− 1)z′(a)− (α− 1)z(t0) ≥ z′(a)− (α− 1)z(t0).

Thus,

(α− 1)(z(a)− z(t0))− (2− α)z′(a) ≥ z′(a)− (α− 1)z(t0)− (2− α)z′(a)

= (α− 1)z′(a)− (α− 1)z(t0) = (α− 1)(z′(a)− z(t0)).
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Because z′(a) > 0, and z(t0) < 0, the term (α − 1)(z′(a)− z(t0)) > 0, and
thus (CFCDα

a z)(t0) > 0. The above results together with k2(t) ≤ 0, imply

(Pαz)(t0) = (CFCDα
a z)(t0) + k(t0)z

′
(t0) + k2(t)z(t0)

≥ (CFCDα
a z)(t0) + k2(t0)z(t0) > 0,

which contradicts inequality (2.5). If t0 = a, by simple maximum principle
z
′
(a+) ≥ 0. Applying the boundary conditions z(a)−βz′(a) ≥ 0 we have z(a) ≥

0 and a contradiction is reached. Similarly, if t0 = b then simple maximum
principle implies z

′
(b−) ≤ 0. The boundary condition z(b)+γz

′
(b−) ≥ 0 yields

z(b) ≥ 0 and a contradiction is reached. ut

The condition β ≥ 1
α−1 has been introduced at the first time in [3]. Then,

later on it has been used by many authors to establish certain comparison
principles in the regular and discrete forms, see for instance [20, 23]. In the
following example, we show that one cannot simply discard the condition β ≥
1

α−1 , to obtain the maximum principle in Lemma 1.

Example 1. Consider z(t) = at + bt2 + ct3 + d, 0 ≤ t ≤ 1. Choose µα = 1
9 ,

c = 0.08, and d = 0.02. Let a and b be such that

b = 3c

(
1

µα
− 1

1− e−µα

)
= −0.122222 and a = −(b+ c+ d) = 0.0222218.

For 1 < α < 2, we have

CFCDα
0 t =CFC Dα

0 1 = 0, CFCDα
0 t

2 =
2B(α)

µα

(
1− e−µαt

)
,

CFCDα
0 t

3 =
6B(α)

µα

(
t− 1

µα
(1− e−µαt)

)
.

Thus,

(CFCDα
0 z)(t) =

B(α)

µα

(
(2b− 6c

µα
)(1− e−µαt) + 6ct

)
= −6cB(α)

µα

(
1

1−e−µα
(1−e−µαt)− t

)
=− 4.32B(α)

(
1

1−e− 1
9

(1−e− 1
9 t)−t

)
.

One can easily show that (CFCDα
0 z)(t) ≤ 0, 0 ≤ t ≤ 1. If we choose β = 0.5

and γ = 1, then we have

B1(z) = z(0)− βz′(0) = d− βa = 0.02− 0.5(0.0222218) ≥ 0,

B2(z) = z(1) + γz′(1) = a+ b+ c+ d+ γ(a+ 2b+ 3c)

= a+ 2b+ 3c = 0.0222218− 0.244444 + 0.24 = 0.0177783 ≥ 0.

Let k1(t) = k2(t) = 0, we have

(Pαz)(t) = (CFCDα
0 z)(t) ≤ 0, 0 ≤ t ≤ 1, B1(z), B2(z) ≥ 0,

while z(0.9) = −0.00068001 < 0.
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3 Applications

In this section, we establish certain analytical results on the system (1.1–1.2).
We have

3.1 The linear problem

Lemma 2. Let z ∈ H2(a, b) ∩ C[a, b] be the solution of

(Pαz)(t) = f(t), t ∈ (a, b), 1 < α < 2,

B1(z) = 0, B2(z) = 0,

where k1(t), k2(t) ∈ C[a, b], k2(t) ≤ 0. If β ≥ 1
α−1 , then it holds that

||z(t)||[a,b] = max
t∈[a,b]

|z(t)| ≤M = max
t∈[a,b]

{∣∣∣ f(t)

k2(t)

∣∣∣},
provided M exists.

Proof. We have M = max[a,b]{| f(t)k2(t)
|}, and thus M ≥ | f(t)k2(t)

|, t ∈ [a, b], or

|f(t)| − |k2(t)|M ≤ 0, t ∈ [a, b].

Let u1(t) = M − z(t), then it holds that

(Pαu1)(t) =CFC Dα
au1(t) + k1(t)u′1(t) + k2(t)u1(t)

= −CFCDα
a z(t)− k1(t)z′(t) + k2(t)M − k2(t)z(t) = k2(t)M − f(t)

= −|k2(t)|M − f(t), as k2(t) = −|k2(t)| ≤ −|k2(t)|M + |f(t)| ≤ 0,

B1(u1) = B2(u1) = M ≥ 0.

Thus by virtue of the Lemma 1 we have u1(t) = M − z(t) ≥ 0 or

z(t) ≤M. (3.1)

Analogously, Let u2(t) = M + z(t), then it holds that

(Pαu2)(t) = CFCDα
au1(t) + k1(t)u′1(t) + k2(t)u1(t)

= CFCDα
a z(t) + k1(t)z′(t) + k2(t)M + k2(t)z(t)

= k2(t)M + f(t) ≤ −|k2(t)|M + |f(t)| ≤ 0,

B1(u2) = B2(u2) = M ≥ 0.

Thus by virtue of the Lemma 1 we have u2(t) = M + z(t) ≥ 0, or

z(t) ≥ −M. (3.2)

By combining the two equations (3.1) and (3.2) we have

|z(t)| ≤M, t ∈ [a, b],

and hence the result. ut

Math. Model. Anal., 24(1):62–71, 2019.
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Remark 2. If k2(t) ≤ −ε, t ∈ [a, b] with ε > 0, then we guarantee the existence
of the maximum M in the above result.

