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ABSTRACT

The Lovisz Local Lemma [6] (LLL) is a powerful result in probability theory that states
that the probability that none of a set of bad events happens is nonzero if the probability
of each event is small compared to the number of events that depend on it. It is often
used in combination with the probabilistic method for non-constructive existence proofs.
A prominent application is to k-CNF formulas, where LLL implies that, if every clause in
the formula shares variables with at most d < 2k/e other clauses then such the formula
has a satisfying assignment. Recently, a randomized algorithm to efficiently construct
a satisfying assignment was given by Moser [17]. Subsequently Moser and Tardos [18]
gave a randomized algorithm to construct the structures guaranteed by the LLL in a very
general algorithmic framework.

We address the main problem left open by Moser and Tardos of derandomizing these
algorithms efficiently. Specifically, for a k-CNF formula with m clauses and d < 2k/(l+)/e
for some c E (0, 1), we give an algorithm that finds a satisfying assignment in time
O(m2(1+1/E)). This improves upon the deterministic algorithms of Moser and of Moser-
Tardos with running times mn (k2 ) and mD(k 1/c) which are superpolynomial for k = w(1)
and upon other previous algorithms which work only for d < 2k/ 16 /e. Our algorithm
works efficiently for the asymmetric version of LLL under the algorithmic framework of
Moser and Tardos [18] and is also parallelizable, i.e., has polylogarithmic running time
using polynomially many processors.

Thesis Supervisor: David R. Karger
Title: Professor of Computer Science
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1 Introduction

The Lovisz Local Lemma [6] (henceforth LLL) is a powerful result in probability theory
that states that the probability that none of a set of bad events happens is nonzero if the
probability of each event is small compared to the number of events that depend on it

(see Section 2.1 for a more detailed exposition). The LLL is often used in combination
with the probabilistic method to prove the existence of certain structures. For this,
one designs a random process guaranteed to generate the desired structure if none of a
set of bad events happen. If those events fall under the above assumption, the Lovisz
Local Lemma guarantees that the probability that the random process builds the desired
structure is greater than zero, thereby implying its existence. Often, the probability of
this good event is exponentially small. Consequently, the same random process cannot
directly and efficiently find the desired structure. The original proof of the Lovisz local
lemma [6] is non-constructive in this sense. Starting with the work of Beck [3], a series
of papers [1, 5, 15, 20, 16] have sought to make the LLL constructive. We note that in
most applications where the LLL is useful (e.g., [9, 11, 14]), the proof of existence of the
desired structure is known only through LLL.

Algorithms for the LLL are often formulated for one of two model problems: k-SAT
and k-uniform hypergraph 2-coloring. Interesting in their own right, these problems seem
to capture the essence of the LLL in a simple way. Further, algorithms for these problems
also lead to algorithms for more general settings to which LLL applies. For k-SAT, the
LLL implies that every k-CNF formula in which each clause shares variables with at most
2k/e other clauses has a satisfying assignment (see Section 2.2). The objective is to find
such a satisfying assignment efficiently.

Recently Moser [17] discovered an efficient randomized algorithm for finding a satisfy-
ing assignment for k-CNF formulas in which each clause intersects at most 2 k/ 3 2 -1 other
clauses. This is best possible up to a constant factor. Subsequently, Moser and Tardos [18],
building upon the work of Moser [17], gave an efficient randomized algorithm that works
for the general version of LLL under a very general algorithmic framework (discussed in

Section 2.3). They also give a randomized parallel algorithm when the LLL conditions are
relaxed by an (1 - e) factor. They derandomize their sequential algorithm using a similar
e-slack and get a running time of mo((1/E)dlogd) where d is the maximum number of clauses
sharing variables with some other clause. This running time is polynomial only under the
strong condition that the degree of the dependency graph is bounded by a constant. We
address the open question posed by them about derandomizing their algorithm when the
degrees of the dependency graph are unbounded by giving a deterministic algorithm with
a running time of mO(/E).



For k-CNF, the running time of the deterministic algorithms of Moser [17] and of

Moser-Tardos [18] can be shown to be mo(k2 ). In this paper, we extend this work in

several ways. We give a deterministic algorithm that runs in time (m 1)) to find

a satisfying assignment for k-CNF formulas with m clauses such that no clause shares

variables with more than 2 k/(1+e)/e other clauses, where E is any positive constant. We

obtain this algorithm as a corollary to our deterministic algorithm that works for the more

general asymmetric version of LLL in the algorithmic framework of Moser and Tardos [18].

We also give deterministic parallel algorithms in this framework.

Organization. In the next section we first give an introduction to the (non-constructive)

LLL (see Section 2.1). We show its application to the (k-)SAT problem (Section 2.2) and

give the Moser-Tardos framework (Section 2.3) and the Moser-Tardos algorithm (Section

2.4). In Section 3 we give the formal statement of our results and their implications for

the k-SAT application. Section 4 follows with an intuitive description and summary of

the new ideas in the paper. We define the main ingredient - the partial witness structure

- formally in Section 5. We give the sequential deterministic algorithm and prove that

it works efficiently in Section 6 and finally present the parallel algorithm and its running

time analysis in Section 7.

2 Preliminaries

In this section we first give three nonconstructive versions of the LLL which are due to

Erd6s and Lov 6sz [6]. We give intuition into their meaning and relations to each other.

In Section 2.2 we show how to apply the LLL to the k-SAT and SAT problem. In Section

2.3 we give the algorithmic framework of Moser-Tardos [18] and in Section 2.4 we give

the Moser-Tardos algorithm. Both form the foundation upon which this thesis is built.

2.1 The Lovisz Local Lemma

The Lovisz Local Lemma is a powerful theorem in the field of probability theory. It

gives bounds on the probability of avoiding a possibly large number of "bad" events that

are not "too dependent" on each other. To understand the situations in which such a

theorem might be useful we imagine a random process that leads to a desired result if

nothing goes wrong. In probability theory a class of outcomes of a random experiment

is captured by the notion of an event (see [2] for the basics of probability theory). In

our example we have a number of "bad events" for which we want none to occur. A

general upper bound on how large the probabilities of these events can be is given by the



union bound over all events. Clearly the worst case situation is that all bad events are
mutually exclusive. In this case the probability of something going wrong is simply the
sum over the probabilities of all bad events. There is a chance that nothing goes wrong
iff this sum is smaller than one. Although this is an optimal criterion in the worst case
it is often too pessimistic and quickly fails if one deals with many bad events. In many
of cases one thus has to exploit that bad events are usually not as highly correlated. If
one looks for example at the extreme case that all bad events are independent of each
other it is clear that regardless of the number of bad events there is always a non-zero
chance of avoiding all of them as long as no bad event happens with probability one. The
Lovisz Local Lemma deals with cases between these two extreme examples and can be
seen as an interpolation between the union bound for arbitrarily dependent events and
the case of completely independent events. The LLL relates the probabilities of events to
its dependencies and gives a condition that is sufficient for having a non-zero probability
of avoiding all bad events. It is formulated in the following formal setting:

Let A ={A1, ... , Am} be events in a probability space and G be an undirected graph

on {1, . , m} with the property that every event As E A is mutually independent' of the
set of events all events A3 with {i, j} V E(G). We call this set the non-neighbors F(A) in
contrast to the neighbors 1F(A) := {A, E A I {i,j} E E(G)}.

