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1 Introduction

Fractional differential equations (FDEs) have become one of the cornerstones
in the modeling of various real-world systems in recent years. Fractional-order
models are extensively utilized in the study of physics [17], nanomaterials [9],
control problems in engineering [24], economics [14] and biomedicine [21].

Several typical recent examples of research involving fractional calculus are
reviewed below. A fractional calculus model of supercapacitor energy storage
is presented in [18]. Viscoelastic constitutive laws for arterial wall mechanics
are investigated via fractional-order models in [36]. Atomic chain dynamics

�
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are approximated using fractional differential equations in [32]. Dynamics of
the transition from laminar to turbulent fluid flow is described using fractional
models in [15].

A fractional-order model of anomalous cosmic ray diffusion with a finite
velocity of free particle motion is considered in [34]. An efficient fractional-
derivative based model for the prediction of multiaxial visco-hyperelastic be-
havior of elastomers is constructed in [8]. Fractional dynamical systems with
types of attractors that are distinct from attractors of integer-order systems
are considered in [10]. It is demonstrated in [20] that the dependence of the
firing rate of single rat neocortical pyramidal neuron is a fractional derivative
of slowly varying stimulus parameters.

Due to such wide possibilities fractional-order model application, a number
of methods for the construction of exact analytical solutions to FDEs have been
developed. In [35], the Carleman embedding technique is used to transform the
fractional logistic equation into an infinite-order set of linear equations from
which the exact solution to the fractional logistic equation is obtained. Agrawal
presents a scheme for the construction of analytical solutions for a class of FDEs
that contain both left- and right-fractional derivatives in [1]. The joint Laplace
and Fourier transform is employed to construct solutions to fractional partial
differential equations occurring in quantum mechanics in [29]. A class of explicit
particular solutions to the Cauchy-Euler fractional partial differential equation
is obtained in [19].

Analytical solutions to the fractional modified Telegraph and Rayleigh equa-
tions are constructed in terms of Mittag-Leffler, Hypergeometric, Hermite and
Fox’s H functions in [33]. The solution to a Hilfer-generalized Riemann-Liou-
ville fractional diffusion equation is obtained using variable separation, Laplace
transform and Sturm-Liouville analysis in [31]. A bivariate operational method
is used to construct solution to the two-term time-fractional Thornley problem
in [7]. Exact solutions to a class of fractional Hamiltonian equations are ana-
lyzed in [6]. An extension of Frobenius’ method is applied to linear fractional
differential equations with variable coefficients in [30].

A number of techniques use power series with fractional powers to con-
struct solutions to fractional differential equations. The viability of this ap-
proach is proven in [11] by generalizing some results from integer-power series
to fractional-power series using the Caputo fractional derivative. A new ap-
proach for the iterated construction of series solutions to fractional differential
equations is presented in [2] and expanded in [3].

An analytical technique based on power series is exploited in [5] to predict
and represent the multiplicity of solutions to nonlinear boundary value prob-
lems of fractional order. This approach is further generalized in [12] and [4] in
which the authors propose schemes for the construction of exact analytical so-
lutions to linear and nonlinear equations based on the generalized Taylor series
formula.

The main objective of this paper is to develop an operator-based approach
for the construction of closed-form solutions to fractional differential equations.
Some key concepts of such operator-based techniques are presented in [26]
for fractional derivative order α = 1

2 . A generalization of this technique for
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rational-valued fractional derivative order α = m
n is presented in this paper.

The presented technique is based on Caputo and Riemann-Liouville algebras
of fractional power series. Fractional differentiation and integration operators
are defined using the basis of these algebras. It is demonstrated that a one-to-
one correspondence exists between Caputo and Riemann-Liouville series.

To provide a more concise and clear presentation of these concepts, linear
fractional differential equations are considered. Using the properties of Caputo
and Riemann-Liouville algebras, explicit expressions of solutions to linear frac-
tional differential equations are obtained via linear recurring sequences. Fur-
thermore, it is shown that elements of Caputo and Riemann-Liouville algebras
can be represented by a finite sum of fractionally integrated integer-power se-
ries, which enables the transformation of fractional differential equations into
systems of ordinary differential equations (ODEs). The viability of our ap-
proach is demonstrated using the fractional damped harmonic oscillator – it
is shown that as the fractional derivative order approaches the standard inte-
ger value, the exact solution of the FDE converges to the exponential-function
exact solution of the respective ODE.

2 Main concepts and definitions

A generalization of algebras and operators given in [26] for fractional derivatives
of order α = 1

n , n ∈ N is presented in this section.

2.1 Power series and extensions

As in [26], functions in this paper are represented by power series:

y(z) :=

+∞∑

j=0

aj
zj

j!
; aj , z ∈ C. (2.1)

If series (2.1) is convergent (in the Cauchy sense) in any ball |z| < ε, classical
function extension techniques can be used to extend (2.1) to a wider domain
in the complex plane. Denoting y(x), x ∈ R as a real-valued function that is
obtained by evaluating the extended power series on the real line allows to
consider (2.1) for arguments that are not necessarily in the convergence radius
|x| < ε. In such cases, the extended function y(x) and the respective power
series are considered congruent.

