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Abstract

Existing theory yields useful performance criteria and processing techniques for acous-
tic pressure-sensor arrays. Acoustic vector-sensor arrays, which measure particle ve-
locity and pressure, offer significant potential but require fundamental changes to
algorithms and performance assessment.

This thesis develops new analysis and processing techniques for acoustic vector-
sensor arrays. First, the thesis establishes performance metrics suitable for vector-
sensor processing. Two novel performance bounds define optimality and explore the
limits of vector-sensor capabilities. Second, the thesis designs non-adaptive array
weights that perform well when interference is weak. Obtained using convex op-
timization, these weights substantially improve conventional processing and remain
robust to modeling errors. Third, the thesis develops subspace techniques that enable
near-optimal adaptive processing. Subspace processing reduces the problem dimen-
sion, improving convergence or shortening training time.
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Chapter 1

Introduction

Because they are often reliable, easy to analyze, and straightforward to process, pres-
sure sensor arrays have dominated sonar for decades. Recent advances in sensor qual-
ity and miniaturization have stirred interest in more complex devices, those that mea-
sure velocity or acceleration in addition to pressure. Each of these “vector-sensors”
provides several measurements, offering significant potential and fresh challenges.
Examining the use of vector-sensor arrays in passive sonar reveals the promise such

arrays offer to the field of undersea surveillance.!

1.1 Passive Sonar Background

The principles that have historically driven passive sonar research are the same ones
behind this work. Therefore, understanding the motivation for this research requires
some background in passive sonar. This section provides a brief introduction to
passive sonar and pressure-sensor arrays.

Passive sonar, which quietly listens for emitted sound, is effective at undersea
surveillance for three reasons. First, sonar operates over great distances. Sound
waves sometimes travel thousands of miles underwater. Electromagnetic waves, by
contrast, generally travel short distances in saltwater before being absorbed. Second,

emitted sound is exploitable. Machinery produces characteristic sounds which aid in

!This background material on sonar and vector-sensors is also covered in [1].
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the detection, localization, and classification of vessels. Third, passive sonar is covert.
Passive sonar systems are difficult to detect because they emit no energy. Active
sonar, by contrast, emits energy which adversaries could use for counter-detection
and avoidance.

The most common sensor employed for sonar is the hydrophone. A hydrophone
measures only pressure, essentially forming an underwater microphone. Sound waves
passing over a hydrophone introduce changes in pressure that are measured and used
for detection. Omnidirectional hydrophones are common because their construc-
tion, maintenance, and analysis is well-understood. Decades of experience with hy-
drophones show they survive well in the corrosive ocean environment and are effective
when assembled into arrays.

The most common array configuration is the uniformly spaced linear array. Linear
arrays are often fixed to the side of a ship, mounted on the sea floor, or towed behind
a moving vessel. When a vessel travels in a straight line, drag pulls a towed array into
an approximately linear shape. The exact location and orientation of each sensor is

usually unknown or subject to modeling errors.

1.2 Acoustic Vector-Sensors

Increasing the information measured by a sensor generally improves its performance.
With acoustic measurements, particle velocity provides additional information about
the direction of sound arrival. Acoustic vector-sensors each contain one omnidirec-
tional hydrophone measuring pressure and three orthogonal geophones measuring the
components of particle velocity.? Figure 1.2.1 illustrates a three-dimensional vector-
sensor. The geophone in the figure contains a suspended coil which slides along the
axis of a fixed magnet. Sound passing along the axis of the geophone vibrates the
coil and induces a current. The induced current provides a measurement of velocity

component along the geophone axis.

2Although velocity sensors are common, many vector-sensors equivalently use accelerometers,
directional hydrophones, or pressure-gradient sensors.

14



Vector-Sensor Geophone

-
‘-"-
“‘ “
1 .“ -~ S .
[

N

e ahLLLLT T
"y
L
»

= gmy
taas®

Spring

Hydrophone
Coil : :

Magnet

A/ “~A i .E

‘=t

0
-

Geophones

. .
LTy ey
Taa, wsnt®
"tasmsssmmnEnt®

Figure 1.2.1: Notional diagram of a vector-sensor

Although geological vector-sensors have existed for decades, recent advances in
geophone design have increased their utility for sonar applications. Because vector-
sensors include directional information, they have the potential to improve the per-

formance of passive sonar systems.

1.3 Vector-Sensor Processing

Vector-sensor measurements provide more information than pressure-sensor measure-
ments. Using this additional information to improve performance is the role of vector-
sensor processing. This subsection illustrates the primary benefit of vector-sensor pro-
cessing: resolving ambiguous pressure-sensor measurements. Similar, more detailed
analyses are provided in [1, 2, 3, 4].

The benefit of vector-sensors is first apparent when comparing a three-dimensional
vector-sensor to an omnidirectional pressure-sensor. By definition, the response of
the omnidirectional pressure sensor is equal in all directions. But because the vector-
sensor also measures particle velocity, a three-dimensional vector, it yields information
about the direction of a sound source. Put another way, all directions are ambiguous

to the pressure-sensor, but no directions are ambiguous to the vector-sensor. This lack

15



-10

-15

-20

Power (dB)

-25

-30

-35

"""" Cardioid ! il

— — — 3D Limacon |

|

I

| — Dipole N
|

|
|
|

_40 : I I I I :
—r  =3n/4 —7w/2 —w/4 0 w/4  w/2 3mw/4 ™

Angle (radians)

Figure 1.3.1: Example vector-sensor response patterns

of ambiguity means a single vector-sensor is inherently directional. Vector-sensors are
also tunable: linear combinations of the four elements forms a “pseudo-sensor” with
many different response patterns [3]. A few of these patterns are shown in Figure
1.3.1. By choosing appropriate weights, these patterns are easily rotated to emphasize

or null any arbitrary direction.

The same behavior extends to arrays of vector-sensors. Compare a uniformly
spaced linear array composed of N vector-sensors to one composed of N omnidirec-
tional pressure-sensors. Example directional responses or “beampatterns” for both
array types are shown in Figure 1.3.2. Both arrays have N = 10 elements at frequency
f =5/7fq, where f; is the design frequency (the frequency at which the inter-element
spacing is one-half wavelength). By choosing weights and linearly combining array
elements, the top and bottom plots are “steered” to /2 and —m /4, respectively. The
response of a linear pressure-sensor array (PSA) is symmetric about rotation around

the array axis. This is evident in the symmetric PSA beampattern: arrivals from op-
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posite sides of the array yield identical pressure measurements. Changing the weights
applied to each element alters the beampattern, but the response is always symmet-
ric. The PSA beampattern always exhibits an ambiguous peak, or “backlobe,” in
the direction opposite the desired steering angle. In contrast, the vector-sensor array
(VSA) utilizes unambiguous measurements from each sensor to reduce the backlobe.
The level of backlobe reduction is determined by the choice of weights. In the top plot
of Figure 1.3.2, the VSA backlobe is driven near zero; in the bottom plot of Figure
1.3.2, it is reduced by 6 dB.

