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Abstract

Within sensor networks for environmental monitoring, a class of problems exists that
requires in-situ control and modeling. In this thesis, we provide a solution to these
problems, enabling model-driven computation where complex models are replaced by
in-situ sensing and communication. These prediction models utilize low-computation,
low-communication, and distributed algorithms suited to autonomous operation and
multiple applications. We achieve this through development of new algorithms that
enable distributed computation of the pseudoinverse of a matrix on a sensor network,
thereby enabling a wide range of prediction methods.

We apply these models to three different application areas: (1) river flooding for
early warning, (2) solar recharging current for power management, and (3) job con-
gestion prediction on multi-function device networks for achieving quality of service.
Additionally, we use these applications to explore other aspects of sensor networks:
river flooding to design a predictive environmental monitoring sensor network, solar
current to develop a dynamic version of the model for better fault tolerance, and job
congestion to explore modeling multi-function device networks. For each, we com-
prehensively tested the full solutions. We implemented the river flood prediction and
solar current prediction solutions on two different sensor network platforms with full
field deployments; we had a final test of over 5 weeks operation for both.

Overall, we achieve the following contributions: (1) distributed algorithms for
computing a matrix pseudoinverse and multiple linear regression model on a sensor
network, (2) three applications of these algorithms with associated field experiments
demonstrating their versatility, (3) a sensor network architecture and implementation
for river flood prediction as well as other applications requiring real-time data and
a low node count to geographic area ratio, and (4) a MFD simulator predicting and
resolving congestion.

Thesis Supervisor: Daniela Rus
Title: Professor
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Chapter 1

Introduction

Sensor networks hold great potential for improving environmental monitoring, helping

provide a continuous stream of data to illuminate unknown aspects of our physical

world. Continuous data observations made in both time and space supply a huge

advantage in all fields where more accurate models improve our understanding and

enlighten our actions. With more data we could better understand the existence and

impact of climate change, exploring the changes occurring in different ecosystems

over time and modeling these changes to better predict future changes. With more

data we could better predict natural disasters, reducing the impacts of hurricanes,

earthquakes, and forest fires. With more data we could better monitor rainforests,

increasing our knowledge of the animals and plants in our world. More data, both

temporal and spatial, supplied continuously improves both our knowledge and safety,

and sensor networks have the ability to provide exactly the data we need.

Currently, we have many theoretical models, but few data sets. To obtain data,

common practice involves manual measurement of small patches of an environment

for discrete portions of time, data loggers recording some small part of an environ-

ment, or satellites monitoring very large areas. People measuring can never provide

a continuous data set, data loggers only record for a small portion of time and fail

often, and satellites still need ground truth measurements to be useful. All of this

led to the conception of sensor networks over a decade ago, as described in a paper

by Estrin et al. [31] for example. Sensor networks consist of nodes that measure the
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environment and communicate amongst themselves, allowing distribution of the data

being collected as well as monitoring of the health of the network.

Since the emergence of sensor networks, research has accomplished much in de-

velopment of hardware, networking, and middleware. Sensor networks have recorded

inside the nests of birds [62], explored the tall heights of the redwoods [92], monitored

the coral reefs of the sea [96], and protected people from natural disasters [6]. They

have sensed everything from the small world of a single tree [92] to the large world of

the Swiss Alps [9].

Yet much of this work focuses on a sense-and-send method of operation, with

nodes sensing their environment and sending that information to a single node or

office. Many applications operate perfectly well under this method such as those

recording a small set of data in an easily accessible location, but many applications

could benefit from other operational methods such as those in more remote regions

or with larger data requirements. In the example of climate change monitoring, some

models require fine-grained, large data sets, but sending all of this data to a single

location is too difficult and too expensive. In ecosystem monitoring, to understand

the details of certain ecosystems necessitates varying the frequency of the measure-

ments in the presence of specific events, this can require local control to compute

how to modify the measurement schedule and also could generate too much data to

communicate. In any underwater monitoring, communication of any data is difficult;

even the sense-and-send model does not work in this environment. Overall, many

applications generate large amounts of local data and need to compute something

locally; if the sensor network has to forward all the data and process it offline, the

system will not scale to larger network sizes or more complicated network operations.

In this thesis, we propose a class of problems requiring both intensive computation

and minimal communication. We solve these problems through distributed algorithms

utilizing local computations based on locally sensed, shared data and limited neighbor

communication.

To illustrate the difficulty of this problem and our contributions, we explore a

real-world scenario in ecosystem monitoring, although not one we solve in this thesis,
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that of monitoring endangered species. According to the International Union for Con-

servation of Nature and Natural Resources (IUCN), the status of 15% of the world’s

mammals is unknown due to insufficient data (categorized by the IUCN as data defi-

cient) [53]. This includes the Manzano Mountain Cottontail, a rabbit inhabiting the

Manzano Mountains in New Mexico [84]. This rabbit lives in the high altitude conifer

forest region of the mountains, making it hard to monitor, measure, and track, which

also complicates the process of determining its threat of extinction.

To gain a more complete picture of the numbers and behaviors of the rabbits,

we could install a sensor network in the mountains to record all key variables of the

ecosystem as well as camera tracking of the animals. We would need to perform

some control of the system to optimize data collection and reduce energy usage to

maximize the life of the network. Some of this will have to include detection of the

rabbits within the images to decide what images to save and identify relevant rabbit

sightings. To avoid constantly taking pictures or missing all the rabbits, we could

also consider predicting when rabbits might appear based on our past time history

of rabbit sightings in our images. This prediction would allow the sensor network to

optimize its measurement schedule and globally ensure a long lived system. Some

sensors will need to measure during supposedly unlikely time windows to verify the

prediction; which set of sensors this encompasses can rotate among all sensors to

maximize the life of the system.

We run into several problems in implementing such a sensor network; the first

results from the difficulty of sending the data to a central location. The Manzano

Mountain region is potentially too remote for connecting the network to an office

(40 km from Albuquerque with very limited road and trail access) as is true for

many environmental monitoring sensor networks. If we do engineer a way to send

information to an office, whatever solution we generate will have to function in a very

remote area with limited power (no grid) and all components hiked in (also limiting

the power system size and weight). These are not unique problems to sensor networks

as prior system that perform similar tasks (such as [9] and [100]) also experienced these

limitations in installing remote systems. When the solution does fail, maintenance

23



will take time so the sensor network control cannot rely on centralized direction.

Finally, the images are too large to send to a single site. (Assume a webcam takes a

320× 240 pixel image requiring 8 kbytes with compression. With message sizes of 32

bytes to 128 bytes, this would require approximately 60 to 260 messages, which is a

significant number of transmissions given that communication dominates the energy

budget of a node.) With no ability to send all the data to a central office, having

central control of the algorithms to detect rabbits and predict sightings is improbable

and unwieldy. All of these issues require algorithms running autonomously on the

sensor network in order to control these, and possibly other, tasks.

Our next problem is how to model the event we wish to predict. We want easily

deployable systems that function in a variety of environments, which requires models

that do not need pre-existing data sets or expert calibration. This rules out the usual

class of physically-based models, which predict based on equations that describe the

physical processes leading to an event. To do so, these models utilize data sets

describing the specific environment and require hand calibration of their parameters,

both factors negating their usability. The first is especially undesirable as it ensures a

sensor network system cannot simply be implemented or moved to a new environment,

but must have additional calibration and setup beforehand. We also face problems

where we have no model such as our rabbit population monitoring problem where

we do not know specifics about the species. Avoiding both these problems requires

creating models that self-calibrate and require little foreknowledge of the environment.

This leads us to statistical models, which utilize a local record of data to learn models

that predict events of interest.

In performing this type of prediction, the sensors collectively maintain a set of

data measured by the network and define a time history of relevant variables. The

sensor network then computes a statistical model using this data set to predict the

variable of interest. The model only requires that all variables be described by a time

series, removing any need for outside control and only initial expertise in defining the

variables to use when first designing the model.

Once we have statistical models running within the sensor network, we could see
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an issue with large data sets. Statistical models inherently rely on large quantities

of data. The sensor network can gather this data, but often a single sensor network

node cannot store the full matrix of data. To store the matrix, the sensor network

needs to distribute the data among the nodes, with each storing only a portion of the

matrix. Once we distribute the data, distributing the algorithms provides the most

efficient approach to computing the model. Without knowing or limiting the model

description in advance, our best practice is distributing the model to fit all classes of

modeling problems.

We now need to develop new distributed algorithms that compute statistical mod-

els within the limitations of a sensor network. We focus on a class of models called

multiple linear regression models, a class that only relies on the local data record,

requires limited computation for the prediction phase of the model, and self-calibrates

to provide good predictions of events. Multiple linear regression models require sev-

eral matrix operations, the most complex being a matrix pseudoinverse. To the best

of our knowledge, distributed computation of the matrix pseudoinverse does not exist

for sensor networks; we need to develop these algorithms.

We also need to consider the modified requirements for a sensor network computing

complicated distributed algorithms compared to one designed for a strictly sense-and-

send operational method. The additional computational complexity, data needs, and

distributed algorithms will affect the hardware design in regards to processing, data

storage, and communication reliability.

In understanding the Manzano Mountain Cottontail, then, we meet a class of en-

vironmental monitoring problems where we achieve the best solution by performing

in-situ control and modeling. The nature of the environment, consisting of a remote,

inaccessible location with little known about the problem and large amounts of data

generated to understand it, requires an autonomous and robust sensor network solu-

tion. This solution requires modeling to intelligently utilize resources and, because

of the lack of knowledge, sensor network limitations, and modularity requirements

for the model, statistical models suggest the best solution. By choosing statistical

models, we need to develop algorithms for distributed matrix operations. While this
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adds complexity to our work, by choosing statistical models we also gain a modular,

self-calibrating mechanism for predicting a wide array of events.

Overall, in this thesis, we focus on adding intelligence to a sensor network, en-

abling in-situ, distributed prediction of events. We develop distributed algorithms to

compute statistical models in the network, models requiring nothing other than the

measurements taken by the system. We then apply these models to three different

application areas: (1) river flooding for early warning, (2) solar recharging current

for power management, and (3) job congestion for achieving quality of service. Addi-

tionally, we use these applications to explore other aspects of sensor networks: river

flooding to design a predictive environmental monitoring sensor network, solar cur-

rent to develop a dynamic version of the model for better fault tolerance, and job

congestion to explore modeling device networks.

1.1 Distributed Linear Prediction

One of the most useful statistical models is the multiple linear regression model. This

model combines any set of input variables to predict an output variable of interest,

only requiring that all variables can be represented by a time series. Because of

the lack of restrictions on the model, multiple linear regression models can represent

a wide variety of scenarios and utilize the key output of a sensor network: local,

in-situ environmental measurements. These models also self-calibrate, requiring no

expert knowledge or data, and can adapt the model structure to changing network

conditions. Running these models on a sensor network requires computing a matrix

pseudoinverse, a key step in calibrating the model and a computationally complex

operation. Chapter 3 describes our distributed linear prediction algorithms to run

these models including our novel methodology to compute the pseudoinverse in a

distributed fashion on a sensor network.

We outline the format of multiple linear regression models for the general case in-

cluding the parameters describing the model, the requirements of the model, and the

overall operation of the model. We divide the model into two stages: (1) prediction
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and (2) calibration. Our prediction algorithm allows for distributed computation,

aggregating the result at the node most interested in the prediction. For calibration,

we divide the problem into three areas: (1) algorithms for a distributed pseudoin-

verse, (2) issues related to large matrix sizes, and (3) optimizations of the distributed

pseudoinverse for the case of a linear regression model. In the first area, we develop

algorithms for a distributed pseudoinverse based on breaking the problem into three

sections: a QR decomposition to reduce issues related to the rectangular nature of the

data matrix, a singular value decomposition to compute the needed sub-matrices, and

a final pseudoinverse step to combine the sub-matrices into the desired pseudoinverse.

Often, in computing the pseudoinverse, issues arise whereby the initial data matrix

is too large to store within the network; our second area explores reducing the initial

matrix size through random sampling methods. Finally, in the third area, we return

our original issue: using the pseudoinverse for calibrating a linear regression model.

This allows for several optimizations of the computation including a different form of

the pseudoinverse combination step. We test all algorithms in simulation, verifying

their functionality. Then, we implement the multiple linear regression model on our

sensor network and perform a field experiment to demonstrate the functionality in

the general case before moving into our specific applications.

1.2 River Flooding

River flooding seriously threatens the lives of people around the world. According to

the United Nations International Strategy for Disaster Reduction, floods accounted

for 32% of disasters worldwide from 1991 through 2005, the largest percentage of all

disaster types [94]. Mitigating these disasters requires predicting their occurrence,

monitoring their occurrence, and monitoring post-disaster conditions to reduce dis-

aster effects. While urban areas of developed countries have systems to provide this

information, rural areas and developing countries remain vulnerable, lacking the tech-

nology and infrastructure to provide appropriate mitigation information. Chapter 4

outlines our work in developing statistical models for river flood prediction and a
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sensor network architecture appropriate for solving this problem.

We describe how to model river flooding and use our distributed algorithms to

predict future river level 24 hours in advance. For this prediction, the river level model

only requires three local measurements: river level, rainfall, and air temperature. To

demonstrate and compare our model, we use sensor data and physically-based river

level model results from the Blue River in Oklahoma. We then outline a sensor net-

work architecture for monitoring rivers in remote and large geographic areas as well

as computing prediction models in-situ. Our sensor network supports a wide variety

of sensor types, heterogeneous communication of real-time data via a two-tier com-

munication structure, and fault tolerance for enabling longer term installations. It

operates autonomously to control system behavior and compute event predictions.

Finally, we discuss our simulation results proving the effectiveness of our model in

predicting future river level, our initial field experiments verifying the sensor net-

work system, and our full system field experiments demonstrating the distributed

algorithms operating on the sensor network. We test and deploy our system in two

locations: (1) Dover, Massachusetts, our local test site, and (2) the Aguan River in

Honduras, a more challenging and realistic test site.

1.3 Solar Current

Ensuring a robust sensor network requires careful power management and many

projects have explored different approaches to solving this problem from optimized

hardware design for low power operations to software policies for modifying system

behavior. However, all of these ignore or overly simplify the future solar recharge

current, which defines the future available energy on which the system relies. Know-

ing the future available energy allows for more intelligent power management and

a decrease in extreme behaviors such as full shut-down of the node. Utilizing a

distributed model to perform this prediction shares both the computation and the

prediction among the nodes, reducing the individual energy consumption required. It

also enables a more spatial representation of the existing conditions, which can better

28



reflect the broader local environment. Chapter 5 describes a prediction model for

average daily solar current, providing this input for any power management system.

We model and implement of our distributed algorithms for this problem. In this

approach, each node utilizes its own solar current measurements, its neighbors’ so-

lar current measurements, and available meteorological measurements from itself or

neighbors. This allows for predicting daily average solar current 1 or more days in

advance. We describe our simulations to verify the model for this problem, implemen-

tation on the Fleck platform (a different architecture than that developed in Chapter

4), and field experiments. We installed 3 nodes in a month-long deployment, predicted

future solar current autonomously on the nodes, and verified the overall approach.

Finally, we extend our model to a more dynamic version that allows for better fault

tolerance and model development. This dynamic version provides external control

of the model parameters defining the matrix (such as the meteorological variables

used and the calibration time window), which will enable in-network control in future

work.

1.4 Job Congestion

Multi-function devices (MFDs) provide print, copy, fax, and scan capabilities along

with the ability to perform complicated processing tasks associated with these op-

erations. Networking a group of them together enables sharing the processing tasks

among devices and improving the overall system efficiency. However, in cases where

only a few devices have the needed capabilities, job congestion can occur with these

devices being overloaded and the quality-of-service guarantees no longer being met.

Predicting job congestion provides a method for modifying local behaviors to avert

global problems as well as avoiding the need for administrative oversight of the net-

work. In this scenario, like wireless sensor networks, these device networks are pro-

cessing and communication limited in performing these additional tasks. A device

must allow the regular operations to access the processor, limiting the amount of side

computation it can perform for congestion prediction. Additionally, the devices may
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not connect to a high-bandwidth network and need to allow regular network opera-

tions to proceed without impact, limiting the amount of network traffic the devices

can generate. Due to these limitations, a distributed regression-based model, such as

we designed, provides the best solution. Chapter 6 describes how our algorithms can

also predict job congestion in this constrained environment.

To verify the functionality, as these device networks are still being developed, we

introduce a network simulator to describe their behavior and allow system testing.

We define the expected behaviors of a MFD network based on individual device

characteristics and develop our MFD-specific simulator in SimPy, a python-based

discrete event simulator. In the context of this network simulator, we define a job

congestion model where congestion relates to the job queue length, a measurable

parameter within each device. Unlike our other applications, our model relies on

more abstract parameters that, while measurable, are not sensed values external to the

device, but rather internal variables such as job queue length, reputation, and number

of jobs of a service type. This abstract parameterization is supported by our model

structure and distributed algorithms, which we show through the simulator. We

begin by analyzing our network simulator, then verify the model operation through

simulation results, and finally implement our congestion model within the network

simulator for a complete experiment of our work.

1.5 Thesis Contributions

Overall, our work contributes to the goal of an intelligent, autonomous, and robust

environmental sensor network. Specifically, these contributions entail:

• A novel set of distributed algorithms for computing a matrix pseudoinverse and

multiple linear regression model on a sensor network

• Exploration of randomized methods for reducing matrix size and implementa-

tion optimizations of the pseudoinverse algorithms depending on usage
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• In the context of river flooding, design and implementation of a sensor network

system (architecture, hardware, and software) optimized for large geographic

areas and predictive environmental monitoring

• A statistical model and related implementation on our sensor network for pre-

dicting river flooding

• A statistical model and related implementation on the Fleck sensor network for

predicting solar current

• A statistical model and related implementation on our network simulator for

predicting job congestion on MFD networks

• A network simulator for MFD networks

• Extensive knowledge and experience regarding environmental sensor networks,

from field experiments and deployments, providing lessons learned for future

sensor network developers

1.6 Thesis Organization Summary

To summarize the organization of this thesis, this thesis consists of 7 chapters.

Chapter 2 outlines related work for all aspects of this thesis.

Chapter 3 presents a novel set of algorithms for computing a matrix pseudoinverse

and multiple linear regression model. It explores several issues associated with im-

plementing these algorithms including randomized methods for reducing matrix size

and optimizations depending on usage.

Chapter 4 outlines our river flood prediction scenario. In predicting river flooding,

we designed a sensor network architecture optimized for large geographic areas and

predictive environmental monitoring. We also developed a statistical model for pre-

dicting river flooding that performs better than current research models and enables

easy deployment in any river basin.

Chapter 5 describes solar current prediction. For solar current prediction, we

enable better power management and demonstrate the transferability of the algorithm
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to a different sensor network platform. Additionally, we demonstrate a dynamic

version of the model which will enable better model development and fault tolerance

of the algorithms.

Chapter 6, our last application, extends the work to predicting job congestion on

multi-function device networks, which shares the limitations of our sensor networks.

This scenario also demonstrates the ability of our models to predict more abstract

concepts where the model uses variables that are not physically measured from the

environment. To verify this we also develop a network model of these device networks

as the physical systems are still under development.

Finally, Chapter 7 summarizes all of this work, outlines future work (including

solving the Manzano Mountain Cottontail problem), and draws on the knowledge

generated to formulate lessons learned.
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Chapter 2

Background and Related Work

In this chapter, we cover the related work for all aspects of our thesis. In Section 2.1,

we explore work related to distributed linear prediction on sensor networks. Then, in

Sections 2.2, 2.3, and 2.4, we discuss the use of distributed prediction in each of our

application areas.

2.1 Distributed Linear Prediction

A rich history exists in computing the matrix pseudoinverse and the linear regression

prediction associated with it. We first cover the distributed pseudoinverse as it relates

to our problem in the wider sense and then discuss related work specifically in sensor

networks.

2.1.1 Distributed Pseudoinverse

Computing a matrix pseudoinverse has interested researchers for quite a while and

numerous mathematical solutions exist. Golub and Van Loan [39, 40] introduce and

discuss many of these from a centralized and mathematical perspective. Implementing

this math through distributed algorithms on a multi-processor system provides an

additional set of research questions. In this area, we focus strictly on the earlier

methods that utilized processors with limited capabilities, such as those used in the

1980’s. The limitations of these systems are similar to the limitations of current sensor
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network systems; one could argue that a sensor network is a multi-processor system

with an unusual communication system. By focusing on these earlier methods, we do

not disregard that the research continues in this area, but rather recognize that the

systems such research runs on are powerful enough to allow solutions far too complex

for operation on sensor networks.

These earlier methods focus in three areas: (1) computing the pseudoinverse in the

context of least squares solutions to overdetermined systems (such as introduced in

[40, 70]), (2) solving the underlying SVD with the recognition that the pseudoinverse is

defined within the context of the SVD [40], and (3) solving the pseudoinverse directly.

The first area utilizes methods that do not directly compute the pseudoinverse, but

use the features of the least squares solutions to optimize out the need for that direct

computation of it. As we wish to provide both the distributed matrix pseudoinverse

computation and a distributed linear regression computation in order to enable a

large range of future modeling and computation opportunities, we focus on the latter

two areas of solutions.

Distributing the SVD commonly utilizes block Jacobi methods as they allow for

easy parallelization. Golub and Van Loan [39] introduce the overall method. Brent et

al. [17] discusses a method of computing utilizing a fixed hardware system optimized

for the SVD. The processors were placed in a grid array with a fixed communication

system and only computed the block computation based on their equivalent, fixed

location in the data matrix. Processors could compute blocks of size 2 × 2 and

larger, allowing the system to compute a wide array of SVD results although the

only solution for rectangle matrices was to pad them with zeros until they were

square. Transferring this to more general systems occupied most of the research

following this work. Bischof [12] describes methods to compute the block Jacobi on

a hypercube multi-processor system; in [13], he utilizes a multiple vector processor

machine. Ewerbring and Luk [32] implement a method tailored to the Connection

Machine. These latter methods rely on the early work of Brent et al. [17] as do we

although our method utilizes the unique communication systems of a sensor network

as well as dealing with the limitations.
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In computing the pseudoinverse directly, approximate solutions exist such as that

developed by Benson and Fredrickson [8] to compute a pseudoinverse on a hypercube

system. For exact methods, the Gauss-Jordan approach or other elimination methods

are often used. Milovanovic et al. [64] describes some of the past work with Gauss-

Jordan and introduces a method for a linear row of processors. One issue with this

type of approach compared to the SVD approach is the numerical issues that can

arise, especially in zeroing the elements. With zeroing the elements, the problem

arises whereby the computation result almost reach zero do not equal zero, differing

just enough to cause the algorithm to fail. Avoiding this requires pivoting [40], which

changes rows in order to avoid having to zero elements that would cause problems.

Parallel implementations commonly avoid this due to complexity and communication

costs.

Instead of these approaches, control projects utilize the Block Matrix Inversion

Lemma [22], which divides the original matrix into 4 components: A, which must

be invertible and square; B and C, which have no requirements; and D which also

must be invertible and square [43]. While this method allows for easy updates of

the inverted matrix and does divide the problems into blocks, it does require a large

amount of computation within the smaller blocks. Additionally, the requirements on

the data to guarantee the invertibility of the sub-matrices do not make it a good

choice for our work as we cannot, and do not want to, provide this guarantee.

We need a solution that does not restrict our data matrix and provides an ex-

act, precise solution since we will use it for prediction. Elimination methods do not

provide the precision necessary and approximation methods are not exact enough.

This leaves orthogonal methods, which we utilize. However, we optimize these meth-

ods for a sensor network with its combination of very limited memory and wireless

communication where broadcasting to all is easier than point-to-point communica-

tion with each node. These differences require innovations in the computation of the

distributed pseudoinverse.
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2.1.2 Prediction and Regression in Sensor Networks

To our knowledge, no prior work develops a distributed pseudoinverse for wireless

sensor networks; this is a useful contribution of our work to the general sensor network

community. In the areas of performing distributed regression and prediction on a

sensor network, a small amount of research exists.

Delouille et al. [28] develop an algorithm to provide the linear minimum mean-

squared error estimator to determine the true values of noisy measurements. The

algorithm uses a decomposition of a loopy graphical model and an iterative Gauss-

Seidel method. This requires a matrix inverse, which they perform centrally on each

node. The solution is tested in simulation, but not implemented on a system; it is

unclear how they would perform the inverse or computation within a constrained

sensor node on a microcontroller.

McConnell and Skillicorn [63] describe a method for prediction on a sensor network

whereby each node computes a local prediction and then the centralized system hub

votes on the correct method. They do not provide a local prediction algorithm,

but use a standard, centralized method in simulation to verify the use of the voting

scheme. The approach is distributed only in the sense that a single non-sensing

node distributes the vote results; the system does not compute the prediction in a

distributed fashion.

Banerjee et al. [4] discuss how to perform polynomial regression on a sensor net-

work. The computation requires a pseudoinverse at every calibration step. Testing

this in simulation, they compute the pseudoinverse using Mathematica. They then

provide a method for updating coefficients that does not require a matrix inverse

based on starting from an initial computation that does. This is tested in Matlab

using an initial set of temperature data with an initial inverse calibration step. As the

error increases over the short time window of the simulation, it is unclear this update

could correctly predict in the long term without further centralized calibrations. How

to compute the initial calibration with the matrix inverse on the sensor network is

not discussed.
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Predd et al. [72, 73] describe a regularized kernel least-squares regression approach

based on reproducing kernel Hilbert spaces from machine learning. They develop an

approach more suited to sensor networks by relaxing the constraints on the equiva-

lency of sensor functions. However, calibrating this model requires a pseudoinverse,

which they note needs to be computed and suggest can be computed centrally. This

primarily theoretical work was tested in simulation to verify operation, but not im-

plemented on a sensor network.

