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Abstract

Environment understanding technology is very vital for intelligent vehicles that are ex-
pected to automatically respond to fast changing environment and dangerous situations. To
obtain perception abilities, we should automatically detect static and dynamic obstacles,
and obtain their related information, such as, locations, speed, collision/occlusion possibil-
ity, and other dynamic current/historic information. Conventional methods independently
detect individual information, which is normally noisy and not very reliable. Instead we
propose fusion-based and layered-based information-retrieval methodology to systemati-
cally detect obstacles and obtain their location/timing information for visible and infrared
sequences. The proposed obstacle detection methodologies take advantage of connection
between different information and increase the computational accuracy of obstacle infor-
mation estimation, thus improving environment understanding abilities, and driving safety.
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Chapter 1

Introduction

Under the pressure of increasing population, crowded traffic, the energy crisis, and envi-

ronment concerns, current transportation systems have run into serious challenges in the

following respects: safety, security, efficiency, mobile access, and the environment [32].

With the availability of faster computers, better sensor technology, and wider coverage of

wireless communication network, Intelligent Transportation Systems (ITS) are gradually

being seen as a crucial innovation that can satisfy the above needs. New ITS technologies

will help to provide seamless, end-to-end inter-model travel for passengers and freight, to

offer better transportation modes, to increase reliability and safety, and to contribute to the

improvement of the environment. In this chapter we will discuss current transportation

challenges, current ITS products, future research status, and the tasks we would like to

address in this thesis.

1.1 The Challenges of Current Transportation Systems

Safety has always been the top priority and is one of most challenging issues. According to

the National Highway Traffic Safety Administration (NHTSA) in US (Traffic Safety Facts

2008) [71], more than 5.8 million police-reported motor vehicle crashes occurred in the

United States in 2008, leading to 26,689 death and 2.12 million people injured.

Collision with other moving vehicles is the most common cause of fatal injury, and



property-damage-only crashes. It is reported by NHTSA 1 that "Collisions with fixed ob-

jects and non-collisions accounted for only 19 percent of all crashes, but they accounted

for 44 percent of fatal crashes." As shown in Figure( 1-1), the cost of traffic accident is

very high. The economic cost of these crashes is estimated around $164 billion annually,

including property damages, lost earnings, medical costs, emergency services, legal costs

and travel delays[70]. Around 75 percent of vehicular crashes are caused by inattentive

drivers [69].

18
Hospitalized

400
Require medical care

Figure 1-1: Distribution of cost for traffic accidents. For each death, 18 people are hospi-
talized and 400 are medically attended injuries[70]

Furthermore, age-related decreases in vision, cognitive functions, and physical impair-

ments affect the driving ability of senior drivers(Owsley 1999). A 50-year-old driver needs

twice as much light to see as does a 30-year-old driver[31]. The fatality rate for seniors is

17 times as high as the 25-65 age group[72]. There is an increase of the number of senior

drivers who have difficulties in driving. According to the U.S. Census Bureau, in 1994 one

out of every eight Americans was age 65 or older. In 2050, one out of every five Ameri-

cans will be over aged 65[73]. According to NHTSA data, in 2008, US senior population

(over age 65) is around 34 million [72]. There were over 31 million older licensed drivers

in 2007, around 15 percent of all licensed drivers in 2007, compared with 14 percent in

1997[72]. Between 1997 and 2007, the increase of licensed senior drivers is 19-percent in

contrast to 13-percent for total drivers[72].

While transportation systems should prevent accidents and/or decrease the loss and in-

juries involved in accidents, the transportation system development also needs to increase

'http://www.asse.org/Newsroom/naosh07/docs/transstatistics.pdf



the national security to avoid unexpected situation such as the 9.11 event. Besides, the

focus of transportation system development has been expanded to include making better

use of existing systems as well as new construction (such as highways, railroads, etc.) [32].

New technologies are expected to reconfigure, refine, or expand the current transportation

infrastructure in order to increase transportation speeds, ease congestion, and increase the

efficiency of existing transportation systems[32]. Finally, mobility and information acces-

sibility are attracting people's attention with the advent of the new Internet age. Energy,

pollution control, and environment issues are also of concem[32].

In summary, human driving errors lead to dangerous outcomes and driving safety be-

comes more and more challenging for aging drivers and the whole society. At the same

time, new issues always emerge to challenge current transportation systems.

1.2 Intelligent Transportation Systems

In general, Intelligent Transportation Systems (ITS) are seen as viable solutions to address

the challenges in today as well as future transportation systems. ITS consists of the follow-

ing three key components with different priorities among different countries [32]:

" Transportation infrastructures and facilities[321

ITS is expected to integrate all three essential components of transportation systems,

people, road and vehicles, into a seamless information/physical infrastructure[32].

These elements should be integrated, performance-oriented, driven by customer needs,

and should be managed and controlled under all circumstances[32].

" High-quality, high-relevance information[32]

With the integration of vehicle and infrastructure for all ITS customers, advanced

transportation management systems are needed to effectively manage the relation-

ship between infrastructure and vehicles, and to process relevant information and

structures. High-quality and high-relevance information, such as, destination/routing

information, real-time road information, and weather information, can be relayed to



drivers and other interested parties so that quick responses are possible during crisis

situations, and efficient management can be achieved in normal circumstances.

* In-vehicle technologies

Safe, well-integrated in-vehicle technologies, such as, damage mitigating technolo-

gies, selective automatic enforcement, active driver assistance systems, are expected

to increase the safety and the efficiency of all types of vehicles. Collision avoidance

technologies in particular attract lots of attention.

The third component, Reliable Collision Avoidance Technologies, is the focus of this

thesis. We will first discuss the expectation and challenges for the collision avoidance

technologies in Section 1.3, and then propose our fusion-based and layer-based scheme to

obtain obstacle information in Section 1.4. For the sake of completeness, we briefly discuss

the first two key components of ITS, the Integrated Information/Physical Infrastructure and

Advanced Transportation Management later in this chapter.

1.3 Expectation on and Challenges of Reliable Collision

Avoidance Technologies

1.3.1 The status of current safety enhancement research

Since 1980, researchers have been working on technologies to enhance vehicle safety and

driver comfort as summarized in [69]. Early research focused on improving the capabilities

of vehicles, such as electronic fuel injection, TUFFUP tire technology for motorcycles,

air pressure monitors, and cruise control, etc. Current research can be categorized into

the following three categories: 1) damage mitigation when crashes happen, 2) selective

automatic enforcement, 3) enhancement of drivers' judgment,

Damage mitigating technologies are expected to mitigate damages and to reduce po-

tential injuries when accident/crashes are unavoidable. Such in-vehicle technologies in-

clude antilock braking systems, injury reduction bumpers, occupant protection/advanced

air-bags, etc. The technologies can be considered as passive safety systems.



Selective Automatic Enforcement is developed for some critical situations since drivers

might make mistakes even if they realize potential danger. There are many possibilities

for automated processes. It is important to first do research on drivers' behavior in order

to clarify how much a vehicle can do autonomously, and how much the infrastructure can

do for the vehicle. Furthermore, driver qualification systems can automatically determine

driver fitness to enhance security and safety. Some systems prevent accidents by compen-

sating for at least some driver errors, for example, Collision velocity reduction systems,

Rollover stability warning and control systems, Cornering Speed Regulation System.

Active driver assistance systems that aim to enhance the drivers' visual ability and to de-

tect potential danger are the major focus of most ITS research due to the social acceptance

and the reliability limitation of current safety techniques. Typical products include adap-

tive headlamps, blind spot monitoring, autonomous cruise control, lane departure warning,

driver drowsiness alert, night vision, etc [78]. Since most police-report crashes are caused

by driver mistakes, it is very important to automatically warn of the presence of pedes-

trians and motorcycles, and to compensate for recognition and judgment errors. Because

of the importance, we will devote the next subsection to discuss how "active driver assis-

tance systems" enhance drivers' visual ability and judgment in urgent and normal driving

situations.

1.3.2 Active driver Assistance Systems

Since it is hard to enhance drivers' vision and judgment in all circumstances, ITS technolo-

gies first focus on the most dangerous situations and design specific systems to eliminate

the most common collisions. Furthermore, information from the integrated infrastructure

can also help to reduce collisions. The active driver assistance systems can be roughly

classified into the following three categories, Crash-based Vision Enhancement & Warning

Systems, General Vision Enhancement Systems, and Infrastructure-assisted Hazard Warn-

ing. The sensors involved are radar, infrared cameras, visible cameras, and navigation

systems. Warning signal delivery mechanisms will include head-up displays, voice, and

mechanical stimulation.



Crash-based Vision Enhancement & Warning Systems

Eighty percent of police reports [32] cited driver errors as the primary cause of vehicle

crashes. It is estimated that 60% crashes at intersections and about 30% head-on collisions

could be avoided if drivers had an extra half-second to respond [77]. To reduce the most

common types of collisions, specific systems are designed as shown below in order to alert

drivers in the most life-threatening situations.

1. Rear-end collisions

It is expected that the distance of obstacles in front of the vehicle will be detected

so that Adaptive Cruise Control (ACC) devices can adjust speed to maintain safe

distances. Currently available ACC systems from different companies use different

obstacle detection sensors. Subaru uses camera-based sensors; Toyota uses laser-

based sensors; and Mercedes-Benz uses radar-based sensors. Sometimes, special

pedestrian detection systems will be needed to ensure safety.

2. Roadway departure crashes

Lane departure avoidance systems help to keep vehicles within lanes and provide

warning signals to drivers whenever there is dangerous roadway departure detected

by lane marker recognition systems. Lane departure warning systems are commer-

cially available from many companies. For example, Iteris AutoVue lane departure

warning system which emit distinctive rumble strip sounds as warning signals. Lane

Keeping Support (LKS) and the Lane Departure Avoidance (LDA) from Nissan are

designed for monotonous driving, and they only operate on "straight-ish roads" 1 and

above a minimum defined speed. The LDA system can reduce road departure crashes

through a vibrating steering wheel, audible warnings, and some degree of control.

3. Intersection collisions

Infrastructure support, such as advanced traffic signs and signals, can be used to

minimize intersection collisions. For example, vehicles will be able to receive signals

'Roads with curvatures more than 1000m.



from smart traffic lights that alert individual drivers to the possibility of collision with

other vehicles, the approach of a red-light runner, or the presence of a pedestrian.

4. Lane change or merge crashes

The side-rear warning systems can monitor the speed and location of nearby vehicles

to advise drivers of potential collisions.

General Vision Enhancement Systems

Though it is hard to enhance drivers' vision and judgment in all circumstances, there are

many technologies that can provide drivers better visual information and enhance safety in

normal driving situations. These techniques are discussed below.

"Indirect Visual Field Systems" offer object information from nose-view, side-view and

rear-view to drivers. For example, if drivers are provided an aerial view of the vehicle and

surrounding area, the parking process will be more convenient. For Parking Assistant Sys-

tems in Japan, a virtual image viewed from an arbitrary angle is synthesized from multiple

images taken from cameras mounted on vehicles in order to extend vision.

Night vision offers drivers a better view of what lies ahead at night. The extra vi-

sion extends three-to-five times the range of low-beam headlights and doubles the range

of high-beam headlights. At 60 miles per hour, normal headlights provide a driver about

3.5 seconds to react to an object ahead. With Night Vision, the driver will have up to 15

seconds to react. The system also can help drivers see beyond the headlight glare from

oncoming vehicles.

Since accidents are more likely to happen in bad weather or lighting conditions, sensors

that work in these situations are especially needed. New headlight technologies will offer

better views for drivers by improving lighting situations. Possible new headlights include

active headlights (self-aiming headlights) and light distribution control headlights. Better

cameras with wide dynamic range can provide higher quality images. A new imaging

sensor was developed at MIT [26] to implement a novel brightness adaptive algorithm,

which significantly improves the imaging performance.



Infrastructure-assisted Hazard Warning

In-vehicle devices alone only offer limited warning ability. Integrated information systems

can help to offer more reliable and faster warning signals. The information exchange be-

tween in-vehicle sensors and infrastructure can enhance the performance of the sensors,

while communication networks help vehicles to be actively connected with ITS infrastruc-

ture. The possible examples include road surface monitors, curve warning systems, coop-

erative intersection decision support systems, highway-rail intersection warnings and crash

avoidance systems, blind side collision avoidance systems through cross-traffic vehicle in-

formation, on-board diagnostic systems for roadside inspection, etc. Different from crash-

based vision enhancement and warning systems whose purpose is to develop in-vehicle

devices to detect potential collisions and to provide in-time warning, the current system

provides drivers with relevant information from infrastructure to enhance their vigilance

and safety. There might not be any real potential collision.

1.3.3 Development of Auto Electronics

It is estimated that implementing collision-avoidance systems in vehicles could prevent 1.1

million accidents in US each year - 17 percent of all traffic accidents, which could save

17,500 lives (compared to the 10,500 lives saved by seatbelts and airbags) and $26 billion

in accident-related costs [69].

Besides these above safety enhancement in-vehicle electronics, information products

and diagnostic prognostic products are also developed. These technologies focus on ac-

cident prevention based on information, communication, and sensing technologies while

conventional safety measures aimed at protection during a crash. The development of bet-

ter in-vehicle electronics and the full cooperation between the vehicle and infrastructure

significantly improves transportation situations.

The demand for in-car electronic products is increasing. Actually around 35 percent of

the cost of car assembly comes from electronics[74]. According to Strategy Analytics, the

market for automotive grade semiconductors in 2006 will reach $18 billion, a year-to-year

growth of 10 percent. Revenues in the U.S. will be $29 billion by 2013[74]. Additional



vehicle networking will create an annual volume compound growth rate for semiconductor

bus transceiver chips of 16 percent, resulting in a market worth $1 billion per year in 2014.

However these above systems are far behind the drivers' need.

1.3.4 Cooperated Sensors and Automatic Environment Understand-

ing

The current phase of ITS technologies is to develop individual ITS components to detect the

static and dynamic information about driving environment. The static information includes:

location, obstacle/foreground at different distance ranges, etc. The dynamic information

includes: speed, time-to-contact, possible cross over or occlusion, obstacle/foreground at

different time-to-contact range, collision/occlusion possibility, and other current/historical

information, etc. Current methods independently detect individual piece of information,

which lead to many independent in-vehicle sensor devices. However, all dynamic and static

obstacle information should be integrated to provide an accurate description of current

driving environment, such as, are there any obstacles (pedestrian, vehicles, etc.)? Where

are they in the camera? How far away? Whether and when will the current vehicle run

into these obstacles? In order to aid drivers, we need a highly coordinated and integrated

system that will work cooperatively with drivers [69] to provide obstacle information.

The infusion of the uncoordinated in-vehicle devices may overwhelm drivers, disturb

drivers' attention & alertness, thus may degrade driving safety and performance[69]. As

a matter of fact, the safety devices may become safety hazards themselves. Furthermore,

civil engineers and electronic engineers also focus on different aspects of ITS systems.

Civil engineers pay more attention to the systematic traffic design in order to improve the

ITS performance, while electrical engineers pay more attention to component technologies

on enhancing individual abilities of sensors.

In order to avoid the above extreme situations and to help drivers to respond better to

fast changing environment and dangerous situations, system level research is required to

balance the requirements for individual sensors. All safety-enhanced devices should be

coordinated within a framework to manage & display information in order to develop a



balanced approach to ITS systems. Such integrated systems can help to decrease the heavy

computational load required for individual algorithms. At the same time, the research on

component technology will offer more feasibility for system management.

In this thesis we are proposing fusion-based and layer-based schemes to systematically

detect and combine obstacle information. The additional information from other sensors

helps to simplify original individual complicated task. Such integrated systems can enhance

the overall performance, reliability, and robustness in order to meet the ITS requirements.

1.4 Fusion-based and Layer-based Scheme to Obtain Ob-

stacle Information

Sensor fusion is a common technology to improve the detection performance by combining

information from different resources. The technology can be divided into three categories:

feature-level fusion, data-level fusion, and decision-level fusion[75] [76]. Feature-level fu-

sion takes advantage of specific information from one sensor and design special algorithms

to incorporate the additional information in another sensor's process. Data-level fusion

combines raw data in similar format from different resources statistically, for example,

through voting technique, Bayesian, and Dempster Shafer, etc. Decision-level fusion takes

all sensors' decision (after individual's process) into account when making final decisions

at a higher level.

Our proposed framework, shown in Figure (1-2) (a), employs two principles: the princi-

ple of fusion techniques, and the principle of layered techniques or divide and conquer. Our

fusion belongs to feature-level fusion category. In our framework, information obtained

from other detectors/algorithms is incorporated into the segmentation process to match

corresponding obstacles' information, which improves detection performance. Instead of

separately estimating static/dynamic information, including distance ranges, segmentation,

motion, and classification features, our scheme makes use of the physical connections

among these features. Additional information such as distance, motion, and dynamic his-

tory can all be used to enhance the segmentation accuracy. The additional information can



be of low quality, yet they can improve overall performance [96] [97] [100] [101]. Further-

more, the accurate segmentation information can be used to improve the detection accuracy

of these fused information and other timing information, such as, time to contact.

Our scheme is not only fusion-based but also layer-based. With the additional infor-

mation, a complex task can be divided into several simple ones. Extra information helps

to split one complex task into several simple tasks in different layers, which are easier

to solve than the complex one. Different signal combinations in Figure (1-2) (a) lead to

different applications as highlighted by different color shading blocks.

The first application, shown in Figure (1-2) (b), is target detection and 3D segmentation

which detects obstacles at different distance ranges and provides complete 3D information

for the road situation [96] [97] [99]. The segmentation scheme incorporates both distance

range and motion information to improve obstacle segmentation performance. Our method

does not assume objects' shape and size, which means our method has a wide range of

applications. Detailed discussion will be in Chapter 2 and Chapter 3.

The second application, shown in Figure (1-2) (c), is a pedestrian segmentation/identification

scheme for infrared images. The scheme takes advantage of classification features to en-

hance segmentation accuracy for infrared images [1001, which is to be discussed in Chap-

ter 4.

The third application, shown in Figure (1-2) (d), is to incorporate historical informa-

tion or predicted information from a dynamic model into segmentation process in order to

understand complicated scenario and to obtain time-to-contact information for obstacles.

This application is to be discussed in Chapter 5 and Chapter 6.

In summary, the essence of the framework is to convert a complex segmentation task

into several simple ones so that the time-consuming full-image search can be avoided.

Before we present the details of our proposed framework in different chapters for the rest of

the thesis, we would like to first discuss briefly the two other important ITS components in

order to demonstrate the big picture of ITS and the role of collision avoidance technologies.



1.5 Other ITS Components

After presenting the current status, the demanding requirements of collision avoidance

technology, and our proposed fusion-based and layer-based scheme, we would like to de-

scribe briefly the other two important ITS components, the Integrated Information/Physical

Infrastructure and Advanced Transportation Management. Since ITS has not only tech-

nology components but also social aspects, we will touch upon social acceptance of ITS

deployment and discuss the current deployment of ITS in different countries with different

priorities at the very end of this section.

1.5.1 An Integrated Information/Physical Infrastructure[32]

The infrastructure of transportation includes the physical infrastructure, people, road and

vehicles, as well as an electronic information infrastructure[32]. The integration of physi-

cal and information infrastructure serves as the supporting platform in order to detect and

respond to emergencies and to maximize efficiency and utilization[32]. It is expected to

provide full coordination among urban buses, rail transit, railway, highway and arterial

systems[32]. Such seamless integration not only improves the transportation infrastruc-

ture and in-vehicle devices, but also provides effective traffic management and information

services.

Transportation related information should be available on all types of media[32]. Re-

lated information includes online mapping, driving directions, en-route variable message

signs and kiosks, and personal subscription services, as well as real-time information for

pre-trip planning, ride-sharing and en-route modifications, and current and expected con-

ditions for all relevant modes. Furthermore, vehicles' operators should be provided with

tailored weather information and its impacts. There should be new tools for data collec-

tion, storage and analysis. Probe-car system is a new data collection method, in which

several vehicles act as moving sensors to collect real-time traffic information. Because of

privacy concerns, drivers may have concern about providing probe-car data while awaiting

traffic information from ITS centers. However, the centers need probe-car data for traffic

management. "Traffic Information Exchange Market" Projects at MIT [26] introduced a



traffic information exchange market to solve the puzzle where third parties are expected to

gather/exchange traffic information and prices will be adjusted by market mechanisms.

Today, Telematics is one of important in-vehicle products as part of the integrated in-

formation network. Telematics refers to the consumer products, services, and supporting

systems that deliver information, communications, and entertainment to in-vehicle and mo-

bile devices. Several automobile companies provide telematics products and have offered

communication network services in different levels.

For example, for Onstar system, developed at GM, Safe & Sound plan provides safety

and security assistance, and Directions & Connections Plan provides directions, guidance

and assistance. ATX (Ford) system automatically notifies emergency operators if an airbag

is deployed and provides 24-hour emergency assistance and route guidance. Also, Lincoln

VCS are equipped with three buttons, "SOS," "i," and "Phone," for emergency services

and Roadside Assistance, route assistance and points-of-interest, and hands-free calling

and information services. Toyota's G-Book service allows drivers to probe Communica-

tion Traffic Information based on membership-based information system GAZOO and uses

data from other vehicles equipped with G-BOOK to provide the drivers with highly pre-

cise information on traffic congestion. G-BOOK provides Map-on-Demand features for

automatically delivering differential map data to car navigation systems, which creates an

user-friendly and comprehensive telematics service.

Spatial geo-location/routing technologies can help to track movement so that Electronic

Maps and Video Surveillance can be generated. To provide useful visual information, vi-

sion sensors are needed for traffic and accident monitoring, environment understanding.

Right now, traffic image information transmission based on compression/decompression

is limited by communication bandwidth. Image transportation is costly yet the compres-

sion/decompression process is slow. To address this issue, "Image Sensor Network" Projects

at MIT [27] [26] developed a technique called "object recognition without decompression."

This technique increases processing speed while decreasing bandwidth requirement. Mo-

bile agents associated with this technique tailor the transmission mode based on users'

goals, and will help to reduce the number of images transmitted and decrease the response

time for ITS infrastructure.



1.5.2 Advanced Transportation Management[32]

By providing the related information to operators and users, ITS can enhance management

and operations of existing highways, public transportation, and railroad infrastructure. It

will help to ease congestion, respond to crises, reduce energy consumption, and increase

the effective capacity of systems. The focus of transportation system development has

been expanded to include performance-oriented operations as well as new construction.

There are three basic modes of advanced transportation management, including Advanced

Monitoring and Supervision Systems, Advanced Emergency Response Technologies and

Advanced Automation Systems.

Advanced Monitoring and Supervision Systems [32]

The focus of these systems is on direct management of the infrastructure and the commu-

nication of useful information to travelers and vehicles. Important functions involved are

"Area-wide surveillance and detection," "rapid acquisition and evaluation of traffic flow

data," and "operational responses to traffic flow changes."

Advanced Emergency Response Technologies [32]

Another measurement to improve safety is enhance the ability of incident detection and fast

response to emergency when crashes do occur. It is expected that the traffic environment

will not deteriorate due to traffic accidents. This ability is important in cases of national

crisis.

Timely incident notification needs to automatically detect the crises (severity, precise

location) and to quickly provide related information, such as suitable hospitals based on

the degree of the injuries, and routing to these locations. When necessary, integrated infor-

mation infrastructure has the ability to offer emergency medical services through real-time

voice, visual and data communication. One example is the Fast Emergency Vehicle Preemp-

tion Systems (FAST) developed in Japan. FAST can prioritize signal control and provide

optimum routes for emergency vehicles. Infrared beacons close to traffic lights can identify

emergency vehicles through their vehicle IDs from in-vehicle units. When emergent situa-



tion happens, the Traffic Control Center quickly designs optimal route and controls related

traffic lights based on vehicle ID. Thus, emergency vehicles can follow the shortest routes

without stopping at intersections and process emergencies as early as possible in order to

reduce injuries and increase efficiency.

Advanced Automation Systems[32]

When the infrastructure and vehicles communicate and interact, the Cooperative Vehicle-

Highway Automation Systems (CVHAS) are expected to automate all or part of driving

tasks for individual vehicles and to safely increase the capacity and flow of existing infras-

tructure. Typical automatic technologies include weigh-in-motion technology, automatic

vehicle content check-up, electronic payment for transport, mobile Internet and public

transport, automatic vehicle locations and other vehicle remote control technologies. It

is also important to automatically check the identity and fitness of drivers through security

systems. These systems need cooperation across jurisdiction.

For example, Electronic Toll Collections(ETC) deploy various communications and

electronic technologies to support the automated collection of payment at tollbooths. Col-

lectively, these technologies increase system throughput, improve customer service, en-

hance safety, and reduce environmental impacts. The first generation of electronic toll

collection has been completed. The next stage is to develop ETC into an instrument of

public travel policy and transportation management. It can also be the basis for a wide

variety of modest-sized electronic payments. In Europe, Smart Card technology provides

safe electronic payment for transport, mobile Internet, public transport, and so on. It can

be the base for dynamic road pricing.

It is noticed that ITS users value change with elapsed time and sudden changes in net-

work load. Based on a bidding function concept, an auction mechanism can help to resolve

competition for network resources among individuals utilizing communication networks

for ITS, which is proposed in Auction and Bidding Algorithms for Resolving Network Re-

source Competition Projects at MIT [28]

Several other important ITS elements include: precision docking of public transporta-

tion vehicles, dedicated lanes for automated trucks, automatic guidance of snow removal



and other maintenance, and fully automated passenger vehicles in the future. For example,

Intelligent Multimode Transit System(IMTS) is a new-concept bus system developed by

Toyota. On dedicated inter-city roads, buses run automatically. On normal roads, the buses

are operated manually.

1.5.3 ITS Deployment

Unlike other techniques, ITS depends heavily on social acceptance. The development and

deployment of ITS are strongly connected to many non-technical factors, such as the culture

of transportation system management and operations, the roles and funding of the public

sectors, government policies and initiative to encourage the private sectors' involvement

and other human factors [32].

Successful deployment of ITS technology depends on the effort from both technical

progress and social acceptance promotion, including forging new forms of cooperation

within and among the public sectors at all levels and the private sector in its broadest sense.

Development steps should focus on both pure technical ITS challenges and social accep-

tance in order to successfully achieve the ITS vision. Transition processes from the present

situation to the targeted system architecture, and the proposal of deployment processes, will

also be of great importance. It is necessary to clarify the goals, the obstacles to the goal

realization, and the means of deployment and then to decide on the necessary infrastructure

to build up. In the remaining section, we will discuss ITS deployment in US and Europe.

USA ITS Deployment [32]

The Model Deployment Initiative (MDI) was initiated by the U.S. Department of Trans-

portation (DOT) in 1996. MDI was designed to bring increased levels of service to the

traveling public through the integration of several key systems: traffic signal control; tran-

sit, freeway, and incident management; emergency services management; regional, multi-

modal traveler information services; and electronic toll collection and fare payment. MDI

helps to evaluate the benefits of integrating ITI infrastructure in a metropolitan area. Phoenix

(AZtech), Seattle (SmarTrek), San Antonio (TransGuide), and New York City/New Jer-



sey/Connecticut (iTravel) were selected as MDI test sites, with different focuses, including:

- Enhancing traffic and transit management operations and developing an extensive

traveler information system.

- Enhancing traffic management and emergency response operations and creating a

comprehensive traveler information system.

- Implementing an innovative emergency medical services management system, en-

hancing traffic management operations and creating a multi-modal traveler information

system.

- Developing a highly integrated, multi-modal traveler information system.

The MDI Program has allowed the sites to deploy and integrate several ITS systems.

Although the MDI program is nearly complete, all sites have funded future system expan-

sions and enhancements.

At the beginning of 2001, the Intelligent Transportation Society of America proposed

a ten-year development vision, National Intelligent Transportation Systems Program Plan.

In this plan, safety, security, efficiency/economy, mobility/access and energy/environment

are chosen as the five most important goals. A series of programmatic and enabling themes

are developed to reach these goals, which include: 1) An integrated network of trans-

portation information; 2) Advanced crash avoidance technologies; 3) Automatic crash and

incident detection, notification, and response; 4) Advanced transportation management.

European ITS Deployment [25]

In Europe, Intelligent Transportation Systems and Smart Cards for the transportation sector

are among the eleven main actions of the "eEurope 2002 initiative." The ITS challenges

are to meet the growing demand for mobility within the transportation infrastructure net-

works. One of the deployment barriers is the fragmentation of transportation infrastructure

management among member countries.

Proposed projects of Information Society Technologies (IST) plan to enhance the de-

velopment of systems and services for intelligent transportation infrastructures. The first

objective is to improve mobility management and to focus on advanced surveillance and

control systems on the wide range of tunnels and railways, intelligent inter-urban and ur-



ban transportation management systems, advanced ITS-based systems for logistics, and

cooperative management of resources. The second objective is to develop intelligent ve-

hicle systems and to focus on the promotion of advanced driver assistance systems and

tele-service systems in areas such as maintenance, dependability, remote diagnostics, and

vehicle performance.

EU plans to equip 50% of major European larger cities with "travel planning and traffic

information services" and to equip 50% of the main European road network with "conges-

tion and accident detection and management systems." EU also plan to install new vehicles

sold in Europe with "active safety and driver assistance systems" and to enhance emergency

service number "112" with location information in order to offer full emergency services.

After having a full picture of ITS, in the following chapters of this thesis, we discuss

how the fusion-based and layer-based principles are used in our different applications. In

Chapter 2 and Chapter 3, we first discuss how to separate an image into several distance-

based image-layers so that each layer contains potential obstacles at a distance-range or

background objects that are far away. Thus we can remove distance-based background

noises and detect targets of interest. In Chapter 4 and Chapter 5, we discuss how to separate

an image into several vertical stripes that contain potential pedestrian obstacles in infrared

images and in visible images. In Chapter 6, we discuss how to obtain time-to-contact

information for targets of interest.
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Chapter 2

Target detection and 3D segmentation

based on motion and distance range

Segmentation is an integral component of the interpretation of a dynamic environment. One

is required to segment target objects, obtain lane information, and detect objects within

given distance ranges. Current segmentation algorithms face tradeoffs between perfor-

mance and computational speed.

In this and the next chapter, we will apply the concept of fusion-based and layer-based

methodology to obtain 3D segmentation of interesting obstacles which is the first applica-

tion shown in Figure (1-2) (b). In this chapter, we will discuss a general fusion-based layer-

based method which segments objects in distance ranges of interest. In the next chapter, we

further discuss how to remove the effect of backgrounds at specific distance ranges. Both

distance and motion information are incorporated into segmentation in order to improve

the accuracy and robustness and to decrease computational load. Our proposed methods

improve the performance of static image segmentation, thus lay down a good foundation

for tracking of other information in video sequences.



2.1 Introduction

2.1.1 ITS requirements

For Intelligent Transportation Systems (ITS) and Intelligent Vehicle (IV) applications, a

real-time highway environment interpretation system is expected to provide complete 3D

information for the targets in the driving environment, i.e., the target sizes, locations, and

depth (distances). For the system in Figure (2-1), for example, drivers need to know the

horizontal locations of the leading vehicle (wI and w2) as well as the distance information

for safe driving. Such information helps with short-range frontal detection of elevated

objects and provides warning function in city traffic or during "stop and go" driving on

highways. A vehicle can use an Intelligent Cruise Control system to adjust speed based on

the distance between the vehicle and the nearest preceding vehicles, and on the types of

these vehicles.

In order to fulfill these dynamic scene interpretation requirements, image segmentation

is required in order to partition an image into different regions associated with generic

labels or informational labels. Each region consists of groupings of image pixels with

similar data feature values. The need of dynamic scene processing in real time brings high

requirement on sensors in intelligent transportation systems.

w2

d Desired
Information
Wi, W2, d

W

Figure 2-1: An example where radar is not enough.

2.1.2 Typical vision-based segmentation algorithms

There are several traditional image segmentation algorithms to obtain locations, size and

depth of target objects:



. Characteristic feature thresholding or clustering [4] [8]

Popular k-means [9] and ISODATA algorithms are examples of clustering algo-

rithms. These methods do not exploit spatial information and their segmentation

performance is limited.

" Boundary detection 14] [8]

Boundary Detection methods [8] [4], such as edge detection algorithms, are typically

used together with other techniques.

" Region growing [4]

Region growing is a procedure that groups pixels or sub-regions into larger regions.

The method needs to have seed points or seed regions to grow into larger segmenta-

tion regions.

" Motion Based Methods [3] [5]

Motion-based segmentation methods [3] [5] segment images based on the target mo-

tion pattern (e.g. optical flow vectors). The optical flow vectors for one object repre-

sent a pattern that can be used to segment the object. A classical approach to motion

segmentation is to estimate a dense motion field followed by a segmentation of the

scene based only on the motion information. As in [5], object enclosing boxes are

used to cluster the estimated vectors before passing them to the obstacle test. Detailed

introduction and comments on such algorithms can be found in [3].

" Tracking Based Methods [10] [29] [12]

Real-time applications usually adopt tracking-based segmentation methods [10] [29] [12].

These algorithms assume similarity of target features in consecutive frames and use

this to supress initial segmentation errors. This method first detects objects with

decreased accuracy requirements and segments multiple rectangular image regions

which are the candidate position of objects. The image regions which do not corre-

spond to any object can be easily eliminated by tracking several video frames because



the information from tracking soon shows up the error caused by coarse static seg-

mentation. The extreme situation in this category of segmentation methods is feature

tracking. By successfully tracking feature points, it is possible to segment each spe-

cific frame with better results. However, variation of image positions and sizes of

objects brings difficulties for tracking.

Symmetry Based Methods [1]

The symmetry-based segmentation [1] is another typical segmentation method for IV

systems. The method assumes the symmetry of typical IV targets (such as vehicles,

pedestrians) and asymmetry of background in the videos for Intelligent Transporta-

tion Systems, and uses a symmetry finder to detect candidate target regions. The

candidates for a leading car are located by detecting the vertical axis of symmetry,

which is a feature for measuring the leading car's relative lateral displacement in

consecutive images.

The performance is invariant under nodding movements of the camera and under

changes of target sizes. However, these assumptions do not necessarily hold in real

situations, which limits their applications. This method can not deal with a vehicle

with arbitrary angles and other asymmetric objects.

The last three methods are more typically used in intelligent vehicle systems than other

methods.

2.1.3 Fusion of binocular stereo and radar for 3D information

In real time ITS applications, a single sensor is typically not adequate to provide reliable

information for autonomous driving guidance in real time because of weather, ambient

lighting, reliability, and other limitations. We need to obtain 3D information for the current

road situation, i.e., the X, Y position and the distance Z of objects in images. While vision-

based 2D segmentation algorithms can provide spatial resolution, vision systems (binocular

stereo) are not very reliable in depth detection because of mis-correspondence problems.

They also fail to function well in bad weather.



Table 2.1: Sensor Performance Comparison
Characteristics radar vision

Distance Resolution Good Limited
Horizontal Resolution low Good

Radar systems offer relatively accurate depth information and robustness in bad weather,

but their spatial resolution is poor. Usually, there are three types of radar systems: broad

single beam systems not having much horizontal resolution (type 1); multi-beam systems

having limited horizontal resolution (type 2); and scanning radar systems including elec-

tronic scanning and mechanical scanning (type 3). For the system in Figure (2-1), a simple

radar could not provide enough information to assist drivers to pass leading cars.

As the horizontal resolution of radar systems improves, the cost of radar systems goes

up significantly. Even for expensive specialized imaging radar that provides both depth

and spatial resolution, the horizontal resolution remains worse than typical vision systems.

Furthermore, radar systems used in IV are designed to detect only moving targets to avoid

false alarms from static objects along a road. Such systems might also ignore dead (static)

vehicles on the road. Finally, distance resolution for lower performance radar systems is

not satisfactory because of reflection. Though developing more advanced image radar is

one possible solution to meet the requirements, it would be more feasible and economi-

cally efficient to develop sensor fusion system that is composed of several low cost, low

performance sensors, i.e., simple radar and stereo cameras.

The comparison between radar sensors and vision systems is shown in Table (2.1) in

which the advantages and disadvantages of two sensors are complementary. If require-

ments for one system concentrate on only one of the characteristics in Table (2.1), either

distance accuracy or horizontal resolution, we could use only one sensor. To meet the high

requirements from ITS, sensor fusion systems are expected to take advantage of the benefits

of both sensors at the upper left corner and lower right corners in Table (2.1).

Typical intelligent vehicle systems detect depth and target segmentation information

separately from low-cost radar systems and video sequences respectively, and match the

complementary information at the final stage, as shown in Figure (2-2) (a). Video cameras



are used to detect the accurate location, size and depth of target objects such as vehicles and

possible pedestrians on the road. The information is fused with the distance information

provided by radar systems, thus providing comprehensive 3D measurements, the dynamic

size, location, and distance information of all target objects. Sensor fusion will improve

the reliability of systems, especially in bad weather.
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Figure 2-2: (a) Traditional method of target detection (b) Proposed depth-based target de-
tection: fusing radar and stereo

The systems shown in Figure (2-2) (a), however, do not take advantage of the close rela-

tionship between depth and stereo images, and still suffer from the limitation of traditional

segmentation methods. Instead of simply mixing two complementary information sets to-

gether, we are presenting a data fusion strategy that actively fuses the depth information

into image segmentation process.

Our proposed depth-based segmentation algorithm is shown in Figure (2-2) (b). By

providing binocular stereo systems with coarse target depth information from sensors, we

are able to split an edge-map into n depth-based edge layers, and to decompose the original

task of multiple-target segmentation into n segmentation tasks on each depth-based target

feature layer. Our fusion scheme belongs to the feature-level fusion, in which the depth-

based segmentation block is the layer-based 3D segmentation. With the added distance

[
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information from radar, a binocular stereo system could significantly improve its object

segmentation performance.

In Section 2.2, we first explain how to obtain the required target depth range when radar

information is not available, In Section 2.3, we then describe how to implement the layer-

based segmentation based on calculated depth ranges. At the end, we discuss the feature of

our methods in Section 2.4.

2.2 Information Fusion: Motion-based Target Depth De-

tection

The first step of our fusion scheme in Figure (2-2) (b) is to detect the targets' depth informa-

tion and obtain the corresponding disparity ranges. Given a radar system, we can directly

obtain a series of depth data for n targets, say, di, d2 , ..., d,. Assuming the resolution from

the radar is Ad, the real depth of the ith target will be between [d - Ad, di + Ad]. For

binocular stereo, the depth ranges can be translated into the disparity ranges using equa-

tion (2.1). For simplicity, we respectively call the image taken by the left and the right

camera of stereo system the left image and the right image. Their edge-maps are called the

left edge-map and the right edge-map.

f
Xi - Xr =b (2.1)

z

where Xz, Xr are the x-coordinates of target pixels in the left and right images of stereo

system with baseline distance b and focal length f, x, - Xr is the disparity, and z is the

actual distance between the target and the stereo system.

Since the real depth of the ith target in the given radar data series is between [d -

Ad, di + Ad], the corresponding disparity for target i will be in the following ranges:

bf bf
[ ]. ~-d~ (2.2)di + Ad' d,1 - Ad

When radar information is not available, we can directly obtain target depth ranges

and disparity ranges from other sensors or other vision-based algorithms. For example,



the disparity information can be achieved through an edge-based trinocular method [2].

Here we are developing a motion-based binocular method to obtain the disparity ranges for

targets. The scheme is an important part of depth-based target detection system as shown

in Figure (2-2) (b)). The structure of the proposed depth-detection algorithm is shown in

Figure (2-3). In Section 2.2.1, we first introduce "motion-based correspondence matching

criteria" to obtain the disparity histogram, the histogram of the disparity for all edge pixels.

Then we discuss how to analyze disparity histogram and to detect target disparity ranges in

Section 2.2.2.
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Figure 2-3: Target depth detection system based on fusing binocular frames and motion.
Detail for Figure (2-2) (b).

2.2.1 Motion-based Correspondence Matching Criteria

In order to obtain disparity histograms for stereo image frames, we apply the following

three correspondence constraints to compute correspondence disparity information for all

edge pixels.

* Binocular Stereo Epipolar Line Constraints

For binocular stereo image pairs, there exists a strong positional constraint, i.e., match-

ing feature pixels from stereo images should be on corresponding epipolar lines. For

aligned cameras, the epipolar lines are frame rows as shown in Figure (2-4) (a).

Usually the epipolar line constraint alone is not sufficient enough to locate correspond-

ing feature points, so traditional binocular stereo methods need other complex feature con-



straints to further limit correspondence searching. Extra feature constraints typically in-

clude local content constraints, for examples, cornerness, edge, color, intensity, etc., and

global constraints (continuity). The different choices of feature constraints lead to different

algorithms.

XXR X X XR

(a) Binocular Stereo (b) Trinocular Stereo

Figure 2-4: Disparity Constraint for Binocular and Trinocular Stereo.

Imposing global constraints is complex and time consuming, and algorithms based on

local constraints are not reliable. Trinocular stereo [2] as shown in Figure (2-4) (b) is one

solution to meet both simplicity and effectiveness requirements, which imposes epipolar

line constraints among three aligned camera images, i.e., the horizontal image position of

a target point from the center camera must be the midpoint of image positions of the target

point in the left and right images as followed:

1
XC = -(XL + XR) (2.3)

2

For a binocular stereo setting, there is no similar simple and effective method. Instead,

we propose to impose the following three additional constraints in order to improve corre-

spondence reliability.

* Edge-feature Constraints

(a) Positive edge (b) Negative edge

Figure 2-5: Examples of positive and negative edges.

To remove correspondence ambiguity, we only match vertical edge pixels from stereo

images, and differentiate "positive edges" from "negative edges." As shown in Figure (2-

5), positive edges are where image intensities change from darkness to brightness most
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rapidly, negative edges are where image intensities change from brightness to darkness

most rapidly.

* Motion Constraints

Because of rigidity, motion information for the same target points calculated from the

left and right images should be similar. As shown in Figure (2-8), motion vectors for both

stereo video frames show similar patterns even if motion vector detection involves noises.

For a feature point at (x, y) in Seq# (k), to determine its motion vectors between frames

at Seq# (k) and (k + 1), we define its template patch with size (8 x 8) in Seq# (k) and

a search window with size (16 x 16) in Seq# (k + 1) both of which center around (x, y).

Then we search within the search window for a patch with minimum correlation errors from

template. Though for boundary feature points, the template patches contain visual features

from different background regions, to some extent, there still exist the similarities of motion

information for stereo corresponding points as shown in Figure (2-8). It is because the sizes

of template patches are small enough. Motion constraints will be combined with other

contraints to provide the histogram of disparity, which do not expect high reliability and

accuracy for estimation of motion vectors.

e Texture Constraints

When locating motion vector for a given pixel, the variation curve of the correlation er-

rors at different candidate positions represents the texture information for that pixel, which

is named as Motion- Vector Correlation-Error Curve(MV-CEC or MV-CE-Curves). The

large variation of MV-CE-Curves in Figure (2-6) (b) corresponds to a feature point, while

the regular pattern of MV-CE-Curves in Figure (2-6) (c) corresponds to a point in uniform

region. We define the function of the difference between the maximum and the minimum

correlation errors as Texture Index in order to reflect the texture information in the neigh-

borhood region surrounding the pixel. If there are significant changes within the image

patch surrounding a given pixel, its corresponding texture index is large. Otherwise, the

texture index is small.

For a pair of corresponding edge pixels in binocular stereo images, there exists the

similarity between two corresponding MV-CE-Curves in both shape and numerical values.

The texture index for correspondence-pixel-pairs in stereo images are also similar. The



similarity of MV-CEV-Curves for correspondence-pixel-pairs are shown in Figure (2-6) in

which the top and the bottom rows are for two pairs of points marked in yellow diamond

regions and in red rectangular regions in Figure (2-6) (a). For template patch with size 8 x 8

and search window with size 16 x 16, there are 81(= (16 -8 + 1) x (16 -8+1)) candidate

positions and 81 corresponding correlation errors.

The similarities of texture index also somehow apply to a pair of boundary feature

points, though their neighborhood regions are not quiet the same due to the different back-

ground regions. It is because that the maximum and minimum correlation errors are close

when the sizes of template patches are small enough. Even if the texture index for some

boundary feature points might not exactly the same, it would not matter since the purpose

of motion-based correspondence matching is to obtain disparity histogram and the disparity

ranges for interested obstacles.

Taking advantage of the above contraints, we define multidimensional feature vectors

including location constraints, motion constraints, texture constraints, and brightness con-

straints for all edge pixels. For a pixel at position (i, j), its feature vector V(i, j) includes

the following information:

f(i,j) = [MV(ij) MVI(i,j) Ec(ij) iu(ij) I(i,j)].' (2.4)

where I is the pixel's intensity value, (MV, MV) are motion vectors calculated based

on correlation methods, E, is the minimum correlation error when searching for motion

vectors between two continuous images, iu is uniform index.

The matching error index Dmatch (il, r, j) between pixel (ij, j) in the left image and

pixel (ir, j) in the right image is defined as the weighted sum of their respective feature

vector component differences as below:

Dmatch(l, r, j) = Wk * [V(il,j) - r(ir, j)]k, (2.5)
k

where k represents the vector index and Wk is the weight.

