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Abstract. This paper is concerned with the scattering problem of time-harmonic
acoustic plane waves by a union of a crack and a penetrable inhomogeneous medium
with compact support. The well-posedness of the direct problem is established by
the variational method. An uniqueness result for the inverse problem is proved, that
is, both the crack and the inhomogeneous medium can be uniquely determined by
a knowledge of the far-field pattern for incident plane waves. The linear sampling
method is employed to recover the location and shape of the combined scatterer. It
is worth noting that we make the first step on reconstructing a mixed-type scatterer
of a crack and an inhomogeneous medium by the linear sampling method.

Keywords: combined scatterer, inverse scattering problem, uniqueness, the linear sampling

method.
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1 Introduction

The problem that we are dealing with in this paper is the scattering of time-
harmonic acoustic plane waves by a mixed-type scatterer which is given as the
union of an open arc and a penetrable inhomogeneous medium with compact
support. We set impedance boundary condition on one side of the arc with
a constant surface impedance λ and assume that the refractive index of the
inhomogeneous medium is n. This model corresponds to some practical ap-
plications such as biomedical imaging, non-destructive testing and geophysical
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explorations. Assuming that the electric field is polarized in the TM mode, this
leads to a mixed boundary value problem for the Helmholtz equation defined
in the exterior of the crack with a refractive index due to the inhomogeneous
medium.

To give a precise description of the problem, we assume that the inho-
mogeneous region is contained in a ball B, the refractive index is assumed
n = 1 in R3\(B ∪ Γ̄ ). Let q := n − 1 denote the ‘contrast function’, then
D := {x ∈ R3\Γ̄ : q 6= 0} is a bounded domain and can be used to denote
the compact support of the penetrable inhomogeneous medium. We suppose
that the crack Γ can be extended to a C2 smooth, simply connected and closed
curve ∂Ω enclosing a bounded domain Ω such that the normal vector ν on Γ
coincides with the outward normal vector on ∂Ω which we again denote by ν.
Let Λ denote the part of the boundary ∂Ω\Γ̄ . The bounded domain D and Ω
are disjoint. Let k > 0 be the wave number and ui(x, d) = eikx·d, x ∈ R3, be
the incident plane wave with direction d ∈ S. Here, S denotes the unit sphere
in R3.

The propagation of time-harmonic plane waves by a crack and a penetrable
inhomogeneous medium is modeled by the Helmholtz equation with suitable
boundary conditions: 

∆u+ k2nu = 0 in R3\Γ̄ ,
u+ = 0 on Γ,
∂u−
∂ν + iλu− = 0 on Γ,

(1.1)

where the surface impedance is λ < 0, u±(x) = limh→0 u(x±hν) for x ∈ Γ , and
∂u±
∂ν = limh→0 ν·∇u(x±hν) for x ∈ Γ . The total field u = us+ui is decomposed

into the given incident field ui = eikx·d, |d| = 1, and the unknown scattered
field us which is required to satisfy the Sommerfeld radiation condition [10]

lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0 (1.2)

uniformly in x̂ = x/|x| with r = |x|.
Furthermore it is known that the scattered field us(x, d) has the following

asymptotic representation

us(x, d) = γ
eik|x|

|x|

{
u∞(x̂, d) +O

(
1

|x|

)}
as |x| → ∞ (1.3)

uniformly for all directions x̂, where γ = 1
4π and the function u∞(x̂, d) defined

on the unit sphere S is known as the far field pattern with x̂ and d denoting,
respectively, the observation direction and the incident direction.

The inverse problem we consider in this paper is, given the wave number
k and the far-field pattern u∞(x̂, d) for all x̂, d ∈ S, to determine the loca-
tion and shape of the crack and the refractive index n or at least its compact
support D.

The inverse scattering problem of identifying multiple obstacles has been
extensively studied. We refer the reader to monograph [25] for a comprehen-
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sive study of the multiple scattering in general and the scattering by point-like
scatterers in particular, where practical motivations of the corresponding mod-
els and historical facts are discussed. In 2007, the splitting method proposed
in [16] is applicable to shape reconstruction for multiple obstacles. In 2008,
some numerical methods for multiple acoustic scattering in the case of con-
vex sound-soft obstacles were discussed by Antonie et al. [1] and references
therein. In the same year, Ganesh and Hawkins in [11] generalized to the
case of convex and non-convex multiple particles with different boundary con-
dition and a few years later they developed a novel fast, high order, memory
efficient algorithm to simulate multiple acoustic scattering induced by an en-
semble with hundreds of particles in two space dimensions in [12]. In 2009,
Cheng et al. [7] made using of the probe method to identify multiple obstacles
and the type of boundary conditions for each obstacle. In 2012, Challa, et
al. [5] have surveyed the direct and inverse electromagnetic scattering prob-
lem by a finite number of point-like obstacles. Recently, Kirsch and Liu [21]
have studied the factorization method for identifying a mixed-type scatterer
given as the union of a bounded impenetrable obstacle and a penetrable in-
homogeneous medium with compact support. See [3] for the linear sampling
method and [13, 14] for the factorization method of reconstruction for mul-
tiple scattering objects. For more scattering problems by multiple objects
see [6, 17, 18, 19, 20] and for the scattering by cracks with different faces we
recommend the papers [22,23].

In the present paper, we will apply the linear sampling method to recover
the mixed-type scatterer which is composed by a crack and a penetrable inho-
mogeneous medium. To our knowledge, this is the first step in this direction
although the multiple scattering problems have received a lot of attention as
we mentioned above. The linear sampling method has been the subject of con-
siderable attention since the method was formulated by Colton and Kirsch [9]
for the first time, in the case of 2D obstacles with Dirichlet, Neumann and
impedance boundary conditions and in the case of 2D inhomogeneous media.
Until now, this method has been developed greatly and applied to solve a va-
riety of inverse problems. For the mathematical judgement, the readers are
advised to the article [2, 3]. See [8] for a survey and overview. The main dif-
ficulty arising in reconstructing the mixed-type scatterer combined by a crack
and a penetrable inhomogeneous medium by the linear sampling method is
that the usual far field equation is not suitable for our problem. To this end,
we need to analyze the properties of injectivity and denseness of some opera-
tors related to our complex scattering problem in some special Sobolev spaces
and choose an appropriate far field equation. First of all, the unique and
simultaneous determination result about the mixed-type scatterer must be es-
tablished.

The remainder of the paper is organized as follows. In the next section, we
present the forward problem and some key results on variational solutions to
this problem. Section 3 is dedicated to the unique determination of the com-
bined scatterer based on a mixed reciprocity relation. Then by introducing a
novel far field equation, we investigate the recovery of the mixed-type scatterer
by the linear sampling method in Section 4.
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2 The Direct Scattering Problem

This section is devoted to the solution of the direct acoustic scattering problem
(1.1) and (1.2). In order to formulate our scattering problems more precisely
we need to properly define the trace spaces on Γ . If L2(∂Ω), H1/2(∂Ω) and
H−1/2(∂Ω) denote the usual Sobolev spaces we define the following spaces:

H1/2(Γ ) =
{
u|Γ : u ∈ H1/2(∂Ω)

}
,

H̃1/2(Γ ) =
{
u ∈ H1/2(∂Ω) : suppu ⊆ Γ̄

}
,

H−1/2(Γ ) =
(
H̃1/2(Γ )

)′
, the dual space of H̃1/2(Γ ),

H̃−1/2(Γ ) =
(
H1/2(Γ )

)′
, the dual space of H1/2(Γ ),

and we have the chain

H̃1/2(Γ ) ⊂ H1/2(Γ ) ⊂ L2(Γ ) ⊂ H̃−1/2(Γ ) ⊂ H−1/2(Γ ).