Directional information makes VSA processing fundamentally different from PSA
processing. Pressure-sensor processing exploits phase or time-delay measurements to
resolve signals and reject noise. Vector-sensors provide little additional phase infor-
mation because the sensor components are co-located; the directional components
yield mostly gain information. VSA processing must exploit both gain and phase

measurements to be effective.

1.4 Problem Statement

The additional measurements provided by vector-sensor arrays offer benefits and chal-
lenges. As the previous section shows, vector-sensor arrays are more versatile than
arrays of only pressure-sensors. Exploiting this versatility raises a number of ques-
tions addressed in this work. These questions fall into two broad categories that serve

to organize the research:

1. How well can a vector-sensor array do? How can the vector-sensor array
“performance improvement” be quantified? By how much can vector-sensors

potentially improve performance?

2. How can a vector-sensor array do well? How can vector-sensor arrays
achieve good performance in practice? Without a priori information, what
vector-sensor processing is best? How can vector-sensor processing adapt to
incorporate new data? How can the computational cost required to process

vector-sensor arrays be reduced?
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Research suggests that existing results do not resolve these questions. Although
vector-sensor array processing seems to be a straightforward extension to pressure-
sensor array processing, it requires fundamental changes to analyses and algorithms.

The remainder of this section highlights the difficulty of answering the above
questions with current approaches. Questions in the first category require metrics
and bounds to quantify vector-sensor performance. Questions in the second category
subdivide according to the two fields of array processing. The first field is nonadaptive
processing, where the sensors are combined linearly using fixed weights. The second
field is adaptive processing, where weights are allowed to change based upon observed

data.

1.4.1 Performance Metrics and Limits

Two performance dimensions commonly used to quantify and bound improvements in
array processing are array resolution and gain/directivity. The next two paragraphs
briefly show that VSA improvements are not expressed along these performance di-
mensions.

Either beamwidth or angle estimation error is typically used to quantify array reso-
lution. Figure 1.3.2 reveals that the VSA and PSA beamwidths are almost exactly the
same. A wide class of beampatterns, including those in [3, 4], relies on pattern multi-
plication (see [5, §2.8]). The width of such beampatterns is virtually unchanged from
that of a pressure-sensor array [1, §2.1]. Another metric that quantifies array resolu-
tion is the root mean squared error (RMSE) resulting from direction-of-arrival (DOA)
estimation. Improving array resolution lowers the RMSE. Bounds on the RMSE are
often derived and compared to the actual error of common direction-of-arrival algo-
rithms; for vector-sensor arrays this analysis appears in [1, 2, 4, 6]. Representative
plots are shown in Figure 1.4.1, derived from [1, §3.2] for the case of a single nar-
rowband source in white noise and a N = 13 element, mismatched, linear VSA. The
moderate mismatch scenario includes zero-mean Gaussian position, rotation, gain,
and phase errors; the direction-of-arrival algorithm is a conventional beamscan tech-

nique. A detailed description of the parameters, algorithm, and bound is in [1]. Two
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observations are clear from the figure: 1) the actual algorithm RMSE does not de-
crease significantly with a vector-sensor array, and 2) the lower bound indicates that
only a modest improvement is possible. A key consideration is that vector-sensors in-
crease the number of measurements from N to 4N, but simply increasing the number
of pressure-sensors to 4N (keeping the same inter-element spacing) yields a smaller
beamwidth and a lower RMSE. Unlike increasing the number of pressure-sensors, how-
ever, using vector-sensors achieves improvement without altering the physical length

of an array.

Vector-sensor arrays evidently do not substantially improve resolution, but re-
search further reveals that VSAs do not improve directivity more than PSAs with
comparable numbers of components. The directivity of vector-sensor arrays, pre-
sented in [7], is at most 6 dB higher than pressure-sensor arrays. As with array
resolution this improvement is no better than that achieved by simply increasing the

number of pressure-sensors from N to 4N.

Because the benefits of vector-sensors are not reflected in measures such as resolu-
tion or directivity (considering the increased number of components), new measures
are necessary to quantify VSA performance. Although existing bounds are useful for
analyzing vector-sensor array configuration [6] and robustness [1], alternative bounds
are required to understand how much improvement VSAs offer along the new perfor-

mance dimensions.

1.4.2 Nonadaptive VSA Processing

Some of the most powerful nonadaptive processing techniques become difficult or
impossible with vector-sensor arrays. Designing fixed weights for nonadaptive pro-
cessing involves multiple objectives. Three of the most useful objectives are narrow
beamwidth, low sidelobe level, and low sensitivity to modeling errors. Analytical
methods enable joint optimization of the PSA beamwidth and sidelobe level, but
these methods do not apply to VSAs. As a result, VSA beampatterns are often

designed using alternative criteria.
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Many existing approaches are similar to [3, 4] and effectively choose weights to
maximize gain against some postulated noise field (see Section 4.2). One formulation
of this problem is the mathematical program

minimize wHRw

(1.4.1)

H

subject to w'”vy =1

for some postulated covariance matrix R and signal replica vo. Choices for the pos-
tulated covariance matrix are often combinations of isotropic noise, white noise, and
point sources. The resulting weights may have a simple closed form, and pattern

multiplication may allow for spatial tapering. For instance, choosing

R = v,vi + 0’1, (1.4.2)

with v, being a signal replica directed at the backlobe, gives “point null” beampat-
terns as shown in the top plot of Figure 1.4.2. Applying a 25 dB Taylor spatial taper
([5, §3.4.3]) to the weights yields the beampatterns shown in the bottom plot.

For a vector-sensor array, optimizing the important objectives of narrow beamwidth,
low sidelobe level, and low sensitivity requires new techniques. Because existing tech-
niques do not explicitly optimize over these objectives, the resulting weights are sub-
optimal with respect to each objective. For instance, the beampatterns in Figure
1.4.2 leave room for improvements in mainlobe width, sidelobe level, and robustness.
Techniques that optimize these objectives are widely used for PSA processing, so

equivalent techniques for VSA processing are important to develop.

