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Abstract 
In this paper the author analyzes the behavior of exchange rates expectations for four 
currencies, by considering a re-calculation and an extension of Resende and Zeidan 
(Expectations and chaotic dynamics: empirical evidence on exchange rates, Economics 
Letters, 2008). Considering Lyapunov exponent-based tests results, they are not supportive 
of chaos in exchange rates expectations, although the so-called 0–1 test strongly supports 
the chaos hypothesis. 
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1 Introduction

Resende and Zeidan (2008) test for deterministic chaos in exchange rates expectations for four
currencies, by means of Fernández-Rodríguez et al. (2005) test, FSA hereafer. Their work,
however, presents some formal drawbacks. In the next sections, We re-analyze the problem at hand
more accurately and we apply alternative statistical techniques.

Methods are described on Sections 2 through 4. Section 5 briefly reviews the original paper
and section 6 presents the results with a discussion. Section 7 concludes.

2 FSA test

The null hypothesis of the test is deterministic chaos. Given a time series of length T , {yt}T
t=1, FSA

suggest the estimation of the dominant Lyapunov exponent, λ , to be the bootstrap aggregation, or
bagging, of 100 block bootstrap samples of the largest Lyapunov exponents.

Since the largest Lyapunov exponent does not increase when increasing the sample size in a
deterministic process, but increases otherwise, FSA propose using 〈λmax(Ti)〉 to test for the stability
of the largest Lyapunov exponent, where Ti is the size of block i. This non-increasing property of
the largest Lyapunov exponent with the sample size for chaotic processes may be tested by the
regression:

〈λmax(Ti)〉= α0 +α1Ti + εTi (1)

for Ti = T1, . . . ,Tr = T , where r is the number of blocks. Now our interest is on testing the null
hypothesis H0 : α ≤ 0. The statistic is α̂1/s1 where s1 is the standard error of α̂1, computed through
the Newey-West HAC covariance matrix estimator.1

In order to estimate the Lyapunov exponents, we will compute Rosenstein’s et al. (1995)
algorithm, known as "direct method", with the parameters selected as suggested in FSA (2005).

3 Shintani and Linton (2004) test

Let {yt}T
t=1, be a random scalar sequence generated by the nonlinear autoregressive model:

yt = θ0(yt−1, . . . ,yt−d)+ut

where θ0 : Rd → R is a nonlinear dynamic map and {ut} is a sequence of random variables. The
model can be expressed in terms of a map with an error vector Ut = (ut ,0, . . . ,0) and the map
function F : Rd → Rd such that

Zt = F(Zt−1)+Ut

where Zt = (yt , . . . ,yt−d+1)
′ ∈ Rd . Let Jt be the Jacobian of the map F evaluated at Zt . We can

obtain the neural network estimator of the largest Lyapunov exponent. This is the so-called

1 We are grateful to Professor Andrada-Félix for providing the computer code.
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"Jacobian method". Now we distinguish between the sample size T used for estimating the
Jacobian Ĵt and the block length M, which is the number of evaluation points used for estimating
the Lyapunov exponent.

Our interest is to test the null hypothesis H0 : λ ≥ 0 against the alternative H1 : λ < 0, therefore
the test is one-sided. Given a consistent estimate tandard deviation of the estimator λ̂ , Φ̂, the test
statistic is:

t̂ =
λ̂M√
Φ̂/M

Under the null hypothesis, t̂ is asymptotically distributed as a N(0,1). We compute the het-
eroskedasticity and autocorrelation consistent (HAC) covariance matrix estimator.2

Three alternative selection procedures can be applied: Full, Block and ES (equally spaced
subsamples, see Shintani and Linton, 2004, for the details). In all cases, given the number of
hidden units (r), the lag length (d) has been selected based on the Bayesian information criterion.
The quadratic spectral kernel with optimal bandwidth has been used for the heteroskedasticity and
autocorrelation consistent covariance estimation.

4 The 0−1 test

Gottwald and Melbourne (2004) designed the so-called 0−1 test for chaos. Given an observation
φ( j) for j = 1,2, . . . ,N, the 0−1 test algorithm comprises the following steps:

1. For c ∈ (0,π), compute the translation variables

pc(n) =
n

∑
j=1

φ( j)cos jc, qc(n) =
n

∑
j=1

φ( j)sin jc,

for n = 1,2, ...,N.

2. Compute the mean square displacement of the transition variables for several values of
c ∈ (0,π) and for n = 1,2, . . . ,ncut, where ncut� N:

Dc(n) = Mn(c)−Vosc(c,n)

where

Mc(n) =
1
N

N

∑
j=1

[pc( j+n)− pc( j)]2 +[qc( j+n)−qc( j)]2

and

Vosc =

(
1
N

N

∑
j=1

φ( j)

)2
1− cosnc
1− cosc

2 We are grateful to Professor Shitani for providing the computer code.
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3. Form the vectors ξ = (1,2, . . .ncut) and ∆ = (Dc(1),Dc(2), . . . ,Dc(ncut)) and estimate the
asymptotic growth rate as the sample correlation coefficient:

Kc = corr(ξ ,∆) =
cov(ξ ,∆)√
var(ξ )var(∆)

.