We make the following general assumptions throughout the paper.

Assumption. Assume that the boundary ∂D of D is smooth enough such
that the imbedding of H1(D) into L2(D) is compact and the contrast function
q ∈ L∞(D) satisfies Imq ≥ 0 in D.

We extend q by zero in R3\Γ̄ .
Sine the incident field ui satisfies the Helmholtz equation ∆ui+k2ui = 0 in

all of R3, thus the scattered field us solves the following problem with boundary

data f = −ui and g = −∂u
i

∂ν − iλui on Γ and source term h = −ui in D.
We consider a more general scattering problem for the scattered wave us as
following.

Remark. For a little confusion, we use u to denote us.

The direct problem: Given h ∈ L2(D), f ∈ H 1
2 (Γ ) and g ∈ H− 1

2 (Γ ) find
u ∈ H1

loc(R
3\Γ̄ ) such that

∆u+ k2(1 + q)u = k2qh in R3\Γ̄ ,
u+ = f on , ∂u−

∂ν + iλu− = g on Γ,

limr→∞ r(∂u∂r − iku) = 0, r = |x|.
(2.1)

The equation of (2.1) has to be understood in the variational sense, and the
boundary conditions of (2.1) are understood in the sense of the trace operator.
Here, and in the following, we do not distinguish between the function q defined
in D and its extension by zero to all of R3\Γ̄ .

Theorem 1. For any h ∈ L2(D), f ∈ H 1
2 (Γ ) and g ∈ H− 1

2 (Γ ), there exists
at most one solution u ∈ H1

loc(R
3\Γ̄ ) of (2.1).

Proof. Clearly, it is sufficient to show that u = 0 in R3\Γ̄ if h = 0 in D and
f = g = 0 on Γ . Denote by BR a sufficiently large ball with radius R containing
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Γ̄ and D̄ and by SR its boundary. From Green’s theorem, the equation and
boundary conditions of (2.1), we obtain∫

SR

u
∂ū

∂ν
ds =

∫
BR\Γ̄

[
|∇u|2 − k2(1 + q̄)|u|2

]
dx− i

∫
Γ

λ|u|2ds.

From this, since k > 0, λ < 0 and Imq ≥ 0, it follows that

Im

∫
SR

u
∂ū

∂ν
ds = k2

∫
BR\Γ̄

Im q|u|2dx−
∫
Γ

λ|u|2ds ≥ 0.

The Rellich’s lemma [10] shows that u = 0 in R3\B̄R and it follows by the
unique continuation principle [10] that u = 0 in R3\Γ̄ . ut

Motivated by later use, we choose to adopt a variational approach in the
study of the direct problem. For this purpose, we need to write it as an equiv-
alent problem in a bounded domain and introduce TR : H

1
2 (SR)→ H−

1
2 (SR),

the Dirichlet to Neumann operator (see [10]), defined by

TR(ϕ) =
∂ω

∂ν
on SR, (2.2)

with ω ∈ H1
loc(R

3\B̄R) being the unique solution satisfying the Sommerfeld
radiation condition and verifying{

∆ω + k2ω = 0 in R3\B̄R,
ω = ϕ on SR.

Let 〈,〉SR denote the duality product between H
1
2 (SR) and H−

1
2 (SR) that coin-

cides with L2(SR) scalar product for regular functions. We have the following
important properties of the Dirichlet to Neumann map [4].

Lemma 1. The Dirichlet to Neumann map TR is a bounded linear opera-
tor from H

1
2 (SR) to H−

1
2 (SR). Furthermore there exists a bounded operator

T0 : H
1
2 (SR)→ H−

1
2 (SR) satisfying

−〈T0ϕ,ϕ〉SR ≥ C‖ϕ‖2
H

1
2 (SR)

for some constant C > 0, such that TR−T0 : H
1
2 (SR)→ H−

1
2 (SR) is compact.

The direct problem (2.1) can now be transformed into an equivalent prob-
lem, namely find u ∈ H1(BR\Γ̄ ) such that

∆u+ k2(1 + q)u = k2qh in BR\Γ̄ ,
u+ = f, ∂u−

∂ν + iλu− = g on Γ,
∂u
∂ν = TRu on SR,

(2.3)

where h ∈ L2(D), f ∈ H 1
2 (Γ ) and g ∈ H− 1

2 (Γ ), TR is the Dirichlet to Neumann
map defined by (2.2). Referring to Theorem 2.1 in [4], we know that the
problem (2.3) has at most one solution. We now show the following result on
the well-posedness of the problem (2.3).



Scattering by a combined scatterer 427

Theorem 2. Assuming that the surface impedance λ < 0, the boundary data
f ∈ H 1

2 (Γ ), g ∈ H− 1
2 (Γ ) and h ∈ L2(D), then the problem (2.3) has a unique

solution u ∈ H1(BR\Γ̄ ) such that

‖u‖H1(BR\Γ̄ ) ≤ C
(
‖h‖L2(D) + ‖f‖

H
1
2 (Γ )

+ ‖g‖
H− 1

2 (Γ )

)
with a positive constant C which is independent of h, f and g but on λ, q
and BR.

Proof. Let f̃ ∈ H
1
2 (∂Ω) be the extension of the Dirichlet date f ∈ H

1
2 (Γ )

that satisfies ‖f̃‖
H

1
2 (∂Ω)

≤ C‖f‖
H

1
2 (Γ )

and let u0 ∈ H1(BR\Ω̄) ∩ H1(Ω) be

such that ∆u0 = 0 in BR\Ω̄ and Ω, u0 = 0 on SR, and u0 = f̃ on ∂Ω and
satisfy

‖u0‖H1(BR\Ω̄)∩H1(Ω) ≤ C‖f‖H 1
2 (Γ )

.

We now formulate (2.3) as a variational problem. To this end we define the
Sobolev space

X :=
{
u ∈ H1(BR\Γ̄ ) : u+ = 0 on Γ

}
.

Then w := u− u0 ∈ X, where u is a solution to (2.3). Furthermore w satisfies
∆w + k2(1 + q)w = k2qh− k2(1 + q)u0 in BR\Γ̄ ,
w+ = 0, ∂w−

∂ν + iλw− = g − ∂u0

∂ν − iλf on Γ,
∂w
∂ν = TRu− ∂u0

∂ν on SR.