1.4.3 Adaptive VSA Processing

A key problem in adaptive vector-sensor array processing is high dimensionality.
Vector-sensor array data is four times the dimension of pressure-sensor array data
because of the additional velocity measurements. This high dimension complicates

adaptive processing in two ways.
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First, it makes parameter estimation more difficult. Adaptive processing often
requires estimating the second-order moments of the data, i.e. the covariance matrix.
Logic similar to [8] quickly reveals the scope of this problem. The number of indepen-
dent observations, or “snapshots,” available is determined by the stationarity of the
environment and the length of the array. The environment is effectively stationary if
sources move less than a beamwidth during observation. The broadside beamwidths
of vector and pressure-sensor arrays are almost the same, Af ~ 2/N. Recall that N
is the number of vector-sensors; the total number of measurements is 4N for a 3-D
vector-sensor array. For an array of length L at the design frequency with wavelength
A, N =2L/). The worst case (shortest) stationarity time is then given by a broadside

source at range R moving tangentially at speed v:

ATge =~ AO-R/v
= AR/(Lw). (1.4.3)

The time required to preserve accurate phase estimates for a single snapshot is ap-
proximately 8 X the maximum travel time of sound waves across the array. This travel

time is longest at array endfire, where it is
ATy ~ 8L/ c (1.4.4)

for sound wave propagation speed c. The approximate number of snapshots available,

K ail, is then

Kavail ~ AT'stat/AT‘snap
= AcR/(8vL?) (1.4.5)

The number of snapshots desired is determined by the dimension of the sample co-
variance matrix; a common rule-of-thumb is to use more than two or three times the
dimension for a well-estimated matrix [9]. Using fewer snapshots produces weights

that are not robust and are sensitive to noise. Assuming an optimistic factor of two
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Figure 1.4.3: Snapshot deficiency: R = 10 km, v = 20 knots, f = 200 Hz

times the data dimension, the number of snapshots desired, Ky, for a VSA and PSA

are

Kaespsa =~ 2-N

— 4L/ (1.4.6)
Kaesvsa =~ 2-4N

— 16L/A. (1.4.7)

A typical scenario with R = 10 km, v = 20 knots, and f = 200 Hz yields the curves
shown in Figure 1.4.3. These curves illustrate a fundamental adaptive processing
problem: the number of available snapshots is usually far fewer than desired. The
problem is worse for vector-sensor arrays because of the higher dimension. As indi-
cated on the plot, covariance matrices are poorly estimated for vector-sensor arrays

longer than about 11.5\, or N > 23. The same problem exists for pressure-sensor ar-
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rays, but at longer lengths (18.2\, or N > 36). Adaptive VSA processing techniques
must combat this snapshot deficiency to be effective in practice.

High dimensional vector-sensor data complicates adaptive processing a second way
by increasing the computational requirements. A typical adaptive processing opera-
tion, the singular value decomposition of a covariance matrix, generally takes O(N?)
floating point operations. A vector-sensor array, then, increases the computational
burden by a factor of roughly 4® = 64.

Current approaches for high-dimensional adaptive array processing fall into three
categories. The first category augments the covariance matrix to make it well-
conditioned. Fixed and variable diagonal loading as covered in [10] and [11] take this
approach. The second category performs adaptive beamforming in reduced-dimension
linear subspaces. Many techniques fall in this category, including some suggested in
[4]. The third category utilizes additional information to improve the covariance ma-
trix estimate. One such technique is “Physically Constrained Maximum-Likelihood
(PCML)” estimation [12]. The problem of high-dimension is more pronounced with

vector-sensor arrays, so existing and new techniques must be closely examined.

1.5 Key Findings

This thesis includes several novel contributions to the field of array processing. It
establishes the limits of VSA performance and describes practical techniques that

approach these limits. Organized by chapter, the most significant contributions are:

Ch 2: A thorough exploration of vector-sensor array fundamentals. One
key finding in this area is that many useful properties are not exhibited by
vector-sensor arrays. Another key finding is a real expression for the VSA

beampattern.

Ch 3: Two performance bounds on a critical VSA capability: resolving
pressure ambiguities. These bounds relate ambiguity resolution to the com-

mon problems of detection and estimation. Key findings include showing that
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1) the bounds, although fundamentally different, both depend on the same sim-

ple quantity, and 2) good performance is theoretically possible in most cases.

Ch 4: The design of robust, fixed weights with excellent performance char-
acteristics. Key findings include the “Minimum Sensitivity” criterion, an al-
gorithm for designing robust weights, and a demonstration of improved perfor-

marnce.

Ch 5: The derivation of optimum subspaces that enable or improve adap-
tive processing. Key findings include 1) the optimality criterion of “inner
product preservation,” 2) the derivation of eigenbeam subspaces as least-squares

designs, and 3) a demonstration of significant performance improvement.

Several of the contributions listed above are summarized at the end of the thesis in

Section 6.1, Figure 6.1.1.

1.6 Sensor and Environment Model

This entire document assumes the same sensor and environment model to simplify
discussion.? Each section explicitly notes any departures from or extensions to this

common model. The subsequent analysis assumes the following sensor model:

1. Co-located sensor components. The hydrophone and three geophones of each
vector-sensor are located at the same point and observing the same state. In
practice, this requires the component spacing to be small compared with the

minimum wavelength.

2. Point sensors. Each vector-sensor is modeled as a single point. In practice,
this requires the sensor dimensions to be small compared with the minimum

wavelength.

3The same sensor, environment, and plane wave models are also covered in [1].
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3. Geophones with cosine response. The signal response of each geophone is pro-
portional to the cosine of the angle between the geophone axis and the source.

Cosine geophone response results from measuring velocity along only one axis.

4. Orthogonal geophones. The axes of the three geophones are orthogonal. This is

true in practice when each vector-sensor is a static unit.
The thesis also assumes the following environment model:

1. Free-space environment. Sound waves travel in a quiescent, homogeneous,

isotropic fluid wholespace. This implies direct-path propagation only.

2. Narrowband signals. The signal is analyzed at a single frequency. This means
the signal is sufficiently band-limited to allow narrowband processing in the
frequency domain. Passive sonar systems typically operate over a wide, many-
octave bandwidth; narrowband signals may be obtained by computing the dis-

crete Fourier transform of the measurements and processing each frequency bin.

3. Plane wave propagation. The sound waves are planar at each sensor and across
the array. This implies the unit vector from each sensor to the source is the
same, regardless of the sensor location. Sound waves are approximately planar

when the source is beyond the Fresnel range [8].

The underlying assumptions and notation are similar to those in [2, 6, 13] although

this document has a different objective.