Guestrin et al. [41] provide an distributed regression algorithm to help reduce

the amount of data the network needs to communicate while allowing reasonable

reconstruction of the node measurements back at the source. Specifically, they are

utilizing a sensor network of Motes installed in a lab measuring temperature. Given

the high correlation of temperature data, they wish to describe the data by a function

allowing them to generate the data at the base computer instead of communicating

the data. Their approach assumes sparse matrices and utilizes kernel linear regres-

sion, a special case of linear regression. In implementing kernel linear regression,

they use Gaussian elimination to compute the weighting parameters. Our approach

uses a different, orthogonal method of computation; an orthogonal method decreases

the limitations on the matrix structure and removes the numerical issues seen with

Gaussian elimination [40].

2.2 River Flooding

Previous work covers a wide variety of topics including sensor networks for environ-

mental monitoring, sensor networks for flood detection, and operational flood detec-

tion systems.

Sensor Networks for Environmental Monitoring

Several sensor network systems have been designed for outdoor monitoring purposes

especially animal monitoring. While this work does not directly relate to ours, im-

plementations sharing some interesting characteristics include cattle ranch monitor-

ing [82], cattle control [18, 79], sheep monitoring [91], zebra herd monitoring [57, 101],
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seabird nests [62], and frog vocalizations [47]. Of greater relevance is work in envi-

ronment monitoring where several projects have implemented related systems.

Tolle et al. [92] developed a sensor network to monitor a redwood tree. Installing

nodes throughout the height of the 70 m tree, the system measured air temperature,

relative humidity, and solar radiation over a 44 day period. The system logged data

every 5 minutes and transmitted it via GPRS modem to an external computer. All

analysis was performed off-line after the test period.

Selavo et al. [80] created a sensor network for measuring light intensity. Each

node can connect to 8 resistive or voltage-based sensors, communicating data locally

via Zigbee and remotely via a single Stargate at 2.4 GHz with delay tolerance of the

data arrival at the base station. They performed a field experiment of 1 day with 7

nodes and have installed 19 sensor nodes in another experiment (but no results were

available at time of publication). No data analysis occurred on the nodes.

Guy et al. [42] built a sensor network system that has been installed in four dif-

ferent locations to date. In the James Reserve, a forest setting, the system measured

temperature, humidity, rain, and wind using up to 27 nodes over 1.5 years. The

project installed 2 nodes for 1.5 years in a high-desert farm and 24 nodes in the

UCLA Botanical Gardens for 3 months. Finally, a 12-node system was installed in a

Bangladesh rice paddy for 2 weeks to measure nitrate, calcium, and phosphate (this

experiment also described in [76]). These nodes used 433 MHz communication sys-

tems to share the data measured and a base station sent the data for offline analysis.

The goal of the researchers for the system was portability and rapid deployment,

focusing on a very different set of requirements than our system.

Werner-Allen et al. [100] installed a wireless sensor network on a volcano in

Ecuador, running 16 nodes for a 19 day test. Their system focused on scientific

effectiveness, specifically the quality of the data and quantity measured, allowing for

delays in data gathering as long as correctly timestamped. The nodes measured seis-

mic and acoustic data, transmitting to each other at 2.4 GHz and back to the base

station through a single repeater node at 900 MHz. Detection of recordable signals

did occur on the system, but no further data analysis occurred within the network.
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Beutel et al. [9] designed a sensor network for measuring permafrost regions. Their

latest deployment placed 15 nodes on the Matterhorn starting operation in July 2008.

The system focuses on surviving the hostile environment with high quality data mea-

surements.

While the above systems do share some characteristics to the system and problem

we describe, none envision the level of heterogeneity our system requires, the mini-

malistic number of sensors available for the extensive network area, the real-time need

for the data, or the computational autonomy and complexity necessary to perform

the prediction operation.

Sensor Networks for Flood Detection

Previous work on sensor networks for flood detection is sparse with only three dif-

ferent examples discovered in the literature. Castillo-Effen et al. [19] suggested an

architecture for a system, but were unclear on the basin characteristics and presented

no hardware details. Zhou et al. [102] described a project called FloodNet that di-

rectly includes sensor network measurements into a central flood model; this project

did not operate the model on the sensor network or perform detection within the

network making it different from the project we propose.

Closest to our work is a project by Hughes et al. [49, 51, 48, 50, 52] and Coulson et

al. [27], designing a flood-predicting sensor network that uses Gumstix sensor nodes,

which require significant power but allow for a Linux operating system to run on the

node. Optimizations in [49] reduced the power of the node by including a secondary

processor. Field tests have been performed according to [48, 50]. According to the

papers, the system would run a point prediction hydrology model with each node

computing its own centralize prediction; it is unclear whether it currently runs on

their system. From reviewing the related citations [10, 78], it appears their model

follows more traditional physically-based hydrology approaches. This solution works

well when the necessary calibration data is available; when the data is not available,

as in our problem definition, this solution is not possible. In addition to the apparent

lack of model implementation on the flood prediction side, the known details of the
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hardware platform dismiss it as an immediate solution to the problem introduced

here as it has limited geographic range, high cost, and power requirements that may

be, in the long-term, unsustainable.

Current Operational Systems for Flood Detection

While not specifically sensor network installations, understanding the current oper-

ational systems helps clarify the problem space in which we are working. The lack

of published information on operational flood systems makes generalizations difficult,

but three systems seem to summarize the approaches currently taken.

One type involves a highly technical solution with significant resource support

such as seen in the US. For this system, companies develop sensor, communication,

and computation technology based on the ALERT protocol, which defines the data

structure and polices of environmental monitoring systems [3]. The US Emergency

Alert System provides communication of the alerts throughout the nation using tele-

vision and radio channels by creating special technology and policies, requiring the

installation of the technology in stations across the country along with weekly test-

ing, and ensuring protocol compliance at all levels [34]. Implementation of specific

systems trickles through each level of government: federal, state, and county. Given

the large number of counties in the US, systems and policies do vary, but the majority

rely on large numbers of personnel (some highly technical) and significant technical

resources. Usually, counties implement the direct measurement system with help from

the USGS and create polices on how their county defines a disaster and evacuation

procedures. Actual prediction usually depends on qualified hydrologists examining

the data (thus removing measurement errors) and running it through a complicated

physical model described below.

Another type is the system commonly seen in Central America, especially Hon-

duras [5], relying on volunteers and limited technology. Volunteers read the river level

off of markings painted on bridges and the rain level from water collecting gages (also

emptying the gage) at several intervals during a day, radioing that information to

a central office run by the government. In that office, a person listens to the radio,
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records the values in a book, and compares them to a defined policy whereby the river

level measured corresponds to a color alert. This color alert is radioed to the head of-

fice of the government branch, which then decides on the need for an evacuation alert

in that region and implements some form of emergency alert procedures. Overall this

system relies on very little technology and extensive policies to warn communities,

working best in small river basins where measurements indicate flooding in that area

(as opposed to downstream of the measurement area).
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Figure 2.1: Example of Current Physically-based Model: Sacramento Soil Moisture
Accounting (SAC-SMA)

A third solution exists in Bangladesh, a country regularly devastated by flooding

due to its low sea level and large rivers. To combat this, the Danish Hydraulic Insti-

tute initially outfitted the country with local telemetry stations in 1995 and created

a MIKE 11-based flood forecasting system [56]. However, this system experienced

sustainability problems along with issues due to the fact that the headwaters of its

major flood-causing rivers originate in India, creating complexities with monitoring.

A solution to this was created by a global community of researchers and govern-

ment institutions, collating all of the satellite information and forecasts generated

by the US to provide short, medium, and long-term flood predictions of the major

basins [44, 99]. A system called the Flood Forecasting and Warning Response System

distributes the alert through reports submitted to various government agencies along

with a variety of public media sources [23]. This takes advantage of the ubiquity of
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satellite information, which looks to provide input data for flood forecasting systems

of the future [45]. The success of the system does rely on very regular satellite passes,

still not common in all parts of the world, and a large amount of US resources, also

not available everywhere.

Computation Requirements of Current Operational Flood Prediction

Model

We discuss flood prediction models in general in Section 4.1; however of most relevance

to this work are current operational models, especially that used on our prototype

data sets. In the US, the current operational model works by modeling the different

methods of rainfall surface runoff to determine how much water will enter the river,

thus increasing the level. Called the Sacramento Soil Moisture Accounting model

(SAC-SMA), it predicts runoff out to 12 hours based on rainfall over the area. It

creates three different water compartments (see Figure 2.1 [20]): a zone describing

the direct runoff from rain falling on impervious soils, a zone describing water flow-

ing into the river after exceeding the soil moisture capacity of pervious soils, and a

zone describing runoff occurring after soil moisture capacity is exceeded above wa-

ter impervious regions [37]. The model describes each zone using several differential

equations along with several more complex equations describing the interconnection

of these zones into a single surface runoff value. These clearly cannot easily run on a

sensor network.

Determining the actual computation time of these equations is difficult as exam-

ining two papers that outline some information on this provides different information.

Experiments by Vrugt et al. [98] on autocalibration methods using this model resulted

in 25 minutes for calibration on a Pentium IV 3.4 GHz computer. This calibration

appears to involve running the model. Other work by Ajami et al. [2], also in the

area of parameter autocalibration includes a figure displaying the run time and cali-

bration time for a number of calibration methods where it appears that running the

model requires on the order of hours. However the paper doesn’t specify numbers. Of

the two papers, the first paper is more specific regarding computational numbers but
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much less detailed on procedure whereas the second is clearly using the SAC-SMA

model over the same data set we also use. Either way, the information from both

suggests that the model requires more computational power and time than available

on a sensor network.

Additionally, these equations use 11 parameters, not all corresponding to actual

physical, measurable quantities [69]. To calibrate these parameters and the model

requires at least 8 years of rainfall and runoff data for calibration, ideally 8 years

of further data for verification, detailed topographic maps, and hand-calibration by

trained hydrologists [35]. The resulting model operates only on that basin; model

creation for a different basin requires 8 years of calibration data for the new river and

expert hand-calibration. This again does not work for a sensor network nor regions

where such data does not exist (and putting sensors in for 8 years to gather enough

information is impractical).

2.3 Solar Current

Past research projects into energy management focus on either reducing power con-

sumption through system design and/or through modeling and control. The system

design approach minimizes the power usage of the hardware components and op-

timizes the power harvesting system to maximize the system lifetime, an approach

seen in [25, 55, 90]. The other approach focuses on the software side, managing power

through modeling and control. Most of these projects use a fixed parameterization of

the harvested energy or respond to direct measurements; [33, 61, 65, 97] demonstrate

these types of projects.

Very little work complements these approaches by predicting the future har-

vestable energy to input into the models. Hsu et al. [46] and Kansal et al. [58, 59]

examined a prediction method using an Exponentially Weighted Moving Average

Model. This model provides a centralized approach allowing each node to compute

its own prediction based on a combination of current observations and past prediction

history. Evaluation utilized existing data sets in simulation; no implementation oc-
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curred on a platform. We compare this approach in our simulation results in Section

5.2.

Moser et al. [66] performed offline linear programming techniques to predict future

energy in addition to control methods. The paper describes a simulation of this with

no field instantiation.

Our work also provides these complementary methods and provides an energy

prediction to input. However, our work utilizes a more complex and richer set of

input data, and provides in-situ, local predictions, which we test in a field experiment

on a sensor network platform. We provide a prediction of energy that could support

any energy management plan on any low-power hardware platform.

2.4 Job Congestion

Predicting congestion on multi function device (MFD) networks is a specialized area

of research. MFDs have not existed for very long and little research exists in that

area. We can look to two related areas, network congestion and anomaly detection,

in addition to the existing research in MFDs.

Network congestion research focuses more on control issues: how can we generate

policies that avoid congestion within the network and how can we remove existing con-

gestion. Talaat et al. [89] provided a survey of work in congestion control strategies,

with an overall interest in media streaming. As the paper points out, the common

router approach to congestion is to drop packets, leaving control to the end points of

the network. At these endpoints, strategies attempt to reach the best communica-

tion rate that allows messages to reach their destination and not induce congestion.

Overall, the methods do not try to predict congestion within any given device and

strictly focus on congestion mitigation.

Within the sub-area of asynchronous transfer mode (ATM) networks, Corral et

al. [26] introduced AI techniques to predict congestion. These techniques rely on

genetic programming and occur centrally within a node.

Anomaly detection more closely approaches our problem specification in that it
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attempts to detect anomalous behavior, in which we could include congestion. Chan-

dola et al. [21] provided a comprehensive survey of the area. Within anomaly detec-

tion, research approaches of most interest are those that utilize regression. Bianco et

al. [11] demonstrated an example of this using an ARIMA model, while Galeano et

al. [36] utilized a vector ARMA model. Common to these approaches is the use of the

model either centrally or offline, and the use of the model to demonstrate common

behavior where an event not matching the prediction is consider anomalous. This

does not use the model to predict the anomaly, but the absence of the anomaly.

All of the above do not quite match the characteristics needed by our problem;

most importantly, none focus on distributed approaches. We then can examine the

specific area of MFD research, which is a new area of research. Gnanasambandam et

al. [38] first introduced the concept of networking MFDs. Quiroz et al. [74, 75]

furthered the concept by looking at clustering techniques to detect anomalies within

the network. To the best of our knowledge, our work is the first to explore device

congestion prediction within an MFD network.
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Chapter 3

Distributed Linear Prediction

We developed a low computation, low communication distributed multiple linear

regression algorithm to run on a sensor network. This algorithm is general enough for

a wide range of applications and we introduce it as a general format in this chapter.

Overall, our distributed algorithms achieve our goals for operation on a sensor

network. We compute the same results as the centralized versions while reducing the

individual node computational requirements by O(n) where n typically lies between

5-20. This computational reduction is at the cost of communication, which is one

key trade-off between distributed and centralized. However, the ability to actually

perform the computation provides another key trade-off. Most prediction scenarios

require a reasonable data set on which to calibrate the model. For many scenarios, this

reasonable data set would utilize approximately 20 kbytes for centralized computation

compared to 2 kbytes for distributed, an O(n) decrease in memory usage. Thus, the

centralized data set most likely cannot even be stored on a single node. Memory then

becomes the key design point in utilizing centralized prediction models compared to

our distributed versions. Our algorithms successfully allow for implementation on

current sensor network systems, which centralized would not allow.

We start in Section 3.1 by discussing the model: what parameters describe the

model, what requirements the model has, and what is the overall operation of the

model. With the model structure in place, Section 3.2 outlines our statistical predic-

47



tion algorithm and its operation. We next construct a set of tools for the calibration

of the statistical prediction algorithm. Section 3.3 describes the algorithm necessary

to compute a distributed pseudoinverse, a key tool in calibrating the prediction algo-

rithm. Building on the pseudoinverse, we discuss issues arising due to large matrix

sizes in Section 3.4. We then complete the discussion of the algorithms by outlining

those necessary to connect the pseudoinverse to calibrating a linear regression model

and other implementation-related optimizations in Section 3.5. Finally, we test these

algorithms through simulation and implementation in Section 3.7, validating their

functionality and use.

3.1 Modeling

Our overall goal is to enable prediction of physical phenomenon on sensor networks,

where the phenomenon can be captured by a single time series variable. In performing

these computations to achieve this overall goal, our goals are to optimize communica-

tion (thus saving energy), optimize computation, and optimize the usefulness of the

prediction. Achieving these goals requires distributed algorithms and shared storage

of the matrix. A useful prediction model requires incorporating a wide variety of data

into the matrix, possibly more data than a single node can store. To store the ma-

trix, we need to distribute the data among the network, which provides a secondary

benefit by ensuring the prediction is more robust to node failures. Because we have

to distribute the data matrix storage, we can distribute the computation also, sharing

the computational load and reducing the communication load. This achieves all our

goals and motivates our distributed algorithms, which we outline in detail.

A common argument against distributed computation is the existence of a base

station or gateway node of higher computational power nearby, or the nearby pres-

ence of a central location to provide the computation. Some deployments do fit these

scenarios with systems located on campuses or within communication reach via high-

powered gateways. However, some deployments and applications do not, especially in

the area of environmental monitoring where we focus. Deployments in remote areas
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may not have reasonable communication range back to a central office, may not allow

for the power necessary to run a higher power gateway (lugging batteries into forests

is not always feasible), or may utilize the same processing unit for the gateway as

the rest of the network (allowing redefinition of who is the gateway, reducing gate-

way power requirements, and simplifying the system, to list a couple reasons for this

design choice). In these cases, to provide prediction models improving the overall

system performance requires distributed computation as centralized computation is

just not reasonable. Where gateways do exist that could provide centralized compu-

tation, issues of scalability and fault tolerance arise. At some point, the number of

nodes needing individual predictions will exceed even the computational capability

of the gateway and/or the communication requirements to reach all the nodes will

exceed those needed to perform local distributed computations. Additionally, the

gateway will fail; it is just another node, albeit a more powerful one. When this node

fails, repair may take several days, depending on location, while the system flounders

without the centralized control the gateway provided. All of these reasons suggest

the usefulness of distributed algorithms, especially to support the overall general case

and allow deployment of sensor networks wherever we want, not limited by the need

for gateway communication, easy access, and centralized control.

As a method for achieving this, we choose statistical-based multiple linear re-

gression models. These models provide a clean, generic framework for all forms of

phenomenon and leverage the key features of a sensor network: a plethora of local,

in-situ sensed data and in-system computation of data statistics. Additionally, these

models require no prior historical data for operation, allowing self-calibration to oc-

cur after the sensor network collects sufficient data. Multiple linear regression models

take the form of:

bi = xi0ai0 + xi1ai1 + ... + xinain (3.1)

where ai defines the observed variables, bi is the prediction of the variable of interest,

and xi represents the model parameters, weighting the variables appropriately to

predict bi.
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To use these models, we perform the following steps:

• If it is for a new application area, gather data, determine efficacy of model in

simulation, and implement on sensor network

• Monitor variables of interest with sensor network until sufficient data collected

• Calibrate model to determine weighting coefficients

• Predict future phenomenon by weighting most recent measurements from the

sensor network and combining these values

• Continue loop of: gather data and predict, recalibrating if prediction error

exceeds defined metric

For new application areas, we start by defining the structure of the model. We need

to first determine that the problem can be solved using a multiple linear regression

model so we gather or locate a relevant data set. With this data set, we simulate

the model. This enables us to define the correct variables useful for predicting the

phenomenon and the amount of calibration data to use. With a model structure in

place, we then implement it on a sensor network and monitor the variables of interest.

This model structure is application specific, but the underlying algorithms are

not. As such, we define the prediction algorithm in Section 3.2. Prediction requires

coefficients computed during calibration which we describe in 3.3. Both prediction

and calibration can occur decentralized from each other, allowing for flexibility in

implementing them.

3.2 Distributed Prediction

We predict the phenomenon of interest as a linear combination of scaled variables.

While this computation could occur centrally (depending on the number of variables),

distributing it shares the computation with limited additional cost as the network al-

ready communicates measurements and status; we can simply added the scaled vari-

ables to these pre-existing messages with only a small number of byte transmission
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costs incurred. At this point, we assume the model structure exists and that some

outside entity provides our weighting parameters. Later we use our distributed pseu-

doinverse to provide these parameters, but they could be predefined or determined

using another method. We thus compute:

bt+L = xt0at0 + xt1at1 + ... + xtnatn (3.2)

in a distributed fashion using Algorithm 3.1. In this format, a defines a node’s

variables at time t consisting of observations of the variable we are trying to predict

and other related variables. The sub-index j indicates which variable as all atj values

are measured at the same time t. Variable x is a vector of the weighting parameters,

provided by our distributed calibration algorithm. Variable b is our prediction.

Algorithm 3.1 Distributed Prediction

at : observations, at time t, on node i of prediction variable and related variables
j : number of values node i stores
t + L : prediction time
bt+L : prediction

for Each node i do
Measure j values of at

τi = atjxtj

Transmit τi

Receive from all other nodes τk 6=i

bt+L = τi + τk 6=i

end for

In Algorithm 3.1, each node measures some portion of the a values at current time,

t. Here we allow nodes to maintain more than one variable of the computation and,

while j suggests that each stores the same number of variables, all of the algorithms

allow for an unequal number of variables stored by each node (in cases where this

reduces communication for example). The node then multiplies these values by its

portion of the stored x values and communicates the result to the other nodes. Each

node, upon receiving the prediction components from the other nodes, adds these

other components to its own, thus computing its own prediction L time intervals in

the future, bt+L.
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Nodes have two options for determining a prediction of its own variable of interest.

First, assuming the variable of one node correlates well with the other nodes, all nodes

can collaborate on predicting the variable of one node, computing the prediction

value, bt+L. Each node then uses that value as its prediction. To achieve this, each

node maintains some portion of the data and associated weighting coefficients. In a

centralized prediction, nodes would have to communicate data values to the central

node anyway; this distributed form communicates aggregated weighted values instead,

reducing the number of values to communicate and sharing the computation.

Or, if the similarity in the variable of interest does not exist, the nodes each

compute their own prediction based on their own measurements. Distribution occurs

when including neighbors’ measurements of the variable at their location and other

environmental variables; the latter should correlate well among the nodes allowing all

to share the same measurements. With each node performing a prediction, a node

already maintains its values of the variable and just needs to store additional weighting

coefficients for its neighbors. Sharing environmental variables allows nodes to divide

them equally among the network, storing some portion and associated weighting

coefficients. The increase in precision due to the increase in data available to the

model offsets the potential increase in communication (potential as the number of

values communicated is small and the system can append them to existing messages).

The first option reduces computation and communication while generating a rea-

sonable prediction; the second improves each node’s prediction with an increased

cost in computation and communication. Choosing between the two depends on the

structure of the network, similarities between node placements, and requirements for

precision in the predictions.
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3.3 Distributed Calibration

The calibration step provides the weighting coefficients by computing:

X = ((AT A)−1AT )b (3.3)

where A is the matrix of historical measurements of our variable we want to predict

and related variables, b is the vector of past observations of our prediction variable

L time steps after the last prediction variable values in A, and X is the computed

coefficients. ((AT A)−1AT ) is the standard Moore-Penrose pseudoinverse of a real

matrix, which also includes a computationally intensive square matrix inverse and

three matrix multiplication steps [40]. To perform this computation on a sensor

network centrally is infeasible and undesirable as A is usually too large (3 months of

hourly data and 10 single byte values requires 21.6 kbytes) to store on one sensor node

(much less all the additional storage necessary for the pseudoinverse computation);

therefore we need a distributed algorithm where each node maintains some number

of columns. As no distributed pseudoinverse exists for sensor networks, we need to

innovate on existing algorithms.

We break the problem into three steps as shown in Algorithm 3.2: (1) a QR de-

composition to reduce issues related to the rectangular nature of A, (2) a singular

value decomposition (SVD) to compute the necessary pieces, and (3) a final pseu-

doinverse step to combine all the pieces into a solution. We discuss each of these

algorithmic steps in detail.

Algorithm 3.2 Distributed Pseudoinverse
Input: A
Output: A+

[Q, R] = qr(A) . Perform distributed QR according to Algorithm 3.3
[U,R, V ] = svd(R) . Perform distributed SVD according to Algorithm 3.4
A+ = V R−1(QU)T . Finish pseudoinverse according to Algorithm 3.7
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3.3.1 QR Decomposition

The QR decomposition requires as input any matrix A, which is of size m× n where

m ≥ n. It then decomposes A into Q of size m × n and R of size n × n. This

decomposition allows for squaring off and shrinking the matrix used by the SVD, a

key component of the pseudoinverse.

We compute the QR using a modified Gram-Schmidt form as outlined in Algo-

rithm 3.3 [40]. This form decomposes the matrix in column order allowing us to store

some number of columns per node. To ease explanations, we assign an equal number

of columns to each node, specifically 2p columns per node. Ensuring the number of

columns is even eases ease shuffling of data for the SVD step.

At the beginning of the algorithm, each node has p columns of A, consisting of

m past data values already gathered by the node. We perform the computation in

place, replacing the columns of A with columns of Q. For additional storage, the

computation will need np data values stored for R and m temporary values.

The algorithm begins with Node 0, which is the node storing column 0. This node

computes the l2 norm of the Q0 column (||Q0||2 =
√∑m

i=0 Q0(i)2 ) to fill the R00 entry

and then divides the Q0 column by that value to obtain the decomposition final value

for Q0 column. It then communicates the Q0 column to all other nodes. Each node

uses the data to update its own columns. If Node 0 stores more columns (2p > 1),

it retains control and computes final values for both R11 and Q1, communicating Q1

to the other nodes. Control switches to Node 1 when the algorithm reaches column

2p. As it finalizes its columns, it communicates them and the algorithm continues,

switching control after every 2p columns. The algorithm terminates once all columns

have been computed, resulting in a Q matrix of size m × n and a R matrix of size

n × n, with Q completely replacing A. Each node maintains 2p columns of Q and

R. By performing the QR decomposition, we can focus our remaining operations

on the much smaller and square R matrix, simplifying communication and reducing

concerns about the structure of the matrix (condition, linear independence, etc.).
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Algorithm 3.3 QR Decomposition
Input: A
Output: [Q,R]

Q← A
R← 0

Node 0 begins:

R00 = ||Q0||2 =
√∑m

i=0 Q0(i)2

Q0 = Q0/R00

Communicate Q0 to other nodes

for Node = 0 : n/2p− 1 do
Node receives Qi column
for k = 2p(Node) : 2p(Node + 1)− 1 do

Rik = QT
i Qk

Qk = Qk −RikQi

if (i + 1 == 2p(Node)) or (i == k) then

Rkk = ||Qk||2 =
√∑m

i=0 Qk(i)2

Qk = Qk/Rkk

Communicate Qk to other nodes
end if

end for
end for
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3.3.2 SVD

The Singular Value Decomposition (SVD) uses R, the smaller matrix, to generate the

components of the pseudoinverse: U , R, and V ; each is a n × n matrix. The SVD

decomposes a matrix, R, such that R = UDV T where D is a diagonal matrix of the

singular values of R, and both U and V are orthogonal basis vectors. We perform a

distributed singular value decomposition (SVD) based on a cyclic Jacobi procedure

for mesh processors outlined by Brent et al.[17] and generalized by Van Loan [95].