The problem (2.3) can now be formulated in the following equivalent vari-
ational form: Find u ∈ H1(BR\Γ̄ ) such that w = u− u0 ∈ X and

a(w, φ) = L(φ) for all φ ∈ X, (2.4)

where the sesquilinear form a(·,·) : X ×X → C is defined by

a(w, φ) =

∫
BR\Γ̄

(
∇w · ∇φ̄− k2(1 + q)wφ̄

)
dx−

∫
SR

TRwφ̄ds+ iλ

∫
Γ

w−φ̄−ds,

and the conjugate linear functional L : X → C is defined by

L(φ) =

∫
BR\Γ̄

k2
[
(1 + q)u0 − qh

]
φ̄dx+

∫
SR

(
TRu0 −

∂u0

∂ν

)
φ̄ds

+

∫
Γ

g[φ̄]ds−
∫
Γ

∂u0−

∂ν
φ̄−ds− iλ

∫
Γ

fφ̄−ds,

where the third integral of the above identity over Γ is interpreted as the
duality pairing between H−

1
2 (Γ ) and H̃

1
2 (Γ ) (note that φ+ = 0 on Γ and

[φ̄] := φ̄− − φ̄+ ∈ H̃
1
2 (Γ )).

Math. Model. Anal., 20(3):422–442, 2015.
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Next we write a(·,·) as the sum of two terms, i.e. a(·,·) = a1(·,·) + a2(·,·),
where

a1(w, φ) =

∫
BR\Γ̄

(∇w · ∇φ̄+ wφ̄)dx−
∫
SR

T0wφ̄ds+ i

∫
Γ

λw−φ̄−ds,

a2(w, φ) = −
∫
BR\Γ̄

[1 + k2(1 + q)]wφ̄dx−
∫
SR

(TR − T0)wφ̄ds.

From the Cauchy–Schwarz inequality, the trace theorem, the properties of the
Dirichlet to Neumann map TR and T0 and the assumption on p, we have that∣∣a1(w, φ)

∣∣, ∣∣a2(w, φ)
∣∣ ≤ C(‖w‖H1(BR\Γ̄ )‖φ‖H1(BR\Γ̄ )

)
.

Hence a1(·,·) and a2(·,·) are bounded sesquilinear forms.
Furthermore, noting that φ+ = 0 on Γ , the Green’s first identity for u0 and

φ in the domain BR\Γ̄ implies that

−
∫
SR

∂u0

∂ν
φ̄ds−

∫
Γ

∂u0−

∂ν
φ̄−ds = −

∫
BR\Γ̄

∇u0 · ∇φ̄dx.

Therefore, again by the Cauchy–Schwarz inequality, the trace theorem and the
properties of the Dirichlet to Neumann map TR and T0 and the assumption
on p, we have that∣∣L(φ)

∣∣ ≤ c1‖u0‖H1(BR\Γ̄ )‖φ‖H1(BR\Γ̄ ) + c2‖u0‖
H

1
2 (SR)

‖φ‖
H

1
2 (SR)

+ c3‖h‖L2(D)

∥∥[φ]
∥∥
L2(D)

+ c4‖g‖
H− 1

2 (Γ )

∥∥[φ]
∥∥
H̃

1
2 (Γ )

+ c5‖f‖
H

1
2 (Γ )
‖φ‖

H
1
2 (Γ )

≤ C
(
‖h‖L2(D) + ‖f‖

H
1
2 (Γ )

+ ‖g‖
H− 1

2 (Γ )

)
‖φ‖H1(BR\Γ̄ ),

which shows that L is a bounded conjugate linear functional.
The coercivity of a1(·,·) is directly obtained form the property of T0 and

the assumption about λ. While, the compactness of a2(·,·) follows from the
properties of TR− T0, the trace theorem and the compact imbedding theorem.
By the Fredholm Theorem, the solvability of the variational problem (2.4) can
be obtained by the injectivity of a(·,·). The injectivity of a(·,·) is equivalent to
the fact that the only function u ∈ X that satisfies a(u, φ) = 0 for all φ ∈ X is
u = 0. That is the uniqueness of a weak solution to the homogeneous boundary
value problem of (2.1) which has be shown by Theorem 2.1. So we complete
the proof of the theorem. ut

3 The Unique Determination of the Mixed-Type Scat-
terer

This section is devoted to the uniqueness of the inverse problem, that is the
unique determination of the location and shape of the union of the crack and
the compact support of the inhomogeneous medium and the refractive index n.

Let us go back to the scattering problem (1.1) and (1.2). As incident
fields ui, plane waves and point sources are of special interest. Denote by
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us(·, d) the scattered field for an incident plane wave ui(·, d) with the incident
direction d ∈ S and by u∞(·, d) the corresponding far-field pattern. The scat-
tered field for an incident point source Φ(·, z) which is the fundamental solution
to the Helmholtz equation defined by

Φ(x, y) =
eik|x−y|

4π(|x− y|)
,

with the source point z ∈ R3 is denoted by us(·, z) and the corresponding
far-field pattern by Φ∞(·, z).

To establish the uniqueness result for the inverse scattering problem as
mentioned above, we first give a generalization of the mixed reciprocity relation.

Lemma 2. For the scattering of plane wave ui(·, d) with d ∈ S and point source
Φ(·, z) with z ∈ R3\(D̄ ∪ Γ̄ ) by the mixed scatterer, we have

Φ∞(x̂, z) = γus(z,−x̂), z ∈ R3\(D̄ ∪ Γ̄ ), x̂ ∈ S,

where γ = 1
4π .

Proof. By Green’s second theorem and the Sommerfeld radiation condition
we have that

0 =

∫
∂D

(
us(y, z)

∂us(y, d)

∂ν(y)
− ∂us(y, z)

∂ν(y)
us(y, d)

)
ds(y)

+

∫
Γ

(
us+(y, z)

∂us+(y, d)

∂ν(y)
−
∂us+(y, z)

∂ν(y)
us+(y, d)

)
ds(y)

−
∫
Γ

(
us−(y, z)

∂us−(y, d)

∂ν(y)
−
∂us−(y, z)

∂ν(y)
us−(y, d)

)
ds(y) (3.1)

for z ∈ R3\(D̄ ∪ Γ̄ ), d ∈ S. Using Green’s representation formula [10], we
obtain the representation

Φ∞(x̂, z) = γ

∫
∂D

(
us(y, z)

∂e−ikx̂·y

∂ν(y)
− ∂us(y, z)

∂ν(y)
e−ikx̂·y

)
ds(y)

+ γ

∫
Γ

(
us+(y, z)

∂e−ikx̂·y

∂ν(y)
−
∂us+(y, z)

∂ν(y)
e−ikx̂·y

)
ds(y)

− γ
∫
∂D

(
us−(y, z)

∂e−ikx̂·y

∂ν(y)
−
∂us−(y, z)

∂ν(y)
e−ikx̂·y

)
ds(y) (3.2)

for z ∈ R3\(D̄ ∪ Γ̄ ), d ∈ S. Adding γ times (3.1) with d replaced by −x̂ to
equation (3.2) we have

Φ∞(x̂, z) = γ

∫
∂D

(
us(y, z)