For edge pixel EL of left images, we search for its matching correspondence pixel

among multiple candidates, edge pixels ER 1 , ..., ERm, ..., ER, at the same row as EL
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Figure 2-6: Similarity of MV-CE-Curves and Texture Index for two pair of correspond-
ing edge pixels in binocular stereo images. (a) Top/bottom: binocular stereo images and
corresponding points from left/right cameras. (b) (c) Left/right: Variation of correlation er-
rors when searching for motion vectors (MV-CE-Curves) for yellow/red points, top/bottom,
marked in (a).
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in right-camera images. We compare multidimensional feature vectors for pair EL and

ERm, search for pairs with minimum matching errors, and record corresponding disparities

x, - xrrn in a disparity histogram. If there are multiple possible matches in the right image

for a feature in the left image, we pick the disparity with smallest values and consider the

pixel as background pixel. Such conservative choice ensure the histogram peaks with large

disparity are noise free. A disparity histogram reflects the distribution of disparities for

stereo visions.

2.2.2 Depth Range Detection through Disparity Histogram

The concentration of edge points at peaks in the disparity histogram comes from targets in

the same distance ranges. Normally, peaks at large disparity locations correspond to close

targets and peaks at small disparity locations correspond to targets that are far away. Com-

pared to vehicles that are far away, closer vehicles occupy larger image area (excluding the

possibilities of toy cars on the road). Therefore, for obscale edges, the number of pixels

with large disparity will be larger than the number of pixels with small disparity. Among

the peaks corresponding to real obstacles, the higher peaks are normally located to the right

of the lower peaks in the disparity histogram as shown in the matcing relationship between

Figure (2-9) (a2) (b2) and Figure (2-9) (c). Occasionally, due to the complexity of targets,

farther vehicles might have more edge pixels in images and have higher peaks in dispar-

ity histogram than closer vehicles. However, generally, to identify a peak in a disparity

histogram as a target other than noise, we have to choose high threshold if the peak is at

the location with large disparity as shown in Figure (2-9) (a2) (b2) (c). The larger the peak's

disparity, The higher the threshold should be. Based on these common characteristics of

the histogram peak distribution shape, target depth information can be derived.

2.2.3 Target Depth Detection Results

In this subsection, we will present a detailed example of motion-based target depth detec-

tion for binocular stereo images in Figure (2-7) (frame No.57 in our video sequence), in

which the three vehicles are named "left car," "middle car," and "right car." We need to first



detect three depth ranges for the three vehicles.

(b)

Figure 2-7: Binocular stereo images and their corresponding edge-maps. (a) Images from
left(top) & right(bottom) cameras at frame No.57. (b) Edge-maps for (a).

Motion information is computed based on two consecutive frames, Frame No.57 and

Frame No.58 (Figure (2-8) (a)). Based on the motion similarity shown in figure (2-8)(b)

for given binocular image sequences, we obtain the motion-based correspondence match-

ing result for stereo frames No.57 (Figure (2-7) (a)). The disparity histogram is shown in

Figure (2-9) (a). For the comparison purpose, we also compute disparity histogram based

on trinocular algorithm [2] in Figure (2-9) (b).

(a) Images from left & right cameras at frame No.58

(b) Motion vector between frames No.58 and No.57 (Fig. (2-7).

Figure 2-8: Similarity of motion vectors for binocular stereo images.

In Figure (2-9) (a), the three highest peaks correspond to the three nearest vehicles in

frame No.57 with detailed information as shown in Table 2.2.3. For Figure (2-9) (a), the

peak for the left most car (marked by green circle) is higher than for the right most car

-_-Ye * . .1e- -I



60--

50-

40 -

10-

(10 0 10 20 30 40 50 6

(al)

MA

(a2) SNR > 1
17-\w

(b2) SNR < 1

Figure 2-9: Disparity histogram for edge pixels in Figure (2-7) (b) and corresponding mach-
ing relationship. (a) (b) x coordinate: disparity value. y coordinate: the number of edge
pixels within the disparity range. (al) (a2) Motion-based binocular stereo algorithm using
frames No.57 in Fig. (2-7) (a) and No.58 in Fig. (2-8) (a). (bl) (b2) Trinocular algorithm.

100-

50-

-"10 0 10 20

(bl)

error

D 40 50o



(marked by red circle) because the depths of the left car and the right car in Figure (2-7) (a)

(frame No.57) are similar while the left car has more complex projection in the edge-map

shown in Figure (2-7) (b). The lower peaks to the right of the three highest peaks are noises.

category Disparity Closeness Edge Pixel #

Left Car 18-20 2nd nearest most

Middle Car 7-9 3rd nearest 3rd most

Right Car 22-24 1st nearest 2nd most

For disparity histogram based on trinocular algorithm [2] as shown in Figure (2-9) (b),

three highest peaks, is in decreasing order (from high to low), are at disparity ranges 23-24,

18 - 20, 28. The trinocular-based histogram misses the target at disparity range 7 - 9

while introducing a false target (peak) at disparity 28. The detection error is caused by

mis-correspondence. For both case in Figure (2-9) (a) and (b), the dotted lines can help

to differentiate meaningful peaks from noises. However, the robustness for both cases is

different.

We define the signal to noise ratio (SNR) as the ratio of the lowest peak corresponding

to real vehicles over the highest peak corresponding to false alarms. For the trinocular

stereo algorithm, the SNR is around 0.75, less than one, while the SNR from our proposed

algorithm is around 1.5, which offers better performance. The histogram comparison in

Figure (2-9) shows the performance improvement of motion-based target detection over

trinocular algorithms.

Our proposed target detection algorithm can be fused with radar information as in Fig-

ure (2-2). Target information from radar would help to differentiate target peaks from

noise peaks in choosing peaks from disparity histograms and to give out more reliable tar-

get depth information. Fusing depth information from two sources would help to reduce

reflection errors from radar systems and mis-correspondence from vision systems. The

calculated vehicle disparity ranges are later used in Section 2.3.4 to segment vehicles.

Combining the proposed "motion-based target depth detection system" with "depth-

based segmentation system (Section 2.3)" as in shown in Figure (2-2), our proposed system

can offer both depth and location information for targets without introducing too much

complexity.



2.3 Fusion-based Layer-based 2D Segmentation

Given extra disparity ranges for targets, we propose a feature-level fusion scheme to iden-

tify target locations. The key component of our 2D segmentation is edge layer separation,

which leads to our fusion-based layer-based 2D segmentation methodology. The edge-map

of a real scene image is composed of edge pixels that belong to different targets at different

depth ranges. Given a series of disparity ranges from either radar or pure vision systems,

we first split an edge-map of a binocular image into n edge-layers that contain the edge

pixels of targets corresponding to n different given target disparity ranges. It is the rela-

tionship between target depth and its correspondence-disparity that imposes constraints on

searching for corresponding groups of target feature points at different depth ranges from

the edge-maps of original stereo images. The detailed algorithm is in Section 2.3.1.

Each depth-based feature layer has fewer targets than the original whole image. In other

words, the original multiple-target segmentation task is decomposed into several simple and

relatively easy single-target segmentation tasks on several depth-based target feature layers,

thus the segmentation performance will be improved. It is easier to sequentially locate the

corresponding positions of n targets at different distance ranges in n separated edge layers

than in the original segmentation task. More accurate and robust target segmentation can

be achieved.

The depth-based segmentation algorithm needs only coarse target depth information to

separate depth-based feature layers and imposes minimum performance requirements on

depth detection sensors. A low-quality radar system is adequate since accurate depth infor-

mation for every pixel is not needed. When the information of distance ranges from a radar

is not available, we have devised a pure vision-based target depth-range detection algorithm

in Section 2.2 to detect the number of targets and target depth information. For real time

applications, it is better to combine depth information from both radar and "vision-based

target depth detection" algorithm to achieve ideal performance.

Sensor fusion system in Figure (2-2) (b) can provide better target detection than sepa-

rately detecting segmentation regions and depth information and matching them afterward

in Figure (2-2) (a). Depth-based segmentation algorithm helps to enhance target segmen-



tation performance. On the other hand, finding the correspondence between segmented

regions on stereo images can also improve the estimation of target depth. The performance

of each sensor in the fusion system would be better than it is being used alone.

Our proposed fusion-based layer-based segmentation algorithm as shown in Figure (2-

2) (b) consists of three steps. We will first focus on the layer-based concept to discuss depth-

based edge-layer separation, and then explain the fusion-based target boundary detection.

2.3.1 Step 1: Depth-Based Edge Layer Separation

Depth-based edge layer separation is feasible due to the relationship between the target

distance and the correspondence disparity of target in binocular stereo images. The object

distance range imposes constraints when searching for corresponding feature points in the

left and right stereo images. Such constraint helps to separate edge layers at different

distance ranges. Binocular vision systems can make use of object distance information Z

from radar to identify corresponding target objects in that distance range, and to provide

the X, Y position information for targets.

The objective of this first step is to sequentially locate image edge pixels corresponding

to targets at given disparity ranges. To obtain the corresponding depth-based edge layer for

each depth range, we locate target edge pixels that simultaneously satisfy depth constraints

and other binocular stereo correspondence constraints. These correspondence constraints

are defined as followed:

* Binocular Stereo Epipolar Line Constraint

For aligned cameras, matching feature pixels from stereo images should be on the same

rows.

* Depth/Disparity Constraints

For a binocular stereo system, target depth z imposes constraints on its correspondence

disparity. For the edge pixels of targets within a distance range, the differences of their x-

coordinates in binocular stereo images xi - x, should be within the given disparity ranges,

which can be found using equation (2.2) for radar systems or disparity ranges for pure

vision systems or both.



e Edge-feature Constraints

Similarly, we also adopt a "positive and negative edge" scheme instead of binary edge-maps

to decrease mismatching.

Given disparity range information, we apply the above three constraints to choose edge

pixels in the left images for which there exist corresponding edge-feature pixels in the

right edge-map. For each edge pixel in the left edge-map, we search for edge pixels on

the corresponding epipolar lines in the right edge-maps with disparities falling the range

defined by Equation (2.2). We do not differentiate among multiple candidates from the

right edge-map. As long as there exists corresponding edge pixels in the right edge-map,

we keep the pixel in the left edge-map, which make up a depth-based edge layer. Some

edge pixels can be chosen at different depth edge layers. All chosen feature pixels are

very helpful in segmenting objects within the given disparity range. Applying this step

at different disparity ranges, corresponding edge layers are obtained and we separate the

original stereo edge-map into different distance layers. We further detect whether there are

any objects and where objects are at each distance-based edge layer. Noises due to edge

layer separation and the residual background noises can be later removed by depth-range-

based filtering.

2.3.2 Step 2: Depth-Based Target Contour Discrimination

In each separated edge layer, target pixels are clustered, while pixels from other depth

ranges scatter randomly throughout the layer. Many segmentation algorithms determine

target regions by locating where most edge pixels cluster. The performance of such algo-

rithms is sensitive to the choices of thresholds, and is not robust enough.

Instead of applying segmentation algorithms directly, we adopt edgeline-based morpho-

logical operation to connect all edge pixels into long lines. In edge detection process, we

register all vertical edge pixels in different edge lines. Then we delineate candidate objects

in an edge layer through a morphological "closing" operation or depth-based target contour

discrimination. More particularly, we first dilate vertical edge lines in the edge layer to in-

crease their length. The neighbor edge-lines can be connected at the neighborhood of their



terminals. The aim is to connect all the boundaries of targets into long boundaries with

lengths longer than those of noisy edges. We then apply an erosion operation to remove

isolated edge pixels or short edge-lines caused by noises. After these two operations, long

meaningful edge-lines are kept and interested targets should stand out since the boundaries

of our targets are typically longer than noisy edges coming from other depth layers.

2.3.3 Step 3: Depth-Based Target Boundary Determination

Because target contours are manifest in separated edge layers after the "discrimination"

step, the final step can create rectangular bounding boxes for targets through finding the

left and right locations of longest boundary lines and pixel aggregation with seed points

being chosen from accentuated candidate points.

Repeating the proceeding steps at different disparity ranges, we can sequentially detect

whether there are objects within the different depth ranges and where objects are, i.e., the

locations and the sizes of targets. Examples of segmentation results are presented in the

next section.

2.3.4 Segmentation Results

In this subsection, we will present detailed segmentation results for binocular stereo images

shown in Figure (2-7). Without losing generality, we show only results for the left images

from the segmentation step. We detect three vehicles' locations in Figure (2-7) (a) after

applying the depth range determination (step 0) and the three steps of 2D Segmentation

(step 1, 2, 3).

Step 0: Depth Range Determination

We obtain the depth information, disparity histogram, shown in Figure (2-10) based

on our motion-based binocular methods discussed in Section 2.2. The three highest peaks

from the disparity histogram as shown in Figure (2-10) represent three nearest vehicles

whose disparity ranges are 22-24, 17-19, 7-9. The larger the disparity range is, the closer

the vehicle is to the observer.

Step 1: Depth-Based Edge Layer Separation



Figure 2-10: Histogram of disparity for Figure (2-7) (frame No.57).

The edge-map shown in Figure (2-7) (b) (for left image) is decomposed into three edge

layers corresponding to the three disparity ranges 7-9, 18-20, and 22-24. The three edge

layers corresponding to these disparity ranges are shown as in Figure (2-11).

Though there are edge pixels overlapping among the three edge layers, the three sep-

arate vehicles are distinct. The depth-range-based target contour discrimination and de-

termination in step 2 and 3 will remove residual noise pixels from other distance-range

layers.

(a)

(b)

(c)

Figure 2-11: Edge layers corresponding to different disparity ranges for Figure (2-7) (frame
No.57) (a) 7-9 (b) 18-20 (c) 22-24

Step 2: Depth-Based Target Contour Discrimination

For the edge layer shown in Figure (2-11) (c), the dilation operation result is shown in

Figure (2-12) (a), and the closing result (from applying both dilation and erosion operations)



is shown in Figure (2-12) (b). The morphological operations successfully remove most error

edge lines, thus the target vehicle stands out and can be easily detected. Our edge-line

based operation is effective in enhancing visibility of interested targets and segmentation

performance.

(a)
(b)

(c)

Figure 2-12: Procedure to locate targets within a depth range which corresponds to dispar-
ity range 22-24 for Figure (2-7) (frame No.57). (a) Edge dilation result (b) Edge closing
result (c) Segmentation result

Step 3: Depth-Based Target Boundary Determination

Figure (2-12) (b) and (c) plot segmented regions for the right vehicle (at disparity range

22-24) in frame No.57 in video sequence shown in Figure (2-7). Additional segmenta-

tion results for the right vehicle in frames 62, 69, 73, and 80 are shown in Figure (2-13).

The segmentation results at disparity ranges 7-9 for frame No.57 and No.31 are shown in

Figure (2-14). Segmentation results for the new vehicle with disparity range 5-6 in frame

No.31 are shown in Figure (2-15).

Frame No.62

Frame No.69

Frame No.73

Frame No.80

Figure 2-13: Example of detecting the right vehicle at frames No.62, No.69, No.73, No.80.



Figure 2-14: Example of locating targets at different disparity ranges. Top row: disparity
range 7-9 at frame No.57 (Figure (2-7). Bottom row: disparity range 7-9 at frame No.31.
Left column: Edge closing operation result. Right column: segmentation result.

(a)

(b)

Figure 2-15: Example of locating targets with disparity range 5-6 (frame No.31) (a) Edge
Closing Operation Result. (b) Segmentation Results.

Our algorithm uses the same initial parameters to segment targets at different depth

ranges and in different video frames as in Figures (2-12), (2-13), (2-14), (2-15), and Fig-

ure (2-16). These results illustrate target detection with accuracy and robustness.

Our algorithm does not impose high requirements on the accuracy of target depth de-

termination and edge detection. We use several different disparity ranges, 22 - 24, 23 - 25,

22 - 25, etc., and different Sobel edge-detection thresholds to yield the same segmenta-

tion results. At the same time, the segmented regions from stereo images can also improve

depth estimation when the resolution of given depth is not satisfactory.

2.3.5 Performance comparison

Our morphological operation in segmentation algorithms differs from other traditional mor-

phological operation in the following aspects. First, traditional methods identify targets in

the original edge-map that involves heavy background noises. For our method, in separated

edge layers, there are less targets, less noises and cleaner backgrounds than in the original

image. Segmentation on each layer is simpler and easier than on the original edge image.

Secondly, our morphological operation is edge-line based instead of pixel based. The



purpose is to ensure the vertical edges at horizontal boundaries of interested targets to be

longer than at interior regions and at background regions in the separated edge layers. It is

feasible for most obstacles in driving situations since their longest vertical edge-lines are

normally at their left/right boundaries and edge-based separation removes majority of long

edges from obstacles in other depth ranges. Thus the boundary locations of interested tar-

gets can be determined by searching for horizontal locations of the left most and right most

long edge-lines in separated edge maps. The detection can be obtained with high accuracy

using edge-line based operation and is robust to different choices of initial parameters.

Some traditional segmentation algorithms locate targets based on 3D information and

cluster pixels with similar depth information. Such operation is somehow similar to obtain

Figure (2-11) and to aggregate pixels that have similar disparities and are close to each

other. We have tried to detect targets in Figure (2-11) in this way. We search for a region

containing majority of pixels with similar depth/locations. Such method is very sensitive

to the initial parameters. Generally, there are noises involved when obtaining 3D recon-

struction from binocular stereo images using simple correspondence matching algorithms

as shown in Figure (2-11). Thus final segmentation is not very reliable.



2.4 Discussion

2.4.1 Two correspondence matching

Our depth-based segmentation algorithm does not impose high requirements on depth ac-

curacy. Only coarse target depths are needed, and these can be from either radar with low

resolution or simple vision-based algorithms.

In our proposed method, we apply correspondence matching twice. The first time, we

apply motion-based correspondence matching to obtain disparity histograms. We define

feature vectors of edge pixels to find corresponding edge pairs from multiple candidates.

Our motion-based correspondence matching takes advantages of the extra information that

binocular stereo video (multiple frames) provides when compared to static binocular im-

ages, which increases reliability. Among multiple matching candidates, we choose the

match with smallest disparity. The purpose of the first correspondence matching is to pro-

vide the statistical distribution of disparity.

The second correspondence matching operation is to separate edge-maps into several

edge layers using the disparity ranges obtained in the first correspondence matching. Then

in each layer, we locate edge pixels with matching correspondence edge pairs. We do

not need to differentiate multiple matching candidates and allow one pixel to be chosen

at multiple layers. The requirement on the accuracy of the second correspondence match

during "Depth-Based Edge Layer Separation" is lower than that needed to obtain disparity

histogram.

2.4.2 Robustness of the algorithm

As shown in Section 2.3.4, depth-range-based segmentation is very robust to the impact of

noises and initial parameters. The key step of the algorithm is to identify edge pixels cor-

responding to specific disparity ranges with edge-layer separation and to intensify vertical

edges at the left/right boundaries of interested targets with edge-line-based morphological

operation. In the separated edge layers, the vertical edges at targets' left and right bound-

aries are longer than in the background regions, and targets can be easily detected. Thus,



the noises introduced at different steps would not have huge impact on final segmentation

performance as long as the long vertical edges at targets' boundaries are connected and

stand out in the background regions.Depth-based edge-layer separation algorithm is robust

to different choices of initial parameters. It is not necessary to have high quality edge de-

tection, strict edge layer separation, and accurate disparity ranges. We have chosen the

simple and fast Sobel edge detection algorithm. Low edge-detection thresholds are used to

provide sufficient pixels for reliable target discrimination in the next step. In Chapter 3, we

will show how to reduce the impact of background noises due to non-rigid objects such as

trees.

2.4.3 Computational loads

Our layer-based method only detects targets within the depth ranges of interest for the

purpose of autonomous driving, and does not try to recover accurate 3D shape information

for all objects in the images, which really enhances the efficiency and performance.

Among the four operations discussed above, most computation time is spent in cor-

respondence searching at the second step of "depth edge layer separation." In each edge

layer, the correspondence searching time for each edge pixel is in direct proportion to the

size of its disparity range instead of the typical image width. The computational load of

our algorithm is in direct proportion to the product of target numbers, the number of edge

pixels and the size of disparity ranges. The correspondence searching process can be imple-

mented simultaneously at different rows or even at different pixels, which makes parallel

VLSI hardware implementation possible and further increases calculation speed.

Due to the light computational load of our segmentation method, we can afford to apply

such segmentation to every frame for target detection. Unlike other tracking-based segmen-

tation, such segmentation algorithm does not need initialization time. Thus, our algorithm

has the potential to quickly detect new targets (cut-ins) and respond to rapidly changing en-

vironment in real-time driving situations. Better initial static segmentation always improves

the performance of an overall segmenting/tracking system. In summary, our fusion-based

layer-based algorithms can significantly enhance the performance of static segmentation as



well as the performance of target detection and tracking in a video sequence.

2.4.4 Limitations and possible solutions

In general, our proposed methods do not make assumptions on target shapes or the symme-

try of targets, and have wide range of applications. Our algorithm is limited in situations

where only single sides of targets are in images, as in Figure (2-16). Depth-based segmenta-

tion needs to capture target boundaries. If there is only a single side of a target in an image,

we capture only partial target regions. Such problems can be solved using the motion-based

region expansion described in the next Chapter. With several modifications, our algorithm

can detect targets of various shapes, such as pedestrians as shown in Figure (2-17), which

is to be discussed in the next chapter.

Figure 2-16: Target segmentation results within disparity range 18-20 for frame No.57
(Figure 2-7). An example of "single-sided limitation" where only part of the target is
captured, which leads to target size detection error. It happens when only part of target is
in the image.

I

Figure 2-17: An example of detecting both ball and pedestrian using same initial parame-
ters.

There still exist several other issues to be further pursued. For example, one may desire

the ability to segment multiple objects within the same distance range. The distance-based

................................................



segmentation algorithm detects target boundaries and removes correspondence errors by

growing contours and removing short edges. The edge-length threshold can be adjusted

based on different distance ranges. However, when there are several objects of different

sizes within the same distance range, a fixed-length threshold might cause troubles. If

we use a large edge-length threshold to remove shorter-edged noises, we might remove

short contour information that belongs to our target objects. We would not detect accurate

bounding boxes for all individual targets.These issues will be addressed in the next chapter.



Chapter 3

Target detection and 3D segmentation

under heavy background noise based on

motion and distance range

3.1 Introduction

Segmentation algorithms are typically challenged by noisy static background and the vari-

ation of targets' locations and sizes. This leads to various segmentation errors. Static

segmentation usually has limited performance and one depends on tracking algorithms to

remove the errors in initial static segmentation. Tracking algorithms do not work well when

dealing with background noise which changes over successive video frames.

In order to reduce or remove the impact of heavy background noise on segmenta-

tion performance, many segmentation algorithms first detect background information and

then subtract background images from the original video frames. It becomes relatively

easier and more reliable to segment objects in processed images than in the original im-

ages. "Background subtraction" is one widely used method whose performance depends

on the quality of reference images. There are two basic techniques in acquiring reference

frames [59]. The first basic technique is for situations such as indoor video surveillance

and monitoring. Reference images can be obtained by directly taking pictures when there



are no target objects. The limitation of the technique is that the reference frame might not

always be available. Reference frames have to be updated from time to time in order to

match the current lighting levels. But reference frames under different lighting levels are

not always available. The second technique treats the previous frames as reference images

for sequential frames when changes between successive video frames are small. "Adaptive

background detection" [44] improves the quality of background detection based on Gaus-

sian models. The two techniques apply only to controlled situations and might not function

well when video frame backgrounds change from frame to frame, such as for backgrounds

containing non-rigid objects like trees. For video frames captured in intelligent vehicles,

the frame backgrounds are constantly changing and unpredictable. Thus, a new algorithm

is needed in order to offer satisfying results in segmentation or motion detection.

In this chapter, we propose a fusion-based layer-based method to suppress background

noise and to increase segmentation reliability. In Chapter 2, we have presented a new

distance-range-based segmentation method to reduce correspondence errors so that the ac-

curacy and robustness of target detection can be improved. Our proposed algorithms work

well for our test sequences in highway environment which are usually less affected by

background noise than the image sequences taken in urban driving environment. In this

chapter, we further discuss how to apply the principle of layer-based and fusion-based seg-

mentation to reduce the impact of background noise. The chapter has two parts. In the first

part, a distance-based background detection algorithm is proposed to reduce the influence

of noisy backgrounds without using reference frames. In the second part, a motion-based

segmentation and adjustment is presented to detect objects of different sizes. The back-

ground detection/removal algorithm is layer-based. The depth/motion-based segmentation

algorithm is fusion-based. Our proposed methods overcome the limitations of traditional

segmentation, while increasing the accuracy, reliability, and robustness of object segmen-

tation in the presence of heavy background noise.



3.2 Background Detection and Removal

3.2.1 The definition of distance-based background

In order to effectively remove the impact of the background, we need to clarify the def-

inition of backgrounds which vary in different application scenario. If the objective is to

detect moving objects, static objects are considered background. When one tries to detect

distance using binocular stereo systems, the objects in other distance ranges are considered

noise which can introduce correspondence errors and lead to erroneous distance informa-

tion. For the purpose of target detection in intelligent transportation systems (ITS), it is

appropriate to define backgrounds as objects whose distance ranges are much farther than

the one of interest to us. In other words, objects beyond specific distance ranges are less

important than close objects. For example, for the scenario shown in Figure (3-1) (a)-(d),

trees and pedestrians far away are considered as backgrounds since they can be temporarily

ignored in most driving situations. Such background objects contribute a majority of edge

pixels in the edge images shown in Figure (3-1) (e) (f). These background pixels are noise

which leads to matching errors for binocular stereo correspondence and for motion vector

computation when comparing either left/right edge maps or two consecutive edge frames.

Such errors lead to difficulties in achieving accurate segmentation.

3.2.2 Distance-based Background Separation

In order to remove the impact of these background pixels, we take advantage of the depth-

based image layer separation proposed in Chapter (2) to split background layers from the

original edge maps.

With algorithms of motion-based binocular stereo correspondence matching introduced

in Chapter 2.2, we obtain disparity histograms. Object pixels with small correspondence

disparity are farther away than object pixels with large disparity. When object dispari-

ties are almost zero, objects are infinitely far away. Background objects that are far away

have smaller disparity than target objects. Thus, pixels with small disparity represent the

characteristics of the background.



(a) (b)

Figure 3-1: Binocular stereo frames and edge images. (a) (b) Left/Right images at time n.
(c) (d) Left/Right images at time n - 1. (e) (f) Left/Right edge images at n. Images (a) -(d)
are courtesy of Daimler-Chrysler Research and Technology.



For frames in Figure (3-1), the disparity histogram of binocular stereo matching is

shown in Figure (3-2). Video frames in Figure (3-1) (a) -(d) are courtesy of Daimler-Chrysler

Research and Technology. The large peak at disparity 3 - 4 on a disparity histogram means

that there are many background pixels. Another peak at disparity range 17-19 corresponds

to the distance range where the boy and the ball are situated. If we are only interested in

targets in this distance range, we can define background distance range to be around dis-

parity range 0-5, case (I), or 0-9, case (II). Case (I) is more conservative choice than case

(II).

The results of depth-based layer separation are shown in Figure (3-3). Separated back-

ground edge layers for case (I) and case (II) are respectively shown in Figure (3-3) (al) and

(a2). Both background layers capture most noisy edge pixels due to trees and pedestrians

far away, and look quite similar. Separated target edge layer with disparity range 17-19 is

shown in Figure (3-3) (b). Even though the segmentation on this targe edge layer is already

easier than on the original edge layer, the heavy background noise still poses difficulties in

target segmentation. We will demonstrate that the segmentation accuracy can be improved

by combining the information of background edge pixels in Figure (3-3) (al) (a2) and the

separated target edge layer in Figure (3-3) (bI) (b2).
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Figure 3-2: Disparity distribution



(al) (b1)

(a2) (b2) (c2)

Figure 3-3: Distance-range-based image separation based on figure (3-2) for figure (3-
1) (a) (b). The top and bottom rows correspond to two possible separation. (al): Background
layer at disparity 0-5. (b1): Object layer at disparity range 17-19. (ci): Cleaned object
layer at disparity range 17-19. (a2): Background layer at disparity 0-9. (b2): Object layer
at disparity range 17-19. (c2): Cleaned object layer at disparity range 17-19.

3.2.3 The Impact of Background Noise

Before discussing how to take advantage of distance-based background layers to remove

the impact of background noise, we first investigate how background noise would affect

the performance of applying distance-based target detection described in Chapter 2 to tar-

get edge layer with disparity range 17-19 in Figure( 3-3) (b). The results of individual

processing steps are shown in Figure (3-4). When target boundary contours are elongated

in morphological operation, isolated noise pixels from background trees are connected as

shown in Figure (3-4) (b). The huge number of tree edge pixels leads to many false edge

lines in background areas which might be even longer than the edge lines for target objects.

Thus it is hard for an edge length filter to eliminate false edge lines in background areas

without affecting target objects. The noisy background pixels add difficulties in simultane-

ously segmenting objects with different sizes, for example, the boy and ball. As shown in

Figure (3-4) (c) and (d), it is unavoidable to have false boundary edges and false bounding

boxes in background areas.

(c 1)



(a) (b)

(c) (d)

Figure 3-4: Distance-range-based segmentation results. (a) Left/Right matching result at
disparity range 17-19 (from Figure (3-2) for Figure (3-1) (a) (b). (b) Morphological opera-
tion result on (a). (c) Edge-length filtering and segmentation result from (b). (d) Segmen-
tation result drawn on Figure (3-1) (a).

given object distance range other object distance range background range
edge category 1 no no
edge category 2 no no
edge category 3 no no
edge category 4 V V no
edge category 5 V no
edge category 6 no V
edge category 7 VV

Table 3.1: Possible category of edge pixels



The impact of background noise on segmentation in our distance-based edge layers

arises because of the correspondence matching process when we separate distance-based

edge layers. To obtain each distance-based edge layer, we search for edge pixels in the left

images with correspondence edge pairs in the right images along the epipolar lines with

disparities within the range defined by Equation (2.2) in Chapter 2. Edge pixel in the left

images might be matched to several edge points with different disparity ranges in the right

images, which corresponds to multiple choices of edge layers at different distance ranges.

Without further information it is hard to decide among multiple choices. Some algorithms

simply pick one distance randomly, which might not be the correct one. To avoid making

the wrong decision among multiple solutions, our algorithm allows edge pixels in the left

images to be matched to several edge points with different disparity ranges, and to be

assigned to multiple edge layers in several distance ranges as shown in Table 3.1. For a

given distance range the chosen edge pixels can be in categories 1, 4, 5, and 7 as shown

in Table 3.1, while edge pixels in categories 4, 5, and 7 are also chosen in edge layers

for different distance ranges. Our distance-based edge layer separation keeps all possible

edges and includes as much target edge information as possible since it cannot afford to

lose target edge pixels, which might be important component in target's contours. However,

edge pixels in categories 4, 5, and 7 might introduce ambiguities since they might actually

belong to background layers or other distance ranges containing other targets.

In most situations, the ambiguity caused by pixels from rigid objects in other distance-

based layers is limited. The disparities of rigid objects with clear contours can normally

be determined. It will be less likely for the edge pixels of rigid objects to be chosen in

other distance ranges than for non-rigid objects. Even if it happens, the false edge pixels

might not constitute a long edge and can be eliminated by edge length filters. Thus, there

should not be too much noises from rigid objects in edge layers at different distance layers,

including at background.

However, when matching non-rigid background objects in left and right images, there

will be lots of correspondence matching ambiguity caused by non-rigid background ob-

jects, such as trees, which have high variance of texture and yield many edges. In the step

of binocular stereo matching for different disparity ranges, pixels in the non-rigid back-



ground objects can easily be matched to multiple pixels of non-rigid background objects.

For example, a leaf in one tree can be easily matched to multiple leaves in multiple trees.

Thus a large amount of pixels in the non-rigid background objects will be chosen in almost

every interested target distance layer. These falsely chosen background edge pixels bring

in difficulties to segmentation tasks in edge layers at different object distance ranges. As

shown in Figure (3-4), these misassigned edges are close to each other and will be con-

nected together in morphological operations, thus leading to long noisy edges that cannot

easily be filtered by an edge length filter.

3.2.4 Distance-based Background Removal

In order to obtain ideal segmentation accuracy and reliability when background noise is

heavy, our distance-based target detection algorithm needs to remove background pixels

introduced by non-rigid background objects in our interested target edge layers. We first

identify the edge layers corresponding to backgrounds as shown in section 3.2.2. Then we

compare the background layer and edge layers at target distance ranges, and subtract the

common pixels from target edge layers. After these operations, edge pixels in categories 5

and 7 shown in Table 3.1 are removed, and only edge pixels in categories 1 and 4 remain.

The results of distance-based background removal for frames in Figure (3-1) are shown

in Figure (3-3). Figure (3-3) (a) and (b) respectively correspond the separated background

edge layers and target edge layer with disparity range 17-19. Figure (3-3) (c1) (c2) are the

result of removing background pixels from edge layers at given distance ranges, dispar-

ity 17-19. In other words, the common pixels that exist in both Figure (3-3) (a) and Fig-

ure (3-3) (b) are removed from Figure (3-3) (b). We have named background layers with two

disparity ranges 0-5 and 0-9 to be case (I) and case (II). The top and the bottom rows in Fig-

ure (3-3) respectively correspond to processes of distance-based background removal for

case (I) and case (II). Background noise in processed target layers in Figure (3-3) (c1) (c2)

is much less than those in the original separated target edge layers in Figure (3-3) (b1) (b2).

Most tree pixels (background) are removed while preserving all the pixels of target objects

including the ball.



The left and the right columns in Figure (3-5) respectively correspond to the results

of target segmentation for case (I) and case (II). Figure (3-5) (a) are the target edge layers

after background removals, and Figure (3-5) (b) - (d) show the results from morphological

operation, edge-length filtering, and target locating. The final segmentation results in Fig-

ure (3-5) (d) show the ability of our algorithm to suppress the influence of background

noise.

However, when eliminating background pixels to make the target pixels prominent, we

also lose some edge pixels or even pixels at the boundaries of target objects. For exam-

ple, some edge pixels in the heads of pedestrians are missing as shown in the comparison

between Figure (3-3) (b 1) (b2) and Figure (3-3) (c1) (c2). The chosen edge pixels are not

complete enough to preserve the full boundaries of target objects, leading to smaller final

segmented target regions than its real sizes. The captured region of the pedestrian in Fig-

ure (3-5) (d1) (d2) is even smaller than Figure (3-4) (d). Since the definition of background

layers for case (II) is more aggressive for case (I), background removal results for case

(II) eliminates more background pixels than for case (I), and also lose more useful pixels

than for case (I). Thus segmentation results for both cases are smaller than real sizes and

the segmentation results for case (II) are even smaller than for case (I). In summary, the

operation of removing background noise is at the cost of losing some target edge pixels. In

the next section, we will propose an algorithm to compensate for the information loss and

performance degradation.

3.3 Motion-based target segmentation

In order to regain the lost target pixels when background edges are being removed, we have

to expand shrunk segmentations by taking advantage of the similarity of motion vectors for

target objects in their distance-based edge layers.



Case 1 Case 2

(al) (a2)

(bl) (b2)

(c1) (c2)

(d1) (d2)

Figure 3-5: Distance-range-based segmentation results subject to background removal.
Case 1: Removed background: Disparity 0-5. Case 2: Removed background: Disparity
0-9. (a) Left/Right matching results at disparity range 17-19 (from Figure (3-2) for Fig-
ure (3-1) (a) (b). (b) Morphological operation results on (a). (c) Edge-length-based filtering
results on (b). (d) Segmented regions drawn on Figure (3-1) (a).



(a) For target edge layer (b) For full edge map

Figure 3-6: Comparison of motion vectors for distance-based target edge layer (after back-
ground removal) (a) and for the full edge map (b)

3.3.1 Similarity and saliency of motion vectors for target objects in

distance-based edge layers

In order to expand shrunk segmentations, we can take advantage of the similarity and

saliency of motion vectors for target objects in distance-based edge layers to improve the

performance of our distance-based target detection. This is a special feature for our sepa-

rated distance-based edge layers.

After separating distance-based target edge layers from the original edge maps, we can

compute motion vectors for all the chosen edge pixels, and plot them on the top of the

original video images. We observe that motion vectors for the same target objects are also

similar in their magnitude though their directions may vary. At the same time, motion

vectors for target object and non-rigid background noise can be clearly differentiated.

For example, for two continuous video frames in Figure (3-1) (a-d), we first obtain

Figure (3-3) (b) that shows target edge layer with disparity range 17-19. Then we plot the

motion vectors for pixels in that target edge layer in Figure (3-6) (a). The motion vectors

plotted on top of the original images provide the information that both the boy and the ball

are moving toward the left side of images. Motion vectors for the same target objects are

quite similar in magnitude and have significantly larger magnitude than the motion vectors

for pixels in non-rigid background noise.

When we talk about motion vectors, we do not have to assume that the objects are



moving. The magnitude of motion vectors for the same static targets should be similar.

Due to the impact of different distance ranges, motion vectors for close static target objects

are supposed to be much larger than for static background objects with large distances.

Motion vectors for static background objects that are far away are supposed to be small.

This observation holds true for most rigid objects and pedestrians.

However, due to noisy features for motion vectors, especially for non-rigid background

objects, the motion vectors for some non-rigid background pixels might also have large

magnitudes. If we have many pixels from non-rigid background objects, when plotting

together motion vectors for target objects and these background pixels, it would be hard

to differentiate the motion vectors for targets and background objects with large motion

vectors. In contrast, for pixels in the original edge maps shown in Figure (3-1) (e), we

also compute their motion vectors and plot them in the original images in Figure (3-6) (b).

Motion vectors in Figures (3-6) (a) and (b) are plotted in different adaptive scale for visu-

alization effect. We notice that the differences between motion vectors for target objects

and for noise are not clear and it is hard to distinguish target objects and surrounding back-

ground pixels based on motion vectors. Because of the noise introduced in computing

motion vectors for background pixels, it is difficult to accurately segment targets based

only on motion vectors.

The differences between Figure (3-6) (a) and (b) shows the advantages of our distance-

based edge layer separation. In our separated edge layers, motion vectors for targets and

objects have different magnitudes while the motion vectors for the same objects are similar

in its magnitude. Actually the motion vectors for static objects in the same distance ranges

are also similar. But we did not take advantage of this observation.

3.3.2 Expansion of segmentation region based on motion similarity

Since background removal process might eliminate possible target pixels when cleaning up

the distance-based target edge layers, the initial target segmentation in the cleaned target

edge layers might provide smaller target regions than their original sizes. But these initial

segmentation regions in Figure (3-5) containing edge pixels of the same objects can be used



as initial object segmentation seeds from which segmentation boundary boxes will expand

based on the similarity of motion vectors for the same objects.

When enlarging segmentation regions, we decide whether we accept new edge pixels

in the growing boxes by comparing the similarity of motion vectors for segmentation seed

boxes and for these new edge pixels in the neighborhood. The magnitudes of motion vec-

tors for new candidate edge pixels are compared with the average magnitude of motion

vectors for all edge pixels in segmentation seed boxes. If the difference is small, the can-

didate points are absorbed into the bounding boxes. Bounding boxes will keep growing as

long as they still absorb new pixels. When bounding boxes reject new pixels, the length of

the reject gap along the directions (up, down, left, and right) will be recorded. If the gap

length reaches a threshold, the bounding box stops growing in that direction. After such

region growing, we regain target edge pixels lost in background removal (in Section 3.2.4)

without introducing too much background noise.

Given two possible initial segmentation results for case (I) and case (II) in Figure (3-

5) (d1) (d2), the results of expanding operation for case (I) and case (II) are respectively

shown in the left and the right columns of Figure (3-7). Results for both cases capture

the accurate sizes of the small round ball and the whole body of the running boy, which is

not rigid. The final results for case (I) and case (II) in Figure (3-7) (c1) (c2) show similar

accurate bounding regions in spite of different initial segmentation seed regions in Fig-

ure (3-5) (dl) (d2), which indicates our segmentation results are not sensitive to the choice

of background disparity ranges.



Case 1 Case 2

(al) (a2)

(bl) (b2)

(c1) (c2)

Figure 3-7: Motion-based segment expansion results for cleaned target edge layers that
remove background pixels from target edge layers. (a) Bounding region expansion based
on aggregating pixels of similar motions in cleaned target edge layers. (b) Segmented
regions drawn on Figure (3-5) (c). (c) Segmented regions drawn on Figure (3-1) (a). Case
1 and case 2 respectively correspond to two definitions of background layers. Case 1:
background layer with disparity 0-5. Case 2: background layer with disparity 0-9.
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3.4 Discussion: the principle of layer-based and fusion-

based algorithms

For sensor fusion methods, in general, data from all sensors are of similar characteristics

and are sent to the final processing algorithms depending on mathematical methods, for

example, Kalman filtering, Fuzzy logic, Dempster-Shafer Evidential Reasoning. In the

process, the relationship among information from different sensors is typically ignored.

We have proposed a feature-level fusion scheme which instead communicates information

among sensors ahead of the final processing period. Special algorithms are developed to

take advantage of additional distance information from another process for better interpre-

tation of the environment. Distance range information is introduced into the segmentation

process for both target object detection and background noise removal. Distance range

adds an extra constraint during correspondence matching. Motion information is intro-

duced into the first motion-based correspondence matching and the motion-based target

region expansion.

Our proposed scheme is also layer-based. Based on disparity histogram derived from

binocular stereo images, we first define target disparity ranges and background disparity

ranges. We then apply our algorithm of distance-based edge-layer separation to split the

original full edge map into several edge maps of different distance ranges, including back-

ground layers. In the separated edge layers at given distance ranges, possible background

noise can be further removed to create clean edge layers in which target boundaries can be

detected. Sometimes, target boundaries might be smaller than their original sizes due to the

loss of target boundary pixels during background removal procedure. We compensate for

the information loss by applying motion-based target boundary enlargement to ensure or

even enhance the performance of segmentation process. Figure (3-8) summarizes the flow

chart of our segmentation algorithm.
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Two Continuous Binocular Video Frames

Binocular Disparity Histogram Detection

Target Dieparaty Background
RangeDisparity Range

Distance Based Edge Layer Separation

Target Boundary Detection

Initial Target Location

Moving Target Boundary Selection:

Motion Based Target Boundary Enlargement

Figure 3-8: Flow chart for segmentation algorithm

3.4.1 Fusion of depth and motion information

In our fusion scheme, motion stereo information is incorporated as an additional fusion

dimension in several tasks which takes advantage of the similarity of the objects' features:

pixel depth and motion vector.

To compute binocular disparity histogram, the first correspondence matching algorithm

specifically takes advantage of the similarities of target motion and disparity information

between binocular stereo images for the same targets. The proposed motion-based target

depth detection algorithm improves depth detection accuracy. High reliability could be

achieved if the detected target depth information can be combined with additional radar

information.

The motion information also helps to improve accuracy and reliability of segmentation

in the presence of heavy background noise. To expand interested target sizes, the algorithm

of motion-based expansion absorbs target neighborhood pixels with similar motion in sep-

arated distance-based edge layers, which implicitly assumes the similarities of depth and

motion for pixels for one target.

Finally, the additional motion information helps to identify static objects which will be

discussed in Section 3.4.2.
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3.4.2 Static-block elimination and moving-target detection

Segmentation algorithm based on both depth and motion constraints can improve the reli-

ability and robustness of differentiating and locating both static and moving targets in the

presence of noise.

If we want to detect moving targets, we can apply the motion constraint at an early

stage to eliminate static blocks. For multiple segmentation regions in Figure (3-4), we

calculate average magnitude of motion vectors for edge pixels in each segmentation region.

If the average magnitude of motion vectors for one segmentation region is much smaller

compared to motion vectors for other regions in the edge layers at given distance ranges,

the region might only contain static objects or noise in which we are not interested and

thus can be eliminated. the region might be from static objects or noise in which we are

not interested and thus can be eliminated. The results after eliminating static blocks are

shown in Figure (3-9) (a). It can be seen that two false boxes from the background regions

are removed. Thereafter, we can apply the motion-based expansion to aggregate pixels

of similar motions and enlarge small bounding boxes to their real sizes. The result of final

segmentation results are shown in Figure (3-9) (b), which fully captures two moving objects.

Motion-based region expansion can be directly applied to the original distance-based target

edge layers shown in Figure (3-3) (b), and there is no need to apply background removal to

such layers. The results are the same whether we apply background removal or not since

we already remove the error blocks based on the magnitude of their motion vectors. The

operation is shown as "moving target boundary selection" in Figure (3-8). It is presented in

a dashed box since this part is only for detecting moving objects. Under general situations

when we do not know anything about the movements of the targets, we need to apply

background removal to reduce possible false alarm due to background noise.

Many segmentation algorithms also locate moving objects based on their salient motion

vectors. However, as shown in Figure (3-6), the error of detecting optical flow makes

it difficult to identify the accurate boundaries of moving objects, especially in uniform

regions or in the presence of heavy background noise, thus capturing only part of a moving

object instead of the whole target region.