Our work utilizes the base building blocks from Brent et al. [17], but introduce a more

general rotation algorithm optimized for column storage of data stored on systems

broadcasting information, such as a sensor network.

Algorithm 3.4 shows the overall column-based computation of the SVD while

Algorithm 3.5 demonstrates the fundamental 2 × 2 lower level block computation.

Algorithm 3.6 outlines the rotation step necessary between iterations. Because the

SVD step occurs after the QR decomposition, we ensure the input matrix, R, is square

with dimensions n×n. If n is odd, the algorithm pads the matrix with a column and

row of zeros to make it even. A maximum of n/2 nodes can compute the SVD where

each node contains at least two columns of the matrix; if less nodes exist, each node

contains an even number of columns. For purposes of explaining the algorithm, we

define the node as storing a n× 2 column block. For purposes of analysis, we define

all algorithms as storing a n× 2p column block.

This algorithm works on a block level with the smallest block being a 2 × 2

matrix. Each node computes its diagonal block of the matrix, computing the [c1 s1]

and [c2 s2] values needed to diagonalize the block. Nodes transmit these values so all

nodes have full vectors; these vectors scale the non-diagonal blocks of the columns, the

U matrix, and the V matrix. Once these computations complete, the node rotates

the data values according to a defined method spelled out in Algorithm 3.6. As

Brent et al. used a mesh of processors with each storing a 2 × 2 block, they defined

the rotation as partly built into the hardware architecture and limited by the mesh

communication structure. As we store columns of data, we redefined this algorithm to
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Algorithm 3.4 Singular Value Decomposition
Input: R
Output: [U,R, V ]

U← I
V← I
Node Pj ← [R2j−1, R2j] where each Rj is a n× 2 column block
StopCondition = eps ∗ off(R)
while off(R) > StopCondition do

Each node computes diagonal subproblem (i = j) according to Algorithm 3.5:[
R′

2i−1,2i−1 0
0 R′

2i,2i

]
=

[
c1
i s1

i

−s1
i c1

i

]T [
R2i−1,2i−1 R2i−1,2i

R2i,2i−1 R2i,2j

] [
c2
i s2

i

−s2
i c2

i

]

Transmit [c1
i s1

i ] and [c2
i s2

i ]

Compute other column blocks (i 6= j), U, and V:[
R′

2i−1,2j−1 R′
2i−1,2j

R′
2i,2j−1 R′

2j,2j

]
=

[
c1
i s1

i

−s1
i c1

i

]T [
R2i−1,2j−1 R2i−1,2j

R2i,2j−1 R2i,2j

] [
c2
j s2

j

−s2
j c2

j

]
[

U ′
2i−1,2j−1 U ′

2i−1,2j

U ′
2i,2j−1 U ′

2j,2j

]
=

[
U2i−1,2j−1 U2i−1,2j

U2i,2j−1 U2i,2j

] [
c1
j s1

j

−s1
j c1

j

]
[

V ′
2i−1,2j−1 V ′

2i−1,2j

V ′
2i,2j−1 V ′

2j,2j

]
=

[
V2i−1,2j−1 V2i−1,2j

V2i,2j−1 V2i,2j

] [
c2
j s2

j

−s2
j c2

j

]

Rotate columns among nodes according to Algorithm 3.6
Transmit, Receive, and Load columns for next iteration:
if j = 1 then

Transmit R′
2j, U ′

2j, and V ′
2j with index 2j − 1

Receive R′
2j+2, U ′

2j+2, and V ′
2j+2

[R2j−1, R2j] = [R′
2j−1, R

′
2j+2]

[U2j−1, U2j] = [U ′
2j−1, U

′
2j+2]

[V2j−1, V2j] = [V ′
2j−1, V

′
2j+2]

else if j = n then
Transmit R′

2j−1, U ′
2j−1, and V ′

2j−1 with index 2j
Receive R′

2j−2, U ′
2j−2, and V ′

2j−2

[R2j−1, R2j] = [R′
2j−2, R

′
2j]

[U2j−1, U2j] = [U ′
2j−2, U

′
2j]

[V2j−1, V2j] = [V ′
2j−2, V

′
2j]

else
Transmit R′

2j−1, R′
2j, U ′

2j−1, U ′
2j, V ′

2j−1, and V ′
2j

Receive R′
2j−3, R′

2j+2, U ′
2j−3, U ′

2j+2, V ′
2j−3, and V ′

2j+2

[R2j−1, R2j] = [R′
2j−3, R

′
2j+2]

[U2j−1, U2j] = [U ′
2j−3, U

′
2j+2]

[V2j−1, V2j] = [V ′
2j−3, V

′
2j+2]

end if
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Algorithm 3.5 2× 2 Subproblem Singular Value Decomposition
Input: R2i−1:i,2j−1:j

Output: [c1, c2, s1, s2]

w = R2i−1,2j−1; x = R2i−1,2j; y = R2i,2j−1; z = R2i,2j

flag = 0;
if (y == 0) and (z == 0) then

y = x; x = 0;
flag = 1;

end if
u1 = w + z;
u2 = x− y;
if |u2| <= eps ∗ |u1| then

c0 = 1; s0 = 0;
else

ρ = u1/u2;
s0 = sign(ρ)/

√
1 + ρ2;

c0 = s0ρ;
end if
u1 = s0(x + y) + c0(z − w);
u2 = 2(c0x− s0z);
if |u2| <= eps ∗ |u1| then

c2 = 1; s2 = 0;
else

ρ2 = u1/u2;

t2 = sign(ρ2)/(|ρ2|+
√

1 + ρ2
2);

c2 = 1/
√

1 + t22;
s2 = c2t2;

end if
c1 = c2c0 − s2s0;
s1 = s2c0 + c2s0;
R′

2i−1,2j−1 = c1(wc2 − xs2)− s1(yc2 − zs2);
R′

2i,2j = s1(ws2 + xc2) + c1(ys2 + zc2);
if flag == 1 then

c2 = c1; s2 = s1;
c1 = 1; s1 = 0;

end if
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Algorithm 3.6 Rotation for Singular Value Decomposition

Each node computes following for all columns:
RT1,j = R′

1,j

UT1,j = U ′
1,j

V T1,j = V ′
1,j

index← 1
s1← 3
s2← 5
for i = 2 : n do

index = index + s1
RTi,j = R′

index,j

UTi,j = U ′
index,j

V Ti,j = V ′
index,j

s1 = s1 + s2(−1)i−1

if i >= n− 2 then
if s2 < 8 then

s2 = s2− 2
else

s2 = s2− 3
end if

else
if s2 < 8 then

s2 = s2 + 1
end if

end if
end for
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better run on our planned system with no hardware requirements and optimized for

broadcast communication allowed by sensor networks. Finally, nodes transmit these

values and store them, in rotated form, back in the matrix for the next iteration.

The stopping condition for this algorithm could be either: (1) a fixed number of

iterations or (2) a full reduction of the matrix to diagonal form, identified when the l2

norm of the non-diagonal values is less than some fixed threshold such as the machine

numeric accuracy, as shown in Algorithm 3.4. With the latter condition, each node

can compute the value for its columns, transmit that data along with the rotation

data, and compute when to stop in a decentralized manner.

3.3.3 Pseudoinverse Step

Once we complete the SVD, we combine the various sub-matrices to achieve our

pseudoinverse, computing A+ = V R−1(QU)T . The resultant A+ matrix is distributed

across the network with each node storing 2p rows. This algorithm is our own novel

development, optimized for the sensor network scenario of broadcast communication

and pre-distributed matrices.

Algorithm 3.7 shows the steps necessary to perform the matrix multiplications,

transform, and square inverse in a distributed fashion. At the beginning of the al-

gorithm, each node has 2p columns of Q, 2p columns of U , 2p columns of V , and

2p columns of R (which is diagonal so only 2p values). In the algorithm, each node

performs local multiplications on its column blocks before communicating the results

to minimize the communication and ensure that no one needs to store an entire m×n

matrix.

Each node begins by computing its local portion of V R−1, which requires no com-

munication, followed by the local computation of the modified V by U . With this

step, each node has a component of the final matrix; the addition of all components

will provide V R−1UT . Before performing the addition, at this point midway through

the algorithm, nodes switch from maintaining 2p columns to 2p rows to reduce stor-

age and communication costs. Each node stores a row block of its component matrix,

transmits the rest, and adds the other components to finalize the matrix multiplica-
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tion. To multiply by QT , each node performs a local multiplication by its portion of

Q, transmits this Q, and updates its row block. By the end of the algorithm, each

node has 2p rows of A+.

Algorithm 3.7 Pseudoinverse Combination

Input: [U,R, V,Q]
Output: A+

Node i computes the following:
Vi = ViR

−1
i

for y = 1 : n do
for z = 1 : n do

tyz =
∑2p

w=1 VywUzw

end for
end for
Node i stores row block ti of size 2p× n and transmits the rest of t
Upon receipt of values si corresponding to the same block as ti, ti = ti + si

for y = 1 : 2p do
for z = 1 : m do

ayz =
∑2p

w=1 tywQzw

end for
end for
Node i transmits Qi

for Each row y received do
for z = 1 : m do

ayz = ayz +
∑2p

w=1 tywQzw

end for
end for
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3.3.4 Completeness

We now verify that our distributed algorithms provide the same results as the cen-

tralized forms.

QR Decomposition

Theorem 3.3.1 Our distributed QR Decomposition, Algorithm 3.3, provides the same

results as the centralized QR decomposition.

Proof To prove this, we show that Qd
ij = Qc

ij and Rd
ij = Rc

ij.

We define i ∈ (0, m) and j ∈ (0, n). For simplicity, N = n nodes exist in the

system, such that column j is stored on Node j.

To prove Rd
ij = Rc

ij, we consider two cases: i = j and i 6= j. For the condition

where i = j, Rd
jj is computed using the l2 norm of Qd

j , which exists within Node j.

This is exactly the same step as computing Rc
jj. For the condition where i 6= j,

computing Rd
ij involves a vector multiply of the Qd

j column stored in Node j and the

Qd
i column received from Node i. To compute Rc

ij involves the same vector multiply,

but both columns, Qc
j and Qc

i , exist within the centralized node.

For the Q case, Qd
ij is the result of subtracting the scaled Qd

k columns for all

k < j; these columns are received from the other nodes storing them. The final step

is a normalization with Rd
jj, which is stored locally. The centralized case also per-

forms the same steps, again with all columns stored centrally and no communication

requirements.

SVD

Theorem 3.3.2 Our distributed SVD, Algorithm 3.4, provides the same results as

the centralized SVD.

Proof Algorithm 3.5 is shown and proven by Brent et al. [17] while Algorithm 3.4

originates in Brent et al. with clarification from Van Loan [95]. The difference we

introduce is Algorithm 3.6, which we must show provides equivalent results to that

introduced by Brent et al..
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For simplicity, let us fix the array size to 8 × 8. The rotation is equal for R, U ,

and V ; we will focus on R. The initial R is:

r11 r12 r13 r14 r15 r16 r17 r18

r21 r22 r23 r24 r25 r26 r27 r28

r31 r32 r33 r34 r35 r36 r37 r38

r41 r42 r43 r44 r45 r46 r47 r48

r51 r52 r53 r54 r55 r56 r57 r58

r61 r62 r63 r64 r65 r66 r67 r68

r71 r72 r73 r74 r75 r76 r77 r78

r81 r82 r83 r84 r85 r86 r87 r88


Brent et al.would split this among a processor array of 4, arranged in a 2× 2 array:

r11 r12 r13 r14 r15 r16 r17 r18

r21 r22 r23 r24 r25 r26 r27 r28

r31 r32 r33 r34 r35 r36 r37 r38

r41 r42 r43 r44 r45 r46 r47 r48

r51 r52 r53 r54 r55 r56 r57 r58

r61 r62 r63 r64 r65 r66 r67 r68

r71 r72 r73 r74 r75 r76 r77 r78

r81 r82 r83 r84 r85 r86 r87 r88


The rotation step occurs in the hardware with fixed interconnects between processors.

After this hardware based rotation, the array becomes:

r11 r14 r12 r16 r13 r18 r15 r17

r41 r44 r42 r46 r43 r48 r45 r47

r21 r24 r22 r26 r23 r28 r25 r27

r61 r64 r62 r66 r63 r68 r65 r67

r31 r34 r32 r36 r33 r38 r35 r37

r81 r84 r82 r86 r83 r88 r85 r87

r51 r54 r52 r56 r53 r58 r55 r57

r71 r74 r72 r76 r73 r78 r75 r77


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Our algorithm distributes the matrix by columns across the nodes; for this example,

we assume 4 nodes, giving:

r11 r12 r13 r14 r15 r16 r17 r18

r21 r22 r23 r24 r25 r26 r27 r28

r31 r32 r33 r34 r35 r36 r37 r38

r41 r42 r43 r44 r45 r46 r47 r48

r51 r52 r53 r54 r55 r56 r57 r58

r61 r62 r63 r64 r65 r66 r67 r68

r71 r72 r73 r74 r75 r76 r77 r78

r81 r82 r83 r84 r85 r86 r87 r88


We first rotate within each column, resulting in an array:

r11 r12 r13 r14 r15 r16 r17 r18

r41 r42 r43 r44 r45 r46 r47 r48

r21 r22 r23 r24 r25 r26 r27 r28

r61 r62 r63 r64 r65 r66 r67 r68

r31 r32 r33 r34 r35 r36 r37 r38

r81 r82 r83 r84 r85 r86 r87 r88

r51 r52 r53 r54 r55 r56 r57 r58

r71 r82 r73 r74 r75 r76 r77 r78


Finally, we transmit the columns and each node selectively replaces its columns so

that the array becomes:

r11 r14 r12 r16 r13 r17 r15 r17

r41 r44 r42 r46 r43 r47 r45 r47

r21 r24 r22 r26 r23 r27 r25 r27

r61 r64 r62 r66 r63 r67 r65 r67

r31 r34 r32 r36 r33 r37 r35 r37

r81 r84 r82 r86 r83 r87 r85 r87

r51 r54 r52 r56 r53 r57 r55 r57

r71 r84 r72 r76 r73 r77 r75 r77


This matches the result of Brent et al. as we needed to show.
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Pseudoinverse Step

Theorem 3.3.3 Our distributed pseudoinverse step, Algorithm 3.7, provides the same

results as the centralized pseudoinverse step.

Proof To prove this, we show that A+d
ij = A+c

ij .

Proof follows similar lines as for Theorem 3.3.1. All mathematical operations

are identical for both algorithms; differences arise through distributed storage and

communication.

3.3.5 Analysis
We would like to analyze each of the main portions of the distributed calibration

algorithm, focusing on requirements for computation, memory, and communication.

As we defined it, the original matrix A is m × n with each node storing a column

blocks of width 2p.

Computation

In examining the computational requirements, we divide operations into: multi-

ply/divide, add/subtract, and exponentiation (such as square or square root). Ta-

ble 3.1 shows the results for each of the three primary algorithms.

With the SVD, we assume the worst case scenario with the rotation step, assuming

that n is greater than or equal to 8. S defines the number of iterations necessary for

convergence to a threshold-based stopping condition, which is O(nc) where 1 ≤ c ≤ 2.

Surprisingly, the SVD requires the least operations, O(Sn) compared to O(n2m)

for the QR and O(pnm) for the PI combination. This results from the matrix sizes

necessary for the other two algorithms and reflects the reasoning behind the QR,

which reduces the computational requirements of the SVD.

Algorithm ×/÷ +/− xy

QR
Decomposition

(n2 + n)m n2−n
2

(m− 1)2 + n(m− 1) 1

SVD S(17n− 5) S(10n + 6) S(n + 5)
Pseudoinverse
Combination

2pn2 + 2pn + 2pmn (4p− 1)n2 − 4p2n + 2pmn− 2pm 0

Table 3.1: Computation Analysis Results
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Memory

For the memory requirements, we only examine the matrix needs and ignore tem-

porary variables needed for things such as counters and indices. We make no as-

sumptions on the space available but outline the requirements for each algorithm.

Depending on the implementation and whether there is a need for the original A ma-

trix, the QR computation could use the original matrix for storing Q, which reduces

its footprint. If the system needs A, requiring a second matrix space, the size of m

defines whether the system needs a more complicated memory system to store every-

thing. The SVD does not touch the Q matrix and, therefore, uses the smaller n for

defining its space requirements. In most cases, this will allow the entire SVD compu-

tation to occur in on-chip memory. The pseudoinverse combination step does require

the Q matrix, which may require more complicated memory systems dependent on

m.

Algorithm Results Storage Temporary Storage
QR Decomposition Q=m× 2p None

R=n× 2p
SVD R=n× 2p n× 2p

U=n× 2p n× 2p
V=n× 2p n× 2p

Pseudoinverse Combination A+ = 2p×m n× n

Table 3.2: Memory Analysis Results

Communication

Communication analysis explores the messages necessary between nodes. We do not

include overhead involved in the messaging protocol and make no assumptions about

the protocol; we only define the number of values transmitted for each computation.

If m >> n, the QR will dominate communications with its transmissions of O(pm)

values. Otherwise, the SVD computation will dominate as each iteration requires

O(np) values transmitted.

3.4 Randomization and Dimension Reduction

In defining our algorithms for distributed computation of the pseudoinverse, we made

no assumptions about the underlying matrix except that m >= n. However, con-
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Algorithm Messages
QR Decomposition 2pm Q values
SVD S messages of: 4 c/s values

if i 6= 1 : 4np R, U, and V values
if i = 1 : 2np R, U, and V values

Pseudoinverse Combination (n− 2p)n temporary values, 2pn Q values

Table 3.3: Communication Analysis Results

sidering the application of the pseudoinverse to linear regression and similar overde-

termined problems, the matrix could be larger than available memory or reasonable

communication. In this case, we want to consider additional steps to reduce the size

of the matrix. We need to do so in a way that preserves the distributed computation,

meaning that the algorithm needs to preserve the data structure while not requiring

significant additional communication. This leads us to randomized algorithms where

we can obtain consistent results by initializing all nodes to the same random seed

and still reduce the training set without incorporating unacceptable errors into the

calibration step.

We specifically examine a random algorithm described by Drineas et al.[30]. This

theoretical approach to speeding least squares approximation introduces a set of ran-

dom operations to shrink the A matrix and b vector before computing the coefficients

(see Algorithm 3.8).

However this is a centralized approach and still more complicated than our mi-

croprocessors can compute. We can develop a distributed version of this with each

node using the same random seed as Algorithm 3.9 depicts. A node, upon measuring

a new data value, determines in an online fashion if the associated matrix row will

remain in the scaled-down matrix and then performs the necessary transformations

on that row. These transformations, based on the order of the matrix multiplications,

operate on columns of A and can occur independently on each node. This provides

a randomly scaled matrix distributed in a column-wise fashion across the nodes of

the network where each node can maintain the columns within internal processor

memory, the form our distributed pseudoinverse algorithm requires.
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Algorithm 3.8 Random Sampling

Input: [A, b]
Output: xopt

r = O(dlog(n)log(dlog(n)))/ε

t = random(0, 1)
if (t ≤ r/n) then

S ′
ii =

√
n/r

S∀i,jsti6=j = 0
else

S ′ = 0
end if

j ← 0
for i = 1 : length(S ′) do

if (S ′
i 6= 0) then

Sj ← S ′
i

j = j + 1
end if

end for

if length(S) > 10r then
Abort

end if

H ← normalized Hadamard transform matrix of size n

t = random(0, 1)
if (t ≤ 0.5) then

Dii = 0.5
else

Dii = −0.5
end if

H ← HD
xopt ← (SHA)+SHb
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Algorithm 3.9 Distributed Random Sampling
Output: A vector

Measure aj

if random(0, 1) ≤ r/n then
Keep Row
if i == j then . Value for our row

Sii =
√

n/r
end if
if (random(0, 1) ≤ 0.5) then . Scale by D

if i == j then
aj = 0.5aj

end if
else

if i == j then
aj = −0.5aj

end if
end if

else
Discard Row

end if

if Calibration Starts then
H ← Column j of normalized Hadamard transform matrix of size n

H = SiiH
A = HA

end if
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3.5 Pseudoinverse Computation for Special Cases

We can optimize our pseudoinverse calibration computation for two different scenar-

ios: (1) computation of a linear regression model and (2) computation of a matrix

where n is small (at the point where maintaining several n × n matrices is feasible

within a single microprocessor).

3.5.1 Linear Regression

If the pseudoinverse is used for calibration of a linear regression model, we can reduce

much of the computation and communication by multiplying Q by b before other

operations on Q. In this scenario, we compute xopt = V R−1(QU)T b. The addition

of the b allows us to modify Algorithm 3.7 to that shown in Algorithm 3.10. Each

node stores the same data as described in Section 3.3.3 along with b, a vector of

length m. Algorithm 3.7 multiplied our temporary row block by local versions of Q,

communicated the complete Q row column, and then finished computation of the row

block of A+. Instead we can first multiply the local row column of Q by the local bi

value, reducing it to a single value. Each node communicates its single value and can

store the complete Qbi vector, which it then uses to multiply by the temporary row

block to compute the xopt. At the end of the algorithm, each node has 2p values of

xopt.

Comparing this to the original pseudoinverse, we see the analysis results shown

in Tables 3.4, 3.5, and 3.6. This change reduces computation by 2pm(n − 1) multi-

ply/divides and 2pn(m−1)−2p(m−2) add/subtract operations, memory storage by

a factor of m in results storage, and communication by n Q values; the latter being

the most important as it uses the most energy and also provides the highest potential

for failure.
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Algorithm 3.10 Pseudoinverse Combination for Linear Regression

Input: [U,R, V,Q, b]
Output: xopt

Node i computes the following:
Vi = ViR

−
i 1

for y = 1 : n do
for z = 1 : n do

tyz =
∑2p

w=1 VywUzw

end for
end for
Node i stores row block ti of size 2p× n and transmits the rest of t
Upon receipt of values si corresponding to the same block as ti, ti = ti + si

qi = QT
i bi

Each node transmits qi after which every node has a vector of length n
xopt = tiqi

Algorithm ×/÷ +/− xy

Pseudoinverse 2pn2 + 2pn + 2pmn (4p− 1)n2 − 4p2n + 2pmn− 2pm 0
Combination
Linear 2pn2 + 4pn + 2pm (4p− 1)n2 + (2p− 4p2)n− 4p + 2pm 0
Regression

Table 3.4: Pseudoinverse and Linear Regression: Computation Analysis Results

Algorithm Results Storage Temporary Storage
Pseudoinverse Combination A+ = 2p×m n× n
Linear Regression xopt = 2p× 1 n× n

Table 3.5: Pseudoinverse and Linear Regression: Memory Analysis Results

Algorithm Messages
Pseudoinverse Combination (n− 2p)n temporary values, 2pn Q values
Linear Regression (n− 2p)n temporary values, 2p Q values

Table 3.6: Pseudoinverse and Linear Regression: Communication Analysis Results
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3.5.2 Centralized SVD

With sufficiently small n, we can consider running the SVD centrally on a node in

order to reduce communication compared to distributed. The basic 2×2 computation

remains the same with the rotation differing in that no communication occurs. Instead

of column computation, we simplify the rotation to a row-based scheme outlined in

Algorithm 3.11. This simplifies the computation to the original centralized form

developed by Golub [40].

Tables 3.7, 3.8, and 3.9 outline the differences between the two algorithms. As

expected, the two trade-off between communication and local computation. Scenarios

where a matrix of size n× n fits in on-chip memory and communication is expensive

(mostly likely from an energy standpoint) lend themselves to centralized SVD compu-

tation while cheap communication or too large an n require distributed. Depending

on the number of nodes and size of n, memory usage could remain almost the same

due to the reuse of the temporary data structure for all three matrices.