∂u(y,−x̂)

∂ν(y)
− ∂us(y, z)

∂ν(y)
u(y,−x̂)

)
ds(y)

+ γ

∫
Γ

(
us+(y, z)

∂u+(y,−x̂)

∂ν(y)
−
∂us+(y, z)

∂ν(y)
u+(y,−x̂)

)
ds(y)

− γ
∫
Γ

(
us−(y, z)

∂u−(y,−x̂)

∂ν(y)
−
∂us−(y, z)

∂ν(y)
u−(y,−x̂)

)
ds(y)

Math. Model. Anal., 20(3):422–442, 2015.
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for z ∈ R3\(D̄ ∪ Γ̄ ), d ∈ S. Then by the boundary conditions of (1.1), we
obtain

Φ∞(x̂, z) = γ

∫
∂D

(
us(y, z)

∂u(y,−x̂)

∂ν(y)
− ∂us(y, z)

∂ν(y)
u(y,−x̂)

)
ds(y) (3.3)

+γ

∫
Γ

us+(y, z)
∂u+(y,−x̂)

∂ν(y)
ds(y)+γ

∫
Γ

(
iλus−(y, z)+

∂us−(y, z)

∂ν(y)

)
u−(y,−x̂)ds(y).

On the other hand, Green’s second theorem gives that for z ∈ R3\(D̄ ∪ Γ̄ ),
x̂ ∈ S

γ

∫
∂D

(
∂Φ(y, z)

∂ν(y)
ui(y,−x̂)− Φ(y, z)

∂ui(y,−x̂)

∂ν(y)

)
ds(y) = 0. (3.4)

Green’s representation formula shows us that for z ∈ R3\(D̄ ∪ Γ̄ ), x̂ ∈ S

γus(z,−x̂) = γ

∫
∂D

(
∂Φ(y, z)

∂ν(y)
us(y,−x̂)− Φ(y, z)

∂us(y,−x̂)

∂ν(y)

)
ds(y)

+ γ

∫
Γ

(
∂Φ(y, z)

∂ν(y)
us+(y,−x̂)− Φ(y, z)

∂us+(y,−x̂)

∂ν(y)

)
ds(y)

− γ
∫
Γ

(
∂Φ(y, z)

∂ν(y)
us−(y,−x̂)− Φ(y, z)

∂us−(y,−x̂)

∂ν(y)

)
ds(y). (3.5)

The sum of the equation (3.4) and (3.5) is

γus(z,−x̂) = γ

∫
∂D

(
∂Φ(y, z)

∂ν(y)
u(y,−x̂)− Φ(y, z)

∂u(y,−x̂)

∂ν(y)

)
ds(y)

+ γ

∫
Γ

(
∂Φ(y, z)

∂ν(y)
u+(y,−x̂)− Φ(y, z)

∂u+(y,−x̂)

∂ν(y)

)
ds(y)

− γ
∫
Γ

(
∂Φ(y, z)

∂ν(y)
u−(y,−x̂)− Φ(y, z)

∂u−(y,−x̂)

∂ν(y)

)
ds(y).

Then the boundary conditions of (1.1) imply that

γus(z,−x̂) = γ

∫
∂D

(
∂Φ(y, z)

∂ν(y)
u(y,−x̂)− Φ(y, z)

∂u(y,−x̂)

∂ν(y)

)
ds(y)

− γ
∫
Γ

Φ(y, z)
∂u+(y,−x̂)

∂ν(y)
ds(y)

− γ
∫
Γ

(
∂Φ(y, z)

∂ν(y)
+ iλΦ(y, z)

)
u−(y,−x̂)ds(y). (3.6)

Thus, from (3.3) and (3.6) our assertion can be deduced from the boundary con-
ditions for the scattered field us(x, z) due to the incident point source Φ(x, z).
ut

Using the generalized mixed reciprocity relation, the following uniqueness
result about the shape and location of the crack and the inhomogeneous me-
dium can be proved.
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Theorem 3. Assume that us1(x, z) and us2(x, z) are the two scattered fields cor-
responding to incident point source Φ(x, z) for the two mixed-type scatterers
constituted by a crack Γ1, an inhomogeneous medium with compact support D1

and a crack Γ2, an inhomogeneous medium with compact support D2, respec-
tively. If the far field pattern of the scattered field of (1.1) and (1.2) for the
same incident plane wave ui = eikx·d coincide at a fixed wave number for all
incident directions d ∈ S and observation directions x̂ ∈ S, then Γ1 = Γ2 and
D1 = D2.

Proof. If the two mixed-type scatterers are different, there are three possibil-
ities: (1) D1 = D2 = D, Γ1 6= Γ2; (2) D1 6= D2, Γ1 = Γ2 = Γ ; (3) D1 6= D2,
Γ1 6= Γ2. We give the proofs for the case (1) and (2), the result for situation
(3) can be obtained similarly.

Case (1) D1 = D2 = D, Γ1 6= Γ2. Let G be the unbounded component of
R3\(D̄∪Γ̄1∪Γ̄2). By Rellich’s lemma the scattered field us(·,−x̂) corresponding
to the incident plane wave ui(·,−x̂) coincide in the unbounded domain G.

Without loss of generality, there exists z∗ ∈ Γ1 but z∗ 6∈ Γ2. Choose
h > 0 such that the sequence zj = z∗ + h

j ν(z∗), j = 1, 2, · · · is contained in G,
where the unit normal vector to the crack Γ1 at z∗. Consider the solution
us(·, zj) to the problem (1.1) due to the incident point source Φ(·, zj). By
lemma 3.1, the far field Φ∞(·, zj) coincide. Then the Rellich’s lemma implies
that us1(x, zj) = us2(x, zj) for x ∈ G.

Consider usj(x, zj) = us2(x, zj) as the scattered field corresponding to D

and Γ2. Note that usj+(·) = −Φ(·, zj) and
∂usj−(·)
∂ν + iλusj−(·) = −∂Φ(·,zj)

∂ν +
iλΦ(·, zj) on Γ2 are uniformly bounded. By the well-posedness of the direct
problem we have that ‖usj(z∗)‖H1

loc(R
3\(D̄∪Γ̄2)) is bounded as j → ∞, whence

from the trace theorem ‖usj(z∗)‖H 1
2 (Br(z∗)∩Γ1)

is uniformly bounded respect

to j, where Br(z
∗) is a small neighborhood centered at z∗ not intersecting Γ2

and D.
On the other hand, considering usj(x, zj) = us1(x, zj) as the solution cor-

responding to D and Γ1, from the boundary condition usj+(·) = −Φ(·, zj)
on the crack Γ1, we have that ‖usj‖H 1

2 (Br(z∗)∩Γ1)
→ ∞ as j → ∞ since

‖Φ(·, zj)‖
H

1
2 (Br(z∗)∩Γ1)

→ ∞ as j → ∞. This is a contradiction. Therefore

Γ1 = Γ2.
Case (2) D1 6= D2, Γ1 = Γ2 = Γ . We refer the reader to [27] where the

unique determination of the penetrable, inhomogeneous obstacle from the far-
field pattern for all incident plane waves at a fixed frequency. By an analogous
argument and technique, one can prove that D1 = D2. ut

Remark. For the inverse penetrable obstacle scattering problem, the transmis-
sion boundary condition is usually defined as u+ = u−, ∂u+

∂ν = µ∂u−
∂ν on the

transmission boundary. It well-known that there are some uniqueness results
for the penetrable obstacle under the assumption that µ 6= 1. In the paper [27],
based on constructing a well-posed interior transmission problem in a small do-
main associated with the Helmholtz equation and a priori estimates of solution
to the transmission scattering problem with boundary data, a new method is
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proposed to prove the unique determination of the penetrable, inhomogeneous
obstacle with µ = 1. This method can be applied directly to our inverse prob-
lem to uniquely determine the domain D for the case (2) without any difficulty.