102



(a) (b)

Figure 3-9: Segmentation results based on static box removal in target edge layers and
motion region expansion. (a) The result of static block removal for Figure (3-4). (b) The
result of motion-based region expansion for seed regions from (a). Top row: Segmented
regions, the results of static block removal and motion-based expansion, are plotted on
Figure (3-4)(c), the results of Morphological operation and edge-length-based filtering.
Middle row: Segmented regions are plotted on Figure (3-4)(a), the original target edge
layers. Bottom row: Segmented regions are plotted on Figure (3-1) (a), the original image.
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3.4.3 Ability to detect multiple objects of different shape

The distance-based segmentation algorithm in Chapter 2 assumes that the longest edges

are located at objects' boundary. Since boundary edge pixels for vehicles can be easily

connected into long edge lines, the distance-based segmentation algorithm works well in

highway driving scenarios. The algorithms do not assume symmetry of detected objects.

For example, as shown in Figure (2-14) in Chapter 2, even if the car is not in a position that

leads to a symmetric image, our algorithm still captures the vehicle accurately.

In this chapter, we investigate whether the segmentation algorithm can achieve ideal

results for other rigid objects, such as balls, whose edge pixels cannot be easily connected

into long edge lines, and non-rigid objects, such as pedestrians. Because non-rigid objects

can change shapes, it is normally hard to detect the whole region of non-rigid objects based

only on motion.

Furthermore, it is usually hard to accurately segment objects of different sizes. It might

happen that either the smallest object is ignored or part of a large object is ignored. There-

fore, we consider the scenario where a child is chasing a ball as shown in Figure (3-1),

which can occur in the urban driving situations. Simple edge detectors cannot reveal ideal

edge lines along boundaries for either the ball or the pedestrian. Besides, it is not easy to

differentiate objects with different sizes based only on edge-length as we did before.

Our proposed depth/motion-based segmentation can effectively segment multiple ob-

jects of different sizes and objects without long boundary edges, including non-rigid tar-

gets, such as pedestrians and rigid targets, such as balls. The distance-based background

detection helps to remove background pixels and prevents random background pixels from

clustering and connecting into long edge lines. Thus the seed edge lines of interested tar-

gets, especially short lines in small targets, can still be captured in their distance-based edge

layers. With the help of motion-based expansion, object with various sizes can finally be

determined accurately. The algorithms accurately capture the region of the small ball, and

also capture the whole body of the boy whose posture changes in two consecutive frames.
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3.4.4 The features of our fusion algorithms

We have proposed a new depth-based target detection method based on fusing target depth

information and binocular stereo images. Our sensor fusion scheme allows information

communication among sensors before final processing to enhance the processing ability of

each sensor based on the close relationship between information from different sensors.

Sensors using additional information can offer better information than individual isolated

sensors. Our sensor fusion system instead has the two following characteristics:

Task Oriented We focus on task requirements for 3D segmentation, and come up with

a sensor fusion scheme on how to set up sensors, how to associate and fuse data

among various sensors. The sensor set-up and fusion method are tailored to the given

task. Task-related information from one sensor (coarse depth detection algorithm) is

used to tailor processing of another sensor (segmentation) in fusion systems and to

improve the reliability and accuracy of the informed segmentation algorithm.

Object Oriented Our method focuses on descriptive information, the distance and loca-

tion, on our interest targets, instead of the accurate 3D reconstruction for our targets

or information for other frame pixels. The original multi-target segmentation task is

decomposed into several segmentation tasks oriented around single-target in individ-

ual depth-based target feature layers. Such scheme greatly decreases computational

loads.

3.5 Summary

Our proposed fusion-based layer-based algorithm has the following characteristics:

1. Ability to deal with heavy background noise

When background is very noisy (which is usually the case), the concept of fusion-

based layer-based also helps to eliminate background edge pixels and enlarge the

segmentation region to compensate the lost boundary pixels. Our proposed algorithm

in Figure (3-8) significantly reduce the influence of background noise.
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2. Robustness to initial parameters

We use the same initial parameters to obtain both results in Figure (2-12) and Fig-

ure (2-14) in Chapter 2, i.e., the same parameters to locate objects at different dis-

tance ranges and in different video frames. The robustness to initial parameters is

important in intelligent transportation systems. Our algorithm does not need accu-

rate distance range information either. To detect vehicles in Figure (2-12), we could,

for example, also use disparity ranges, 23 - 25 or 22 - 25, to obtain the same result.

It means that we do not require high performance radar in order to detect correspond-

ing vehicles accurately, which offers us much flexibility. If the resolution of distance

ranges from low performance radars is not satisfying, the corresponding segmented

images can also help to improve the distance estimation.

3. Ability to work in fast changing environment.

Our algorithms can be implemented in parallel in hardware to increase the computa-

tional speed. The light computational load makes real-time implementation possible

in practical situations. So far, our focus is to improve the performance and robust-

ness in static image segmentation and environment interpretation while maintaining

low computational load. The satisfying accuracy of static image segmentation offers

a good basis for further information tracking in video sequences. The method does

not assume the appearance of same objects with similar shape and sizes in several

consecutive video frames. So it can be applied to situation when the dynamic scene

changes fast. Therefore our algorithms can quickly provide correct segmentation

results without any initialization time.

4. Potential to solve occlusion problems

Partial occlusion of one object by another in road scenes adds difficulties in segmen-

tation. Our distance-based segmentation algorithm would be effective in this situa-

tion because fusion of distance constraints and binocular correspondence constraints

helps to differentiate one object from occluded objects since these are in different

distance ranges.
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Chapter 4

Fusion-based Layer-based Pedestrian

Detection based on infrared cameras

In the past two chapters, we have applied the concept of fusion-based and layer-based

methodology to the 3D segmentation of obstacles of interest in visible images for day time

situations. In this chapter, we will apply the principle of fusion-based and layer-based

processing to detect pedestrians in infrared images for night time driving situations.

Automatic obstacle detection in both day time and night time is an integral component

of the dynamic interpretation of the environment. Indeed, automatic detection of pedestri-

ans at night has attracted more and more attention. Night-time driving is more dangerous

than day-time driving - particularly for senior drivers. Because depth perception, color

recognition, and peripheral vision are all impaired after sundown, three to four times as

many traffic deaths occur during night-time than day-time [31]. Around eighteen percent

of pedestrian fatalities happen between 12am to 6am. While there are only 28% total traf-

fic at night, the rate of serious accidents at night reaches as high as 55%. Furthermore,

people's visual capabilities deteriorate substantially as they age, as shown in Figure (4-1),

which compares the visual ability of a driver of age 60 with those of a driver of age 20. A

50-year-old driver needs twice as much light to see well as a 30-year-old[31].

Because pedestrians stand out as bright regions for infrared images, current night vision

systems used for infrared cameras provide a visual aid projected on a heads-up display to

enhance safety. However drivers have to switch attention from driving to read the displayed

109



Figure 4-1: Vision Degradation for Seniors. (Image Source: MIT Age Lab.)

information and to make judgment about road situations. It is likely for drivers to ignore

potential dangers or fail to respond in time. To improve the safety of night driving in the

long run, automatic environment understanding and warning has drawn increasing atten-

tion. Automatic pedestrian detection based on infrared images is envisioned so that drivers

can respond promptly without being distracted by added gadgetry. Nevertheless, pedes-

trian detection in infrared images is by no means trivial - many of the known difficulties

carry over from visible images, such as image variability occasioned by pedestrians being

in different poses. Furthermore, pedestrian detection is difficult because of poor infrared

image quality (low resolution, low contrast, few distinguishable feature points, little texture

information, etc.) and misleading signals.

Compared to the vast research on pedestrian detection based on visible images as sum-

marized in [39][40][41], work on infrared-based pedestrian-detection research has only

begun a few years ago.

We systematically compared different properties of visible and infrared images and

noted several unique features of infrared-based pedestrian detection. We investigated the

statistical properties of these features and now propose a novel layer-based fusion-based

shape-independent pedestrian-detection scheme including automatic pedestrian image size

estimation and multi-dimensional shape-independent classification. In Section 4.1, we first

discuss how we evaluate detection performance and define performance index, then review

previous work, analyze challenges associated with automatic pedestrian detection using

infrared images, and propose our fusion-based and layer-based design principles. In Sec-

tion 4.2, we describe our fusion-based layer-based automatic pedestrian segmentation. In
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Section 4.3, we discuss our fusion-based shape-independent multiple dimensional classi-

fication. In Section 4.4, we analyze three infrared image sequences using our proposed

scheme. Finally we will summarize and discuss the advantages of our design as well as

differences from conventional methods in Section 4.5.

4.1 Introduction

Pedestrian detection [35] [36] includes two phases: segmentation locates multiple regions

of interest (ROIs) from infrared images, and classification identifies pedestrians in the

ROIs. In this section, we first define a Performance Index to evaluate both segmentation

and classification processes, review the challenges and previous works for both processes,

and then introduce the general principles for our layer-based fusion-based scheme.

4.1.1 Performance Index

To evaluate segmentation performance, we define two new performance indices: segmenta-

tion side accuracy and segmentation side efficiency as shown in Figure (4-2) (a). Segmen-

tation side accuracy is defined as the square root of the ratio of the detected pedestrian

region area, Soerlap, over the entire pedestrian area, Spedestrian, which indicates how much

of the pedestrian region is captured. If, for example, the segmentation side accuracy is

50%, then the width and height of the detected region might be only half of the actual

pedestrian's width and height. Segmentation side efficiency is defined as the square root

of the ratio of the detected pedestrian area, Sveriap, over the entire ROI area, SROI, which

indicates how efficient the selection of the ROI region is. If, for example, the segmentation

side efficiency is 50%, then the width and height of the detected pedestrian region is only

half of the actual ROI's width and height.

Both performance measures lie in the range [0, 1]. The best segmentation performance

is achieved when both measures are 1, which means that the ROI and actual pedestrian

region overlaps completely. High segmentation accuracy with low efficiency indicates that,

while most pedestrian regions are detected, this is at the cost of unnecessarily large ROI

areas. Conversely, low segmentation accuracy with high efficiency indicates that the ROIs
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capture only a small portion of the pedestrians, though most ROI regions are within pedes-

trian regions.

Ideal ROC Boundary

Segmentation So -

Side Accuracy ~ -+ S I

Segmentation _ erlpvea

Side Efficiency SROI edestri
(a) I" ", a, Fs s (b)

Figure 4-2: Segmentation/Classification Performance Index Definition. (a): Segmenta-

tion side accuracy/efficiency definition. (b): ROC boundary/curve definition for multi-
dimensional-feature-based classification: false-alarm-rate (X axis) vs. detection-rate (Y

axis). Different points correspond to multi-dimensional-feature-based classification results

using different multi-dimensional thresholds. Solid curve is ROC boundary, the upper/left
boundary of all classification performance points. Dashed and dotted curves are ROC
curves for iD-feature-based classification.

To evaluate the performance for multi-dimensional-feature-based classification, for dif-

ferent choices of classification thresholds, we plot corresponding false-alarm/detection

rates as points in a 2D performance space (X axis: false-alarnrate/Y axis: detection-rate)

as shown in Figure (4-2) (b). We can choose 1D histogram-based or ID inertia-based classi-

fication, 2D histogram/inertia-based classification, or 3D histogram/inertia/contrast-based

classification with details in section 4.3.4. Performance points for multi-dimensional clas-

sification are scattered around as shown in Figure (4-2) (b). Classification performance im-

proves when the performance point moves toward the upper left area. However, if one point

is in the upper right direction of another point, we cannot easily compare their performance.

Thus, the upper/left boundary of classification performance points, as shown in solid curves

in Figure (4-2) (b), is used to demonstrate the classification ability of an algorithm, and is

called the receiver operating characteristics (ROC) boundary in this chapter. The ROC

boundary for ID-based classification degrades to the conventional ROC curve as shown by

the dotted and dashed curves in Figure (4-2) (b). All ROC curves/boundaries include two

points, (0,0) and (100%, 100%), which can be achieved by rejecting all or accepting all.

Obviously the best classification performance is in the upper/left corner -with a 100% de-
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tection rate and 0% false-alarm rate. The ideal ROC curve/boundary is a vertically flipped

"L" shape as shown in Figure (4-2) (b).

In this chapter, detection/false-alarm rates on the ROC curves are shown for ROIs rather

than for image frames. We do not plot any ROC curve for frame detection/false-alarm

rates since such curve also depends on segmentation performance and consequently does

not necessarily pass through the (100%, 100%) detection/false-alarm rate point, which is

different from typical ROC curves.

However, for the purpose of performance comparison with other published results, we

do calculate frame detection/false-alarm rates based on conventional definition in several

cases. To calculate the number of detected frames, we count frames in which all pedestrians

are detected, and empty frames (with no pedestrian) in which there is no false alarm.

4.1.2 Challenges and Previous works on Pedestrian Detection with In-

frared Images

Pedestrian detection using infrared images has its own advantages as well as disadvan-

tages [39] [40] [41] [42] when compared with detection using visible images. In general,

pedestrians emit more heat than static background objects, such as trees, roads, etc. In

far-infrared images, pedestrian brightness tends to be less affected by lighting, color, tex-

ture, and shadow information than it is in visible images, and is generally also somewhat

brighter than the background. There exist intensity similarity among arbitrary pedestrians.

Thus, pedestrians tend to stand out more against the background in infrared images than in

visible images.

However, infrared image intensities depend not only on object temperature but also

on object surface properties (emissivity, reflectivity, and transmissivity), surface orienta-

tion, and, wavelength. Infrared images have particular characteristics that lead to detection

difficulties. First, non-pedestrian objects, such as animals, vehicles, transformers, electric

boxes, roads, construction areas, light poles, etc., produce additional bright areas in infrared

images, especially in summer. These additional sources of image clutter make it impossi-

ble to reliably detect pedestrians based simply on their brightness. Secondly, the image
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intensities of a given object are not uniform. Pedestrian orientation, clothes, accessories

(such as backpacks), etc., all have an impact on the observed image intensity patterns.

Body-trunk areas are generally darker than head and hand areas, especially when pedestri-

ans wear heavy coats or carry backpacks. The upper parts of light poles appear brighter

than the lower parts because of contrast phenomena in typical far-infrared cameras. Non-

homogeneous optical properties add to detection difficulties. Thirdly, most infrared image

intensities have a smaller intensity range than do comparable visible images. This leads to

low image quality blur, poor resolution and clarity, low foreground/background contrast,

fewer feature points and less texture information, etc.

Thus, current infrared-based pedestrian-detection research [37] [39][40] [41] [42] [43] is

still limited. Both segmentation accuracy and classification reliability of early night vision

research need to be significantly improved for it to be of practical use [41] [40]. For ex-

ample, in winter, to have a false-alarm rate around 2.63% [41], the detection rate has to be

limited to only 35%. In summer, to have a 75% to 90% detection rate, the false-alarm rate

has to be raised to 100% [40] as shown in Figure (4-3) (a). Below we will discuss inherent

difficulties in two phases and then review related previous work.

Challenges and Reviews for ROI Segmentation

It is difficult to segment pedestrians in real-world video images captured by cameras mounted

on moving vehicles. Pedestrians have a variety of poses, sizes, and appearances, and the

background is changing rapidly as the cameras move through the environment. Many con-

ventional fast segmentation algorithms have been developed for stationary cameras, such

as background subtraction[44], motion calculation, and tracking. These methods assume

similar backgrounds or feature points, and need some initialization time.

Conventionally, segmentation based on depth information is more straightforward than

other methods, and multi-scale brute force searching can be avoided. However, binocular

infrared camera setup is not widely used in most night vision research, except by Tsuji

(2001) [371. There might be reliability concerns because of the properties of infrared im-

ages discussed above and the nodding movement of cameras on vehicles [42]. Besides,

high cost of far infrared camera might be another concern. Thus it is expected that, for
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now, pedestrian detection for intelligent vehicles will rely only on a single static image

instead of multiple-image-based (motion-based) algorithms.

If detailed pedestrian contours can be extracted, pedestrians can be identified by using

contour-based shape model [33][34] [35], such as pedestrian shapes hierarchy[35] or human

walking model[34]. Besides, human component features [45][35][46] [47] [48], such as skin

hue, eyes, faces, etc., also help when segmenting pedestrians in visible images. However,

the above well-known fast segmentation features are not applicable to far-infrared images

because of the images' unique properties.

It is also hard to segment pedestrians by grouping bright spots belonging to pedestrians

only based on their pixel intensities. Using one fixed brightness threshold, for example,

leads to several separated bright spots at both pedestrian regions and other noise sources

in background regions which are highly sensitive to the choice of brightness thresholds.

When template-shape-based multi-scale brute-force searching is introduced, as happens

in some night vision algorithms (as shown in Figure (4-3) (b)), segmentation ROI outputs

are all candidate-pedestrian patches of different sizes and aspect ratios, at multiple initial

locations.

Typically, several different pedestrian templates have to be used in order to deal with

a range of poses. The total number of ROIs for completely blind multi-scale brute force

searching is as follows:

"ROI =Zscale .center-pos -template (4.1)
oc nrow ncolumn "'scale * ntemplate

where nscale is the number of scales in estimating pedestrian sizes, ntemplate is the num-

ber of templates for pose matching, nicenter-pos is the number of initial ROI center posi-

tions that must be tried when testing at the ith scale. The variable int is propor-

tional to the image size(nrowncolumn). The large search space for blind searching is a

severe limitation.

Different segmentation algorithms take advantage of different features to decrease nROI

and to expedite the searching process. To decrease ncenter-pos, [41] searches infrared im-
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ages for bright and round regions as potential pedestrian heads. In [39] hot ROIs with

specific size and aspect ratio are searched based on the assumed symmetry property of

pedestrians and their brightness[1]. To decrease nscale, [411 and [39] assume flat roads

so that pedestrians' distance can be estimated based on pedestrians' vertical positions in

images. In [41], road surface boundaries are first detected in order to estimate pedestrian

size and height and impossible pedestrian size/position combinations are later removed.

In [39], infrared cameras are calibrated to build correspondences between image lines and

distances in the 3D world for pedestrian size estimation. [39] calibrates infrared cameras

to build correspondences between image lines and distances in the 3D world for pedestrian

size estimation.

No assumptions are made in [40] where one searches for only three pedestrian sizes in

a multi-scale brute force approach and its segmentation accuracy is limited compared with

[39] [41]. For real-world applications, segmentation algorithms need to further improve

speed and accuracy and make fewer assumptions on the driving environment.

Challenges and Review for Classification

In far-infrared images, pedestrians yield widely varying image patterns because of varia-

tions in pedestrian pose and the imaging complexities mentioned before. Among multiple

candidate image regions, differentiating pedestrians from non-pedestrian regions is diffi-

cult. Typically the decision is made based on the similarity between ROI regions and mul-

tiple pedestrian templates with various poses and appearances. Similarity can be computed

either directly or indirectly.

Typical direct methods compare image intensity pixel-by-pixel and compute the image-

intensity difference between two patches, i.e., the Frobenius norm of image pixel intensity

differences. The classification methods depend heavily on shape matching. As a result

they are sensitive to segmentation errors and variations in pedestrian poses. A template

probabilistic model is defined in [40] to encode the shape information of pedestrians and

the variations that the shape can undergo by describing the possibility of foreground and

background at each pixel based on training data. In [39] pedestrians are identified through

matching candidates with a simple model that encodes morphological characteristics of a
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pedestrian. The shape-dependent filter removes candidates that do not present a human

shape or do not have regions as bright as expected for a pedestrian.

For indirect similarity comparison, shape-dependent pedestrian-intensity-arrays are used

to train classifiers to capture the similarity between pedestrian training samples and ROIs,

for example, Support Vector Machine (SVM) [36] [41], Neural Network [47][38], poste-

riori detection (including polynomial classifiers, multi-layer perceptrons, and radial-basis

functions), etc. [41] proposed SVM classifiers for three types of pedestrians for infrared

images.

These brightness-similarity-comparison-based classification methods are shape-dependent,

and might miss pedestrians with unusual poses even if multiple pedestrian-pose templates

or training samples are used. In summary, speed, reliability, and performance robustness

to pose-changes and segmentation errors are serious concerns for real-world night vision

systems.
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Figure 4-3: Algorithm and Performance Comparison for Different Pedestrian-Detection
Methods. (a): Detection Performance Comparison. (b): Detection Algorithm Comparison.
(c): Default Pedestrian Template for MIT Shape-Independent Method. Image size: 58 x 21.
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4.1.3 The Methodology and Principle for Fusion-based Layer-based

Shape-Independent Pedestrian Detection

Because of the above-mentioned difficulties involved in shape-dependent and/or brute-

force-searching-based methods, the performance of present pedestrian-detection systems

is limited. As shown in Figure (4-3) (a), in the summer, in order to reach 75% and 90%

of detection rate, the false alarm rate reaches 100%. In the winter, with low false alarm

rate 2.63%, the detection rate is around 35%. To improve the performance, we propose a

layer-based fusion-based shape-independent automatic pedestrian detection method with

straightforward implementation. Our layer-based segmentation algorithm first horizontally

divides a whole image into several vertical stripes (from top to bottom in the images) that

might contain candidate pedestrians through projection-based horizontal segmentation, and

then searches for pedestrians vertically within these stripes through brightness/bodyline-

based vertical segmentation.

Our fusion-based classification algorithm defines multi-dimensional histogram-, inertia-

and contrast-based classification features. The novel classification features are shape-

independent, complementary to one another, and characterize the statistical similarities of

image patches containing pedestrians with different poses. Such feature vectors can also

capture the statistical differences between pedestrian of different poses and non-pedestrian

regions in infrared images.

Figure (4-3) (b) presents the major differences between our layer-based shape-independent

methods and conventional shape-dependent methods. First, our segmentation algorithm

does not make constraining assumptions about the background, for example, flat roads;

thus our results are very general. The "horizontal-first, vertical-second" layer-based seg-

mentation algorithm avoids brute force multi-scale searching by automatically determin-

ing horizontal locations or horizontal bounding regions for candidate pedestrians. Sec-

ondly, our multi-dimensional classification needs only one generic pedestrian template as

shown in Figure (4-3) (c) with size 58 x 21 (details in Section 4.3). The similarity compar-

ison is based on the unique statistical properties of far-infrared images that we discovered

through investigating the differences between visible and infrared images [42], which is
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shape-independent. Thirdly, the whole detection scheme focuses on improving combined

segmentation/classification systems and balances the complexity and performance of two

subsystems instead of maximizing one process while sacrificing the other. This is because

accurate segmentation can ease the classification task and robust classification can tolerate

segmentation errors.

The classification performance comparison is shown in Figure (4-3) (a). For pedestrian

detection in winter, we achieve a higher detection rate when we set the false-alarm rate

to be similar to other available published results. For summer, we achieve a lower false-

alarm rate when we set the detection rate to be similar to other available published results.

The technical details about our segmentation and classification algorithms are discussed in

Sections 4.2 and 4.3 respectively.

4.2 Automatic Pedestrian Segmentation

As mentioned in 4.1.2, conventional template-shape-based segmentation involves searching

with computational load that is proportional to image areas. We invented a new layered-

based horizontal-first, vertical-second segmentation scheme involving only 1D searching in

vertical direction with computational load that is proportional to image sides. The method

first horizontally separates an entire image into several vertical stripes (from top to bottom

in the images) which might contain candidate pedestrian regions, and then searches for

pedestrian regions vertically within the corresponding image stripes. Thus search space

and computational load are reduced significantly. In this section, we will respectively in-

troduce our horizontal segmentation algorithm based on bright-pixel-vertical-projection

curves, and vertical segmentation based on brightness/bodylines.

4.2.1 Horizontal Segmentation

In this subsection, we will first define the bright-pixel-vertical-projection curve, then ex-

plain how and why we can take advantage of the curve to split an image horizontally into

several vertical stripes that help to determine pedestrians' horizontal locations or bounding

regions.
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Bright-pixel-vertical-projection Curves

For an infrared image, we define its bright-pixel-vertical-projection curves as the number

of bright pixels in image columns versus their corresponding horizontal positions. To count

bright pixels, an intensity threshold is used, which is adaptively defined as follows:

Bright Pixel Threshold = max(Image Intensity) - Intensity Margin (4.2)

where the variable Intensity Margin is a fixed constant for different video sequences. Typi-

cally the bright-pixel-vertical-projection curves can be divided into several bumps or waves

with rising left curves and falling right curves, as well as flat regions with near zero height

whose corresponding image stripes have no bright pixel, as shown in Figure (4-4) (b). Con-

stant intensity margin used in Equation (4.2) is set to be large. Thus, the adaptive bright

pixel threshold is small. This is to ensure that the image columns containing pedestrians

have non-zero projection in the bright-pixel-vertical-projection curves.

The transitional locations of projection waves are insensitive to the choice of brightness

thresholds or "intensity margin." Figure (4-4) (a) shows the variation of projection curves

corresponding to two different brightness thresholds. Though the height and shape of the

waves in the curves will change, the locations of transitional waves, steepness and relative

height of transitional peak from background regions to pedestrian regions are not affected

by different choices of brightness thresholds. We apply the same "intensity margin" for

both winter and summer sequences.

Projection curves have the following special properties to help with pedestrian detec-

tion. Each pedestrian image will be captured in one image stripe corresponding to one wave

in the projection curves. Such statements hold due to the following observations. First, for

typical real-world far-infrared images, image columns passing through pedestrian regions

tend to encounter many more bright pixels than neighbor columns passing through back-

ground regions. Secondly, columns passing pedestrians' head-areas might contain more

bright pixels than their neighbor columns passing shoulder or limbs, which lead to the

highest peak in bright-pixel-vertical-projections. Thirdly, the image stripe containing one



pedestrian is narrow, and the number of bright background pixels in each column can be

treated as more or less constant.

Therefore, it is rare for one pedestrian image region to correspond to two different

waves. The transition peaks in the projection curves between background regions and

pedestrian regions are much higher and steeper than other waves in the projection curves.

In most cases, the width of the pedestrian-image-region is equal to the width of the cor-

responding wave as shown in Figure (4-4) (a) (b), while the central horizontal locations for

pedestrian regions normally correspond to wave peaks in the projection curves.

The above feature also holds when pedestrians occlude. Specifically, columns pass-

ing pedestrians' head-areas correspond to transitional peaks of for bright-pixel-vertical-

projection curves. As shown in Figure (4-4) (a), for two most left pedestrians, one person

partially occludes another. We still obtain two separate waves that can help us to differ-

entiate two different pedestrians. If two people are too close to each other, we might treat

both of them as one person. It would not lead to serious safety concerns as for applications'

purposes.

The features of the defined curves are insensitive to the choice of brightness thresholds.

As shown in Figure (4-4) (a), the horizontal locations and width of waves corresponding

to pedestrians are robust to two different choices of brightness thresholds and the issues

mentioned in Section 4.1.2.

Projection-based Horizontal Segmentation Algorithm

Based on the above properties of the bright-pixel-vertical-projection curves, we can seg-

ment an image horizontally into several image stripes (as shown in the bottom row of

Figure (4-4) (b)), some of which contain individual pedestrians and roughly determine can-

didate pedestrians' horizontal locations or horizontal bounding regions. The procedure is

as follows:

1. Use Equation (4.2) and choose an adaptive brightness threshold. Record the number

of bright pixels in each column in the bright-pixel-vertical-projection curves.

2. Automatically search for the starting points of all rising curves (wave-start points)

122



and the ending points of all falling curves (wave-endpoints).

3. Separate the bright-pixel-vertical-projection curves into several waves by pairing

wave-start points and wave-endpoints, and ignoring flat regions of zero height.

4. Record image stripes corresponding to these waves.

As mentioned in section 4.1.2, the hot objects in background regions in summer will

produce many bright pixels in infrared images. Such background brightness "noise" leads

to the following different properties of projection curves for winter and summer images, as

shown in Figure (4-4) (a) (b). First, in summer, waves corresponding to pedestrians might

not necessarily have higher peaks than background waves, and background "noise" may

also produce additional individual high wave peaks in projection curves as shown in Fig-

ure (4-4) (b). For example, image regions containing light poles will bring in extra waves

which appear narrow and high. These extra individual waves would add extra candidate

locations for pedestrians that can be later removed during classification, but they would not

affect segmentation results for real pedestrians. Secondly, under complicated urban driving

scenarios in summer, as shown in Figure (4-4) (b), pedestrians and background brightness

"noise" may be spatially proximate and their projection thus may merge into one wave,

which is the case for the second pedestrian from the left in Figure (4-4) (d). For these cases,

the additional brightness noise makes waves in projection curves wider than the actual

pedestrian image width. Such situations would not happen for winter sequences (exam-

ple: Seq l shown in Figure (4-17) (al)) and summer sequences in suburban areas (example:

Seq2 in Figure (4-17) (b1)) with sparse foreground objects. In other words, pedestrian re-

gions are less likely to be grouped with other "hot" foreground regions. However, in either

cases, pedestrians will still be fully captured in individual horizontally separated stripes.

So far, we have presented a novel projection-based pedestrian pre-segmentation algo-

rithm that horizontally separates infrared images into several image stripes that may contain

pedestrians. In the next subsection, we will discuss how to search pedestrians' vertical lo-

cations in segmented image stripes.

123



4.2.2 Vertical Segmentation within Horizontally Segmented Image Stripes

Two vertical segmentation algorithms will be presented. The first is a brightness-based

method (Section 4.2.2) that works best in winter and suburban situations where most seg-

mented image stripes for pedestrians reflect the true width of pedestrian-image-regions.

The second is a bodyline-based method (Section 4.2.2) for more complicated scenarios

where the image stripes containing pedestrians might be wider than the pedestrian images'

true width. These two methods provide complementary results that work best in different

scenarios, and the results from both methods are input to the classification step to further

improve reliability and accuracy.

Vertical Segmentation based on Brightness

After obtaining horizontally segmented image stripes from Section 4.2.1, the vertical posi-

tions of candidate pedestrian regions can be estimated by the highest and the lowest vertical

locations of bright pixels within these stripes. This method is applicable when the estimate

of the pedestrian region width is reasonably accurate. In this case, most brightness-based

vertical segmentation results for both winter and summer data turn out correctly as shown

in Figures (4-4) (c) and (d). Our classification algorithm has the ability to tolerate seg-

mentation errors for pedestrian ROIs, such as the inclusion of extra background regions

or conversely missed portions, as shown in the first and the fourth pedestrians from the

left in Figure (4-4) (c). Non-pedestrian ROIs have bright pixels at the boundaries, which

facilitates the inertia-based classification algorithm to be described later in Section 4.3.2.

When segmentation stripes are much wider than the actual pedestrian image size, ROIs

may be much larger than the true width, as occurs for the third pedestrian from the right in

Figure (4-4) (d). A bodyline-based vertical segmentation algorithm (below) is proposed to

improve segmentation performance for such difficult situations.

Vertical Segmentation based on Bodyline

In this method, we refine the pedestrian width estimation by detecting pedestrian regions'

left and right boundary points within segmented image stripes. Thus we can further search
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for pedestrians' vertical positions based on a geometric pedestrian-size model as described

next.

For each row of image stripes, we define the portion of image rows within pedestrian

regions as the pedestrian-bodyline, and define prominent feature points where image rows

meet pedestrian boundaries as pedestrian-bodyline terminals. Figure (4-5) (a) presents

one bodyline example in the waist area of a pedestrian image. Below we will describe

in detail how to detect bodylines, and how to vertically segment pedestrians within image

stripes.

Step 1 Pedestrian Horizontal Bodyline Detection.

Because of the features of infrared images, in each row within segmented image

stripes, the left pedestrian-bodyline terminals are the points where image intensities

change from darkness to brightness most rapidly. Similarly, at the right pedestrian-

bodyline terminals, image intensities change from brightness to darkness most rapidly.

To obtain pedestrian-bodyline terminals, we calculate intensity variation along the

horizontal direction based on the modified Sobel method as below:

AI(x,y) = [I(x+1,y+ 1)-I(x- 1,y+1)

+ 21(x+1,y)-2I(x-1,y) (4.3)

+ I(x+I1,y-1)-I(x-1,y-1)]/6

where (x, y) are pixel coordinates, I(x, y) is image intensity, and AI(x, y) is hori-

zontal gradient.

Within horizontal segmentation stripes, we first calculate horizontal-gradient for all

pixels in each row, then we search in the left half of the row for a point with the largest

horizontal-gradient as the candidate for the left bodyline-terminal points. We skip the

row where horizontal-gradient for all pixels is smaller or equal to zero. Similarly, we

determine the right bodyline terminal with the most negative horizontal-gradient in

the right half of the row. Thus we obtain the two outmost boundaries and a body-

line for candidate pedestrians in each row within horizontal segmentation stripes.
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For segmented image stripes shown in Figure (4-4) (b), Figure (4-5) (b) preserves all

pixels within detected candidate bodylines, in which pedestrians stand out and the

background pixels surrounding the pedestrian regions have been removed. It may

happen that some boundary points belong to other "hot objects" next to the pedes-

trians, and we might not obtain a clear bodyline at every row of pedestrian regions.

However, as long as we can obtain one bodyline, in the next step we can still estimate

the candidate pedestrian's image location based on the bodyline information.

Step 2 Pedestrian Location Estimation based on Pedestrian-Bodyline Matching

In Figure (4-5) (a), we propose a geometric pedestrian-size model that defines one

pedestrian's size and location based on the location and length of a waist-bodyline.

The reason we use waist-bodylines is that the contrast between human waist areas

and their local background neighborhoods tends to be robust to different poses of

walking pedestrians. Horizontal waist-bodylines are more likely to be detected and

are not easily missed under a variety of conditions. Using the size model, we can

define multiple candidate pedestrian regions by assuming each detected bodyline

to be the waist-bodyline of a pedestrian. Figure (4-5) (c) provides an example of

bodyline-based pedestrian location estimation. A few estimated candidate pedestrian

regions are marked.

Step 3 Histogram-based Bodyline/Pedestrian Searching

Among multiple candidate regions defined previously within a vertical image stripe,

there is at most one actual pedestrian image region. Choosing one candidate pedes-

trian region is essentially a classification problem. We first use one histogram-based

classification feature to search for the best candidate within each image stripe. After

obtaining one candidate for each image stripe, we further determine whether it is an

actual pedestrian image using multi-dimensional classification features explained in

the next section. Details of the histogram-based feature and other classification fea-

tures will be explained in Section 4.3. It is worth mentioning that we do not need to

use a threshold in the searching process since we choose ROIs that are closest to our

default pedestrian template (Figure (4-3) (c)) in histogram feature space.
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For initial horizontally segmented image stripes in the bottom row of Figure (4-4) (b),

the bodyline-based vertical segmentation result is shown in Figure (4-5) (d), which provides

more accurate segmentation results than the brightness-based segmentation results shown

in Figure (4-4) (d) where background noise causes segmentation errors.

As shown in Figure (4-3) (b), layer-based automatic pedestrian segmentation starts with

projection-based horizontal segmentation. Within segmented image stripes, brightness-

based vertical segmentation assumes that pedestrian pixels are brighter than the background

pixels in the image stripes. The bodyline-based method assumes there exists clear bright-

ness contrast between pedestrian image regions and their horizontal-neighbor-regions, and

searches for the left-positive/right-negative edge-pairs with high horizontal-gradient in or-

der to detect potential pedestrian bodylines and estimate candidate pedestrian positions.

Both methods automatically estimate pedestrians' sizes and avoid multi-scale brute-force

searching. The first method is straightforward and works reliably in suburban summer cases

as well as winter cases. The second method works in complicated urban driving situations.

Neither method needs to assume flat roads and both can work in a general driving situation.

In real-world applications, both segmentation results will be fused in the classification step.

Conventional segmentation involves brute-force searching within an entire image based

on multiple templates and produces multiple initial ROIs as in Equation (4.1). Instead,

bodyline-based segmentation involves only searching among multiple bodylines within

horizontally segmented image stripes and the number of produced initial ROIs is as fol-

lows:

nbodyline ROI ~image stripenbodyline (4.4)

where nimage stripe is the number of horizontally segmented image stripes and is usually less

than 20 (much less than the number of image columns), and nbodyline is the largest number

of bodylines in segmented image stripes and is much less than the number of image rows.

Thus nbodyline ROI is significantly less than estimation nROI in Equation (4.1). The number

of ROIs for brightness-based segmentation is equal to nimage stripe. In summary, our vertical
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segmentation produces fewer candidate ROIs.

4.3 Classification

To recognize pedestrians, conventional classification is appearance-based and relies on

the comparisons between ROIs and multiple templates. The meothod is shape-dependent,

which is subject to segmentation errors and pose-changes as mentioned in Section 4.1.2.

For robustness and reliability, we propose innovative classification that is based on compar-

ing the similarity between multi-dimensional shape-independent feature vectors for ROIs

and feature vectors for a single generic pedestrian template. All ROIs are normalized by the

area of our template so that our classification features are size-independent. In this section,

we will describe histogram-, inertia-, and contrast-based classification features individu-

ally, propose our multi-dimensional classification methods, and compare the classification

ability of our defined shape-independent features with conventional shape-dependent fea-

tures.

4.3.1 Histogram-based Classification

In this subsection we discuss the brightness histogram similarities among pedestrian re-

gions with various poses, sizes and appearances, and introduce the histogram-feature's

ability to separate pedestrian/non-pedestrian ROIs based on one generic pedestrian tem-

plate.

Statistical Similarity of Brightness Histograms for Pedestrian ROIs

In Section 4.1.2, we have mentioned that pedestrian regions in infrared images are com-

plex and not homogeneous. However, when pedestrians change pose, the intensity patterns

should be consistent for similar body areas in different infrared images. Because of sim-

ilar body temperatures and similar pedestrian surface properties, this observation applies

not only for the same pedestrian in different poses, but also for different pedestrians with

different gender, clothing, and in different seasons. Thus, there exists the similarity among
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image-brightness-histogram curves for pedestrian patches containing different people, with

different poses, and in different seasons. This property is demonstrated in the histogram

curve comparison in Figure (4-6). Figure (4-6) (aO) is our default pedestrian template cut

from a summer sequence. Figure (4-6) (al) shows seven examples of pedestrian ROIs from

four winter images, in which pedestrians of different gender have different poses. Figure (4-

6) (bl) demonstrates the similarity among the brightness-histogram curves for the seven

pedestrian regions. Figure (4-6) (ci) compares the average brightness-histogram curves of

the above seven pedestrian regions from winter images (solid line) with the histogram curve

for the pedestrian template from summer images (dashed line) in Figure (4-6) (aO).

We further demonstrate statistical histogram similarity for pedestrian regions through

the variation of brightness-histogram curves from 911 rectangular pedestrian regions in

seven different driving sequences. Figure (4-7) (a) shows examples of pedestrian appear-

ances and sizes in two sample sequences. We normalize all pedestrian patches to a standard

size [58 x 21] (1218 pixels) before calculating their smoothed brightness-histogram curves,

i.e., h 0 1 (i), which is the number of pixels with brightness i for mth ROI patch. For a

pair of histogram curves, hm (.) and h" (.), Figure (4-7) (b) defines the histogram variation

curve, i.e., the distribution of histogram variation value hm (i) - h" (i) for all brightness i.

In this way, the variation of all 911 histogram curves hO from their average histogram

hmean is presented as the collective histogram variation curve in Figure (4-7) (c), which

resembles a Gaussian shape (of zero mean) with certain skewness. We can see that most

histogram shape variation is within [-10, 10] pixels, which is only 8.2% of the largest vari-

ation (1218 pixels). This fact provides us statistical evidence that histogram curves for

pedestrian regions are very similar.

The Classification Ability of Histogram Feature

Figure (4-6) (b2) shows the comparison among all histogram curves for non-pedestrian

ROIs in Figure (4-6) (a2), and Figure (4-6) (c2) shows the comparison between the average

histogram curves for these non-pedestrian ROIs and the brightness histogram of a sum-

mer pedestrian template (see Figure (4-6) (aO)). The results for non-pedestrian, ROIs shown

in Figure (4-6) (b2) (c2) are drawn in the same scale for pedestrian ROIs as shown in Fig-
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ure (4-6) (bi) (c1). The comparison between Figure (4-6) (b) and Figure (4-6) (c) reveals that

histogram features for pedestrian/non-pedestrian ROIs are different in most cases. Because

of the histogram similarity for pedestrian regions, as well as histogram differences between

pedestrian ROIs and non-pedestrian ROIs, pedestrians can be identified through histogram-

similarity comparison between ROIs and one generic pedestrian template. Without losing

generality, we choose Figure (4-6) (aO) as the generic pedestrian template. The histogram

difference index is defined as the weighted summation for the square of brightness his-

togram difference at each brightness i as below:

Histogram Difference = a E2 w(i) * [hROI(i) - htemplate(i)] 2  (4.5)

where hROI and htemplate are histogram curves for ROIs and a template respectively, a

is the normalization coefficient, w (i) is weighting function that is fixed for all classifica-

tion calculations. Typically segmentation errors might introduce extra dark background or

bright regions, leading to higher histogram curve peaks at small/large brightness values.

w(i) is set to be small when brightness i is very dark or bright in order to reduce the impact

of segmentation errors. The expected value of histogram difference for pedestrian ROIs

is 0. The larger the histogram difference for an ROI, the less likely the ROI is to be a

pedestrian.

4.3.2 Inertia-based Classification

The inertia-based classification feature is based on the similarity of inertia of pedestrian

regions, and is not sensitive to the changes of poses, i.e., shape-independent. We define the

relative inertia value for one image patch as:

Relative Image Inertia = 6 I(x, y)d(x, y))
>x,y Itemplate(x, y)dtemplate(x, ,)2 (

where I(x, y) is the pixel brightness values for image patches after size normalization, and

d(x, y) is the distance from a pixel to the image center as shown in Figure (4-8) (a). Image
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inertia value is the summation of rotation momentum with respect to the image center for

all pixels divided by a scaling factor. The scaling factor, the denominator in Figure (4-

6) (aO)), is the summation of rotation momentum for all pixels in our generic pedestrian

template patch. Relative inertia values for pedestrian patches with different poses should

be close to 1. In the next two subsections, we will discuss the statistical similarity among

all pedestrian ROI inertia values, and demonstrate the feature's classification ability.

The Statistical Similarity of Pedestrian ROI Inertia Feature

For the 911 pedestrian regions mentioned in Section 4.3.1 (examples shown in Figure (4-

7) (a)), the distribution of their inertia-values is plotted in Figure (4-8) (b), which resembles

Rayleigh distribution and shows that inertia values are centered around the feature's ex-

pected value 1. Around 70% of pedestrian regions have inertia values between 0.8 - 1.2,

and around 94% of inertia values vary between 0.6 - 1.4. The average inertia value is 1.03.

Figure (4-8) (b) demonstrates inertia similarity for pedestrian regions in infrared images.

The Classification Ability of Inertia Feature

The inertia-based feature helps to remove classification ambiguity based on the histogram

feature alone. When pedestrian/non-pedestrian ROIs produced by our segmentation algo-

rithm have similar brightness histograms, ROIs have similar numbers of bright pixels, some

of which must situate around image boundaries. For typical pedestrian ROIs, most bright

pixels are found near the middle of the image patches and only a few pixels, at heads,

hands, and feet areas, touch horizontal and vertical boundaries. For typical non-pedestrian

ROIs, bright pixels are less centralized with more bright pixels near horizontal and vertical

boundaries, leading to larger inertia values. As shown in Figure (4-8) (a) the inertia value

for the right non-pedestrian patch is larger than for the left pedestrian patch despite their

similar histogram feature.
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4.3.3 Contrast-based Classification

In infrared images, there exists brightness contrast between pedestrian regions and their

horizontal and vertical neighborhoods. The horizontal brightness contrast has been used

in our segmentation algorithm to obtain pedestrians' left/right boundaries. The vertical

brightness contrast is not directly used to identify pedestrians in segmentation. Instead, it

is used to identify non-pedestrian as follows.

We evaluate the vertical brightness contrast for an ROI by comparing the vertical edges

for an ROI region and for its vertical neighborhood regions. As shown in Figure (4-9) (a) (b),

for a rectangular ROI region, its upper/lower vertical neighborhood region is defined as

the rectangular region that is directly above/below the ROI with the same column width

and half the ROI height. Vertical edges are defined as the image pixels with horizontal-

gradient (defined in Equation (4.3), Section 4.2.2) larger than a constant threshold. The

average number of vertical edge pixels in each row of a rectangular region is defined as the

region's row-edge index. The row-edge indices for an ROI and its upper and lower vertical

neighborhoods are, respectively, called ROI row-edge index, upper row-edge index, and

lower row-edge index. These three variables are the components of our defined ROI

contrast-feature vectors. Rich texture leads to a large row-edge index. For an ROI, the

comparison between its ROI row-edge index and upper/lower row-edge index provides

vertical texture contrast information between the ROI and its vertical neighborhoods.

For typical infrared images from real driving scenes, the vertical neighborhoods of

pedestrian ROIs are narrow backgrounds since image stripes containing one pedestrian are

narrow, and usually there is no pedestrian at the top of another pedestrian region within one

segmented image stripe. The number of vertical edge pixels within narrow backgrounds is

limited, and the upper/lower row-edge index for pedestrian ROIs should not be large.

Specifically, lower vertical neighborhoods beneath pedestrian ROIs contain road areas,

in which we cannot find two long vertical lines or many vertical edge pixels. There is

at most one vertical line produced by lane markers within narrow image stripes because of

camera perspective, thus the lower row-edge index for pedestrian ROIs should not be larger

than 1. If this is not the case, non-pedestrian ROIs can be identified since pedestrian ROIs
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present vertical contrast between ROIs and their lower neighborhoods.