1.7 Plane Wave Measurement Model

Under the assumptions in Section 1.6, consider a plane wave parameterized by az-
imuth ¢ € [0, 27) and elevation ¢ € [—7/2, 7/2] impinging on an array of N vector
sensors. The remainder of the thesis assumes a right-handed coordinate system with
¢ = 0 as forward endfire, ¢ = 7/2 as port broadside, 1» = 0 as zero elevation, and
1 = m/2 as upward. The parameters ¢ and 1) are sometimes grouped into the vector

® for notational convenience. Without loss of generality, assume the geophone axes
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are parallel to the axes of the coordinate system. If this is not the case, the data from

each vector sensor can be rotated to match the coordinate axes. The unit vector,
u = [cos¢pcostp, singpcost), sin w]T, (1.7.1)

points from the origin to the source (or, opposite the direction of the wave propaga-
tion). The following derivations touch only briefly on direct-path acoustic propaga-

tion. For a much more detailed study of ocean acoustics, see [14].

Under common conditions, the components of velocity relate linearly to pressure.
Assuming an inviscid homogeneous fluid, the Navier-Stokes equations become the
Euler equations

— +vIVv=——% (1.7.2)

where v is fluid velocity, p is density, and p is pressure. For acoustic propagation
this equation is linearized, neglecting the convective acceleration term v’ Vv. With

a plane wave, the pressure p relates across time ¢ and position x through the sound

speed c:
T
p(x, 1) :f(%§+0 (1.7.3)
_u Op
Vp = vt (1.7.4)

Substituting Equation 1.7.4 into the Euler equations in 1.7.2 shows that under weak
initial conditions the pressure and fluid velocity obey the plane wave impedance
relation

v=——np. (1.7.5)

Because the geophones are aligned with the coordinate axes, they simply measure the
components of the velocity vector v. The resulting linear relationship between the
pressure and each component of the fluid velocity greatly simplifies the analysis of

vector-sensor array performance.
The linear relationship in Equation 1.7.5 enables expressing the velocity measure-
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Figure 1.7.1: Vector-sensor measurements, scaled to common units

ments in terms of pressure and the source unit vector. Returning to the array of NV
vector-sensors, the plane wave measurement of the nth vector-sensor in phasor form

is

ot |1 (1.7.6)
—u/pc
where r,, is the position of the sensor and
2T

is the wavenumber for a wavelength A. The term outside the vector is the wave phase
delay, which factors out because of Equation 1.7.5. Only the gain difference between
the pressure sensors and geophones is important. For convenience, this thesis chooses

a normalization that absorbs that gain difference into the pressure term:

cikotkwy | (1.7.8)
u

Although this choice of normalization seems arbitrary, it results in simpler expressions
later and is similar to the notation used in [2, 6, 13]. * Also note that this choice of
normalization requires a factor of (pc)~? when comparing beam estimates in units of

absolute power.

4The 7 defined here is not exactly the same as the one used in [2, 6, 13].
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The remainder of this thesis uses the gain factor n = 1 in all derivations unless
otherwise stated. In most cases, the results are easily extended to arbitrary n, some-
times by inspection. The choice of n = 1 for analysis has an important practical
motivation involving the trade-off between left /right resolution and white noise array
gain or sensitivity. Although the pressure-sensor often has higher gain (n > 1) for
actual vector-sensor arrays, the array data is easily normalized to common units as
shown in Figure 1.7.1. Normalizing the units produces two results: 1) a slight loss
of array gain because of the increased geophone noise, and 2) an improved ability to
resolve ambiguities. Vector-sensor arrays are generally chosen for their ambiguity res-
olution, so (2) takes precedent. Put another way, using the n = 1 data normalization

strengthens ambiguity resolution at the possible expense of white noise gain.
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Chapter 2

Elements of Vector-Sensor Array

Processing

Any field, no matter how well organized, possesses a set of fundamentals that must
be understood before moving into advanced topics. The field of acoustic vector-
sensor array processing is built from elements common to all array processing and
elements specific to vector-sensor arrays. The source [5] reviews the former; this
chapter introduces some of the latter. Most of the concepts introduced in this chapter

are new to the literature and, although simple, have profound consequences.

2.1 Vector-Sensor Array Beampattern

One of the most fundamental differences between vector-sensor arrays and pressure-
sensor arrays is the structure of the beampattern. Building on the plane wave mea-
surement model provided in Section 1.7, this section provides an expression for the
beampattern of an arbitrary vector-sensor array with arbitrary element weighting. It
then simplifies this expression for the case of a uniform linear vector-sensor array. The
symmetry of the uniform linear array leads to the use of conjugate symmetric weights,
a real beampattern, and a reflection symmetry relating beams in one quadrant to the

other three quadrants.
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2.1.1 General Complex Beampattern Expression

The most general case for a vector-sensor beampattern is an arbitrary array with an
arbitrary, complex element weighting. Beginning with the measurement of a single
vector-sensor in Equation 1.7.8, the beampattern of an N-element vector-sensor array

is the weighted sum

N
y(©)=> wllv,(©) (2.1.1)
n=1
where
o 1
V(@) £ eHhoraul®) (2.1.2)
u(®)

is the measurement of the n'® vector-sensor and w,, are the weights. Recall from
Section 1.7 that r, is the position of the n'™ vector-sensor, kg is the wavenumber,
and u(®) is the unit vector directed toward ®. Without knowledge of any sensor
positions or constraints on the weights, Equation 2.1.1 cannot be simplified further.
It is generally a complex valued expression that is difficult to analyze partly because
the unit vector, u, appears both inside and outside the complex exponential. The
beampattern at any point is a linear combination of the weights, so defining the array

measurement and weight vectors,
v(©) & [vi(©) vi®©) - vie)] (2.1.3)
w = [w] wa Wy ]T, (2.1.4)
enables writing Equation 2.1.1 as a compact inner product:
y(©®) = wiv(0). (2.1.5)

Sampling the beampattern at a set of M points, {©1,0,,...,0,,}, corresponds to
the linear transformation

y'=Viw, (2.1.6)



with

V 2 [ v(@) v(@) - v(Ou)] (2.1.7)

(1>

[ (@) y(©) - y(Oy)]". (2.1.8)

This linear transformation is valid for any arbitrary vector-sensor array; its real coun-
terpart is derived in the next section and forms the foundation of beampattern design

via convex optimization in Chapter 4.