Based on [24], we show the uniqueness of the refractive index n by using
the following two lemmas.

Lemma 3. Let u(·, d) be the solution to the problem (1.1) and (1.2) due to the
incident plane waves ui(·, d) with incident direction d ∈ S, and assume that k2

is not the Neumann eigenvalue of the equation ∆v+k2nv = 0 in D, then the set

{(∂u(·,d)
∂ν |∂D, u−(·, d)|Γ ) : d ∈ S} has dense range in W := H−

1
2 (∂D)×H 1

2 (Γ ).

Proof. Notice that BR is a sufficiently large ball containing Γ̄ and D̄ with
radiusR and boundary SR. We may assume that k2 is not a Dirichlet eigenvalue
for the bounded domain BR. Then the set {ui(·, d) : d ∈ S} is complete in

H
1
2 (SR) (see [4]). Thus we just need to prove that the operator Λ : H

1
2 (SR)→

W defined by

Λφ =

(
∂u

∂ν

∣∣∣∣
∂D

, u−|Γ
)

has dense range. Here u is the solution of the problem (1.1) and (1.2), and φ
is the Dirichlet boundary data of the problem{

∆ui + k2ui = 0 in BR,

ui = φ on SR.

Making use of the Green’s second theorem, we obtain that the adjoint op-
erator of Λ is Λ∗ : W ∗ → H−

1
2 (SR) defined by

Λ∗(ϕ, α) =

(
∂v

∂ν
− ∂ṽ

∂ν

)∣∣∣∣
SR

, (ϕ, α) ∈W ∗,

where W ∗ := H
1
2 (∂D)× H̃− 1

2 (Γ ), v satisfies the problem

∆v + k2nv = 0 in D,

∆v + k2v = 0 in R3\(D̄ ∪ Γ̄ ),

v+ − v− = ϕ̄, ∂v+
∂ν −

∂v−
∂ν = 0 on ∂D,

v+ = 0, ∂v+
∂ν −

∂v−
∂ν − iλv− = ᾱ, on Γ,

limr→∞ r(∂v∂r − ikv) = 0, r = |x|

(3.7)

and ṽ is a solution of the following problem
∆ṽ + k2ṽ = 0 in BR\Γ̄ ,
ṽ+ = 0, ∂ṽ+

∂ν −
∂ṽ−
∂ν − iλṽ− = 0 on Γ,

ṽ = v on SR.

(3.8)

Remark. The well-posedness of the problem (3.7) can be obtained by an anal-
ogous derivation as the problem (1.1) and (1.2) and a similar problem as (3.8)
has been proved in [15].
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Now we only need to prove that the operator Λ∗ is injective. Letting
Λ∗(ϕ, α) = 0, then we have

∂v

∂ν
=
∂ṽ

∂ν
, v = ṽ on SR.

We define

w =

{
ṽ in BR,

v in R3\B̄R.

Then w satisfies the Helmholtz equation ∆w+k2w = 0 in R3 and the Sommer-
feld radiation condition, hence w = 0 in R3. The unique continuation principle
shows us that v = 0 in BR\(D̄ ∪ Γ̄ ), thus the boundary conditions of problem

(3.7) imply that α = 0 and ∂v−
∂ν = ∂v+

∂ν = 0. Because k2 is not the Neumann
eigenvalue of the equation ∆v+k2nv = 0 in D, so v = 0 for x ∈ D. Thus again
by the boundary condition in (3.7) we have ϕ = 0. Therefore we have shown
that Λ∗ is injective. The lemma has been proved. ut

Based on the above lemma we can deduce the following orthogonal rela-
tion.

Lemma 4. Assume that the location and shape of the mixed-type scatterer are
known and k2 is not the Neumann eigenvalue of the equation ∆u + k2nu = 0
in D. For the scattering of different refractive indices n1 and n2 due to the in-
cident plane waves ui(·, d) with incident direction d ∈ S, let u1(·, d) and u2(·, d)
be the solution to problem (1.1) and (1.2) with respect to n1 and n2, suppose
that the corresponding far field pattern u∞1 (x̂, d) = u∞2 (x̂, d) for x̂, d ∈ S. Let
u1, u2 ∈ H1(D) satisfy the following equations

∆u1 + k2n1u1 = 0, ∆u2 + k2n2u2 = 0 in D,

then we have the orthogonal relation:∫
D

(n1 − n2)u1u2dx = 0. (3.9)

Proof. First we show that (3.9) holds true for u1(·, d) and u2(x). By Rellich’s
lemma we have from u∞1 (x̂, d) = u∞2 (x̂, d) for x̂, d ∈ S that

u1(·, d) = u2(·, d),
∂u1(·, d)

∂ν
=
∂u2(·, d)

∂ν
on ∂D.

Whereby, and by the fact that u1(·, d), u2(·, d) and u2 satisfy the equation
∆v + k2nv = 0 in D, we have∫

D

(n1 − n2)u1(x, d)u2(x)dx = − 1

k2

∫
D

(
∆u1(x, d) + k2n2u1(x, d)

)
u2(x)dx

= − 1

k2

∫
D

[
∆u1(x, d)−∆u2(x, d) + k2n2

(
u1(x, d)− u2(x, d)

)]
u2(x)dx

= − 1

k2

∫
D

(
u1(x, d)− u2(x, d)

)(
∆u2 + k2n2u2

)
dx = 0,
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where Green’s second theorem has been used for the third equality.
Next our assertion will be obtained if we could show that the solution u

can be approximated by u(·, d) in L2(D). In contrast, if {u(·, d) : d ∈ S} has
no dense range in U := {u ∈ H1(D) : ∆u+ k2nu = 0}, then by Hahn–Banach
theorem, there exists a function f ∈ L2(D) such that∫

D

f(x)u(x, d)dx = 0, d ∈ S, (3.10)

and also has a function u ∈ U such that∫
D

f(x)u(x)dx 6= 0. (3.11)

Let v ∈ H1(D) be a solution to the following problem

∆v + k2nv = f in D,
∂v

∂ν
= 0 on ∂D. (3.12)

From (3.10) and (3.12), we have

0 =

∫
D

f(x)u(x, d)dx =

∫
D

(
∆v + k2nv

)
u(x, d)dx =

∫
∂D

v
∂u(x, d)

∂ν
ds

by Green’s second theorem. Lemma 3.2 shows us that v(x) = 0, for x ∈ ∂D.
Thus we have∫

D

f(x)u(x)dx =

∫
D

(
∆v + k2nv

)
u(x)dx =

∫
D

v(x)
(
∆u+ k2nu

)
dx = 0.