Webel (2012) computed the test on DAX asset returns, assuming that asset returns time series
{rt}N

t=1 are defined by:

rt = st + εt

where {st} is the one-dimensional signal, an observable of an underlying k−dimensional determin-
istic dynamical system, and εt is the random noise. Webel suggests filtering out noise by wavelet
denoising techniques, and then applying the 0-1 test to the denoised series. More specifically,
Webel (2012) computed Maximal Overlap Discrete Wavelet Transforms (MODWT) for each
returns series of 1655 observations, with four Daubechies filters. In this work we follow his
guidelines, and compute the denoised original RZ residuals for two filters: Coiflet and Haar and
a coarsest resolution chosen to be [log2(167)] = 7 and a soft thresholding rule with resolution
dependent universal thresholds. For each filter, 100 random frequencies are drawn from a uniform
distribution on [π/8,7π/8].

Tests statistics are computed for each frequency, hence the cut-off value is set to ncut = 17, as
suggested by Gottwald and Melbourne (2009). The final statistic for each filter is the median of
these 100 single frequency test statistics.

Compared to direct or Jacobian methods, Gottwald and Melbourne (2009) remark the advan-
tages of the 0-1 test: (i) it is binary. (ii) the nature of the vector field as well as its dimensionality
does not pose practical limitations, and (iii) it does not suffer from the difficulties associated with
phase space reconstruction. In addition, the computation is fast and straightforward, whereas
the Jacobian method involves the optimization of target functions to fit neural networks for a
range of parameters combinations. Gottwald and Melbourne (2009) show that the procedure is
robust against the presence of noise and it can detect weak chaos. However, contrary to FSA and
Shintani and Linton procedures, the 0-1 test does not provide a statistical framework, we just can
perform a subjective evaluation of the numerical result: is it close enough to 1 to confirm the chaos
hypothesis?

5 Resende and Zeidan (2008) results

On page 34 Resende and Zeidan’s (2008) Table 1 displays the coefficient and the correspondig
p-value. We assume that “coefficient” means α̂1 for each currency. However, p-value computation
deserves some concern.3 As FSA argue, the null hypothesis (chaos) includes a wide range of
deterministic chaotic processes. Thus, they compute some critical values for just two sample sizes:
380 and 2000 observations, by combining the empirical distribution of the statistics from 250
replications of three of those processes: Logistic, Henon and Lorenz. In Resende and Zeidan (2008),

3 We will assume that the negative p-value for Japanese Yen and m = 3 is a typo.
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Table 1: FSA test.

DIM2 DIM3 DIM4 DIM5 DIM6
JY Coefficient (RZ residuals) 0.0017 0.0002 -0.0000 0.0002 0.0002

Coefficient (RZ 2008) 0.0010 0.0008 0.0012 0.0005 -0.0001
p-value (RZ residuals) 0.0000 0.0240 0.0070 0.0000 0.3390∗

p-value (RZ 2008) 0.0002 -0.0003 0.0005 0.0002 0.8865∗

SF Coefficient (RZ residuals) 0.0018 0.0013 0.0012 0.0012 0.0006
Coefficient (RZ 2008) 0.0007 0.0008 0.0012 0.0005 0.0009
p-value (RZ residuals) 0.0000 0.0000 0.0000 0.0000 0.0019
p-value (RZ 2008) 0.0069 0.0003 0.0006 0.0012 0.0003

DM Coefficient (RZ residuals) 0.0017 0.0018 0.0013 0.0013 0.0010
Coefficient (RZ 2008) 0.0033 0.0017 0.0015 0.0017 0.0010
p-value (RZ residuals) 0.0000 0.0000 0.0000 0.0000 0.0000
p-value (RZ 2008) 0.0009 0.0000 0.0009 0.0007 0.0007

BP Coefficient (RZ residuals) 0.0011 0.0011 0.0008 0.0011 0.0010
Coefficient (RZ 2008) 0.0000 0.0014 0.0007 0.0009 0.0002
p-value (RZ residuals) 0.0000 0.0000 0.0000 0.0000 0.0003
p-value (RZ 2008) 0.0001 0.0006 0.0010 0.0626∗ 0.0016

DIM stands for embedding dimension. (RZ) are Resende and Zeidan (2008) results. * indicates
chaos evidence.

the sample size is 167 observations, hence they should compute the new empirical distribution.
Nevertheless, there is no mention to this issue neither to the mentioned procedure to compute the
p-values.