Using this setting the most general version of the LLL which will also be the one used
throughout the rest of this paper is:

Theorem 1. [6] In the above setting, suppose there exists an assignment of reals x : A -+
(0, 1) such that for all A E A, the following inequality holds for all A E A:

P r (A) < z'(A) := (A) rl(1 - x (B)).
Bcr(A)

Then the probability of avoiding all events in A is non-zero. More precisely we have

Pr n A < r m(1 - xi) > o.
(AEA ) i=1

A good intuition for the LLL in this very general form is to interpret the x values
as corrected probabilities in a system of independent events: In the event system given

'An event A is mutually independent of a set of events {A1,..., Am } iff Pr (A) =
Pr (A I f(A1, .. ., Am)) for any function f



to the LLL there are dependencies. Thus conditioning on some events not occurring

can increase the probability of dependent events A to say x(A). In this sense the value

x(A) can be seen as an upper bound on how much influences through dependent events

can increase Pr (A). The LLL-condition then becomes condition which checks whether a

given set of upper bounds is high enough and whether the underlying dependent event

system A can safely be treated as an independent system in which event A has probability

x(A) > Pr (A). The probability that nothing bad happens in this independent system is

exactly HAE( 1 - x(A)) which is positive if no corrected probability is one.

It is instructive to look at a special case in which the x(A) are set to ePr (A), i.e. we

restrict the lemma to the case where the probabilities of a dependent event A blows up

by at most a factor of e through the influences of its "neighbors" in G, i.e., the events

depending on it. In this case the statement essentially simplifies to:

Theorem 2. [6] Assuming again the above setting, if for each event A C A we have:

1
Pr (A') <

4
A'Er(A)

then the probability of avoiding all events in A is non-zero. If all probabilities are small

the requirement can be weakened to

1
SPr (A') <.

e
A'Er(A)

Phrased in words this version states that it suffices that the subset of neighbors on

which an event A depends has probability mass at most !. Note that this is essentially the

union bound over a local neighborhood in G. This viewpoint demonstrates the surprising

power of the LLL. Since events in a neighborhood can all depend on each other it is

clearly necessary that a union bound over events in such a neighborhood is at most one

because otherwise it is (in the worst case) impossible to avoid even just these events.

The LLL just demands that these union bounds be only a little smaller. On the other

hand it guarantees the existence of a strong global property from just this small local

condition. (Note that the condition does not at all depend on the number of events.) In

short the local condition that from the point of view of any event the union bound over

its neighborhood implies that they are avoided with probability at least 1 - is sufficient

to guarantee that there is a global solution that avoids all events simultaneously.

Lastly we state a symmetric version of the LLL that assumes that all events have

(roughly) the same probability (and degree in G). For this case the local union bound in



Theorem 2 simplifies to bounding the probability mass pd of d events with probability p
and thus gives:

Theorem 3. [6] Assuming again the above setting, if each event A E A has probability
at most p and at most d neighbors in G than the condition p(d + 1)e < 1 suffices for the
probability of avoiding all events in A to be positive.

While this is the simplest form of the LLL it is by far the most frequently applied
version.

2.2 A typical LLL-application: (k-)SAT with few variable inter-
sections

To show how the (non-constructive) LLL is applied the following section gives a typical
example application of the LLL: SAT. We will look at a CNF formula F and use the LLL
to get a condition that allows us to prove satisfiability. This is done via the probabilistic
method which is based on the trivial fact that a structure that is produced with non-
zero probability by a random process has to exist. In this case we will draw a uniformly
random assignment to the variables of F and prove that a satisfying assignment has to
exist because the LLL guarantees that with positive probability such a random assignment
does not violate any clause. The probability that a uniformly random assignment violates
a clause C E F with k = |CI variables is exactly 2 -k. To embed the problem into the
setting of the LLL we define the probability space to be the uniform random distribution
of all possible assignments and have a bad event AC for every clause C in F that becomes
true iff C is violated. The events of two clauses C and C' being violated are clearly
independent if the two clauses do not share a variable. Also if we take G as the graph on
the clauses or equivalently events that connects two clauses iif they share a variable it is
easy to see that the mutual independence assumption on the non-neighbors is satisfied.
These are all the pieces we need; plugging them into Theorem 2 gives:

Corollary 4. Every CNF formula F which satisfies the property that for every clause
C e F the set I,(C) of clauses sharing a variable with C satisfies

2-Ic'l <1
e

C'Er(c)

is satisfiable.



Specializing this Corollary to k-CNF gives us events with uniform probabilities of

magnitude 2 -k and thus allows us to apply the symmetric LLL from Theorem 3:

Corollary 5. Every k-CNF formula F in which every clause shares variables with less

than 2 other clauses is satisfiable.e

2.3 Algorithmic Framework

To get an algorithmic handle on the LLL, we have to move away from the abstract proba-

bilistic setting of the original LLL and impose some restrictions on the representation and

form of the probability space under consideration. In this paper we follow the general al-

gorithmic framework for the LLL due to Moser-Tardos [18] which is inspired from Mosers

earlier paper [16] on the model application k-SAT given in Section 2.2. The framework is

as follows:

Every event in a finite collection of events A ={A1,- , Am} is determined by a subset

of a finite collection of mutually independent discrete random variables P = {P1, - -- , P4};

let Di be the domain of P. We denote the variable set of an event A E A by vbl(A)

and define it as the unique minimal subset S C P that determines A. We define the

dependency graph G = GA for A to be the graph on vertex set A with an edge between

events A, B E A, A # B if vbl(A) n vbl(B) # 0. For A E A we write F(A) = FA(A)

for the neighborhood of A in G and F+(A) = r (A) U {A}. Note that events that do not

share variables are independent.

We think of A as a family of "bad" events; the objective is to find a point in the prob-

ability space, or equivalently, an evaluation of the random variables from their respective

domains such that none of the bad events happen. We call such an evaluation a good

evaluation.

Moser and Tardos [18] gave a constructive proof of the general version of the LLL (The-

orem 6) in this framework using Algorithm 1 below. This framework seems sufficiently

general to capture most applications of LLL. Nevertheless there are a few problems in

which the LLL is not applied to a product-probability space that is induced by indepen-

dent random variables. The most prominent example is the classical paper [7] "Lopsided

Lovisz local lemma and latin transversals" by Erdos and Spencer in which the LLL is

applied to the space of random permutations. The extension [12] "Using the Lovisz Local

Lemma in the space of random injections " by Lu and Szekely also falls into this category.



2.4 The Moser-Tardos Algorithm

This section states the constructive LLL result for the general version of the LLL (Theorem
6) as given by Moser and Tardos [18] and states their algorithm (see Algorithm 1). Both
build on the framework presented in Section 2.3.

Algorithm 1:
Sequential Moser-Tardos Algorithm

1. For every P E P, vp +- a random evaluation of P.

2. While ]A E A: A happens on evaluation (P = vp : VP E P), do

(a) Pick one such A that happens.

(b) Resample(A): For all P E vbl(A), do

e Vp +- a new random evaluation of P;

3. Return (Vp)pEP

Theorem 6. [18] If there exists an assignment of reals x : A -* (0,1) such that for all
A E A, the following inequality holds:

Pr (A) < x'(A) := x(A) (1 - x(B)),
B(r(A)

then the expected number of resamplings done by Algorithm 1 before it terminates with a
good evaluation, is O(( A).

3 Our results

This section formally states the new results established in this thesis.

For the rest of this paper, we will use the following parameters defined using x(A) and
x'(A) as in Theorem 6 whenever such an assignment exists.