Similarly, in most cases, the upper row-edge indices for pedestrian ROIs should be

smaller than 2 since their upper vertical neighborhoods generally contain sky, buildings,

trees, etc., and produces less than two adjacent vertical long edges within the narrow stripes

of infrared-images. The exception is when pedestrians stand right in front of "hot" light

poles, which makes their upper row-edge indices close to 2. In this case, we check their ROI

row-edge indices, which should be smaller than 2 for pedestrian ROls, because some pedes-

trian image rows do not have any vertical edge pixel and other rows contain at most two

vertical edge pixels, i.e., pedestrian-bodyline terminals. Thus, if both the upper row-edge

indices and the ROI row-edge indices are large, there is no vertical contrast for ROIs, and

non-pedestrian ROls can be identified. The selected non-pedestrian ROls are very likely to

be in the middle sections of light poles, which is the case for all selected non-pedestrian

ROs shown in Figure (4-9) (a) that correspond to poles in Figure (4-5) (d). The ROI row-

edge index is used to remove the ambiguity between non-pedestrian ROIs containing light

poles and pedestrian ROIs in front of poles.

In summary, pedestrian ROIs and their vertical neighborhoods should present verti-

cal contrast and lead to small upper/lower row-edge indices. Though we cannot identify

pedestrian ROls simply based on vertical contrast, a few non-pedestrian ROIs can be iden-

tified and removed when vertical contrast does not exist based on one of the two following

conditions:

Case I:

Lower row-edge index is larger than 1.

Case II:

Both upper row-edge index and ROI row-edge index are close to or larger than 1.5.

The identification process is called contrast-based non-pedestrian ROT-removal. Fig-

ure (4-9) is an example of how we identify non-pedestrians among ten ROs in Figure (4-

5) (d) based on their vertical-neighborhood-contrast property. Rectangular regions for ROls,

their upper/lower neighborhood regions, and the corresponding image vertical edge pix-

els are plotted in Figure (4-9) (a) (b). Figure (4-9) (a) contains all selected non-pedestrian

ROIs through contrast-based non-pedestrian ROI-removal. For each of them, the vertical-
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neighborhood-contrast is vague since there are two clear vertical edges in either the upper

or lower vertical neighborhoods, leading to large upper/lower row-edge indices. In this

example, the identified non-pedestrian ROIs in Figure (4-9) (a) are all light pole regions as

shown in Figure (4-5) (d). For remaining ROIs in Figure (4-9) (b), including all 3 pedestrian

ROIs and 3 non-pedestrian ROIs, the upper/lower row-edge indices are small and we need

histogram/inertia classification to separate them.

It is worth mentioning that for frames of the sequence we use one large constant thresh-

old to determine vertical edges based on their horizontal-gradient. Usually the performance

of contrast-based non-pedestrian ROI-removal is robust to threshold choices since the im-

age contrast between ROIs and their neighborhoods is not sensitive to the threshold choices.

In the case that a threshold is too large, both ROI row-edge indices and upper/lower row-

edge indices for non-pedestrian ROIs are small, and the non-pedestrian ROIs cannot be re-

moved based on the two above conditions. In this case, we can use other histogram/inertia-

based classification to identify non-pedestrian ROIs.

Statistical Distributions of Contrast-based Classification Feature

To demonstrate the properties of ROI contrast-feature vectors, Figure (4-10) (a) and Fig-

ure (4-10)(b), respectively, plot the upper-contrast-index, i.e., ROI row-edge index (X

axis) vs. upper row-edge index (Y axis), and the lower-contrast-index, i.e., ROI row-edge

index (X axis) vs. lower row-edge index (Y axis), for the ROIs from Seq3 shown in Fig-

ure (4-17) (c1) (details in Section 4.4, Table 4.1). Feature points for pedestrian ROIs and

non-pedestrian ROIs are labeled with circles and dots, respectively. As expected, the up-

per/lower row-edge indices for all pedestrian ROIs are not larger than 1, especially for the

lower vertical neighbor regions. Among 248 pedestrian ROIs (circle-points) in Figure (4-

10) (a) and (b), most have zero upper/lower row-edge indices. Only 5 pedestrian ROIs

(2.02 %) have vertical edge information underneath that leads to non-zero lower row-edge

indices (within (0, 1]), and only 13 pedestrian ROIs (5.24 %) have vertical edge infor-

mation in the upper neighborhoods that leads to non-zero upper row-edge indices (within

(0, 1]). The average upper/lower row-edge index is 0.0166/0.0083. The largest ROI row-

edge index is 1.667. On the other hand, we can see that points for non-pedestrian ROIs in
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the upper-contrast-index and the lower-contrast-index 2D space are much more diversified.

The statistical contrast property for pedestrian/non-pedestrian ROIs demonstrates that we

can identify non-pedestrian ROIs by checking their contrast index based on the two given

conditions, and our selected threshold is conservative.

4.3.4 Multi-dimensional Classification Feature

Among the three defined classification features, we can directly use ID histogram-based

or 1 D inertia-based classification to determine pedestrians by measuring the similarity be-

tween ROIs and one generic pedestrian template. For pedestrian ROIs, the expected his-

togram feature index should be close to 0, and the inertia feature index should be close

to 1. The farther the histogram or inertia feature of an ROI deviates from its expected

value, the less likely the ROI is to be a pedestrian. Because contrast-based non-pedestrian

ROI-removal is best at distinguishing non-pedestrian ROIs lacking in vertical contrast, the

contrast-based feature should be combined with other classification features.

Classification results based on the 1D histogram feature alone can be very close to

the ideal ROC boundary for winter sequences as shown in Figure (4-16) (a) (details in

Section 4.4). To improve classification performance in complicated scenarios, we pro-

pose multi-dimensional classification methods. We first introduce 2D histogram/inertia-

based classification in which the inertia feature helps to remove ambiguity introduced in

ID histogram-based classification as mentioned in Section 4.3.2. We then introduce 3D

histogram/inertia/contrast-based classification The more classification feature-vectors to

be fused, the higher the classification ability is. To demonstrate the efficiency of these

fusion-based classification features, we have respectively computed the ID histogram-

based, 2D histogram/inertia-based, and 3D histogram/inertia/contrast-based, classification

features for all pedestrian ROIs and non-pedestrian ROIs in three test sequences, which

include winter driving (Seq1, Figure (4-17) (al)), summer suburban driving (Seq2, Fig-

ure (4-17) (b1)), and summer urban driving (Seq3, Figure (4-17) (c1)). More details about

three sequences are in Table 4.1, Section 4.4.
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2D Histogram/Inertia-based Classification

For the 2D histogram/inertia-based classification method, the similarities between ROIs

and our pedestrian template (see Figure (4-6) (a0)) are measured through 2D histogram/inertia

feature vectors. The statistical distribution of 2D histogram/inertia feature vectors for

all ROIs from the three sequences, Seql, Seq2, and Seq3, are, respectively, presented in

Figures (4-11) (a) (b), 4-12) (a) (b), and 4-13) (b) (c). Figures for both pedestrian ROIs and

non-pedestrian ROIs in the same sequences are plotted using the same scale to demon-

strate the distribution differences of their feature vectors. We can see that 2D feature

values for all pedestrian ROIs are similar and close to their expected value [1, 0] (X

axis: inertia. Y axis: histogram.) as shown in Figure (4-11) (a), Figure (4-12) (a), and

Figure (4-13) (b). Histogram/inertia feature vectors for non-pedestrian ROIs are far from

[1, 0] and much more diversified, as shown in Figure (4-11) (b), Figure (4-12) (b), and Fig-

ure (4-13) (c). Figure (4-13) (c) shows histogram/inertia feature vectors for remaining non-

pedestrian ROIs after contrast-based non-pedestrian ROI-removal. The comparison con-

firms that 2D histogram/inertia-based features are efficient classification feature vectors.

3D Histogram/Inertia/Contrast-based Classification

Our 3D histogram/inertia-feature/contrast-based classification algorithm first calculates ROI

contrast-feature vectors for each ROI, then removes partial non-pedestrian ROIs based on

the two conditions given in Section 4.3.3, and finally identifies pedestrians among the re-

maining ROIs through 2D histogram/inertia-based classification. An example for Seq3

(shown in Figure (4-17)(ci)) is shown in Figures (4-10) and (4-13). After segmentation,

there are a total of 248 pedestrian ROIs and 854 non-pedestrian ROIs whose contrast-

feature vectors are plotted in Figure (4-10). In the process of contrast-based non-pedestrian

ROI-removal, 284 non-pedestrian ROIs lacking in clear vertical contrast are identified

and removed. The inertia vs. histogram 2D feature vectors for the 284 removed non-

pedestrians, 248 segmented pedestrian ROIs, and 570 remaining non-pedestrian ROIs are

plotted, respectively, in Figure (4-13) (a) (b) (c). The comparison between Figure (4-13) (a)

and (b) shows that 76.76% of feature points in Figure (4-13) (a) for non-pedestrian ROIs
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removed by contrast-based removal are within the data range for pedestrian ROIs as shown

by the rectangular box. The contrast-based feature helps to remove potential ambiguity

that occurred when using 2D histogram/inertia-based classification alone. Therefore, after

contrast-based non-pedestrian ROI-removal, the percentage of segmented non-pedestrian

ROIs, whose 2D feature vectors overlap with that of segmented pedestrian ROIs in 2D fea-

ture space, has dropped from 47.78% to 25.53% (as shown in Figures (4-13) (b) (c)). Thus

when the detection rate is set as 100%, the false-alarm rate can drop from 47.78% to 25.53%

as shown in Figures (4-16) (c1) (c2), improving classification performance.

4.3.5 Comparison with Conventional Classification Feature

In this section, we compare the classification ability of two shape-independent features

- histogram-based and inertia-based - with that of a conventional pixel-comparison-

based feature. We apply these three different ID-classification features to measure the

similarity between ROIs in Figure (4-6) (al) (a2) and our default pedestrian template (as

in Figure (4-6) (a)). Specifically, the histogram feature and inertia feature are calculated

according to the Equation (4.5) and (4.6), and the pixel-comparison-based feature is defined

as the Frobenius norm of image pixel intensity differences between ROIs and the pedestrian

template. The three 1D classification features for ROIs in Figure (4-6) (al) (a2) are plotted

in Figure (4-14) (a) (b) (c), where circles and crossed points, respectively, represent feature

points for pedestrian and non-pedestrian ROIs. The inertia (X axis) vs. histogram (Y axis)

feature vectors for the same ROIs are plotted in Figure (4-14) (d).

For ideal classification features, the feature points for multiple pedestrian ROIs are

expected to be close to their expected values. The data ranges of feature values for pedes-

trian ROIs and for non-pedestrian ROIs should not overlap, and are expected to be sep-

arated as far as possible. We can see that the ratio of overlapped range over the data

range for all non-pedestrian ROIs is, respectively, 0% for histogram-based method (Fig-

ure (4-14) (b)), 3.87% for inertia-based method (Figure (4-14) (c)), and 48.22% for conven-

tional pixel-comparison-based method (Figure (4-14) (a)). In other words, to reach 100%

pedestrian-detection rate, the false-alarm rate is 48.22% for conventional shape-dependent
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pixel-comparison feature, while it is only 0% and 3.87% for 1D shape-independent his-

togram and inertia features respectively. We have demonstrated that histogram features

can help identify pedestrian ROIs containing extra background regions as shown by the

second pedestrian ROI in Figure (4-6)(al). The above comparison also illustrates that

conventional pixel-comparison-based features are sensitive to pose-changes in pedestrian

ROIs, and the features have worse classification performance than 1D histogram-features

or ID inertia-features does when using only one pedestrian template. The comparison

between Figure (4-14) (a)-(c) and Figure (4-14) (d) shows the advantages of 2D-based his-

togram/inertia classification over each 1D classification. To statistically demonstrate the

above advantages, similar comparison is shown in Figure (4-11) for all ROIs from Seql.

Figure (4-11)(a)(b) respectively plots inertia feature (X axis) vs. histogram feature (Y

axis) for pedestrian ROIs and non-pedestrian ROIs. Figure (4-11) (c) (d) respectively plots

inertia feature (X axis) vs. pixel-comparison-based feature (Y axis) for pedestrian ROIs

and non-pedestrian ROIs. In the vertical direction of Figure (4-11) (a) and (b), histogram

feature points overlap for 19.64% of pedestrian ROIs and 16.13% of non-pedestrian ROIs

in their data ranges. In the vertical direction of Figure (4-11) (c) and (d), pixel-comparison-

based feature points overlap for all pedestrian ROIs and 85.33% of non-pedestrian ROIs.

In 2D inertia vs. histogram space, the ratios of overlapped range over the data range for all

pedestrian ROIs and for all non-pedestrian ROIs are, respectively, 12.13% and 16.31%. As

expected, the histogram feature provides better classification performance than the shape-

dependent pixel-comparison-based feature. Classification based on both histogram and

inertia features further improves performance. More results will be shown in the next sec-

tion.

4.4 Performance Evaluation

Up to now, we have presented our segmentation and classification algorithms. In real-

world applications, both brightness-based and bodyline-based segmentation will be ap-

plied, and all segmented ROIs will be sent to multi-dimensional histogram-inertia-contrast-

based classifiers for reliability. For the purpose of performance evaluation, we apply
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different combinations of segmentation/classification algorithms to detect pedestrians in

three typical scenarios: winter driving (Seq1, Figure (4-17) (al)), summer suburban driving

(Seq2, Figure (4-17)(b1)), and summer urban driving (Seq3, Figure (4-17) (c1)). From Seq

to Seq3, driving complexity increases. The basic information for the three sequences as

summarized in Table 4.1. For SeqI and Seq2, even the simplified version of our pedestrian-

detection (segmentation/classification) algorithm can improve the current detection perfor-

mance as shown in Figure (4-3), which demonstrates the effectiveness of our algorithms.

We present segmentation results in Section 4.4.2 as summarized in Table 4.2, and classi-

fication results in Section 4.4.3 as summarized in Table 4.3. Pedestrian-detection examples

for the three sequences are shown in Figure (4-17) (a), (b), and (c), in which the initial ROIs

(after segmentation) and final detection results (after classification) are highlighted.

4.4.1 Test Sequences

The examples of pedestrian appearances for the three sequences can be seen, respectively,

in Figure (4-6)(Seq1) and Figures (4-7)(al) and (a2)(Seq2 and Seq3). All these video

sequences were taken by Toyota R&D labs using a far-infrared camera with the wavelength

band 8 to 14 um at a frame rate of 6 fps, i.e., 6 frames per second. The frame number

and duration for Seq1, Seq2, and Seq3 are, respectively, 240 frames (40 seconds), 289

frames (48.1 seconds), and 248 frames (41.3 seconds). All three sequences recorded the

whole process: pedestrians first appeared far away with small image patches (as in the first

column in Figure (4-17)), then became closer and larger, until they finally disappeared from

the roadside (as in the last column in Figure (4-17). The total number of pedestrians in the

three sequences and the variation ranges of pedestrian sizes are listed in Table 4.1. Within

these sequences, the sizes of pedestrian images change significantly from as small as 9 x 17

(in Seq3) to as large as 83 x 182 (in Seq1), 99 times larger in area. In the middle of Seq2, a

pedestrian was obscured by a truck in 21 frames. Seq2 also recorded 92 additional frames

after pedestrians disappeared. We expect no false alarm in these "empty" frames if our

proposed shape-independent segmentation/classification works correctly.
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Table 4.1: Sequence Information for three Examples
Image Frame Duratior Ped. Pedes Size Size

No. Sequence Infor. Figure # (sec) # Range Change Complexity
Seql Winter Fig.4-17)(al), 4-6)(al) 240 40 331 [83 x 182, 36 x 96] 4.3 Low
Seq2 Summer, Suburban Fig.4-17)(bl), 4-7)(al) 289 48.1 176 [9 x 18, 30 x 68] 12.6 Medium
Seq3 Summer, Urban Fig.4-17)(c1), 4-7)(a2) 248 41.3 248 [9 x 17, 33 x 67] 14.5 High

Table 4.2: Segmentation Algorithms & Performance for three Examples
Segmentation Image ROI # missed- Eval. Accuracy Efficiency

No. Method Figure ped./non-ped. ped. # Figure Avg. [range] Avg. [range]
1st Brightness Fig.4-17) (a) [331, 750] 0 Fig.4-15)(a2) 95.23% [0.8058, 1] 85.84% [0.4972, 1]

2nd Brightness Fig.4-17)(b) [176, 909] 0 Fig.4-15)(b2) 74.99% [0.4648 1] 89.36% [0.2375 1]
3rd Bodyline Fig.4-17)(c) [248, 854] 0 Fig.4-15)(c2) 90.11% [0.5847, 1] 89.08% [0.5278, 1]

4.4.2 Segmentation Performance

To demonstrate the segmentation performance, we apply brightness-based segmentation to

Seql and Seq2 (winter and summer suburban driving) and bodyline-based segmentation

to Seq3 (summer urban driving). To evaluate segmentation quality based on our index

proposed in Section 4.1.1, i.e., side accuracy and side efficiency, we have manually labeled

true pedestrian's regions (in rectangular boxes) within all sequence frames. The closer the

two segmentation indices are to 100%, the more accurate and efficient the performance is.

Some examples of initial segmented ROIs are highlighted in the second rows of Fig-

ures (4-17) (a), (b), and (c), which include both pedestrians and false alarms to be removed

in classification procedures. Table 4.2 lists the number of segmented pedestrian/non-pedestrian

ROIs and missed pedestrians, and summarizes the mean and range for both performance

evaluation indices, segmentation side accuracy and side efficiency. Figure (4-15) plots

segmentation side accuracy (X axis) vs. segmentation side efficiency (Y axis) for each

frame as a point in 2D space in which 90.42% of Seql frames and 94.97% of Seq3 frames

have both accuracy and efficiency indices larger than 70%. For Seq2, 93.18% of frames

Table 4.3: Classification Algorithms & Performance for three Examples
Classification Image Feature ROC

No. Method Figure Vector Fig. Figure
1st ID Inertia or Histogram Fig.4-17)(a3) Fig.4-11 Fig.4-16) (a), 4-3)(a)
2nd 2D Inertia/Histogram Fig.4-17)(b3) Fig.4-12 Fig.4-16)(b), 4-3)(a)
3rd 3D Inertia/Histogram/Contrast Fig.4-17)(c3) Fig.4-13, Fig.4-10 Fig.4-16)(c), 4-3)(a)
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have accuracy and efficiency indices larger than 50% and 70% respectively. In a total of

777 frames from all three sequences, only 9 frames (1.16%) have segmentation side effi-

ciency less than 50%, and only 4 frames (0.51%) have segmentation side accuracy less than

50%. Twelve out of these thirteen frames are from summer Seq2, as shown in Figure (4-

15) (b). This is because brightness-based segmentation performance for summer data (case

for Seq2) is less accurate than for winter data (case for Seql), and also less accurate than

using bodyline-based segmentation (case for Seq3). Full segmentation algorithms based on

both brightness/bodyline will improve segmentation performance.

4.4.3 Classification Performance

The classification algorithms for the three sequences are, respectively, 1 D histogram-based,

2D histogram/inertia-based, and 3D histogram/inertia/contrast-based. The classification

performance indices for the three sequences - ROC boundary as defined in Section 4.1.1

- are, respectively, plotted with solid lines in Figures (4-16) (a), (b), and (c2). All ROC

curves or ROC boundaries are close to the ideal ROC boundary shown in Figure (4-2) (b),

which means high detection rate and small false-alarm rate.

Some examples of classification results are highlighted in the third rows of Figures (4-

17) (a), (b), and (c), where some false alarms as shown in the second rows of Figures (4-

17) (a), (b), and (c) are removed from initial segmentation results. Figure (4-3) (a) compares

the classification results of marked points in Figures (4-16) (a), (b), and (c2), with other

available published results in different seasons by plotting their frame false-alarm/detection

rate index points in 2D space. For winter driving, we mark an ROI curve point in Figure (4-

16) (a) whose false-alarm rate is similar to other published winter results [41], but our detec-

tion rate is higher. For summer driving, we mark ROI curve points in Figure (4-16) (b) (c2)

whose detection rates are similar to other published summer results [40] and notice that our

false-alarm rates are smaller. Figure (4-3) (a) shows that our classification index points are

at the upper and left regions of other classification results, which means higher detection

rates with fewer false alarms.

The performance of ID histogram-based classification shown in Figure (4-16) (a) (Seq 1)
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is reliable for winter driving sequence, which partially benefits from accurate segmenta-

tion performance as shown in Figure (4-15). In general, 1D-feature-based classification

performance is limited for summer driving as shown in Figure (4-16) (b) (Seq2) and Fig-

ure (4-16) (c) (Seq3) where dashed and dotted lines are, respectively, for 1 D-histogram-

based and iD-inertia-based classification. This is because of more complex image proper-

ties and more image "noise" for summer images than those for winter images. In addition,

brightness-based segmentation accuracy for summer suburban driving Seq2 is relatively

less accurate than for winter driving, which adds to classification difficulties.

Fusing the histogram-based and inertia-based classification features substantially im-

proves classification performance, as shown by the ROC curve comparison between solid

lines (for 2D histogram/inertia-based classification) and dashed/dotted lines (for ID histogram-

based and ID inertia-based classification) in Figure (4-16) (b) (Seq2) and Figure (4-16) (c)

(Seq3). The performance of 2D histogram/inertia classification for Seq2 reflects its effec-

tiveness for summer suburban driving.

The contrast classification feature helps to remove the ambiguity when using 2D his-

togram/inertia classification. Figure (4-16)(ci) and Figure (4-16)(c2), respectively, show

the different classification results before and after contrast-based non-pedestrian ROI-removal.

The advantage of 3D histogram/inertia/contrast-based classification over 2D histogram/inertia-

based classification can be seen from the difference between solid lines in Figures (4-

16) (c1) and (c2). The comparison between dashed (or dotted) lines in Figure (4-16) (c1)

and (c2) shows the advantage of 2D histogram/contrast-based (or 2D inertia/contrast-based)

classification over 1 D histogram- (or 1 D inertia-) based classification. For three sequences,

Seql, Seq2, and Seq3, we only apply 3D histogram/inertia/contrast-based classification

to the most complicated sequence, Seq3, as shown in Figure (4-16) (c2), since 1D or 2D

classification has already provided reliable results for the rest of sequences.

In summary, the segmentation performance illustrated in Figure (4-15) shows that our

segmented pedestrian regions are relatively accurate and efficient. The classification perfor-

mance illustrated in Figure (4-16) shows that many of the false alarms from segmentation

process are removed.
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4.5 Summary and Future work

In this chapter, we propose new fusion-based and layer-based methods for detecting pedes-

trians in far-infrared images in order to improve night driving safety. In summary, our

method has the following properties or contributions.

1. We propose an original layer-based horizontal-first, vertical-second segmentation

scheme, and convert a typical 2D search problem into ID search problem.

In Chapters 2 and 3, our layer-based segmentation split one whole image into several

distance-based edge layers which have much less noise and involves simpler obstacle seg-

mentation than in original images. In this chapter, our segmentation is also layer-based. The

second category of layers is several vertical stripes within infrared images in which we can

detect potential pedestrians. The proposed strategy simplifies the original two-dimensional

full-image segmentation into one-dimensional segmentation by splitting an image with a

size of nr, x nco; into several vertical stripes with a size of nro, x ni, ni < nr. Within

these vertical stripes, images of human beings can be further determined based on either

brightness or bodylines. The bodyline-based vertical segmentation only needs to search

among at most neo number of candidate bodyline to determine the real location of pedes-

trians. This is called "Horizontal segmentation first, vertical segmentation second" scheme.

The proposed segmentation algorithm automatically estimate the size of pedestrian regions

based on the properties of bright-pixel vertical-projection curves and pedestrian horizontal

contrast.

2. We have defined new shape-independent classification features and proposed fusion-

based multi-dimensional classification scheme.

We have defined unique shape-independent classification features: histogram-, inertia-,

and contrast-based features. We have demonstrated the similarities of these features among

pedestrian image regions with different poses, as well as the differences of these features

between pedestrian and non-pedestrian ROIs. The histogram variation curve for all pedes-

trian regions resembles a Gaussian shape of zero mean, while the distribution of inertia-

features resembles a Rayleigh distribution with an expected value of 1. Contrast-features

for pedestrian ROIs - the ROI row-edge indices, and the upper/lower row-edge indices -
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fall within specific data range. We have shown that our proposed classification features are

much less sensitive to variances of different pedestrian ROIs and have better classification

ability to differentiate pedestrian ROIs and non-pedestrian ROIs. The fusion-based multi-

dimensional classification scheme shows its advantages in differentiating pedestrian ROIs

and non-pedestrian ROIs.

3. Our pedestrian-detection method is shape-independent.

Our horizontal segmentation algorithm is shape-independent. The projection-curves

help to split original image into several layers which would not be affected by poses of

different pedestrians. The segmentation procedure is robust to threshold choices.

Our algorithm uses only one pedestrian template - corresponding to a generic walking

pose. The template is used in vertical segmentation to pick one candidate pedestrian ROI

and used in classification phase to compare the similarity of multi-dimensional features de-

rived from segmented ROIs with those of a pedestrian template. For vertical segmentation,

bodyline-based template matching in given vertical stripes might provide false alarm, but

it would not miss real pedestrians in given vertical stripes with given width information.

Figure (4-4) (c) and Figure (4-5) (d) show the detection results when pedestrians move

in different directions, in different poses and in different seasons. Though there are partial

occlusions of pedestrians in Figure (4-4) (c), individual pedestrians still correspond to single

waves and are detected accurately. The performance for more cluttered scenes needs to be

further investigated.

In contrast, traditional segmentation/classification algorithms are shape-dependent. Mul-

tiple pedestrian templates are necessary to deal with pedestrians in different poses. Tradi-

tional image pixel-comparison-based classification involves brightness-similarity compar-

isons between candidate image patches and a multiplicity of pedestrian templates at differ-

ent scale. We have shown that shape-independent features are more robust with respect to

pedestrian pose-changes than traditional shape-dependent features.

4. Our segmentation and classification processes collaborate with one another.

Our vertical segmentation step fuses the histogram classification features and segmenta-

tion features in order to pick one candidate within each separated vertical stripe. Initial hor-

izontal segmentation and bodyline searching improves the segmentation accuracy and effi-
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ciency, and fewer segmentation errors lead to fewer classification errors. Our proposed new

statistical classification features can also be fused with other general pedestrian-detection

features for multi-dimensional feature-based detection to further improve reliability and

speed.

5. The algorithm has wide applicability.

Our pedestrian-detection system is not based on tracking, nor does it depend on cam-

era calibration to determine the relationship between an object's height and its vertical

image locations. Our segmentation algorithm only assumes that there is some local con-

trast between the image of a pedestrian and its surroundings, and does not make any other

assumptions about the driving environment. Thus, it is less restricted in applicability.

6. The computational load is low.

Our segmentation process avoids brute-force searching over the whole image, and con-

verts a typical 2D search problem into two ID search problems. Our classification process

avoids the need for comparison with multiple pedestrian templates. All these significantly

decrease the computational load.

On the whole, though the proposed pedestrian detection methodology is by no means

perfect, and much work is still needed to bridge the gap between present performance and

the high reliability required for real-world applications, our straightforward pedestrian-

detection system has made much progress and provides encouraging results in improving

speed, reliability, and simplicity.
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Figure 4-4: The Feature of Bright-Pixel-Vertical-Projection Curves for Infrared Images
and Brightness-based Vertical Segmentation Results. For (a) (c): Winter results. For (b) (d):
Summer results. (a): Top row: original infrared image in winter. Center row and Bot-
tom row: bright-pixel-vertical-projection curves when using two different thresholds. (b):
Top row: original infrared image in summer. Center row: bright-pixel-vertical-projection
curve. Bottom row: horizontally segmented image stripes based on projection curve. Note
that Several separated stripes shown in the center row seem to be connected. For (c) (d):
Brightness-based vertical segmentation results. For all projection curves: X axis: Image
column position. Y axis: Number of bright pixels in each column.
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Figure 4-5: Pedestrian segmentation based on two different methods. (a): Bodyline-based
geometric pedestrian-size model. (b): Bodyline image. (c): Candidate pedestrian region
estimation based on (a) and (b). (d): Bodyline-based segmentation result.
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Figure 4-6: Properties of Brightness-histogram curves for Pedestrian/non-Pedestrian ROIs.
(aO): Pedestrian from summer data. Used as default template in our algorithm. (al): Pedes-
trian ROIs with different poses. (a2): Non-pedestrian ROIs. (al) (a2) are segmentation re-
sults for winter data. For (b1) (b2): Brightness histograms for (al) (a2). (bl): demonstrates
histogram similarity among winter pedestrian ROIs. (b2): demonstrates the histogram
variation among winter non-pedestrian ROIs. For (c1) (c2): Solid lines: Average brightness
histogram for winter pedestrian ROIs (bi) and winter non-pedestrian ROIs (b2) respec-
tively. Dashed lines: Histogram curve for summer pedestrian (aO). (ci): demonstrates the
histogram similarity between winter pedestrians and summer pedestrian template. (c2):
demonstrates the disparity between winter non-pedestrian ROIs and summer pedestrian
template. For (b1) (b2) (c1) (c2): X axis: Image intensity range (0-255). Y axis: brightness
histogram.
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Figure 4-7: For (al) (a2): Sample pedestrian regions from 2 sequences (every five frames)
to show the variation of pedestrian poses and sizes, which correspond to the Seq2 and
Seq3 shown in Figure (4-17)(b1)(ci) and Table 4.1, two pedestrian-detection examples
in Section 4.4. (b): Left: two brightness-histogram curves with brightness i (X axis)
vs. h" (i) and hm (i) (Y axis ) that are pixel numbers with brightness i from two image
regions. Right: Definition for "histogram variation curve" with all possible histogram
variance value h(i) - hm (i) (X axis) vs. variation frequency (Y axis). (c): Collective
"histograms variation curve" for 911 pedestrian samples (in 7 sequences), with all possible
histogram variation value (X axis) vs. the distribution of histogram variation value from
all pedestrian histogram curves and their mean (Y axis).
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Figure 4-8: (a): ROI inertia definition. (b): Distribution of inertia values for all 911 pedes-
trian samples. X axis: Inertia value. Y axis: Distribution percentage.
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Figure 4-9: Contrast-based non-Pedestrian ROI Removal for ROIs in Figure (4-5) (d).
For (a) (b): ROIs and their vertical neighborhood regions on edge map, i.e., vertical-
neighborhood-contrast property. (a): For detected non-pedestrian ROIs. (b): For remaining
ROIs. (c): Remaining ROIs on the original image.
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Figure 4-10: Contrast Feature Vectors for Pedestrian ROIs and non-Pedestrian ROIs from
Seq3 shown in Figure (4-17)(cl) (details in Section 4.4, Table 4.1). Circles: pedestrian
ROIs. Dots: non-pedestrian ROIs. (a): 2D "upper-contrast-index" for ROIs. X axis: ROI
row-edge index. Y axis: upper row-edge index. (b): 2D "lower-contrast-index" for ROIs.
X axis: ROI row-edge index. Y axis: lower row-edge index.
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Figure 4-11: 2D Feature Vectors for Pedestrian ROIs and non-Pedestrian ROIs from
Seql shown in Figure (4-17)(al) (details in Section 4.4, Table 4.1). For (a)(b): 2D in-
ertia/histogram feature vectors for pedestrian ROIs and non-pedestrian ROIs respectively.
X axis: Inertia feature. Y axis: "Histogram Difference," for ROIs and pedestrian tem-
plate in Figure (4-6)(aO). For (c)(d): 2D inertia/pixel-comparison-based feature vectors
for pedestrian ROIs and non-pedestrian ROIs respectively. X axis: Inertia feature. Y
axis: "Image-Intensity-Difference" between ROIs and pedestrian template in Figure (4-
6)(aO). In Figure (4-11)(a) and (b), histogram feature points for 19.64% of pedestrian
ROIs and 16.13% of non-pedestrian ROIs overlap in their data ranges. In Figure (4-11) (c)
and (d), pixel-comparison-based feature points for all pedestrian ROIs and 85.74% of non-
pedestrian ROIs overlap in their data ranges. The comparison between (a) (b) and (c) (d)
shows the advantages of the histogram feature over the shape-dependent pixel-comparison-
based feature.
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Figure 4-12: 2D Inertia/Histogram Feature Vectors for Pedestrian ROIs and non-Pedestrian
ROIs from Seq2 shown in Figure (4-17) (b1) (details in Section 4.4, Table 4.1). X axis:
Inertia feature. Y axis: Histogram feature.

4 2 0 6 0 2 1

(a)
.2 0 612

(b)

Figure 4-13: 2D Inertia/Histogram Feature Vectors for Pedestrian/non-pedestrian ROIs
from Seq3 shown in Figure (4-17) (ci) (details in Section 4.4, Table 4.1) after "contrast-
based non-pedestrian ROI-removal." Rectangular box: data range of feature vectors for
pedestrian ROIs. (a): For removed non-pedestrian ROIs. (b): For original pedestrian ROIs.
(c): For remaining non-pedestrian ROIs. X axis: Inertia feature. Y axis: Histogram fea-
ture.
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Figure 4-14: Classification Ability Comparison. For (a) -(d): feature points of different
definitions that measure the similarity between ROIs in Figure (4-6) (al) (a2) and the de-
fault pedestrian template shown in Figure (4-6) (aO). Circles and dots respectively denote
pedestrian ROIs and non-pedestrian ROIs. (a): Conventional 1D Pixel-comparison-based
Feature. (b): 1D Histogram-based Feature. (c): 1D Inertia-based Feature. (d): 2D His-
togram/Inertia Feature. For (a)-(c): Bottom/Top lines: data ranges for pedestrian/non-
pedestrian ROIs. X axis: feature value. The Y axis is only used to separate two lines.
The overlap percentage between them over non-pedestrian data range: 48.22%(a), 0%(b),
3.87%(c). For (d): X axis: inertia value. Y axis: histogram difference value.
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Figure 4-15: Segmentation Evaluation for 3 Sample Sequences. Detection Accuracy vs.
Efficiency. X axis: frame segmentation side accuracy. Y axis: frame segmentation side

efficiency.
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Figure 4-16: Classification Performance Evaluation for Three Sample Sequences. X axis:
false-alarm-rate. Y axis: detection-rate. (a): Seq1: ROC for histogram-based classifica-
tion. (b): Seq2: Histogram/inertia-based classification. Dashed line: ROC for inertia-based
classification. Dotted line: ROC for histogram-based classification results. Block points:
Histogram/inertia-based classification result. (ci) Seq3: ROC for histogram/inertia-based
classification. Dashed line: ROC for inertia-based classification. Dotted line: ROC for
histogram-based classification results. Star points: Histogram/inertia-based classification
result. (c2) Seq3: ROC for histogram/inertia/contrast-based classification. Dashed line:
ROC for inertia/contrast-based classification. Dotted line: ROC for histogram/contrast-
based classification results. Star points: Histogram/inertia/contrast-based classification re-
sult.
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Figure 4-17: Pedestrian-detection performance for Seql, Seq2, and Seq3. (al)(bl)(ci):
original images. (a2) (b2) (c2): Segmentation results. (a3) (b3) (c3): Classification results.
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Chapter 5

A Layered-based Fusion-based

Approach to Detect and Track the

Movements of Pedestrians through

Partially Occluded Situations

To obtain perception abilities, conventional methods independently detect static and dy-

namic obstacles, and estimate their related information, which is not quite reliable and

computationally heavy. We will use a fusion-based and layered-based approach to system-

atically detect dynamic obstacles and obtain their location and timing information.

5.1 Introduction

In order to enhance the safety of intelligent transportation systems, a large amount of

surveillance cameras are mounted for the purpose of intelligent monitoring and automatic

environment/event understanding. Recently intelligent surveillance for intersections and

large supermarkets has attracted lots of attention since it is important to understand the

human behavior of passing pedestrians. The intelligent surveillance involves automatic

human detection, identification and activity understanding. Such information can help to

provide early warning information for vehicles and for intelligent management of trans-
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portation systems.

To understand environment automatically, we need to identify objects of interest and

their static and dynamic information. Typically two steps are involved: initial segmenta-

tion in the first few frames, which is known very complicated, and human tracking in the

subsequent frames to detect the identified foregrounds in initial segmentation. In general,

human tracking is less complicated and more computationally efficient than initial segmen-

tation.

5.1.1 Traditional Algorithms for Initial Segmentation and their Limi-

tation

The initial segmentation runs into difficulties when the contrast between foreground and

background is low, for examples, when people wear clothes close to background's color. It

is also challenged by unpredictable background, specifically with non-rigid objects, such

as trees, or constantly-changing environment. Traditional segmentation algorithms usually

make special assumptions. Researchers often take advantage of visual features, such as

obstacles' motion, the symmetry of obstacles' regions and asymmetry of background, etc.,

[5], to differentiate foregrounds from backgrounds. The traditional methods for initial seg-

mentation include reference-image-based segmentation, feature-based segmentation, and

geometric-model-based segmentation.

Reference-image-based segmentation is to detect moving objects based on the differen-

tial images between video frames and reference images. If cameras are fixed (surveillance

situations), a reference can be background images estimated through statistical model [44]

or acquired when no foreground shows up [58] [59]. Foregrounds are detected from differ-

ential images through k-means clustering based on motion information [54] [60]. Typically

motion information estimation is noisy, especially at occlusion boundaries. Human body

is not rigid and their motion is not uniform. Furthermore, segmentation accuracy and relia-

bility depends on the quality of differential images, so they would be affected by changing

lighting and shading situations, shape-changing non-rigid background objects such as trees

branches, etc.

160



Feature-based segmentation detects humans by capturing their distinctive features,

such as human faces, heads [50], skin color [49] [57], the rigidity of KLT interested corner

feature points in head/header areas, depth information, or deviation from given human tem-

plate, etc. These features might not exist during occlusion, which limits the application. It

is difficult to find a general template for pedestrians with various poses.

Geometric-model-based segmentation generates a specific human geometric model that

describes human beings, including three dimension human models /high DOF articulated

models for bodies and/or limbs [51] [521, two dimension appearance-based model (blob-

based / pixel-based texture model [53], a texture-free shape model based only on Ma-

halanobis distance map [56], statistical fore- and background models, illuminance based

model [54]) , etc. These models build the connection between different poses and their cor-

responding images. Complicated human configuration model is usually needed for pose

analysis, which usually involves high computational cost and may not work very well for

occlusion situations [55].

5.1.2 Traditional Algorithms for Human Tracking and their Limita-

tions

In general, tracking processes are challenged by the significant variation of image positions

and sizes for objects between successive video frames, especially when there is an occlu-

sion and when there are unexpected dynamic movements, etc. Complicated math models

are needed to independently detect information for obstacles, and to estimate the dynamics

of interested objects.

Mean Shift Iteration algorithm [65] tracks non-rigid objects based on visual features

whose statistical distributions characterize the objects of interest. The technique works

for objects with different color/texture patterns, and is robust to partial occlusions, clutter,

rotation in depth, and changes in camera positions. However, mean shift iterations are

needed to find target candidates that are most similar to a given target tracking model with

specific similarity metric, for example, Bhattacharyya coefficient.



Geometric model based algorithm tracks human geometric models parameters, for ex-

ample, human body contour curves [55], human body regions (blobs) [67], pose and loca-

tion parameters of bodies and hands, etc. Such tracking models are usually not uni-modal,

involve transformation, and usually are not Gaussian [55]. The complicated algorithms

need a few frames' initialization time before tracking performance gradually stabilizes.

Particle filtering [63] and related algorithms require no model and support multi-modal

tracking, and thus they can deal with nonlinear and non-Gaussian problems for stochas-

tic dynamic estimation at the cost of higher computational load. [64] formulates human

segmentation as a Bayesian MAP estimation problem whose solution is based on Markov

chain Monte Carlo approach.

In summary, because of heavy computational load, most tracking techniques work bet-

ter with larger and slower objects and are limited in their ability to track small fast objects.

Traditional human detection and identification algorithms are computationally heavy while

their accuracy and reliability are limited in difficult scenarios. We need to develop a new

algorithm with a higher performance and fewer assumptions than traditional methods.

5.1.3 Layered-based and Fusion-based Dynamic Tracking of Pedes-

trians

We apply fusion-based and layered-based principle to detect and track the locations of

pedestrians in visible images from a single camera. In the previous chapters, we have dis-

cussed methods to separate one image into several layers while the sequential segmentation

of interested targets in multiple layers is much easier than in the original image. Two cate-

gories of layers and corresponding layer-separation methods are introduced. The first cat-

egory of layers that we defined are distance-based image-layers for stereo visual images in

Chapters 2 and 3. The second category of layers are several vertical stripes within monoc-

ular infrared images for pedestrian detection in Chapter 4. The above methods respectively

take advantage of statistical distribution of distance features and brightness features, which

cannot be used to applications with single visible camera. In this chapter, we will propose

a new layer-based method for monocular visible images for pedestrian detection.
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Similar to Chapter 4, we exploit layered-based segmentation that first searches pedestri-

ans in horizontal dimension, and then searches in vertical dimension, which is introduced

in Chapter 5.2. While applying initial segmentation to every frame, we also introduce

fusion-based layered-based tracking models that combine initial segmentation information

and dynamic track models in order to detect the dynamics of interested targets, which is in-

troduced in Chapter 5.3. The results, discussion, and conclusion are respectively presented

in Chapters 5.4, Chapters 5.5, and Chapter 5.6. Our detection method has the ability to deal

with both non-occlusion and occlusion cases.

5.2 Layered-based Image Separation and Initial Segmen-

tation

In this section, we will discuss how to extend the idea of "Horizontal segmentation first, ver-

tical segmentation second" for pedestrian detection and tracking from monocular infrared

images to monocular visible images. We respectively discuss the horizontal segmentation

and vertical segmentation in Section 5.2.1 and 5.2.2.

5.2.1 Initial Horizontal Segmentation for Visible Images from Single

Camera

In Chapter 4, for infrared images, the bright-pixel-vertical-projection curves are effective

shape-factors that help to horizontally split an infrared image into several vertical stripes

and determine pedestrians' horizontal locations [42] [100]. Such method depends on the

feature of bright pixels corresponding to pedestrians. For applications with single visi-

ble camera discussed in this chapter, we need to find a new feature to differentiate fore-

grounds and backgrounds. In this section, we define Combined-Difference-Image(CDI or

CD-Image) and Combined-Difference-Image based Vertical Projection-Curves(CDI-VPC

or CDI-VP curves) for visible images, and then explain how to take advantage of CDI-

VPC to horizontally split an visible image into several vertical stripes and to determine

pedestrians' horizontal locations or bounding regions. In the next section, the CD-Images,
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their edge maps and their CDI-VP curves are fused together to further identify the vertical

location of real pedestrians.

The Definition of Combined-Difference-Image and Combined-Difference-Image based

Vertical Projection-Curves

In order to define Combined Difference-Image (CDI or CD-Images) and Combined-Difference-

Image based Vertical Projection Curves (CDI-VPC or CDI-VP-Curves), we need three

continuous monocular visible images with sequence numbers (k - 1), (k), (k + 1). We first

compute the absolute value of the difference images between every two continuous frames,

which are defined as Backward Difference-Image (BDI) and Forward Differential-Image

(FDI) .BDI and FDI are labelled as (BackDiffImg) (Forward-DiffImg) in Equations (5.1)

and (5.2) as below.

Backward-DiffImg(k) limg(k) - img(k - 1)| (5.1)

ForwardDiff-Img(k) = limg(k) - img(k + 1)| (5.2)

We then compute the Binary Backward Difference-Images (BBDI) and Binary For-

ward Difference-Images (BFDI) based on the following equations:

BinaryBackward-DiffImg(k) = 1 if Backward-DiffImg(k) > thresbackwardD I (5.3)0 otherwise

Binary-ForwardDiffImg(k) 1 if ForwardDiffImg(k) > thresf orward-DI (5.4)0 otherwise -

where thres-backwardDI and thres-f orwardDI are adaptive thresholds and de-

fined as one tenth of the maximum value of difference-images as in Equation (5.5) and (5.6).

The adaptive threshold is set to be very small in order to ensure that the combined-difference-
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image have non-zero projections in CDI-VP-curves at the columns corresponding to pedes-

trians' locations.

1
thres-backwardDI = -max(BackwardDiffImg(k)) (5.5)

10

thres-forwardDI = max(Forward-DiffImg(k)) (5.6)
10

We name the intersection region of the two binary images: binary backward and for-

ward difference images to be FDI-BDI Binary Intersection region(FDI-BDI BI-region).

Inside the region, there are large temporal intensity differences between the current image

(k) and both the previous (k - 1) and the next frames (k + 1) as described below:

1) The absolute value of image pixel intensity-difference at coordinates (row, col) be-

tween Seq# (k) and Seq# (k - 1) is larger than thres-backwardDI

2) The absolute value of image pixel intensity-difference at coordinates (row, col) be-

tween Seq# (k) and Seq# (k + 1) is larger than thresforwardDI

Within the region of FDI-BDI binary intersection (FDI-BDI BI-region), pixel intensities

are defined based on two different criteria, leading to two versions of combined difference-

images as below.