Lemma 3. Let z1, z2 ∈ H2(a, b) ∩ C[a, b] be the solution of

(Pαz1)(t) = f1(t), t ∈ (a, b), 1 < α < 2, (3.3)

B1(z1) = B2(z1) = 0,

and

(Pαz2)(t) = f2(t), t ∈ [a, b], 1 < α < 2, (3.4)

B1(z2) = B2(z2) = 0,

where, k1(t), k2(t), f1(t), f2(t) ∈ C[a, b], k2(t) ≤ 0, and β ≥ 1
α−1 . If f1(t) ≤

f2(t), t ∈ [a, b] then it holds that

z1(t) ≥ z2(t), t ∈ [a, b].

Proof. Let w(t) = z1(t)− z2(t), t ∈ [a, b], then by subtracting Equation (3.4)
from Equation (3.3) it holds that

(Pαw)(t) =CFC Dα
aw(t) + k1(t)w

′
(t) + k2(t)w(t) = (f1(t)− f2(t)) ≤ 0

B1(w) = w(a)− βw
′
(a) = 0, B2(w) = w(b) + γw

′
(b) = 0, β, γ ≥ 0.

By virtue of the Lemma 1 we have w(t) ≥ 0, or

z1(t) ≥ z2(t), t ∈ [a, b],

and hence the result. ut

3.2 The nonlinear problem

We consider the nonlinear fractional boundary value problem

(Pαz)(t) = (CFCDα
a z)(t) + k1(t)z

′
(t) + k2(t)z(t)

= f(t, z), t ∈ (a, b), 1 < α < 2, (3.5)

B1(z) = z(a)− βz
′
(a) = 0, B2(z) = z(b) + γz

′
(b) = 0, β, γ ≥ 0, (3.6)

where f(t, z) is a smooth function, k1(t), k2(t) ∈ C[a, b], and k2(t) ≤ 0.

Lemma 4. If f(t, z) is non-decreasing with respect to z, then the nonlinear
fractional boundary value problem (3.5)–(3.6) has at most one solution z ∈
H2(a, b) ∩ C[a, b].

Proof. Assume that z1, z2 ∈ H2(a, b) ∩ C[a, b] be two solutions of the above
equation, we shall show that z1 = z2. Let w = z1 − z2. Then it holds that

(Pαw)(t) = f(t, z1)− f(t, z2), B1(w) = B2(w) = 0.
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Applying the mean value theorem we have

f(t, z1)− f(t, z2) =
∂f

∂z
(z∗)(z1 − z2),

for some z∗ between z1 and z2. Thus,

(Pαw)(t)− ∂f

∂z
(z∗)w = (CFCDα

aw)(t) + k1(t)w
′
(t) + (k2(t)− ∂f

∂z
(z∗))w(t) = 0.

(3.7)
Since −∂f∂z (z∗) ≤ 0, and k2(t) ≤ 0, then w(t) ≥ 0, by virtue of Lemma 1. Also,
Equation (3.7) holds true for −w and thus −w ≤ 0, by virtue of Lemma 1.
Thus, w = 0 and the result is proved. ut

Lemma 5. Let z(t) ∈ H2(a, b)∩C[a, b] be the solution of (3.5–3.6), and assume
that there exists g1(t), g2(t) ∈ C[a, b] such that

µ2z(t) + g2(t) ≤ f(t, z) ≤ µ1z(t) + g1(t), for all t ∈ (a, b),

where µ1, µ2 ≥ k2(t). Let u1, u2 ∈ H2(a, b) be the solutions of

(Pαu1)(t) = µ1u1(t) + g1(t), t ∈ [a, b], 1 < α < 2,

B1(u1) = 0, B2(u1) = 0, β, γ ≥ 0, (3.8)

(Pαu2)(t) = µ1u2(t) + g2(t), t ∈ [a, b], 1 < α < 2,

B1(u2) = 0, B2(u2) = 0, β, γ ≥ 0.

Then it holds that u1(t) ≤ z(t) ≤ u2(t), t ∈ [a, b].

Proof. We shall first prove that u1(t) ≤ z(t). By subtracting Equation (3.8)
from Equation (3.5) we have

(Pαz)(t)− (Pαu1)(t) = f(t, z)− µ1u1(t)− g1(t)

≤ µ1z(t) + g1(t)− µ1u1(t)− g1(t) = µ1(z(t)− u1(t)).

Let v(t) = z(t)− u1(t), then it holds that

CFCDα
a v(t) + k1(t)v′(t) + (k2(t)− µ1)v(t) ≤ 0.

Since µ1 ≥ k2(t) we have (k2(t)− µ1) ≤ 0. By virtue of the Lemma 1, we have
v(t) ≥ 0, or u1(t) ≤ z(t), t ∈ [a, b]. By applying analogous steps we can show
that z(t) ≤ u2(t), t ∈ [a, b]. Combining both estimates we have

u1(t) ≤ z(t) ≤ u2(t), t ∈ [a, b].

ut

4 Conclusions

We estimated the Caputo-Fabrizio fractional derivative of order 1 < α < 2,
for a function at its extreme points. We then used the result to construct a

Math. Model. Anal., 24(1):62–71, 2019.
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maximum principle for a linear fractional boundary value problem under the
condition β ≥ 1

α−1 , where β is defined in (1.2). We proved that this condition is
a sufficient and essential condition to obtain such maximum principle. We then
implemented the constructed maximum principle to obtain a norm estimate
of solutions to the linear problem and to prove a uniqueness result for the
nonlinear problem. Several comparison principles are obtained as well.
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