2.1.2 Simplifications Exploiting Symmetry

For a linear vector-sensor array with elements symmetric about the origin, a series of
simplifications to Equation 2.1.1 is possible. These simplifications allow 1) conjugate
symmetry that reduces the number of variables from 8N to 3N and 2) quadrant
symmetry that reduces the design burden by a factor of four. This thesis discusses
signals in the x-y plane, but the results extend easily to the 3-D case. When dealing
with signals in the horizontal plane, the vertical geophone contributes nothing and is
ignored. Because the array is linear and the position and direction vectors are in the

horizontal plane,

koriu(®) =d, k,cos¢ (2.1.9)

where d,, is the position of the element along the array. Ignoring the vertical geophone,

the measurement vector of a single vector-sensor is

1
V(@) = /TR0 o5 | (2.1.10)

sin ¢
Writing each weight vector in terms of magnitude and phase gives

W 2 [ ape® byt e T (2.1.11)
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where a,, a,,, etc. are real. Substituting Equations 2.1.10 and 2.1.11 into Equation

2.1.1 yields

N
y<¢) _ Z anej(dnkocosd)—an)

n

=1
+ bn CcoS gb ej(dnko Ccos ¢_5n)

+ ¢, sin ¢ e?(dnkocosd=m), (2.1.12)

Because the element spacing is symmetric about the array center, 1) the vectors v(©)
are conjugate symmetric and 2) most problems involve only conjugate symmetric
weights (see Appendix A.2). The full-length (conjugate symmetric) weight vector, w,
is fully characterized by a half-length weight vector, w. Assuming an even number of

elements, the parameterization is

N
L2 (2.1.13)
g} A dLJrl (2114)
L~ ~ iyl T
Vﬁ\/’l .y [ale]ozz blejﬁl /Cvlem ] (2.1.15)

W, n>0L
w, = (2.1.16)

Tk
WL 1 NSL

for real variables a;, a;, etc.. The beampattern in Equation 2.1.12 becomes a real

function when the weights are conjugate symmetric:

L
ylp) = Z 2a; cos(djkg cos ¢ — ay)
=1
+ 25; cos(cfivlk‘o cos ¢ — El) cos ¢

+ 2¢ cos(glvlko cos ¢ — ;) sin ¢. (2.1.17)

Note the similarity between the derivation above and the steps involved in FIR filter

design; this aspect of the vector-sensor beampattern is explored more in Section 2.3.
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Using trigonometric identities, Equation 2.1.17 simplifies further:

L
ylgp) = 2 Z Gy cos(dyko cos @) cos & + ; sin(dykg cos ¢) sin @
I=1

+ gl cos(dvlko COS @) cos 5; cos ¢ + E sin(glvlko cos ¢) sin 51 cos ¢

+ ¢ COS(&;kO COS @) cos 7 sin ¢ + ¢ Sin(&;ko oS @) sin 7, sin ¢

L
= 92 Z cos(c%ko cos ¢) [Zil cos ay + EZ coS El cos ¢ + ¢; cos 7, sin gb}
=1

+ sin(glvlko cos @) [El sin o + gl sin BI cos ¢ + ¢; sin7; sin ng]
L

= 22 cos(dkq cos ¢) [ZL’F + bR cos ¢+ CF singb}

I=1
+ sin(d kg cos ¢) [Eilz + bF cos ¢ + & sin gb} . (2.1.18)

The last step changes from a magnitude/phase parameterization to a real/imaginary
parameterization, using the superscripts ® and Z indicate the real and imaginary parts
of the weights. Four aspects of Equation 2.1.18 are worth noting. First, the conjugate
symmetry reduces the number of (real) variables from 6N to 3N. Second, for a linear
vector-sensor array with elements spaced uniformly, d units apart, glvl = (l—%)d. Third,
the mapping from the reduced variables in Equation 2.1.18 to the full, conjugate
symmetric weight is a linear transformation. Fourth, the derivation of Equation
2.1.18 assumes even N but is easily modified for odd N.

The beampattern in Equation 2.1.18 is a simple inner product, the real counterpart

to Equation 2.1.5. The single-sensor weight and measurement terms

~ 1
cos(d;kq cos ¢
Vi(g) £ (~l ’ ) ® | cos¢ (2.1.19)
sin(d; ko cos @)
sin ¢
= A R R m o~ 7 x|t
w, = [al b ¢ a by g ] (2.1.20)

are the real counterparts to Equations 2.1.10 and 2.1.11. Concatenating these terms
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yields the full array vectors

>

V(o) 2 [vI(e) Vi) - Vi) ] (2.1.21)

(1>

W (Wl  wi oowk ], (2.1.22)
which are the real counterparts to Equations 2.1.3 and 2.1.4. Writing Equation 2.1.18

as a real inner product gives

y(@) = WV(9) (2.1.23)
y = VW, (2.1.24)

the real counterparts to Equation 2.1.5 and 2.1.6, respectively.

Although the beampattern in Equation 2.1.18 cannot be simplified further without
restrictive assumptions, there is another way to exploit the symmetry of the array.
The even/odd symmetry of the cosine/sine functions allows any beampattern to be
“mirrored” easily to any of the four quadrants. A given beampattern is mirrored

across the array axis by changing
(2.1.25)

This transformation negates the cross-axial component and yields the same response
as the original weight on the opposite side of the array. A similar transformation

allows cross-axial mirroring, or mirroring from forward to aft:

@ = —ar
bR —bR . (2.1.26)
d =

In this case, the sign changes are a combination of conjugation and negation of the

axial component. Performing both axial and cross-axial mirroring, one beam is mir-
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Figure 2.1.1: A VSA beampattern is easily “mirrored” to any quadrant

rored to any of the four quadrants. Figure 2.1.1 provides an example beampattern
that is mirrored from one quadrant to the other three. The beampattern shown is
for a uniform linear vector-sensor array with N = 10, ¢g = —n/4, and f = 5/7f,.
In addition to being linear transformations, the mirroring operations only involve
sign changes. Mirroring allows efficient conventional beamforming because a single
quadrant of partial sums from each sensor type forms a full set of beams spanning all
quadrants with only sign changes. Mirroring also reduces the effort required to design

a set of beams by a factor of four.

2.2 Robustness and the Sensitivity Factor

The sensor and propagation models used in array processing often contain appreciable
errors, or “mismatch.” A significant source of mismatch is imperfection in the array
itself: the exact gains, phases, positions, and orientations of the sensors are unknown.