* D := maxpEp{|domain(P)|}.

2|vb(A) x(A)-* M:= max n, 4m, 4 -2vbA l- x(A) }where A {A E A x'(A) >
AE A 'A ()4



0 Wmin := minAEA{- log x'(A)}. 2

We expect these parameters to be polynomial in the input size. For M this is easily true

as long as 1 - x(A) is not to small because |vbl(A)| < n, x(A) < 1 and l/x'(A) < 4m for

any A E A. We expect also expect Wmin to be a constant or even logarithmically growing

in most applications. It is easy to prove that at least Wmin > 1/M by showing that for all

A E A we have log I > 1/M:

For all A E A \ A we have log > ; log 4m > 1 > 1/M.

For all A E A we have 1/M < 1/ 4 2vbl(A) x(A x(A))
- .x'(A) 1 - x(A)) 8x(A)

(1 - x'(A)) < log 1.

The complexity assumptions regarding the conditional probabilities in the following

theorem are same as the ones used by Moser-Tardos [18].

Theorem 7. Let the time needed to compute the conditional probability Pr[A Vi E I

Pi = vi] for any A E A and any partial evaluation (vi E Di)ieI where I C [n] be at most

tc. Suppose there is an e c (0, 1) and an assignment of reals x : A -+ (0, 1) such that for

all A G A, the following inequality holds:

Pr (A) 5 x'(A)1+E = x(A) (1 - x(B))

Ber(A)

Then there is a deterministic algorithm that can find a good evaluation in time

O t - =DM2( 1 /) log M) (t -D . M 3 +2/)
eMmin

It is illuminating to look at the special case of k-CNF both in the statement of our

theorems and proofs as many of the technicalities disappear while retaining the basic

ideas. For this reason, we will state our results also for k-CNF.

Corollary 8. Let F be a k-CNF formula with m clauses such that each clause in F

shares variables with at most 2 +/e other clauses for some E e (0,1). Then there is a

deterministic algorithm that finds a satisfying assignment for F in time (m2(1+!)).

This improves upon the deterministic algorithms of Moser [17] and of Moser-Tardos

(specialized to k-CNF) [18] with running time mn(k2 ), which is superpolynomial for k =

21n this paper log denotes logarithm to base 2



w(1). Our algorithm works in polynomial time under a far wider range of parameters
than previous algorithms. To the best of our knowledge, the previous best deterministic
algorithm for an LLL related problem was given for the hypergraph 2-coloring problem:
This is the problem of coloring the vertices of a hypergraph with two colors so that no
hyperedge is monochromatic. A polynomial time deterministic algorithm for k-uniform
hypergraphs in which no edge intersects more than 2 k/1-2 other edges appears in [14].
Our theorem above applies equally well to the 2-coloring problem to state that there
exists a deterministic algorithm that runs in time O(m 2(1+ ) to give a 2-coloring of a
k-uniform hypergraph with m edges in which no edge intersects more than 2 -- /e other
edges. Thus, while the previous algorithms for hypergraph 2-coloring run efficiently only
in the case when e > 15, our algorithm is efficient for any e > 0.

For the general setting, the deterministic algorithm works under a fairly general com-
plexity assumption regarding the events, which is valid in many applications; for example,
our algorithm applies to k-CNF and hypergraph 2-coloring.

We also give a parallel deterministic algorithm. Here we make an additional assump-
tion about the events - that their decision tree complexity is small. This assumption
seems quite general: it includes applications to k-CNF and hypergraph 2-coloring.

Theorem 9. Let the time needed to check if an event A E A happens using MO(1)
processors be at most teval. Suppose, there is an e C (0,1) and an assignment of reals
x : A -+ (0, 1) such that for all A E A, the following inequality holds:

1+E

Pr (A) < z'(A)1+E = x(A) rl (1 - x (B)).
BEr(A)

If there exists a constant c such that every event A C A has decision tree complexity 3

at most cmin{- log x'(A), log M}, then there is a parallel algorithm that finds a good
evaluation in time

0 okM (tMIS + teval)
( Mmin

using MO(6 log D) processors, where tMIs is the minimum time to compute the maximal
independent set in a m-vertex graph using M0 1 ) parallel processors on an EREW PRAM.

Restating our theorem again for k-CNF, we get the following corollary.

3Informally, we say that a function f(x 1 , ... , xz) has decision tree complexity at most k if we can
determine its evaluation by adaptively querying at at most k of the n input variables.



Corollary 10. Let F be a k-CNF formula with m clauses such that each clause in F

shares variables with at most 2r+ /e other clauses for some e G (0, 1). Then there is a de-

terministic parallel algorithm that finds a satisfying assignment for F in time O(1 log3 m)

using mo(/f) processors on a EREW PRAM.

4 Techniques

In this section, we informally describe the main ideas of our approach at a high level

for the special case of k-CNF and indicate how they generalize; reading this section is

not essential but provides intuitive aid for understanding the proofs in this thesis. For

the sake of exposition in this section, we omit numerical constants in some mathematical

expressions. Familiarity with the Moser-Tardos paper [18] is useful but not necessary for

this section.

4.1 The Moser-Tardos Derandomization

Let F be a k-CNF formula with m clauses. We note immediately that if k > log m, then

the probability that a random assignment does not satisfy a clause is 1/ 2k < 1/(2m). Thus

the probability that on a random assignment, F has an unsatisfied clause is < 1/2, and

hence a satisfying assignment can be easily found in polynomial time using the method

of conditional probabilities (see, e.g., [14]). Henceforth, we assume that k < log m. We

also assume that each clause in F intersects with at most 2k/e other clauses; thus LLL

guarantees the existence of a satisfying assignment.

To explain our techniques we first need to outline the deterministic algorithms of

Moser and of Moser-Tardos which work in polynomial time, albeit only for k = 0(1).

Consider a table T of values of the random variables: for each variable in P the table

has a list of values for that variable. Now, we can run Algorithm 1 using T: instead of

randomly sampling afresh each time when a new evaluation for a variable is needed, we

pick its next unused value from T. The fact that the randomized algorithm terminates

quickly in expectation (Theorem 6), implies that there exist small tables (i.e., small lists

for each variable) on which the algorithm terminates with a satisfying assignment. The

deterministic algorithm finds one such table.

The constraints such a table has to satisfy can be described in terms of witness trees:

For a run of the randomized algorithm, whenever an event is resampled, a witness tree

"records" the sequence of resamplings that lead to the current resampling. We say that

a witness (we will often just say "witness" instead of "witness tree") is consistent with a

table, if this witness arises when the table is used to run the randomized algorithm. If the



algorithm runs for a long time, then it has a large consistent witness certifying this fact.
Thus if we use a table which has no large consistent witness, the algorithm terminates
quickly.

The deterministic algorithms of Moser and of Moser-Tardos compute a list L of witness
trees satisfying the following properties:

1. If no tree in L is consistent with a table, then there is no large witness tree consistent
with the table.

2. The expected number of trees in L consistent with a random table is less than 1.
We need this property to apply the method of conditional probabilities to find a
small table with which no tree in L is consistent.