* Def_:

CDI intensities are defined as the minimum intensity values of backward difference-

images and forward difference images at the FDI-BDI BI-region as shown in Equa-

tion (5.7).

min(BackwardDiffImg(k), ForwardDiffImg(k))

Combine-DiffImg(k).....Def if BinaryBackwardDiffImg(k) > 0 (57)
& BinaryForward-DiffImg(k) > 0

0 otherwise
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* Def_2:

CDI intensities are defined to be the same as the intensity values of backward difference-

images within the FDI-BDI BI-region as shown in Equation (5.8).

Backward-DiffImg(k)

CombineDiffImg(k) ...... Def-2 if BinaryBackwardDiffImg(k) > 0 (5.8)
& BinaryForwardDiff-Img(k) > 0

0 otherwise

Both definitions work well for the purpose of horizontal segmentation. The differ-

ence between these two definition will be discussed later in Section 5.2.1. Combined-

Difference-Image based Vertical Projection-Curves are defined as the vertical projection

of Combined-Difference-Images.

Properties of Combined-Difference-Image and Layer-based Segmentation

Figure (5-1) and Figure (5-2) present two examples of three synthetic continuous image

frames, their backward and forward Difference-Images (BDI/FDI), and their Combined-

Difference-images (CDI). Foregrounds move to the right at two different speeds in Fig-

ure (5-1) or at three different speeds in Figure (5-2). For case (1), (2), and (3) in Fig-

ure (5-2), the horizontal distances of pedestrian regions in continuous frames are respec-

tively larger than one person's width (the left column), between half of one person's width

and one person's width (the middle column), and smaller than half of one person's width

(the right column). In Figures(5-1) and (5-2), row (a) shows the original three continuous

images, Img(k - 1), Img(k), Img(k + 1), row (b) vertically displays the corresponding

Backward-Difference-Image (BDI), Forward-Difference-Image (FDI), row (c) and (d) are

the Combined-Difference-Image (CDI) based on two definitions.

For case (1) in Figure (5-2), the locations of the pedestrian in three frames do not

overlap, BDI and FDI contain pedestrians with their original intensities at two different

locations in two continuous frames. Thus CD-Images in Figure (5-2) (c) keep common
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pixels of BDI and FDI whose intensity values are the same as from the middle of three

continuous images. Thus the locations and boundaries of our interested foreground are

identified.

For case(l) in Figure (5-1) and case(2) in Figure (5-2), foreground regions in three

frames start to overlap in the horizontal direction and the widths of overlapped regions

are less than half of original width of foreground. CD-Images in Figure (5-1)(bi) and

Figure (5-2)(b2) keep all pixels of foregrounds' center axis. Therefore, if the original

images at the center axis have largest vertical projections, CDI will inherit the peaks.

For case(2) in Figure (5-1) and case(3) in Figure (5-2), the widths of overlapped regions

are more than half of original width of pedestrians. The overlapped regions contain center

axis, and corresponding pixels in CDIs are the absolute differences between two continuous

frames carried from overlapped areas in Backward-Difference-Image. CDIs in all these

situations preserve the locations and rough shape of our interested foreground.

For simplicity of illustration, we ignore background information in two examples. The

above observation holds true for general situations with fixed backgrounds. The impact of

background pixels can be deducted in computation of BDI and FDI. and would not affect

CDIs and their corresponding vertical projections.

An example for a real video sequence is shown in Figure (5-3), in which Figure (5-3) (a)

shows three continuous image frames, and Figure (5-3) (b) sequentially shows an example

of BDI, FDI, and two definition of CD-Images. Black regions correspond to 0 intensity.

The brighter the region, the higher the intensity.

Three examples, simple synthetic ellipse foreground, synthetic human shape, and the

human in real video sequences, demonstrate the following properties:

1. The horizontal and vertical boundary-locations for two defined CD-Images are the

same as the boundary-locations of foregrounds in the middle frame Img(k) in three

continuous frames.

2. The bright pixels remaining in Combined-Difference-Images roughly preserve the

shape of our interested foregrounds in the middle frame Img(k) in three sequential

images.
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If there is no background, both statements hold under general situations assuming there

is only one foreground in an image. Scanning each column from the left to the right in the

BFDI, we can see the transitions from columns containing zero pixels to non-zero pixels

happening at the left boundaries of foreground in the middle frame Img(k). Scanning each

column from the right to the left in the BBDI, we can see the transitions from columns

containing zero pixels to non-zero pixels happening at the right boundaries of foreground

in the middle frame Img(k). Thus, the common non-zero area of the BFDI and BBDI,

provides the left and right boundaries for our interested foreground. Similarly, the common

non-zero area in BFDI and BBDI provides the top and bottom boundaries for our interested

foreground.

If the impact of background is considered, the second property is more sensitive to the

choices of thresholding parameters than the first. CDI areas corresponding to background

regions might not be completely zero. However, the non-zero pixel due to noises would not

affect the transitional positions of CDI-VP-Curves from background to foreground since

the first property depends on the summation of column pixels. Thus, we can use the first

property to determine foregrounds' locations.

If there are more than one foreground, we can divide the original image into multiple

sub-regions each of which contains only one foreground. Then we can easily locate in-

terested foregrounds in these separated sub-regions. Our algorithm takes advantage of the

vertical projections of these CDIs, and horizontally separates an image into several vertical

stripes containing possible foregrounds as shown in this section.Within each vertical stripe,

the vertical edge maps of corresponding CDIs help to determine the vertical locations of

interested objects as in Section 5.2.2 and 5.3. As shown in Figure (5-3) (c), two pedestrians

can also be vertically determined in their individual vertical stripes.
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(al) (a2)

(bl) (b2)

(c1) (c2)

(dl) (d2)

Figure 5-1: Three synthetic continuous image frames, their Backward Difference-
Images(BDI), Forward Difference-Images(FDI), and Combined Difference-images(CDI)
when their foregrounds (ellipses) move at two different speeds: case (1) and (2). (a) The
top, middle and bottom rows are three continuous synthetic images frames: previous, cur-
rent and next. Two columns (al) (a2) respectively correspond to situations when foreground
moves fast(al) and slow(a2). (b) Top/bottom: BDI and FDI for (a). (c) (d) The 1st and 2nd
definition of CDI for both cases. The shapes for CDI are equal to the shapes for the current
frames.
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(a2)

(b1) (b2)

(ci)

(d1)

(c2)

(d2)

(b3)

(c3)

(d3)

Figure 5-2: Three synthetic continuous image frames, their Backward Difference-
Images(BDI), Forward Difference-Images(FDI), and Combined Difference-images(CDI)
when their foregrounds (pedestrians) move at three different speeds: case (1), (2) and (3).
(a) The top, middle and bottom rows are three continuous synthetic images frames: pre-
vious, current and next. Three columns (al) (a2) (a3) respectively correspond to situations
when people walk extremely fast(al), normal(a2) and extremely slow(a3). For the top row,
the horizontal regions of pedestrian images in three frames do not overlap. (b) Top/bottom:
BDI and FDI for (a). (c) (d) The 1st and 2nd definition of CDI for three cases. The shapes
for CDI are equal to the shapes for the current frames.
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(a) (b)

Figure 5-3: Example of horizontal segmentation based on the CD-images and CDI-VP-
curves. (a) Three continuous sample images with pedestrians (b) Top two figures: BDI and
FDI for (a). Bottom two figures: two definitions of CDIs for (a), Def_, DeL2. (c) Hor-
izontal segmentation based on the vertical projection of CDIs. Top row: CDI-VP curves.
Middle row: Edge maps for CDI. Bottom row: Segmentation results.
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Additional Properties of Combined-Difference-Image based Vertical Projection-Curves

Based on the properties of CD-Images discussed above, the vertical projection for CDI

presents the following properties.

" Single foreground that moves in any three continuous image frames corresponds to

one wave in CDI-PV-Curves.

If we assume that each image has several foregrounds not occluding with each other

in each frame and among any three continuous frames, the CDI-PVC is thus com-

posed of multiple waves.

" The horizontal locations for waves in CDI-VP Curves correspond to the horizontal

boundaries of related pedestrians.

Such properties are shown in Figure (5-3) (c) in which the top figure plots the vertical

projection for the CDI image shown in the bottom row of Figure (5-3) (d). Based on the

CDI-VP-Curve, horizontal segmentation is applied and then the object width and locations

are recovered.

In Figure (5-3) (c), we observe that the dotted green vertical lines pass through the

pedestrians' heads and projection peaks after aligning PVC curves and its correspond-

ing middle frames Img(k). The defined "CDI-VP curves" provide not only the horizontal

boundaries of interested foregrounds, but also their heads' locations. This observation can

be extended to the general situations. We will discuss and demonstrate this conclusion in

the following four situations.

Proof 1: When the width of overlap region between two continuous frames is less than

half of the foreground's width. Cases (1) (2) in Figure (5-2), and Case (1) in Figure (5-1) fit

into such scenario.

Proof 2A: When foregrounds are pedestrians and their body-trunk regions in two con-

tinuous frames do not overlap for more than half of body width. Cases (3) in Figure (5-2)

fits into such scenario. The body-trunk region is defined as the image area corresponding

to the head and torso part of a pedestrian.

Proof 2B: When foregrounds have uniform intensity. Adopt CDI with the first definition
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Proof 2C: When foregrounds have randomly distributed intensity with same mean.

Adopt CDI with the first definition

For Proof 2A, 2B, 2C, we only need to discuss the situations when the width of overlap

region between two continuous frames is smaller than half of the foreground's width, and

we also assume that vertical projection for foregrounds decreases monotonically from the

VP-peak location to both ends.

For all these situations, we define three continuous images with sequence numbers

(k - 1), (k), (k + 1) containing one foreground, and define Xpeak to be the horizontal

location where the vertical projection of the foreground peaks in the middle frame Img(k)

as shown in Equation (5.9).

VPXeak (Img(k)) > VPeCO,eak (Img(k)) (5.9)

where VPcO1 (Img(k)) represents the vertical projection of Img(k) at column col. We name

xpecik to be the VP-peak location for image Img(k), and name the column at Xpeak to be the

VP-peak column, which is normally the center axis.

Proof 1: When the width of overlap region between two continuous frames is less

than half of the foreground's width.

For situations shown in Figure (5-1) (al) and Figure (5-2) (al) (a2), when we compute

the absolute difference-image FDI and BDI based on Equation (5.1) and (5.2), the most

right boundaries of foregrounds in the previous frame Img(k - 1) would not cross VP-peak

location xpeak, and the most left boundaries of foregrounds in the next frame Img(k + 1)

would not cross VP-peak location Xpeak. The overlap regions between FDI and BDI do

not contain VP-peak column for Img(k). Under such condition, the pixel columns at the

location xpeak for CDI of both definitions are the same as VP-peak column for Img(k) as in

Equation (5.10).

VPX,,pa (CDI(k)) = VP,.p,,,, (Img(k)) (5.10)
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Without losing generality, we can assume that the vertical projection of difference-

values in the overlap-region for FDI and BDI are smaller than the vertical projection of the

original values as in Equation (5.11).

VPcoixpek (CDI(k)) < VPcol Xpak (Img(k)) (5.11)

Such assumption holds since pixel values in foreground are quite close to each other

and the pixel values in CDI are much smaller than in original images, which is also con-

firmed in the comparison of CDI and original images as in Figure (5-3). Combining Equa-

tion (5.9), (5.10) and (5.11) we have

VPXp,, (CDI(k)) ;> VPco/xpcak (CDI(k)) (5.12)

The peaks of vertical projections for CDI(k) (for both definitions) and the ones for

Img(k) are the same and happen at the same locations xpeak as long as Img(k - 1) and

Img(k + 1) do not pass through the column at xpeak, which are the situations shown in

Figure (5-1) (al) and Figure (5-2) (al) (a2). The above condition requires the relative motion

of foregrounds between two continuous frames is equal or larger than half of foreground's

width since xpeak is usually close to the center axis of foreground. In other words, the

width of overlap region between two continuous frames should be less than half of the

foreground's width.

If the relative movement is not fast enough and the overlap regions between two con-

tinuous frames pass through the center axis for arbitrary foregrounds, there still exists the

correspondence relationship between head's location and VP-peak location for CDI (1st

definition). We will first sequentially present the proof for the three situations discussed

in Proof 2A, Proof 2B, Proof 2C using the first definition of CDI. In Section 5.2.1, we

will discuss situations using the second definitation of CDI. For Proof 2A, Proof 2B, Proof

2C, without losing generality, we assume that vertical projection for foregrounds decreases

monotonically from the VP-peak location to both left and right sides.
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Proof 2A: When foregrounds are pedestrians and their body-trunk regions in two

continuous frames do not overlap for more than half of body width.

In this situation, upper limbs occluded partial regions in the column at Xpeak as well as

the neighborhood columns around xpeak, which would not affect the VP-peak location for

CDI(k) as demonstrated by the Figure (5-2), case (3). Thus, due to the special shape for

pedestrians, VP-peak location for CDI(k) will be the same as for Img(k) as long as their

body-trunk regions in two continuous frames do not overlap for more than half of body

width. Figure (5-3) is an example that supports this observation. The horizontal movement

(around 10 pixels) is larger than half of body-trunk width (less than 10 pixels) as shown by

the long vertical dotted lines. The projection curves for both CDI definitions will have peak

corresponding to the heads' location as demonstrated by green vertical lines. The relative

movement in Figure (5-3) is very typical in most real time video sequences.

Proof 2B: When foregrounds have uniform intensity, we adopt CDI with the first

definition

Let us consider Figure (5-1) (b). If the pixel intensities inside three ellipses are uniform,

the overlap regions between FDI and BDI will be zero. CDI in Figure (5-1) (c2) will degen-

erate into the pattern shown in Figure (5-4) (a). We respectively define VPcoi (Img(k))

and VPco 2 (Img(k)) to be the vertical projection of line segmentation C01 and C02 at

image Img(k). Thus, we have

VPX,,k (CDI(k)) = VPCOI (Img(k)) + VPC0 2 (Img(k)) (5.13)

VP20 1, (CDI(k)) = VPLOi (Img(k)) + VPLO2 (Img(k)) (5.14)

For uniform pixel intensity, the projection of a column is proportional to the column

length. As in Equation (5.9), the vertical projection for Img(k) decreases monotonically,

thus we have
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Length( CO1 + C02 +CI)) Length(LO1 + LI + L02)

Since Column at coli is still at the right side of the axis in Img(k - 1) which is the left

blue dashed-line as shown in Figure (5-4) (a), we have:

Length( LI) 2 Length(CI) (5.16)

Combining Equation (5.15) and Equation (5.16), we have

Length( CO1+C02) Length(LO1+LO2) (5.17)

Combining Equation (5.13), (5.14) and (5.17), we can show that CD-Images (Def_1)

still peak at the VP-peak for original Img(k) as below:

VPX,.k (CDI(k)) = VPCOI (Img(k)) + VPC0 2 (Img(k))

> VPLO1 (Img(k)) + VPLO2 (Img(k)) = VP, 011 (CDI(k))

Proof 2C: When foregrounds have randomly distributed intensity with same mean,

we adopt CDI with the first definition

For pixel intensity randomly distributed around the same mean, the projection of an

column is statistically proportional to the column length. Thus the column length would

also decrease monotonically from the center to both ends, and we can make the similar

observation shown in Equation (5.16) and (5.17) as long as coli is still at the right side of

the axis in Img(k - 1), the left blue dashed-line as shown in Figure (5-4) (b).

From Figure (5-4) (b), we have

VPXpeak (CDI(k)) = VPcoi (Img(k)) + VPco 2 (Img(k)) + VPc1 (CDI(k)) (5.19)
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Figure 5-4: (a) CDI (1st Def) for uniform images
The comparison of CDI images and original frame

(b) CDI (1st Def) for general cases (c)
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VPXC0 I1 (CDI(k)) = VPLO1 (Img(k)) + VPLo2 (Img(k)) + VPLI (CDI(k))

If we have

VPC01+Co 2 (Img(k)) - VPLO1+LO2 (Img(k)) VPLI (CDI(k)) - VPCI (CDI(k)) (5.21)

Then we can claim that

VPX (CDI(k)) > VPx, (CDI(k)) (5.22)

The monotonic decreasing feature of vertical projection for original images shown in

Equation (5.9) leads to the following relationship:

VPCO14 CO2 (Img(k)) + VPci (Img(k)) VPLO1+LO2 (Img(k)) + VPLI (Img(k)) (5.23)

which can be also written as

VPco 1+co 2 (Img(k)) - VPLo1+LO2 (Img(k)) 2 VPLI (Img(k)) - VPci (Img(k)) (5.24)

Comparing the above equation and Equation (5.21), in order to make Equation (5.22)

holds, the following relationship should meet:

VPLI (Img(k)) - VPci (Img(k)) VPLI (CDI(k)) - VPci (CDI(k)) (5.25)

In other words, the differences between vertical projection for line (LI) and line (CI)

in CDI images, as demonstrated in the top part of Figure (5-4) (c), should be smaller than

the differences between vertical projection for line (LI) and line (CI) in original images, as

demonstrated in the bottom part of Figure (5-4) (c). When coli is at the right side of the
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axis in Img(k - 1), the left blue dashed-line in Figure (5-4) (b), LI length is larger than CI

length as shown in Equation (5.16).Most foreground' column pixels have similar intensities

values as their neighborhood, so the intensity values in difference images FDI/BDI/CDI are

much smaller than in the original images for most general situations. Thus, Equation (5.25)

will hold for the general situations, which leads to Equation (5.22). When coli moves to

the left side of the axis for Img(k - 1), LI length is smaller than CI length, Equation (5.21)

will be easily met, which also leads to Equation (5.22).

In summary, when we do not have information about the foreground pixel, we can only

prove these above inequalities in the statistical sense. Due to the similarity of foreground

pixels with their neighborhood, most situations are similar to the case shown in Figure (5-

4) (a), for which we have rigorous proof. Thus, we can claim an additional property for

CDI-VP-Curves as followed:

o For non-occluded foregrounds, the horizontal locations of VP-peak for the original

images Img(k) correspond to VP-peak for CD-Images.

We run a simulation experiment to demonstrate the above relationship numerically. We

test three continuous images of ellipse foreground with two different image patterns and

twelve different movement speeds as shown in Figure (5-5). Three original frames are

labeled as Img(k - 1), Img(k), and Img(k + 1). In all images, black regions correspond

to 0 intensity, and the brighter the region, the higher the intensity. For the cases (al)-

(a12) in two most left columns, pixel intensities inside foregrounds with ellipse-shape are

random variables with uniform distribution. For the cases (bl)-(bl2) in two most right

columns, pixel intensities at every column of ellipse-foregrounds are random variables with

uniform distribution while the vertical means of pixel intensities for each column decrease

monotonically from the center of an ellipse to both ends. From case (al) to case (a12), and

from case (b 1) to case (bl2), the movement speed for an ellipse changes from slow to fast,

and the relative movement of foregrounds between two continuous frames becomes larger

and larger.

Figure (5-6) shows the changing trend of CD-Images and CDI-VP-curves (Def_1) from

case (al) to case (a6) and from case (bl) to case (b6). For each subfigure, CD Images
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are shown in the top part, and the corresponding CDI-VP curves are the red curves in the

bottom part for the sub-figure. The curves in blue, cyan, and green colors respectively cor-

respond to the vertical projections for three original continuous frames, BDI and FDI. For

all cases, CDI-VP-Curves have peaks at the center axis of the ellipse in the middle frame

Img(k). When the relative motion is very small, CDI-VP-Curves are flat. When fore-

grounds move faster and faster, peaks in the CDI-VP-Curves become sharper and sharper,

and higher and higher until the heights of the VP-peak for both definitions of CDI-VP-

Curves are the same as the ones for the VP-peak for Img(k) as shown for cases (a6) and

(b6), which is consistent with our proof 2B and proof 2C.

We also plot the two definitions of CDI-VP-curves for cases (a6)-(a12), (b6)-(bl2) in

Figure (5-8) when the relative motion is equal or larger than half of foreground's width.

The results are consistent with our proof 1. For both definitions of CDI-VP-curves, Def_1

and Def2, the VP-peak columns for CDI are the same as for the middle frame Img(k), and

the heights of the VP-peak for CDI are the same as the one for Img(k). Therefore, we need

not plot CD-Images for those cases.

Discussion on Two Definitions of CDI and CDI-VPC

Figure (5-7) and Figure (5-8) respectively compare two definitions of CDI-VP-curves for

cases (al) (bl)-(a6) (b6) and (a6) (b6)-(a12) (b12). The comparison between two definitions

shows that the transitions from zero to non-zero projection on CDI-VPC for Def2 are

crisper than for Def_ as shown in Figure (5-7) and Figure (5-8). The second definition of

CDI and CDI-VPC is more robust to the choices of brightness thresholds, and has more

advantages than the first definition as for the robustness of horizontal segmentation.

Besides, CDIs in Def2 have richer texture information than the ones in Def_. Two

CD-Images of these two given definitions are shown in the bottom two rows of Figure (5-

3) (b). The second definition contains brighter pixels than the first definition based on min-

imization. Such feature helps to improve the performance of future vertical segmentation.

One possible disadvantage for DeL2 is that CDI-VP-curves of Def2 would not pre-

serve the correspondence relationship between VP-peaks for CDI and Img(k) when the

relative motion of foregrounds between two continuous frames is smaller than half of fore-
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ground's width. The deviations of VP-peaks for CDI in Def_2 from the center axis of

Img(k) are shown in Figure (5-7) for cases (al)-(a5), (b1)-(b5). But such deviations are not

very large since the relative motion is small.

Our results show that CDI-VPC in Def_1 works in all situations discussed in Proof 1,

2A, 2B, and 2C, while CDI-VPC in Def_2 only works in situations discussed in Proof 1 and

2A. CDI-VPC in Def_1 serves in more situations than CDI-VPC in Def_2 does. However,

for situations when both DefI and Def-2 work, horizontal segmentation based on CDI-

VPC in Def_2 is more robust than the one based on CDI-VPC in Def1. Proof 2A requires

that the relative motion between pedestrians in two continuous frames is larger than half

of body-trunk, which is met for most real time monitoring videos. Therefore, we use CDI-

VPC in Def_2 for our pedestrian tracking.
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Figure 5-5: The three continuous video frames with two different image patterns(a/b) and
12 different movement speeds. From (1) to. (12), the relative motion increases.

182



(b 1)

(b2)

(b3)

eI

ke

(b4)

-I, 9'

'1 A~'
(b5) 9'

(b6)

4-
I

I

Figure 5-6: The changing trend of CD-Images
tinuous video frames defined in cases (al)-(a6),
plotted in the top row of each figure. CDI-VP
bottom row for each figure. In the bottom rows,

and CDI-VP-curves(Def-1) for three con-
(bl)-(b6) of Figure (5-5). CD-Images are
curves are plotted in the red curve is the
the curves in blue, cyan, and green colors

respectively correspond to the vertical projections for three original continuous frames, for
BDI, FDI.

183

case(al)

case(a2)

case(a3)

case(a4)

case(a5)

case(a6)



case(al) DeLl

12

case(a2) Def_1

case(a3) Def1

case(a4) Def_1

case(a5) Def-1

case(al) Def_2

case(a2) Def_2

case(a3) Def_2

case(a4) Def-2

case(a5) Def_2

case(a6) Def_1 case(a6) Def_2

case(bl) Def_

case(b2) Defil1

case(b3) DeLi

case(b4) Def_1

case(b5) Def_1

case(b6) Def 1

case(bl) Def_2

case(b2) Def_2

case(b3) Def-2

case(b4) Def_2

case(b5) Def_2

case(b6) Def-2

Figure 5-7: The comparison of two definition of CDI-VP-curvQs for three continuous video
frames defined in cases (al)-(a6), (bl)-(b6) of Figure (5-5).
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frames defined in cases (a6)-(a12), (b6)-(b12 f Figure (5-5)



The Properties of CDI-VPC during Occlusion

When occlusion happens, there still exists correspondence relationship between CDI-VPC

and foregrounds as shown in Figure (5-9) in which the top row contains original image

Img(k - 1), Img(k), and Img(k + 1) and bottom row plots their corresponding projection

curves, CDI-VPC(k - 1), CDI-VPC(k), and CDI-VPC(k + 1). (We do not include the

two other frames Img(k - 2) and Img(k + 2) that are respectively needed to produce CDI-

VPC(k - 1) CDI-VPC(k + 1).) Similar to non-occlusion case, the transition from zero to

non-zero projection curves happens at the left boundary of the occlusion-grouped pedestri-

ans. The transition from non-zero to zero projection curves happens at the right boundary

of the occlusion-grouped pedestrians. The horizontal locations of pedestrians' heads still

correspond to the local maximum or transitional peaks even though they do not necessar-

ily correspond to global peaks. Such correspondence also helps to narrow the searching

area of interested objects. Thus, for occluded situations, CDI-VP-Curves still provide us

information about the horizontal locations of pedestrians. More examples about the cor-

respondence between pedestrians' locations and their corresponding CDI-VPCs before,

during and after occlusion can be seen in Figure (5-10). Figure (5-10) shows the changing

trends of vertical projection-curves of CD-Images before and after two people intersect.

Two individual peaks in CDI-VP-Curves correspond to two pedestrians. As pedestrians

walk close to each other, they occlude and finally pass each other. The corresponding two

CDI-VPC waves gradually move close, merge, and finally separate again. The peaks cor-

relate to the horizontal locations of pedestrians during the whole process. The series of

vertical projection-curves not only provide a good foundation for initial segmentation, but

also provide important dynamic information for tracking.

Projection-based Horizontal Segmentation Algorithm

In summary, our "projection-based, horizontal first, vertical next" segmentation algorithm

separates an image into several vertical stripes in the following steps as shown in Figure (5-

11)(a) and (bl):

1) Compute the absolute difference-value between two continuous frames and obtain
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Figure 5-9: Examples that the horizontal locations of pedestrians correspond to transition
peaks in projection-curves. Dotted lines correspond to the boundaries of intersection re-
gions. Solid lines correspond to the locations of pedestrians' heads. We notice that the
horizontal locations of people's head are exactly at the transitional peaks of the projection-
curves, and the horizontal locations of merged regions at accurately determined by the peak
boundaries of projection-curves.

BDI and FDI. Adaptively apply thresholds to BDI and FDI to obtain binary backward/forward

difference images.

2) Compute CDI based on BDI, FDI and their binary versions. Compute the vertical

projections of CDI to obtain CDI-VPI.

3) Detect triangle spikes (local maxima) to capture the transitions in CDI-VPI. Merge

neighbor spikes when necessary. Adaptively adjust minimum wave-height thresholds based

on wave-heights in previous frames in order not to miss objects.

4) Separate an original image into several vertical stripes and then obtain the initial

horizontal segmentation.

For non-occlusion cases, the horizontal locations of the triangle spikes provide the ideal

widths and horizontal locations of individual foregrounds. The horizontal locations of the

triangle peaks on CDI-VPCs provide the horizontal locations of potential moving pedestri-

ans' heads.

For occlusion cases, the horizontal locations of the triangle spikes still provide the hor-
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izontal boundaries of grouped foregrounds. The horizontal locations of local transition

peaks on CDI-VPCs provide the horizontal locations of candidate pedestrians' heads as

shown in Figure (5-9).

Figure 5-10: The changing trend of CDI-VP-Curves and the results of segmentation and
tracking before and after two people intersected for Sequence VID-1.

5.2.2 Initial Vertical Segmentation within Horizontal Segmented Stripes

After horizontal layer separation, the vertical positions of human beings can be directly

obtained by finding the highest and lowest positions of all edge pixels in CD-Images within
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horizontally segmented stripes as shown in Figure (5-3) (c). For non-occlusion cases, our

initial segmentation algorithm provides the vertical locations of pedestrians. Normally the

highest points in the segmented regions correspond to the heads' locations and should be

at the same column where CDI-VPC peaks.

For occlusion cases, the results of vertical segmentation are the vertical locations of

pedestrians' group. The detail segmentation for individual pedestrians within grouped re-

gions will be identified during fusion-based searching and tracking discussed in Section 5.3.

Normally there is no occlusion when pedestrians first show up so that we have the correct

segmentation information for each pedestrian. If there is serious occlusion when several

pedestrians first show up, i.e., they walk in a group, the initial segment algorithm will treat

them as one group. When pedestrians later separate, the individual pedestrian can be later

identified and added when we update segmentation in tracking process. If pedestrians are

together all the time, they will be treated as one moving group during tracking.

5.3 Fusion-based Layered-based Tracking

Initial segmentation provides possible locations of interested foregrounds or the grouped

regions for occluded foregrounds. Because of light computational load, we can apply "hori-

zontal first, vertical second" initial segmentation to every frame so that our detection system

can quickly respond to fast changing environments.

During the tracking procedure, newly identified pedestrians should be matched to pre-

vious detected results to determine the dynamics of interested foregrounds. If occlusion

happens, the detail locations of interested foregrounds in the grouped regions should be

further identified. In the tracking process, we fuse the following information from multiple

resources as shown in Figure (5-11) (a). The steps are:

1. Conduct initial segmentation for the current frame

2. Obtain CD-Images, the edge of CD-Images, and the vertical-projection-curves for

CD-Images(CDI-VPC)

3. Estimate horizontal locations and velocity of pedestrians from KF prediction step
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Figure 5-11: (a) Algorithm flowchart. (
(b2) Flowchart for fusion-based tracking.

bl) Flowchart for CDI, CDI-VPC computation.

190

(b2)

....................................................................................................... ............ ................... ............ , ........................ ::::::::::::::::::::: .....................



Before explaining our fusion-based tracking algorithm, we first define several features

or elements involved in the tracking process.

5.3.1 Template with different poses

One key point to track moving pedestrians with various poses is to identify the common

signatures among pedestrians in different frames. Though people change their poses during

walking, their body-trunks regions change little between two continuous frames and can be

used to match pedestrians among different frames. The similarity of body-trunk is shown

in Figure (5-12) in which the left column shows the detected pedestrian regions during

initial segmentation, and the right column shows the body-trunk regions for these people.

In four continuous frames, the pedestrian in the left side of the images have very similar

body-trunks.

Given initial segmentation, corresponding body-trunk regions are defined in the follow-

ing steps:

1) We first obtain the heads' locations which are the top row of initial segmentation and

at the column where CDI-VPC peaks. When there is no occlusion, there is very little noise

in the combined-difference-images and the heads' location can be accurately determined.

When there is occlusion where heads' location might not be accurately detected, we do not

update the template. So the negative impact would not be accumulated during the tracking

process.

2) In areas surrounding heads' locations, we define a portion of initial segmented

regions whose width and height are respectively fifty percent (50%) and seventy per-

cent(70%) of initial segmented regions.

For the purpose of pose-independent body-trunk based matching, two body-trunk re-

gions are first aligned based on their VP-peaks. Then, the similarity comparison between

two pedestrians are computed based on the cross correlation for the common area of two

corresponding body-trunk regions. The human body-trunk templates will be used as one

input for fusion-based tracking in the next step.

We only apply pose-independent body-trunk based matching when pedestrians com-
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pletely show up in both frames. For the pedestrian who is walking into the image from

the right side in Figure (5-12), their initial segmentation regions are not related based on

body-trunk. Instead, we can recognize the action of having a new foreground based on the

increasing area of initial segmentation at the right boundary of the image.

5.3.2 Layered-based Tracking

Similar to the layer-based initial segmentation, our tracking mechanism is also layer-based.

While traditional tracking algorithms search for previous detected foregrounds in a whole

image, our algorithm limits the searching within the areas defined through initial "horizon-

tal first, vertical second" segmentation for each individual frame. Figure (5-13) shows the

tracking and matching process between two continuous frames, Img(k - 1) and Img(k).

The top and bottom rows of Figure (5-13) respectively correspond to Img(k - 1) and

Img(k). For both Figure (5-13) (a) and (b), the right columns show the original image

texture, and the left columns show the CDI-VP-curves for two continuous frames. In order

to track pedestrians in Img(k -1), we only search among possible regions of body-trunk re-

gions in Img(k) as indicated by blue areas and compare the similarity of the corresponding

regions with previous pedestrian body-trunk templates. The detail process of determining

these candidate searching regions is explained below.

For non-occluded cases as in Figure (5-13) (a), searching regions are the body-trunk

regions corresponding to initial segmentation regions. We first determine heads' locations,

the highest points in the columns where isolated CDI-VPC for Img(k) peaks. We then

define a small portion of initial segmentation regions around heads' locations to be the

candidate body-trunk regions according to Section 5.3.1.

For occluded cases as in Figure (5-13) (b), the horizontal locations for two pedestri-

ans' heads are at transitional peaks of the vertical projections according to the properties

of CDI-VPCs described in Figure (5-9) (see Section 5.2.1). Again, the highest points in

the columns corresponding to these CDI-VPC local transitional peaks are treated as heads'

locations. Different from non-occluded regions, we cannot use the newly identified ini-

tial segmentation regions to define candidate body-trunks. We reuse the size from prior
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Figure 5-12: The similarity of body-trunk sighture for pedestrians with different poses. (a)
Segmentation for whole pedestrians. (b) Body-trunk regions.



body-trunk templates and define regions with the same template size surrounding heads'

locations as candidate body-trunk during intersection(occlusion).

We further consider the motion and speed information from the predicted tracking mod-

els and limit the search ranges to neighboring peaks as marked. Such process and more

details for non-occluded and occluded situations will be respectively discussed later in

Section 5.3.4 and Section 5.3.4.

(a) (b)

Figure 5-13: The process of pedestrian tracking (a) For non-occluded situations where
CDI-VPC curves are separated waves. (b) For non-occluded situations where CDI-VPC
curves are merged waves. Top row: For Img(k - 1). Bottom row: For Img(k).Left part of
(a) and (b): CDI-VPC. Right part of (a) and (b): Two continuous image frames.

5.3.3 Prediction Models

To keep track of the dynamics of N pedestrians' movement, our tracking algorithm defines

N Kalman filter (KF) models whose states include the horizontal position and horizon-

tal velocity for each pedestrian. Traditional tracking algorithms pick both horizontal and

vertical positions and velocities as tracking parameters. We focus only on the horizontal

positions and velocities due to the following three reasons. First, our segmentation and

detection algorithms are layered-based and follow the principles of "horizontal first, verti-

cal second." As long as the horizontal locations can be determined, the vertical positions

can be easily detected in non-occluded situations. Even if for occluded situations, we still

can determine several candidate horizontal locations. Secondly, the correspondence rela-

tionship between CDI-VPC peaks and heads' horizontal locations makes it much easier

and more accurate to identify the horizontal locations than the vertical locations, especially
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during the occlusion situations. Thirdly, when people walk, the vertical positions change

much rapidly than horizontal positions. In other words, they would be very "bumpy." It is

much easier to accurately track the horizontal locations than the vertical locations. Thus, it

is computational efficient for our mathematical tracking models to only track the horizontal

locations and velocities.

The detailed models are described in Equation (5.26). The ith KF model states x in-

clude the horizontal position (pos) and horizontal velocity (v2) for ith pedestrian, i.e,

x = [posx v2]. For the model defined below, u is input variable, z is the measurement, w

and v are respectively process noise and measurement noise, Q and R are respectively the

covariance of process noise and measurement noise.

Xk = AXk-1+ Buk-1 - Wk-1

Zk = HXk-+vk

p(w) - N(O, Q)

p(v) - N(0, R) (5.26)

Since we have the relationship posx [k] = posx [k - 1] + v2 [k - 1] and v2 [k] = v [k - 1],

we set B = [0; 0], H = [1 0], A = [1 1; 0 1].

Kalman filtering involves two steps: estimation and update, which are respectively

described in Equation (5.27) and Equation (5.28). In the estimation step, we estimate

horizontal locations and velocities for pedestrians k-, and the error covariance P- in the

next frame based on historical data from previous frame.

ik- = Aikl + Buk_1

P- = APkIAT +Q (5.27)

In the update step, the measured horizontal locations and velocity of previously identi-

fied pedestrians are used to update the gain Kk, measurement ik, and error covariance Pk

195



of KF models as shown in Equation (5.28).

Kk PIH(HPH+ R)-

Xk = k +Kk(Zk - H-k)

Pk = (I - KH) P (5.28)

The initial segmentation results, human locations, are used to initialize dynamic track-

ing models for human positions.

5.3.4 Fusion-based Tracking

As shown in the flowchart in Figure (5-11) (a), fusion-based tracking-block receives multi-

ple information, CDI, CDI-VPC, initial segmentation and Kalman filter prediction results,

in order to detect the new locations of monitored pedestrians and potential new pedestrians.

Based on the horizontal locations of the triangle spikes from VP-Curves for in Img(k - 1),

KF prediction model can predict the new horizontal regions for all pedestrians. Unlike

traditional Kalman filtering where predicted results from Equation (5.27) are only interme-

diate results, the predicted results are used in fusion-based tracking block.

In this subsection, we first discuss how to detect the dynamics of tracking and to differ-

entiate occluded and non-occluded situations, then propose how to track pedestrians in two

situations.

Detect Possible Dynamics

By comparing the predicted locations and the horizontal locations from CDI-VP-Curves

for Img(k), we can identify whether there exist independent sharp triangle spikes at the

predicted regions, and detect possible intersection or new independent waves for new in-

coming pedestrians.

If estimated regions for pedestrians at Img(k) do not overlap, and the initial segmenta-

tion results appear at the estimated regions, we can conclude that there are no occlusion.
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If the predicted regions for two or more pedestrians start to overlap, triangle spikes fail

to show up at estimated regions, or the number of independent non-overlapped CDI-VPC

waves in that neighborhood decreases, we can conclude that the corresponding vertical

projection waves might start to merge and the corresponding pedestrians might start to

occlude partially.

If the number of independent non-overlapped CDI-VPC waves in that neighborhood

decreases and the predicted regions start to reach the left/right boundaries, corresponding

pedestrians might start to walk out monitoring regions and even disappear.

Pedestrian Tracking during Non-Occluded Situations

Where there is no occlusion, we can directly apply body-trunk-based matching to associate

the previous pedestrian with newly segmented pedestrians as discussed in Section 5.3.2.

As shown in Figure (5-13) (a), three separated pedestrians in the right column lead to

three isolated peaks as shown in the left column for both Img(k - 1) and Img(k), which

will provide three corresponding search ranges in Img(k) in order to track the most left

pedestrian in Img(k - 1). The location and velocity information from predicted tracking

models help to limit the search ranges to two neighboring peaks as marked. If there are new

additional triangle peaks that do not correspond to any previous pedestrians, the newly seg-

mented pedestrians are recorded as new foregrounds. Both cases do not involve occlusion,

and the initial segmentation is reliable. The new information of the tracked pedestrians is

used to update dynamic KF models and stored body-trunk template.

Pedestrian Detection during Occluded Situations

When two originally independent triangle spikes start to merge, it means that two pedestri-

ans move close and start to intersect (occlude). As shown in Figure (5-13) (b), two originally

separated pedestrians in Img(k - 1) start to occlude. In order to track the most left pedes-

trian in Img(k - 1), body-trunk template in Img(k - 1) should be compared with candidate

body-trunk regions in Img(k) which are defined at three local transitional peaks within

interested section of CDI-VP-Curves as discussed in Section 5.3.2. Such three regions in

Img(k) are marked in Figure (5-13) (b). The occluded cases in Figure (5-13) (b) have one
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extra candidate region than in Figure (5-13) (a), which is caused by the extra peaks due to

occlusion.

Our method might have problems when two people's heads are completely at the same

horizontal locations, i.e., when one person is completely occluded by another. However, it

is impossible for one person to be completely occluded by another in several frames unless

they are static or both walk together. In that case, they are treated as one group in our

method. In most occlusion situations, the horizontal locations for two pedestrians are at

different transitional peaks during the whole merging process even though the images of

two people might merge in several continuous frames.

If occlusion happens, we do not update KF dynamic models and pedestrian trunk tem-

plates as shown in Figure (5-11) (b2). This is because that segmentation reliability may

degrade because of matching ambiguity when searching for head area among wave peaks.

Interested pedestrians might not completely show up and human body-trunk area might in-

clude texture information from another person. During the occlusion process, we reuse the

same templates before occlusion for matching and tracking to avoid the impact of incorrect

measurement data on detection and on the performance of Kalman filter based dynamic

models.

Our tracking algorithms keep track of transient process, such as, whether people are

about to enter and to leave scene boundaries, and update body-trunk templates and tracking

models accordingly.

5.4 Results

In this section, we will discuss tracking results for four picked sequence out of 26 test video

sequences. As shown in Table 5.1, in Sequences VIDA, two people walk toward to each

other, intersect, and then depart. In Sequences VID_2, one pedestrian gradually changes

from standing poses to bowing poses. In Sequences VID_3, one pedestrian first walks to

the right side of the image, then turns 90 degrees to left and walks toward the back. In

Sequences VIDA, one pedestrian first walks backward and then forward, while the other

one walks forward and pass another pedestrian. The intersection happens when the first
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Table 5.1: Summarization of test video sequences and results

Sequence situations
Two walked toward each other

Two walked toward each other.
One later bowed.

Result Figures
Fig. (5-9), Fig. (5-10), Fig. (5-17)
Fig. (5-14), Fig. (5-18)

Two walked toward each other. Fig. (5-15), Fig. (5-19)
One later turned 90 degree to the left and

changed the direction of walking.

One walked to the left. Fig. (5-16), Fig. (5-20)
Another first walked backwar and

then forward.

pedestrian walks backward and the second one walks forward.

Fig. (5-10), Fig. (5-14), Fig. (5-15) and Fig. (5-16) respectively show the results of

segmentation and tracking before and after two people intersected for Sequence VIDA,

VID_2, VID-3, and VID_4. Our algorithm accurately captures two people even during the

intersection/occlusion period. Figure (5-10) also shows the correspondence relationship be-

tween segmentation/tracking results and CDI-VP-Curves for sequence VIDA. Figure (5-9)

shows the human detection details before and after two people intersect. Specifically, these

two figures demonstrate that the horizontal locations of people's heads are exactly at the

transitional peaks of the projection-curves, and the horizontal locations of merged regions

are accurately determined by the boundaries of CDI-VPC waves, which is the foundation

of our algorithms.

Figure (5-17), Figure (5-18), Figure (5-19), and Figure (5-20) respectively plot walking

paths of pedestrians for the whole sequences and show the integrated tracking results for Se-

quence VID_, VID_2, VID-3, and VID_4. In these figures, square black dots present detail

locations of each detected person's head in different image frames. One person's movement

in a video sequence is then represented by a dotted line, which describes the moving paths

of the pedestrians and demonstrates the performance of our segmenting/tracking method in

a video sequence. The fixed background image is the average between the first and the last

image of a video sequence. The image contains the initial and final appearance of pedes-
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trians, which correspond to the starting and ending positions of the movement path for the

corresponding pedestrians.

Our method can produce reliable tracking results even when people change poses or

walking directions. For all these sequences, two people walk toward different directions,

meet at some point in the middle of video sequences, intersect and occlude, and finally

depart again. People change their directions from forward to backward (VIDA), or from

forward to the left (VID_3). People changed their poses from up-straight (side-look) to

bowing (VID_2), from the side appearance to back appearance (VID-3). Our algorithm ac-

curately captures the changes in the detect pathway. In each sequence, the number of dotted

lines is equal to the number of pedestrians, and the number of dot is equal to the number

of frames in which pedestrians show up. The smooth flat dotted line reflects the smooth-

ness of human movement. Figure (5-17), Figure (5-18), Figure (5-19), and Figure (5-20)

demonstrate that our algorithms provide reliable and correct tracking results.

Figure 5-14: The segmentation/tracking results before and after two people intersected for
Sequence VID_2. One person started to bow during walking.

5.4.1 Performance Evaluation

We have tested a total of 26 available video sequences in which there are two or more

people walking toward different directions with different poses. Our goal is to track the
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Figure 5-15: The segmentation and tracking results before and after two people intersected
Sequence VID-3. One person turned 90 degree and changed the direction of walking.

Figure 5-16: The segmentation and tracking results before and after two people intersected
Sequence VIDA. One person first walked backward and then forward.
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Figure 5-17: Tracking results for Sequence VIDA in
Right: Pedestrian 2.

Figure (5-10). Left: Pedestrian 1.

Figure 5-18: Tracking results Sequence VID_2 in Figure (5-14). Left: Pedestrian 1. Right:
Pedestrian 2.

Figure 5-19: Tracking results
Pedestrian 2.

Sequence VID_3 in Figure (5-15). Left: Pedestrian 1. Right:

Figure 5-20: Tracking results Sequence VIDA in Figure (5-16). Left: Pedestrian 1. Right:
Pedestrian 2.
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same person successfully and accurately all the time. A person can be mistakenly tracked

or even lost after intersection. If a person is lost during the tracking process, and is later

detected as a new person in the sequence, the total number of detected people will be larger

than the actual number of people, and the motion path for a person is incorrect. If this

happens, the motion path for related pedestrians would not be incorrect and a "failure" is

assigned to the sequence. We claim "success" only when the motion path for a person is

detected accurately with minor segmentation errors.

After applying our evaluation standard to all 26 test sequences, our test results indicate

that 3 test sequence results are "failure" (around 12%) and there are 23 "success" test results

(around 88%).