This is a contradiction to equality (3.11). Thus the lemma is proved. ut

Now the uniqueness result about the refractive index n is presented in the
following.

Theorem 4. Assume that Γ and ∂D are given, k2 is not the Neumann eigen-
value of the equation ∆u+ k2nu = 0 in D. Then the refractive index n can be
uniquely determined by the far field pattern u∞(x̂, d), for x̂, d ∈ S.

Proof. Uhlmann [26] has proved that u1u2 is complete in L2(D). So the
theorem can be obtained by Lemma 3.3. ut

4 The Linear Sampling Method

In this part, we will adapt the linear sampling method developed for scattering
from objects with nonempty interior to solve the inverse problem, that is to
determine the location and shape of the crack and the compact support D of
the penetrable inhomogeneous medium and give a mathematical justification
of the method. We start with some preparations and introduction.
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We rewrite the problem (2.1) as
∆u+ k2(1 + q)u = k2 q√

|q|
h̃ in R3\Γ̄ ,

u+ = f, ∂u−
∂ν + iλu− = g on Γ,

limr→∞ r(∂u∂r − iku) = 0, r = |x|

(4.1)

with h̃ ∈ Xq(D) which will be defined in the following paragraph, f ∈ H 1
2 (Γ )

and g ∈ H− 1
2 (Γ ). Notice that the problem (1.1) and (1.2) is the special case

of (4.1) with boundary data f = −ui and g = −∂u
i

∂ν − iλu
i on Γ and source

term h̃ = −
√
|q|ui in D.

A Herglotz wave function is a solution of the Helmholtz equation in R3 of
the form

vσ =

∫
S

eikx·dσ(d)ds(d)

with density σ ∈ L2(S). As an auxiliary operator, we define H : L2(S) →
H∗ := Xq(D)×H1/2(Γ )×H−1/2(Γ ) by

Hπ =
(√
|q|vσ|D , v+

σ |Γ ,
(∂vσ
∂ν

+ iλv−σ

)∣∣∣
Γ

)
,

where v±σ (x) = limh→0 vσ(x± hν) for x ∈ Γ ,
∂v±σ
∂ν = limh→0 ν · ∇vσ(x± hν) for

x ∈ Γ , and Xq(D) :=
√
|q|X̄, X̄ is the closure of the set of the Herglotz wave

functions in L2(D).
We define the data-to-pattern operator B : H∗ → L2(S) by

B(h̃, f, g)(x̂) = u∞,

where u∞ is the far field pattern of the scattered field u of problem (4.1) with
data (h̃, f, g) ∈ H∗. The far field operator F : L2(S)→ L2(S) is defined by

(Fσ)(x̂) =

∫
S

u∞(x̂, d)σ(d)ds(d), (4.2)

where u∞ is the far field pattern of the scattered wave us of problem (1.1)
and (1.2) for incident plane wave ui. By superposition we have the following
relation: (Fσ) = −B(Hσ).

Remark. For the inverse scattering problems by obstacles, the right hand side of
the far field equation is usually chosen as a point source or its far field pattern.
For some special scatterer, taking the crack as an example, one usually chooses
an integral on some open arc as the right hand side of the far field equation. We
are inspired by the latter and will prove that it is valid for the linear sampling
method.

The linear sampling method looks for a solution σ ∈ L2(S) of the far field
equation

(F )(σ)(x̂) = Q∞(x̂) for σ ∈ L2(S), x̂ ∈ S, (4.3)
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where Q∞(x̂) ∈ L2(S) is the far field pattern of the potential Q(x) defined by

Q(x) =

∫
Σ

∣∣q(y)
∣∣δΣ(y)Φ(x, y)ds(y) +

∫
L

αL(y)Φ(x, y)ds(y)

+

∫
L

βL(y)
∂Φ(x, y)

∂ν(y)
ds(y) (4.4)

with δΣ ∈ X̄(Σ) for any open bounded domain Σ with smooth boundary, and
αL ∈ H̃−1/2(L) and βL ∈ H̃1/2(L) for any smooth non intersecting open arc
L such that L ∩ Σ = ∅. We will characterize the mixed-type scatterer by the
behavior of an approximate solution σ of the far field equation (4.3).

We now define the compact operator F : H := Xq(D) × H̃−1/2(Γ ) ×
H̃1/2(Γ )→ L2(S) by

F(δ, α, β)(x̂) = γ

∫
D

∣∣q(y)
∣∣δ(y)e−ikx̂·yds(y) + γ

∫
Γ

α(y)e−ikx̂·yds(y)

+ γ

∫
Γ

β(y)
∂e−ikx̂·y

∂ν(y)
ds(y), x̂ ∈ S

with densities δ ∈ X̄(D), α ∈ H̃−1/2(Γ ) and β ∈ H̃1/2(Γ ) and the constant
γ = 1

4π . The function F(δ, α, β)(x̂) is the far field pattern of the radiating
solution P (δ, α, β)(x) of the Helmholtz equation in R3\Γ̄ where P (δ, α, β) is
defined by

P (δ, α, β)(x) =

∫
D

∣∣q(y)
∣∣δ(y)Φ(x, y)ds(y) +

∫
Γ

α(y)Φ(x, y)ds(y)

+

∫
Γ

β(y)
∂Φ(x, y)

∂ν(y)
ds(y).

For latter use, we define the operators S, K, K ′, T and V as

Sϕ(x) =

∫
Γ

ϕ(y)Φ(x, y)ds(y), Kϕ(x) =

∫
Γ

ϕ(y)
Φ(x, y)

∂ν(y)
ds(y), x ∈ Γ,

K ′ϕ(x) =

∫
Γ

ϕ(y)
∂Φ(x, y)

∂ν(x)
ds(y), V φ(x) =

∫
D

∣∣q(y)
∣∣φ(y)Φ(x, y)ds(y), x ∈ Γ,

Tϕ(x) =
∂

∂ν(x)

∫
Γ

ϕ(y)
∂Φ(x, y)

∂ν(y)
ds(y), x ∈ Γ.

For the mapping properties of these potentials see [4].
It is easy to check that P is a radiation solution of the following problem:

∆P + k2(1 + q)P = k2 q√
|q|

(√
|q|P − |q|

3/2

k2q
δ
)

in R3\Γ̄ , (4.5)

P+ = V δ + Sα+Kβ +
1

2
β on Γ,

∂P−
∂ν

+ iλP− =
∂

∂ν
(V δ) +K ′α+

1

2
α+ Tβ

+ iλ
(
V δ + Sα+Kβ − 1

2
β
)

on Γ.
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We set h̃1

f1

g1

 = M

δα
β

 = EM ′

δα
β

+

√|q|P0
0

 ,

where

E =

I 0 0
0 I 0
0 iλI −I

 M ′ =

−
|q|3/2
k2q 0 0

V S K + 1
2I

− ∂
∂νV −K ′ − 1

2I −T + iλI

 .