If series (2.1) is divergent for z 6= 0, it is well-known that while such series
cannot be evaluated, they still contain important structural information [16].
Thus, divergent series can be solutions to fractional differential equations in
the structural sense.

2.2 Fractional power series

Solutions to fractional differential equations can be expressed via power series
that are summed over non-integer powers. In the remainder of this paper, we
let x ≥ 0.
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Definition 1. Let n ∈ N. The fractional power series basis z
(n)
0 , z

(n)
1 , . . . is

defined as:

z
(n)
j (x) := x

j−n+1
n /Γ

(
j + 1

n

)
; x ≥ 0; j = 0, 1, . . . .

Γ denotes the Gamma function:

Γ (x) :=

∫ +∞

0

ξx−1 exp (−ξ) dξ.

Definition 2. The set of fractional power series with respect to parameter
n ∈ N reads:

Fn :=
{+∞∑

j=0

cjz
(n)
j ; cj ∈ C, j = 0, 1, . . .

}
. (2.2)

2.3 Riemann-Liouville algebra

Consider the linear space over C defined in the set Fn with standard sum and

product by a scalar operations. Let z
(n)
k , z

(n)
l ; k, l = 0, 1, . . . be basis elements

of any fractional power series.

Definition 3. The Riemann-Liouville type product operation ∗n in the set Fn
is defined as:

z
(n)
k ∗n z(n)l :=

(
(k + l)/n

k/n

)
z
(n)
k+l, (2.3)

where
(
α
β

)
is the generalized binomial coefficient:

(
α

β

)
=

Γ (α+ 1)

Γ (β + 1)Γ (α+ β − 1)
; α, β ∈ C.

Note that (2.3) is not the natural product that is obtained by multiplying basis
functions in a conventional way, since that would yield powers of x that are
lesser than negative unity.

Using relation (2.3), the product of any f
(n)
1 =

∑+∞
j=0 ajz

(n)
j ,

f
(n)
2 =

∑+∞
j=0 bjz

(n)
j ∈ Fn is defined as:

f
(n)
1 ∗n f (n)2 :=

+∞∑

j=0

j∑

k=0

akbj−kz
(n)
k ∗n z(n)j−k

=

+∞∑

j=0




j∑

k=0

akbj−k

(
j/n

k/n

)
 z

(n)
j ∈ Fn. (2.4)

The neutral element with respect to ∗n is z
(n)
0 . Furthermore, ∗n is distribu-

tive with respect to the conventional sum operation, thus the linear space Fn
together with product ∗n defines an algebra.



The Construction of Closed-Form Solutions to FDEs 669

Definition 4. The commutative algebra Fn := 〈Fn; +, ∗n |C〉 is called the
Riemann-Liouville algebra.

Definition 5. Riemann-Liouville fractional differentiation and integration op-
erators are defined for elements of Fn in the classical sense [22,27]:

D(1/n)z
(n)
j :=

{
0, j = 0;

z
(n)
j−1, j = 1, 2, . . . ,

I(1/n)z
(n)
j := z

(n)
j+1, j = 0, 1, . . . .

Note that Riemann-Liouville differentiation of a constant does not result in
zero, since D(1/n)1 = D(1/n)z

(n)
n−1 = z

(n)
n−2. It is clear that D(1/n)f, I(1/n)f ∈ Fn

for any f ∈ Fn.

2.4 Caputo algebra

Consider the truncated set of basis functions (2.2), starting at z
(n)
n−1 = 1:

w
(n)
j := z

(n)
j+n−1, j = 0, 1, . . . .

Definition 6. Fractional power series constructed using the basis w
(n)
0 , w

(n)
1 ,

w
(n)
2 , . . . comprise the set of Caputo power series:

CFn :=
{+∞∑

j=0

cjw
(n)
j ; cj ∈ C, j = 0, 1, . . .

}
.

As in the previous subsection, the set of Caputo power series forms a linear
space over C with conventional sum and product by a scalar operations. Since
powers of x in the set CFn are non-negative, the standard algebraic product
operation can be used to define products of basis functions:

w
(n)
k w

(n)
l =

(k+l
n
k
n

)
w

(n)
k+l; k, l = 0, 1, . . . . (2.5)

By (2.5), the product of any g
(n)
1 =

∑+∞
j=0 ajw

(n)
j , g

(n)
2 =

∑+∞
j=0 bjw

(n)
j ∈ CFn

is defined as:

g
(n)
1 g

(n)
2 =

+∞∑

j=0




j∑

k=0

akbj−k

(
j/n

k/n

)
w

(n)
j ∈ CFn. (2.6)

The neutral element with respect to (2.6) is w
(n)
0 = 1. It is clear that standard

algebraic sum, product and product by a scalar operations define an algebra in
the set CFn.

Definition 7. The algebra CFn := 〈CFn; +, · |C〉 is called the Caputo algebra.
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Definition 8. Caputo differentiation and integration operators are defined for
any g ∈ CFn via the following relations:

CD(1/n)w
(n)
j =

{
0, j = 0,

w
(n)
j−1, j = 1, 2, . . . ,

CI(1/n)w
(n)
j = w

(n)
j+1, j = 0, 1, . . . .

Note that the Caputo differentiation of unity is equal to zero, since
CD(1/n)w

(n)
0 = 0. The set CFn is closed with respect to operators CD(1/n),

CI(1/n).