6 Our results

The analyzed data, as in Resende and Zeidan (2008), correspond to New York Money Market
Survey (NYMMS), regarding expected future exchange rates from 30 traders, at one week horizon,
for the British pound (BP), the deutschemark (DM), the yen (JY) and the Swiss franc (SF). The
data set comprises 168 observations for each currency. Provided the evidence about unit roots,
we compute first differences to render the data stationary. Next, Resende and Zeidan (2008)
compute the residuals from fitted ARMA models for each first-differenced currency time series, to
calculate FSA test on such residuals.4 We compute the statistics directly on the residuals series for
embedding dimension ranging from 2 to 6.5

In order to perform the calculations, we have used the same embedding dimensions and the
same samples cited by RZ. Regarding the HAC estimator, the bandwidth parameter was set equal

4 The original residuals have been kindly provided by Rodrigo Zeidan.
5 When fitting an ARMA(p,q) model, the sample size of the residuals is reduced depending on the number of AR lags
of the fitted model. This reduction is not accounted for in Resende and Zeidan (2008).

www.economics-ejournal.org 5



Economics: The Open-Access, Open-Assessment E-Journal 12 (2018–37)

to n(1/4).6 Finally, the reconstruction delay has been set equal to one, and the subsamples have
been constructed as suggested in RZ, by setting T1 = 88,T2 = 95, . . . ,T17 = 167.7

In Resende and Zeidan (2008), there is an inconsistency between their Table 1 results and their
conclusions. The computed p-values display evidence of chaos for BP at embedding dimension 5,
and statistical evidence of chaos for JY at embedding dimension 6. However, they conclude that
there is evidence of chaos for DM and JY. Our results do not confirm their results displayed in the
text, neither in their Table 1. We just find weak evidence of chaos for JY, for just one embedding
dimension as well, but with a rather different p-value: 0.339 vs. 0.886.8

Interestingly, in general, our results indicate a marginally stronger rejection of chaotic dynamics
than RZ. This could be a result of using a different set of simulated critical values due to a different
sample size used in the simulation, or due to a different combination of parameters in the FSA
algorithm, or a different number of block bootstrap samples. But we are uncertain due to lack of
information about these details.

Regarding Shintani and Linton (2004) test, the lag (d) and the number of hidden units (r) are
jointly selected based on BIC. QS kernel with optimal bandwidth is used for the heteroskedasticity
and autocorrelation consistent covariance estimation. Based on the Full estimation version of this
test, Table 2, there is no evidence of chaos, just marginally for BP, confirming FSA test results.9

In addition, we compute the 0-1 test, Table 3. The conclusions are sharply different. Hence,
with just one exception (JY with C(12)), the test statistics are close to one as they range from
0.9891 to 0.9980.

Table 2: Shintani and Linton test. Full.

(d,r) (1,1) (2,1) (3,1) (4,2)
BP t value -19.776 -18.883 -11.947 -0.842

p-value 0.0000 0.000 0.000 0.200∗

(d,r) (1,1) (2,1) (3,1) (4,1)
DM t value -362.317 -22.984 -27.220 -9.598

p-value 0.0000 0.000 0.000 0.0000
(d,r) (1,1) (2,1) (3,1) (4,1)

JY t value -63.579 -17.383 -14.719 -17.407
p-value 0.0000 0.000 0.000 0.0000
(d,r) (1,1) (2,1) (3,1) (4,1)

SF t value -35.281 -15.795 -15.524 -9.351
p-value 0.0000 0.000 0.000 0.0000

The t-statistics are presented with corresponding one-sided p-values for H0 : λ ≥ 0. * indicates
chaos evidence.

6 This is the default value in the Matlab code kindly provided by Professor Andrada-Félix.
7 In the original work, T17 is erroneously set equal to 168.
8 We contacted the original authors to reconcile the results, but were unable to determine the source of the discrepancies.
It should be due to differences in any of the relevant parameters to compute the statistics, since the residuals series used
in their work are the same that we have used in this paper.
9 For the estimation based on blocks (Block) and ES, conclusions are identical and are available upon request.
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Table 3: 0−1 test.

Haar C(12)
BP 0.9974 0.9965
DM 0.9980 0.9891
JY 0.9877 0.7496
SF 0.9978 0.9958

The entries are the 0−1 statistics. Haar is the Haar filter and C(12) is the Coiflet filter with filter
length equal to 12.

They strongly confirm the hypothesis that fluctuations of exchange rates expectations are, at
least, partially chaotic.

7 Conclusions

In this paper, we have revised and extended Resende and Zeidan (2008) results. We have stressed
some important details of the testing process using FSA test. In addition we have applied Shintani
and Linton test and the 0-1 test.

Results of FSA and Shintani and Linton test confirm Resende and Zeidan (2008) conclusions,
hence exchange rates expectations are not chaotic. However, results with 0-1 test point towards
chaotic motion (at least partially, after filtering out noise) in all exchange rates expectations.
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