Then, F(x̂) = B(h̃1, f1, g1)(x̂) = BM(δ, α, β). By using the analogous idea in
Chapter 8 [4], we can show that M : H → H∗ is bounded with a bounded
inverse M−1. So the far field operator can be factorized as

(Fσ) = −FM−1Hσ, σ ∈ L2(S). (4.6)

To prove the existence of an approximate solution of (4.3), we first explore
the properties of the operator H and F . To this end we have to exclude the
case that k2 is the eigenvalue of an eigenvalue problem.

Definition 1. k2 is called an interior transmission eigenvalue if there exists
(u,w) ∈ H1

0 (D) × L2(D, |q|dx) with (u,w) 6= (0, 0) and a sequence {wj} in
H2(D) with wj → w in L2(D, |q|dx) and ∆wj + k2wj = 0 in D and∫

D

[
∇u · ∇ψ − k2uψ

]
dx =

∫
D

|q|wψdx for all ψ ∈ H1(D).

The weighted space L2(D, |q|dx) is defined as the completion of L2(D) with
respect to the norm corresponding to the inner product (φ, ϕ)L2(D,|q|dx) =∫
D
|q|φϕ̄dx.

Lemma 5. Assume that k2 is not the interior transmission eigenvalue in D,
then the range of the operator H : L2(S)→ H∗ is dense.

Proof. It is sufficient to show that the adjoint operator H∗ : H → L2(S) is
injective.

In order to characterize the adjoint operator we recall that H∗ is defined by〈
Hσ,

(√
|q|δ, α, β

)〉
=
〈
σ,H∗

(√
|q|δ, α, β

)〉
for σ ∈ L2(S) and (

√
|q|δ, α, β) ∈ H with δ ∈ X̄(D), α ∈ H̃−1/2(Γ ) and

β ∈ H̃1/2(Γ ). Note that the left hand side is the duality pairing between
H∗ and H while the right hand side is the L2(S)-inner product. One can
easily see from the above identity by changing the order of integration that
H∗(

√
|q|δ, α, β) is given as

H∗
(√
|q|δ, α, β

)
=

∫
D

∣∣q(x)
∣∣δ(x)e−ikx·dds(x) +

∫
Γ

α(x)e−ikx·dds(x)

+

∫
Γ

β(x)
∂e−ikx·d

∂ν(x)
ds(x) + iλ

∫
Γ

β(x)e−ikx·dds(x)
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with d ∈ S. Hence H∗(
√
|q|δ, α, β) coincides with the far field pattern of the

potential

γ−1W (z) =

∫
D

∣∣q(x)
∣∣δ(x)Φ(z, x)ds(x) +

∫
Γ

α(x)Φ(z, x)ds(x)

+

∫
Γ

β(x)
∂Φ(z, x)

∂ν(x)
ds(x) + iλ

∫
Γ

β(x)Φ(z, x)ds(x), z ∈ R3\Γ̄ .

This potential W ∈ H1
loc(R

3\Γ̄ ) satisfies the Helmholtz equation (4.5) in R3\Γ̄
and the Sommerfeld radiation condition.

Now assume that H∗(
√
|q|δ, α, β) = 0. This means that the far field pattern

of W is zero, then from Rellich’s lemma we conclude that W = 0 in R3\(D̄∪Γ̄ ).
Using the jump relations of single-and double-layer potentials across Γ , we
obtain that

γβ = V+|Γ − V−|Γ = 0, γ(α+ iλβ) =
∂V−
∂ν

∣∣∣∣
Γ

− ∂V+

∂ν

∣∣∣∣
Γ

= 0.

Hence α = 0 and β = 0.
Since δ ∈ X̄(D), there exists Herglotz wave functions hj , such that hj → δ.

Notice that hj satisfies the Helmholtz equation ∆hj + k2hj = 0 in R3. We set

W̃ = δ, then (W, W̃ ) satisfies the condition of being an eigenvalue in the sense
of definition 4.1 from the fact that

∆W + k2W = −|q|δ, in R3\Γ̄ .

From the assumption we conclude that (W, W̃ ) has to vanish and therefor also δ.
Thus H∗ is injective and the lemma is proven. ut

Lemma 6. If k2 is not the interior transmission eigenvalue of the domain D,
then the operator F : H → L2(S) is injective and has dense range.

Proof. Note the fact that F(δ, α, β)(x̂) is the far field pattern of P (δ, α, β)(x)
for (

√
|q|δ, α, β) ∈ H. The injection of the operator F can be obtained as the

derivation of H.
Note that the transpose operator F∗ : L2(S)→ H∗ is given by

(
γ−1F∗σ

)
(y) =


√
|q|vσ on D,

v+
σ on Γ,

∂v−σ
∂ν(y) on Γ.

(4.7)

It is enough to show that F∗ is injective. But F∗σ = (0, 0, 0) implies that there
exists a Herglotz wave function with vσ|Γ = 0 and ∂vσ

∂ν |Γ = 0 (note that the
limit of vσ and its normal derivative from both sides of the crack is the same).
From the analyticity of vσ, we have that vσ = 0 in R3 and therefor σ = 0. This
proves the lemma. ut

Remark. We can not prove the injectivity of H∗ and F in the space L2(D) ×
H̃−1/2(Γ )× H̃1/2(Γ ), this is why we choose the space Xq(D) instead of L2(D),

furthermore, the problem (4.1) is well-posedness for h̃ ∈ Xq(D).
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The next lemma helps us to explain why we select Q∞ which is the far field
pattern of the potential Q(x) defined by (4.4) as the right hand side of the far
field equation.

Lemma 7. For any open bounded domain Σ with smooth boundary and for
any smooth non intersecting open arc L without cups such that L̄ ∩ Σ̄ = ∅, let
functions δΣ ∈ X̄(Σ), αL ∈ H̃−1/2(L) and βL ∈ H̃1/2(L), then Q∞(x̂) ∈ L2(S)
defined by

Q∞(x̂) = γ

∫
Σ

∣∣q(y)
∣∣δΣ(y)e−ikx̂·yds(y) + γ

∫
L

αL(y)e−ikx̂·yds(y)

+ γ

∫
L

βL(y)
∂e−ikx̂·y

∂ν(y)
ds(y), x̂ ∈ S

is in the range of R(F) if and only if L ⊂ Γ and Σ ∩D 6= ∅.

Proof. First assume that L ⊂ Γ and Σ ∩D 6= ∅. Since q = 0 outside D, the
first integral term indeed integrates on Σ ∩D. Note that X̄(Σ ∩D) ⊂ X̄(D)
together with H̃±1/2(L) ⊂ H̃±1/2(Γ ), it follows from the definition of F that
Q∞ ∈ R(F).