To compare the performance of our proposed algorithms with conventional methods, we

applied conventional background-subtraction-based segmentation and mean-shift tracking

algorithms to track pedestrians' behavior in the same 26 sequences. The rate of "success"

is only 40%. Furthermore, the results based on conventional methods have to rely on the

color information while our algorithm only requires grey level images for the same set of

sequences.

Our detection results show that our algorithm has the capability to track humans with

changing walking-poses, different walking directions, and to deal with segmentation with

partial occlusions and scale variations of targets. Humans are accurately tracked even if

intersecting or merging happens. Our proposed algorithm has significantly improved the

detection reliability.

5.5 Discussion: the Features & Advantages of Proposed

Algorithms

Our proposed layered-based and fusion-based algorithm has the following features and

advantages.
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5.5.1 The Advantage of Layered-based Processing

Both our segmentation and tracking algorithms follow the layered-based principle.

The Advantage of Layered-based Processing for Segmentation

We calculate CD-Images and CDI-VP-Curves to detect multiple irregular subjects. If there

is only one object in an image, there exists unique correspondence relationship between

the object's location and CD-Image's boundaries which helps to accurately locate the in-

terested object. In order to detect multiple objects in an image, we divide the image into

multiple regions using CDI-VPCs and then search for individual foreground in each region.

Typically in an image one pedestrian would not directly at the top of another. Thus, if we

can horizontally separate an image into several vertical stripes, we can uniquely determine

the corresponding pedestrian's locations.

Therefore, we take advantage of defined CD-Images and CDI-VP-Curves to separate an

image into several vertical stripes, and each vertical stripe contains one pedestrian. Then

we search for the vertical locations of potential pedestrians. Our "CDI-VPC-based, hor-

izontal first, vertical next" segmentation changes the original two-dimensional search of

pedestrians within a whole image into two one-dimensional searching. Compared with tra-

ditional segmentation algorithms for 2D searching, our layered-based method significantly

improves segmentation reliability and decreases the computational load.

The Advantage of Layered-based Processing for Tracking

After the "CDI-VPC-based, horizontal first, vertical next" segmentation, our dynamic mod-

els only need to track horizontal locations and velocities of pedestrians. Thus, the dynamic

tracking model is simplified and but is still reliable enough to provide good estimation for

future horizontal locations of interested pedestrians. In contrast, traditional complicated

tracking models have to track shape, contour, and location information. The traditional

methods have to track both horizontal and vertical locations of interested objects because

of limited reliability and accuracy of vertical detection during occlusion situations.

Our tracking algorithm is also layered-based as discussed in Section 5.3.2. We divide
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the original whole image into several candidate layers/regions and limit tracking/searching

within these regions for candidate matching.

Besides, the CDI-VPC-based algorithm does not depend on human features, such as

faces, skins, etc., ellipse shape, etc. Thus our algorithm can have more general applications

than detection algorithms relying on special human features.

5.5.2 The Advantage of Fusion-based Principle

In order to enhance tracking accuracy, our fusion-based scheme takes advantages of mul-

tiple information, including, initial horizontal segmentation, predicted human locations,

CD-Images and CDI-VP-Curves, and body-trunk templates.

Tracking based on Fusion of Initial Segmentation and Dynamic Tracking

Traditionally, pedestrian detection involves initial detection based on human's features

from one frame and tracking for several frames afterward due to the heavy computational

load associated with 2D segmentation and searching. Instead, our segmentation only does

two 1-D searching whose computational load is very light so that we can afford to im-

plement initial segmentation and to update body-trunk templates for every frame, which

allows for more adaptability in situations with rapid pose changes.

We take advantage of the similarity of pedestrian trunk template to associate the de-

tected pedestrians among different frames. Our initial segmentation provides satisfying

segmentation for non-occluded pedestrians, which significantly decreases the matching

ambiguity during tracking. The combination of segmentation and dynamic tracking does

not need long initialization time, does not depend heavily on tracking, and can quickly

respond if people dramatically change their poses. Our detection system is simple but

effective in reducing the segmentation/tracking ambiguities when human intersects and

occludes. Compared with traditional segmentation/tracking algorithms purely based on

template matching, our proposed algorithm is simple, accurate and effective.
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Tracking based on Fusion of CDI-VP-Curves, Historical Information and Tracking

Models

The defined CDI-VP-Curves are not only useful when searching for horizontal locations of

potential pedestrians during initial segmentation, but also helpful to decrease the search-

ing regions when matching pedestrians among different frames. The candidate searching

regions are determined by two factors, predicted regions from KF prediction, and isolated

waves or the transitional local peaks in CDI-VPC curves.

We only need to compare human trunk template from previous frame with very few

candidate regions corresponding to the triangular CDI-VPC waves within estimated loca-

tion regions. For merging cases, the search regions for candidate pedestrians can be limited

to transitional peaks within the merged CDI-VPC waves. Thus, the fusion-based tracking is

very useful to identify individual pedestrians with various poses, including the cases when

people bow (which is very rare in most monitoring situation) as shown in Figures (5-14)

and (5-18).

The predicted information from KF models helps to identify the potential merging

cases. When the reliability is low, tracking processes stop updating the template and dy-

namic models with new measurement data, which prevents the ambiguity and failure during

occlusion to pollute the dynamic model and main or even improve estimation performance

for unexpected situations. The mechanisms to update tracking information based on the

reliability of segmentation and tracking improves the robustness of our systems, especially

when dealing with serious tracking failure.

5.6 Conclusion

We have proposed a layered-based and fusion-based human detection and tracking sys-

tem that can handle human intersection and conclusion in complicated environment. Our

proposed algorithm applies layered-based initial segmentation for every frame based on

"projection-based, horizontal first, vertical next" segmentation scheme. When occlusion

occurs, our mechanism chooses potential head locations at local projection peaks within

predicted regions. Converting a typical 2D search problem into two ID search problems

206



significantly decreases computational loads.

Our fusion-based obstacle detection algorithm fuses the information from initial seg-

mentation and dynamic tracking model to avoid complicated tracking schemes. Kalman-

filter-based dynamic models are used to predict pedestrians' horizontal location and speed.

The tracking process identifies and keeps track of detected pedestrians through fusing

the information from the initial segmentation, CD-Images, CDI-VP-Curves, prediction re-

sults from KF filters, and historical information of pedestrians' body-trunk templates. The

layered-based search mechanism tracks the movements of pedestrians at the candidate re-

gions defined by transitional peaks in CDI-VP-Curves. The final detection results are used

to update human locations in Kalman filters and human matching templates. The tracking

mechanism stops updating in case of poor segmentation reliability.

In summary, our methodology takes advantage of connection between different infor-

mation. Compared with other human detection methods, our layered-based fusion-based

algorithm reduces both the computational load and matching-ambiguity. The simple seg-

mentation and tracking algorithms are very effective and reliable in detecting and tracking

the movements of pedestrians in complicated environments such as partially occluded sit-

uations when human intersects.
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Chapter 6

Fusion-based hierarchical method for

direct gradient-based time-to-contact

estimation

The time-to-contact (TTC) estimation is a method to analyze surrounding environment in

order to detect approaching objects, and potential danger. TTC can be estimated directly

from a single camera though neither distance nor speed information can be estimated based

on a single camera. Traditional TTC estimation depends on "interesting feature points"

or object boundaries, which is noisy and time consuming. We are proposing a hierarchi-

cal method, direct gradient-based estimation, to compute TTC from time varying images

using sums of suitable products of image brightness derivatives. The method determines

TTC based on constant brightness assumption and the analysis of the motion field associ-

ated with rigid body motion under perspective projection. Our method is called "direct"

method since it can take advantages of all related pixels for better computation, and avoid

any "higher level" processing, such as feature/object detection, tracking of features, esti-

mation of optical flow, etc. Such method essentially has no latency, since it can be based

on analysis of just two frames of a video sequence, and it does not require a calibrated

camera. The new method enhances accuracy, robustness and is computationally efficient,

which is important to provide fast response for vehicle applications. An implementation

of the method is demonstrated on synthetic image sequences and stop-motion sequences
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- where the ground truth is known - as well as on video sequences taken in outdoor driv-

ing environment. The proposed hierarchical fusion framework for direct gradient-based

time-to-contact estimation enhances accuracy, robustness and is computationally efficient,

which is important to provide fast response for vehicle applications.

6.1 Introduction

6.1.1 Definition

The time-to-contact (TTC) is defined as the time that would elapse before the center of

projection (COP) reaches the surface being viewed if the current relative motion between

the COP and the surface was to continue without change as shown in Figure (6-1).

Apparent motion of
image points Focus of

Expnsion

irection of
E' p

\ motion

Camera / Optical Axis
Direction of Motion

U: XIdt u, dx/dt
V dYlt v dy/dt
Wi dZidit f focu

Figure 6-1: Time-to-contact.

Such a parameter can be used for intelligent vehicles, such as, obstacle avoidance, au-

tomated parallel parking, braking & steering systems, etc., as well as for advanced automa-

tion, automated assembly and robotics, where parts need to be moved rapidly into close

physical alignment while at the same time avoiding damage due to high speed impact.

To define TTC mathematically, we first establish a camera-oriented coordinate system

as shown in Figure (6-1), in which the origin at the COP, the Z axis along the optical axis,

and the X and Y axes parallel to axes of the image sensor. Z is actually the distance from

the center of projection (COP) to an object.
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The TTC is the ratio of distance to velocity:

TTC = -Z d 1/ loge(Z) (6.1)

While distance and velocity can not be recovered from images taken with a single cam-

era without additional information, such as the principal distance and the size of the object,

the ratio of distance to velocity can be recovered directly, even with an uncalibrated sensor.

Here below we first define perspective projection model and relative motion param-

eters, then introduce the relationship between motion field and time-to-contact/focus-of-

expansion.

Perspective projection model and Motion Parameters

Image coordinates x and y are measured from the principal point (foot of the perpendicular

dropped from the COP). The units of measurement for x and y are the same as that used

for the principal distance, f (e.g. the inter-pixel spacing). The vector format for an object

point and its image projection are respectively described as R and r.

The perspective projection equations of image formation can then be written in the

simple form:

x X y Yand (6.2)
f Z f Z

As shown in Figure (6-1), (u, v) = (x, ') is the motion field and (U, V, W) (X, Y, Z)

is the velocity of a point on the object relative to the sensor (which is opposite to the motion

of the sensor relative to the object). The velocity W = dZ/dt is negative if the object is

approaching the camera.

By differentiating the perspective projection Equations (6.2) with respect to time, we

obtain
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U U XW

f Z ZZ
V V YW

and - = -- - - -
f Z ZZ

The motion field is subject to the scale factor ambiguity, since multiplying the coordi-

nates X, Y, and Z and the velocity components U, V, and W by the same factor does not

change u or v. The motion field depends on the rigid body motion between the camera and

the surface being viewed, as well as the shape of the surface.

Using the perspective projection Equations (6.2) we can rewrite the above in the form

U U xW

f Z fZ

u = -(fU - xW)
Z

v V yW
and - - -

f Z f Z

1
and v= -(fV -yW)Z

Equation (6.5) can also be written as

U = (x - X0 ) Wand v = (y -yo)z

where xo = f(U/W) and yo = f(V/W), which is the "focus-of-expansion" (FOE) at

which point the motion information is zero (u = 0 and v = 0) as shown in Figure (6-

1) and (6-2). When the object point corresponding to FOE moves along the direction of

(U, V, W), its image projection remains the same. The motion directions at other image

points are determined by vectors from the FOE to other image points.

When the object rotates relative to the sensor, the general expression of object motion

in 3D is expressed in R = t+W x R in which f and W respectively denotes the translational

component of the motion and the angular velocity, specifically, i= (U, V, W) and W'
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Vehicle at
timet

Vehicle at
time t +1

FOE 

Figure 6-2: Example of FOE(focus-of-expansion).

(W, wyI, Wz). Then the motion field of image points is as followed:

U = - (x xo)- f

V = - (y - yo) f
[ry-wY
I f 2

- Wz XJ (6.7)

In summary, the motion field is related to the time-to-contact, focus of expansion, rota-

tion parameters, as well as the shape of the surface.

The relationship between motion field and time-to-contact/focus-of-expansion

First, we rewrite Equation (6.1) as:

TTC = -Z/W (6.8)

Then we can respectively rewrite Equation (6.6) and Equation (6.7) as followed:

S(X - Xo)

TTC
and v = (Y - Yo)

TTC
(6.9)
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(x -- xo)
TTC

= (Y - Yo)
TTC

xy -X2
f2 -f(1 

2

-f Wj +Wx(1+

+Wy ]+f
y 2 -Z 1 (6.10)

6.1.2 Traditional methods and the limitation

There are two traditional methods to estimate TTC. The first method is optical-flow based,

and the second one is size-based.

Optical-flow based method

This method takes advantage of the relationship between time-to-contact and optical flow [79] [80] [81] [82.

According to Equation (6.9), we have

1
ux U =TTr

o = 0 vy TTC (6.11)

For general motion with translation and rotation as described in Equation (6.10), we

have:

y 2x

Ux = TTC - f ( )

v2 = f oy + U) (6.12)

vy TTC+f W -wx(2y)

Thus, people can compute time-to-contact based on the following methods [79] [80] [81] [82]:
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TTC = ux + vY-
T 2

TTC = UX + vy
1 2

-1

People can also recover TTC through the expected form of the flow field based on rigid

body motion relative to a known shape [84], [90], [91], [92], [93].

Such methods need to estimate optical flow iteratively at multiple scales, tend to be

computationally expensive and require a significant effort to implement properly.

Size-based method

Figure 6-3: Projection relationship for a linear object model. S: Linear object size. f:
Principal distance. When a linear object is at two different distances Z1 and Z2, the image
size corresponding to the linear object is respectively si and s2.

The size-based method is based on the following principle. Consider a simple situation

as shown in Figure (6-3) where a camera is approaching a linear object lying perpendicular

to the optical axis, with the direction of translational motion along the optical axis. If the

(linear) sizes of the object and its image is respectively defined as S and s, then, from the

perspective projection equation, we have (s/f) = (S/Z), that is, fS = sZ. (In Figure (6-

3), we have s1Z1 s2Z2 = Sf.) Differentiating w.r.t time yields
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dZ ds
s + Z = 0 (6.14)dt dt

Together with Equation (6.1), TTC is equal to the ratio of the size s of the image of the

object to the rate of change of the size, that is

ds d
T = s/dt = |1loge(s) (6.15)

It is convenient to use inter-frame interval as the unit of time and express the TTC as a

multiple of the interval.

Equation (6.15) calculates TTC based on the size of the image of an object and the

change in that size over time [94] which requires to extract features and track features

from frame to frame. The time varying image is sampled at regular intervals and the time

derivative of size is estimated using the difference between sizes of the images of the object

in two frames. High accuracy is needed in measuring image sizes of targets in order to

obtain accurate estimates of the TTC when it is large compared to the inter-frame interval.

For example, when the size of the image of a van is about 100 pixels, and the estimated

time-to-contact is 100 frames, then the image of size 100 pixels changes by only 1 pixel

from frame to frame. To achieve even 10% error in the TTC one would have to measure

the size of the image with an accuracy of better than 1/10 of a pixel. The tolerance for

measurement error becomes even smaller when the object is further away and the TTC

larger. When the estimated TTC is 500 frames, the frame to frame change in size of the

image is only 0.2 pixel and the motion of either end of the van is about 0.1 pixel. Measuring

the TTC to an accuracy of say 10% requires, in effect, measuring image positions with an

accuracy better than 0.01 pixel. Obviously, it is very difficult. Thus the accuracy of TTC

computation based on the size-based method is far from satisfying.

Furthermore, it is difficult to generalize Equation (6.15) to translational motions that

are not along the optical axis - or to objects other than planar ones that lie at right angles

to the optical axis.
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6.2 Direct method for time-to-contact

Instead of relying on feature detecting, feature tracking, or estimation of the optical flow,

we propose a method directly based on the derivatives of image brightness by exploit-

ing constraints between the brightness gradient (spatial derivatives of brightness) and the

time derivative of brightness. The constraints is called "constant brightness assumption" as

shown in Equation (6.16).

d
Ed ,y ) t ~ + vEy + Et = 0 (6.16)

dt

where E(x, y, t), Ex, Ey, Et are respectively the image brightness, and the partial deriva-

tives of brightness w.r.t. x, y, and t. The equation defines the relationship between the

brightness derivatives and the motion field based on the observation that in many situations

the brightness of the image of a point in the scene does not change significantly as it moves

in the image [83]. The constant brightness assumption holds for many practical situations

when the light sources do not move relative to the scene and related surface are not specular

surfaces which will have different brightness when viewed from different directions.

In order to estimate time-to-contact, we first introduce time-to-contact information into

Equation (6.16) by substituting Equations (6.5) for the motion field components a and v,

then we formulate a solution based on least-squares-based optimization.

Since all objects are composed of several planar areas, we limit our discussion to planar

objects which is applicable to most of general situations. Our results as discussed in Sec-

tion 6.5 show that our proposed method based on planar objects works fine for real objects.

Thus, we consider the general case when there is arbitrary translational motion between

a camera and a planar surface with arbitrary orientation as shown in Figure (6-4).

The plane with arbitrary orientation can be described by:

Z = Zo +pX + qY (6.17)
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Plane
object

U=O
V =0
W 0

Figure 6-4: The situation when there is arbitrary translational motion between camera and
an plane with arbitrary orientation.

where p and q be the slopes of the planar surface in the X and Y directions. Substituting

the perspective projection equation X = (x/f)Z and Y = (y/f)Z into Equation (6.17)

yields:

Z 1 - - qY) = Zo (6.18)

Substituting the expression for Z given by Equation (6.18) in expressions for u and

v given by Equation (6.6) and then inserting (u, v) into the brightness change constraint

Equation (6.16) leads to

(fU - xW)Ex + (f V - yW)Ey + Et = 0

W - p - qY) [(f U/W - x)Ex + (fV/W - y)EyJ + Et = 0 (6.19)

If we define
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P = (p/f)(W/Zo) Q= (qlf)(W/ZO)

A = f(U/Zo) B = f(V/Zo) C = -w/Zo

G = xEx + yEy (6.20)

Equation (6.19) can be rewritten as:

P Q )[EI+ BC (1 +X z +Y y x + Ey + G] + Et = 0 (6.21)

We notice that C = -W/Zo is the inverse of the TTC, and G is a short-hand for the

"radial gradient" (xE + yEY), A and B are proportional to the coordinates of FOE as

shown below:

A f(U/Zo) -(-WZo)( fU/W) -Czo

B f(V/Zo) =-(-WZo)(fV/W) = -Cyo (6.22)

We formulate a least-squares method to find the five unknown parameters A, B, C,

P, and Q that minimize the following error integral or sum over all pixels of a region of

interest (which could be full image):

(6.23)C c1+4 ±+)[yG4+Ey+Et}

If the five unknown parameters can be solved, then we can compute time-to-contact

which is 1/C. If desired, we can also find the focus-of-expansion using

zo = -A/C and yo = -B/C (6.24)
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The principal distance, f, needs not be known in order to compute the TTC or the FOE.

If f is known, the actual direction of translational motion and the actual surface orientation

can respectively be determined as below:

U 1A V 1B- and -- (6.25)W fC W fC

p -f and q = -f Q (6.26)

In summary, the least-squares-based optimization provides the time-to-contact(TTC),

focus-of-expansion(FOE), and surface parameter p/f, q/f. If f is known, the motion pa-

rameters (U/W, V/WIV) and surface parameters (p, q) can be determined.

If the surface plane is perpendicular to the optical axis, we should have p = 0 and

q = 0. If the translational movement is along the optical axis, the FOE should be at the

origin and we should have U/W = 0 and V/W = 0.

6.2.1 Linear and nonlinear solutions for different cases

So far our discussion focuses on the most general case shown in Figure (6-4) where the

planar surface can be oriented in an arbitrary way, and the translational motion can be in

an arbitrary direction. For the most general situation, the minimization of cost function in

Equation (6.23) is a nonlinear problem, and we do not have closed-form solutions for five

unknown parameters A, B, C, P, Q. However, we do have linear solutions for three special

cases as shown in Figure (6-5) (a) (b) (c). So we have the following four cases:

" Case (I)

Translational motion along the optical axis towards a planar surface perpendicular to

the optical axis. This case assumes that motion U = V = 0 and slope p = q = 0.

" Case (II)
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Translational motion in an arbitrary direction relative to a planar surface that is

perpendicular to the optical axis; This case assumes that motion U # 0, V # 0 and

slope p = q = 0.

" Case (III)

Translational motion along the optical axis relative to a planar surface of arbitrary

orientation; This case assumes that U = V = 0, and slope p 5 0, q $ 0.

" Case (IV)

The arbitrary translational motion relative to a planar surface of arbitrary orienta-

tion. This case assumes that motion U 5 0, V = 0 and slope p $ 0, q $ 0

Plane object

U =V=0

W 0

optical axis I planar surface

(a) Case (I)

U-v-s
II .0

(c) Case (III)

Plane object

V 00
W# 0

optical axls I planar surface

(b) Case (II)
Plane
oject

( 0

(d) Case (IV)

Figure 6-5: Four cases of relative motion. (a) Case (I): Translational motion along the
optical axis towards a planar surface perpendicular to the optical axis. (b) Case (II) Trans-
lational motion in an arbitrary direction, with the optical axis perpendicular to a planar
surface. (c) Case (III) Translational motion along the optical axis relative to an arbitrary
plane. (d) Case (IV) Arbitrary translational motion relative to an arbitrary plane.

Case (IV) is the most general case which requires non-linear optimization techniques.

Cases (I) (II) (III) are the special cases for Case (IV) and have closed form solutions to

minimize the cost function described in Equation (6.23). We respectively discuss the close
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form solutions for Cases (I) (II) (III) in Section 6.2.2, 6.2.3, 6.2.4. In Section 6.2.5, we will

discuss the iterative method to solve the nonlinear problem for Case (IV)

6.2.2 Case (I): Translational motion along the optical axis towards a

plane perpendicular to the optical axis

As shown in Figure (6-5) (a), this case assumes that the surface plane is perpendicular to the

optical axis and the translational motion is in the direction of the optical axis of the imaging

system, i.e., motion U = V = 0 and slope p = q = 0. According to Equation (6.20), we

have A = B = 0 and P = Q 0, and the cost function in Equation (6.23) becomes:

±(CG + E,)2  (6.27)

where the sum is over all pixels of a region of interest (which could be full image). To find

the best fit values of C, differentiating w.r.t. C and setting the result equal to zero yields

>Z(CG + Et)G=0 -- C= -(Z GEt/Z G2 (6.28)

One we have the value of C, we can compute the time-to-contact 1/C. The compu-

tation requires only accumulation of products of "radial gradient," and time derivatives of

brightness.

6.2.3 Case (II): arbitrary translational motion relative to a plane per-

pendicular to the optical axis

As shown in Figure (6-5) (b), this case assumes that the surface plane is perpendicular to

the optical axis, i.e., slope p = q = 0. But the translational motion is not necessarily in

the direction of the optical axis of the imaging system (nor perpendicular to the surface),

which is different from case (I). According to Equation (6.20), we have P = Q = 0, and
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the cost function in Equation (6.23) becomes:

S(AE, + BE- + CG + Et)2  (6.29)

where the sum is over all pixels of a region of interest (which could be full image). To find

the best fit values of A, B, and C, differentiating with respect to A, B, and C and setting

the results equal to zero yields

((AEx+BEy+CG+Et)Ex = 0,

((AEx + BEy + CG + Et)Ey = 0, (6.30)

>(AEx+BEy+CG+Et)G = 0.

i.e.,

E Ej EEE1 GE [ A 1 EEZ Et[ ExE E E2 ZGEy B = -ZEEEt (6.31)
>IGEx ZGE E G 2  C -ZGEt

Using Equation (6.31), we can compute the unknowns A, B, and C, and the corre-

sponding TTC and FOE (xo, yo). If f is known, the actual direction of translational motion

(U/W, V/W) can be computed using Equation (6.25).

Note that the coefficients of the symmetric 3 x 3 matrix are all sums of products of

components of the radial gradient and the brightness gradient, while the quantities on the

right-hand sides of the equations are sums of products of components of the brightness

gradient, and the time derivative of brightness.

If U = V = 0, that is, if the translational motion happens to be along the optical

axis, then the least squares problem is simplified, leading to the single equation for C only,

discussed above in Case (I).
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6.2.4 Case (III): translational motion along the optical axis relative to

an arbitrary plane

As shown in Figure (6-5) (c), this case assumes that the translational motion is in the direc-

tion of the optical axis of the imaging system, i.e., motion U = V = 0 . But the planar

surface is not necessarily oriented perpendicular to the optical axis (or the direction of the

translational motion), which is different from case (I). According to Equation (6.20), we

have A = B = 0 and the cost function in Equation (6.23) becomes:

j [G(C + Px + Qy) + Et]2  (6.32)

where the sum is over all pixels of a region of interest (which could be full image). To find

the best fit values of P, Q, and C, we differentiate with respect to P, Q, and C and set the

three results equal to zero:

Since the translational motion here is along the optical axis, the contact point on the

plane is (0, 0, Zo)T, and so the TTC is again just the inverse of C.

S [G(C + Px+Qy)+ Et] xG = 0,

5 [G(C + Px + Qy) + Et] yG = 0, (6.33)

5[G(C+Px+Qy)+Et]G = 0.

i.e.,

E G2x2 G2xy ' G2x p GxEt
E G2

xy Z G2y2 E G2y Q E GyEt (6.34)

L G2
x EG 2 y ZG 2  C -, GEt

Using Equation (6.34), we can compute the unknowns P, Q, and C, and the correspond-

ing TTC and plane orientation(P, Q). If f is known, then the actual surface orientation can
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also be determined using Equation (6.26).

Note that the coefficients of the symmetric 3 x 3 matrix are all sums of products of

components of the radial gradient and image coordinates, while the quantities on the right-

hand sides of the equation are sums of products of components of the brightness gradient,

image coordinates, and the time derivative of brightness.

If p = q = 0, that is, if the planar surface happens to lie perpendicular to the optical

axis, then the least squares problem is simplified, again leading to the single equation for

C only, discussed above in Case (I).

6.2.5 Case (IV): arbitrary translational motion relative to an arbi-

trary plane

In general, to find the best fit values of the five unknown parameters we can differentiate

either of the two sums with respect to the five parameters and set the results equal to zero.

This leads to five equations for five unknowns. The equations are nonlinear and need to be

solved numerically.

However, if we define

F = 1+xP/C+yQ/C (6.35)

D = G + ExA/C+ EyB/C (6.36)

and rewrite the cost function in Equation (6.23) as:

1 [CFD + E,]2  (6.37)

We observe that if P/C and Q/C are given, then F = 1 + xP/C + yQ/C is known

and the cost function Equation (6.23) are linear in the remaining unknowns A, B, and C as

followed:
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S[F * (CG + ExA + EyB) + Et ] 2

Parameters A, B, and C can be solved based on the following linear equations:

E F2E2 EF2 EXE EF2 GEx A -EF2EEt
EF2 EXEY Z F2E E F2 GEY B =f -B F2 EYEt (6.39)

EF2GE F 2 GEy EF2 G2  C -EF 2GEt

Conversely, if A/C and B/C are given, then D G + ExA/C + EyB/C is known

and the cost function Equation (6.23) are linear in the remaining unknowns P, Q, and C.

5[(C + xP + yQ) * D + Et]2  (6.40)

Parameters P, Q, and C can be solved based on the following linear equations:

[ D2x2 ED2xy ZD 2x P -xDEt
_D 2xy ZD 2y2 ZD 2 y Q yDEt (6.41)

D 2x D2 y ZD 2  C - ZDEt

Note that the coefficients of two symmetric 3 x 3 matrix in Equation (6.39) and (6.41)

are the function of the radial gradient, brightness gradient, and image coordinates, while

the quantities on the right-hand sides of the equations are sums of products of components

of the brightness gradient, image coordinates, and the time derivative of brightness.

Given an initial guess P/C and Q/C, one can alternately solve for A, B, and C based

on initial estimate of P/C and Q/C using Equation (6.39). Then, given the new estimates

of A/C and B/C, we can update P, Q and C with Equation (6.41). A few iterations of

this pair of steps typically yield a close enough approximation to an exact solution.

The time-to-contact is the inverse of the parameter C. If desired, the direction of trans-

lational motion, given by (U/W)(= (A/C)/f) and (V/W)(= (B/C)/f) can also be
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Table 6.1: Summarization of computational models and relative assumptions

Cases Figure Assumption Unknown parameters Solution
(I) 6-5(a) U = V 0, p = q = 0 C Linear Equation

or A = B =0, P = Q = 0 Eqn (6.28)
(II) 6-5(b) p q = 0 A, B, C Linear Equation

or P = Q = 0 Eqn (6.31)
(III) 6-5(c) U = V = 0 P, Q, C Linear Equation

or A = B = 0 Eqn (6.34)

(IV) 6-5(d) None A, B, P, Q, C Non-linear, Iteration
Eqn (6.39), (6.41)

calculated, as can the orientation of the surface specified by f (P/C) and f(Q/C).

6.2.6 Summary: comparison between different computational models

Table (6.1) summarizes all four cases of computational models.

The parameters involved in LSQ optimization problems are:

(A = f U/Zo, B = fV/Zo, C = -WZo, P = (p/f )(WZo), Q = (q/f )(W/Zo)).

The first three, (A, B, C), are the scaled velocity of translational motion relative to

the sensor, (U, V, W) = (X, Y, Z), and the last two, (P, Q), are relative to object-shape

parameters, p and q, the slopes for the planar surface in the X and Y directions.

For Case (IV) in Figure (6-5) (d), the most general case, the translational motion is not

in the direction of the optical axis of the imaging system, and the planar surface is not

be oriented perpendicular to the optical axis. No assumptions are made for five unknown

parameters: (A, B, C, P, Q).
For Case (II) in Figure (6-5) (b), the planar surface is assumed to be perpendicular to

the optical axis while the translational motion is in an arbitrary direction. It is assumed

p = q = 0, (i.e., P = Q = 0). Three unknown parameters, (A, B, C) for optimization, are

related to motion parameters (U, V, W). Case (II) is a special case of Case (IV).

For Case (III) in Figure (6-5) (c), the translational motion is assumed to be along the

optical axis while the planar surface is of arbitrary orientation. It is assumed U = V = 0,
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(i.e., A = B = 0). Three unknown parameters, (P, Q, C), are related to object orientation

parameters (p, q) and time-to-contact information. Case (III) is a special case of Case (IV).

For Case (I) in Figure (6-5) (a), the planar surface is assumed to be perpendicular to the

optical axis while the translational motion is assumed to be along the optical axis. It is

assumed U = V = 0 and p = q = 0, (i.e., A = B = 0 and P = Q = 0). There is only one

unknown parameter, C. Clearly Case (I) is a special case of all Cases (II) (III), and (IV).

Based on computed parameters (A, B, P, Q, C) from Equations (6.39) and (6.41), we

can calculate the time-to-contact information TTC = 1/C, the movement information

(as well as the focus-of-expansion) xo = -A/C = f U/W and yo = -B/C = fV/W

according to Equations (6.24) and (6.25), and obtain planar parameters p/f = -P/C and

q/f = -Q/C according to Equations (6.26).

6.2.7 Identification of different setups in real applications

In applications where we do not have any extra information about the orientation of objects

and the relative motion between objects and cameras, we need to apply the computational

methods based on Case (IV) to compute (A, B, P, Q, C).

If we have P ~ 0, Q ~ 0 in applications, then we can identify the Case (II) where the

object plane surface is perpendicular to the optical axis, i.e., p/f = -P/C = 0 ~ 0 and

q/f = -Q/C = 0 ~ 0.

If we have A ~ 0, B ~ 0 in applications, then we can identify the Case (III) where the

translational motion between camera and object surface is along the optical axis, i.e., U 0

and V = 0. For such case, FOEs should be also around the origin, i.e., xo ~ 0, yo 0

based on Equation (6.24).

If we have A ~ 0, B ~ 0 and P ~ 0, Q ~ 0 in applications, we can identify the special

Case (I) where the translational motion is along the optical axis and object plane surface is

perpendicular to the optical axis, i.e., U ~~ 0, V ~ 0, p/f = 0 ~ 0 and q/f = 0 ~ 0.

The physical model of Case (I) is not only a special situation of cases (IV), but also a

special situation of cases (II) and (III). We can also identify Case (I) in computation with

video sequences if we apply the computational method for Case (II) and obtain A ~ 0
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and B ~ 0, or if we apply the computational method for Case (III) and obtain P ~ 0 and

Q ~ 0.

6.3 Factors affecting computational results

After presenting the theoretical solution of TTC estimation, we would like to discuss the

following factors that would have impact on the accuracy and reliability of the computa-

tional results.

1) Numerical method for partial derivatives

2) Computational areas: full images vs. segmented regions

3) Threshold for time derivative of brightness

4) Four various computational models

5) Different subsampling rates

6) Fusion of four computational models with multi-scale subsampling

The discussion on the impact of the first five factors leads to the necessity of the sixth

factor, which inspired us to proposed the hierarchical time-to-contact estimation based on

fusion of computational models and multi-scale subsampling presented in Section 6.4.

More in-depth discussions on some factors are also presented in Section 6.5, the section

for experiment results.

6.3.1 Numerical method for partial derivatives

~z

Figure 6-6: Computing cell. The involved cubics E, are the elements involved in Equa-
tion (6.43). (x, y) corresponds to the location. The z is along the time dimension, t.
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In our implementation, the partial derivatives of image brightness are estimated using

a 2 x 2 x 2 cube of pixel values from two continuous images as illustrated in Figure (6-6)

and in the following Equation:

Ex = (E1OO - Eooo) + (E 101 - E001) + (Enlo - E 010 ) + (Ein, - E011 )

Ey = (E010 - Eooo) + (E011 - E 00 1 ) + (E1 10 - E 10 0 ) + (E1 1 1 - E 101 ) (6.42)

Et = (E 00 1 - Eooo) + (E011 - E010) + (E 101 - E 10 0 ) + (Elli - E 110 )

where E2, 1 and EVo respectively correspond to pixels at location (x, y) in the current and

the previous frames. To compute E; (or Ey), the equation averages the horizontal (or

vertical) differences of two neighbor columns (or rows) from both current and previous

frames. Et is computed by averaging the differences of four neighbor pixels from both the

current and the previous frames. Averaging along the additional time/position dimension

helps to improve the accuracy. The above equation is actually the scaled version of partial

derivatives. The extra bits in the sums of blocks of pixel values are retained rather than

being discarded in the division by the number of picture cells in a block. Such operation

can help to improve the computational accuracy. For all equations for TTC computation,

Equaions (6.28) for Case(I), (6.31) for Case(II), (6.34) for Case(III), and Equations (6.39)

and (6.41) for Case(IV), both sides of equations are scaled. Thus the final TTC results are

not affected by the scaling.

6.3.2 Computational areas: full images vs. segmented regions

The variables in computational equations for Cases(I)-(IV) all involve the integration (or

summation) of contribution from pixels in a specified region, which can be full image or

segmented regions containing interested foregrounds.

TTC computation based on full images is close to the weighted average of TTCs for

foregrounds and backgrounds. When background objects are static and far away, TTC es-

timation based on background regions is much larger than the one based on foreground

regions, meaning that collision would not happen for a long time regarding static back-

ground regions. Thus, the integrated TTC estimation based on the mixture of foreground
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and static background regions will be larger than using pure foreground regions. The farther

away is the foreground, the larger is the background proportion, the larger TTC estimation

based on full images is.

In order to reduce the impact of static background pixels on TTC computation, one

method is to segment foregrounds of our interest and to remove most background pixels

from integration areas. As long as most background pixels are removed, TTC results based

on different sets of foreground pixels should be close to each other. Therefore, TTC esti-

mation is relatively robust to the choices of segmentation, and it does not require accurate

segmentation. Segmented areas capturing partial foregrounds can also provide satisfying

TTC estimation. More examples and discussion for our test cases in Section 6.5.4 and 6.5.5

will illustrate how much segmentation helps to improve the accuracy of TTC results. The

impact of segmentation on TTC and FOE will be summarized in Section 6.6.1.

6.3.3 Threshold for time derivative of brightness

Another way to reduce the impact of static background pixels is to differentiate background

pixels from foreground pixels when collecting their contributions in integration computa-

tion for TTC Equations (6.28) for Case(I), (6.31) for Case(II), (6.34) for Case(III), and

Equations (6.39) and (6.41) for Case(IV). The differentiation is done by setting thresh-

olds on the time derivative of brightness, EtfThreshold. The contributions of image pixels

with minor intensity changes are blocked or masked. The blocked pixels are normally from

static backgrounds that are far away and correspond to large TTC. While segmentation is

the "hard rejection" of background pixels, thresholding is the "soft rejection."

The threshold for Et cannot be larger than most pixel differences between two images.

Otherwise pixel changes from frame to frame are ignored and TTC results become really

large leading to wrong impression that foregrounds are far away. Figure (6-7) shows that

how TTCs are affected by different values of EtThreshold values which change from

0 to 50. TTC are computed using two continuous image frames (No.3 and No.4 frames)

from each of 6 test sequences SEQ-1 - SEQ_6, respectively in Figure (6-9), (6-10), (6-

24), (6-25), (6-32), and Figure (6-35). Details about these sequences are introduced in Sec-
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tion 6.5.1. In Figure (6-7), TTCs remain relatively consistent unless Et thresholds become

too large. We can conclude that TTC estimation is robust to the choices of segmentation

and EtThreshold since TTCs based on different sets of foreground pixels are the similar

as long as the impact of background pixels are removed.

TTC

0 00 0 30 40 W0

vs. Et-Thres hold for (a) SEQA1

TTC vs. EtThreshold for (d) SEQ_4

T2C(mod0ABGPC0 r) & knpa nmanP->4 rez2 EV0-50]-nosae

600-

(b) SEQ-2

(e) SEQ-5

Figure 6-7: The impact of different thresholds of brightness derivative (EtThreshold) on
TTC computation for four computational models and different sequences. X axis: sub-
sampling parameters which change from 1 to 120. Y axis: TTC values computed based on
two continuous image frames (No.3 and No.4 frames). Case (I): Magenta line. Case (II):
Blue line. Case (III): Red line. Case (IV): Green line. Figure (a) (b): TTC for synthetic
sequences SEQ_1 in Figure (6-9) and SEQ_2 in Figure (6-10). (c) (d): TTC for stop-motion
sequences with relative motion along optical axis, SEQ_3 in Figure (6-24) and SEQ_4 in
Figure (6-25). (e) (f): TTC for stop-motion sequences with relative motion off optical axis,
SEQ_5 in Figure (6-32) and SEQ_6 in Figure (6-35).

6.3.4 Four various computational models

In Section 6.2.7, we have discussed four different computational models for different situ-

ations. Normally the computational model for Case (IV), the most general form, is the best

choice when we do not know any prior information about the relative motion. However,

the computational models for cases (I) (II) and (III) have their own merit. The computa-
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tional method for Case (IV) depends on iteration which involves heavier computational

load than other discussed cases with fast close-form solutions. Indeed we need not limit

our computational methods for specific situations only. We can apply all four methods to

estimate TTC results in any situations. For example, though the simple solution in Equa-

tion (6.28) only applies to the simplest Case (I) theoretically, applying the equation for

more complicated situations can still provide us useful and relatively accurate TTC infor-

mation, especially when objects are very close. This is very important to help providing

useful warning for urgent situations. In some situations, simpler methods provide better

results than complicated methods.

In Figure (6-8) we compare the TTC computation results with different subsampling

parameters based on four computational models for synthetic sequences SEQ_1 in Fig-

ure (6-9) and SEQ-2 in Figure (6-10). As shown in Figure (6-8), when subsampling rates

are small, TTC computation based on Case (IV) is less sensitive to the changes of sub-

sampling rates than based on Case (I) (II) (III). However, for large subsampling rates, Case

(IV) does not necessarily provide better results than the other cases. The green line in Fig-

ure (6-7 (a)) also shows that TTC computation based on Case (IV) is more sensitive to large

derivative of brightness, Et-Threshold than other methods. The estimation accuracy will

be improved if we fuse the results from four computational models.

More details about the impact of different computational models on TTC and FOE/orientation

results are discussed for different experimental cases in Sections 6.5.

6.3.5 Different subsampling rates

In our implementation, we use block averaging as a computationally cheap approximation

to low pass filtering. The size of block averaging is defined as the subsampling rate. When

there is no subsampling, the value of the subsampling rate is 1. Figure (6-8) shows TTC

computation results with different values of subsampling rates. TTC computational results

without subsampling are significantly larger than the results with subsampling, which ex-

plains the necessity of applying subsampling. For small values of subsampling rate, TTC

results are relatively insensitive to the changes of subsampling rates. When subsampling
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SEQ . 1 A 2Cas II) Ca s2e 2 (III) CsE . V)

SEQ_1: Case (I) Case (II) Case (III) Case (IV)

SEQ-2: Case (I) Case (II) Case (III) Case (IV)

Figure 6-8: The impact of different subsampling rates on TTC computation for four com-
putational models and two synthetic sequences, SEQ_1 in Figure (6-9) and SEQ_2 in Fig-
ure (6-10). X axis: subsampling parameters which change from 1 to 120. Y axis: TTC
values computed based on two continuous image frames (No.3 and No.4 frames). Top row:
for SEQ_1 in Figure (6-9). Bottom row: for SEQ-2 in Figure (6-10). Each column, from
the left to the right, respectively corresponds to computational case (I), (II), (III), (IV).

rates are large, TTC results change dramatically, especially for Case (I).

The dependency of TTC estimation accuracy on subsampling rates is also affected by

TTC values. As shown in Figure (6-34) and Figure (6-38), the estimation errors for small

values of TTCs show the tendency of going up at the very end of the sequence when sub-

sampling rates are small because of de-focus and the large motions between frames. When

subsampling rates are very large(> 16), the estimation results for large TTCs are also not

reliable because of limited pixel input for small foreground areas. More discussion on how

subsampling rates affect the accuracy of TTC estimation for small and large TTCs, and

how they will affect the accuracy of FOE computation, and the accuracy of orientation

(p, q) parameters will be discussed in Section 6.5 when we analyze TTC estimation results

for test sequences.

In summary, we have discussed five factors affecting TTC/FOE/(p, q) results. Since

TTC computation is robust to its choice Et threshold, Et threshold can be fixed for all

test experiments. Numerical method for partial derivatives is also fixed. From now on,

we can focus on further understanding the impact of computational areas (full image vs.
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segmentation scheme), computational models, subsampling rates. In order to increase the

robustness of our algorithm, a fusion scheme is necessary to decrease the sensitivity of

TTC to the computational models, subsampling rates. We discuss our fusion schemes in a

separate section 6.4 due to its significance.

6.4 Hierarchical Time-to-Contact estimation based on fu-

sion of multi-scale subsampling

Because of the sensitivity of TTC estimation on subsampling rates and computational mod-

els, we propose two fusion-based TTC estimation methods to combine TTC results from

hierarchical multi-scale subsampling for different computational models in order to im-

prove the robustness and reliability.

The first fusion method is to find the minimum value of all TTC results. Since the

purpose of our TTC evaluation is for warning, choosing the minimum TTC is the most

conservative strategy to avoid any dangerous situations. The method is very simple but

effective. In Sections 6.5.5 and 6.5.6, we can see that minimization fusion scheme signifi-

cantly improves the estimation accuracy and reliability as shown in Figure (6-34), (6-38),

and Figure (6-41).

The second fusion scheme is based on the reliability of each TTC estimation and then

fuse TTC data, which is introduced below in Section 6.4.1.

6.4.1 Multi-scale TTC fusion based on condition numbers

Our proposed TTC computation algorithms depend on matrix inversion to solve for un-

known parameters as shown in Equation (6.31) for Case (II), Equation (6.34) for Case (III),

Equation (6.39) and (6.41) for Case (IV). If any matrix in these equations is close to singu-

lar, their numerical results would not be very reliable, which in part leads to the huge peak

noises when subsampling rates are too high or too low as shown in Figure (6-14), (6-15),

(6-16), (6-17), (6-34), and (6-38).

Therefore, we can use condition numbers of these corresponding computational matri-
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ces as the index of TTC estimation reliability. The condition number of a matrix is the ratio

of between the largest singular value over the smallest singular value. If a matrix is close

to singular, the condition number would be very large. Thus we can identify the reliability

of TTC results based on their corresponding condition numbers of matrices involved in

Equation (6.31), (6.34), (6.39) and (6.41). When fusing TTC results from multiple case

models with multi-scale subsampling, condition-number based fusion method ignores the

contribution of TTCs whose corresponding condition numbers are too large. The thresh-

old of condition-number for acceptable TTCs is adaptively determined by an upper bound

and the relative order of all corresponding condition numbers for different TTCs. At each

frame, for N subsampling rates, we have total N TTC results and N corresponding con-

dition numbers. We first sort these numbers, then compute the gap between every two

consecutive numbers. We then sort the gap array and search from the largest gap to the

smallest gap. If there are several continuous gaps larger than average gap, their corre-

sponding data are discarded. More details about the condition-number based fusion are

discussed in Section 6.6.3 when we present the experimental results.