3. The list L is of polynomial size. We need this property for the method of conditional
probabilities to be efficient.

We now motivate how these properties arise naturally while using Algorithm 1. In
the context of k-CNF formulas with m clauses satisfying the degree bound, Moser (and
also Moser-Tardos when their general algorithm is interpreted for k-CNF) prove two
lemmas that they use for derandomization. The expectation lemma states that the
expected number of large (size at least log m) consistent witness trees is less than 1/2 (here
randomness is over the choice of the table). We could try to use the method of conditional
probabilities to find a table such that there are no large witness trees consistent with it.
However there are infinitely many of them. This difficulty is resolved by the range lemma
which states that if for some u, no witness tree with size in the range [u, ku] is consistent
with a table, then no witness tree of size at least u is consistent with the table. Now we
can find the required table by using the method of conditional probabilities to exclude
all tables with a consistent witness of size in the range [log m, k log m]. The number of
witnesses of size in this range is mo(k2 ). To run the method of conditional probabilities
we need to maintain a list of all these witnesses and find the values in the table so that
none of the witnesses in the list remain consistent with it. So, the algorithm of Moser
(and respectively Moser-Tardos) works in polynomial time only for constant k.

One natural approach to resolve the issue of a large list is to find a way to implicitly
maintain the list and carry out the method of conditional probabilities efficiently even
though the list size is large. We have not succeeded in this. However, we are able to
reduce the size of this list using two new ingredients that we now describe.



4.2 Partial Witness Trees

For a run of the Moser-Tardos randomized algorithm, for each time instant of resampling

of an event, we get one witness tree consistent with the input table. Given one consistent

witness tree of size ku +1 removing the root gives rise to up to k new consistent witnesses,

whose union is the original witness minus the root. Clearly one of these new subtrees has

size at least u. This proves their range lemma. The range lemma is optimal for the witness

trees in the sense that for a given u it is not possible to reduce the multiplicative factor

of k between the two endpoints of the range [u, ku].

We overcome this limitation by introducing partial witness trees, which have similar

properties to witness trees, but have the additional advantage of allowing a tighter range

lemma. The only difference between witness trees and partial witness trees is that the

root, instead of being labeled by a clause C (as is the case for witness trees), is labeled

by a subset of variables from C. Now, instead of removing the root to construct new

witness trees as in the proof of the Moser-Tardos range lemma, each subset of the set

labeling the root gives a new consistent partial witness tree. This flexibility allows us to

prove the range lemma for the tighter range [u, 2u]. The number of partial witness trees

is larger than the number of witness trees because there are 2km choices for the label of

the root (as opposed to m choices in the case of witnesses) since the root may be labeled

by any subset of variables in a clause. But 2 k < m, since as explained at the beginning

of this section, we may assume without loss of generality that k < log m. So the number

of partial witnesses is not much larger and the expectation lemma holds with similar

parameters for partial witnesses as well. The method of conditional probabilities now

needs to handle partial witness trees with size in the range [log m, 2 log m]. The number

of partial witnesses in this range is ma (k), which is still too large. The next ingredient

brings this number down to a manageable size.

4.3 -slack

By introducing E-slack, that is to say, by making the stronger assumption that each clause

intersects at most 2( 1-E)k/e other clauses, we can prove a stronger expectation lemma: The

expected number of partial witnesses of size more than log m/Ek is less than 1/2. We use

the fact that the number of labeled trees of size u and degree at most d is less than

(ed)u < 2 (1-E)ku (see [10]). Thus the number of partial witnesses of size u is less than

2 km2(1-e)ku, where the factor 2km < M 2 accounts for the number of possible labels for

the root. Moreover, the probability that a given partial witness tree of size u is consistent

with a random table is 2-k(u-1) as opposed to 2 -ku in the case of a witness tree (this is



proved in a similar manner as for witness trees). Thus the expected number of partial

witnesses of size at least y = 0 log m consistent with a random table is
(ek)

<> m 22( 1-)k* - 2 -k(u-1) < m32-e"' < 1/2.
u>-y u -y

Now, by the new expectation and range lemmas we can reduce the size range to
[(log m)/ek, 2(log m)/ek]. The number of partial witnesses in this range is polynomial in
m; thus the list of trees that the method of conditional probabilities needs to maintain
has polynomial size.

4.4 General Version

More effort is needed to obtain a deterministic algorithm for the asymmetric version of
the LLL in which events are allowed to have significant variation in their probabilities
and unrestricted structure.

One issue is that an event could possibly depend on all n variables. In that case,
taking all variable subsets of a label for the root of a partial witness would give up to 2"
different possible labels for the roots. However, for the range lemma to hold true, we do
not need to consider all possible variable subsets for the root, instead it is sufficient to
have for each root event a pre-selected choice of 2n subsets that allows to partition each
partial root into two such subsets. This pre-selected choice of variable splittings BA is
arbitrarily fixed for each event A in the beginning.

The major difficulty in derandomizing the asymmetric LLL is in finding a list L sat-
isfying the three properties mentioned earlier for applying the method of conditional
probabilities. The range lemma can still be applied. However, the existence of low prob-
ability events with (potentially) many neighbors may lead to as many as 0(mu) partial
witnesses of size in the range [u, 2u]. Indeed it can be shown that there are instances in
which there is no setting of u such that the list L containing all witnesses of size in the
range [u, 2u] satisfies properties (2) and (3).

The most important ingredient for working around this in the general setting is the
notion of weight of a witness tree. The weight of a tree is the sum of the weights of
individual vertices; more weight is given to those vertices whose corresponding bad events
have smaller probability of occurrence. Our deterministic algorithm for the general version
finds a list L that consists of partial witnesses with weight (as opposed to size) in the
range [y, 2-y], where -y is a number depending on the problem. It is easy to prove a similar
range lemma for weight based partial witnesses which guarantees property (1) for this
list. Further, the value of -y can be chosen so that the expectation lemma of Moser and



Tardos can be adjusted to lead to property (2) for L. Unfortunately one cannot prove

property (3) by counting the number of partial witnesses using combinatorial enumeration

methods as in [17, 18]. This is due to the possibility of up to 0(m) neighbors for each

event A in the dependency graph. Instead we use the strong coupling between weight and

probability and obtain property (3) directly from the expectation lemma.

4.5 Parallel Algorithm

For the parallel algorithm, we use the technique of limited-independence spaces, or more

specifically k-wise 6-dependent probability spaces due to Naor and Naor[19] and its ex-

tensions [8, 4]. This is a general technique for derandomization. The basic idea here

is that instead of using perfectly random bits in the randomized algorithm, we use a

limited-independence probability space. For many algorithms it turns out that their per-

formance does not degrade when using bits from a such probability space; but now the

advantage is that these probability spaces are smaller in size and so one can enumerate

all the sample points in them and choose a good one, thereby obtaining a deterministic

algorithm. This tool was applied by Alon [1] to give a deterministic parallel algorithm

for k-uniform hypergraph 2-coloring and other applications of the LLL, but with much

worse parameters than ours. Our application of this tool is quite different from the way

Alon uses it: Alon starts with a random 2-coloring of the hypergraph chosen from a small

size limited independence space; he then shows that at least one of the sample points

in this space has the property (roughly speaking) that the monochromatic and almost

monochromatic hyperedges form small connected components. For such an assignment,
one can alter it locally over vertices in each component to get a good 2-coloring.

In contrast, our algorithm is very simple: recall that for a random table the expected

number of consistent partial witnesses with size in the range [log m/ek, 2 log m/ek] is at

most 1/2. Each of these partial witnesses uses at most "" - k entries from the table.