The “sensitivity factor” of a weight vector quantifies its robustness to these modeling
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errors. The (normalized) sensitivity factor of a VSA weight vector, w, is

A H H
§ = Vy VoW W

= 2N ww. (2.2.1)

For weights subject to a unity gain constraint, the Cauchy-Schwarz inequality implies
¢ > 1. The sensitivity factor fully characterizes the deviation of a pressure-sensor
array beampattern under Gaussian errors (see [5, §2.6.3]). The relationship is more
complex for vector-sensor arrays ([15]), but £ remains an effective surrogate measure
for the sensitivity of a weight vector to mismatch. Robustness generally decreases as &
increases, so constraining £ to be small provides robustness in adaptive beamforming

[10]. Section 4.3.3 applies a similar technique to fixed weight design.

2.3 Properties of Linear Vector-Sensor Arrays

Because a pressure-sensor array is a subset of any vector-sensor array, it seems possible
that many useful properties of linear pressure-sensor arrays extend to vector-sensor
arrays. However, the additional complexity of vector-sensors makes it necessary to

re-examine these properties because many require modification or do not apply.

2.3.1 Local Fourier Transform Property

One useful property of linear pressure-sensor arrays is that the beampattern is simply
the discrete Fourier transform of the weights. This relationship enables using Fourier
transform properties and the tools of FIR filtering in design and analysis. The first
entry in Equation 2.1.10, corresponding to the pressure-sensor, is the complex expo-
nential of a Fourier transform vector. For the other components, however, the Fourier
transform relationship does not hold because of the sin ¢ and cos ¢ terms outside the
exponential.

Although the exact Fourier transform relationship is not valid for vector-sensor

arrays, a useful “local” Fourier transform property exists. A small region around any
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nominal point in a linear VSA beampattern behaves like a Fourier transform. The
gain of the directional sensors is approximately constant around the nominal angle.
Treating the directional sensors as constant introduces some error, Av(¢), into the

array manifold vectors. The error in the resulting beampattern is

[Ay(e)] = [w [Av(g)]]
< [wl|Av(9)]. (2.3.1)

The bound in Equation 2.3.1 arises from the Cauchy-Schwarz inequality and is not
necessarily tight. If the sensitivity factor is bounded, ¢ < o2, the magnitude of the
weight is bounded, |w| < a/+v/2N. The error in the manifold vector comes only from

errors in the directional terms in Equation 2.1.18:

IAv(¢)]? = 4 Z cos? (glvlk;g cos @) (A cos ¢)* + 0082(67[/{70 cos @) (A sin ¢)?
=1

+ sin?(dyko cos ¢) (A cos ¢)? + sin?(d;ko cos ¢) (A sin ¢)?

= 2N -[(Acos¢)? + (Asin¢)?]. (2.3.2)

Substituting the bound on |w| and the expression for |Av(¢)| into Equation 2.3.1

gives

Ay(e)| < %WN (Acos 9)? + (Asin)?]

= 2usin (%) (2.3.3)

< a-(Ag). (2.3.4)

The last inequality is tight near the nominal angle. Equations 2.3.3 and 2.3.4 are
useful for two reasons. First, they prove that in a small region (A¢ much less than

a beamwidth) around any point, the beampattern approximately equals a weighted
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Fourier transform. Because the pressure-sensor beampattern is a Fourier transform,
the vector-sensor beampattern, around a given angle, behaves like a pressure-sensor
beampattern. Second, because the deviation of the pressure-sensor beampattern be-
tween two sample points is bounded, Equations 2.3.3 and 2.3.4 prove that the devi-
ation of the vector-sensor beampattern between two sample points is also bounded.
In Chapter 4, this bounded deviation allows a vector-sensor beampattern to be ap-

proximated by a finite set of points with negligible error.

2.3.2 No Modulation or “Steering” Property

The Fourier transform relationship between the weights and the beampattern for a
linear pressure-sensor array has many useful implications. One such implication is
that modulating the phase of the weights “steers” an arbitrary beampattern (viewed
in cosine-space) to any angle. The steered beampattern and the original beampattern
have the same shape in cosine-space. In practice, the steering property means that
only one real weight — a taper — designed at array broadside is sufficient to form

identical beams anywhere.

As useful as this property is for linear pressure-sensor arrays, it does not apply to
linear vector-sensor arrays. Like the Fourier transform relationship, the modulation
property takes a modified, weakened form with vector-sensor arrays. Separating the
vector-sensor measurements into phase and gain components reveals that 1) the phase
component exhibits a modulation property in cosine-space like a linear pressure-
sensor array, and 2) the gain component is rotated in angle-space by Euler rotations.
Although each rotation is a linear transformation of the weight (or equivalently, the
data), the gain and phase components cannot be separated by a linear system. Thus,
no linear transformation steers a vector-sensor array beampattern to an arbitrary
direction. Although the lack of a steering property means each beam must be designed
separately, the “mirroring” techniques illustrated in Figure 2.1.1 provide a useful way

to reduce the design burden.
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2.3.3 Non-Polynomial Beampattern

Another useful uniform, linear, PSA result associated with the Fourier transform
property is that the beampattern is a polynomial function of the variable
z = cos(dkg cos ¢). This well-known result is easily seen from Equation 2.1.18 by
removing the directional elements, assuming real weights, and applying a Chebyshev
polynomial relation to each nested cosine term. The polynomial form of the uniform,
linear, PSA beampattern forms the foundation of many tools including Chebyshev,
Taylor, and Villeneuve tapers and the Parks-McClellan algorithm [5, §3.4 and 3.6].
Such tools apply polynomial factorizations or approximations to the beampattern in
z-space.

Unfortunately, the vector-sensor array beampattern does not have a similar poly-
nomial form. For a polynomial beampattern representation to be useful, it must be an
unconstrained polynomial in some real function z(¢). The following discussion sup-
presses the dependence of z on azimuth angle, ¢, when convenient. The single-sensor
case illustrates why such a representation does not exist for vector-sensor arrays. Two
beampatterns possible with a single vector-sensor are those given by the axial and

cross-axial directional sensors:

Yo(¢) = cos¢ (2.3.5)
yi(¢) = sing. (2.3.6)

Assume that an unconstrained polynomial representation does exist for some function
z. Because a 2-D vector-sensor beampattern involves three weights, both beampat-

terns must correspond to unconstrained, quadratic polynomials in z, that is,

cos¢ = a2’ + byz + co (2.3.7)

sing = a2+ biz+c (2.3.8)

for some real coefficients ag, a1, by, etc. Breaking the first equation into the ag # 0

and ay = 0 (quadratic and linear) cases and solving, Equation 2.3.7 constrains the
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function z to lie in one of the two sets of functions

0, - —by + s(¢) /b3 — 4ay(co — cos @) ‘ ay 70, 8%(¢) = 1, (2.3.9)