Now we assume that at least one of the conditions: L ⊂ Γ , Σ ∩D 6= ∅ is
not satisfied. There are three situations, here we just prove the lemma under
the assumption L ⊂ Γ , Σ ∩ D = ∅. In such a case, and on the contrary if
Q∞ ∈ R(F), i.e. there exists δ ∈ X̄(D), α ∈ H̃−1/2(Γ ) and β ∈ H̃1/2(Γ ) such
that

Q∞(x̂) = γ

∫
D

∣∣q(y)
∣∣δ(y)e−ikx̂·yds(y) + γ

∫
Γ

α(y)e−ikx̂·yds(y)

+ γ

∫
Γ

β(y)
∂e−ikx̂·y

∂ν(y)
ds(y), x̂ ∈ S.

Then by Rellich’s lemma and unique continuation principle we have that the
two potentials

Q(x) =

∫
L

αL(y)Φ(x, y)ds(y) +

∫
L

βL(y)
∂Φ(x, y)

∂ν(y)
ds(y),

P (x)=

∫
D

∣∣q(y)
∣∣δ(y)Φ(x, y)ds(y) +

∫
Γ

α(y)Φ(x, y)ds(y) +

∫
Γ

β(y)
∂Φ(x, y)

∂ν(y)
ds(y)

coincide in R3\(D̄ ∪ Σ̄ ∪ Γ̄ ).
One can see that Q is analytic in R3\Γ̄ , however P has singularity on the

boundary ∂D which is a contradiction and we prove the lemma. ut

Remark. For the case of L 6⊂ Γ and Σ ∩D 6= ∅ or L 6⊂ Γ and Σ ∩D = ∅, we
can also derive a contradiction by a similar discussion.

At this time, we can recover the mixed-type scatterer which consists of a
crack and a penetrable inhomogeneous medium by the linear sampling method
via solving the far field equation (4.3). The result for the reconstruction of the
combined scatterer is stated as following.

Math. Model. Anal., 20(3):422–442, 2015.
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Theorem 5. Assume that Γ is an oriented nonintersecting piecewise smooth
arc without cusps, ∂D is smooth and k2 is not the interior transmission eigen-
value of the domain D. Then if F which is defined by (4.2) is the far field
operator corresponding to the scattering problem (1.1) and (1.2), the following
are true:

(1) If L ⊂ Γ , Σ ∩ D 6= ∅, then for every ε > 0 there exists a solution
gεL,Σ ∈ L2(S) satisfying∥∥FgεL,Σ +Q∞

∥∥
L2(S)

< ε. (4.8)

(2) If L 6⊂ Γ or Σ ∩ D = ∅, then for every ε > 0 and ε > 0 there exists a
function gε,εL,Σ ∈ L2(S) such that∥∥Fgε,εL,Σ +Q∞

∥∥
L2(S)

< ε+ ε, lim
ε→0

∥∥gε,εL,Σ∥∥L2(S)
=∞.

Proof. If L⊂Γ , Σ∩D 6= ∅, then by Lemma 4.3, the corresponding (
√
|q|δΣ∩D,

αL, βL) is in H. Since M(δΣ∩D, αL, βL) ∈ H∗, then from Lemma 4.1, for every
ε0 > 0 there exists a function gε0L,Σ ∈ L2(S) such that∥∥M(αL, βL, δΣ)−Hgε0L,Σ

∥∥
H∗ < ε0.

Whence from the continuity of M−1∥∥(αL, βL, δΣ)−M−1Hgε0L,Σ
∥∥
H
< C1ε0

with a positive constant C1. Finally, the formula (4.6), the continuity of F and
the fact that F(αL, βL, δΣ) = Q∞ imply that∥∥FgεL,Σ +Q∞

∥∥
L2(S)

< C2ε0.

Then (4.8) is confirmed with ε = C2ε0.
Next, we assume that L 6⊂ Γ or Σ∩D = ∅. In this case, by Lemma 4.3 Q∞

is not in the range of F . But from lemma 4.2 we know that the operator F
is compact and injective with dense range in L2(S). Hence for every ε > 0 we
can construct a unique Tikhonov regularized solution (

√
|q|δρΣ , α

ρ
L, β

ρ
L) ∈ H of

equation F(α, β, δ) = Q∞, such that∥∥F(δρΣ , αρL, βρL)−Q∞∥∥L2(S)
< ε, (4.9)

where ρ is the regularization parameter (chosen by a regular regularization
strategy, e.g. the Morozov discrepancy principle). Then we have ‖(

√
|q|δρΣ ,

αρL, β
ρ
L)‖H → ∞ as ρ → 0. Now the above considerations for (δΣ , αL, βL) can

be applied to (δρΣ , α
ρ
L, β

ρ
L, ). Hence for ε1 > 0 sufficient small there exists gε1,ρL,Σ

such that ∥∥M(δρΣ , αρL, βρL)−Hgε1,ρL,Σ

∥∥
H∗ < ε1
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and ∥∥(√|q|δρΣ , αρL, βρL)−M−1Hgε1,ρL,Σ

∥∥
H
< C1ε1. (4.10)

Combining (4.9) and (4.10) we obtain that for every ε > 0 and ε > 0 there
exists a gε,ρL,Σ ∈ L2(S) such that∥∥Fgε,ρL,Σ +Q∞

∥∥
L2(S)

=
∥∥FM−1Hgε,ρL,Σ −Q

∞∥∥
L2(S)

≤
∥∥FM−1Hgε,ρL,Σ −F(δρΣ , α

ρ
L, β

ρ
L)
∥∥
L2(S)

+
∥∥F(δρΣ , αρL, βρL)−Q∞∥∥L2(S)

< ε+ ε

with ε = C1ε1. Since limε→0 ρ(ε) = 0 we have that limε→0 ‖(
√
|q|αρL,

βρL, δ
ρ
Σ)‖H → ∞. From (4.10) and the boundness of M−1 we have that

limε→0 ‖Hgε,εL,Σ‖H∗ →∞. By the definition of the operator H we have that

lim
ε→0

∥∥gε,εL,Σ∥∥L2(S)
→∞.

Then we complete the proof of this theorem. ut
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Problems, 25:123001, 2009.
http://dx.doi.org/10.1088/0266-5611/25/12/123011.

[27] J. Yang, B. Zhang and H. Zhang. Uniqueness in inverse acoustic and electro-
magnetic scattering by penetrable obstacles. Math. AP, 2013. arXiv:1305.0917

http://dx.doi.org/10.1088/0266-5611/18/6/317
http://dx.doi.org/10.1016/j.matcom.2004.02.011
http://dx.doi.org/10.1016/S0252-9602(15)30002-3
http://dx.doi.org/10.1137/130932107
http://dx.doi.org/10.1063/1.4799145
http://dx.doi.org/10.1137/090771090
http://dx.doi.org/10.1016/j.jcp.2010.02.021
http://dx.doi.org/10.1088/0266-5611/29/6/065005
http://dx.doi.org/10.1016/S0252-9602(12)60099-X
http://dx.doi.org/10.1088/0266-5611/25/12/123011

	Introduction
	The Direct Scattering Problem
	The Unique Determination of the Mixed-Type Scatterer
	The Linear Sampling Method
	References