2.5 Relationship between Riemann-Liouville and Caputo algebras
and operators

2.5.1 Relationship between algebras with equal differentiation
order

It has already been noted that the set CFn consists of a subset of basis functions
from the set Fn. Let τ define the following mapping:

τ
(
z
(n)
j

)
= w

(n)
j ; τ−1

(
w

(n)
j

)
= z

(n)
j ; j = 0, 1, . . . . (2.7)

Then, τ is a bijection between sets Fn and CFn. Note that:

τ
(
z
(n)
k ∗n z(n)l

)
= τ

(
z
(n)
k

)
τ
(
z
(n)
l

)
= w

(n)
k w

(n)
l , (2.8)

τ−1
(
w

(n)
k w

(n)
l

)
= τ−1

(
w

(n)
k

)
∗n τ−1

(
w

(n)
l

)
= z

(n)
k ∗n z(n)l , (2.9)

for k, l = 0, 1, . . .. Equations (2.8), (2.9) yield that:

τ (f1 ∗n f2) = τ (f1) τ (f2) ; τ−1 (g1g2) = τ−1 (g1) ∗n τ−1 (g2) ,

for any f1, f2 ∈ Fn, g1, g2 ∈ CFn. Thus the mapping (2.7) defines a bijection
between algebras Fn and CFn.

It can be observed that the mappings τ, τ−1 can be realized via operators
D(1/n), I(1/n):

τ
∣∣∣
Fn

=
(
I(1/n)

)n−1
, τ−1

∣∣∣
CFn

=
(
D(1/n)

)n−1
.

The relationship between algebras Fn and CFn is summarized in Figure 1.
Note that:

CD(1/n)
∣∣∣
CFn

=
(
I(1/n)

)n−1 (
D(1/n)

)n∣∣∣
CFn

, CI(1/n)∣∣∣
CFn = I(1/n)

∣∣∣
CFn

.

Furthermore, if fk ∈ Fn and gk ∈ CFn, k = 1, . . . ,m, then:

(
I(1/n)

)n−1
(f1 ∗n f2 ∗n . . . ∗n fm) =

m∏

k=1

((
I(1/n)fk

)n−1)
,
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τ =
(
I(1/n)

)n−1
: Fn

τ =
(
I(1/n)

)n−1
: Fn

CFn :
(
D(1/n)

)n−1
= τ−1

CFn :
(
D(1/n)

)n−1
= τ−1

D(1/n) I(1/n) CD(1/n) CI(1/n)

Figure 1. Schematic diagram of the bijective mappings between Caputo and
Riemann-Liouville algebras.

(
D(1/n)

)n−1 ( m∏

k=1

gk

)
=

((
D(1/n)

)n−1
g1

)
∗n
((

D(1/n)
)n−1

g2

)
∗n . . .

∗n
((

D(1/n)
)n−1

gm

)
.

Note that the mapping τ can be used to exchange Caputo differentiation
with Riemann-Liouville and vice-versa:

τ

((
D(1/n)

)m
g

)
=
(
CD(1/n)

)m
f, τ−1

((
CD(1/n)

)m
f

)
=
(
D(1/n)

)m
g,

where f ∈ CFn; g = τ−1 (f) ∈ Fn and m = 0, 1, . . ..

2.5.2 Relationship between algebras with distinct differentiation
order

Let us consider the fractional derivative order parameter n factored into powers
of primes p1, . . . , pm:

n =

m∏

j=1

p
kj
j , m, kj ∈ N.

The following relations hold true for Caputo fractional power series:

CFpj ⊂ · · · ⊂ CF
p
kj
j

⊆ CFn, (2.10)

however, in general, CFp1 ∪ CFp21 ∪ · · · ∪
CFpkm

m
6= CFn. Furthermore, CFpj ∩

CFpl = CF1, j 6= l. The set CF1 contains basis elements with integer powers,

thus, the unit element w
(pj)
0 = w

(pl)
0 = w

(n)
0 = 1 is the same for any subset

CFplj , l = 1, . . . , kj . This leads to the fact that algebras formed from the sets

given in (2.10) are subalgebras of CFn:

CFpj ⊂ · · · ⊂ CF
p
kj
j

⊆ CFn.

In the case of Riemann-Liouville derivative, the relation analogous to (2.10)
holds true:

Fpj ⊂ · · · ⊂ F
p
kj
j

⊆ Fn.

Math. Model. Anal., 23(4):665–685, 2018.
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However, in this case the unit elements are distinct for each algebra formed
with the subsets Fplj , l = 1, . . . , kj . Furthermore, the definition of the product

(2.4) depends on the order of the algebra. These observations yield that Fplj
are not sub-algebras of Fn.

An example of the results of this subsection for n = 6 is given in Figure 2.
Note that CF2,

CF3 are subalgebras of CF6, but F2,F3 are not subalgebras
of F6, even though F2,F3 ⊂ F6. The bijection τ maps Caputo and Riemann-
Liouville algebras of the same order to each other.

e = 1
CF2

CF3

CF6

F6

e6 =
x− 5

6

Γ( 1
5 )

e3 =
x− 2

3

Γ( 1
3 )

F3
F2

e2 =
x− 1

2

Γ( 1
2 )

Figure 2. An example of the relationship between Caputo and Riemann-Liouville
algebras of orders n = 2, 3, 6. Caputo algebras CF2,CF3 are subalgebras of CF .