6.5 Experiments

In order to evaluate the computation accuracy of TTC and FOE due to different factors, we

apply four computational models at different subsampling rates with/without TTC fusion to

a total of nine image sequences which can be divided into three categories.Test sequences

will be presented in Section 6.5.1. Evaluation method will be in Section 6.5.2. The actual

results will be presented in Section 6.5.3 to Section 6.5.6.

6.5.1 Test image sequences

Table (6.2) summarizes the information of these test sequences, including their length, im-

age sizes, tested impact factors, figure number for original sequence image and TTC/FOE/(p, q)

results. As can be seen from the table, for the purpose of evaluation, test sequences from

Category 1, Category 2(a) and 2(b) are generated under the controlled environment so that

true TTCs are known. Test sequences from Category 3 are obtained in an outdoor driving
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situation for which a size-based method is applied to evaluate our algorithm. Details of

different categories of test sequences are presented below.

" Category 1 - Synthetic Sequences: SEQ-1, SEQ_2

Test sequences in the first category are synthetic image sequences generated with

arbitrary known "ground truth" in the first test experiment. They are based on a

single image which is shifted and magnified so as to simulate a specified translational

motion relative to a planar surface. The sequence is generated assuming constant

forward motion with various positions for the FOE. Results for this Category are

discussed in Section 6.5.3.

" Category 2 - Stop-Motion Sequences: SEQ-3 - SEQ_8

Test sequences in this category are constructed using a stop-motion technique. In

all six sequences, images are taken when the camera - or the object - is moved

by a controlled amount between exposures. When taking images for one sequence,

camera parameters remain the same. Sequences involving camera motion are subject

to small camera rotations which are hard to avoid and cause significant apparent

lateral image motions. To avoid such impact caused by small camera rotations and

to create reasonable stop-motion sequences, we choose to move objects instead of

moving a camera. To achieve accurate increments in position, we put a toy car on the

platform of a scaled optical bench with length 550mm and moved it along the optical

bench by rotating a knob. The initial position of the platform was at the far end of

the bench. For each step we slowly moved the sliding platform toward the camera

by 5mm and took a picture until the object could not be further moved because of

mechanical limitation. We can take at most 110 frames. The motion increment is 5

mm in the depth for each frame. The accuracy of each movement is 0.1mm. The

optical bench ensures the 2% = (0.1/5) accuracy for TTC "ground truth."

We took images in two circumstances. The first circumstance is when the relative

translational motion is along the optical axis. There are two video sequences, called

Category 2(a), whose results are discussed in Section 6.5.4. The second circumstance
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is when the relative motion is off the optical axis. There are 4 video sequences, called

Category 2(b), whose results are discussed in Section 6.5.5.

The two video sequences in Category 2(a) are taken using two different cameras.

The first video sequence was to use the image function of a Sony Camcorder. We

had to physically press the button on the camcorder to take the video sequence. Be-

sides the introduced mechanical vibrations, the stop-motion sequences captured with

Sony Camcorder suffer from the effects of automatic focus and automatic exposure

adjustments, as well as artifact introduced by image compression. The second video

sequence was to use Canon Digital Rebel xTi (EOS-400D), SLR Digital Camera Kit

w/ Canon 18-55mm EF-S Lens, in order to avoid the noises with the Sony Cam-

corder. We took advantage of camera's remote control function and controlled the

camera by computer operation instead of physically pressing a button on the camera

to take pictures, which ensures the stability of the camera. We chose manual-focus

option and all parameters were manually controlled and fixed during the complete

imaging process. We set small aperture and long focal length to ensure large depth

of field.

Figure (6-24) and Figure (6-25) respectively show the sequence captured with the

Sony camcorder, SEQ_3, and the sequence captured with the Canon camera, SEQ_4.

For Category 2(b), there are four video sequences. We use the Canon camera to

produce four image sequences, one side-view sequence, SEQ_5, as shown in Fig-

ure (6-32), and three front-view sequences, SEQ_6, SEQ_7 and SEQ_8, in Figures (6-

35), (6-36) and (6-37). To take different sequences, the camera was rotated by differ-

ent angles along y axis in order to produce different yaw angles between the optical

axis and the relative motion.

Results for Category 2(a) are discussed in Section 6.5.4, and results for Category 2(b)

are discussed in Section 6.5.5.

* Category 3 - Video from a camera mounted on an automobile: SEQ_9

Sequence SEQ_9 was taken with a camera mounted on an automobile driven around

Cambridge, Massachusetts. The data captured in outdoor driving environment have
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been provided by test vehicles of "DARPA challenges" competition. Results for this

Category are discussed in Section 6.5.6.

6.5.2 TTC "ground-truth" and evaluation/test scheme

Our first task is to evaluate the accuracy of our proposed algorithm by comparing our

TTC estimation with their ground-truths for different scenarios, including synthetic planar

images, stop-motion sequences for non-planar objects in controlled environments with mo-

tion close to optical axis and in arbitrary directions, and sequences for non-planar objects in

outdoor driving environments. For synthetic image sequences and stop-motion sequences,

we have pre-defined TTC ground-truths to be compared with our computed ones so we

can evaluate the system performance.In order to evaluate our system's performance in the

outdoor driving environment, we estimated TTC "ground-truth" based on the traditional

size-based method introduced in Section 6.1.2, and manually measured the sizes of objects

in the images and differences between sizes observed in different frames. We computed

TTC using Equation (6.15), and then compared two TTC results based on our method and

size-based method as in Section 6.5.6. We also compared the size-based TTC estimation

results for Sequence SEQ_8 with given TTC ground-truths as well as our TTC estimation

in Section 6.6.2, which clearly shows the accuracy and reliability of our methods.

Our second task is to discuss the impact of the different computational models, sub-

sampling factors, computational areas (full images or segmentation regions), and/or TTC

fusion schemes. We use synthetic sequences from Category 1 to analyze the impact of four

computational models and different subsampling rates on the estimation of TTC, focus-of-

expansion (FOE), and orientation parameters.

We used sequences from Category 2(a) to discuss the impact of segmentation on TTC

estimation. We calculated TTC by applying four different computational models to both

full images and segmented regions, and we analyzed their impact on TTC/FOE/(p, q).

We used sequences from Category 2(b) and Category 3 to discuss the performance of

TTC fusion scheme based on four computational models and seven different subsampling

rates. We also apply two different segmentation schemes to SEQ-5 from Category 2(b) and
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discuss their impacts on TTC fusion performance.

The test sequences are in color, but we use grey level pixel-intensity in TTC computa-

tion. Based on the discussion in Section 6.3.3, TTC computation is robust to the choices

of Et thresholds. So we use fixed Et thresholds during all computations. For in Case (IV)

it took about one to five iterations before converging. In the following sections, for most

TTC figures, the dashed black line shows the theoretical ground-truth, and TTC results for

four cases (I) (II) (III) (IV) are respectively plotted in four different colors, magenta, blue,

red and green lines.
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Table 6.2: Summarization of computational sequences and related tests

Category Seq. [len] Tested impact factors & Result figures
& Fig.#

Category 1: Synthetic sequences

SEQ-1 [225] Case models on TTCs: Fig. (6-11)
Case models on FOEs & P/Qs: Fig. (6-12), (6-13)

Fig. (6-9) Case models & Subsampling rates on TTCs:
Fig. (6-14), (6-15)

(640 x Case models & Subsampling rates on FOEs:
480) Fig. (6-18), (6-19)

Case models & Subsampling rates on P/Qs: Fig. (6-22)
SEQ_2 [1501 Case models & Subsampling rates on TTCs:

Fig. (6-16), (6-17)
Case models & Subsampling rates on FOEs:

Fig. (6-20), (6-21)
Fig. (6-10) Case models & Subsampling ratess on P/Qs: Fig. (6-23)

Category 2(a): stop-motion seqs: motion along optical axis
Sony camcorder & Canon Camera

Camcorder SEQ-3 [103] Case models & Segmentation on TTCs:
Fig. (6-26) (top row), (6-27) (top row)

(640 x Case models & Segmentation on FOEs:
480) Fig. (6-24) Fig. (6-29) (top 2 rows), (6-30) (top 2 rows)

Case models & Segmentation on P/Qs:
Fig. (6-31) (top 2 rows)

Canon SEQ_4 [81] Case models & Segmentation on TTCs:
Fig. (6-26) (bottom row), (6-27) (bottom row)

(968 x Case models & Segmentation on FOEs:
644) Fig. (6-25) Fig. (6-29) (bottom 2 rows), (6-30) (bottom 2 rows)

Case models & Segmentation on P/Qs:
Fig. (6-31) (bottom 2 rows)

Category 2(b): stop-motion seqs: motion off optical axis, Canon Camera

Side view SEQ_5 [103] Case models & Segmentation on TTCs: Fig. (6-33)
(1944 x Segmentation & Fusion on TTCs: Fig. (6-34)
1296) Fig. (6-32) ( Case models & Subsampling rates on TTCs)

Front view SEQ-6 [106] Segmentation & Fusion on TTCs: Fig. (6-38)
Fig. (6-35) (Case models & Subsampling rates on TTCs)
SEQ_7 [107] Segmentation & Fusion on TTCs: Fig. (6-38)

(1936 x Fig. (6-36) (Case models & Subsampling rates on TTCs)
1288) SEQ_8 [107] Segmentation & Fusion on TTCs: Fig. (6-38), (6-43), (6-42)

Fig. (6-37) Comparison with size-based method: Fig. (6-43), (6-42)

Category 3: outdoor video seqs taken with a moving camera
(400 x SEQ-9 [299] Segmentation & Fusion on TTCs: Fig. (6-41)
300) Fig. (6-39) Comparison with size-based method: Fig. (6-40)
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6.5.3 Synthetic image sequences: time-to-contact computation based

on different computational models and different subsampling

rates

Figure 6-9: Sample frames of Sequence SEQ_1, synthetic image sequence "tipper" (0 -224
frames). Frame seq: 0, 40, 80, 120, 160, 200.

Figure 6-10: Sample frames of Sequence SEQ_2, synthetic image sequence "newman"
(0 - 149 frames). Frame seq: 0, 25, 50, 75, 100, 125.

Our synthetic image sequence, SEQ_1 and SEQ_2, were generated from the side views

of two different large trucks which were shifted and magnified. Thus objects are strictly

planar objects. We first compare the impact of four computational models (at subsampling

rate 4 x 4) on TTC, FOE and object-shape parameters (p, q) for Sequence SEQ-1 as pre-

sented respectively in Figures (6-11), (6-12) and (6-13). Then we compare TTC results at

multiple subsampling rates. Figures (6-14) and (6-16) collectively plot TTC from four com-

putational models in one sub-figure for each subsampling rate. Figure (6-15) and (6-17)

collectively plot TTC at different subsampling rates in one sub-figure for each computa-

tional model. The instabilities are due to the impact of big subsampling rates (64 x 64)

which decrease the number of pixel inputs and make matrix singular during TTC computa-

tion, which is discussed in details in Section 6.5.3 and Section 6.4.1. We choose such large

subsampling rates for discussion purpose, which can be avoided in real applications.
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Case (I) Case (II) Case (III) Case (IV)

Figure 6-11: TTC calculated based on 4 assumptions at subsampling rate 4 x 4 for Sequence
SEQ_1, synthetic image sequence "tipper" compared to true TTC (dashed black line). x
axis: frame number; y axis: TTC. All figures are plotted with the same scales. Case (I):
Magenta line. Case (II): Blue line. Case (III): Red line. Case (IV): Green line.
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(d) p/f, q/f for Case (IV)

Figure 6-12: Parameter computation for object motion and object orientation based on
Case (II), (III) and (IV) at subsampling rate 4 x 4 for Sequence SEQ_1, synthetic image
sequence "tipper." x axis: frame number; y axis: FOE and (p, q) parameters. The FOE
coordinates are determinded in a coordinate system with its origin at the left/top corner
in images. Figures in the same column are plotted with the same scales. (a)/(c): FOE
for case (II)/(IV). FOE coordinates x0 and yo are respectively represented by red and blue
lines. (b)/(d): object orientation parameters for case (II)/(IV). Parameters p/f and q/f are
respectively represented by red and blue lines.
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Case (II) (al) Frame 0

Case (IV) (a2) Frame 0

(b1) Frame 100 (c1) Frame 200

(b2) Frame 100 (c2) Frame 200

Figure 6-13: FOE results plotted on different image frames at subsampling rate 4 x 4 for
Sequence SEQ_1, synthetic image sequence "tipper." (al) (bl) (ci): FOE results at frame
0, 100, 200 from Case (II). (a2) (b2) (c2): FOE results at frame 0, 100, 200 from Case
(IV). This Figure helps to identify the FOE directly by observing image pixels at the same
location corresponding to the same object points.
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Comparison of TTC results based on different computational models for synthetic

images

Figure (6-11) shows calculated TTC values for four models. The overestimate of TTCs in

all cases are mainly due to the temporal aliasing and the intrinsic mechanism how synthetic

images are generated, which will be explained in more details in Section 6.5.3.

If we ignore the overestimate when TTC is very small, the TTC values drop linearly

as expected. The results for Case (IV) fit the ground-truth-line the best while the results

for Case (II) and (III) also closely approximate the linear ground-truth-line. The latter is

because the process that synthetic images were produced roughly simulated the physical

model described in Case (II) or Case (IV). In Figure (6-12), the results of orientation pa-

rameters p/f and q/f for Case (III) model are very close to zero, which confirms that the

arbitrary planar object in the model is actually perpendicular to the optical axis.

In Figure (6-12), FOE results are at the left side of the image center instead of the

center of an image, which shows that the relative movements for synthetic sequences are

not exactly along the optical axis. Though the assumption for Case (III) does not hold, Case

(III) model still yields acceptable TTC results, which is mainly due to pure planar objects.

Further discussions on different computational models in Section 6.5.4 and Section 6.5.5

shows that Case (III) models normally would not yield ideal results if the direction of

relative movements are not exactly along the optical axis.

Since the direction of relative motion is not too far away from along the optical axis,

the image generating setup for Category 1 is also close to Case (I) model. Therefore, TTC

estimation based on Case (I) in Figure (6-11) (a) is also acceptable.

We observe the similar trend when different subsampling rates are used in TTC compu-

tation as shown in Figures (6-14) and (6-15) for Sequence SEQ_1 and Figures (6-16), (6-17)

for Sequence SEQ_2.
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Comparison of FOE/orientation results based on different computational models for

synthetic sequences

For SEQ-1, the results of FOE points for all image frames are plotted together in three

different images as shown in Figure (6-13). The group of FOE points from both Case (II)

and (IV) are at the top and left region of images. The computed FOE coordinates are around

position (119, 216) in a coordinate system with its origin at the left/top corner in images as

shown in Figure (6-12). In a coordination system with origin at image centers as used in

our initial computational models, we have xo = f(U/W) < 0 and yo = f(V/W) < 0. It

shows that the relative motion of object w.r.t to cameras are U > 0, V > 0, and Wr < 0,

which corresponds to the moving trend of the whole sequence for SEQ_1. Specifically, we

observe that computed FOE positions do correspond to the same object feature points at

three image frames, the left/bottom corner of a black rectangular.

Since the motion direction is fixed, FOE results are supposed to be constant when being

computed at different image frames or using different computational models. As expected,

the TTC curves in Figure (6-12) are roughly straight and FOE points in Figure (6-13) are

quite close to each other except for a few outliers.

In Figure (6-12) and Figure (6-13), FOE points are more spread out and have more

outliers for Case (II) than for Case (IV). The area of clustered FOE points for Case (IV)

is much larger than for Case (II). Thus, the Case (IV) provides better FOE estimation than

Case (II).

We can observe the similar trend for FOE results with different subsampling rates

shown in Figures (6-18) and (6-19) for Sequence SEQ_1, Figures (6-20) and (6-21) for

Sequence SEQ_2, and Figure (6-29) for stop-motion sequences SEQ-3 and SEQ_4.

There exists similar observation for orientation parameters. Since the object orientation

is fixed and perpendicular to the optical axis, (p/f, q/f) results are supposed to be close to

zero and to remain constant when being computed at different image frames, with different

parameters or different computational models. As expected, the computation results of

parameters p/f and q/f for Cases (III) and (IV) as shown in Figure (6-12) (c) and (d) are

all close to zero. The p/f, q/f curves in Figure (6-12) are quite constant for the first 180
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frames.

The computed results of p/f, q/f for Case (IV) are better than for Case (III). There are

less outliers and less variations for computed data for Case (IV) than for Case (III). Case

(IV) provides better orientation estimation than Case (III).

We can observe the similar trend for the computation of object-shape parameters with

different subsampling rates shown in Figure (6-22) for Sequence SEQ_1, Figure (6-23) for

Sequence SEQ-2, and Figure (6-3 1) for stop-motion sequences SEQ_3 and SEQ-4.

However, we do notice that FOE curves are much smoother than (p, q) curves, which

means that the estimation reliability for FOE points is higher than the orientation parame-

ters.

Necessity of subsampling

After examining the data, we conclude that the outliers at the end of TTC, FOE, (p, q)

curves for SEQ_1 and SEQ-2, are caused by two reasons. The first reason is due to the

intrinsic mechanism how synthetic images are generated. At the end of sequences, the

original image is greatly magnified and so appears "out of focus" or blurry, lacking high

frequency content, and may have artifacts resulting from the interpolation method. The

second reason is due to temporal aliasing, or the very large frame to frame change near the

end of the sequence. For example, when the TTC is 10, the size of the image of an object

changes by 1/10 = 10%. However, for our gradient-based methods, frame to frame image

movement should not be greater than about half the size of typical "texture elements" in

order to produce reliable results. If the expected size of texture elements is not known,

motion should typically be less than about a pixel from frame to frame in most parts of the

image region used in order to obtain reasonable results [68]. Therefore, in order to produce

reliable TTC/FOE/(p, q) estimation, subsampling should be applied in order to increase the

effective "pixel" size. TTC estimates with subsampling are more reasonable and closer to

the actual time-to-contact than the ones without subsampling.
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Comparison of TTC results based on different subsampling rates

TTC comparisons at different subsampling rates, as shown in Figures (6-14) and (6-15)

for SEQ_1 and Figures (6-16) and (6-17) for SEQ_2, imply that spatial averaging and sub-

sampling can change the range in which TTC estimates are reliable.

When there is no subsampling, i.e., when images are not spatially averaged and sub-

sampled, TTC results from four cases significantly differentiated from the truth line though

they still reflect the fast-approaching trend of that object. There are systematic overestimat-

ing TTC values. The bias drops significantly with 2 x 2 block averaging and sub-sampling.

The time-to-contact curves are quite close to each other for different subsampling rates at

2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32. In Figures (6-16) and (6-17) for Sequence SEQ_2,

sub-sampling using 4 x 4 block averages yielded reliable TTC estimates down to a TTC of

about 60 frames. With 16 x 16 block averaging and subsampling, good results are obtained

down to a TTC of less than 15 frames. TTC computation results might be still unreliable

for small subsampling rates near the end of the sequence.

Increasing spatial averaging and subsampling, however, comes with a price. In Fig-

ure (6-14), as for the estimation of large TTCs at the beginning of the sequence, sub-

sampling using 16 x 16 block averages yields less accurate TTC estimates than using 8 x 8

block averaging and subsampling. Large TTCs are difficult to be estimated accurately be-

cause the frame to frame motion of image patterns is only a small fraction of a pixel. This

problem becomes more difficult with spatial subsampling, especially when foreground ob-

jects are far away and have small image sizes. Big subsampling rates decrease the number

of pixel inputs during TTC computation. Thus there are large oscillations on TTC curves

at the beginning of the sequence when TTCs are still large. Temporal averaging and sub-

sampling can extend the range of TTC estimates to larger values.

The above observations suggest that a wide range of TTCs can be estimated reliably if

spatial averaging and subsampling is used for small values of TTCs and temporal averaging

and subsampling for large values of TTCs. The results are not ideal if the subsampling rates

are too big at the beginning of sequences or if the subsampling rates are too small at the

end of sequences.
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Comparison of TTC results based on different subsampling rates and computational

models for synthetic sequences

For synthetic image sequences, the methods for Cases (II),(III), and (IV) all provide ac-

ceptable results with respect to different input parameters, especially for results from Case

(IV) as shown in the bottom row of Figure (6-15). TTC results based on Cases (II) (III) (IV)

are more robust to subsampling rates than for Case (I). However, with suitable subsampling

rates, simple model for Case (I) can also produce acceptable TTC results.

Comparison of FOE/orientation results based on different subsampling rates and

computational models for synthetic sequences

The subsampling rates have low influence on the computation of motion information FOE

(xo, yo) and plane orientation (p/f, q/f). The computation of FOEs and object-shape pa-

rameters are a little robust to the choices of subsampling rates except for the very small

subsampling rates (1 x 1), (2 x 2) or the very large subsampling rate (64 x 64). Simi-

lar to the previous observation made for different subsampling rates, most data curves for

both FOE and (p/f, q/f) are roughly straight as shown in Figures (6-18), (6-20) and Fig-

ures (6-22), (6-23). Most FOE points in Figure (6-19) and (6-21) are close to each other.

As expected, FOE results from Case (IV) are better than from Case (II) and the results of

object orientation from Case (IV) are better than from Case (III). In summary, iteration

based methods yield better results for both TTC and other shape/motion parameters.

6.5.4 Stop-Motion image sequences with translational motion along

the optical axis

In this section, we test our algorithms for two stop-motion sequences from Category 2(a),

SEQ_3 and SEQ_4, with relative motion along the optical axis. Note that SEQ-3 has me-

chanical vibrations when image frames were taken. For both sequences, TTC results are

computed at subsampling rate 2 x 2 along with four different computational models based

on full images and the segmented/labeled rectangular regions, which are marked in red

rectangular boxes in Figure (6-24), (6-25).
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Figure 6-14: TTC computation (for Case (I) (II) and Case (III) (IV)) at different subsampling
rates (1 x 1, 2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64) for Sequence SEQ_1, synthetic
image sequence "tipper." x axis: frame number; y axis: TTC. Dashed black line: TTC
ground-truths. Case (I): Magenta line. Case (II): Blue line. Case (III): Red line. Case (IV):
Green line. All figures are plotted with the same scales.
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Figure 6-16: TTC computation (for all cases) at different subsampling rates (1 x 1, 2 x 2,
4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64) for Sequence SEQ-2, synthetic image sequence
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All figures are plotted with the same scales.
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and arbitrary translational motion. Horizontal axis: frame number. Vertical axis: TTC.
Dashed black line: TTC ground-truths. 1 x 1: Red thick lines. 2 x 2: Green thick lines.
4 x 4: Blue thick lines. 8 x 8: Magenta thick lines. 16 x 16: Cyan thick lines. 32 x 32:
Yellow thick lines. 64 x 64: Blue thin lines. All figures are plotted with the same scales.
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Figure 6-18: FOE computation (for Case (II) and (IV)) at different subsampling rates (1 x 1,
2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64) for Sequence SEQ-1, synthetic image sequence
"tipper." x axis: frame number; y axis: FOE coordinates xo and yo respectively represented
by red and blue lines. All figures are plotted with the same scales.
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Figure 6-19: FOE comparison for Case (II) and Case (IV) at different subsampling rates (1 x
1, 2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64). FOE points are plotted on the first image
of synthetic image sequence(tipper). Top two rows: Case (II). Bottom two rows: Case (IV)
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Figure 6-20: FOE computation (for Case (II) and (IV)) at different subsampling rates (1 x 1,
2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64) for Sequence SEQ_2, synthetic image
sequence "newman." x axis: frame number; y axis: FOE coordinates xo and yo respectively
represented by red and blue lines. All figures are plotted with the same scales.
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Figure 6-21: FOE comparison for Case (II) and Case (IV) at different subsampling rates (1 x
1, 2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64). FOE points are plotted on the first image
of Sequence SEQ_2, synthetic image sequence "newman." Left column: Case (II). Right
column: Case (VI)
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Figure 6-22: Estimated plane orientation parameters (for Case (III) and (IV)) at different
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Figure 6-23: Estimated plane orientation parameters (for Case (III) and (IV)) at different
subsampling rates (1 x 1, 2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64) for Sequence
SEQ_2, synthetic image sequence "newman." x axis: frame number; y axis: (p/f, q/f)
values respectively represented by red and blue lines. All figures are plotted with the same
scales.
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Figure 6-24: Sample frames and their segmentation for Sequence SEQ-3, stop-motion im-
age sequence "newBus-Front_5mm"(104 frames). Frame seq: 1, 21, 41, 61, 81, 101.

Figure 6-25: Sample frames and their segmentation for Sequence SEQ-4, stop-motion im-
age sequence "newCam BusFront_5mm" (81 frames). Frame seq: 1, 16, 31, 46, 61, 76.
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Figure 6-26: The comparison of TTC computation based on full image and the seg-
mented area for different cases at subsampling rate 2 x 2 for Sequence SEQ-3, stop-
motion sequence "newBusFront 5mm," and Sequence SEQ_4, stop-motion sequence
"newCamBusFront_5mm." x axis: frame number. y axis: TTC. Dashed black line: TTC
ground-truths. TTC thin/thick lines: based on full image or segmented areas. TTC results
based on full images/segmented regions: Case (I): Magenta/Cyan lines, Case (II): Blue
thin/thick lines, Case (III): Red/Cyan lines, Case (IV): Green thin/thick lines. All figures
are plotted with the same scales.
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Figure 6-27: TTC deviation rates based on full image and the segmented area with different
cases at subsampling rate 2 x 2 for stop-motion Sequence SEQ_3, "new-Bus-Front-5mm,"
and SEQ_4, "newCamBusFront_5mm." Top row: SEQ-3. Bottom row: SEQ_4. x axis:
frame number. y axis: TTC deviation rate (TTC-truth)/truth. TTC thin lines: based on full
image. TTC thick lines: based on segmented areas. Case (I): Magenta line. Case (II): Blue
line. Case (III): Red line. Case (IV): Green line. All figures are plotted with the same
scales.
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Comparison of TTC results and ground-truths

As shown in Figures (6-26), (6-27) and Table (6.3), (6.4), for both sequences SEQ_3 and

SEQ_4, the calculated TTC values based on both full image and segmented regions are

quite close to the ground-truths which decrease linearly, especially for Sequence SEQ_4.

For Sequence SEQ_4, the best result is from Case (II) with segmented region. As shown in

Table (6.4), the average TTC estimation errors based on manually labeled region is 0.59%

and 2.83% for Cases (1I) and 0.61% and 3.18% for Cases (IV). The two error index are the

average of error itself and the average of absolute error values. The results show that our

computational models can provide ideal results for the test sequences from ideal imaging

process.

Though Sequence SEQ-3 is produced by a camcorder with low image qualities and

vibration noises, TTC results in the top row of Figure (6-26) are also close to ground-

truths. As shown in Table (6.4), the average TTC estimation errors based on segmented

region for Case (II) are 8.72% and 13.34% for Case (IV). If we ignore the frames from 95

to 103 (which are affected by defocus and large motion), the average TTC estimation error

based on segmented region for Case (II) is 5.21% and 11.58% for Case (IV). As shown in

Figure (6-28), image frame at 95 is affected by defocus, but it has captured all foreground

elements.

When relative distances between objects and cameras are small, i.e., when TTCs are

small, TTC estimation results from most computational models are all very close to ground-

truth. For SEQ-3, the average TTC estimation errors for frames within range 61-103 in

segmented regions is 23.08% for Case (I) and 5.2% for Case (III) as in the top row of

Figure (6-26). For frame range 71-95, the average error of TTCs with segmentation for

Case (I) is 8.19% and -10.49% for Case (III). At image frame 61, TTC results for Cases

(I) and (III) stop oscillation. At image frame 71, TTC results for Cases (I) and (III) start to

fit ground truths very well. Figure (6-28) shows the three transition frames at 61, 71, and

95.

At the very end of Sequence SEQ_3, the estimation errors for small values of TTCs

show the tendency of going up. As seen in the top row of Figure (6-26), the error rates start
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Table 6.3: The error rate
for Sequence SEQ_3.

(percent) of TTC estimation in the bottom row of Figure (6-26)

Table 6.4: The error rate (percent) of TTC estimation in the bottom row of Figure (6-26)
for Sequence SEQ_4.

method full/case(I) full/case(II) full/case(III) full/case(IV)
avg 53.41 1.40 -4.65 1.34

avg(abs) 54.60 2.57 13.06 2.52
method reg/case(I) reg/case(II) reg/case(III) reg/case(IV)

avg 60.44 -0.59 -5.64 -.61
avg(abs) 61.96 2.83 15.12 3.18

to increase significantly starting from frame No.95. The inaccuracy is due to large motions

of patterns from frame to frame and de-focus, as explained in Section 6.5.3.

Figure 6-28: The transition image frames for Sequence SEQ_3, stop-motion sequence
"newBusFront_5mm(104 frames)." Frame seq: 61, 71, 95.

Comparison of TTCs from different computational models for stop-motion sequences

For both sequences SEQ_3 and SEQ_4, Case (II) and Case (IV) produce more accurate

results than Case (I) and Case (III) do as shown in Figure (6-26). Case (IV) provides the

most satisfactory performance. Even if the front view of the toy bus is not completely

planar and perpendicular to the optical axis (assumption for Case (II) and (IV)), the planar-

object-based computation models yield satisfactory estimation results.

The setup for Category 2(a) is supposed to correspond to Case (I) and Case (III) where
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method reg/case(II) reg/case(IV) full/case(II) full/case(IV)
avg 8.72 13.34 51.04 81.12

avg(abs) 11.42 17.78 51.04 81.12
avg([1:94]) 5.21 11.58 45.02 83.07

avg(abs[1:941) 8.17 16.44 45.02 83.07 11



approaching objects move along the optical axis. However the results for Case (I) and (III)

are not as good as for Case (II) and (IV). This is because we do not have a systematic

method to ensure the alignment between the optical axis of camera and the relative motion

along optical bench though we try to. The computation results of FOE for both SEQ_3 and

SEQ_4 in Figure (6-29) indicate that FOEs are right below the image centers. The departure

of FOEs from image centers is due to the tiny rotation of camera around pitch axis. In other

words, the camera somehow looked down at the moving object. The estimated orientation-

parameters in Figure (6-31) are close to zero, which confirms that the object surface is

actually perpendicular to the optical axis. Thus, the imaging model is actually close to

Case (II). Not surprisingly, TTC results from Cases (II) and (IV) both yield very satisfactory

estimation results.

Since the camera rotation around pitch axis is very small, the set up is not too far away

from Case (I) (III). Thus TTC results for the second half of Sequences SEQ-4 and SEQ_3

based on Cases (I) and (III) with both full region and segmented area are not too far away

from the ground-truth.

When the object is getting close to the camera, even the simplest model for Case (I)

provides acceptable results for both sequences. The ability to quickly estimate TTC when

TTC becomes small is very important in order to identify incoming danger.

In summary, TTC estimation is more robust to object orientation than to moving direc-

tion. Computational method for Case (II) normally yields better results than for Case (III).

But computational model Case (IV) is always the best choice among all four cases.

TTC computation using full images vs. segmented regions

For SEQ_3, TTC results based on segmented regions are closer to ground-truths than based

on full images as shown in the top row of Figure (6-26), even if segmentation results as

shown in Figure (6-24) are not in high qualities. As explained in Section 6.3.2, results

based on segmentation are generally more accurate than results based on full images. Our

TTC computation does not depend heavily on the foreground boundaries and only needs

suitable amount of foreground pixels as input data.

For SEQ_4, TTC results using both full images and segmentation areas are very similar
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for all four computational models. This is because the "soft rejection" works as well as

"hard rejection" for SEQ_4 as explained in Section 6.3.3 when pixels Background pixels

in Sequence SEQ_4 have similar intensities. The threshold of time derivative effectively

reduces the impact of background. When the object is getting close to the camera, TTC

results with both full region and segmented area are not too far away from the ground-truth.

In summary, the algorithm is robust to segmentation errors and does not require accurate

segmentation.

FOE/orientation computation using full images vs. segmented regions for different

computational models

For both SEQ_3 and SEQ_4, the computation of FOE is not sensitive to the choices of using

full images or segmented regions for both Case (II) and Case (IV) as shown in Figures (6-

29) and (6-30). FOE results are very robust to impact factors: computational models and

computational regions.

However, the computation of orientation parameters is sensitive to impact factors. As

shown in Figure (6-31), orientation parameters from Case (IV) is significantly better than

those from Case (III). For computational model Case (IV), orientation parameters based on

segmented regions are all better than those based on full images. The observation agrees

with the discussion for synthetic sequences in Section 6.5.3.

Impact of mechanical vibrations on TTC/FOE/(p, q)

We notice that TTC results for SEQ_3 based on Cases (I) and (III) oscillate significantly in

the first half of sequence as shown in Figure (6-26), and FOE points for SEQ_3 are widely

spread especially along the vertical axis as shown in Figure (6-30) (top two rows). This is

due to the nodding vibrations of Sony Camcorder each time when we press the button to

take each image in SEQ_3, which introduced additional rotation along pitch axis and/or the

additional translational motion in y dimension. The frequent changes of relative motion

also contributes to the drifting of FOE points in y dimension for SEQ_4. In contrast, that

FOE points for SEQ_4 are clustered together. The large oscillations in TTC for SEQ-3

show that TTC estimation is very sensitive to the direction of relative motion, which is also
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consistent with our previous observation.

6.5.5 Stop-Motion image sequences with translational motion off the

optical axis

In this section, we test our algorithms on stop-motion sequences from Category 2(b) in

which a toy car moves forward along four different directions with yaw angles relative

to the optical axis. The sequences correspond to the most general situations defined in

computational model Case (IV). We want to evaluate how our algorithm performance in

the most general situations and to demonstrate the advantages of TTC fusion scheme for

side-view sequence, SEQ_5 using two different segmentation schemes, and for front-view

sequences, SEQ_6, SEQ_7, SEQ_8.

Later in the discussion Section, 6.5.6 and 6.6.3, we have also computed the size-based

TTC results and TTC fusion results for SEQ_8 based on condition-number in order to

demonstrate the advantages of our proposed gradient-based and fusion-based algorithms

over the traditional size-based algorithm.

Comparison of TTC results based on different computational models and segmenta-

tion schemes

We first discuss TTC results for side-view Sequence SEQ_5 from four computational mod-

els with both full images and segmented/labeled regions (marked in red rectangular boxes)

at subsampling rate 2 x 2. The comparison results are shown in Figure (6-33) and in Ta-

ble 6.5. When stop-motion sequences are produced, the relative motion between objects

and cameras are arbitrary which in general corresponds to Case (IV) shown in Figure (6-5).

Due to the robustness of TTC computation to surface orientation, even Case (II) provides

satisfying results. Similar to conclusion in Section 6.5.4, Cases (II) and (IV) produce better

results than Cases (I) and (III) do, and TTC results from Case (IV) are still the best among

the four cases. For Case (II) and (IV), results based on segmentation are quiet close to

ground-truths. The average error and average absolute error for TTC estimation based on

segmented region for Case (IV) is respectively 11.84% and 11.96% as shown in Table 6.5.
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Figure 6-29: FOE based on full images and segmented areas for Case (II) and (IV) at sub-
sampling rate 2 x 2 for stop-motion sequences SEQ-3, "newBusFront-5mm," and SEQ-4,
"newCamBusFront-5mm." x axis: frame number; y axis: FOE coordinates x0 and yo re-
spectively represented by red and blue lines. (al) (bi) (a2) (b2): based on segmented areas.
(c1) (d1) (c2) (d2): based on full images. Left column: Case (II). Right column: Case (IV).
All figures are plotted with the same scales.
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Figure 6-30: FOE results plotted on different image frames for stop-motion sequences
SEQ_3, "new-BusFront_5mm," and SEQ_4, "newCamBusFront_5mm." The computa-
tion is based on full image and the segmented area for Case (II) and (IV) at subsampling
rate 2 x 2. (al) (b1) (a2) (b2): based on full image. (c1) (dl) (c2) (d2): based on the segmented

area. Left column: Case (II). Right column: Case (IV).
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Figure 6-31: Orientation parameters (p, q) for stop-motion sequences SEQ_3,
"newBusFront_5mm," and SEQ_4, "newCamBusFront_5mm," based on full image and
segmented area for Case (II) and (IV) at subsampling rate 2 x 2. (al) (b1) (a2) (b2): based
on full image. (c1) (d1) (c2) (d2): based on the segmented area. x axis: frame number; y
axis: (p/f, q/f) values respectively represented by red and blue lines. Left column: Case
(III). Right column: Case (IV). All figures are plotted with the same scales.
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Table 6.5: TTC estimation error (percent) in Figure (6-34) for Sequence SEQ-5, stop-
motion image sequence "newCam-side-slant1O5mm-day-hf."

Error case(II) sub2 x 2 case(IV) sub2 x 2 regl/fusion reg2/fusion
Average 16.59 11.84 4.88 3.24

Average absolute 16.59 11.96 5.21 3.96

In Figure (6-33), for SEQ_5 from Category 2(b), TTC results based on segmentation

schemes are better than that based on full images. The observation is consistent with the

comparison of TTCs at multiple subsampling rates and their fusion results based on two

segmentation schemes, hand labeling and auto segmentation, as shown in Figure (6-34).

In summary we claim that segmentation helps to improve TTC, and TTC computations

are robust to segmentation errors and different segmentation schemes. We have the similar

statement for other sequences from Category 2(a), though the differences of TTC based on

full images and segmentation for Sequence SEQ_4 are not that significant.

TTC fusion based on multiple computational models and multi-scale subsampling

We then compare TTC estimation data using different subsampling rates and/or differ-

ent computational models, and evaluate the performance of fusion scheme discussed in

Section 6.4 to improve robustness and higher reliability. Figure (6-34) and Figure (6-38)

present the fusion results based on TTCs from case (IV) at different subsampling rates,

1 x 1, 2 x 2, 4 x 4, 8 x 8, 16 x 16, 32 x 32, 64 x 64, and their fusion results based on mini-

mization. TTC fusion results fit the ground-truth lines very well, showing the efficiency of

our algorithm for different setup and different lighting situations. Specifically, the top and

lower rows in figure (6-34) respectively correspond to two different segmentation schemes,

hand labeling and auto segmentation. For hand-labeling segmentation scheme, the devia-

tion of TTC fusion is 4.88% for average errors and 5.21% for the average absolute errors as

shown in Table 6.5. For auto segmentation scheme, the deviation of TTC fusion is 3.24%

for average errors and 3.96% for the average absolute errors. Our results clearly show that

the proposed TTC fusion based on minimization is effective and computationally robust.
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Figure 6-32: Sample frames and their segmentation for Sequence SEQ_5, stop-motion im-
age sequence "newCam-side-slant10 5mm-dayhf" (103 frames). Frame seq: 1, 21, 41, 61,
81, 101.

TTC Case (I) Case (II) Case (III) Case (IV)

Figure 6-33: The comparison of TTC computation based on full image and the segmented
area for different cases at subsampling rate 2 x 2 for Sequence SEQ_5, stop-motion im-
age sequence "newCam-side-slant10_5mm-day-hf." x axis: frame number. y axis: TTC.
Dashed black line: TTC ground-truths. TTC thin/thick lines: based on full image or
segmented areas. TTC results based on full images/segmented regions: Case (I): Ma-

genta/Cyan lines, Case (II): Blue thin/thick lines, Case (III): Red/Cyan lines, Case (IV):
Green thin/thick lines. All figures are plotted with the same scales.
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Figure 6-34: The comparison of individual TTCs at different subsampling rates and related
TTC fusion results based on given segmentation, hand labeling and auto segmentation,
for Sequence SEQ_5, stop-motion image sequence "newCam-side-slant10_5mm-day-hf."
x axis: frame number; y axis: TTC. Top row: results for segmentation based on hand
labeling. Bottom row: results for segmentation based on auto segmentation. (a) (b): TTC
results computed at different subsampling rates for segmented areas. (c) Solid lines: Fusion
results based on (a) and (b). Dashed black lines in (a) (b) (c): TTC ground-truths. (a) TTC
dotted lines: 1 x 1 (Red), 2 x 2 (Green), 4 x 4 (Blue), 8 x 8 (Magenta). (b) TTC dotted
lines: 16 x 16 (Cyan), 32 x 32 (Yellow), 64 x 64 (Blue). All figures are plotted with the
same scales.

Figure 6-35: Sample frames and their segmentation for Sequence SEQ_6, stop-motion im-
age sequence "newCam-slantfront_5mm" (106 frames). Frame seq: 1, 21, 41, 61, 81, 101.

Figure 6-36: Sample frames and their segmentation for Sequence SEQ_7, stop-motion im-
age sequence "newCam-slantl5_front_5mm"(107 frames). Frame seq: 1, 21, 41, 61, 81,
101.
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Figure 6-37: Sample frames and their segmentation for Sequence SEQ_8, stop-motion im-
age sequence, "newCam-slant25_front5mm" (107 frames). Frame seq: 1, 21, 41, 61, 81,
101.

(a) sub:1, 2, 4, 8 (b) sub:16, 32, 64 (c) Fusion of (a) (b)

is amd tfom i t6 M -~mssD-) -- se12481-25

Figure 6-38: The comparison of individual TTCs at different subsampling rates and related
multi-scale-based TTC fusion results based on given segmentation for stop-motion image
sequences, SEQ_6, "newCam-slant-front_5mm," SEQ-7, "newCam-slantl5_front_5mm,"
and SEQ-8, "newCam-slant25-front_5mm." x axis: frame number; y axis: TTC. (a) (b)
TTC results computed at different subsampling rates for segmented areas. (c) Solid lines:
Fusion results based on (a) and (b). Dashed black lines in (a) (b) (c): TTC ground-truths.
(a) TTC dotted lines: 1 x 1 (Red), 2 x 2 (Green), 4 x 4 (Blue), 8 x 8 (Magenta). (b) TTC
dotted lines: 16 x 16 (Cyan), 32 x 32 (Yellow), 64 x 64 (Blue). All figures are plotted with
the same scales.
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6.5.6 Video from a camera mounted on a car

In this section, we will apply our methods to a video sequence, SEQ_9, in outdoor driving

environment as shown in Figure (6-39). The sequence is extracted from the log file in the

form of 300 x 400 images in normal RGB color format.

Size-based TTC estimation

Since we do not have "ground-truth" TTC values for the video sequence, we have to com-

pute the true TTC value using traditional size-based method. The detail steps are as fol-

lowed:

1. Label manually the interested foreground regions for all video frames, compute the

square root of region areas for size information and smooth the size results with low

pass filter. The results for SEQ-9 are show in Figure (6-40(a)).

2. Compute the logarithm of smoothed size, log(size), and their changes between every

N frames. Figures (6-40) (b) and (c) respectively shows the log(size) information and

its difference between every N frames.

3. Use Equation (6.15) to compute the size-based TTCs by N/[log(size(i+N))-log(size(i))].

The TTC estimation is plotted in Figure (6-40(d)).

Figure (6-40(a)) shows that the measured size of the target van for the first few frames

are less than 80 pixels while the time-to-contact is around 200-500 frames. The correspond-

ing changes of image sizes will be less than 0.16 - 0.4 pixel between two consequential

frames. Measuring TTCs to an accuracy of 10% requires, in effect, measuring image posi-

tions with an accuracy better than 0.016 - 0.04 pixel.

Since the size-changes between two consequential frames - being small fractions of a

pixel - are too small to be measured, we use changes in target size over every N frames.

However, serious quantization occurs, because image sizes could be estimated only to about

a pixel accuracy. We set N = 16 for the test. However, the size changes are still very small,

around 2 to 6 pixels. Thus quantization errors would cause serious TTC measurement

errors.
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For Equation (6.15), if we take its derivative over image size s on both sides, we have:

dT 1 ss"
-- = -- - -- ) (6.43)ds s' (s')2

where s' = ds/dt and s" = (d2)/(ds 2). When s' is extremely small, the sensitivity of

TTC to size-measurement noise is extremely high. The above equation indicates that size-

based TTC estimation is very sensitive to measurement noises of object sizes. As shown

in Figure (6-41) (d), size-based TTC estimation is very noisy, especially for the first 100

frames among total 400 frames, i.e., frame number 100-200.

Comparison of TTC results based on size-based method and our method

Figure (6-41) shows the TTC fusion results for SEQ_9 based on multi-scale subsampling

for model Case (II) discussed in Section 6.4. The left column corresponds to TTC results

at different subsampling rates 1 x 1, 2 x 2, and 4 x 4. The right column corresponds fusion

results (solid blue line) versus size-based TTC measurements (green circles). TTC results

in the top and bottom rows in Figure (6-41) are respectively computed based on full images

and segmented regions.

Our TTC results for SEQ_9 agree with visual estimates of vehicle motion and distances.

It is indicated that the driver seems to apply brake initially, which explains why TTC more

or less constant. The vehicle was then brought to a complete stop so TTC computation

at the end of SEQ_9 becomes unstable since motion parameters C = -W/Z = 1/TTC

approaches zero. Unfortunately, the actual "ground truth" is not known in this case, and we

only have the size-based TTC estimation. TTCs from our algorithm and the manually es-

timated TTC generally agree with each other, although detailed comparison is not possible

because of the coarse quantization of our manual estimated TTCs.

For SEQ_9, TTC estimation based on full images by our algorithm generally tends to

be lower than the one estimated manually. This is because the image areas involved in

TTC computation are dominated by fast moving parts of an image corresponding to nearby

objects. This effect could be reduced by masking or segmentation of an image. As shown in
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the comparison between Figure (6-41) (b2) and Figure (6-41) (bl), TTC estimation based on

segmentation are larger than that based on full image and are close to manually estimated

results.