2a, b — dagcy > |day|

Ly = {WZ—O_CO | ao = } (2.3.10)

The sign function s(¢) takes only values of £1. To reconstruct both beampatterns,
any function is further constrained by Equation 2.3.8. The functions in £, are even
and cannot construct the odd sine function via the composition in Equation 2.3.8.
For any function in Qg to convey sign information about ¢, the sign function s(¢)
must be odd. The form of z is thus restricted to a constant (even) part plus the odd
part involving s(¢). The even part of the z function must become identically zero

when substituted into Equation 2.3.8, leaving the requirement that

sing o s(¢)y/1 + acos ¢ (2.3.11)

for some real coefficient . For this to be true and continuous at the origin, o = —1

and

| sin ¢| ox /1 — cos ¢. (2.3.12)

Because this is clearly not true, no function in Qq satisfies Equations 2.3.8, i.e. no z
function satisfies both Equations 2.3.7 and 2.3.8. Thus, no unconstrained polynomial
form exists for the single-sensor beampatterns in Equations 2.3.5 and 2.3.6. Further-
more, because these beampatterns are possible with any vector-sensor array, VSA

beampatterns generally do not have an unconstrained polynomial representation.

Although having a non-polynomial beampattern nullifies the polynomial-based
techniques listed above, it does not mean equivalent results are impossible with acous-
tic vector-sensor arrays. As Chapter 4 shows, equivalent beampatterns are achievable

with techniques not based on polynomial functions.
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2.3.4 Weights With Nonlinear Element-Wise Phase

Weights exhibiting linear element-wise phase are another useful implication of the
Fourier transform property of linear pressure-sensor arrays. The modulation property
makes real weights designed at array broadside sufficient for use at any cosine angle.
Real weights, when modulated to another cosine angle, become complex weights with

a linear element-wise phase progression.

Because every replica vector on the linear vector-sensor array manifold exhibits
a linear element-wise phase progression, it seems that the weights should necessarily
exhibit this property as well. To the contrary, Appendix A.2 suggests that vector-
sensor weights need not have linear element-wise phase. Chapter 4 proves the exis-
tence of such weights by example: many of the custom-designed weights have nonlin-
ear element-wise phase progressions. Although weights with nonlinear element-wise
phase stray from the concept of “spatial tapering,” they often perform well with
vector-sensor arrays. Depending on the design problem, forcing VSA weights to have

linear element-wise phase may sacrifice significant performance.

2.3.5 Nonlinear Physical Constraints

A final property of vector-sensor arrays that deserves clarification is the nonlinearity
of the physical constraints. The four measurements of a single vector-sensor are
somewhat redundant. The omnidirectional sensor measures the pressure field; the

directional sensors measure the gradient of the pressure field.

Although it seems that this redundancy should be easy to exploit, its nonlinear
nature leads to complications. Even in the simplest case of the single plane-wave
source, the measurements are related quadratically by power. For a single plane-
wave source, the sum of the power measured by the directional sensors equals the
total power measured by the omnidirectional sensor. With multiple sources, the
relationship becomes even more complex and nonlinear. Full exploitation of such

physical constraints requires nonlinear techniques such as [12].
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2.4 Spatially Spread Sources with Linear VSAs

It is common scientific practice to simplify problems by discretizing distributions:
point masses in physics, impulses and pure sinusoids in signal processing, and point
sources in acoustics. Although these approximations are often extremely accurate,
they are sometimes misleading. Modeling spatially distributed sounds as point sources
occasionally predicts performance that is unachievable in practice. To avoid such
a pitfall, this section derives integrals and approximations for 2-D spatially spread
sources as observed by a linear vector-sensor array. The 2-D vector-sensor array is
modeled for simplicity, but extending these results to 3-D is discussed where applica-
ble. Assuming all spatial processes are zero-mean Gaussian, the quantity of interest
is most generally the covariance between two sensors. Because a 2-D vector-sensor
measures three quantities, this covariance is size 3 x 3 for a single pair and 3N x 3N
for an array of N sensors.

Figure 2.4.1 provides a notional comparison of point and spread sources. The
point source corresponds to the impulsive spatial distribution denoted by the gray
arrow in the top plot. The response of a vector-sensor array to this point source gives
the familiar beampattern shown in the bottom plot. The spatially spread source, by
contrast, corresponds to a uniform spatial distribution in cosine-space on the star-
board side of the array. The array response to both distributions exhibits sidelobe
structure because of the finite aperture and “backlobe” structure because of the pres-
sure ambiguity. The spread source integrates power over a range of angles, “filling-in”
nulls and widening the array response. The spatial spreading in Figure 2.4.1 is exag-
gerated to illustrate its effects on the array response; spatial distributions are often

more concentrated than the figure suggests.

2.4.1 General Integral Form

Although spatially spread sources are unexplored with linear vector-sensor arrays,
they are common with linear pressure-sensor arrays. Because a pressure-sensor array

is a subset of a vector-sensor array, this thesis carefully chooses a spatial spread-
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Figure 2.4.1: Notional response of a VSA to point and spread sources
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ing model consistent with the decades of vetted pressure-sensor work. This section
extends the model presented in [5, §8.9], analyzing an azimuthal distribution of un-
correlated, zero-mean, Gaussian sources. The distribution is specified in terms of
azimuthal cosine (rather than angle), keeping with convention, encouraging closed-
form expressions, and restricting the distribution to one side of the array. The results
are easily extended to two-sided distributions by expressing any two-sided distribu-
tion as the sum of two, one-sided distributions. Because the integrated sources are

uncorrelated, the covariance between two sensors is given by the single integral

+1
= [ pluefu)ei(w du (2.4.1)

1

where u = cos ¢ is the azimuthal cosine, p(u) is the spatial distribution of power, and
v;(u) are the responses of each sensor to a signal at u. When the two sensors are part
of a linear vector-sensor array, each response contains a gain term depending only on
direction and a phase term depending on both position and direction. If the sensor

position along the array axis is  and the gain of each sensor is g;(u), the response is
vi(u, ) £ g;(u)e? ™. (2.4.2)

The gain terms for the geophone elements are simply the azimuthal sine and cosine
expressed in terms of u. Using subscripts o, z,y for the omnidirectional, inline, and

cross-axial sensors, these gain terms are

go(u) =1 (2.4.3)
9o(u) = u (2.4.4)
gy(u) = £v1—u (2.4.5)

The sign of g,(u) changes depending on the side of the array. The remainder of this

section assumes g, (u) is positive, corresponding to a distribution on the port side of

48



the array. Substituting Equation 2.4.2 into Equation 2.4.1 gives

+1
sy = / p(u) gy () g (w)eTrorore=dkorst gy
-1

—+1
= [ sl du (2.4.6)

1

Equation 2.4.6 is easily written in terms of the distance between the sensors, § £ 2 — 21,

and the composite gain function of the sensor pair, Go; (u) 2 go(u)gi(u):

r(5) 2 /_ (1) Glor ()% du. (2.4.7)

1

Extending the covariance function, r(d), to 3-D vector-sensor arrays requires no addi-
tional work as the elevation terms fall outside the integral. The integral in Equation
2.4.7 is the windowed Fourier transform of p(u)Go;(u), so a closed form seems possi-
ble. Unfortunately, the number and variety of gain functions make obtaining closed
forms for all integrals very difficult with a given spatial distribution. The exact
integral form in Equation 2.4.7 does, however, admit several useful and insightful

approximations.