Riemann-Liouville fractional power series sets satisfy F2,F3 ⊂ F6, but Riemann-Liouville
algebras F2,F3 are not subalgebras of F6 due to the fact that the product operation ∗n
depends on algebra order. e denotes the unit element of all considered Caputo algebras;
e2, e3, e6 denote unit elements of Riemann-Liouville algebras that correspond to respective

fractional differentiation orders.

3 Linear fractional differential equations

Linear fractional differential equations with respect to Caputo differentiation
operators are analyzed in this section.

3.1 Mittag-Leffler functions

Mittag-Leffler functions, first introduced in [23], play a pivotal role in fractional
calculus.

Definition 9. Let α, β ∈ C and Re (α) > 0. Then, the Mittag-Leffler function
is defined as [28]:

Eα,β (t) :=

+∞∑

j=0

tj

Γ (αj + β)
. (3.1)

Special cases of (3.1) include exponent and hyperbolic functions.
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Note that setting α = 1/n, β = 1, t = x
1
n , where n ∈ N results in:

E 1
n ,1

(
x

1
n

)
=

+∞∑

j=0

w
(n)
j . (3.2)

Thus, the Mittag-Leffler functions can be considered as the analogy of expo-
nential functions for fractional differential operators, since they are the sum
of all basis elements. Furthermore, the following relation holds true for any
ρ ∈ C:

E 1
n ,1

(
ρx

1
n

)
=

+∞∑

j=0

ρjw
(n)
j ,

which leads to:

CD(1/n)E 1
n ,1

(
ρx

1
n

)
= ρE 1

n ,1

(
ρx

1
n

)
. (3.3)

Let s = 0, 1, . . .. The following relation will be used to express solutions to
linear differential equations in the Caputo algebra:

ds

dρsE 1
n ,1

(
ρx

1
n

)
=

+∞∑

j=0

(
ds

dρs ρ
j
)
w

(n)
j =

+∞∑

j=s

j!

(j − s)!ρ
j−sw(n)

j

= s!

+∞∑

j=0

(
j

s

)
ρj−sw(n)

j . (3.4)

Note that
(
j
s

)
= 0 when j < s and j, s ∈ N ∪ {0}. Equation (3.4) yields:

+∞∑

j=0

(
j

s

)
ρj−sw(n)

j =
1

s!

ds

dρs
E 1

n ,1

(
ρx

1
n

)
. (3.5)

3.2 Linear equations with constant coefficients

Consider the following differential equation with respect to y ∈ CF:

(
CD(1/n)

)m
y + bm−1

(
CD(1/n)

)m−1
y + · · ·+ b1

CD(1/n)y + b0y = f, (3.6)

where f =
∑+∞
j=0 fjw

(n)
j ∈ CF is a known function; bk ∈ C, k = 0, . . . ,m − 1

and n,m ∈ N.
Note that equation (3.6) can be transformed into a Riemann-Liouville dif-

ferential equation using the previously described mapping τ−1. Letting ŷ =
τ−1 (y) and applying the mapping τ−1 on both sides of (3.6) yields:

(
D(1/n)

)m
ŷ + bm−1

(
D(1/n)

)m−1
ŷ + · · ·+ b1D

(1/n)ŷ + b0ŷ = τ−1 (f) . (3.7)

Similarly, applying τ to both sides of (3.7) results in (3.6). Thus it is sufficient
to consider Caputo differential equations (3.6).

Math. Model. Anal., 23(4):665–685, 2018.
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3.2.1 Homogeneous case

Consider the case f = 0. Let y =
∑+∞
j=0 cjw

(n)
j , where cj ∈ C are undetermined

coefficients. Note that:

(
CD(1/n)

)k
y =

+∞∑

j=0

cj+kw
(n)
j , k = 0, 1, . . . . (3.8)

Inserting the expression of y into (3.6) and using (3.8) yields:

+∞∑

j=0

(
cj+m + bm−1cj+m−1 + · · ·+ b1cj+1 + b0cj

)
w

(n)
j = 0.

Thus, the coefficients of the solution must satisfy:

cj+m + bm−1cj+m−1 + · · ·+ b1cj+1 + b0cj = 0, j = 0, 1, . . . . (3.9)

Equation (3.9) defines a linear recurrence relation, which can be solved by
considering roots of the following characteristic polynomial:

P (ρ) = ρm + bm−1ρ
m−1 + · · ·+ b1ρ+ b0 = 0. (3.10)

Suppose (3.10) has roots ρ1, . . . , ρl with multiplicities l1, . . . , ll. Then, the
solution to (3.9) takes the following form [13,25]:

cj =

l∑

k=1

lk∑

s=0

γks

(
j

s

)
ρj−sk , j = 0, 1, . . . , (3.11)

where γks ∈ C are constants that can be determined from a system of linear
equations which is obtained by selecting j = 0, . . . , l − 1 in (3.11). Note that
00 := 1 and the product

(
j
s

)
ρj−sk is considered to be zero if at least one of its

terms is equal to zero.
Inserting (3.11) into the expression of y and using (3.5) yields:

y =

+∞∑

j=0




l∑

k=1

lk∑

s=0

γks

(
j

s

)
ρj−sk


w

(n)
j =

l∑

k=1

lk∑

s=0

γks




+∞∑

j=s

(
j

s

)
ρj−sk w

(n)
j




=

l∑

k=1

lk∑

s=0

Cks

(
ds

dρs
E 1

n ,1

(
ρx

1
n

))∣∣∣∣∣
ρ=ρk

,

where Cks = 1
s!γks. The results of this subsection can be summarized with the

following Lemma.