Figure (6-41) shows that the size-based TTC estimation results are much more noisy

than our calculated TTC results. The size-based TTC estimation between frames 100-200

vary significantly from our results. The difficulty with manual estimation of the TTC once

again illustrates that TTC algorithm presented here works well for small image motions.

Figure 6-39: Sample frames and their segmentation for Sequence SEQ_9, stop-motion im-
age sequence "camera3CUT1-hom"(299 frames). Frame seq: 100, 159, 218, 277, 336,
395.
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Figure 6-40: Size-based TTC estimation for Sequence SEQ_9, stop-motion image sequence
"camera3CUT1-horn." x axis: frame number. y axis: (a) Smoothed size information based
on labeled foreground regions. (b) Log of smoothed size. (c) Difference between the log
of smoothed size between every 16 frames. (d) Size-based TTC estimation results.
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Figure 6-41: The comparison of TTC fusion results and traditional size-based TTC esti-
mation for Sequence SEQ_9, stop-motion image sequence "camera3CUTl-hom." x axis:
frame number; y axis: TTC. TTC dotted lines: results at different subsampling rates for
segmented areas. TTC thick line: fusion results. Green circle: size-based TTC measure-
ment. (al) (a2) TTC results computed at different subsampling rates. TTC dotted lines:
1 x 1 (Red), 2 x 2 (Green), 4 x 4 (Blue). (bl)/(b2) Fusion results based on (al)/(a2) respec-
tively. (al)/(a2) Results based on full images vs. labeled regions. All figures are plotted
with the same scales.
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Table 6.6: Performance Evaluation for TTC with different case models
Category SEQ.# full/seg. Fig.# Case (I) Case (II) Case (III) Case (IV)

1 SEQ-1 full Fig. (6-11), (6-15) OK Good OK Good
SEQ_2 full Fig. (6-17) OK Good OK good

2(a) SEQ.3 full Bad OK Bad OK
seg Fig. (6-26), (6-27) BIad ood Bad Good

-4 full OK Great Good reat
seg OK Great Good Great

2(b) SEQ_5 full Fig. (6-33) OK OK Bad OK
= seg __---_OK_ _Great OK Great

Table 6.7: The different factors's impact on TTC

Category Case models Subsampling rates (N x N) Segmentation
1 High influence High influence N/A

Best: Case (IV) Spatial averaging/subsampling for small TTCs
Good results for small TTC Temporal averaging/subsampling for large TTCs.
Sensitive to movement direction Small N for large TTC, large N for small TTC

2(a) High influence. N/A High influence
Best: Case (II) (IV) TTC w. segmentation
Nice results for small TTC for all cases is smaller.

2(b) High influence. High influence High influence
Best: Case (IV) Small N for large TTC, large N for small TTC Not sensitive to

Best: Fusion resulst segmentation error.
3 High influence High influence Medium influence

Best: Case (II) (IV) Best: Fusion results TTC w. segmentation
is smaller.

6.6 Discussion

6.6.1 The impact of different parameters on TTC computation

In this section, we will summarize the impact of four computational models, different sub-

sampling rates, various image regions on TTC, FOE, and orientation parameters (p, q).

Table 6.8: The different factors's impact on FOE
Category Case models Subsampling rates (N x N) Segmentation

1 Medium influence Medium influence N/A
Case (IV) is better than (II) unless N is too large

More clustered. Less outliers.
Xo < 0,yo < 0

2(a) Low influence N/A Low influence
Clustered. xo z 0, yo > 0

2(b) N/A N/A N/A
3 N/A N/A N/A
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Table 6.9: The different factors's impact on (p, q)
Category Case models Subsampling rates Segmentation

1 Medium influence Medium influence N/A
Case (IV) is better than (III) unless N is too large

More clustered. Less outliers.
(p, q) ; 0

2(a) High influence N/A Medium influence
Case (IV) is better than (III)

More clustered. Less outliers.
(p, q) m 0

2(b) N/A N/A N/A
3 N/A N/A N/A

Impact of different parameters on time-to-contact

The choices of computation models would have large impact on TTC results as shown in

Figures (6-11), (6-14) (6-15), (6-16), (6-17), (6-26), (6-33). In Table 6.6, we summa-

rize the TTC performance based on different computational models. We find out that it is

normally hard to meet the assumptions for Case (I) and Case (III) which require the rel-

ative motion between objects and cameras is along camera's optical axis. Even if we try

to align the direction of relative motion along the camera's optical axis, TTC results based

on Case models (I) and (III) are not very ideal due to the sensitivity to small misalign-

ment. Compared to Case (I) and Case (III), Case (II) can fit in more situations including

non-planar objects and objects which are not exactly perpendicular to optical axis. Our

calculations indicate that computation based on Case (IV) provides the best results among

the four computational models.

For some situations, however, other case models may produce better estimation than

Case (IV) does. For example, as shown in Table (6.4) and Figure (6-26), TTC results for

SEQ_4 from Case (II), have smaller error deviations from their ground truths than from

Case (IV). Another example, as shown in Figure (6-26) and Figure (6-33), when objects

are very close to camera, TTC results for most sequences based on four computational

models provide quite satisfying estimations. This may be because when objects are getting

closer, more and more foreground pixels contribute to TTC computation, and correspond-

ing regions of non-planar objects can better fit planar-object based model than before. The

last example is shown in Figure (6-8), when subsampling rates are large, iteration-based

TTC results for Case (IV) are less reliable than those for other cases. It would make sense
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to apply fusion-based methods in order to combine multiple TTCs and to take advantages

of four different computational models.

TTC computation using segmented regions is more reliable than that using full images

as shown in the top row of Figure (6-26) and Figure (6-33), (6-34), (6-41). But TTC

estimation based on full images can still provide acceptable TTC results when obstacle is

very close. For example, there is no clear differences between TTC estimation based on

segmentation and full images for SEQ_4 in the bottom row of Figure (6-26).

Besides, TTC estimation algorithm is robust to the segmentation errors. As shown in

Figure (6-34), TTC results based on two different segmentation schemes, hand labeling and

auto segmentation, are quite close.

The choices of subsampling rates have large impact on the final TTC results as shown

in Figures (6-8), (6-14), (6-15)(SEQAl), (6-16), (6-17)(SEQ_2), (6-34)(SEQ_5), and (6-

38) (SEQ_6, SEQ_7, SEQ_8) . Small subsampling rates provide better performance for early

warning, while large subsampling rates provide better performance when relative distance

between obstacle and camera is very small. Thus we propose a fusion-based method to

take advantages of strength when using different subsampling rates.

Impact of different parameters on focus-of-expansion and orientation parameters

Our results show that the results of focus-of-expansion and orientation parameters provide

us information about the relative motion and object orientation. If FOE points are close

to the center of images, the relative motion between targets and cameras are along the

optical axis. If orientation parameters (p, q) are very small, the surfaces of target objects

are perpendicular to the optical axis.

Impact factors, including computational models, subsampling rates, and segmentation,

have less influence on the computation of FOE and (p, q) than on TTC computation.

Among all impact factors, the choices of computation models have the largest impact on

the computation of FOE and orientation parameters (p, q). The computational results based

on Case (IV) are more reliable than the ones based on other models. The computational

results of FOE for sequences in Table 6.2 based on Case (IV) are more clustered than the

ones based on Case (II) as shown in Figures (6-12), (6-13), (6-18), (6-19), (6-20), (6-
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21). The computational results of (p, q) for sequences in Table 6.2 based on Case (IV) are

more clustered than the ones based on Case (III) as shown in Figures (6-12), (6-22), (6-23),

and (6-31). The computation models have less impact on focus-of-expansion (FOE) than

on orientation parameters (p, q). As shown in Figures (6-29) and (6-30), computational

models do not result in clear differences on FOE computation.

The subsampling rates have low influence on the reliability of FOE and (p, q) only

except when the subsampling rates are too small or too large as shown in Figures (6-18), (6-

20) and Figures (6-22), (6-23). The curves for FOE and (p, q) versus frame number are quite

flat and clustered, and their values do not change too much among most image frames for

medium subsampling rates 4 x 4, 8 x 8, 16 x 16, 32 x 32.

Normally, the estimation of orientation parameters based on segmented regions is better

than the one based on full images as shown by the comparison among different rows in

Figure (6-31). But the improvement due to segmentation is not as significant as the one

due to different computational models as shown by the difference between the left and the

right column in Figure (6-31).

But segmentation has very little impact on FOE computation. As shown in Figures (6-

29) and (6-30), the computed FOE values remain constant whether using full images or

the segmented images. Actually for Sequence SEQ_3 and SEQ_4, there is no significant

difference of FOE computation between using Case (IV) or Case (II) and between using

segmented regions or full images.

In general, the computation of FOE and orientation parameters (p, q) are most sensitive

to computational modes, and least sensitive to computing image areas (full vs. segmented

areas). Also, compared with the computation of orientation parameters (p, q), the compu-

tation of FOE parameters are much less affected by computing models, image areas and

reasonable subsampling rates.

Sensitivity of computation models to their assumptions and the reliability of FOE/(p, q)

computational results

Up to now, we have found that Case (II) model can be applied to multiple situations while

Case (III) is not suitable in most circumstances. Case (II) assumes that objects are planar
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and perpendicular to optical axis, while Case (III) assumes that relative motions are aligned

with the direction of optical axis. Thus for Case model (III), TTC results are very sensitive

to the direction of relative motions, and for Case model (II), TTC results are very insensitive

to the surface shape and the orientation of objects.

On the other hand, we notice that FOE curves are much smoother than (p, q) curves

as shown in Figure (6-18), (6-20), (6-29) and Figure (6-22), (6-23), (6-31). As shown

in Figure (6-29) and (6-31), the differences of FOE curves between Case (II) and Case

(IV) are much less than the one for (p, q) curves, and the differences of FOE curves based

on full images vs. segmented regions are also much less than the ones for (p, q) curves.

Such observation shows that the estimation reliability for FOE points is higher than the

orientation parameters.

There exists interesting connection between the two above observations. Since the com-

putation of TTC results is more sensitive to the relative motion direction than plane orienta-

tion, estimating motion information is more reliable than estimating orientation parameters.

FOE points xo = f (U/W) and yo = f(V/W) are related to the motion information. Thus,

the curves for FOE points are much smoother than the ones for orientation parameters.

6.6.2 Comparison of proposed algorithm and traditional size-based

TTC estimation

In Section 6.5.6 and Section 6.5.6, we have compared TTC estimation for SEQ-9 based

on our proposed gradient-based method and traditional size-based method. However, since

we do not have ground-truth for SEQ.9, we cannot make statement based only on this

comparison. In order to evaluate the efficiency of our proposed algorithms and size-based

algorithms, we also compute the size-based TTC results for one of stop-motion sequence,

SEQ_8, whose TTC ground-truths are given.

For Sequence SEQ-8 shown in Figure (6-37), the comparison of size-based TTC results

and fusion-based TTC results is shown in Figure (6-42), in which blue lines in the left and

right figures respectively correspond to the TTC fusion results based on multi-sampling

for both full images and segmented regions. The deviation of size-based TTC results from
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ground-truths is significantly larger than that for TTC fusion results. The error rates of TTC

fusion results based on segmented regions are 7.58%(avg)/10.75%(avgabs), which are

significantly smaller than the error rate of size-based estimation 41.29%(avg)/41.77%(avgabs).

Even TTC results based on full images (no segmentation) are very close to the ground-

truths. The error rates of TTC fusion results with full images are 31.91%(avg)/31.99%(avg-abs),

which is still less than error rates for size-based estimation 41.29%(avg)/41.77%(avgabs).

Our results indicate that size-based TTC results are less accurate than TTC results based

on our fusion method.

(0809., 912Q5*08 10a= 1-10 E-0149--.bl---1--09d0] D7 - 00908Wn26JmnL., m 1-1-107 Et3-n.ftfre--f - -2--8-16-3-68 mod.914]

250 250

2'10

100 -

10 20 30 40 00 so 70 9 1010 20 30 40 10 60 70 s0 90 1100
We0 (7C114) -q#9 (TTC114)

(a) (b)

Figure 6-42: The comparison of size-based TTC measurement and proposed gradient-
based algorithms. x axis: frame number; y axis: TTC. TTC solid lines: TTC fusion results
based on multi-scale subsampling at 1 x 1, 2 x 2, 4 x 4, 8 x 8. (b) 16 x 16, 32 x 32,
64 x 64. Dashed black line: TTC ground-truth. Green circle: size-based TTC measure-
ment. Blue lines: (a) Fusion results based on full images. (b) Fusion results based on
segmented regions. All figures are plotted with the same scales.

6.6.3 Multiple-scaled TTC fusion based on condition number

In Section 6.4.1, we proposed to use the condition number as the reliability index of TTC

estimation and fuse TTC results only from reliable results with small condition number.

In order to evaluate the performance of condition-number based fusion, Sequence SEQ-8

is chosen to because of the three following reasons. The first, SEQ_8 is a stop-motion

sequence whose TTC ground truth is known and can be used for reliable evaluation. Sec-

ondly, SEQ_8 is one of the most general stop-motion sequences which simulates the sit-

uation of Case (IV), the general scenarios where both object surfaces and relative motion
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are arbitrary. Thirdly, TTC estimation for SEQ-8 is the worst among TTC results for all

stop-motion sequences in Table 6.2.

For SEQ_8 from Category 2(b), TTC estimation at different subsampling rates based

on segmented regions are plotted in the last row of Figure (6-38). The condition num-

bers for the above TTC results are plotted in Figure (6-43) (d). Figure (6-38) shows that

at the first half of SEQ_8, i.e., when TTCs are large, TTC estimation at large subsampling

rates, such as, 32 x 32 and 64 x 64, are not reliable. There are large TTC oscillations

involved. Figure (6-43) (d) shows that the corresponding condition numbers for large sub-

sampling rate 32 x 32 and 64 x 64 at the first half of SEQ_8 are also very large. At

the second half of SEQ-8, when targets are close and TTCs are small, TTC estimation at

large subsampling rate are very accurate and close to ground truth. Simultaneously, corre-

sponding condition-numbers present the trend of decreasing. When TTCs are very small,

TTC estimation at small subsampling rates such as 1 x 1 and 2 x 2 are not reliable. As

TTC further decreases, condition-number stops the trend of decreasing, and starts to go up

again at the end of SEQ-8. This obvious correlation suggests condition number may be

used as reliability index. With the introduction of such reliability index, the TTC fusion

based on multi-scale subsampling is further improved. At each frame, we have total seven

TTC contribution and seven condition numbers corresponding to seven subsampling rates.

Figure (6-43) (c) and (d) respectively correspond to the curves of condition-numbers cor-

responding to TTC computed based on full images and segmented regions. Applying the

condition-number based fusion scheme proposed in Section 6.4.1, we first set the thresholds

of condition-numbers for SEQ_8 as plotted in red curve in Figure (6-43) (c) and (d). After

rejecting TTC values with condition numbers higher than the threshold lines, we obtain

TTC fusion results as plotted in blue curves in Figure (6-43), in which Figures (6-43) (a)

and (b) respectively correspond to results based on full images and segmented regions.

In Figures (6-43) (a) and (b), both fusion results plotted in blue lines present better per-

formance than size-based TTC estimation plotted in green lines, especially when targets

are getting closer. The error rates of the original TTC fusion with segmented regions are

7.58%(avg)/10.75%(avgabs). The error rates of improved TTC fusion with segmented

regions are 9.23%(avg)/9.76%(avg-abs). Both of them are significantly smaller than the
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error rate of size-based estimation 41.29%(avg)/41.77%(avgabs).

The comparison between blue lines in Figure (6-43) (c) (d) and blue lines in Figure (6-

42) (a) (b) shows that our TTC fusion results based on condition-number are much smoother

than the ones based on simple minimization scheme. The spikes in TTC results in Figure (6-

42) (b) do not show up in Figure (6-43) (d). The removed oscillation and peak errors in

minimization-based curves are actually caused by those unreliable TTC estimation.

Our proposed fusion algorithms work well for the most complicated stop-motion se-

quence, SEQ_8. For the other stop-motion sequences which already have very ideal TTC

estimation results using simpler method, the fusion-based methods will only further im-

prove its current good performance. Then we can claim that the condition-number based

multi-scale subsampling is very promising.

6.7 Conclusions

We proposed a new "direct," gradient-based method for estimating the time-to-contact, and

analyzed how impact factors affect the performances of our algorithms.

The "direct method" operates directly on the spatial and temporal derivatives of bright-

ness, and does not depend on the computation of the optical flow as an intermediate result.

The method also does not require feature detection, feature tracking over continued im-

ages, thus having low latency and avoiding the computational load of calibration. Spatial

averaging and sub-sampling extend the range of operation to small values of TTCs, while

temporal averaging and sub-sampling extend the range to large TTCs. Some form of image

segmentation is useful in suppressing contributions from image regions moving in ways

different from those of the object of interest. For applications with general relative motion,

the final performance is also very robust to segmentation errors. Tables 6.7, 6.8 and 6.9

respectively summarize the influences of these factors on computation for our discussed

categories. The multi-scale-fusion based direct method further enhances TTC estimation

accuracy. Condition numbers of TTC computation are good index for reliability which can

be used to block the contribution of unreliable TTC results to fusion. We have tested our

algorithms on multiple situations, including synthetic images, stop motion sequences in
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Figure 6-43: The condition-number-based TTC fusion for SEQ_8. (a) Condition-number-
based fusion results based on full images. (b) Condition-number-based fusion results based
on segmented regions. x axis: frame number; y axis: TTC. TTC solid lines: TTC fusion
results based on multi-scale subsampling at l x 1, 2 x 2, 4 x 4, 8 x8, 16 x 16, 32 x 32, 64 x 64.
Dashed black line: TTC ground-truth. Green circle: size-based TTC measurement. (c)/(d)
condition numbers for TTCs at different subsampling rates using full images/segmented
regions. Dotted lines: condition numbers at different subsampling rates. Red solid line:
threshold for condition numbers. If condition numbers are larger than threshold, their cor-
responding TTC results will be ignored in TTC fusion.
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arbitrary relative motion, as well as the outdoor driving environment. Our results show the

efficiency of our algorithm for different setup and different indoor/outdoor lighting situa-

tions.

6.8 Acknowledgments
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Figure 6-44: Sample frames and their segmentation for Sequence SEQ_9, stop-motion im-
age sequence, slantedBus_5mm(93 frames). Frame seq: 1, 18, 35, 52, 69, 86.
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Chapter 7

Discussion and Summary: the principle

of fusion-based and layered-based

schemes

In this thesis, we have proposed a general framework of the fusion-and-layer based method-

ology. The framework is shown in Figure 1-2 in Chapter 1. The major principle of our

framework takes advantage of connection among multiple pieces of information to improve

obstacle detection and perception abilities. The feature-level fusion converts a complex

segmentation task into several simple ones to avoid time-consuming full-image search.

We sequentially introduce several systems based on feature-level fusion to obtain fore-

ground information in different scenarios. In Chapter 2 and 3, we identify 3D information

of targets without and with background noises from a pair of visible image sequences taken

by two stereo cameras. In Chapter 4, we detect and classify pedestrians from infrared image

sequences taken by single infrared camera. In Chapter 5, we detect and track the dynamic

movement of our interested foregrounds from visible image sequences from single visible

camera. In Chapter 6, we obtain time-to-contact information for obstacles based on visible

image sequences from single visible camera.

The applications discussed in this thesis are examples that how we can apply the prin-

ciple of fusion-based and layer-based to detect dynamic obstacles and obtain their dynamic

information systematically from visible and infrared sequences in various typical situa-
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tions. The performance of the discussed systems demonstrated that the proposed systems

significantly improve the accuracy, reliability and robustness. In this chapter, we will sum-

marize several important features about how the fusion-based and layer-based principles

are used in our different applications.

7.1 The principle of layered technology: Divide and con-

quer

In our feature-level fusion systems, layer-based separation is the key component that sep-

arates an original image into several layers on which segmentation is simpler than in the

original image. In Chapter 2 and Chapter 3, we discuss how to separate an image into sev-

eral distance-based image-layers while each layer contains potential obstacles at a distance-

range. In Chapter 4 and Chapter 5, we discuss how to separate an image into several verti-

cal stripes that contain potential pedestrian obstacles in two different methods. In total, we

have discussed three different methods to separate one image into two different categories

of layers in which segmenting interested targets is much easier than in original images.

All our layer-based separation is based on statistical properties of corresponding fea-

tures. Typical detection and segmentation methods differentiate foregrounds and back-

grounds based on the local feature vectors of their pixels, including motion distances, vec-

tors, edge features, etc. Feature computation might be noisy, and segmentation schemes

might be unreliable due to the sensitivity to separation thresholds and outliers. Instead

of directly setting thresholds for feature vectors, our layer-based separation methods first

compute the statistical properties of these features, and use them to separate image pixels

into several layers/groups that contain individual foreground as well as other noises. Within

each group, we further locate interested foregrounds. Here below we briefly summarize the

different statistical properties of different features used in our layer-based separation.
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7.1.1 Disparity-Range-based Edge Layer Separation and Background

Removal

The first category of layers is distance-based image-layers that have the same sizes as that of

the original maps. Distance-Range-based edge-layer separation introduced in Chapters 2, 3

is based on the statistical distribution of distance or disparity features. Conventional seg-

mentation based only on depth is very sensitive to correspondence errors. Instead, we first

produce a binocular disparity-histogram as shown in Figure (2-9). The statistical distribu-

tion of disparity values provides the disparity ranges for potential foregrounds. The extra

knowledge of disparity ranges make it possible to split an edge map into several edge lay-

ers at different distance-ranges, including a background range. Therefore, we can locate

pixels that have correspondence pairs matching the given disparity-range and obtain the

"distance-based edge-layers," containing obstacles within that range. In Chapter 2, the ex-

ample of corresponding separated edge-layers is shown in Figure (2-11) for stereo image

pairs shown in Figure (2-7) (a), while the disparity-histogram has three peaks representing

three nearest vehicles as shown in Figure (2-9).

In Chapter 3, we identify the disparity ranges for background objects that are far-

ther than our interested distances in the disparity histogram as shown in Figure (3-2) for

stereo frames shown in Figure (3-1) (a) -(d). The separated backgrounds pixels are shown

in Figure (3-3) (a), which helps to clean up noises in edge-layers corresponding to fore-

grounds. The comparison between Figure (3-3) (b) and (c) indicates that the distance-based

background-layer-removal eliminated most tree pixels in the background while preserving

all pixels of target objects including the ball.

In summary, after distance-based edge-layer separation, it becomes relatively easy to

identify foregrounds from background pixels and to detect individual objects. Our method

is very robust to the different choices of picking disparity ranges for different foregrounds

in histogram figure since our segmentation algorithms in individual layers can discriminate

noises from other layers.
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7.1.2 Vertical-Projection based Layer Separation

The second category of layers is several vertical stripes in which we can detect potential

pedestrians. Our method simplifies the original two-dimensional full-image segmentation

into two one-dimensional segmentation by splitting an image with a size of nrw x ncol

into several vertical stripes with a size of nrow x ni, ni < nco. Within these vertical

stripes, images of human beings can be further segmented, which is called "Horizontal

segmentation first, vertical segmentation second" scheme. In Chapter 4 and Chapter 5, we

have introduced two different ways to horizontally segment an image.

Layer Separation relying on Vertical-Projection of Pixel Brightness for Infrared Im-

ages

For infrared images from night vision, the horizontal segmentation is based on vertical pro-

jection curves of pixel brightness, i.e., the summation of pixel brightness in image columns

versus their corresponding horizontal positions, as introduced in Chapter 4. Instead of di-

rectly utilizing pixel brightness to segregate pedestrian foregrounds from background, we

compute the vertical projection of image brightness, which represents the statistical means

of pixel brightness in each column as shown in Figure (4-4) (a) (b). The variation of the sta-

tistical values provides the horizontal boundaries between foregrounds and backgrounds.

As shown in Figure (4-4), the horizontal locations and width of projection waves corre-

spond to pedestrians and are robust to parameter choices This corresponding relationship

helps to divide night-time infrared images as shown in Figure (4-4) (a) (b) into different ver-

tical stripes within which images of human beings can be further segmented based on either

brightness or bodylines. For night vision, splitting infrared image horizontally is the key to

our automatic pedestrian detection.

Layer Separation relying on Combined-Difference-Image based Vertical Projection-

Curves for Visible Images (CDI-VPC)

For visible images in monitoring situations, the horizontal segmentation is based on verti-

cal projection curves of Combined-Difference-Images (CDI-VPC), i.e., the summation of
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pixel brightness of CD-Image for each column versus their corresponding horizontal posi-

tions [100], as introduced in Chapter 5. Instead of directly utilizing pixels from different

images between two frames to segregate moving foregrounds from static background, we

compute the vertical projection of CD-Images as shown in Figure (5-3), which represents

the statistical means of brightness variation in each column. In the CDI-VP-Curves, the

horizontal locations and width of projection waves correspond to pedestrians and are ro-

bust to parameter choices. The variation of the statistical values provides the horizontal

boundaries between foregrounds and backgrounds. The vertical image-stripes correspond-

ing to sharp triangular spikes in vertical projections may contain pedestrian candidates.

Thus, we can also take advantage of CDI-VP-curves to detect pedestrians from visible im-

age sequences using "horizontal segmentation first, vertical segmentation second" scheme.

Within these vertical stripes, images of human beings can be further segmented. For oc-

clusion situations, we can search for the potential head-locations at the peaks of merged

waves.

Choises of Thresholds for Both Situations

The two horizontal segmentation algorithms, for video and infrared sequences, use adaptive

thresholds respectively defined in Equations (4.2) and Equations (5.6) (5.5) in order to com-

pute corresponding vertical projection curves directly from infrared images or combined-

difference-images for visible images. These thresholds are all set to be very small in or-

der to obtain non-zero projections in projection curves for infrared images or combined-

difference-images at the columns corresponding to pedestrians' locations. For infrared

images, the thresholding removes the contributions of very dark pixels. For visible images,

the thresholding removes the contributions of pixels with little intensity variation between

two frames. Since the intensity values for most bright pixels in infrared images are above a

fixed threshold, Equations (4.2) defines threshold by subtracting a fixed constant from the

largest brightness value. The scale for intensity differences for pixels at two continuous

frames vary significantly, thus, we define the threshold to be a ratio of largest variation.
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Layer-based Vertical Segmentation: Head Detection

For pedestrian detection in infrared and visible sequences, horizontal segmentation pro-

vides the ranges of horizontal locations. Detail 2D locations are obtained through vertical

segmentation. For infrared sequences in the winter where there are very limited noises

from background bright pixels, pedestrian detection within given vertical stripes can be

directly determined based on the vertical locations of bright pixels. For infrared sequences

in the summer, many bright pixels are from background regions, such as hot engines, elec-

tric pole, etc., and produce lots of noises in horizontally segmented regions. To determine

pedestrians' locations in these vertical stripes, one pedestrian template is needed to search

for pedestrians at all possible vertical locations. We decrease the number of candidate

locations by searching for positive/negative edge pair in every row within vertical stripes.

For visible sequences where there is no occlusion, pedestrian detection in horizontally

separated regions can be directly determined based on the vertical locations of pixels with

large value in combined-difference-images at given vertical stripes. For visible sequences

where pedestrians occlude, one adaptive pedestrian template is needed to search among

multiple candidate locations corresponding to local transitional peaks within a big wave

of of CDI-VP-curves. The noises here are mainly due to impact of occlusion on CDI-VP-

curves. The matching template for each pedestrian is updated in very frame when there

is no occlusion. For occluded situations, we use the matching template before occlusion

happens.

Compared to traditional template-based 2D searching, our "horizontal first, vertical sec-

ond" methods significantly decrease the number of candidates and hence increase the reli-

ability. However, for both infrared and visible sequences, it is possible that template-based

matching failed to find the best match. For infrared images, we apply initial segmentation

to every frame and the wrong segmentation in the previous frame would not have impact

on the next frame. For visible images, when there is occlusion where heads' location might

not be accurately detected, we do not update templates. Besides, we fuse the process of

initial segmentation and tracking. Thus the negative impact of the wrong detection in the

previous frame would not be accumulated during the tracking process, and we can still
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obtain the accurate segmentation in the next frame, especially when there is no occlusion.

7.2 Other Layer-based Processing

In previous section, we divide a whole image into several layers for the purpose of segmen-

tation for one whole image, i.e., "divide and conquer." In this section, we summarize other

layer-related techniques.

7.2.1 Similarity of Motion Vectors in Separated Layers

Because motion vectors are very noisy, segmentation based on them alone is not very re-

liable. As shown in Figure (3-6) (b), it is hard to discriminate between motion vectors for

foregrounds and for backgrounds because of the impacts of large amount of background

noises. However, as shown in Figure (3-6) (a), in our separated edge layers corresponding to

foregrounds, motion-vectors of edge-pixels stand out much better in the obstacle-distance-

layer than in the original edge maps. The comparison between Figure (3-7) (a) and Fig-

ure (3-7) (b) demonstrates that introducing motion information into distance-based layers

helps to differentiate motion vectors for foreground from those for background and to im-

prove segmentation accuracy. The fusion-based segmentation is discussed in Section 7.4.1.

7.2.2 Layer-based Dynamic Tracking Model

In Chapter 5, CDI-VP-Curves not only help with initial horizontal segmentation, but also

provide the dynamics of our interested targets based on the changes of their corresponding

CDI-VP-Curves. When two previously independent triangular spikes merge, correspond-

ing foregrounds start to intersect. When there are no independent sharp triangular spikes at

estimated regions, we identify the circumstances of occlusion.

With our layer-based segmentation techniques, "horizontal segmentation first, vertical

segmentation second," our tracking process can exploit simple Kalman-filter based dy-

namic models that only track pedestrians' horizontal locations instead of both horizontal

and vertical locations as traditional dynamic tracking algorithms do. Our tracking scheme
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avoids the impact of vertical vibrations noises during walking, and improves the segmen-

tation robustness during occlusion situations.

Different from conventional methods that track the movement of multiple feature pixels

or only monitor the movement of foreground objects only, our methods follow the changes

of the distribution of our interested features, and the changes of CDI-VPC while maintain-

ing a simple dynamic tracking model.

7.3 Structural Fusion among Different Operations

Our framework shown in Figure (1-2) is based on feature-level fusion in which each process

utilizes the extra information from other processes or sub-systems to simplify the original

difficult tasks. In this section, we summarize three structural fusion blocks that fuse two

typically independent operations. These three blocks are the fusion between segmentation

and classification, the fusion between detection and tracking, and the fusion between the

prediction step and update step for Kalman Filtering.

7.3.1 Segmentation based on Fusion of Segmentation and Classifica-

tion Features

In Chapter 4, our fusion scheme shown in Figure (1-2) (c) takes advantage of classification

features to enhance segmentation accuracy for infrared images. After initial horizontal

segmentation, our bodyline-based vertical segmentation automatically identifies the sizes

of potential pedestrians based on bodylines at each vertical location. We apply histogram-

based classification features to search for the best candidate among multiple candidates

within each vertical stripe as explained in Chaper 4.2.2.

Normally it is hard to directly apply classification features during segmentation proce-

dure. Segmentation is to find the locations of all possible candidates, while classification

process computes multiple features for these candidate ROIs, and differentiates foreground

objects from noises. Typical brute-force based segmentation has to search among multiple

candidates at different locations with various sizes. Due to large amount of candidates,
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people normally would not compute classification features at segmentation stage. Besides,

classification needs to set thresholds based on the distribution of all feature vectors, which

is a compromised process between detection rates and false-alarm rates. Thus, classifica-

tion features are not typically used in segmentation procedure.

On the contrary, for our layer-based segmentation on infrared images, the number of

ROI candidates is very small due to our "horizontal segmentation first, vertical segmenta-

tion second" scheme. Thus we can afford to introduce some classification features into seg-

mentation step to choose among multiple candidate regions within each stripe. Since there

is at most one pedestrian within one stripe, we do not need to set any threshold. Instead,

we simply pick the one whose histogram-feature is the closest to our template. And there

will be at most one false alarm within each stripe. Our method balances the complexity

and performance of two subsystems: segmentation and classification. The method focuses

on improving the performance of combined segmentation/classification systems instead of

maximizing one process while sacrificing the other. Segmentation with high quality can

ease the classification task, while robust classification can tolerate segmentation errors.

7.3.2 Detection based on Fusion of Initial Segmentation and Dynamic

Tracking

In Chapter 5, our fusion-based detection scheme actively fuses information of initial seg-

mentation and dynamic tracking as shown in Figure (1-2) (d) of Chapter 1.

Our scheme takes advantage of combined information, including initial horizontal seg-

mentation, CDI-VPC, previous detections, and estimated human locations from dynamic

tracking models, as shown in Figure (5-11) of Chapter 5. Many algorithms cannot afford

to implement initial segmentation for every frame due to its heavy computational load. In-

stead, tracking procedures are used to detect humans to take advantage of the connection

between location similarities of the same obstacles. Each time, new segmentation results

are used to update the dynamic model. Such type of tracking system would not respond

fast enough in rapidly changing environment.

In contrast, our initial segmentation is based on "Horizontal segmentation first, vertical
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segmentation second" scheme, whose computational load is very light, thus we can afford

to implement segmentation algorithms for every frame. Segmentation for continuous image

frames is independent. The combination of current segmentation and previous prediction

results from dynamic tracking helps to improve segmentation reliability and reduce seg-

mentation/tracking ambiguities, especially when humans intersect and occlude. Through

combining the information from the initial segmentation and dynamic model, we can iden-

tify potential intersection of pedestrians, and search for individual pedestrians in very lim-

ited number of candidate position inside the initial segmentation. Thus, our algorithms can

track humans with changing poses and deal with partial occlusions and scale-variations of

targets.

7.3.3 Detection based on Fusion of Estimation/Update Step for Kalman

Filtering

As discussed above, dynamic tracking models are heavily involved in fusion-based de-

tection and help to improve segmentation accuracy, especially when humans dramatically

change their poses. Conventionally, estimation results from traditional KF filters are only

intermediate results. In our algorithm, both estimation and update steps are actively in-

volved in fusion-based detection and play significant roles. Estimated results for pedes-

trian's future locations help to understand the dynamics of foregrounds, and determine the

search range and candidate locations of pedestrians during merging process. Our KF update

step accepts information not only from KF estimation and target locations, but also from

the reliability of detection results. Our fusion-based tracking stops updating for occlusion

situation, which is also different from traditional KF filters.

7.4 Other Related Fusion technologies

Besides the fusion across different computational blocks discussed in Section 7.3, there

are three other major fusion-related techniques, fusion in time dimension, fusion in spatial

dimension, and fusion in physical connection among obstacle features.
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7.4.1 Fusion in Time Dimension

The information fusion in time domain provides extra information for foreground detection.

One example is to identify possible intersection based on comparison of CDI-VP-Curves.

Another example is the dynamic tracking models based on estimation and updating. Both

of them are discussed in Section 7.2.2. Here we summarize fusion-based applications in-

volved with motion information.

Layer-based Motion-based Clustering

As discussed in Section 7.2.1, there exists strong similarity of motion information and

depth information for edge-pixels belong to same foregrounds. Such similarity serves two

purposes. First, as shown in Figure (3-4) (c) (d) of Chapter 3, we can eliminate false seg-

mentation blocks in background regions by removing static blocks based on motion infor-

mation.Second, as shown in Figure (3-5) (dl) (d2) of Chapter 3, we can expand the initial

segmentation (seed boxes), by absorbing the surrounding target pixels that have similar

motion features as initial chosen pixels have but are lost in the process of background-

removal. As a result, the initial segmentation can be enlarged to obstacles' real sizes as

shown in Figure (3-7) and Figure (3-9) (b) of Chapter 3.

Motion-based Correspondence-Matching Criteria

In Chapter 2, we adopt motion information as one of correspondence-matching criteria in

order to remove matching ambiguities associated with stereo vision. Because of the ob-

jects' rigidity, there exist similarities between the motion information calculated from the

left and right frames corresponding to the same target feature-points. As in Figure (2-8) (b)

of Chapter 2, motion-vectors for both stereo video frames show similar patterns in spite

of the noises during motion-vector detection. As shown by the differences between Fig-

ure (2-9) (a) and Figure (2-9) (b), fusing both traditional epipolar-line constraint and motion

constraint provides better correspondence reliability and more accurate histogram distribu-

tion than not using motion constraints.
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7.4.2 Fusion in Spatial Dimension

Many machine vision algorithms, for examples, segmentation and TTC computation, de-

pend only on the boundary information of interested targets. In this thesis, we have pro-

posed new algorithms to take advantage of contribution from both boundary and interior

pixels.

TTC Estimation based on the Fusion of Boundary and Interior Image Pixels

Traditional TTC computation relies on the information of location and motion for the

boundary points or feature-points in interested obstacles. The performance of such method

is limited by sub-pixel accuracy of line measurement. In Chapter 6, we have proposed

a direct TTC computation method using both boundary pixels and interior pixels by ac-

cumulating suitable products of image brightness derivatives. Our method works directly

with the derivatives of image brightness and does not require detecting objects, tracking

features, estimating optical-flow, or any other "higher level" processing.

Integrating the contribution of both boundary pixels and interior pixels, our method

greatly increases the calculation speed and accuracy, and can deal with situations when ob-

stacles' sizes change by sub-pixel. When objects are very close and image sequences only

capture the interior part of foregrounds, our method still provides accurate results. Tradi-

tional boundary-based methods would have inaccurate results since images are defocused

and object boundaries fall outside of images.

Segmentation based on the Fusion of Boundary and Interior Image Pixels

Traditional segmentation algorithms are mainly based on identifying boundary pixels. The

interior pixels within objects are not effectively used except for the template matching, edge

detection or motion vector computation for boundary pixels. Instead, we take advantage of

the fusion between boundary and interior pixels in segmentation.

In Chapter 2, both boundary and interior pixels contribute to producing binocular disparity-

histograms. In Chapter 3, interior pixels also contribute to the motion-based expansion.

Given initial segmentation, in order to decide whether to further absorb new surrounding
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pixels or not, average motion/depth information of interior pixels is compared with ones

of surrounding pixels. The similarities between interior and neighborhood pixels help to

expand initial segmentation regions.

In Chapter 4, for infrared-based pedestrian detection, interior pixels within boundaries

are included to compute the vertical projection of pixel brightness at each column. In Chap-

ter 5, for pedestrian monitoring based on single visible camera, interior pixels are used to

obtain CDI-VP-Curves. The contributions of these interior pixels result in distinct horizon-

tal transition boundaries in the curves of vertical projection, which makes the performance

of horizontal segmentation robust. Thus, it is feasible to search targets in the corresponding

vertical stripes, which greatly simplifies traditionally difficult tasks and improves segmen-

tation accuracy.

7.4.3 Fusion in Physical Connection among Obstacle Features

To understand driving situations, many conventional algorithms independently compute

relevant static and dynamic information of targets, including distance ranges, segmenta-

tion, motion, TTC, etc. Information is independently detected or estimated and the mutual

connection between these features is not efficiently used. Our scheme takes advantages

of physical connections among these features in order to improve the accuracy of param-

eter estimation. The extra information, such as distance, motion, and historical dynamic

information, can all be fused to enhance the detection accuracy.

The information fusion does not require high quality data. For example, though TTC

results at each individual subsampling rate are not very ideal, TTC fusion results based on

four computational models at different subsampling rates present much better performance

than individual estimation. Furthermore, the extra distance information can be rough dis-

tance ranges with large error variance. Motion information can be noisy optical flows. The

combination of these extra information helps to provide ideal segmentation accuracy. On

the other hand, rough segmentation information helps to improve the detection accuracy of

TTC estimation. The parameter estimation of TTC, focus of expansion and orientation are

not sensitive to segmentation errors.
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7.5 Conclusion

For different task requirements and environments, we have proposed various sensor fusion

schemes to fuse data among various sensors. The fusion-based and layered-based principle

is applied to detect and track the locations of obstacles in daytime visible images from

stereo camera in Chapters 2 and 3, to identify pedestrians in nighttime infrared images

from single camera in Chapter 4, to detect and track the locations of pedestrians in visible

images from a single camera in Chapter 5, and to fuse TTC results from four gradient-based

computational models with different subsampling rates in Chapter 6.

Our scheme is task-oriented and object-oriented. Instead of paying attention to all

frame pixels and their complete 3D reconstruction, we focus on target objects and their

relevant information. We split the original image map either into several distance-based

layers, including background-layers, or projection-curve based vertical candidate stripes.

The additional information helps to divide a complicated segmentation task into several

simpler tasks for better performance than the original one. The combination of several

simple segmentation operators is better than one complicated segmentation operator. By

communicating information among sensors ahead of the final processing period and mak-

ing use of their physical relationship, better environmental interpretation is achieved.
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Chapter 8

Future Work

Here we will discuss several topics that might be interesting to further investigate, including

the further investigation on previous research topics and the possible fusion scheme among

different research topics.

8.1 Possible in-depth research topics for discussed systems

For the different systems mentioned in previous, there are the following possible topics to

be investigated.

8.1.1 Application of "fusion-based layer-based 3D segmentation and

detection" for tilted obstacles

The test examples used in Chapter 2 and Chapter 3 are mainly the video sequences captured

on moving vehicles. The images of interested obstacles are mainly the frontal/back view,

thus the depth ranges for obstacle pixels are wider than the situation when obstacles are

tilted and both the frontal and rear ends of vehicles are visible. It would be interesting to

investigate how algorithm will work in such situations.
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8.1.2 Research on pedestrian detection in very cluttered scenes for

both visible and infrared sequences

For infrared sequences in Chapter 4, we have not investigated the tracking performance

before and after occlusion as we did for Chapter 5 except for the situation of partial occlu-

sions in Figure (4-4) (c) in which pedestrians are detected accurately. We need to test more

situations of partial occlusion to check whether the horizontal locations of pedestrians'

heads still correspond to the transitional peaks or not, and to observe how the projection

wave will change for fully occluded situation, i.e., when the horizontal locations of multiple

heads overlap.

It would also be interesting to evaluate the performance of pedestrian detection in very

cluttered scenes such as in a crosswalk where occlusion constantly happen for both visible

and infrared sequences.

8.1.3 Possible research on "time-to-contact estimation"

In Chapter 6, we have developed fusion-based hierarchical method for direct gradient-based

time-to-contact estimation. We can further pursue singular-value based fusion systems to

improve its performance.

While our previous time-to-contact estimation is mainly used for visible video se-

quences, it is worth trying to apply the TTC estimation to infrared video sequences and

to evaluate its performance.

While we compute TTC estimation, we do not have high requirement on pre-segmentation.

TTC computation is reliable as long as majority regions are included. On the other hand,

with newly computed TTC estimation, the possible sizes of interested obstacles are avail-

able. The additional information might help to improve segmentation performance. It

might be feasible to develop an iterative scheme to accurately estimate the target sizes and

TTC information.
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8.2 Additional fusion schemes

While the projects described in previous chapters are independently implemented for dif-

ferent applications, there are lots of interesting connections among them that worth further

investigation.

8.2.1 Application of "horizontal first, vertical scheme" scheme for gen-

eral obstacles

So far, we can applied the detection scheme of "horizontal first, vertical segment" to pedes-

trian detection. It would be interesting to apply such schemes to detect non-pedestrian

obstacles.

As discussed in Chapter 2 and Chapter 3, in the separated edge layers, the edge-line

based morphological operation elongates the vertical edges at horizontal boundaries of

interested targets and make them longer than at other horizontal locations of background

regions. Thus the vertical projection curves of these pre-processed edge-maps of separated

edge layers can provide useful sharp transitions. Boundary locations of interested targets

can be determined by searching for horizontal locations of the left most and right most long

edge-lines in separated edge maps. After some modification, the "horizontal segmentation"

described in Chapter 4 and Chapter 5 might help to enhance segmentation accuracy.

8.2.2 Application of "fusion-layer-based dynamic tracking" scheme

for infrared sequences and general obstacles

As discussed in Chapter 5, our layer-based tracking tracks only the horizontal locations and

speed of obstacles, and actively combines the initial segmentation and tracking together

to improve the understanding of obstacle's dynamics. The fusion-layer-based dynamic

tracking can also used to track pedestrians in night vision as well as the general obstacles

mentioned in Chapter 2 and Chapter 3. It is much more reliable to track the left and right

boundary locations of interested targets and then apply "horizontal first, vertical segment"

scheme to improve static segmentation for each individual frame.
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8.3 Other possible applications and summary

Though our algorithms are developed for intelligent vehicles, they can be easily used in

many new application area. In microbiology, to understand "chromosome congression in

oocytes," biologist wants to track the movement of chromosome from three-dimensional

time-lapse confocal fluorescence microscopy data of this active cytoskeletal process. In-

stead of segmenting chromosome separately in two continuous frames and associating them

later, the fusion of initial segmentation and tracking mechanism based on Kalman filter

would be helpful to better track its movement of chromosome.

In summary, we have proved that fusion-layer-based methodology is very useful for

environment understanding. By fusing information among different sensors before their

isolated operations and by decomposing original complicated task into several layer-based

subtask, we have effectively improved the detection reliability and decreased the computa-

tional loads.
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