Algorithm ×/÷ +/− xy

SVD S(17n− 5) S(10n + 6) S(n + 5)
Centralized SVD S(20n3 + 8n2 − 28n) S(8n3 + 10n2 − 18n) S(6n2 − 6n)

Table 3.7: Centralized SVD: Computation Analysis Results

Algorithm Results Storage Temporary Storage
SVD R=n× 2p n× 2p

U=n× 2p n× 2p
V=n× 2p n× 2p

Centralized SVD R=n× n n× n
U=n× n
V=n× n

Table 3.8: Centralized SVD: Memory Analysis Results

Algorithm Messages
SVD S messages of: 4 c/s values

if i 6= 1 : 4np R, U, and V values
if i = 1 : 2np R, U, and V values

Centralized SVD None

Table 3.9: Centralized SVD: Communication Analysis Results
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Algorithm 3.11 Centralized Singular Value Decomposition
Input: R
Output: [U,R, V ]

StopCondition = eps ∗ off(R)
while off(R) > StopCondition do

for i = 1 : n− 1 do
for j = i + 1 : n do

w = Ri,i; x = Ri,j; y = Rj,i; z = Rj,j

Compute subproblem according to Algorithm 3.5

Normalize results:
if abs(d2) > abs(d1) then

τ = c1; c1 = −s1; s1 = τ
τ = c2; c2 = −s2; s2 = τ
τ = d1; d1 = d2; d2 = τ

end if
κ = 1
if d1 < 0 then

d1 = −d1; c1 = −c1; s1 = −s1; κ = −κ
end if
if d2 < 0 then

d2 = −d2; κ = −κ
end if

τ = R
for k = 1 : n do

τk,i = Rk,ic2 −Rk,js2

τk,j = Rk,is2 + Rk,jc2

end for
R = τ
for k = 1 : n do

Ri,k = τi,kc1 − τj,ks1

Rj,k = τi,ks1κ + τj,kc1κ
end for
τ = U
for k = 1 : n do

Uk,i = τk,ic1 − τk,js1

Uk,j = τk,is1κ + τk,jc1κ
end for
τ = V
for k = 1 : n do

Vk,i = τk,ic2 − τk,js2

Vk,j = τk,is2 + τk,jc2

end for
end for

end for
end while
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3.5.3 Semi-Distributed Linear Regression

If we compute the SVD centrally, we also should consider a centralized computation

of the pseudoinverse combination algorithm as the R, U , and V matrices will only

exist on one node. In the case where we calibrate a linear regression model, this

results in Algorithm 3.12. We can split the computation into a centralized portion

computed by Node 0 and a distributed portion computed by all nodes. Node 0

computed the centralized SVD so has matrices U , V , and R (which is diagonal so

only n values). It first computes V R−1UT , resulting in a n × n matrix. Knowing

the final multiplication by b allows us to optimize the computation by multiplying

QT by b before communicating these values. Each node has p columns of Q and

2p values of b; the transpose allows each node to compute QT b (Qb would require

storing rows and additional communication to reshuffle Q after Algorithm 3.3). Nodes

then communicate their portion to Node 0, which performs the last multiplication

step to compute the weighting coefficients. The system completes calibration by

communicating these values to those nodes participating in the distributed prediction.

Algorithm 3.12 Semi-Distributed Pseudoinverse Combination for Linear Regression

Input: [U,R, V,Q, b]
Output: xopt

Central node computes the following:
V = V R−1
T = V UT

Each node i computes the following:
qi = QT

i bi

Each node transmits qi with the central node storing the result vector of length n

xopt = T qi

Tables 3.10, 3.11, and 3.12 compare this version to the distributed linear regres-

sion from Algorithm 3.10 and the original distributed pseudoinverse combination

Algorithm 3.7. Compared to the distributed linear regression form (Algorithm 3.10),

this change increases computation by a factor of n, while decreasing memory storage
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by a factor of n2 and communication by a factor of n2. In cases where the communi-

cation uses significant energy and/or the on-chip memory is insufficient, centralizing

the pseudoinverse significantly reduces both.

Algorithm ×/÷ +/− xy

Pseudoinverse 2pn2 + 2pn + 2pmn (4p− 1)n2 − 4p2n + 2pmn− 2pm 0
Combination
Linear 2pn2 + 4pn + 2pm (4p− 1)n2 + (2p− 4p2)n− 4p + 2pm 0
Regression
Semi- n3 + 2n2 + 2pm n3 − n + 2p(m− 1) 0
Distributed

Table 3.10: Semi-Distributed Linear Regression: Computation Analysis Results

Algorithm Results Storage Temporary Storage
Pseudoinverse Combination A+ = 2p×m n× n
Linear Regression xopt = 2p× 1 n× n
Semi-Distributed xopt = n× 1 None

Table 3.11: Semi-Distributed Linear Regression: Memory Analysis Results

Algorithm Messages
Pseudoinverse Combination (n− 2p)n temporary values, 2pn Q values
Linear Regression (n− 2p)n temporary values, 2p Q values
Semi-Distributed 2p Q values

Table 3.12: Semi-Distributed Linear Regression: Communication Analysis Results

3.6 Analysis: Understanding and Intuition

We introduced a number of algorithms and analyzed each in terms of computation,

memory, and communication. To better understand this analysis from a practical

standpoint, Table 3.13 outlines the approximate values for these categories for a

number of array sizes. Table 3.14 shows the results for the overall algorithms, both

the pseudoinverse computation of A+ and the linear regression computation of xopt.

Each number for computation, memory, and communication is a single value with no

assumptions made about the number of bytes needed to represent the value. For both

tables, we use S = 10 and p = 1. The latter implies that each node stores 2 columns

of the matrices, requiring, for example, 5 nodes for the 10 column case, which is a

reasonable number for a sensor network.
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Algorithm Matrix Size Computation Memory Communication
Distributed 10× 10 4836 40 20
QR 100× 10 453036 220 200

100× 20 1906171 240 200
1000× 10 45030036 2020 2000

Centralized 10× 10 48360 200 0
QR 100× 10 4530360 10100 0

100× 20 38123420 10400 0
1000× 10 450300360 1000100 0

Distributed 10× 10 2860 120 240
SVD 100× 10 2860 120 240

100× 20 5660 240 440
1000× 10 2860 120 240

Centralized 10× 10 298800 400 0
SVD 100× 10 298800 400 0

100× 20 2325600 1600 0
1000× 10 298800 400 0

Distributed 10× 10 860 120 100
Pseudoinverse 100× 10 4280 300 100
Combination 100× 20 9760 600 400

1000× 10 38480 2100 100
Centralized 10× 10 3900 300 0
Pseudoinverse 100× 10 38100 2100 0
Combination 100× 20 156400 4400 0

1000× 10 380100 20100 0
Distributed 10× 10 556 102 82
Linear 100× 10 916 102 82
Regression 100× 20 2436 402 362

1000× 10 4516 102 82
Semi- 10× 10 2228 10 2
Distributed 100× 10 2588 10 2
Linear 100× 20 17178 20 2
Regression 1000× 10 6188 10 2
Centralized 10× 10 4090 310 0
Linear 100× 10 40090 2110 0
Regression 100× 20 160380 4420 0

1000× 10 400090 20110 0

Table 3.13: Intuition of Analysis Results for Each Algorithm
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Algorithm Matrix Size Computation Memory Communication
Distributed 10× 10 8556 280 360
Pseudoinverse 100× 10 460176 640 540

100× 20 1921591 1080 1040
1000× 10 45071376 4240 2340

Centralized 10× 10 351060 900 0
Pseudoinverse 100× 10 4867260 12600 0

100× 20 40605420 16400 0
1000× 10 450979260 1020600 0

Distributed 10× 10 8252 262 360
Linear 100× 10 456812 442 540
Regression 100× 20 1914267 882 1040
Model 1000× 10 45037412 2242 2340
Semi- 10× 10 305864 450 22
Distributed 100× 10 754424 630 202
Linear 100× 20 4248949 1860 202
Regression 1000× 10 45335024 2430 2002
Centralized 10× 10 351250 910 0
Linear 100× 10 4869250 12610 0
Regression 100× 20 40609400 16420 0

1000× 10 450999250 1020610 0

Table 3.14: Intuition of Analysis Results for Overall Algorithm

In examining these tables, we see a clear trade-off between computation, memory,

and communication. Centralizing the algorithm results in increased computation,

increased memory, and decreased communication. Computation increases by an order

of magnitude when we centralize the algorithms, while memory increases by one to

two orders of magnitude depending on the algorithm. This memory increase exceeds

the storage capabilities of a sensor node even for a small matrix such as 100× 10.

Thus, ensuring the algorithm can run on a sensor network requires distributing the

algorithm, even though this does have a communication cost.

Additionally, the SVD and semi-distributed linear regression are especially sensi-

tive to increased n values, making it important to keep this number small. However,

the overall computation is dominated by the QR, which depends on m. Distributing

the QR and semi-distributing the linear regression algorithms have a larger impact

due to the m value than distributing the SVD, increasing the importance of ensuring

these algorithms function on a sensor network compared to the distributed SVD (in

standard cases where n remains small).
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3.7 Testing: Simulation and Implementation

With the algorithm outlined and analyzed, we can test it through simulation and

implementation. First we use Matlab to generate random data and simulate the

algorithm to verify functionality. We next explore two side issues: experimentally

verifying the SVD stopping condition and exploring the random sampling approach

to shrinking the data set. Finally we implement the algorithm on our sensor network.

3.7.1 Simulation

We use Matlab to verify the functionality of the algorithms. We start by generating

random matrices of a variety of sizes where entry values range from −1 to 1. With the

A matrix generated, we generate a random vector for xopt and multiply it with A to

compute b. This provides all the pieces needed for testing. We first examine the SVD

portion of the algorithm as it is the most complicated, followed by the pseudoinverse,

and ending with the full linear regression computation.

Distributed SVD

For the SVD, we run 100 iterations for a variety of n values. To verify functionality,

we compute the root mean square (RMS) error of the difference between the original

A matrix and the A matrix generated by the SVD. We compare these errors for the

distributed SVD algorithm (Alg. 3.4) with the centralized SVD algorithm (Alg. 3.11)

and the internal Matlab SVD. Table 3.15 shows the results, which demonstrate that

Algorithms 3.4 and 3.11 do compute the proper SVD result as all three generate errors

within 10 times the numeric accuracy of the computer.

n
Algorithm 4 5 6 8 32 64 100
Dist. SVD 1.01e-15 1.32e-15 1.86e-15 2.69e-15 1.28e-14 2.65e-14 4.29e-14
Cent. SVD 1.11e-15 1.32e-15 1.90e-15 2.60e-15 1.26e-14 2.63e-14 4.21e-14
Matlab 8.21e-16 9.22e-16 1.26e-15 1.64e-15 4.25e-15 5.81e-15 7.49e-15

Table 3.15: SVD Test Results
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Distributed Pseudoinverse

We implement Algorithm 3.2 in Matlab and test with 100 iterations over a variety

of m × n values. As we do not have an original matrix to compare to, we use the

internal Matlab pseudoinverse and compute the RMS error between that and the A+

computed by the algorithm. Table 3.16 displays the results. Again the results are

within an order of magnitude of the numeric accuracy of the computer.

m × n
Algorithm 10× 4 10× 6 11× 6 100× 4 100× 20 1000× 20

Our Pseudoinverse 5.12e-16 8.49e-16 6.72e-16 9.97e-17 1.44e-16 3.67e-17

Table 3.16: Pseudoinverse Test Results

Distributed Multiple Linear Regression

In some instances we use the distributed pseudoinverse for multiple linear regression.

We implement this case of Algorithm 3.2 where Algorithm 3.10 replaces Algorithm 3.7.

To evaluate this functionality, we randomly generate a coefficient vector, xopt, in

addition to our A matrix; multiplying the two provides our b vector. We compute the

RMS error between the original xopt and our computation as well as xopt and Matlab’s

computation, giving us the results shown in Table 3.17.

m × n
Algorithm 10× 4 10× 6 11× 6 100× 4 100× 20 1000×20
Our Linear 2.36e-16 4.72e-16 4.65e-16 2.69e-16 8.35e-16 9.92e-16
Regression
Matlab 3.52e-16 5.93e-16 5.75e-16 4.86e-16 1.01e-15 1.15e-15

Table 3.17: Linear Regression Test Results

3.7.2 SVD Stopping Condition

In this section we outline the experimental bounds on the SVD stopping condition.

We use our randomly generated matrices from before and now monitor the average

number of iterations needed to reach the condition that off(R) > eps ∗ off(R) or

1 > eps, where eps is the numerical accuracy of the computer’s float representation.

Table 3.18 shows the results.
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n
Algorithm 4 5 6 8 16 32 64 100
Dist. SVD 10.9 22.1 23.7 37.6 97.2 231.5 533.4 892.5

Table 3.18: SVD Stopping Condition Test Results

These numbers clearly demonstrate the need for reducing the size of the matrix

upon which we compute the SVD, strengthening our argument for first computing

the QR Decomposition. Since the QR generates a matrix of size n× n to input into

the SVD and, in the majority of applications, n will be small (on the order of 5-20),

the SVD can complete in a reasonable time on a sensor network.

3.7.3 Random Sampling

We now explore the random scaling algorithms, Algorithms 3.8 and 3.9, introduced

in Section 3.4 and see if they provide similar results to the original results despite

the smaller matrix. To determine the necessity of all the transforms involved in

the random scaling, we also compare the algorithm to simpler methods: randomly

choosing with no additional transformations and choosing every nth row. To test

this, we cannot use a random data set as random sampling relies on some connections

between the data; additionally, analyzing the effects of randomly sampling random

data most likely will provide a bad test case. Instead, we use an existing data set from

a sensor network in Okalahoma. This data set consists of 7 years of data containing

river flow, rainfall, and air temperature from the Blue River [68, 93] (we also utilize

this data set in Chapter 4). Table 3.19 shows our results comparing these values. In

this test, we fixed all model parameters except for the amount of data used by each

method.

Our metrics are the modified correlation coefficient, false positive count, and false

negative count (from Section 4.1). Examining the results, for the modified correlation

coefficient and false negative count, the random algorithms all work about equally

well, and as well as using all the data. For the random algorithms compared to using

all the data, the difference appears in the false positives with the random algorithms

generating far more false positives than using all the data. This means we predict
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Method Modified
Correlation
Coefficient

False
Positives

False
Negatives

Fraction of Data Used 0.2 0.6 1 0.2 0.6 1 0.2 0.6 1
All Data 0.484 58 13
Random Sampling 0.486 0.484 0.484 67.8 58 58 12.8 13 13
Random Choice 0.471 0.485 0.484 83.5 61 58 12.5 13 13
Choose every nth 0.486 0.485 0.484 99 60 58 12 12 13

Table 3.19: Comparison of Random Sampling Methods

events that do not occur, but do not miss any more events than using all the data. If

we need to employ these algorithms to reduce the matrix size, we now know that there

will be an increase in false predictions of events, which we must take into account in

formulating our response to these predictions.

For understanding the similarities between the three random methods, probabilis-

tic analysis of the utility of points chosen sheds some light on the problem. We

consider the utility of a given row where we base utility on the likelihood of a point

indicating a flood. These points best capture the events of interest that lead to

coefficients that allow the prediction to match the observed record and provide a

reasonable modified correlation coefficient value. Without these points, the model

could only capture the very low level values, missing the peaks, and returning a low

correlation coefficient.

To show this probabilistically, we define the following variables:

F = number of points indicating flood

T = total number of data points

c = fraction of points used in any sampling algorithms

For the Drineas algorithm,
r = c ∗ T

P (choose point ∩ point indicates flood) = P (choose point)P (point indicates flood)

= (r/T ) ∗ (F/T )

= c ∗ (F/T )
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For randomly choosing based on c or deterministically choosing every 1/c row,

P (choose point ∩ point indicates flood) = P (choose point)P (point indicates flood)

= c ∗ (F/T )

As the probabilities are identical, all methods are equally likely to choose valuable

rows and, probabilistically, will perform equally well.

3.7.4 Sensor Network Test

We then implemented these algorithms on our sensor network, described in Sec-

tion 4.2. While in this chapter we described many algorithmic variations, we chose to

implement the semi-distributed linear regression algorithm outlined in Section 3.5.3.

We did this because our tests and applications outlined in this thesis all use the linear

regression form for prediction and have a small n value, suggesting this is the best im-

plementation for our sensor network. We suggest potential future applications where

the other variations may make more sense in Chapter 7.

To start, each node knows what columns of the matrix it maintains, granting the

node with column 0 master control of the operation. We will denote each node as

xi where i defines the order each node has in storing the columns of the matrix (i.e.

x0 stores the first set, x1 stores the second, etc...). While for this test we fixed these

values, the nodes could dynamically decide this placement. Each node then runs a

state machine-like control loop defining where it is in the algorithm as demonstrated

in Figure 3.1. It begins with all nodes in the waiting state. To determine when to

start, x0 performs a check of the defined calibration window and proceeds to the

next state if that event window has occurred. Node x0 then transmits a command

to load the data for the start of the algorithm causing all nodes to transition to

the QR algorithm state, where each operates as outlined in Algorithm 3.3. Upon

completion of the QR algorithm, x0 requests the R and the QT
i bi values from the

other nodes and commences the SVD state. The other nodes return to waiting state

at this point. x0 then completes the SVD state and pseudoinverse state, concluding

82



with a transmission of the new coefficients for the prediction algorithm to the other

nodes. All nodes save their portion of the coefficients and x0 transitions to the waiting

state, completing the algorithm. Once the next calibration window occurs, due to

any number of policies such as an increase in the prediction error or a scheduled cyclic

calibration event, the algorithm and state machine begin again.

In addition to implementing these algorithms, we ensured fault detection, cor-

rection, and tolerance in this implementation. The network will handle any of the

following issues:

• All zeros in the first column data

• Q columns received out of order

• Q column not received

• R column not received

• Coefficients all zero

If the data is all zero in the first column, the algorithm will not commence and

will retry later. For errors where columns are not received or arrive out of order,

the algorithm will fail gracefully and retry later. If at the end of the algorithm, the

coefficients received are all zeros, the nodes will not load these values, but maintain

the old values and wait for a retry of the algorithm. Currently there is no data

replication to ensure successful completion of the algorithm upon complete failure of

a node; we leave this for future work, but believe there are many simple policies to

fix this.

We implemented this on three nodes, fixing the input data to test functionality and

repeatability. We set the data matrix at 10×6, with the first two columns containing

actual measurements from the internal temperature sensors and the other four chosen

to be dissimilar from that data and testing the issues arising from having all the same

data in a column. Each node stored 2 columns and ran the algorithm every 5 minutes

for 7 hours and 24 minutes. Over this time, the nodes attempted and successfully

completed the algorithm 75 times, correctly computing the coefficients each time.

There were no errors. We also ran directed tests to verify the fault tolerance and

each time saw clean recovery of the system. Overall these tests successfully proved

the operation of these algorithms on a sensor network.
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Figure 3.1: Control Flow for Master and Other Implementations

84



3.8 Conclusions

In this chapter, we introduce distributed algorithms to compute: QR decomposition,

SVD, matrix pseudoinverse, and multiple linear regression. We also suggest opti-

mizations capitalizing on the structure of the matrix to utilize a centralized SVD and

perform a semi-distributed linear regression. For all of these algorithms, we analyze

the computation, memory, and communication costs, providing alternatives for dif-

ferent problem specifications. We also suggest methods for reducing the size of the

matrix in cases where it cannot be maintained within the processor. Finally, we ver-

ify all the algorithms through simulation and implement them on a sensor network,

again verifying the functionality of the algorithms.
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Chapter 4

River Flood Prediction

In the previous chapter, we discussed the algorithms needed for building a toolbox to

enable a smarter sensor networks. We now utilize those algorithms to predict river

flooding and additionally consider the sensor network architecture issues associated

with such prediction problems (portions of this work were previously published in [6]).

We focus on developing and deploying systems to monitor large environmental events,

and to deal with system constraints required for real-world use of these networks.

Predictive environmental sensor networks require addressing several complicated

design requirements. The network must cope with element exposure, node failures,

limited power, and prolonged use. When the event damages the environment, such

as the case with floods or hurricanes, this further complicates the requirements. This

system must withstand the event, which usually poses a hazard to network survival

especially to those nodes directly measuring the event. Additionally, the system

must operate throughout long disaster-free periods, measure a variety of variables

contributing to the disaster, thereby requiring heterogeneous sensor support, and

communicate over the large geographical regions in which these events occur. Our

specific application is river flooding with a main deployment target for the system of

rural and developing regions. With this application in mind, we can further define

the system requirements. The system must withstand river flooding and the severe

storms causing the floods, monitor and communicate over a 10000 km2 river basin,

predict flooding autonomously, and limit costs allowing feasible implementation of

the system in a developing country.
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Figure 4.1: Blue River 24 Hour Prediction Results on Verification Data Set

We built a sensor network for flood prediction that consists of 9 nodes. Once the

system meets these fundamental sensing design requirements, it then needs to actually

predict the event of interest. Most algorithms for this do not conform easily to a

sensor network, instead focusing on a centralized computing system with significant

processing power and complex system models. This sort of computational power does

not exist everywhere we might want to install such a prediction network, especially

rural and developing countries, nor do we want to install such computing power.

We instead would like to parsimoniously use the computing power on the sensor

network to perform this prediction by adaptively sampling data from the network.

Computing models on a network suggests executing a simplified form of the underlying

physical model and developing distributed implementations. Key to this process

involves eventually connecting the model to the data collection such that the data

drives when and what is measured, how often the model computes predictions, and

when the system communicates predictions; project goals not fully achieved in this

thesis.

In this chapter we present a sensor network architecture and instantiation for

developing regions, a statistical modeling algorithm for river flood prediction, and

evaluations of both. The flood prediction algorithm is based on our regression model

of Chapter 3. It performs significantly better than current hydrology research ver-
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sions at 1 hour predictions and nearly as good as these same research versions when

our model predicts 24 hours and those models predict 1 hour. For prototyping and

validation purposes, we tested this model using 7 years of data from the Blue River

in Oklahoma. We split the 7 years into 1 year of training data and 6 non-intersecting

years of verification data. Figure 4.1 demonstrates our modeling results for a 24 hour

prediction on a portion of the verification data set, showing how our predicted peaks

coincide with the observed reality.

An instantiation of the sensor network was installed on the Charles River at Dover,

Massachusetts in 3 different deployments and gathered 5 weeks of data each time.

This data was later run through our model. Chosen primarily for practicality reasons

and speed of prototyping, the Charles encompasses a basin of 1000 km2, only one

order of magnitude less than our proposed basin, which is important as it shares time

scale characteristics regarding hydrological rates of change with our proposed basin to

which even smaller basins do not compare. It also provides support from the United

States Geological Survey (USGS) and verification of our measurements through their

sensors. A simplified version of the 9-node sensor network was also deployed on the

Aguán River basin in northern Honduras, which we use as our test basin as this region

provides a representative case of a developing region with serious flood problems (see

Figure 4.2). This installation was used to test the sensing, networking, deployment,

and maintenance issues in rural Honduras. We then had a followup deployment

running the flood prediction algorithm in-situ in Honduras during March 2009 and

Dover during November 2009.

The rest of the chapter is organized as follows. Section 4.1 describes the prediction

algorithm. Section 4.2 discusses issues related to designing and building a sensor

network capable of running the flood prediction algorithm from Section 4.1 in-situ.

Section 4.3 discusses the field installation and experimental results.
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Figure 4.2: Aftermath of Hurricane Mitch in 1998 in Northern Honduras

4.1 Prediction Model

In this section we describe a model and an efficient algorithm for flood prediction

based on Algorithms 3.1 and 3.2 that uses data from the nodes of a spatially dis-

tributed sensor network. This approach is computationally leaner than conventional

approaches to flood modeling and prediction, utilizing real-time data from multiple

sensor nodes.

Rainfall driven floods1 are the most common seasonal events. They occur when

the soil no longer has the capacity to absorb rainfall. To predict flooding, a model

requires knowing how much rain falls and what the soil’s time-dependent response to

the rainfall will be.

Current physically-based models compute the rainfall-induced above and below

ground flows of water into the river, and subsequent stream flow using numerical

implementations of the equations governing transport through the soil and the river

channels [77, 85] (see Figure 2.1 for an example [20]). Modeling these processes using

physics creates a challenge from a simulation point of view. The model requires

details of the topography, soil composition, and land cover, along with meteorological

conditions and hydrometeorological quantities such as soil moisture [54].

In the development of these rainfall-runoff models, ongoing work covers a range

of models from lumped to spatially-distributed variations [77, 85]. Although popular

in academic research, the need for calibrating spatially-distributed models to individ-

1Storm surges are not considered in this work.
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ual basins, model sensitivity to basin conditions, and the tremendous computational

burden involved in running them makes wide-spread application complicated and, in

resource-strapped underdeveloped areas, nearly impossible.

In contrast, statistics gleaned from the observed record can lead to the develop-

ment of low-dimensional distributed models, which are local in the sense of being

valid for a given site. Such models intrinsically self-calibrate because the evolving

record of observations allows them to adapt to the latest conditions. This creates

portability from one locality to the next, from one season to the next, and from one

climate regime to the next. Statistical models can yield low computational complex-

ity, making them well suited for on-site and real-time implementations. Several of

such statistical models running on different portions of the basin can collaborate in

a distributed inference network to estimate flow at unobserved portions of the basin.

Thus statistical models can also yield spatially-extended estimates. These benefits

cut across the traditional justification for physically-based models and motivate their

use in our work.

A growing body of evidence indicates that statistical models are useful in earth sys-

tems. This is true of flood prediction and, although the evidence [15, 16, 81, 86, 87, 88]

here is sparse, we can see mature applications in other areas. In particular, statistical

models have proven among the best in forecasting hurricane intensity (which presents

similar challenges to flood forecasting) [29] and are used for guidance in operational

cyclone forecasting [60].