Lemma 1. Let a linear homogeneous fractional differential equation with con-
stant coefficients with respect to the Caputo derivative be given:

(
CD(1/n)

)m
y + bm−1

(
CD(1/n)

)m−1
y + · · ·+ b1

CD(1/n)y + b0y = 0. (3.12)
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The general solution to (3.12) has the following form:

y =

l∑

k=1

lk∑

s=0

Cks

(
ds

dρs
E 1

n ,1

(
ρx

1
n

))∣∣∣∣∣
ρ=ρk

, (3.13)

where Cks ∈ C are any constants.

It can be observed that the structure of solution (3.13) to (3.12) mirrors
that of ordinary linear differential equations with constant coefficients, where
exponential functions are replaced with Mittag-Leffler functions.

3.2.2 Expression of solution via exponential functions

Corollary 1. Let us consider the homogeneous linear fractional differential equa-
tion with constant coefficients (3.12). Suppose that the roots ρ1, . . . , ρm of the
characteristic polynomial (3.10) are distinct. Then, the solution (3.13) can be
written in the following form:

y =

n−1∑

s=0

m∑

k=1

Ckρ
s
k

(
CI(1/n)

)s
exp (ρnkx) . (3.14)

Proof. Note that the exponential function exp (λx) , λ ∈ C can be written

using basis functions w
(n)
jn , j = 0, 1, . . .:

exp (λx) =

+∞∑

j=0

λjw
(n)
jn .

It can be observed that selecting λ = ρn yields:

ρs
(
CI(1/n)

)s
exp (ρnx) =

+∞∑

j=0

ρjn+sw
(n)
jn+s.

Thus, (3.2) yields that:

E 1
n ,1

(
ρx

1
n

)
=

n−1∑

s=0

ρs
(
CI(1/n)

)s
exp (ρnx) . (3.15)

If roots of the characteristic polynomial (3.10) are distinct, inserting (3.15) into
(3.13) yields (3.14), which finishes the proof. ut

3.2.3 Equivalence between fractional differential equations and
systems of ODEs

It can be demonstrated that fractional differential equations can be reduced
to systems of ordinary differential equations. Let us consider a special case of
(3.12) where m = n:

(
CD(1/n)

)n
y + bn−1

(
CD(1/n)

)n−1
y + · · ·+ b1

CD(1/n)y + b0y = 0. (3.16)

Math. Model. Anal., 23(4):665–685, 2018.



676 Z. Navickas et al.

Note that the solution y ∈ CFn can be written in the following form:

y =

n−1∑

l=0

(
CI(1/n)

)l
fl, (3.17)

where fl ∈ CF1 are series with integer powers of x. Inserting (3.17) into (3.16)
yields:

n−1∑

j=1

n−1∑

l=j

bl−j
(
CI(1/n)

)j
fl +

n−1∑

j=1

n∑

k=n−j
bk

(
CI(1/n)

)j ( d

dx
fj+k−n

)

+
d

dx
f0 +

n−1∑

j=0

bjfj = 0.

(3.18)

Rearranging and simplifying (3.18) yields the following system of ordinary dif-
ferential equations:

n−l−1∑

j=0

bjfj+l +

n∑

j=n−l
bj

(
d

dx
fj+l−n

)
= 0; l = 0, 1, . . . , n− 1.

Note that this simple example is not the limit of this technique – using (3.17)
any fractional differential equation can be converted into a system of ODEs.
The solution of this system is then used to obtain the general solution to (3.16).

3.2.4 Non-homogeneous case

Let f =
∑+∞
j=0 fjw

(n)
j 6= 0 in (3.6). Expanding on the results of the previous

subsection, the following statement can be formulated.

Remark 1. The general solution to (3.6) has the following structure:

y = y + y∗, (3.19)

where

y =

l∑

k=1

lk∑

s=0

Cks
ds

dρs
E 1

n ,1

(
ρx

1
n

)∣∣∣
ρ=ρk

is the solution to the associated homogeneous equation (obtained by setting
f = 0 in (3.6)) and

y∗ =

+∞∑

j=0

qjw
(n)
j , qj ∈ C

is a particular solution to the nonhomogeneous linear equation (3.6).

Proof. Let y =
∑+∞
j=0 cjw

(n)
j ∈ CF be the unknown solution to (3.19). Insert-

ing y into (3.6) and simplifying results in:

+∞∑

j=0

(
cj+m + bm−1cj+m−1 + · · ·+ b1cj+1 + b0cj − fj

)
w

(n)
j = 0.
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Thus y is a solution to (3.6) if and only if the following recurrence relation
holds true:

cj+m + bm−1cj+m−1 + · · ·+ b1cj+1 + b0cj = fj , j = 0, 1, . . . . (3.20)

Relation (3.20) defines a non-homogeneous linear recurrence relation with re-
spect to sequence cj , j = 0, 1, . . .. It is well-known (see, for example, [13]) that
the general solution to (3.20) reads:

cj =

l∑

k=1

lk∑

s=0

γks

(
j

s

)
ρj−sk + qj , j = 0, 1, . . . . (3.21)

The term qj is a particular solution to the recurrence (3.20) and the remaining
terms are the general solution to the associated non-homogeneous recurrence
relation (3.9).