Now, instead of using a completely random table, we use a table chosen according to

a 2log"'wise independent distribution (i.e., any subset of at most 2 "gm entries has the

same joint distribution as in the original random table). So any partial witness tree is

consistent with the new random table with the same probability as before. And hence

the expected number of partial witnesses consistent with the new random table is still at

most 1/2. But now the key point to note is that the number of tables in the new limited

independence distribution is much smaller and we can try each of them in parallel till

we succeed with one of the tables. To make the probability space even smaller we use

k-wise 6-dependent distributions, but the idea remains the same. Finally, to determine

whether a table has no consistent heavy partial witness we run the parallel algorithm of



Moser-Tardos on it.

The above strategy requires that the number of variables on which witnesses depend
be small, and hence the number of variables on which events depend should also be small.
In our general parallel algorithm we relax this to some extent: instead of requiring that
each event depend on few variables, we only require that the decision tree complexity of
the event is small. The idea behind proof remains the same.

5 The Partial Witness Structure

In this section we define partial witness structure and prove a range lemma using weights.

5.1 Definitions

For every A E A we fix an arbitrary rooted binary variable splitting BA. All vertices

in BA have labels which are nonempty subsets of vbl(A): The root of BA is labeled by
vbl(A) itself, the leaves are labeled by distinct singleton subsets of vbl(A) and every non-

leaf vertex in BA is labeled by the disjoint union of the labels of its two children. This
means that every non-root non-leaf vertex is labeled by a set {vi, --- }, k > 2 while
its children are labeled by {vi, --- , vi,} and {vij, -.- - vik} for some 1 < j < k -1. Note
that BA consists of at most 2fvbl(A) - 1 vertices. We abuse the notation BA to denote
the labels of the vertices of this binary variable splitting which are actually subsets of
vbl(A). The binary variable splitting is not to be confused with the witness tree which
we define next. The elements from BA will be solely used to define the possible roots of
partial witness trees.

A partial witness tree rs is a finite rooted tree whose vertices apart from the root
are labeled by events from A while the root is labeled by some variable subset S c BA
for some A E A. Each child of the root must be labeled by an event A that depends
on at least one variable in S (thus a neighbor of the root event); the children of every

other vertex labeled by B must be labeled by a neighboring event from p+(B). For

notational convenience, we use V(Ts) := V(Ts) \ {Root(Ts)} and denote the label of a

vertex v E V(Ts) by [v].

A full witness tree is a special case of a partial witness where the root is the complete

set vbl(A) for some A E A. In such a case, we relabel the root with A instead of vbl(A).
Note that this definition of full witness tree matches the one of witness trees in [18].

Define the weight of an event A E A to be w(A) = - log x'(A). Define the weight

of a partial witness tree Ts as the sum of the weights of the labels of the vertices in



V(rs), i.e.,

W Ors) := ( Q v] D log 14 x' [v]).
vEV(rs) vEV(rs)

The depth of a vertex in a witness tree is the distance of that vertex from the root in

the witness tree. We say that a partial witness tree is proper if all children of a vertex

have distinct labels.

Similar to [16], we will control the randomness using a table of evaluations. Let us

denote this table by T. This table contains a row for each variable. The row for each

variable contains evaluations for the variable. Note that the number of columns in the

table could possibly be infinite. In order to use such a table in the algorithm, we maintain

a pointer tp for each variable p E P indicating the column containing its current value
used in the evaluation of the events. We denote the value of p at t, by T(p, t,). If we

want to resample for a variable, we just increment this pointer by one.

It is clear that running the randomized algorithm is equivalent to picking a table with
random values and using such a table to run the algorithm. We call a table T a random
table if, for all variables p E P and all positions j, the entry T(p, j) is picked indepen-

dently at random according to the distribution of p.

Algorithm 2:

Moser-Tardos Algorithm with input table

Input: Table T with values for variables.

Output: An assignment of values for variables that makes none of the events in A happen.

1. For every variable p E P: Initiate the pointer t, = 1.

2. While ]A C A that happens when (VP E P : p = T(p, t,), do:

(a) Pick one such A.

(b) Resample(A): For all P E vbl(A) increment t, by one

3. Return p = T(p, t,) : Vp E P

In the above algorithm, Step 2(a) is performed by a fixed arbitrary deterministic

procedure. This makes the algorithm well-defined.

Let C : N -+ A be an ordering of the events (with repetitions), which we call the

event-log. Let the ordering of the events as they have been selected for resampling in



the execution of Algorithm 2 using a table T be denoted by an event-log CT. Note that

CT is partial if the algorithm terminates in finite time.

Given event-log C, associate with each step t and each S E BC(t), a partial witness

tree rc(t, S) as follows. Define rT) (t, S) to be an isolated root vertex labeled S. Going

backwards through the event-log, for each i = t - 1, t - 2,..- , 1: (i) if there is a non-root

vertex v E r&+ (t, S) such that C(i) E F+([v]), then choose among all such vertices the

one having the maximum distance from the root (break ties arbitrarily) and attach a

new child vertex u to v with label C(i), thereby obtaining the tree r (t, S), (ii) else if

S n vbl(C(i)) is non-empty, then attach a new child vertex to the root with label C(i) to

obtain rW (t, S), (iii) else, set T ((t S) - rT+ (t, S).

Note that the witness tree TC(t, S) is partial unless S = vbl(A) E BA, in which case

the witness tree is identified with a full witness tree with root A. For such a full witness

tree, our construction matches the construction of witness trees associated with the log in

[18].

We say that the partial witness tree rS occurs in event-log C if there exists t E N

such that for some A E A, C(t) = A and TS = rc(t, S) for some S E BA.

For a table T, a T-check on a partial witness tree TS uses table T as follows: In an

order of decreasing depth, visit the non-root vertices of Ts and for a vertex with label A,
take the first unused value from T and check if the resulting evaluation makes A happen.

The T-check passes if all events corresponding to vertices apart from the root, happen

when checked. We say that a partial witness tree is consistent with a table T if T-check

passes on the partial witness tree.

Most of these definitions are (simple) extensions of the ones given by Moser and

Tardos [18]. The intuition behind the witness tree structure is the following. A witness

(tree) is supposed to certify or explain why a certain resampling happened. Besides the

requirement that any resampling can be explained by such a witness it has to solve the

balance between being concise (i.e. there are not too many explanations) and specific

enough to be unlikely to happen. This is needed to conclude via a union bound that whp.

there is no valid explanation for a long running time. The witness tree construction does

exactly this. It goes back in time starting from the resampling A it explains and only

includes prior resamplings whose variable changes transitively lead to the resampling of A.

The leveled structure of a tree is used to record necessary (partial) order information about

the resamplings that is needed to eliminate any dependencies to unrelated resamplings

(see beginning of the next section). Note that keeping track of the partial sequence, i.e.

the full order information would lead to a super-polynomial (O(log M))! running time



instead of the 20(lo ) achieved here.

5.2 Proofs: Coupling and Range Lemma

The following coupling lemma is simple but an essential piece in proving unlikelihood of
(large) witnesses. Its proof shows that the leveled structure of the trees captures enough
of the partial resampling order to determine exactly which entry from the input table is
used for which resampling. In other words: Given a witness tree one can use the T-check
procedure to exactly determine which values where used in the resamplings that lead to
the resampling explained by the witness tree.

Lemma 11. If a partial witness tree rs occurs in the event-log CT, then

1. rs is proper.