The simplest set of statistical models is that of linear regressions [14], appearing

in various forms for hydrological modeling [15]. Within this category, multiple linear

regression models assume that a linear equation can describe the system behavior,

weighting the past N observations of all relevant input variables taken at time t to

produce a prediction of the output variable at time t + TL. We can also consider

adding past predictions and/or past prediction errors as inputs within this model. To

determine the weighting factors, some amount of data is designated as the training

set for the model, defined here as the data seen in time TT (an application-defined

parameter), and a simple inversion-multiply operation provides the coefficients from
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Algorithm 4.1 Flood Prediction Algorithm

1: φ : past flow
2: θ : air temperature
3: ρ : rainfall
4: N : # past flow values used
5: Q : # rainfall values used
6: P : # air temperature values used
7: Y : predicted flow
8: e : prediction error
9: TT : training time window

10: TL : prediction lead time
11: TR : recalibration time window
12:
13: TTL = TT − TL;
14: . Compute initial coefficients and prediction
15: φN ← [φ(1 : TTL −N), ..., φ(1 + N : TTL)]
16: θP ← [θ(1 : TTL − P ), ..., θ(1 + P : TTL)]
17: ρQ ← [ρ(1 : TTL −Q), ..., ρ(1 + Q : TTL)]
18: X ← [φN , θP , ρQ]
19: C = ((X ∗XT )−1 ∗XT ) ∗ Y (1 + TL : TT )
20: Y (1 + TL : TT ) = X ∗ C
21: . Recompute using prediction error
22: e = Y (1 + TL : TT )− φ(1 : TT − TL)
23: X ← [φN , e, θP , ρQ]
24: C = ((X ∗XT )−1 ∗XT ) ∗ Y (1 + TL : TT )
25: Y (1 + TL : TT ) = X ∗ C
26:
27: for t = TT + 1 to ... do . Forecast
28: if (t%TR) == 0 then
29: . Recalibrate coefficients
30: e = Y (t− TT : t)− φ(t− TT − TL : t− TL)
31: φN ← [φ(t− TTL : t−N), ..., φ(t− TTL + N : t)]
32: θP ← [θ(t− TTL : t− P ), ..., θ(t− TTL + P : t)]
33: ρQ ← [ρ(t− TTL : t−Q), ..., ρ(t− TTL + Q : t)]
34: X ← [φN , e, θP , ρQ]
35: C = ((X ∗XT )−1 ∗XT ) ∗ Y (t− TT : t)
36: end if
37: . Compute Forecast
38: e = Y (t)− φ(t− TL)
39: φN ← [φ(t−N), ..., φ(t)]
40: θP ← [θ(t− P ), ..., θ(t)]
41: ρQ ← [ρ(t−Q), ..., ρ(t)]
42: X ← [φN , e, θP , ρQ]
43: Y (t + TL) = X ∗ C
44: end for
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this data, which is the prediction model until recalibration occurs, defined as a time

window of length TR. In case the data provided contains local perturbations limiting

the effectiveness of the coefficients, we can smooth the data using a low-pass filter.

We developed a model using this technique, with inputs of past flow (φ), air

temperature (θ), and rainfall (ρ), defining their orders as N , P , and Q respectively,

and a single output, predicted river flow (Y ). Algorithm 4.1 outlines this model. Lines

15 through 18 setup the calibration matrix. For each variable, we can use any number

of past values to define the linear prediction; in calibration each past value becomes

a column within the matrix. For example, in using the past river flow observations,

we could use only that occurring at t, or we could add t− 1, t− 2, etc. as we design

the actual implementation of the model. In our algorithm description, we define the

number of past values used as N , Q, and P for the node’s past river flow (φ), air

temperature (θ), and rainfall (ρ), respectively. We load the matrix, X, with this data

set over the calibration window defined. Line 19 performs the calibration step and

generates a coefficient vector, C. To include the prediction error in the model, we then

predict over the training window we just used by multiplying our calibration matrix

by our coefficients (Line 21). We subtract the observed record from this prediction,

thus generating our error, and include this in our new calibration matrix of Line

23. Recomputing the coefficients based on the new calibration matrix occurs in Line

24 and, with these coefficients, we begin predicting the future river flow in Line 27.

This loop continues forever, recalibrating after a full recalibration time window passes

(Line 29), computing the prediction error based on the latest observation (Line 38),

and predicting future river flow (Line 43).

In using this model to predict river flooding, we use a thresholding approach.

Based on existing data or community knowledge (if no data exists), we define two

important river levels for each location relating its river level to local or downstream

flooding. First, we determine an alert level above which conditions most likely lead

to flooding and small issues may occur; above this value government organizations

should pay attention. Second, we determine a flood level above which regions are

flooded and action must occur. By providing a complete time series in addition to
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indicator levels, we allow for human self-checking of levels, foreknowledge of other

interesting events such as the receding of water levels, and the opportunity for tiered

predictions where downstream locations use upstream river predictions in addition to

the measured data.

This model, as we implemented it, self-calibrates, can use very little training data

(on the order of weeks), performs a very simple set of operations, and requires storing

only the amount of data necessary for training. Considering the complexity of the

current model as explained in Section 2.2 and the goal of computation on the sensor

network, the use of such simple models is easily motivated. We now consider the

requirements for implementing Algorithm 4.1 on a sensor network.

4.2 Sensor Network Architecture

Algorithm 4.1 requires rainfall, air temperature, and water flow data collected and

transmitted in real-time over the entire river basin area multiple times per hour. Since

the flow of a river may change significantly over a period of several minutes, this

suggests a sampling rate on the order of minutes. In order to support distributed,

robust, real-time data collection, transmission, and processing for large geographic

regions corresponding to real river basins, we further define the following system

requirements:

• Monitor events over large geographic regions of approximately 10000 km2

• Provide real-time communication of measurements covering a wide variety of

variables contributing to the event occurrence

• Survive (on the order of years) long-term element exposure, the potentially

devastating event of interest, and minimal maintenance

• Recover from node losses

• Minimize costs

• Predict the event of interest using a distributed model driven by data collected

94



The distance requirement, the inability to populate the entire area with sensors,

and cost limitations suggest a two-tiered approach with a small number of long-range

nodes surrounded by a cluster of sensing nodes2. The long-range nodes communicate

over long distances on the order of 25 km using 144 MHz radios, have more power,

and, therefore, can provide more online time for computation (although utilizing the

same processing system). The sensing nodes operate at 900 MHz, cover a more dense

area, use low power, and have a smaller physical footprint. In addition to the field

nodes, we integrate office and community nodes with the 144 MHz network. These

nodes provide user interfaces to the system. We have developed a system capable of

running a distributed version of Algorithm 4.1 in-situ. We want to avoid centralized

prediction for two reasons: (1) to avoid a single point of failure and (2) to enable

data-driven parsimonious calibration on the lower power 900 MHz network. Figure

4.3 shows a concept overview for this collection of four node types and how they

communicate.

Community

Radio

RainTempPressure

Office

Radio

Radio

Radio

900 MHz

144 MHz

Communication

Range

~8 km

~25 km

Sensors:

Figure 4.3: Idealized Sensor Network Consisting of Two Communication Tiers and
Four Node Types; Communication Ranges Not to Scale

All four node types have a common base board and architecture that we then

expand by daughter-boards as appropriate. The rest of this section describes our

design and implementation for these system components. Figure 4.4 gives a more

detailed overview.

2With these three requirements, it is impractical to implement a homogeneous scattered sensor
network.

95



Laptop

Database

GUI Interface

Government and Office Node
Fault

Detection

Data

Analysis &

Statistical

Computation

Logging

144MHz Data

Transmission

144MHz Data

ReceptionDistributed

Model Prediction

& Uncertainty

Computation

Internet

Community Interface Node

144MHz Data

Reception

Laptop

Database

GUI Interface

Radio Node

Sensor

Measurement

Fault

Detection

Data

Analysis &

Statistical

Computation

Power

Monitoring

Wireless Data

Transmission

Wireless Data

Reception

Logging

144MHz Data

Transmission

144MHz Data

ReceptionDistributed

Model Prediction

& Uncertainty

Computation

Sensing Node

Sensor

Measurement

Fault

Detection

Data

Analysis &

Statistical

Computation

Power

Monitoring

Data

Transmission

Data

Reception

Logging

900

MHz
144  MHz

Figure 4.4: Generic Predictive Environmental Sensor Network Architecture Consist-
ing of Sensing, Radio, Government Office, and Community Interface Nodes

96



4.2.1 Base System

All nodes begin with the same base electronics designed to provide for a variety of

options. An ARM7TDMI-S microcontroller core, specifically the LPC2148 from NXP,

provides the necessary computation power for the board [71]. This microcontroller

has a relatively large amount of on-chip RAM (40K), flash (512K), and input-output

pins (along with other features) as well as balancing the trade-off between power usage

and processing. Others we considered tended towards the extremes of this spectrum

with the ATmega128 on the low end and the Blackfin ADSP-BF533 on the high end.

The LPC2148 has a limited number of physical serial ports, which we extend to

8 by adding a Xilinx CoolRunner-II CPLD to the system and configure it as a serial

router. The base board sends all free pins to the daughter-board connectors allowing

for a variety of operations (e.g. digital input/output and analog conversion) and

potential multiplexing of each I/O on specialized boards. A mini-SD Card and 32

KB FRAM (Ferroelectric Random Access Memory) supply data and configuration

storage.

Finally, a charging circuit on the board allows photovoltaic charging of lithium-

polymer batteries, which power the system at 3.7 V, along with measurement of

charge current.

In addition to the base hardware constructed, the system runs a custom base

software package developed in C using the WinARM libraries. This package consists

of: serial libraries which hide the underlying CPLD serial router, a custom EFAT file

system for SD-Card logging, sensor access libraries, power regulation, and a scheduler

system based on the real-time clock and internal timers. Additionally, there is a

bootloader program to load new program code into the system. The bootloader reads

the program file from the SD card allowing very easy reconfiguration. We update the

program by swapping SD cards or by uploading a file via a serial or radio link. If

the board does not properly boot, the bootloader has a failsafe system, automatically

loading a backup program.
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4.2.2 Communication

The two-tier communication structure uses 900 MHz and 144 MHz systems. As the

900 MHz system is used by almost all nodes, the base system provides that com-

munication using a AC4790 900 MHz wireless module [1]. In choosing a radio, the

key requirements were an easy usage model and a range of over 5 km. The range

requirement eliminates lower power radios such as the Nordic NRF905, Bluetooth,

and TI CC2420. The Aerocomm AC4790 radio claims a 20 mile communication range

and initial testing showed better performance than 50 mW Zigbee radios available

at time of choice. The AC4790 wireless module provides RF and interface protocols,

handling issues such as retries, error detection, and peer-to-peer communication. It

operates at a fixed data rate, optimally 76.5 kbits/sec but dropping to approximately

7.2 kbits/sec once the internal Aerocomm messaging overhead is considered (duplex

mode and 4 transmissions of every message cause the rate to degrade). For the

software, much of the transmission protocol is provided by Aerocomm, but we did

implement several wrapper libraries for the AC4790 in order to interface with it and

add our own simple packet structure.

A small subset of the nodes require 144 MHz communication. This frequency usu-

ally provides voice communication, so we designed a modem to allow data communi-

cation within this frequency over Kenwood TM271A VHF radios. The modem uses

a MX614 Bell 202 compatible integrated circuit to convert 1200 baud serial signals

to FSK modulated signals for radio transmission. This allows for data transmission

across a cheap, long-range communication method without the recurring costs of a

satellite or mobile telephone system. For the radio, we added several libraries to the

existing base software structure, most specifically wrapper functions to use the mo-

dem at a higher level than raw serial data. We developed our own very simple packet

structure and communication protocol, defining addresses based on the pre-existing

unique base board identifiers and setting a fixed number of retries.

To power the radio, the system needs 12 V instead of the base board requirement

of 3.7 V so we use a daughter-board to power the base board for these nodes. This
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allows us to completely power-down the radio when not transmitting, maximizing

the lifetime of these nodes. The 12 V power requirement of the radio means system

cannot use the same lithium-polymer batteries as the sensing nodes so this system uses

lead-acid batteries along with 6 W photovoltaic panels. Additionally, to ensure radio

communication over the 25 km range, these systems ideally need antennas located at

least 5 m high in the air, requiring antenna towers for the system with added benefits

of ensuring proper sunlight for the photovoltaic panels and theft protection for the

system.

4.2.3 Sensing Nodes

Sensing nodes measure the variables needed to detect and predict the event of interest.

In addition to the measurements, the nodes log the raw data, compute data statistics

over each hour and inter-transmission time period, and analyze data for indications of

potential sensor failures. These nodes regularly transmit via 900 MHz with all nodes

in immediate range, creating mini-networks of sensors within the greater system (the

combination of few nodes and large areas ensures each node only joins one mini-

network). The two operations of transmitting and measuring occur independently,

enabling easy modification of the time windows for both the transmission time and

the measuring time. By regularly transmitting, nodes provide monitoring of each

other through examining the data for errors and noticing the failure of any node not

transmitting within an appropriate window. Repeated measurements of odd values

such as the maximum possible value of the sensor or rapid rates of change trigger a

warning that the sensor may not function anymore, which the node can then transmit

via the 900 MHz network to other nodes nearby.

In addition to the standard base board hardware features, this node requires hard-

ware supporting multiple sensors and multiple sensor types. Our nodes accomplish

this through a daughter-board attached to the base system that expands the available

I/Os through an I2C integrated circuit and creates several ports for sensors ranging

from resistive to interrupt to voltage. In case the sensor requires a more complicated

interface, we include RS485 and RS232 circuits for external communication to sensors.

99



We now consider the specific sensors necessary for the application of river flooding:

rainfall, air temperature, and water pressure. Other measurements could aid the

prediction of river flooding; however, we chose only these three sensor types because

of the ease of finding them, connecting to them, and installing them. Additionally,

these sensors tend to be inexpensive. So far our modeling work supports using only

these three; should this change, our focus on design generality allows for the easy

addition of other sensors both from a hardware and a software standpoint.

Photovoltaic Panel

Rainfall

Sensor

Otter Box

with Electronics

Figure 4.5: Rainfall Sensor Node Consisting of Electronics, Sensor, and Photovoltaic
Board

Rainfall sensors measure using reed magnetic switches, which cause an interrupt

after every 1 mm of rainfall. Temperature sensors measure resistively, modifying an

ADC level, which translates into a temperature after calibration. We placed the elec-

tronics within Otter boxes to ensure protection from the elements and added Bulgin

connectors for the sensor, antenna, and photovoltaic boards (see Figure 4.5).

Measuring water pressure allows us to compute the water level. While our simula-

tion work described in Section 4.1 uses river flow since that is the data available from

the USGS, measuring flow requires several sensors to get a cross-sectional profile of

the river in order to understand flow at a single location on the river. Level, however,

requires only one measurement to understand the state of the river yet relates to flow

through easily defined and understood curves (the USGS actually measures level as

well and performs this conversion prior to posting the data online). Therefore we use
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the two values interchangeably. To perform the level measurement requires a special

underwater installation. In order to maintain solar power and wireless communica-

tion, we developed an external pressure sensor box (see Figure 4.6) to communicate

via RS485 with the sensing node. Our pressure board consists of another LPC2148

microcontroller, RS485 interface, and instrumentation amplifier. The LPC2148 is

much more powerful than necessary, but allows us to maintain a consistent software

system. We complete the box by attaching a Honeywell 24PCDFA6A pressure sensor

and output the RS485 lines along with power and ground through a Seacon un-

derwater connector. Honeywell’s pressure sensor measures 13.8-206.8 MPa of water

pressure directly instead of the more typical air pressure, allowing us to bypass the

use of extensive tubing to ensure no water touches the sensor.

RS485 and

Power Connector Honeywell

Pressure

Sensor

LPC2148
Instrumentation

Amplifier

Figure 4.6: Pressure Sensor Box to Communicate with Sensor Node

4.2.4 Radio Nodes

Radio nodes connect the mini-networks of sensors, providing the communication back-

bone of the system (see Figure 4.7). These nodes will also provide the initiating control

for the distributed computation of the prediction. As data arrives from nearby sen-

sors and other radio nodes, the node maintains a record of all values, computes some

data statistics, and examines the data correctness. It initiates calibration, computes

the final centralized steps of the calibration process, and aggregates the prediction

components to generate a local level prediction.

On the communication side, nodes communicate both via the 900 MHz network

and to each other via the 144 MHz network. The 144 MHz modem and the power
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switching circuitry for radio control require a different daughter-board from the sens-

ing nodes although we also include the various sensing ports and RS485 communica-

tion seen on the other daughter-board.

The communication range requirement drives the separation of these nodes from

the sensing nodes with the additional focus of the computation control due to the extra

power available from the radios and in order to enable data-driven model calibration

within the lower power 900 MHz network. Currently the node uses the same micro-

processor as the sensing nodes for prototyping purposes. Should we ever discover a

need for more computational power, we could easily add an additional microprocessor

to the daughter-board or even a GumStix.

4.2.5 Government Office Interface Nodes

These nodes provide a user interface to the network. We extend our Java development

user interface to provide a panel summarizing the information received in a format

appropriate for our target audience. This interface focuses on the government and

relief agencies who will maintain the system, providing data and predictions regarding

the event of interest along with detailed information to monitor the system and display

those nodes no longer functioning.

The office nodes communicate via 144 MHz with the radio nodes to provide any

external requests for data and receive all of the existing network data. In addition

to providing information to the office, receiving all the data will allow the office
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nodes to predict for the entire region using a centralized algorithm as a redundancy

mechanism to the local distributed predictions (assuming that the computational

capability exists, which most likely will not hold true). In our experience, these

offices usually exist in the same floodplain as the rest of the system, so we cannot

ensure continual operation of the office or the node due to power issues (such as the

power grid fails or the batteries are co-opted for a different task) or structural issues

(such as the ceiling falls or the building floods). Because of these uncertainties, we

cannot rely on these nodes to provide an alert via a centralized algorithm; one of our

arguments for distributed solutions.

Additionally, with the possibility of internet access in an office, these nodes could

provide external verification for data through online information, using satellite and

other remote data available to verify the computation results, checking for errors such

as a flood prediction when no rain has fallen. This ideal case has yet to arise in any

our deployments, but we look forward to such a possibility and remain prepared to

take advantage.

4.2.6 Community Interface Nodes

An effective use of this system requires an intuitive community interface. We have not

developed this system component as user-interface issues are not our focus. However,

our design requirements for these nodes can be summarized as follows. These nodes

provide an interface to the communities interested in the detection and prediction

of the events. They utilize the same hardware and base software as the government

nodes, but will provide a simpler user interface. The interface will display the known

state of the geographic area, event predictions, event detections, and post-event mon-

itoring. To avoid confusion, the interface will not supply detailed information regard-

ing the network, such as node status or the data underlying the computations. Based

on the location of the communities within the network, these nodes may also double

as any of the other node types.
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4.3 Testing: Simulation and Implementation

We designed and performed four sets of experiments with the following goals: (1) test

the flood prediction algorithm using a large set of physical river flow data (Section

4.3.1), (2) demonstrate long-term data collection of river flow data with a sensor

network and characterize the sensor network (Section 4.3.2), (3) test the networking

capabilities of our two-tier sensor network in a rural setting (Section 4.3.3), and

demonstrate integrated system performance for flood prediction (Section 4.3.4).
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Figure 4.8: Autocorrelation of Blue River Data

4.3.1 Blue River

In this section, we use a large data set of real river data to test the validity of our

prediction algorithm. For our river we examine the Blue River in Oklahoma, which

encompasses 1233 km2 at 153 m above sea level. No watersheds exist above this

basin. The area has an average summer temperature of 82 ◦F and an average winter

temperature of 36.7 ◦F with the occasional blizzard and tornados.

Test Data and Setup

To analyze our algorithms, we use 7 years of data from May 1993 to July 2000,

measured from 1 river flow sensor, 6 rainfall sensors, and a weather station for the

Blue River in Oklahoma [68, 93]. We use only temperature from the weather station

as we discovered that the other measurements are highly correlated with temperature.
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Training Order (Memory) Order (Memory) Order (Memory)
Window of Flow Data of Temperature of Rainfall Data
(Weeks) Data
4 5 1 14
12 5 1 14
24 5 1 14
36 2 2 16
52 2 2 16

Table 4.1: Order Calibration Results for Blue River

Training
Window
(Weeks)

Modified
Correlation
Coefficient

False
Positives

False
Negatives

Our Model 4, 12, 24,
36, 52

0.998 0 0

DMIP Ave Uncalibrated 0.58 - -
DMIP OHD Uncalibrated 0.71 - -
DMIP LMP Uncalibrated 0.77 - -
DMIP Ave Calibrated 0.70 - -
DMIP LMP Calibrated 0.86 - -
DMIP OHD Calibrated 0.86 - -
Climatology 1 Hour 52 0.32 0 13
Persistence 1 Hour 0 0.998 0 0

Table 4.2: 1 Hour Prediction Results for Blue River

For the rainfall measurements, we average them before entering them into the model,

as we expect to do when collecting the data on the sensor network. This river and data

come from an on-going project called the Distributed Model Intercomparison Project

(DMIP) run by the National Oceanic and Atmospheric Administration to compare

hydrological models [77, 85]. The DMIP test provides more hydrometerological data

for the models than our model uses, allows for calibration based on 1 year of data,

and requires a 1 hour prediction of river level for assessment [77, 85].

We define three different criteria for determining the quality of our algorithms:

the modified correlation coefficient (taken from DMIP [85]), the false positive rate

of prediction, and the false negative rate of prediction. For the modified correlation

coefficient, as with the standard form used in probability, the value ranges from -1

to 1 with 1 meaning the two data series are identical. With this metric, since we use
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the definition from DMIP, we can also compare our models to those listed as a refer-

ence of quality. False positive and negative detections provide a more common sense

criteria as minimizing these increases the confidence of the end user in the system

predictions. To determine the false events, we determine the flood level for the Blue

River from the National Weather Service’s online prediction work.

Model Calibration

We implemented the model as described in Algorithm 4.1 in Matlab, starting with

defining the training window and recalibration. To help define the proper training

window, TT , we ran our experiments over several time windows: one month, one sea-

son (3 months), two seasons (6 months), three seasons (9 months), and a complete

year. This covers all reasonable time periods for any generic river and any greater

period of time becomes intractable for our system. For now, either we do not recal-

ibrate the coefficients after the initial training or we recalibrate after we observe a

new full training time window. Figuring out the optimal value for this we leave for

future work.

Given these two parameter definitions, we analyzed the remaining parameters

describing the models to determine optimal values. To pick the best values, we sweep

the order (the number of past values used) for each of the three input variables with

and without including the error of the past prediction. We find the optimal for each

of the three metrics: the highest modified correlation coefficient, the lowest number

of false positives, and the lowest number of false negatives.

In addition to the model with these parameters, we computed predictions using

two naive approaches: climatology (or predicting the average of all previously seen

flow observations at that hour and date in past years) and persistence (or assuming

that the flow will stay at its currently observed value). We also compare to the DMIP

results, choosing the models that had the best modified correlation coefficient value

for the Blue River (described in Section 4.3.1). The LMP model offers the best results;

however this model is an instantiation of the SAC-SMA model described earlier (see

Section 2.2), demonstrating the current operational centralized method. For this rea-
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son, we include the model built by the National Weather Service Office of Hydrologic

Development, called the OHD model, in order to demonstrate the best distributed

model in current research. Our testing computes predictions for time periods of 1

hour (for comparison with DMIP) and 24 hours (as a more realistic prediction win-

dow).

Autocorrelation

To determine the viability of 24 hour predictions, we examine the autocorrelation of

the data set. As Figure 4.8 demonstrates, while the values decrease, at 24 hours the

river correlates to itself at a value of 0.627, which implies a reasonable amount of data

exists for using past information to predict that range. This also provides room for

improvement in the predictability of the river; if the river had autocorrelation values

of 0.9 or so at 24 hours, we could simply use persistence to predict, but here clearly

we have room for improving the prediction.

Model Results

We began by calibrating the model as described in Section 4.1 to determine the

optimal number of past measurements (or order) for each variable for the different

training windows. For the 1 hour prediction, all time windows performed equally

well using the last flow value, last temperature value, and last rainfall value. In fact,

examination of the resulting coefficients demonstrates that only the latest flow value

is used; basically, at one hour, persistence provides the best approach. Table 4.1 lists

the orders that resulted in the best modified correlation coefficient for the 24 hour

prediction case. We determined that better results always occurred when including

as an input the error of the prediction associated with the latest observation and

that our simple recalibration scheme did not improve results (implying that we either

need a more complicated scheme or not much changed in the river basin for the

hydrologically short time window of our data). Finally, maximizing the modified

correlation coefficient provided the best overall results compared to minimizing the

false rates.
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Tables 4.2 and 4.3 show the overall results for this river, comparing our model

and two naive approaches as well as the best cases for calibrated and uncalibrated

DMIP models. In Table 4.2, examining the modified correlation coefficient, persis-

tence and our model perform the best for 1 hour predictions. At 24 hours, our model

performs better than persistence at all training time windows and both clearly per-

form better than climatology. Figure 4.1 demonstrates these results, showing our

model with 52 weeks of training data and no recalibration. Additionally, although

the DMIP results only apply to 1 hour predictions, comparing DMIP to the 24 hour

predictions shows our model and persistence outperforming the average uncalibrated

DMIP model. The average calibrated and best models from DMIP outperform our

model with the average calibrated better than our model by 3%. This may seem like

an unusual comparison; however, the lack of 24 hour prediction DMIP models limits

us to this comparison, which does show that our 24 hour prediction is competitive

with the 1 hour DMIP predictions.