Inserting (3.21) into y yields (3.19). ut

Example 1. Consider the following non-homogeneous linear differential equa-
tion with constant coefficients:

(
CD(1/n)

)4
y −

(
CD(1/n)

)3
y − 5

(
CD(1/n)

)2
y − CD(1/n)y − 6y

= a0 + a1w
(n)
1 + a2w

(n)
2 , (3.22)

where a0, a1, a2 ∈ C are any constants. By the results of Remark 1, the coeffi-
cients of the solution series obey the following linear recurrence:

cj+4 − cj+3 − 5cj+2 − cj+1 − 6cj = aj , j = 0, 1, . . . , (3.23)

where aj = 0 for j = 3, 4, . . .. The solution to homogeneous part of recurrence
(3.23) can be constructed by considering its characteristic polynomial (which
is also the characteristic polynomial for the associated homogeneous equation
of (3.22)):

P (ρ) = ρ4 − ρ3 − 5ρ2 − ρ− 6 = 0. (3.24)

The roots of (3.24) are ρ1,2 = ±i, ρ3 = −2, ρ4 = 3. By Remark 1, the solution
to the homogeneous part of (3.22) reads:

y=C1E 1
n ,1

(
ix

1
n

)
+C2E 1

n ,1

(
−ix

1
n

)
+C3E 1

n ,1

(
−2x

1
n

)
+C4E 1

n ,1

(
3x

1
n

)
.

(3.25)
Next, a special solution y∗ to (3.22) must be constructed. This is equivalent
to finding a special solution qj , j = 0, 1, . . . to recurrence (3.23). Using the
method of undetermined coefficients, an initial guess for qj reads:

qj = ν00j + ν1

(
j

1

)
0j−1 + ν2

(
j

2

)
0j−2; j = 0, 1, . . . , (3.26)

where ν0, ν1, ν2 ∈ C are undetermined constants. It is clear that qj = aj = 0
for j = 3, 4, . . .. Letting qj = aj for j = 0, 1, 2 and using (3.23) results in:

−5ν2 − ν1 − 6ν0 = a0,

−ν2 − 6ν1 = a1,

−6ν2 = a2.

(3.27)
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Solving (3.27) and inserting into (3.26) yields the special solution to (3.22):

y∗ = −a0
6

+
a1
36

+
29a2
216

+
1

36
(a2 − 6a1)w1 −

a2
6
w2. (3.28)

Thus, by Remark 1, the general solution to (3.22) is given by combining (3.25)
and (3.28):

y = C1E 1
n ,1

(
ix

1
n

)
+ C2E 1

n ,1

(
−ix

1
n

)
+ C3E 1

n ,1

(
−2x

1
n

)
+ C4E 1

n ,1

(
3x

1
n

)

− a0
6

+
a1
36

+
29a2
216

+
1

36
(a2 − 6a1)w

(n)
1 − a2

6
w

(n)
2 .

3.2.5 Cauchy initial value problems

Corollary 2. Consider the following initial value problem on (3.6):

(
CD(1/n)

)k
y
∣∣∣
x=0

= σk, σk ∈ C, k = 0, 1, . . . ,m− 1. (3.29)

By Remark 1, the solution to (3.6) depends on m undetermined constants Cks.
Evaluating the solution (3.19) at x = 0 and using initial conditions (3.29) yields
a system of linear equations that can be used to compute the values of Cks.
Since ρk 6= ρl, k 6= l, the linear system is consistent and has a unique solution.
Thus, the initial value problem (3.6), (3.29) has a unique solution.

Example 2. Consider the initial value problem on (3.23) with a0 = 6, a1 = −7,
a2 = −6 and the following initial conditions:

(
CD(1/n)

)k
y
∣∣∣
x=0

= σk, k = 0, 1, 2, 3. (3.30)

The general solution to (3.23), as constructed in Example 1, reads:

y = C1E 1
n ,1

(
ix

1
n

)
+ C2E 1

n ,1

(
−ix

1
n

)
+ C3E 1

n ,1

(
−2x

1
n

)

+ C4E 1
n ,1

(
3x

1
n

)
− 2 + w

(n)
1 + w

(n)
2 . (3.31)

Note that (3.3) yields that for any ρ ∈ C:

(
CD(1/n)

)k
E 1

n ,1

(
ρx

1
n

)∣∣∣
x=0

= ρk, k = 0, 1, . . . .