2.4.2 Constant Gain Approximation

The simplest and most useful approximation to Equation 2.4.7 arises from the smooth
nature of the gain functions and the small width of typical spatial spreading. The
standard deviation of the distribution is usually small (less than 5% of cosine-space)
when modeling spatially spread sources. Over such a small range of u, the gain func-
tions are well-approximated as constant. This constant gain approximation yields a
simple but powerful model for vector-sensor spatial spreading using covariance matrix
tapers.

When the sensor gains are approximated as constant, incorporating spatial spread-

ing simply modulates the existing covariance function. Without loss of generality,
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assume the spatial distribution has mean u( and is a shifted version of the zero-mean
distribution po(u). Applying the constant gain approximation to Equation 2.4.7 at

up allows the gain terms to be taken outside the integral:

+1

r(d) ~ go(ug)gl(uo)/ po(u — ug)e? % du. (2.4.8)

-1

Equation 2.4.8 is simplified in two steps. The first step is extending the range of
the distribution to include the entire real line. The extended region u ¢ [—1,+1]
is referred to as “virtual” space because it does not correspond to real azimuthal
angles. It does, however, provide a natural extension for spatially spread sources at
array endfire, where the distribution extends into virtual space. The second step is
utilizing a Fourier transform property to simplify the integral. Translation in the
u domain corresponds to a phase shift in the 6 domain. Applying both steps to
Equation 2.4.8 gives

+oo
r(0) ~ go(uo)gl(uo)/ po(u — ug)e?Fo%" du
= go(uo)g1(ug)e™ ™ - Py(ko), (2.4.9)
where
400 )
Py(kod) = / po(u)e?* % dy (2.4.10)

is the Fourier transform of the distribution py(u). Equation 2.4.9 is divided into two
terms. The first term is the original covariance function without spatial spreading.
The effects of spatial spreading appear as a modulation by the second term, Py(kod).
This modulating term, or “spread function,” is independent of the source location
given by the mean, uy. Because it is a Fourier integral, the spread function often
has a closed form. Two common and tractable choices for py(u) are the uniform and
Gaussian distributions. These distributions and their associated spread functions are

summarized in the table
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po(u) Py(kod)

1/(20,V3) |u| < 0uV3

Uniform sinc(kgdo,V/3)
0 otherwise ’
Gaussian ! e v exp{—(kodo,)?/2}
/—271_0_3 Xp 20_3 Xp 000y

where sinc(-) is the unnormalized sinc function and o, is the standard deviation of
the distribution in cosine-space. Equation 2.4.9 reveals that 1) the effects of spa-
tial spreading are well-approximated by modulation and 2) the modulating spread
function does not depend on source location.

For an array of sensors, the constant gain approximation enables modeling spatial
spreading with covariance matrix tapers. Each entry of the covariance matrix (for
a single source) is Equation 2.4.9 evaluated at the correct inter-element distance.
Separating the terms of Equation 2.4.9 reveals that modulating the point source

covariance matrix, R, approximates the spatially spread covariance matrix, R:

R, ~R®P. (2.4.11)

The modulation matrix, P, is given by the spread function and does not depend on
the contents of R. By linearity, any covariance matrix that is the sum of a (possibly
infinite) number of point sources is approximately “spread” by applying the same
modulation matrix. The matrix P is often referred to as a “covariance matrix taper”
because of its similarity to temporal or spatial tapering. The three components of
each vector-sensor are co-located, so the covariance matrix taper for a vector-sensor

is simply an extension of the taper for omnidirectional sensor,

Pop vsa = Ppsa ® 13x3. (2.4.12)

For a 3-D VSA, the 3 x 3 matrix of ones is replaced by a 4 x 4 matrix of ones.
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Figure 2.4.2 reveals how accurately the constant gain approximation models uni-
form spatial spreading. The figure illustrates response patterns for an N = 10 ele-
ment, 2-D vector-sensor array at its design frequency. As shown in the figure, both
the constant gain approximation and the exact integral expand the point source and
“fill-in” the nulls in the response pattern. For a typical case with reasonably small
spreading away from array endfire, the approximation is almost indistinguishable from
the exact integral. In a more extreme case with large spreading near array endfire,
the errors introduced by the approximation are minor but visible. The approximation
is less accurate at endfire where the sensor gains may change rapidly with u. If the
“extreme” case were moved any closer to endfire, spreading would extend into virtual

space; the approximation would be useful but the exact integral would be undefined.

2.4.3 Second-Order Gain Approximation

The previous section applies a zeroth-order Taylor series approximation to the sensor
gains, i.e. the gains are approximated as constant. This section explores higher-
order approximations and develops a second-order approximation for uniform spatial
spreading. Higher-order approximations become increasingly accurate at the expense
of analytical simplicity. Any approximation greater than zero-order loses the simplic-
ity and power of the covariance matrix taper interpretation.

A closed form expression is first derived for any polynomial gain function. Con-

sider the n''-order gain function
Gn(u) = (u —up)", (2.4.13)

which is a simple monomial in % £ u — 1. Extending the integral into virtual space

transforms the covariance function (Equation 2.4.7) into

ra(6) = /_OOGn(u)p(u)ejkO‘S“du

o

+o0
= / (u — )" po(u — ug)e? " du. (2.4.14)

[e.9]
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Figure 2.4.2: Constant gain approximation to uniform spatial spreading
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Equation 2.4.14 is an inverse Fourier transform, so 1) translation in one domain
corresponds to a phase shift in the other and 2) modulation by a monomial in one
domain corresponds to differentiation in the other. Applied in sequence to Equation

2.4.14, these properties yield the closed form