Training
Window
(Weeks)

Modified
Correlation
Coefficient

False
Positives

False
Negatives

Our Model 52 0.64 25 9
Our Model 36 0.61 25 9
Our Model 24 0.59 18 14
Our Model 12 0.59 18 14
Our Model 4 0.59 18 14
Climatology 52 0.32 0 13
Persistence 0 0.58 17 7

Table 4.3: 24 Hour Prediction Results for Blue River

4.3.2 Dover Field Test

We tested the long-term behavior of the system, specifically the sensing and 900 MHz

communication, at Dover, Massachusetts on the upper Charles River from October

through November 2007. This site allows us both to quickly identify any system issues

without a trip to Honduras and to run longer tests, collecting data for our prediction

modeling work and discovering any long range system issues. The data gathered at

Dover allows us to connect the system and modeling work by running the information

gathered there with our sensor network system through our Matlab model.
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We installed 3 distinct sensor nodes (1 rainfall, 1 temperature, and 1 pressure

sensor) within 900 MHz radio communication range at the locations shown in Figure

4.9. At no time could we achieve the claimed 32 km range of the Aerocomm radios,

seeing a maximum fully functional range of 1.6 km. We performed tests on develop-

ment platforms to rule out implementation issues with our system, installed a variety

of antennas, utilized the configuration options available, and contacted Aerocomm

to discuss the issue. None of our experiments improved the range. However, while

not ideal, it is still sufficient for testing purposes; we intend to replace the module in

future designs. The pressure sensor we placed within a USGS sensing station, using

their concrete shed as a base for our system. The other sensors we located across the

river, with the rainfall sensor across from the pressure sensor and the temperature

sensor upstream of both. While we could have collocated the rainfall and temperature

sensors, we chose to keep them separate in order to maximize our testing of the 900

MHz network and better understand any problems related to the specific sensors.

Temperature
Sensor

Rainfall
Sensor

Pressure
Sensor

10 m

Figure 4.9: Locations of Sensors at Dover Site; Map Based on GPS Measurements
and Surveying

With the system we gathered 5 weeks worth of data before ending the field ex-

periment due to winter weather. Figure 4.10 shows the hourly rainfall, pressure, and

temperature measured by the nodes over the complete experiment. While no flood

occurred during this time period, we do see a variety of interesting behaviors such as

a large amount of rainfall occurring at hour 251 and a period of no change occurring

right before from hours 90 through 250.
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Figure 4.10: Data Collected from Dover Test Site

To explore the usefulness of this data for our modeling efforts, we then run this

data through two of the models discussed in Section 4.1 for 3 prediction times using 4

weeks of training data. With 4 weeks of training, we computed the ideal orders of each

of the variables as shown in Table 4.4. Table 4.6 shows the results of these modeling

runs, demonstrating again that with regression models we can improve over inherent

autocorrelation of the river state. Ideally we would have more data in order to use

more reasonable test windows and a larger range of training windows as we did with

the Blue River, but, with the onset of winter, the upper Charles River freezes, limiting

us to this amount of data. As the focus of the experiment was on the functionality

of the sensor system and not the simulation results from the data, the important

result is that we can operate the system for over 5 weeks and use that data in our

model for reasonable results. We also used the results of these model, specifically the

coefficients obtained, to test the distributed prediction algorithm through a similar

experiment in Dover in fall 2008.

We also characterized our power needs. We quantify some of the node operations

in Table 4.5. Over a 5 day period, we saw a total discharge of 3153 mAh, which results

in an average current of 26 mA. Charging over the same period resulted in a total

of 1248 mAh. Two factors contributed to this less than ideal result: the extensive
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Prediction Order of Site Order of Order of
Time Pressure Data Temperature Data Rainfall Data
1 1 0 3
16 3 0 5
24 2 0 5

Table 4.4: Order Calibration Results for Dover Site

Component Current (mA)
Base Board Sleep Mode 2
CPU Low Usage 16
CPU Max Usage 59
Base Sensors 6
900 MHz Radio Receive Only 20
900 MHz Radio Transmit 1 Hz 73
River Extension Board <1
144 MHz Radio Transmit 5000

Table 4.5: Sensing Node Power Budget

tree cover in the area limited effective panel placement, and many days saw heavy

cloud cover and rain. We plan to increase the battery capacity and develop some tree

installation strategies for future deployments.

Overall, the field experiment successfully tested the sensing node functionality

for over a month, providing insights into the power operation, usefulness of the site

for future testing, and the reasonableness of the prediction results for up to 24 hour

prediction windows with four weeks of training data. We utilized these results to

further develop the system in Honduras.

4.3.3 Honduras Field Tests

Our experiments in Honduras tested the two-tier architecture, deployment and main-

tenance issues, and issues specific to implementing these systems in developing coun-

tries. The work there began in January 2004 with the tower installation occurring

in August 2005, the first communication test in March 2006, the test with sensing

nodes and the office installations in March 2007, and the water prototypes through-

out. All infrastructure remained with only the electronics removed to MIT for further

work. We collaborate with a local non-governmental organization, the Fundación San

Alonso Rodŕıguez (FSAR), to install the systems and understand deployment issues.
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Prediction Time (Hours) Modified Correlation Coefficient
Our Model 1 0.9925
Our Model 8 0.770
Our Model 16 0.596
Persistence 1 0.9923
Persistence 8 0.733
Persistence 16 0.554

Table 4.6: Comparison of Model Results for Dover Data

On the communication side, we verified our two-tier approach. We first focused

on the usability of the 144 MHz radios. To communicate at these ranges reliably,

the radio antennas need line-of-sight high in the air, which requires antenna towers

and limits the ability to test this portion of the system in the US. With FSAR

help, we arranged access to land and built 5 meter antenna towers at two river sites

where we plan to install water level sensors for 144 MHz radio communication (see

Figure 4.11) along with 10 meter towers at the FSAR office and the government

emergency management office in Tocoa. With these towers, we verified both the

communication range and the ability of our modems to communicate data over this

range. Sending from our furthest tower 53 km away, with the radios set to the

lowest 25 W transmission setting, we received all data packets transmitted. With

no towers further away, we were unable to determine the maximum range possible.

Due to hurricanes in 2005, we also proved that the towers and antennas will survive

hurricane force winds.

Next, we added 4 sensing nodes to the system for a 4 day test. While no in-

teresting weather occurred, this did verify collecting data from the sensing nodes,

transmitting that data over 900 MHz to the radio nodes, and retransmitting that

data over 144 MHz.

At the offices, in addition to the towers, we worked to design and install secondary

solar power systems. We would prefer to use grid power if it exists, but need solar

power backup for the daily fluctuations of that system along with the major outages

associated with disasters. FSAR worked with a local company to purchase panels,
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Figure 4.11: 5 Meter Antenna Tower for Radio Nodes at Saba

batteries, and a charge controller. We added an off-the-shelf inverter, a power strip,

and simple custom electronics to switch to solar at the absence of grid power. We

installed these systems at both offices and ran long-term usage tests. At the gov-

ernment office, we also installed a permanent radio and laptop for development of

that interface, using it both for longer term radio tests and exploring issues with the

interface.

Another area of testing was the water measuring system. We created five different

prototypes of this system installing each for several months in Honduras with the

help of FSAR (see Figure 4.12). Through these prototypes, we settled on measuring

water pressure as a method of obtaining river level. Other options such as resistive

water level sensors were rejected due to corrosion issues, while ultrasonic sensors

were rejected due to the indirect nature of the measurement along with reduced

ability in high winds. These prototypes allowed us to understand the complexities

of installing something in a flooding river since box movement reduces the efficacy

of the measurement. Structures must hold the sensor in a fixed spot while ensuring
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Figure 4.12: Installation of Water Level Prototype by FSAR Employees

the system does not sink in the soft ground of the river and that it is retrievable for

maintenance. We developed two different solutions allowing us to install the system

on a bridge for greater reliability and also in the middle of the river when the situation

necessitates.

All of this work helped create the infrastructure necessary to achieve our goal of

a demonstration system.

4.3.4 Integrated System Testing

We performed two integrated systems tests demonstrating the full functionality of the

system. These tests proved the operation of all node types, the implementation of the

distributed prediction and calibration algorithms on the system, and the combined

operation of the system. As the focus of the tests was system functionality, having

proven the model operation in simulation, we did not try to replicate simulation

environments or results. The first test occurred in March 2009 in Honduras, but ran

into technical difficulties with recording the data so we repeated the experiment in

November 2009 in Dover.

The Honduras field experiment took place in March 2009. The experiment con-

sisted of two sites: Olanchito and Tocoa. The Olanchito site had 2 sensing nodes

measuring air temperature and rainfall, and 1 radio node that also measured up-

stream river level. The Tocoa site held an office node and provided an interface for
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the local emergency management agency. While the experiment successfully mea-

sured and computed future river level predictions using the distributed algorithms,

when the system was recovered at the end of the experiment, the SD cards were cor-

rupted and no data survived. We returned the US and debugged the corruption issue

to a non-deterministic hardware problem with exiting power-down. As the system

powered on the 900 MHz radio, occasionally the radio caused the overall power level

to drop below the minimum for the system, thus putting the SD card in an unknown

floating state which corrupted the file system and ruined the data. We fixed this

problem and prepared for a second experiment.
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Figure 4.13: Dover 2009 Data

For our second attempt, we decided to perform the experiment in Dover, Mas-

sachusetts, removing the complexities of working over a 50 km area and in a devel-

oping country. Within a 5 km area, we installed 1 office node, 1 radio node, and

3 sensing nodes measuring air temperature, rainfall, and water level. The sensing

nodes measured every 5 minutes, transmitted status information every 10 minutes,

and transmitted the average data value every hour. The radio node also initiated

the calibration algorithm every hour. Calibration used a training window of 10 hours

for a 2 hour prediction, requiring 16 hours to pass before the first calibration could

occur (10 hour training plus the 2 hour prediction plus 4 past river level values as
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described next). The radio node stored 2 columns containing the last 2 river level

values, the pressure sensing node stored the next 2 river level values (so the last 4

values were in the calibration matrix), and the temperature and rainfall sensing nodes

both stored their last 2 values, resulting in a 10 × 8 calibration matrix. With these

coefficients, the nodes computed a 2 hour prediction of the river level, which the radio

node transmitted via 144 MHz to the office node hourly.

This experiment ran for approximately 5 weeks. Figure 4.13 displays the data

gathered in the experiment. We did not design the system to withstand the freezing

cold of Massachusetts winter and saw the effects as the experiment ran into December.

Toward the end, the cold weather started to affect the sensor performance, with the

temperature swinging less and the pressure sensor seeing more variation. Figure 4.14

shows the prediction results compared to the observed river values.

0 100 200 300 400 500
0

20

40

60

80

100

120

140

Time (Hours)

R
iv

er
 L

ev
el

Dover 2009 Experiment: Predicted and Observed River Level

 

 

Predicted River Level
Observed River Level

Figure 4.14: Dover 2009 Results: Predicted and Observed River Level

While prediction accuracy was not a goal of this experiment, exploring the re-

duced accuracy seen in Figure 4.14 provides insight into using regression models for

prediction in an operational sense. We can understand the degradation of the predic-

tion toward the end of the experiment by examining Figure 4.15. This figure shows

the evolution of the calibration coefficients over time. The points with the most dis-

crepancies between predicted and observed are also the points where the coefficients
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weight the prediction more towards temperature and rainfall. This weighting occurs

because at this time all three variables are changing at the same time, in the same

direction, and with roughly the same rate of change; the calibration algorithm sees all

as predictive of the river level and weights them differently. This reflects a common

problem with data-based models: they depend on the data. Unusual behaviors and

patterns in the data will affect the model. As this also is the key benefit of these

models, we should not dismiss the model because of this, but rather include additional

controls for restructuring the model and using the results.
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Figure 4.15: Dover 2009 Calibration Coefficients Over Time

If, to avoid this particular weighting issue, we remove temperature and rainfall

from the model matrix, we see the cleaner prediction time series shown in Figure

4.16. This suggests future work in additional algorithms for dynamic redefinition of

the matrix and post-analysis of the prediction. Prior to calibration and prediction,

additional algorithms that examine data trends and redefine the matrix structure

(such as variables included in the model matrix and number of calibration rows)

would reduce the likelihood of unusual data correlations. Post-processing the predic-

tion through analysis of information such as the rate of change of the prediction and
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how the prediction relates to the other measured parameters (for example a flood

prediction when no rain has occurred) would provide methods of controlling the use

of the model and improve warning alerts. One important detail is that the predic-

tion does recover quickly, a result of re-calibrating so often and another method of

correcting possible divergences in the calibration coefficients.
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Figure 4.16: Modified Dover 2009 Results: Predicted and Observed River Level

With this experiment, we demonstrated the sensor network’s ability to autonomously

compute our distributed algorithms, thereby calibrating the prediction model and

predicting river level. This validates the full functionality of our proposed solution.

4.4 Conclusions

In this chapter, we described an architecture for predictive environmental sensor

networks over large geographic areas. These systems are node-limited due to region

size and cost constraints. They also have significant system requirements due to the

real-time need for the data, destructive events, and long operational lifetime.

Our sensor network solution addresses these requirements, consisting of two com-

munication tiers, four node types, and support for a variety of sensor types. We

focused on the event of river flooding, specifically in Honduras. The chapter de-

scribes our work on the flood prediction model utilizing the algorithms of Chapter
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3 and the implementation of the sensor network architecture for this application.

Locally, we installed 3 nodes on the upper Charles river at Dover and gathered 5

weeks of data, which we ran through our prediction algorithm, demonstrating both

our system functionality and algorithmic functionality. In Honduras, we built several

key pieces of infrastructure, including the radio antenna towers, and tested several

system components. Finally, we performed integrated system tests, combining our

distributed algorithms with the sensor network to demonstrate the full functionality

of the system.
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Chapter 5

Solar Current

In predicting river flooding, we ran into several problems with the power systems.

This led us to consider how we could utilize our models to solve these power issues

not only for our system, but for the general case.

Sensor networks deployed for extended periods of time need to manage their power

usage. In the area of energy management, research has focused on two different ar-

eas: (1) reducing power needs of the hardware through careful design of the system

and components, and (2) developing models and policies in software to control sys-

tem behavior. Complementary to these areas is understanding the energy available

to recharge the system. This understanding informs the policies running on the low-

power hardware systems, helping create a smarter comprehensive energy management

strategy. The questions then arise of how much power is available from the environ-

ment to recharge the system and how much will be available in future days? To

answer these questions, we predict a node’s future available harvestable energy and

do so in a local, distributed fashion on the sensor network using in-situ sensed values.

Sensor networks monitoring the environment already collect a large amount of

information about the surrounding climatic conditions. These conditions shape the

amount of energy harvestable, whether that source is sun or wind or water. By

utilizing the already existing measurements, we can better understand the future

conditions that will effect the energy supply. We combine this information with

past energy measurements to create a model, consisting of a set of time series that

describe those conditions over several days. We can also include energy measurements
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from other nodes and add a spatial aspect to our time series. Collecting all these

data and creating these time series then allows a node to locally predict its future

available energy either centrally on its own processor or in a distributed manner with

its one-hop neighbors. Adding neighbors enables a more spatial representation of the

conditions and better reflects the broader local environment.

A node predicts future solar current through the use of multiple linear regression

models, specifically the algorithms developed in Chapter 3. To reiterate the basic

concept, these statistical models provide a powerful tool for predicting future time

series while remaining simple enough to compute on a sensor network. The node

gathers an initial set of calibration data, self-calibrates the model, and then predicts

the future value of interest. Because the node calibrates the model, whenever the

prediction error exceeds some metric or enough time passes, the node can recalibrate

the model to ensure adaptation to changing conditions. Additionally, by computing

locally, the model can adapt better to local conditions and reduce communication

through a sometimes failure prone gateway node. While we could perform this com-

putation centrally on a node, this could affect the performance of that node, the data

matrix is often too large to store within a single node, the eventual failure of the

single node would halt the prediction process, and the computation may not scale to

larger systems. Therefore, we develop a distributed solution that enables use in the

larger set of scenarios.

In this chapter, we show the feasibility of this strategy, develop a solar current

prediction model, and implement the model on a sensor network. Our models use

solar current, humidity, soil moisture, air temperature, and wind speed to predict

future daily average solar current. With 7 months of data from an installation in

Springbrook, Australia, we improve over basic models by 11% and 13% (in summer

and winter respectively). We also implement these models on the Fleck platform and

demonstrate their functionality during a 7-week-long test. With the data from this

test, we analyze the energy usage of our algorithms, determining they require 4.2 ×

10−8% of the weekly energy gathered by the system while providing an improvement

in prediction compared to EWMA models and persistence.

122



We organize this chapter as follows. Section 5.1 outlines our modeling strategy

and distributed algorithms. Section 5.2 discusses our simulation and implementation

testing, proving our approach works. Section 5.3 describes extensions to our modeling

work to provide a dynamic form of the model allowing for more fault tolerance and

model development. We conclude with Section 5.4.

5.1 Prediction Model

In this section we describe a statistical model for predicting future daily average

solar current using local measurements from a spatially-distributed sensor network.

This prediction can provide a key input into energy management of sensor networks,

enabling intelligent policies and efficient usage of this resource.

Using MLR models, we wish to predict:

b = f(φ, θ, ρ) (5.1)

where b is the future average daily solar current. Variable b is a function of φ, a time

history of average daily solar current, θ, a time history of our neighbors’ average daily

solar current, and ρ, a time history of the node’s other environmental measurements

such as humidity, air temperature, leaf wetness, wind speed, and other values. These

latter two sets of variables help outline the external factors affecting the amount of

energy harvestable by solar including weather conditions and seasonal conditions.

The regression model provides flexibility in defining these sets, allowing the sets to

reflect the variables available in the network.

Algorithm 5.1 outlines a multiple linear regression model for predicting solar cur-

rent using past solar current, nearby neighbors’ solar current, and any available en-

vironmental variables. Lines 15 through 18 setup the calibration matrix. For each

variable, we can use any number of past values to define the linear prediction; in

calibration each past value becomes a column within the matrix. For example, in

using the past solar current observations, we could use only that occurring at t, or

123



Algorithm 5.1 Solar Current Prediction Model

1: φ : past daily average solar current
2: θ : vector of other nodes solar current
3: ρ : vector of other environmental measurements
4: N : # past solar current values used
5: Q : # other solar current values used
6: P : # environmental values used
7: b : predicted daily average solar current
8: e : prediction error
9: TT : training time window

10: TL : prediction lead time
11: TR : recalibration time window
12:
13: TTL = TT − TL;
14: . Compute initial coefficients and prediction
15: φN ← [φ(1 : TTL −N), .., φ(1 + N : TTL)]
16: θP ← [θ(1 : TTL − P ), .., θ(1 + P : TTL)]
17: ρQ ← [ρ(1 : TTL −Q), .., ρ(1 + Q : TTL)]
18: X ← [φN , θP , ρQ]
19: C = ((X ∗XT )−1 ∗XT ) ∗ b(1 + TL : TT )
20: b(1 + TL : TT ) = X ∗ C
21: . Recompute using prediction error
22: e = b(1 + TL : TT )− φ(1 : TT − TL)
23: X ← [φN , e, θP , ρQ]
24: C = ((X ∗XT )−1 ∗XT ) ∗ b(1 + TL : TT )
25:
26: for t = TT + 1 to ... do . Forecast
27: if (t%TR) == 0 then
28: . Recalibrate coefficients
29: e = b(t− TT : t)− φ(t− TT − TL : t− TL)
30: φN ← [φ(t− TTL : t−N), .., φ(t− TTL + N : t)]
31: θP ← [θ(t− TTL : t− P ), .., θ(t− TTL + P : t)]
32: ρQ ← [ρ(t− TTL : t−Q), .., ρ(t− TTL + Q : t)]
33: X ← [φN , e, θP , ρQ]
34: C = ((X ∗XT )−1 ∗XT ) ∗ b(t− TT : t)
35: end if
36: . Compute Forecast
37: e = b(t− TL)− φ(t)
38: φN ← [φ(t−N), .., φ(t)]
39: θP ← [θ(t− P ), .., θ(t)]
40: ρQ ← [ρ(t−Q), .., ρ(t)]
41: X ← [φN , e, θP , ρQ]
42: b(t + TL) = X ∗ C
43: end for
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we could add t− 1, t− 2, etc. as we design the actual implementation of the model.

In our algorithm description, we define the number of past values used as N , Q, and

P for the node’s solar current (φ), the neighbors’ solar current (θ), and the environ-

mental measurements (ρ), respectively. We load the matrix, X, with this data set

over the calibration window defined. Line 19 performs the calibration step and gen-

erates a coefficient vector, C. To include the prediction error in the model, we then

predict over the training window we just used by multiplying our calibration matrix

by our coefficients (Line 20). We subtract the observed record from this prediction,

thus generating our error, and include this in our new calibration matrix of Line 23.

Recomputing the coefficients based on the new calibration matrix occurs in Line 24

and, with these coefficients, we begin predicting the future solar current in Line 26.

This loop continues forever, recalibrating after a full recalibration time window passes

(Line 27), computing the prediction error based on the latest observation (Line 37),

and predicting future solar current (Line 42).

5.2 Testing: Simulation and Implementation

In this section we describe our testing procedures: first simulations in Matlab to verify

the functionality of this model in predicting solar current and then field experiments

on the Fleck platform.

5.2.1 Simulation

We believe that multiple linear models can accurately predict solar current, but need

to verify this claim. We have an existing data set from a rainforest deployment in

Springbrook, Australia that provides the relevant parameters. This data set consists

of 1 year of solar current, humidity, soil moisture, air temperature, leaf wetness, wind

speed, and wind direction, gathered by 10 sensor nodes. Due to some small gaps in

the operation of the network and gateway node, we split the data set into a summer

data set of 3 months from January through March and a winter data set of 4 months

from June through September. Figure 5.1 displays the solar current, temperature,
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Model Type RMSE
(mA)

Maximum
Absolute
Error

Summer Our Model 1 Solar, 1 Wind Speed, Use
Derivative

16.67 3.40

Persistence 20.59 6.33
EWMA 19.68 5.23

Winter Our Model 3 Solar, 1 Wind Direction, 1
Wind Speed, 1 Leaf Wetness,
1 Soil Moisture, Use Prediction
Error, Recalibrate

24.41 10.26

Persistence 28.06 18.44
EWMA 29.13 15.22

Table 5.1: Results of Three Different Models Predicting Average Daily Charge Cur-
rent in Summer and Winter

and humidity measurements for these two data sets. Despite averaging them on daily

boundaries, we still see a very non-linear time series with no trends in solar current

values from day to day. There also appears to be no obvious correlation between the

solar current and the temperature or the humidity.

To understand if we can predict solar current despite the non-linear data, we

start by examining the autocorrelation of the solar current data. This measurement

demonstrates the amount of information the past measurements of solar current pro-

vide to the current measurement. Values closer to 1 indicate the variables correlate

well, implying the time series share useful information. As Figure 5.2 shows, the past

solar current correlates to the future value reasonably well. The correlation is better

than 0.71 out to 11 time steps in the summer and 0.72 out to 3 time steps in the

winter. This suggests we can predict solar current with some combination of past

values. However, since the values do not correlate perfectly, there is still a need for

both models and additional data.

Next we implement the model using Algorithms 3.1 and 3.2 in Matlab. We pre-

dict the future average daily solar current 2 days in advance using 7 days of data for

calibration (a value chosen based on the amount of data existing, ideally this would

increase as more data arrives), starting with the scenario where the model uses envi-
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Figure 5.1: Springbrook Data Sets: (a) Summer Data and (b) Winter Data

ronmental variables and no neighbors’ information. To the measured values, we also

add the three possibilities: (1) recalibrating when the error exceeds a threshold and

at least 4 days of new data exist in the matrix, (2) including the prediction error in

the calibration matrix, and (3) including the first derivative of the solar current in the

calibration matrix. We do not know which other variables most correlate to the solar

current so vary all parameters and run the model over each possibility. To determine

which combination provides the best prediction, we evaluate the predicted time series

using the root mean square error (RMSE) between the predicted and observed as well
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as the largest absolute error value. Table 5.1 outlines the combinations with the best

results over both metrics.

We also compare our results to two other locally computable methods: persistence

and exponentially weighted moving average (as suggested in [46, 58]). Persistence pre-

dicts that nothing will change and the future solar current value will be equal to the

current solar current value. Exponentially Weighted Moving Average (EWMA) com-

putes bt+L = αbt+L−1 + (1− α)xt, a linear combination of the current prediction and

the most recent solar current measurement (xt) that is weighted by a parameter α
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Figure 5.2: Autocorrelation of (a) Summer Data and (b) Winter Data
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which we set at 0.15 as outlined in Hsu et al. [46]. The results of all these models

appears in Table 5.1, which shows our MLR model improves over persistence by 19%

and 15% (in summer and winter respectively), and improves over EWMA by 13%

and 16%. In this table, it appears that we have several models depending on season.

The table shows the best results for combined metrics; actually we have 46 and 2684

variable combinations that give results better than persistence for both metrics in

summer and winter respectively. Currently we determine reasonable variable com-

binations by examining existing data sets and testing over the possibilities; we are

working on methods to determine this dynamically.

Next we examine the usefulness of neighbors’ solar current measurements within

the model. Three other nodes (Nodes 7, 9, and 21) collected data during the summer

months of January through March; none were direct neighbors of our primary node

(Node 2) and collectively they span the monitoring region. We divide our examination

into two sections: (1) is there any gain from including spatial factors into regression

models and (2) what effect the spatial factors have in combination with our environ-

mental factors. Table 5.2 shows our results. All three forms of our model improve

over persistence and EWMA. Between the two versions of the spatial model, includ-

ing the environmental factors increases the root mean square error while decreasing

the maximum absolute error. These variations are slight, however. This suggests the

addition of the environmental variables has little effect on the overall spatial model.