Thus, applying initial conditions (3.30) to the general solution (3.31) yields:

C1 + C2 + C3 + C4 − 2 = σ0,

iC1 − iC2 − 2C3 + 3C4 + 1 = σ1,

−C1 + C2 + 4C3 + 9C4 + 1 = σ2,

−iC1 + iC2 − 8C3 + 27C4 = σ3. (3.32)
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Solving system(3.32) yields the following constants:

C1=

(
− 11

300
−17i

50

)
σ1−

(
31

300
+

17i

300

)
σ2+

(
1

50
+

17i

300

)
σ3+

57

50
+

119i

300
+

1

2
σ0,

C2 =
1 + i

12
σ1 −

1− i

12
σ2 −

i

12
σ3 + 1− 7i

12
+

1

2
σ0,

C3 =

(
− 3

50
− 3i

25

)
σ1 +

7− i

50
σ2 −

2

25
+

7i

50
−
(

1

25
− i

50

)
σ3,

C4 =

(
1

150
− i

50

)
(iσ3 + 2iσ2 − 3− 2i + σ2 + 2σ1) .

3.3 Viability of the presented approach for linear FDEs with
variable coefficients

The fractional power series approach for construction of closed form analytical
solutions to fractional differential equations has been illustrated using linear
FDEs with constant coefficients. However, the presented technique is not lim-
ited to such equations – it can also be used to construct solutions to linear
FDEs with variable coefficients or nonlinear problems. It has already been
shown for the special case of fractional derivative order 1

2 in [26] that an ap-
proach based on fractional power series can be used to construct solutions to
nonlinear fractional differential equations.

Note that it is not always possible to construct closed form solutions to
such equations in terms of Mittag-Leffler or other standard functions, but the
computation of fractional power series coefficients can always be performed. As
an example, let us consider the following linear fractional differential equation
with variable coefficients:

CD(1/n)y − n
√
x y = ν, n ∈ N, ν ∈ R, (3.33)

y(0) = A; A ∈ R. (3.34)

Letting y =
∑+∞
j=0 cjw

(n)
j and using previously described techniques yields:

CD(1/n)y =

+∞∑

j=0

cj+1w
(n)
j , (3.35)

n
√
x y = Γ

(
1

n
+ 1

)
w

(n)
1

+∞∑

j=0

cjw
(n)
j =

+∞∑

j=1

cj−1
Γ
(
j/n+ 1

)

Γ
(
(j − 1)/n+ 1

)w(n)
j . (3.36)

Inserting (3.35) and (3.36) into (3.33) results in:

c1 − ν +

+∞∑

j=1

(
cj+1 − cj−1

Γ
(
j/n+ 1

)

Γ
(
(j − 1)/n+ 1

)
)
w

(n)
j = 0.

The above equation together with initial condition (3.34) yields the following
relations for coefficients cj :

c0 = A, c1 = ν, . . . , cj+1 = cj−1
Γ
(
j/n+ 1

)

Γ
(
(j − 1)/n+ 1

) , j = 1, 2, . . . . (3.37)
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The solution to recurrence relation (3.37) reads:

c2j =

∏j−1
k=0 Γ

(
2j−2k−1

n + 1
)

∏j
l=1 Γ

(
2j−2l
n + 1

) A; j = 1, 2, . . . , (3.38)

c2j+1 =

∏j−1
k=0 Γ

(
2j−2k
n + 1

)

∏j
l=1 Γ

(
2j−2l+1

n + 1
)ν; j = 1, 2, . . . (3.39)

It is clear that using coefficients (3.38), (3.39) the solution to (3.33) cannot
be expressed in closed form using standard functions. However, the presented
approach allowed to construct a series solution that can be used to approximate
the solution with arbitrary accuracy.

4 Computational experiments

4.1 Fractional damped harmonic oscillator

Consider the paradigmatic model of the damped harmonic oscillator:

d2z

dx2
− 2λ

dz

dx
+
(
λ2 + µ2

)
z = 0, (4.1)

z(0) = A,
dz

dx

∣∣∣
x=0

= B, (4.2)

where λ, µ,A,B ∈ R and λ ± iµ are the eigenvalues of (4.1). The general
solution to (4.1) reads:

z = A exp (λx) cos (µx)− 1

µ
(λA−B) exp (λx) sin (µx) . (4.3)

Now consider the fractional version of (4.1), where the second derivative is
replaced with a fractional Caputo derivative of order m/n,m > n:

(
CD(1/n)

)m
y − 2λ

(
CD(1/n)

)n
y +

(
λ2 + µ2

)
y = 0, (4.4)

where y ∈ CFn. Note that the first order derivation operator
d

dx
is undefined in

the algebra CFn, thus it is replaced by the operator
(
CD(1/n)

)n
. The effects

of applying
d

dx
or
(
CD(1/n)

)n
on z ∈ CF1 are identical.

• The initial conditions (4.2) also define the initial value problem for the
fractional differential equation (4.4). Thus, initial conditions (4.2) are
rewritten as:

y(0) = A,
(
CD(1/n)

)n
y
∣∣∣
x=0

= B,
(
CD(1/n)

)k
y
∣∣∣
x=0

= 0,

where k = 1, . . . , n− 1, n+ 1, . . . ,m.
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• The values of parameters λ and µ define the equilibrium points of both
(4.1) and (4.4). If λ > 0, there exists an unstable node, while the cases
−1 < λ < 0 and λ ≤ −1 result in a stable spiral and node respectively.

By Lemma 1, the solution to (4.4) reads:

y =

m∑

k=1

CkE 1
n ,1

(ρkx) ,

where ρk, k = 1, . . . ,m are the roots of the characteristic polynomial:

ρm − 2λρn + λ2 + µ2 = 0.