2. TS passes the T-check.

Proof. The proof of this lemma is similar to the one in [18].
Since TS occurs in CT, there exists some time instant t such that for S E BcT(t),

Ts = TCT(t, S). Let d(v) denote the depth of vertex v E V(rs) and let q(v) denote the
time instant of the algorithm constructing TcT(t, S) in which v was attached, that is, q(v)
is the largest value q with v contained in r (t).

If q(u) < q(v) for vertices u, v E V(Ts) and vbl([u]) and vbl([v]) are not disjoint, then
d(u) > d(v). Indeed, when adding the vertex u to r * (t) we attach it to v or to
another vertex of equal or greater depth. Therefore, for any two vertices u, v E V(rs) at
the same depth d(v) = d(u), [u] and [v] do not depend on any common variables, that
is the labels in every level of rs form an independent set in G. In particular Ts must be
proper.

Now consider a vertex v in the partial witness tree Ts. Let D(p) be the set of vertices
w rs with depth greater than that of v such that [w] depends on variable p.

When the T-check considers the vertex v labeled by B and uses the next unused
evaluation of the variable P, it uses the evaluation T(p, JD(p)|). This is because the
witness check visits the vertices in order of decreasing depth and thus has used values
for p exactly |D(p) times. Note for this also that vertices with equal depth are variable
disjoint and thus among the vertices with depth equal to that of v, only [v] depends on p.

At the time instant of resampling [v], say tv, the algorithm chooses [v] to be resampled
which implies that [v] happens before this resampling. For p E vbl([v]), the value of the
variable p at tv is T(p, |D(p) ). This is because the pointer for P was increased for events
[w] that were resampled before the current instance, where w c D(p). Note that every



event which was resampled before t, and that depends on [v] would be present at depth

greater than that of v in rs by construction. Hence, D(p) is the complete set of events

which led to resampling of p before the instant tv.

As the T-check uses the same values for the variables in vbl([v]) when considering v,
it also must find that [v] happens. I

Next, we prove that partial witnesses allow a range lemma with an improved factor

two range. Its proof makes use of the fact that the partial witness root with its variable

splitting order BA can always be reduced into two parts. For this proof it can be helpful

to think of the witness trees as a longest-path skeleton of a DAG that captures all inter-

dependencies between prior resamplings. For a DAG it clearly holds that if one looks at

the sub-DAG that is transitively induced by two disjoint subsets of children of the root

their (not necessarily disjoint) union remains the full DAG. This is essentially also what

is used to prove the range lemma for the partial witness tree structure.

Lemma 12. If a partial witness tree of weight at least -y occurs in the event-log CT such

that x'([v]) > 1/4m for every non-root vertex v, then a partial witness of weight E ['Y, 2-Y]

occurs in the event-log CT.

Proof. Suppose not. Then, consider the least weight partial witness tree whose weight is

at least y that occurs in the event-log CT, namely rs = rcTc (t, S) for some t, S E BA. By

assumption, w(TS) > 2-y. We have two cases:

Case (i): Root(Ts) has only one child. Let this child be labeled by v. Let t' be

the largest instant before t at which [v] was resampled. Note that this resampling of

[v] corresponds to the child v of the root of rs. Now, consider the partial witness tree

rb = TcT(t', S' = vbl([v])). Since r contains one less vertex than Ts, w(r) < w(Ts). Also,

since x'(A) 1/4m, we have log (1/x'(A)) < log (4m) < lg M = - (by the parameters

defined in section 1.2) we have that w(Tri) = w(Ts) - log (1/x'(A)) > -y. Finally, by

definition of -r, it is clear that Ts occurs in the event-log CT. Thus, r is a counterexample

of smaller weight contradicting our choice of Ts.

Case (ii): Root(rs) has at least two children. Because the children are variable disjoint

and both have to share a variable with S we know that S consists of at least 2 variables.

It thus also has two children in the variable splitting BA. In BA, starting from S, we

now explore the descendants of S in the following way, looking for the first vertex whose

children SL and SR reduce the weight of the tree, i.e., 0 < w(TsT), w(TsR) < w(Ts), where

TSL = Tc, (t, SL) and Ts. = TcT (t, SR): if a vertex SL reduces the weight of the tree

without making it zero (i.e., 0 < w(TsL) < w(rs)), then its variable disjoint sibling SR

must also reduce the weight of the tree; on the other hand if a vertex SL reduces the weight



of the tree to zero, then its sibling SR can not reduce the weight of the tree. Suppose SL
reduces the weight to zero, then we explore SR to check if its children reduce the weight.
It is easy to see that this stops at the latest when SR and SL are leaves in BA.

By definition, both TsL and rs, occur in the event-log CT. Since we pick the first

siblings SL and SR (in the breadth first search) which reduce the weight, their parent S'
is such that w(rs,) > w(Ts), where Ts, = rc (t, S'). We are considering only those S' such

that S' C S which implies that w(Ts,) < w(Ts). Hence, w(Ts,) = w(Ts) and for every

vertex with label A in rs, one can find a unique vertex labeled by A in TS, and vice-versa.
Further, S' is the disjoint union of SL and SR; therefore, for vertex with label A in rsI,
one can find a unique vertex labeled by A either in rsL or rs.

As a consequence, we have that for every vertex with label A in rs, one can find a
unique vertex labeled by A either in Ts, or Ts,. Hence, w(rsL) + w(Ts) > w(Ts) and

therefore, max{w(rsL), w(Ts) I w (Ts)/2 > y. So, if we consider the witness among TsL

and sR with larger weight, it is a counterexample of weight at least -y but of weight less
than that of Ts, contradicting our choice of rs. *

6 Deterministic Algorithm

In this section we describe our sequential deterministic algorithm and prove Theorem 7.

For the rest of the paper we define a set of forbidden witnesses F which contains
all full witnesses consisting of single events of large weight and all partial witness trees of
weight between -y and 2 -y consisting only of small weighted events. We choose -y = lM

and show in Lemma 13 that this suffices to make the expected number of forbidden
witnesses smaller than one. The splitting into high and low probability (weight) events
generalizes the argument that the k-CNF problem is interesting only if k < log m. Again,
events with large weight have very small probability, and so the expectation of occurrence
of their singleton witnesses is negligible. This makes it easy to treat them separately,
thereby handling the first case in the proof of range lemma. Formally, we recall that

A={AE A x'(A) > jI} and define F:=FUF2 where

* F1  {T = v I [v] E A\A} and

o F2 :={r w(T) E [y, 2y] A Vv E T, [v] EA

A Root(r) E BA for some A E A }.

With these definitions we can state our deterministic algorithm.



Algorithm 3:

Sequential Deterministic Algorithm

1. Enumerate all forbidden witnesses in F.

2. Construct table T by the method of conditional probabilities: For each variable

p ElP, and for each j, 0< j <; - , do

o Select a value for *T(p, j) that minimizes the expected number of forbidden

witnesses that can occur in the event-log given that all values chosen so far

and T(p, j) are fixed and the yet uncomputed values are random.

3. Run Algorithm 2 using table T as input.

For the Algorithm 3 to work efficiently, we need that the table T can be constructed

by the method of conditional probabilities quickly. To this end, we prove that the number

of forbidden witnesses is polynomial using Lemma 14. Further, we prove that the table

given by the method of conditional probabilities is a good table; that is, the execution of

Algorithm 1 using this table terminates within polynomial number of steps. We show this

as follows: Lemma 13 proves that the number of forbidden witnesses that occur in the

event-log by using this table is zero (due to the invariant maintained by the method of

conditional probabilities while obtaining the table). Therefore, the sequential algorithm

does not encounter any of the forbidden witnesses. Putting this together with Lemma

12, we can show that the maximum weight of any partial witness tree occurring in the

event-log produced by the execution of the sequential algorithm with any fixed order to

resample is at most -. Finally, the maximum number of vertices in a partial witness tree

of weight at most -y is not too large. Hence, the maximum number of times any event is

resampled while running the sequential algorithm using table T is not too large.