The spatial model itself does not outperform the environmental only model, which

simply implies that the environmental factors have more of an effect on the future

solar current than these neighbors in this case. However, the spatial version still per-

forms better than persistence. In cases where no environmental sensors exist or data

storage limits the model to only distributed spatial data, this model can still provide

valuable predictions of the future solar current for improving energy management.

5.2.2 Implementation on Fleck Network

We implemented our algorithms on a physical sensor network platform to verify their

functionality and feasibility in a real world scenario.
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Model Type RMSE
(mA)

Maximum
Absolute
Error

Our Model: Env. Only 1 Solar, 1 Wind Speed, Use
Derivative

16.67 3.40

Our Model: Spatial Only 3 Solar, 10 Node21, 1 Node7, 9
Node9, Use Derivative

17.33 4.75

Our Model: Env. & Spa-
tial

1 Solar, 10 Node21, 8 Node7,
7 Node9, 1 Wind Speed, Use
Derivative

17.63 4.29

Persistence 20.59 6.33
EWMA 19.68 5.23

Table 5.2: Results of Three Different Models Predicting Average Daily Charge Cur-
rent in Summer

Fleck Platform

The implementation uses the FleckTM3b platform for empirical validation. The

FleckTM3b is a low power wireless sensor network device designed by CSIRO specifi-

cally for outdoor applications such as environmental monitoring. The FleckTM3b em-

ploys the ATmega1281 microprocessor running at 8 MHz with 4 Kbytes EEPROM,

8 Kbytes SRAM, and 128 Kbytes program flash. This low power microcontroller

is combined with the Nordic NRF905 digital transceiver which enables the Fleck to

communicate at 50 Kbps across 1 km with a 915 MHz quarter-wave whip antenna

while consuming less than 100 mW of power. This platform can sense onboard tem-

perature and power usage and is easily interfaced to numerous external sensors via

the external sensor connector block and the daughterboard expansion bus. On the

software side, it runs Fleck OS (FOS) [24], a cooperative threading operating system

designed specifically for sensor networks.

Test Results

We tested this implementation on 3 Fleck nodes which we placed on the CSIRO

ICT campus as shown in Figure 5.3. The goal of this test is to verify the operation

of the algorithms on the Fleck nodes: do nodes correctly transition through the

state machine controlling operations, do messages occur at the correct times and do

the nodes respond in an appropriate fashion, and do the mathematical operations
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Figure 5.3: Fleck Node Installed on Campus

compute correctly (no overflow issues or implementation issues). In achieving this

goal, we focus on the implementation and not on replicating our simulation results.

As part of this proof-of-concept test of the implementation, we only use solar current

measurements in the matrix and have each node maintain a column of 5 values. We

set the number of rows in the matrix to a value keeping the message size within 1

packet, allowing us to avoid multi-packet messages. This reduced message overhead

and focused our tests on taxing the calibration algorithm, by utilizing a very short

calibration window causing multiple iterations of many messages.

We ran the system for over 7 weeks. Initially, the system measured every 15

minutes, predicted every 15 minutes, and calibrated every 90 minutes. The system

predicted the future current 2 measurement intervals in the future, or 30 minutes.

Figure 5.4 shows one week of the data from this time period, aligned and averaged to

the hour. The prediction performs reasonably well compared to the observations. An

interesting phenomenon occurs in the graph with two sharp down spikes between the

daytime period and the nighttime period. At night, the system actually is measuring

the nighttime lights that illuminate the campus (an unforeseen effect). The two spikes

then reflect when those lights turn on and off. Our predictions capture this unusual

behavior as well.
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Figure 5.4: One Week of Observed and Predicted Data from CSIRO Test

After approximately 3 weeks, we changed the system parameters to tax the cal-

ibration algorithm more rigorously. We shortened the measurement window to 2

minutes and the calibration window to 6 minutes. This also shortened the prediction

window to 4 minutes (as the system still defined it as 2 measurement intervals).

Over a two week period, the system attempted 2773 calibrations. 2679 of these

were successes and 94 failed, resulting in a 96.6% success rate.The failures all occurred

early on as a result of one node having a low initial battery voltage. This node shut

down until the next morning when it received sufficient solar energy to resume op-

eration. However, the system correctly identified the failures when the node did not

contribute to the algorithm with the remaining active nodes timing out and resuming

regular operations. They continued to attempt calibration and eventually succeeded,

all without user intervention. These instances of low power states, while not ideal for

our operation, also argue the need for smart energy management and the usefulness

of our system.
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Hourly Daily
Model Type RMSE % Error RMSE % Error

Our Model 2.04 -24.6 0.91 -15.6
Persistence 3.61 91.7 2.52 17.8

EWMA 3.64 105.0 1.51 12.4

Table 5.3: Results of Models Predicting Average Hourly and Daily Charge Current
for Data from CSIRO Test

The test achieved our goal, demonstrating the functionality of the implementation

on a real sensor network platform. To connect the test to our daily average predictions

from simulation in order to show the reasonableness of the prediction, we analyze the

overall data set to see how well it predicted the average daily solar current. We average

both the observations and predictions; Figure 5.5 shows the both the observed, the

predictions from the system, and an offline prediction by the EWMA model (also

average from hourly predictions). Our predictions match the observed well and better

capture the peaks compared to the EWMA model.

We also analyze the RMSE error for the hourly and daily averaged data sets.

Table 5.3 lists these values along with the percent error of each model, which verify

the graphical analysis. Our model has the lowest RMSE error for hourly and daily

compared to both persistence and EWMA. For hourly percent error, our model un-

derpredicts by 24.6% while persistence and EWMA overpredict by 91.7% and 105.0%

respectively. In comparison terms, this means that our model improves over per-

sistence by 67.1% and over EWMA by 80.4%. For daily percent error, our model

again underpredicts while the other two overpredict. However, our model provides a

2.2% better prediction compared to persistence and provides a 3.2% worse prediction

compared to EWMA. This occurs due to the averaging effects; since we average the

hourly predictions to obtain the daily, persistence and EWMA models average out

the time delay of their predictions. If we only predicted daily values, both persistence

and EWMA would have time delays on the peaks and valleys of the predictions, pro-

viding a significantly worse percent error. From an energy standpoint, the important

trend of these values is that our model underpredicts compared to the other two
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Figure 5.5: Average Daily Solar Current Observed and Predicted from CSIRO Test

overpredicting. Underpredicting ensures the system operates on a lower power bud-

get than actually exists, allowing it to remain operational far longer. Overpredicting

will convince the system to use more power than actually exists, reducing the system

lifetime. Therefore, having a prediction model that underpredicts is preferable to an

overpredicting one. Overall, this test demonstrated a functional and correct imple-

mentation of the distributed algorithm on the Fleck platform, connecting the theory

to the real operation of the algorithms.

Energy

Despite the improved predictions, we must ask whether it makes sense from a en-

ergy standpoint to perform a more complex model. Table 5.4 outlines the relevant

numbers.

First, from the prediction side, computationally, persistence performs the best as

it requires no computation while our model and EWMA differ by 2 operations, leading

to a 9.5∗10−5 mJ increase in energy in order to compute our model. Distributing the
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Model Type Comp. Ops Comp. Comm. Msgs Comm.
Energy (mJ) Energy (mJ)

Prediction:
Our Model 5 2.38 ∗ 10−4 2 1
Persistence 0 0 0 0
EWMA 3 1.43 ∗ 10−4 0 0

Calibration:
Our Model 8400 0.4 6 3.1

Table 5.4: Energy Requirements for Models

prediction for our model requires 2 32-byte messages, which requires 1 mJ of energy,

while the other methods have no communication requirement and, thus, require no

energy.

On the calibration side, only our model requires calibration. This calibration,

using the parameters of our field test, requires roughly 8400 operations (only 6.7 ms

processing time). On the 8MHz Fleck platform operating at 3.3 V and requiring 18

mA active current, this results in 0.4 mJ of energy. Communicating the messages re-

quired for calibration, 6 messages total at a maximum transmit power of 100 mW and

data rate of 50 Kbps, requires 3.1 mJ of energy. To put these numbers in perspective,

during our field test, the system gathered 37.5 mA daily (on average). This resulted

in 1.07 ∗ 104 J of energy daily (296.7 Wh). If we performed calibration in accordance

to our outlined model, calibrating every 7 days, the calibration operation would use

4.2 ∗ 10−8% of the weekly energy. As the trend for our model is underpredicting,

we would easily recover the energy costs of computing our model through the energy

savings incurred by using the prediction to manage power. In return for this energy

expenditure, we also see an improvement in our solar current prediction over EWMA

and persistence. Achieving such an improvement costs so little from an energy stand-

point that we conclude it does make sense to compute our more complicated model

to aid better power management that could easily recapture the energy expended on

prediction.
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Discussion

Based on these results, we elaborate on several aspects of the system.

First, we saw single node failures during our testing, but avoided multiple node

failures. What would happen if a multiple node failure occurred? Should any nodes

other than the master node fail, the network would continue to attempt calibration,

miss the needed communication, and cancel the rest of the algorithm. Should the

master node fail, the calibration would not occur. Future work entails adding data

redundancy to the algorithms such that the failure of a node still allows the calibration

algorithms to continue.

Another thing to note regarding these results is that the failure of the calibration

algorithms does not mean the failure of the system. In cases where the calibration fails

to complete, prediction does continue with the old coefficients. Energy management

can still proceed with predictions of future solar current; however the coefficients

may be less accurate. Slightly less accurate predictions will not cause our network

to fail. Any time series prediction will oscillate around the real values, but the

aggregate behavior should match the real solar current behavior; this we see in our

work. As long as the aggregate matches and predictions do not oscillate too far

from the real behavior (which we do not see in our work), any energy management

system will be able to maintain operation. Some days will require using more energy

from the power storage system than expected, but this will be corrected on those

days where extra power is stored. Overall, the predicted solar current will lead to a

more comprehensive energy management system, which should ensure the continual

operation of the network.

Additionally, we can explore the trade-offs regarding the time windows for sensing,

prediction, and calibration. All the timing is sensitive to the phenomena and data

being predicted, but we can make some generalizations. Small time windows for

sensing and prediction occasionally result in models too sensitive to perturbations

within the data; the system then requires more frequent calibration to adjust and

some amount of smoothing. For the case of solar current at a medium time scale

(approximately of the order hours), the cyclic nature of the data with high values
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during the day but near zero values at night can confuse the model, ensuring it does

not accurately predict either. In our results, Figure 5.4 sees the model not quite

matching the nighttime values and, on occasion, not quite reaching the heights of the

daytime values. Accurate models at these medium time scales might require operating

only with one portion of the cycle, but the movement of the transition points between

night and day and vice-versa can still cause difficulties. Larger time scales, such as

the daily values we use, smooth over the cycles and perturbations to ensure a data

set more amenable to time series predictions. However, this does require more time

to gather data for calibrating and recalibrating based on seasonal trends in the data.

Our choice of daily time windows ensures a reasonable prediction while minimizing

the amount of computation (and thus power usage) needed by the model, allowing

more time for monitoring the environment and the operational goals of the sensor

network.

Finally, we want to consider the definition of the matrix and determination of

appropriate policies. We used the existing simulation data to define reasonable model

structures and chose fixed windows for calibration and prediction. Ideally, the system

would dynamically determine this, either centrally or distributed, allowing for a more

adaptable model. This would also allow for a variety of prediction windows and

dynamic growth of the calibration window as more data arrives. With dynamically

defining these parameters, we need to also decide the optimal strategy for predicting,

whether it makes more sense to utilize the same prediction for a node cluster or have

each node predict its own current. This relates to node density and the variability

of the environment. A more heterogeneous setting may lead to better individual

predictions while a homogeneous setting allows for reasonable cluster predictions; a

large network most likely will need a combination of approaches. To achieve this,

we first must include manual methods for defining these policies and then consider

automated methods. We leave this for future work, recognizing the importance of

answering these questions to enable a portable prediction model.
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5.3 Dynamic Prediction Model

In this section, we describe our initial work to define a dynamic prediction model.

We first discuss the design, covering the issues, trade-offs, and requirements. Next,

we introduce our implementation on the Fleck and discuss our tests.

5.3.1 Design

One clear issue with using multiple linear models is the definition of the variables

stored within the matrix. Our methodology relies on an existing data set upon which

to perform simulations in order to define the best matrix structure. However, we

would prefer that the system learns the structure of the matrix so that the model and

prediction better reflect the existing conditions.

As an initial step towards this goal, we develop tools to allow the user or central

location to redefine the model. Redefining the model includes determining which

variables the matrix uses, how many past values of each variable, the calibration time

window, and how the system distributes these values among the participating nodes;

the same variables and values we defined through our simulations. The values define

the matrix: the number of rows is equal to the calibration time window, and the

number of columns is the total number of past values used for all variables. Each

node needs the additional functions to process messages for changing the model, to

change the relevant values, and to compute any dependent variables. In addition

to changing the variables defining the model, we need to consider how to store the

matrices as well as storage optimizations and limitations.

Before addressing these issues, we should discuss our choice of platform as it affects

our design options. We intentionally performed these initial experiments into dynamic

models using the Fleck platform and not our own. Our platform could support these

changes and actually has a couple advantages over the Fleck. The ARM processor

we use provides significantly more internal storage than the ATmega1281 used in the

Fleck, and we have a FRAM and SD card for even more storage; this would allow for

larger structures than the Fleck platform. Additionally, our Aerocomm radio allows
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larger packets than the Nordic radio; this also eases implementation by dynamically

supporting changing packet sizes as necessary when changing the matrices’ sizes.

However, the Aerocomm radio also provides the greatest source of problems in our

platform with unreliable communication distances and success rates. FOS, the Fleck

operating system, also provides support for “remote procedure calls” (RPCs). While

fundamentally messages and message handlers, the tools for adding the messages,

message handlers, and user interface function calls is easy to use and speeds up

development on the central user (or computer) side. Accordingly, we implemented

our initial forays into dynamic models on the Fleck platform.

Our first design issue involves defining the matrices’ structures and variables.

We have 4 permanent matrices: A, R, U , and V , 2 vectors: b and xopt, and some

number of temporary matrices and values. Of these, A, R, b, and xopt are distributed

among the participating nodes; U and V are stored by the prediction instigating node.

Since microcontrollers do not support malloc (or, more precisely, use of malloc tends

to cause problems within microcontrollers), our only recourse is to pre-define these

matrices to the largest reasonable size while still allowing the code to compile. We can

use our experience to create some heuristics to aid defining the “largest reasonable

size”; Algorithm 5.2 depicts the on-node variable definitions for this. First, models

rarely require a large number of past values for secondary variables. In the case

of solar current, the solar current of the nodes and neighboring nodes are primary

variables, but the environmental conditions are secondary variables. Second, given

a trade-off between more past values of the primary variables and more calibration

values, our results suggest having more calibration variables is better. This allows

nodes to all have the same size storage for A and other matrices, which will aid in

reformatting the matrix. In cases where the number of nodes is greater than or equal

to the number of variables, having roughly the same storage also allows assigning one

variable per node without worries about lacking storage for them.

In addition to optimizing variable definitions, we consider storage optimizations.

Currently, we store data in a circular buffer before loading the A matrix; this eases the

computational requirements as it avoids shifting each column of the matrix after every

139



Algorithm 5.2 On Node Matrix Definition

Nmax: maximum number of nodes participating in computation
pcount: maximum number of possible primary variables per node
pmax: maximum number of primary values
scount: maximum number of possible secondary variables per node
smax: maximum number of secondary values
c: maximum number of calibration values

All nodes declare:
A = zeros(c, pmaxpcount + smaxscount)
R = zeros(Nmaxpmaxpcount + Nmaxsmaxscount, pmaxpcount + smaxscount)
b = zeros(c/Nmax, 1)
xopt = zeros(pmaxpcount + smaxscount, 1)

Prediction node declares:
U = zeros(Nmaxpmaxpcount + Nmaxsmaxscount, Nmaxpmaxpcount + Nmaxsmaxscount)
V = zeros(Nmaxpmaxpcount + Nmaxsmaxscount, Nmaxpmaxpcount + Nmaxsmaxscount)

observation period. As we reach the limits of our existing storage, we will remove this

buffer and store the values directly in the matrix, saving storage space at the expense

of computation time. This will also require limiting recalibration until enough time

passes to refill the matrix as the operation of calibration will destroy the existing data.

Another possibility is utilizing an FRAM to store the values until a calibration event

occurs and then use a smaller amount of storage within the microcontroller. The

Fleck does not have a FRAM, but we could use this optimization on our platform.

We next need to define the procedures necessary to implement a dynamic model.

Algorithm 5.3 outlines the behavior of the model. From the system side, we first

need user interface functions to manually reset the parameters of each node, which

will trigger a message to that node. Within this message, to correctly compute the

algorithms, each node needs to know the total number of columns, m, and the total

number of rows, n. Next, each node in the sensor network must support changing

the description of which portion of the matrix it stores. For each variable, it stores

the variable type, the number of past values, and the location of the columns within

the matrix (this defines when it participates in the QR). We ensure in defining the

variables that each node understands how to get the variable data it needs, either by
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measuring, computing, or monitoring packets in the unlikely case where the system

assigns variables for which it has no sensor.

Ideally, since the system receives regular updates of the observations and predic-

tions, we can add an automated analysis of the behavior to define the quality of the

prediction and redefine the matrix to improve the prediction. For situations where

little is known about the process being predicted, we can use this to automatically

run through a variety of model structures to determine the best one, allowing the sys-

tem sufficient time to run the model, analyzing the results, and changing the model

definition in a continuous loop. Determining the best approach for this and designing

the algorithms we leave for future work.

Algorithm 5.3 Dynamic Matrix Re-Definition

User or automated system defines matrix at Central Location

Central Location transmits to Node j:
msg = [total columns, total rows, number variables stored, variable, number of
values, matrix column location]

Node j receives message and updates:
m =total columns
n =total rows
vcount =number variables stored
for i = 1 : vcount do

var[i].type← variable
var[i].number ← number of values
var[i].location← matrix column location

end for

None of this requires modifications to our existing distributed algorithms. From

an implementation standpoint, we eventually want to transition to using the fully

distributed linear regression calibration algorithm (Algorithm 3.10) as this will enable

larger matrices. For now, our existing implementation references variables easily

changed outside of the algorithm.

Having defined what we want to achieve and discussed the design issues, we can

now implement these operations.
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5.3.2 Implementation

We implemented these ideas on the Fleck platform. For storage, we pre-define the

possible matrix sizes to the largest possible, keeping our current practice of having

a separate data buffer. Based on our results, we limit the number of values for each

secondary variable to smax = 1 and allow inclusion of scount = 2 secondary variables

per node. For primary variables, each node stores pcount = 1 variable with a maximum

of pmax = 10 values. We limit the computation to a total of Nmax = 4 nodes. We

also keep our current implementation of the semi-distributed regression model.

We added a remote procedure call (RPC) to change the necessary variables on a

individual node basis. This generates a function within the user interface allowing

an individual to send a message to each node updating the variables and also gen-

erates the node reception of the message for us, dealing with the variable message

length automatically in the existing FOS functionality and calling a message handler

we define. On the node side, we implemented the message handler to change all the

variables and ensure that the calibration re-runs once we change the matrix defini-

tion. All the trickiness in applying this dynamic model revolves around ensuring the

details are correctly implemented, especially the indexing; not breaking the existing

functionality required carefully outlining the meta-definitions of the timing windows

and the computation internal loops traversing the stored columns.

We tested this with our nodes. From a central computer, we modified the matrix

at random intervals. Everything worked as desired and now allows us to change the

model while it runs on the system. We still have more work before we have a fully

dynamic model, which we outline in Chapter 7, but this provides a good start toward

achieving our goal.

5.4 Conclusions

Optimizing energy usage on sensor nodes is a key issue for sensor networks. In this

chapter, we described a model and distributed algorithms for predicting future average

daily solar current. We developed a distributed pseudoinverse algorithm usable in a
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wide range of applications. We verified the functionality of these algorithms through

simulation and a month-long field experiment on the Fleck platform.

Predicting solar current enables better power management in sensor networks. For

example, a power management system could use the solar current prediction to de-

termine that insufficient energy will be harvested over the next two days to support

the current operations. A power management planner could use this information

to plan the system operation with fewer communication rounds, less data, or per-

haps compressed data, trading off power and communication for computation, data

resolution, and solution accuracy. Overall, better power management means longer

operation of the network, providing more monitoring of the environment, more data,

and a more useful sensor network. Our work equips sensor networks to provide bet-

ter energy management and does so in a very usable, general form. Anyone can use

our algorithms to predict future energy on any sensor network with solar recharging.

The model utilizes any combination of climactic and spatial variables available on the

platform. The only requirement is measurement of solar current.

Finally, we outlined initial steps towards a dynamic model, allowing the user to

change the model during system operation. This will lead to a more autonomous and

robust method of determining the correct model structure.
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Chapter 6

Job Congestion in Networked

MFDs

Multi-function devices (MFDs) combine the services of print, fax, and scan (among

others) to maximize capabilities while minimizing physical space requirements. Net-

working MFDs could provide services not available to individual machines, not only

by providing distributed computation of jobs, but in allowing access to service capa-

bilities provided by only a subset of the devices. However, in connecting such devices,

potential problems arise with higher traffic flows, small numbers of the devices provid-

ing a much requested service, and network overhead. One common potential problem

is congestion, seen by devices with much requested services or located in bottlenecks

of improperly balanced networks, which limits the ability of that device to meet its

quality-of-service (QoS) requirements. Detecting congestion, while not difficult, im-

plies that the problem of congestion already exists and all system responses attempt

recovery at this point. To avoid reaching a recovery point requires predicting and

preventing congestion, which poses a more complicated problem. In this chapter,

we use our multiple linear regression model to predict congestion, develop a network

simulation to test this model, and evaluate our results, seeing that this approach does

succeed in predicting future congestion at a device.

Because these networked MFDs do not yet exist beyond research, Section 6.1 de-

scribes the network model we developed to validate our model and provide a frame-
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work for testing algorithms and verifying behavior theories. Section 6.2 defines con-

gestion metrics and our prediction model. Section 6.3 validates our congestion predic-

tion model through simulation, outlines our implementation of our algorithms in the

network model, and verifies the functionality of our algorithms within the network

model environment.

6.1 MFD Network Model
Before we can understand congestion on a MFD network, we need to describe and

formalize a MFD network. Multi-function devices exist commercially and are widely

used; however, MFD networks with capabilities to share services do not exist other

than as a research project. Thus the system itself does not exist, so we also need to

develop a model of a MFD network on which to verify our assumptions and develop

our prediction algorithms. This section formalizes a MFD network and then develops

a model of this network.

6.1.1 MFD Network Description

An MFD provides many different services. If we had a network of such devices, we

could consider distributed services, such as parallelizing optical character recognition

or distributed storage that would allow a user to enter a document at one device and

retrieve it from another device at a later time. For congestion and modeling purposes,

we abstract our idea of these networks, ignoring the underlying protocols and even

the details of such services, using instead a simple notion of jobs.

All jobs begin when an external user instigates them at a particular device; we

assume all devices have external user access. A job contains some number of units of

work, ranging from a minimum of 1 to a maximum of θ. The device will service any

job consisting of a single unit of work. For any job consisting of more than 1 unit

of work, the device will split it into multiple sub-jobs and farm out the sub-jobs to

neighboring devices. If the job is farmed out, each neighbor processes the sub-job,

returning the results to the initial device. The initial device, once it has all results,

post-processes the results and provides the output to the user. Figure 6.1 depicts the

overall flow of the model.
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Figure 6.1: Flow Diagram of Model Overview

To help quantify this for modeling, users submit jobs to a device j according to a

Poisson arrival process, characterized by parameter λj, with jobs either single unit or

multi unit with probability α. A multi unit job consists of some number of sub-jobs,

randomly determined by a uniform distribution from 2 to θ. Processing single unit

jobs requires one step; processing multi unit jobs requires a processing step to divide

and farm out the job, processing steps on all devices to complete the sub-jobs, and

a processing step to finalize the job. Each processing step takes an amount of time

based on a Pareto distribution, characterized by parameters Kj and σ.

Devices distribute sub-jobs based on three behaviors: (1) service capability, lo-

cation, and reputation. Devices can support any combination of these behaviors,

prioritized as introduced. A device supporting all three first defines the sub-set of

neighbors that can support the needed services. This sub-set further narrows based on

network location. Finally, among the sub-set of equally distant and equally capable

neighbors, the device distributes the sub-jobs based on reputation.

In service-based job distribution, a device determines those neighbors capable

of processing the job. We define a notion of service types, software applications
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performing some set of operations, where each type is independent and self-sufficient.

Not every device supports all services, reflecting both an idea of older and newer

models in the network, and an idea of purchasing specialized software for only a subset

of devices. We assume devices know which services each device in the network can

provide. Our network supports some number of services, S, with some percentage, δ,

of devices supporting each service. We randomly determine this percentage, δ, based

on a uniform distribution between dmin and 1. Each device then decides for each

service if it is within that percentage of devices.

Location based routing ensures that devices submit sub-jobs to their neighbors

based on network hop distance. For our purposes, we assume a device already knows

the network topology. Based on this topology, the device generates a routing table

defining all neighbors and the shortest hop-count to access each. Devices use the

table to determine the closest neighbor capable of processing the job and only send

sub-jobs to neighbors within that hop-count. We ignore the path and network costs

of routing.