Note that if m = 2n is selected, constants Ck can be chosen in such a way
to obtain solution (4.3). In the case λ = −0.1, µ = 1, if m is smaller than
2n, it can be observed that the resulting fractional damped harmonic oscillator
exhibits smaller amplitudes and the damping comes into effect more quickly
(see Figure 3 (a)). The opposite effect can be observed when the oscillator is
overdamped (for values of λ = −1, µ = 1): the solutions decay more rapidly
for values of m

n closer to 2 (see Figure 3 (b)).

Note that equation (4.4) can be transformed into a system of ODEs using
the procedure described in subsection 3.2.3. This is discussed in detail in
Appendix A.

0 5 10 15

-1

-0.5

0

0.5

1

0 5 10 15

-0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 3. The solutions to damped harmonic oscillator (solid black line) and fractional
damped harmonic oscillator (dashed, dotted and dash-dotted lines represent n = 20, 10, 5
respectively) for λ = −0.1, µ = 1, A = 1, B = 0 in (a) and λ = −1, µ = 1, A = 1, B = 0 in

(b). The derivative order m is set to 2n− 1 in all cases. It can be seen that as m
n

becomes
closer to 2, the solution of the fractional damped harmonic oscillator tends to the

non-fractional solution (4.3). Also, for values of m
n

significantly smaller than 2, the
damping effect is more powerful in the case λ = −0.1 (see (a)). However, if λ = −1, the
opposite is true – the solutions decay more slowly when m

n
differs most from 2 (see (b)).

5 Conclusions

An operator-based approach for the construction of closed-form solutions to
fractional differential equations is presented in this paper. The considered
technique is a generalization of the results presented in [26] for rational-valued
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fractional derivative order. Caputo and Riemann-Liouville fractional differen-
tiation and integration operators are defined for respective sets of fractional
power series.

In order to demonstrate the viability of the proposed technique, explicit
expressions of solutions to linear fractional differential equations are obtained
in terms of Mittag-Leffler or fractionally-integrated exponential functions. It
is also shown that the components of solutions to linear fractional differential
equations satisfy associated systems of linear ordinary differential equations.

Even though the operator-based approach is only illustrated using linear
fractional differential equations, its applicability to nonlinear problems has al-
ready been considered for fractional derivatives of order α = 1

2 in [26]. The
further development of this technique for nonlinear differential equations with
rational-valued derivative order is a definite objective of future research.
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Appendix A. Transformation of the fractional damped
harmonic oscillator equation into a system of ODEs

As shown in subsection 3.2.3, the fractional damped harmonic oscillator equa-
tion can be transformed into a system of ODEs. Letting m = 2n− 1 yields the
following equation and initial conditions:

(
CD(1/n)

)2n−1
y − 2λ

(
CD(1/n)

)n
y +

(
λ2 + µ2

)
y = 0, (0.1)

y(0) = A;
(
CD(1/n)

)n
y
∣∣∣
x=0

= B,
(
CD(1/n)

)k
y
∣∣∣
x=0

= 0, (0.2)

where k = 1, . . . , n − 1, n + 1, . . . , 2n − 2. The solution to (0.1), (0.2) can be
written in the following form:

y =

n−1∑

k=0

(
CI(1/n)

)k
fk; fk =

+∞∑

j=0

a
(k)
j

xj

j!
∈ CF1. (0.3)
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Inserting (0.3) into (0.1) results in:

n−1∑

k=0

(
CD(1/n)

)2n−k−2
fk − 2λ

n−1∑

k=0

(
CD(1/n)

)n−k
fk

+
(
λ2 + µ2

) n−1∑

k=0

(
CI(1/n)

)k
fk = 0. (0.4)

Note that

(
CD(1/n)

)l (
CI(1/n)

)s
fk =

(
CD(1/n)

)l−s
fk; l ≥ s, (0.5)

and (
CD(1/n)

)ln
fk =

dlfk
dxl

; l = 0, 1, . . . . (0.6)

Applying the operator
(
CD(1/n)

)n−1
to (0.4) and using (0.5),(0.6) on (0.3)

yields:

n−1∑

k=1

(
CD(1/n)

)n−k−1
(

d2fk−1
dx2

− 2λ
dfk
dx

+
(
λ2 + µ2

)
fk

)

+
(
CD(1/n)

)n−1(dfn−1
dx

− 2λ
df0
dx

+
(
λ2 + µ2

)
f0

)
= 0.

Thus, the components f0, . . . , fn−1 of solution (0.3) satisfy the following system
of ODEs:

d2fk−1
dx2

− 2λ
dfk
dx

+
(
λ2 + µ2

)
fk = 0; k = 1, . . . , n− 1 (0.7)

dfn−1
dx

− 2λ
df0
dx

+
(
λ2 + µ2

)
f0. (0.8)

The initial conditions (0.2) are transformed as follows:

f0(0) = A; fk(0) = 0; k = 1, . . . , n− 1,

df0
dx

∣∣∣
x=0

= B,
dfk
dx

∣∣∣
x=0

= 0, k = 1, . . . , n− 1.

The system (0.7), (0.8) can be solved to obtain the solution to (0.1).
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