Lemma 13. The expected number of forbidden witnesses occurring in the event-log CT,

where T is a random table, is less than 1

Proof. We first prove that the expected number of witnesses r E F2 occurring in CT is at

most . For each event A E A, let TA and T' be the set of partial and respectively full

witness trees in F2 with root from BA. With this notation the expectation in question is

exactly:

E := Pr (r occurs in the event-log CT) .

A6A ETA

Note that according to Lemma 11, a partial witness tree occurs in the event-log CT only

if it passes the T-check. Clearly, the probability that a witness T passes the T-check for



the random table T is ivEV(r) Pr ([v]), where again V(T) are all non-root vertices in T.

Using this and the assumption in Theorem 7 that Pr ([v]) x'([v])1+E we get

E <H x([v])1+e.
AE6A T-ETA v6V(r)

Note that each full witness tree with root A E A can give rise to at most | BA partial

witness trees since the possible subsets that we consider are only the sets which occur

as labels of vertices in the variable splitting BA. Hence, we can rewrite to get that the

expectation is

E < |B | 3

AeA

AA

S
reT

TESrEV

H1
vEV(r)

x'([v])1+e

(
v6V(T)

where the last expression follows because, for T E T' , we have:

w() = -log x'([v]) ;> Y
vEV(-r)

==> H x'([v]) < 2~1.

v6V(-r)

Next we transition from partial to full witness trees by including the root again (and

going from V to V).

E A

AE A
( SH
-rET'4 VEV(-r)

Now we can use the following result of Moser-Tardos [18] that bounds the expected

number of full witnesses with root A:

S x'(v] x(A)
-rET' vEV(r)

Their proof makes use of a Galton-Watson process that randomly enumerates proper

x'(v])) 2-16,

x'([v]) )2-16



witness trees with root A (note that by Lemma 11 all partial witness trees are proper).

Using this we can finish the proof that the expected number of witnesses T E F2 occurring

in CT is at most!:
4.

E < | BA | x(A) 2 'E
- x'(A) (1-x(A))

AEA

M 1
< -- 2 -- K -.

4 -4

Here the penultimate inequality follows from |BAl < 2|vbl(A) I and the definition of M

and the last inequality follows from the choices of 7 - log M.
E

To calculate the expected number of all forbidden witnesses in F = F1 U F2 that occur

in CT we use the linearity of expectation to obtain the desired result:

Pr (r occurs in CT)= % Pr (r occurs in CT) + 4
-rEF rEF1

1 1 1
< m + - = -.

4m 4 2

Owing to the definition of forbidden witnesses via weights, there is an easy way to

count the number of witnesses using the fact that their expected number is small.

Lemma 14. The number of forbidden witnesses |F| is less than M 2(l+1/E).

Proof. We first count the number forbidden witnesses in F2 . Each of them have weight

w(T) < 2-y and thus:

IF(2-2)(lE+) < Z2(r)(+E)

-rEF2 )(1+E)
=( x'(B)

T F2 (V6V(-r)

1
=EK-.

-4

Here the final equality is comes from the proof of Lemma 13 which also proves the upper

bound of . Therefore

IF21 < 12 2 0+) -
1 M2(1+1/E)

4 4



and the total number of forbidden witnesses is

IF| = |F1 + F21 < m+ --M2(1+1/E) < M 2 (1+1/c).
4

Now, we are ready to prove Theorem 7.

Proof of Theorem 7. The first step of the deterministic algorithm enumerates all forbid-

den witnesses in F. By Lemma 14, there are at most M 2(1+1/e) forbidden witnesses and

it is easy to enumerate them using a dynamic programming approach.

The running time to find the suitable table T using the method of conditional proba-

bilities can be computed as follows: each variable has at most D possible choices of values;

for each value we compute the expected number of forbidden witnesses that can occur

in the event-log by incrementally computing the probability of each forbidden witness in

F to occur and keeping track of the sum of these probabilities. Further, each forbidden

witness r E F2 has weight at most 2 7- and thus each forbidden witness consists of at most

k = 2 + 1) - -21 +1 vertices. Hence, the time to compute T is at most

DM 2(1+1/E) log M
O(D -|JF| - k -tc) = 0 to~in 1

-6 (DM3+'tc)

since wmin ;> 1/M.

To complete the proof we show that the running time of the sequential algorithm on

a table T obtained by Step 2 of the deterministic algorithm is at most 0 (2m log Mtc
(ewmin/

First, note that by running the sequential algorithm using the table T, none of the

forbidden witnesses can occur in the event-log CT. This is because the table is obtained
by the method of conditional probabilities: In the beginning of the construction of the

table, when no value is fixed, the expected number of forbidden witnesses that occur in

the event-log is less than 1/2 as proved in Lemma 13; this invariant is maintained while

picking values for variables in the table; thus, once all values are fixed, the number of

witness trees in F that occur in the event-log CT is still less than 1/2 and hence zero.

This implies that none of the events A E A \ A are resampled while using the table T

since these events are labels of forbidden witnesses in F1 . It also guarantees that the



sequential algorithm with T as input resamples each event A E A at most k times. This

is because, if some event A E A is resampled more than k times, then A occurs in the

event-log CT at least k times. Now, the weight of the partial witness tree associated with

the last instance at which A was resampled, would weigh at least kwmin which is more

than 2-, a contradiction to Lemma 12. Therefore, the running time for the sequential

algorithm using the table T is 0 (m -k -tc) which is smaller than the upper bound for

the time needed to find the good table T. I

From the general deterministic algorithm it is easy to obtain the corollary regarding k-

CNF by using the standard reduction to the symmetric LLL and plugging in the optimum

values for the parameters.

Proof of Corollary 8. For a k-CNF formula with clauses A ={A1 , - , Am}, for each

clause A E A we define an event A and say that the event happens if the clause is

unsatisfied. Further, each variable appearing in the formula picks values uniformly at

random from {0, 1}. Then, for every event A, Pr (A) =- 2 -'. We assume that k = 0(log m)

for otherwise the problem becomes simple. If d is the maximum number of clauses that a

clause shares its variables with, setting x(A) = 1/d VA E A, we obtain that x'(A) > .
The condition that d < 2k/(1+E)/e can be translated to Pr (A) < x'(A)1+e VA E A.

Therefore, we use parameters to = O(k), wmin ~ k = Q(1), D = 2, |vbl(A)| = k and

obtain a parameter of M = 0(mk) = 0(mlog m). With these parameters the corollary

follows directly from Theorem 7. *

7 Parallel Algorithm

We need the definition of a (k, 6)-approximate distribution to describe our algorithm.

Definition 1. (k, J)-approximations[8]: Let D be the probability distribution on D1 x D2 x

... x Dn given by the random variables in P. For positive integer k and constant 6 E (0, 1)

a probability distribution Y on D1 x D 2 x ... x Dn is said to be a (k, 6)-approximation of D

if the following holds. For every I ; [n] such that I| k, and every v E D1 x D 2 x ... x Dn

we have

Pr[v1] - Pr[v1 ]| < 6,V y

where Pro [v1] denotes the probability that for a random vector (x 1, ... , xn) with probability

distribution D we get xi = vi for i E I and Pry [v1] is defined similarly.



Algorithm 4:
Parallel Deterministic Algorithm

1. Take Y as the domain of a (k, 6)-approximation Y for the probability space of

random tables.

2. For each table T E Y do in parallel:

(a) For every variable p E P: Initiate the pointer t, = 1.

(b) While -]A E A that happens when (VP E P : p = T(p, t,), do:

" Compute a maximal independent subset I of those clauses.

" Resample(A) in parallel: For all P E UAEI vbl(A), increment t, by one.

3. Once a valid assignment is found using one of the tables, output it and terminate.

As in the sequential algorithm, the problem reduces to finding a table on which the

above algorithm terminates quickly. Our algorithm relies on the following observation:

instead of sampling the values in the table independently at random, if we choose it from

a distribution that is a (k, 6)-approximation of the original distribution (for appropriate k

and 6), the algorithm behaves as if the values in the table had been chosen independently

at random (Proposition 1). The support of a (k, 6) distribution is polynomially small,
and so this gives us a polynomial sized set of tables which is guaranteed to contain at

least one table on which the algorithm terminates quickly (Corollary 15). Our algorithm

runs the Moser-Tardos parallel algorithm on each of these tables in parallel, and stops as

soon as one of the tables lead to the good evaluation.

Proposition 1. Let S = D1 x ... x Dn be a product space of finite domains of size at most

D = max, |Di|, P be an independent product distribution on S and f, f1, f2 : S -+ {0,1}
be boolean functions on S.

1. If f1 and f2 have decision tree complexity k1 and k2 respectively, then the decision

tree complexity of f1 A f2 is at most k1 + k2 .

2. If f has decision tree complexity at most k then every (k, 6)-approximation Y of P

is Dk6-indistinguishable from P, i.e.:

|Ey(f) - Ep(f)| < Dko.



Proof. For the first claim we recall that a function having decision tree complexity at

most k is equivalent to saying that we can determine its evaluation f(x) for x E S by

adaptively querying at at most k components of x. If this is true for fi and f2 with ki

and k2 respectively then we can easily evaluate fi(x) A f2(x) by adaptively querying at

most ki + k2 components of x. Therefore this conjunction has decision tree complexity at

most ki + k2 -

For the second claim, we fix a decision tree for f with depth at most k. Each one

of the leaf-to-root paths in this tree corresponds to a partial assignment of values to at

most k components which determines the result of f. The expectation of f under any

distribution is simply the sum of the probabilities of the paths resulting in a 1-evaluation

at the leaf. Switching from a completely independent distribution to a k-wise independent

distribution does not change these probabilities since the partial assignments involves at

most k variables. Similarly switching to a (k, 6)-approximation changes each of these

probabilities by at most 6. There are at most Dk paths resulting in a 1-evaluation which

implies that the deviation of the expectation is at most Dk6. I

Remark: Instead of assuming for each event A, a decision tree complexity of at most

k(A) = O(min{log M, - log x'(A)}) it suffices to demand a weaker assumption that the

boolean function for each event A can be expressed by a polynomial of degree at most

k(A) with coefficients and number of terms bounded by 2k(^). In general any property

that fulfills the above "additivity" and implies the property that any (k, 6)-approximation

is 20(k)6-indistinguishable suffices. We do not know whether this suggested property itself

behaves additively.

Corollary 15. The expected number of forbidden witnesses consistent with a table T that

was created by a (k, 6)-approximation for distribution of random tables with k = 2c-y and

6-1 - 3M 2 +2/cD 2c- is at most 1/2 + 1/3 < 1.

Proof. The event that a partial witness r E F2 is consistent with T is exactly the conjunc-

tion of events [v], v E V(r); using Proposition 1, the decision tree complexity of this tree

is at most c min{log M, - log x'([v]) }. Also, if r E F1, then clearly the decision

tree complexity of r is at most c log M < cy; else if r E F2 , then

c minflog M, - log x'([v])} < c -log z'([v])
vEV(rT) VEV(-r)

< 2c-y.

Lemma 13 shows that using the original independent distribution P, the expected

number of forbidden witnesses occurring is at most 1/2. The second claim of Proposition 1



proves that switching to a (k, 6)-approximation changes this expectation by at most Dk-

1 for each of the |FI witnesses. To complete the proof, observe that by Lemma 14

we have |F <;M 2 +2/. I

We obtain the proof of Theorem 9 along the outline mentioned in the beginning of the

section.

Proof of Theorem 9. We use Algorithm 4 to obtain the good evaluation. Corollary 15

guarantees that there is a table T E Y for which there is no forbidden witness consistent

with it. Steps 2a-3 are exactly the parallel algorithm of Moser and Tardos [18] and

by using Lemma 4.1 of [18], if this algorithm runs for i iterations then there exists a

consistent witness of height i. Such a witness has weight at least iwmin and thus i <

^ . Each of these i iterations takes time tevl to evaluate all m clauses and time tMIS
Wmin

to compute the independent set on the induced dependency subgraph of size at most

m. This proves that after creating the probability space Y, the algorithm terminates

in O(7 '(tMIS + teval)) time and the termination criterion guarantees correctness. The

number of processors needed for the loop is polynomial bounded by M0 (1 ) for each of the

|Y| parallel computations.
It can be shown that Y can be constructed efficiently in parallel and that it is at

most polynomially large. For this, we use the construction described in [8] (which in

turn uses a construction in [19]). This construction builds a (k, 6)-approximation to

a product space with maximum domain size D and |TI variables. Such a space has

size |Y| = poly(2k, log T|, 61) = Mo~ilogD) and can be constructed in parallel in time

poly(log k + log log ITl + log log 6-1) = O(log M). The construction described in [8] can

be parallelized with the required parameters easily. *
Again it is easy to obtain the k-CNF result as a corollary of the asymmetric algorithm.

Proof of Corollary 10. We apply the LLL in the same way to k-CNF as in the proof of

Corollary 8 getting M = O(mlog m) and wmin ~ k = Q(1). Since each clause depends

only on k variables a decision tree complexity of O(k) is obvious. Finally using Theorem

9 and for example an algorithm of Luby [13] to compute the maximal independent set in

time tMIS = O(log 2 m) leads to the claimed running time. *

8 Conclusion

Moser and Tardos [18] raised the open question for a deterministic LLL algorithm. We ad-

dress this and give a deterministic algorithm that works under nearly the same conditions



as its randomized versions. All known deterministic or (randomized) parallel algorithms

need a slack in the LLL conditions. Whether those e-slacks can be removed remains open.

Similar to Moser-Tardos, our sequential algorithm needs the assumption that exact
conditional probabilities can be computed efficiently. This assumption can be weakened
to use pessimistic estimators. The complexity assumptions of our parallel algorithm are
alternative assumptions. These assumptions may also be weakened (see Remark in Section
7).

We have an improved parallel algorithm that determines a valid assignment directly
from a good table needing only polynomially many non-adaptive evaluations. Its run-
ning time is faster than the parallel algorithm presented here. This parallel algorithm
is furthermore of interest because it extends to the lopsided LLL, which uses a weaker
notion of event-dependency. Moser-Tardos proved that their sequential algorithm extends
to this case but their parallel algorithm does not. The same is true for the sequential and
parallel algorithms presented here. The improved parallel algorithm overcomes this and
is the first parallel algorithm for the lopsided LLL.
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