Within their local neighbors, a device partitions a job based on reputation. Repu-

tation reflects the likelihood of computing the sub-job and returning results promptly,

which on a real machine would change based on factors such as processor, machine

age, machine usage, and machine quality. In our model, we define it based on com-

putation time of sub-jobs, which is determined by the Pareto distribution. If we keep

the same parameter, Kj, for every device’s Pareto distribution, a device’s reputation

reflects the random differences between these distributions and device location within

the network configuration. To include a notion of machine age and quality, we define

a parameter η that adds a random integer between (0, η) to Kj, thus “aging” each

device (due to the features of the Pareto distribution, a higher η means a younger

device). During simulation, each device maintains its own reputation value. After a

device determines its set of local neighbors capable of processing the sub-jobs, it then

computes a normalized reputation value based on this set of neighbors. The device

then sorts the neighbors by normalized reputation and sends a proportional number

of sub-jobs to each neighbor.
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6.1.2 MFD Network Simulator

With MFD networks defined, we can now discuss our simulator to represent these

MFD networks. We need a simulator as sufficiently large networks do not exist in

reality and the simulator allows us to test a wide variety of scenarios in order to verify

our prediction model.

Our interest in MFD networks lies at the application level, making the safe

assumption that such devices will operate using some standard network protocols.

Given this, we only want to model this application level, ignoring detailed network

implementation issues. This led us to focus on discrete event simulators, which dis-

cretize time into unit-less intervals. The simulator processes all tasks occurring within

an interval, making the assumption they all can be processed within that interval.

Devices cannot communicate within an interval, but send a message to another de-

vice with some delay. That device will process the message in the interval in which

it arrives. The simulator fast-forwards through intervals with no events; this com-

bined with unit-less intervals allows for simulations running much faster than the real

system, the primary benefit of discrete event simulators.

Symbol Definition Range Assigned
N Number of devices in network 2-22 Runtime
λj Job arrival rate 0.02 Fixed
Kj Processing scale for Pareto 200 Fixed
α Percent of multi unit jobs 0-1 Runtime
θ Max number of sub-jobs in a multi unit job 2-15 Runtime
η Max machine aging parameter 0-32 Runtime
S Number of service types 3 Fixed

dmin Min percent supporting each service 0.2 Fixed
δ Percent of devices supporting service 0.2-1 Generated

Table 6.1: Network Simulator Variables

We chose SimPy, an open-source, Python-based simulator [83]. SimPy provides

a rich amount of functionality, especially a large number of functions and hooks for

monitoring the internal operations of the simulation. Additionally, it is easy to use

and easy to incrementally develop the network simulation.
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In SimPy, we model devices as processes containing a job queue. An external

user process generates jobs for a device; one external user exists for every device.

Both classes operate according to the parameters and distributions we defined above,

summarized in Table 6.1. We define the following variables at run time: number of

devices within the network (N), arrival rate (λj), processing scale (Kj), percent of

multi unit jobs (α), maximum number of sub-jobs allowed for a multi unit job (θ),

maximum machine aging parameter (η), number of intervals to run the simulation,

and network configuration. We fix the other variables describing the network within

the simulator to values realistically describing expected networks. Our network sup-

ports S = 3 services, which sufficiently covers the set of behaviors within the network

while allowing for analysis. The minimum percent of devices supporting each service,

dmin, is set to 0.2.

To define the parameters, we used measurements from a real test network of 5

MFD devices. With this network, researchers at Xerox computed a job arrival of

λ = 0.02 and a processing time of K = 200 and σ = 4, which, for now, we use as

values for all devices. The definition of the Pareto process within SimPy ignores σ and

only uses K, so we only supply K in the input parameters. We leave the remaining

job parameters, N , α, θ, and η to skew during testing, as we would like to better

understand the impact of these parameters on congestion.

For the network configurations, we choose whether to generate a random con-

figuration within the simulator or to use an existing file. If generating a random

configuration, the simulator generates a random set of numbers from the maximum

number of devices available, ensuring that each device has itself within its list of

neighbors for processing sub-jobs. We also supply fixed configurations, using many

of the standard network topologies such as rings, stars, and fully connected grids, in

addition to randomized configurations (supplied in order to provide repeatability of

testing with random configurations) and more realistic ones such as that shown in

Figure 6.2 (dotted circles represent subnets within the network and bold lines repre-

sent nodes communicating between subnets).
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Figure 6.2: “Realistic” Network Configuration

The simulator begins operation by computing the remaining variables. For each

service, it computes δ, the percentage of devices supporting that service, randomly

subdividing based on a uniform distribution between dmin = 0.2 and 1. It also com-

putes how many jobs will need each service, again subdividing based on a random

uniform distribution. The simulator loads (or generates) the configuration file and

defines the neighbor map for each device. After initializing the monitoring and sim-

ulation environment, it begins creating and initializing each device.

Each device performs a number of start-up tasks. First, it chooses an ID, given

sequentially so no device has the same. It then randomly determines which services it

will support, based on a uniform distribution and compared to the previously defined

distribution of services. It initializes the monitoring tasks that will record the values

of specified variables over the life of the simulation, including total processing time,

job queue length, reputation, and number of jobs of each service type. Finally, it

generates a routing table using a breadth-first-search. In addition to each MFD de-

vice, there is a corresponding external user, which has the same ID and no additional

initialization necessary.
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After all devices and external users are initialized, the simulation begins running.

Figure 6.3 depicts the flow diagram for the external user process. Figure 6.4 outlines

the flow diagram representing the actions and messages taken by the multi-function

devices, where the external user supplies the jobs.

Generate Job

Send Job

to Device

Idle

External User

Has user arrived?

Yes

No

Figure 6.3: Flow Diagram of External User Process Behavior

Each external user generates jobs for its device based on λ. Once a job exists,

the external user defines whether it is a single or multi job and the service type. If a

multi job, the external user then defines the number of sub-jobs. Finally, the external

user places the job in the device job queue and waits until the next job arrives.

A device idles until a job arrives in its queue. Upon receiving a job, it checks

whether it is: a single job, a new multi job, a sub-job for another device, or a return

response from a neighbor finished with a sub-job for an old multi job. The device

processes each for a number of intervals according to the Pareto distribution. If it is a

single job, the device first checks if it supports the service type. If it does, the device

processes it and returns to idle. Otherwise, it treats it as a new multi job consisting of

one sub-job and proceeds with the actions for a new multi job. If it is a new multi job,

the device generates the list of neighbors supporting the service type and within the

hop count of the closest capable device, ranks the list by reputation, and then sends

sub-jobs to all the devices (including itself). The device then finished that processing

interval; it will sleep if it assigned itself no sub-jobs (in the case where it does not
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Figure 6.4: Flow Diagram of MFD Process Behavior

support the service type) or will awake in the next interval to process the sub-job. For

a sub-job, the device processes it and sends a response to the initiating device once

processing completes. Finally, for a return response from a sub-job, the device first

marks that portion of the sub-job complete and then checks if it is the last response

expected. If it is the last response, the device adds a finalize job to its job queue; this

job will require processing intervals according to the Pareto, while the other response

steps take no more than the one interval. These behaviors describe all the actions

taken by each device and devices only interact through the job queue, mimicking the

notion of messages through a network. Overall this provides an accurate simulation

of the expected network behavior.

6.2 Prediction Model

In this section, we define congestion for a MFD network and describe a congestion

prediction model.

6.2.1 Congestion Definition

We need to define what congestion means for a MFD network. As we ignore network

considerations, we are really focusing on what congestion means for a multi-function
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device. Within a single device, congestion is the inability to perform a unit of work

within a specified time, TC . A device quantifies this as the wait time of a job in

its processing queue, which it can simplify by measuring its queue length. Because

congestion occurs over a time window and we do not want to capture momentary

fluctuations in queue length, we average the queue length over time increments, Tinc.

Once average queue length exceeds Qc, comparable to TC , the device decides it is

congested and performs some recovery behavior. To predict congestion, a device

models congestion some time units into the future, TL, and detects a predicted level

over Qc.

6.2.2 MLR Congestion Prediction Model

As the primary function of the device network is to provide a QoS guarantee, we need

a prediction model with limited computation and communication requirements. This

insures minimal contention for the device processor and network resources. Addi-

tionally, we would like a model that can self-calibrate to handle the variability of the

network usage and topology. To achieve all this, we use our multiple linear regression

model from Chapter 3. These models can easily scale the number of variables used in

prediction, re-calibrate, and, after calibration, require limited computation to predict

the output.

We apply this model to predict congestion for each device within the network.

In only modeling congestion for a single device in the network, our theory is that

local detection and correction can alleviate global congestion. To predict congestion

for a device, we use the average queue length, Q, which is a time series variable as

necessary for our model. We also can include reputation and number of jobs of each

service type, all variables locally measurable by the device.

Algorithm 6.1 displays the basic structure of this model. In it, Q is the past

average queue length, N is the number of past values used within the equation (or

the order), Y is the predicted future average queue length, and Qc is the threshold

for queue length leading to congestion.
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Algorithm 6.1 Congestion Prediction Algorithm

1: Q : average queue length
2: N : # past queue length values used
3: Y : predicted queue length
4: TT : training time window
5: TL : prediction lead time
6: TR : recalibration time window
7: . Compute initial coefficients and prediction
8: Q← [Q(1 : TL −N), ..., Q(1 + N : TL)]
9: X = ((Q ∗QT )−1 ∗QT ) ∗ Y (1 + TL : TL)

10: Y (1 + TL : TL) = Q ∗X
11:
12: for t = TT + 1 to ... do . Forecast
13: if (t%TR) == 0 then
14: Q← [Q(t− TL : t−N), ..., Q(t− TL + N : t)] . Recalibrate coefficients
15: X = ((Q ∗QT )−1 ∗QT ) ∗ Y (t− TT : t)
16: end if
17: Q← [Q(t−N), ..., Q(t)]
18: Y (t + TL) = Q ∗X
19: if Y (t + TL) > Qc then
20: Congestion : Avoidance actions necessary
21: end if
22: end for

6.3 Testing: Simulation and Implementation

We now verify the simulator in SimPy, validate the model in Matlab, and implement

the model in the simulator.

6.3.1 Network Simulator

In this section, we validate the operation of the simulator and demonstrate the effects

of several parameters.

We would like to understand the behavior of the MFD network through the sim-

ulator. The simulator should reflect enough real world operations to provide a valid

testing environment, so we verify the operation of our simulator through a variety of

configuration options and tests.

We added each behavior sequentially, ensuring the correct operation through hand-

analysis of small tests with fixed configurations. This guaranteed that, as we devel-

oped the model, each new parameter and behavior was implemented as we specified.
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Next, we generated a large number of configurations and tests. We decided to

explore a range in the number of devices comprising the network. With no real

world data except an idea of common non-networked MFD office configurations, we

examined networks of 2, 7, 12, 17, and 22. This provided a reasonable number of

devices for small to medium offices and remained manageable for analysis. For this

range of network sizes, we developed a set of common fixed network topologies: ring

(both limiting connections to right-hand neighbor and allowing connections to both

neighbors), star, grid, and line. Assuming many offices do not actually setup their

copiers in these configurations, we also generated random and hybrid configurations.

Random configurations determine a set of neighbors for each device; to ensure re-

peatability, we pre-generate these random configurations and use them for all testing

scenarios. Hybrid configurations randomly connect a set of star configurations (see

Figure 6.2). These configurations are parameterized by minimum number of stars,

maximum number of stars, minimum number of nodes per star, maximum number

of nodes per star, and number of connections between stars. To generate, we ran-

domly determine how many stars. The first star begins with node 0 as the hub and

a random number of devices with sequential IDs, of which some number connect to

nodes outside the star. The remaining stars repeat the process, using the next ID as

the hub center. In choosing the connections between stars, we randomly choose the

outside nodes, but also ensure the generated network is connected.

For each configuration, we generate a set of tests. We tested job ratios of α = 0.2,

0.4, 0.6, and 0.8, and job sizes of θ = 5, 10, and 15. The machine aging parameter,

η, stayed fixed at 10 for these tests. The simulation length we also fixed at 5400; if

we consider each interval equal to a second, the simulator runs for 1.5 hours, which

provides a good snapshot of behavior for analysis. With all configurations and pa-

rameter variations, we have 611 tests.

As output of these tests, every interval we record several monitored variables:

job queue length, number of single unit jobs, number of sub-jobs from other devices,

number of multi unit jobs, reputation, number of service type 1 jobs in queue, number
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Variables of Interest Average Value
Average Job Queue Length 4.89

Number of Single Jobs 86.41
Number of Multi Jobs 49.22
Number of Partial Jobs 530.26

Number of Service 1 Type Jobs 5.69
Number of Service 2 Type Jobs 4.38
Number of Service 3 Type Jobs 6.21

Table 6.2: Average Behavior of Device 0 for All Tests

of service type 2 jobs in queue, and number of service type 3 jobs in queue. These

reflect the primary variables of interest and those changing the most throughout the

simulation. We log these variables for each device in each test, generating a large

amount of data describing the various behaviors of the network.

Figure 6.5: Hybrid Configuration Used in Parameter Analysis

Table 6.2 shows the average behavior of Device 0 in all tests. The average across

the tests of the average job queue length indicates that congestion does occur and we

have room to improve on the system behaviors. As we expect, the number of single

and multi jobs are within the same order of magnitude, while partial jobs are an

order of magnitude greater reflecting their creation by sub-dividing multi jobs. Jobs

split about equally among the 3 service types, which reflects our expectations of this

category and definition within the simulator.
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Figure 6.6: Average Job Queue Length

We choose one configuration (see Figure 6.5) and explore the behavior of devices

in greater detail. Figure 6.6 shows the average job queue length for each device.

No patterns exist in distribution of the average job queue. For example, the device

with the greatest length for each sub-star is a connecting one for most but the hub

device for one, the device with the shortest length for each sub-star is a connecting

device but all connect to different sub-stars not to a specific sub-star, the sub-star

with the device seeing the longest queue length also contains the device seeing the

second smallest, and the list of conflicting patterns continues. This indicates that we

cannot devise a congestion model based on the network topology, but need a model

that learns the various non-intuitive behaviors occurring.

To understand the breakdown of the jobs, we examine Figures 6.7(a), 6.7(b),

and 6.7(c). Here we see the partial jobs dominate the behavior with more jobs in

general and a clear mimicry of the average job queue length across devices. This

makes sense. Partial jobs exist as the sub-division of multi jobs, which the simu-

lator generates relative to single jobs. We expect to see roughly the same order of

magnitude then for multi and single jobs, but a larger number of partial jobs. This

larger number of jobs influences the overall behavior of the system and the average

job queue length seen by devices.
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Figure 6.7: Average Number of Single, Multi, and Partial Jobs

We also examine the queue behavior over time as shown in Figure 6.8. This reflects

the behaviors seen in the average job queue length, Figure 6.6. Additionally, we see

no job balancing across devices. Some devices, such as 2 and 9, have almost no jobs

while other devices, such as 3, 13, and 19, are quite busy with jobs throughout the

time window. Controls based on job congestion can alleviate some of this, enabling

a more balanced network.

Figure 6.8: Job Queue Length Over Time for Each Device
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Additionally, we defined several variables for which we do not have real world data

to fix and would like to understand the effects of these variables, namely α, θ, and

η. With the configuration defined above, we examine the effect of each parameter on

job queue length, job breakdown between single and multi, and reputation.

Effect of α

To examine the effect of α, which defines the percentage of multi jobs generated, we

test the network with the hybrid configuration of Figure 6.5 and θ = 5. We nullify

the effect of reputation by giving all devices a reputation of 1. We then skew α over

(0, 1) in increments of 0.1.

After running the 11 tests, we see an average job queue length across all devices as

shown in Figure 6.9. As α increase, job queue length increases. This reflects the fact

that an increase in α increases the number of multi jobs generated, which requires

more processing that single jobs. This processing not only encompasses the sub-job

processed by the devices, but the initial processing job and the final processing job.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

α

A
ve

ra
ge

 J
ob

 Q
ue

ue
 L

en
gt

h

Average Job Queue Length for all Devices as  α Increases

Figure 6.9: Average Job Queue Length as α Increases

We can best see this through examining the job breakdown in Figure 6.10. Single

jobs linearly decrease as α increases and multi jobs linearly increase, matching the

definition of α. Multi jobs do not start at 0, however, which reflects the service

support. As a device receives a job of a service type it does not support, it redefines

it as a multi job consisting of one sub-job which it then sends to a neighboring device
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capable of supporting that job. This allows the device to use the same set of messages

and processing framework for jobs it cannot support as with multi jobs, easing the

processing and message requirements of the simulator (and probably of the physical

devices as well). This also explains the non-zero, yet equal to multi jobs, number of

partial jobs at α = 0. Partial jobs also increase linearly, yet at a greater rate than

multi due to the multiplicative factor of the relationship between partial and multi;

every multi job generates 1 to 5 partial jobs.
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Figure 6.10: Average Number of Jobs as α Increases

Overall, the more interesting behaviors from a congestion standpoint occur after

the number of multi jobs increases past the number of single jobs at approximately

α = 0.2. Yet increasing α to 1 will not reflect what we know of system behavior so

we pick a value of 0.4 that best reflects both reality and interesting behaviors.

Effect of θ

We next explore the effect of θ, which defines the maximum number of sub-jobs

allowed for a multi job. Again, we test the network with the hybrid configuration

of Figure 6.5, α = 0.2, and nullifying the effect of reputation by giving all devices a

reputation of 1. We skew θ over (2, 15) in increments of 1 (our definition of multi

jobs does not allow for external users initiating jobs of only 1; these jobs can only be

generated from devices as part of the service support strategy).

Figure 6.11 shows the average job queue length as θ increases. The job queue

length mostly increases linearly, except for a slight down tick at θ = 15. Looking at
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a larger values of θ results in a continued linear increase of θ; this small decrease is

most likely due to the randomness within the simulator for all of the variables.
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Figure 6.11: Average Job Queue Length as θ Increases

Figure 6.12 outlines the job breakdown. As we expect with no variation in α, single

and multi jobs hold steady throughout with minor variations due to randomness.

Partial jobs increase linearly with a slight down tick, matching the average job queue

length, which comes as no surprise since partial jobs dominate.
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Figure 6.12: Average Number of Jobs as θ Increases

With these results, we see that our choice of θ will directly affect the number of

partial jobs generated. We then want to choose a reasonable value that generates

enough jobs to provide interesting behaviors so we pick θ = 10 for our congestion

tests.
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Effect of η

Our final parameter to examine is η which reflects the aging of devices and affects the

reputation of devices. A characteristic of this parameter is that as η increases, the K

parameter of the Pareto distribution grows, which decreases the variance, decreases

the range of processing times, and effectively youthens the device. Thus, the device

with the lowest η is the oldest model and the device with the highest η is the newest.

We test the network with the hybrid configuration of Figure 6.5, α = 0.2, and

θ = 5. To attempt to isolate the effect of η, we confine the aging to Device 0. For

Device 0, we skew η over (2, 32) in increments of 2.

We first examine the average queue length for all devices in Figure 6.13 and the

average number of jobs for all devices in Figure 6.14. The graphs have three discrete

behavior sets from η = (2, 20), η = (22, 26), and η = (28, 32). Both show rather odd

behaviors as they increase for η = (22, 26), but then decrease for η = (28, 32). We can

understand both the discretization and odd behavior patterns by closer examination

of Device 0.
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Figure 6.13: Average Job Queue Length as η Increases

As Figure 6.15 demonstrates, the average job queue length of Device 0 dominates

the average over all devices of the average job queue length (seen in 6.13), which

makes sense as the other devices have the same parameters for all tests and, therefore,

should have the same behavior for all tests. The average reputation directly inverts

this pattern, as shown in Figure 6.16.
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Figure 6.14: Average Number of Jobs as η Increases
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Figure 6.15: Average Job Queue Length of Device 0 as η Increases

The overall discretization of the behavior we can attribute to the processing dis-

tribution and random effects. Modifying η modifies the processing time, which we

model as a Pareto, using the internal Python distribution. Because this is a ran-

dom variable, our modification changes the variance, but not the mean. This leads

to changes in the processing time, but not necessarily dramatic changes. Gradual

changes in processing time will affect reputation, which will modify the number of

jobs sent to Device 0. This also is a gradual change and the combination of the two

leads to the discretization we see in the figures.

Looking closer at the transition between η = (2, 20) and η = (22, 26), we see these

effects in greater detail. Figure 6.17 shows the reputation over time for Device 0 when

η = 0 and η = 24. As reputation relates to processing time, a lower reputation is

164



2 6 10 14 18 22 26 30
1.22

1.225

1.23

1.235

1.24

1.245

1.25

1.255

η

Average Reputation for Device 0 as  η Increases

A
ve

ra
ge

 R
ep

ut
at

io
n

Figure 6.16: Average Reputation of Device 0 as η Increases

better. In the graph, we see the reputations match initially, then diverge once the

processing effects begin to multiply, and remains roughly lower for η = 24 over the

remainder of the simulation. This decrease reflects the decrease in processing time

caused by the increase in η, explaining the decrease in average reputation.
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Figure 6.17: Reputation of Device 0 for η = 0 and η = 24

To understand the specifics of the increase in queue length, we need to examine

the number of jobs over time. Figures 6.18, 6.19, and 6.20 display, respectively, the

number of single, multi, and partial jobs for η = 0 and η = 24 over the time of the

test. Both single and multi jobs relate to the external user and creation of them relies

on the exponential arrival process, not the Pareto. However, the external user wakes

the device when creating jobs so a faster processing time leads to quicker emptying
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of the queue, which is the time when the simulator counts the number of jobs (at

processing not at creation). This means the number of jobs can increase slightly as

the device processes the queue faster, which we see in these graphs as η increases from

0 to 24. Partial jobs, on the other hand, directly relate to reputation and processing

time. As the reputation of Device 0 decreases, the other devices become more likely

to send their sub-jobs to Device 0, leading to the constant increase in number of

partial jobs. Receiving more jobs increases the average job queue length for Device

0, explaining the increases seen in both the average job queue graph for Device 0 and

the average job queue graph for all devices (Figure 6.15 and Figure 6.13).
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Figure 6.18: Number of Single Jobs for Device 0 for η = 0 and η = 24

The decrease in job queue length at η = (28, 32) shows a point where devices

send too many jobs to Device 0, increasing the processing time and increasing the

reputation. Possibly we would see it decrease if the simulation ran longer, but most

likely this reflects a transition point where the faster devices get swamped because

they are faster. This argues that congestion does occur and we need job balancing to

avoid it.

Understanding the transitions in the average job numbers of Figure 6.14 requires

considering the global system behavior in response to the changes in Device 0’s be-

havior. As devices send more partial jobs to Device 0, Device 0’s queue lengthens

and the response time of Device 0 decreases. These devices then see a slowdown

in their ability to process jobs as they wait to complete the multi jobs pending the
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Figure 6.19: Number of Multi Jobs for Device 0 for η = 0 and η = 24

response of Device 0. This affects the reputation of those devices in turn affecting

how other devices distribute their jobs. Ultimately, the systems sees a trickle effect,

changing the job distribution, job queue length, reputations, and job creation. This

latter results from jobs not being processed at the same times and the reliance on

random variables for all parts; a shift in processing times also affects the order of

random variables generated by external users. The overall effect of these changes

causes unpredictable behaviors such as those we see in the average job numbers.
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Figure 6.20: Number of Partial Jobs for Device 0 for η = 0 and η = 24
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Summary

We verified the simulator’s operation of our MFD network model and explored the

effects of α, θ, and η. Moving forward we define a set of parameters to run all

configurations through for congestion simulation. Based on our analysis, we choose

α = 0.4, θ = 10, and η = 24 with randomizing from (0, 24). This will provide enough

variation to ensure congestion occurs while mimicking reasonable network behavior.

6.3.2 Congestion Simulation

We want to verify the predictability of congestion by regression models. To start,

we outline our test setup, followed by our model calibration process, and finally our

results.

Test Data and Setup

To test this model, we use the network simulator monitoring results for all network

configurations with α = 0.4, θ = 10, and η = 24. By fixing the parameters, we reduce

our test number from 612 to 50, still a reasonably large number of tests. Table 6.3

outlines the network topology and number of devices for each test number.

For each device, the network simulator records queue length, number of jobs of

each type (single, multi, or partial), reputation, and the number of jobs for each of

the 3 service types. We process this data, averaging all variables over time intervals of

1, 5, and 10. Averaging smooths out potential non-linear behaviors, highlighting the

key congestion areas. This processing generates a time series record of the behavior

of each device and provides the necessary input for the congestion prediction model.

The model predicts future job queue length for Device 0, using the data gathered

by the simulator monitor as inputs for Device 0’s prediction. Our testing computes

predictions for time periods of 1, 5, and 10 intervals in the future. As a comparison

to our model, we also compute predictions for these intervals using a naive approach

of persistence (or assuming that the queue length will stay at its currently observed

value).

We define one measurement criteria for determining the quality of our algorithms:

the root mean square error (RMSE). For this metric, the lower the value the better
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Network Topology Number of Devices
1 2 7 12 17 22

Random 1 2 3 4
Single 5
Line 6 7 8 9 10

Ring: One Direction 11 12 13 14 15
Ring: Both Directions 16 17 18 19 20

Star 21 22 23 24 25
Grid 26 27 28 29 30

Network Topology Number of Devices Test Number
Hybrid 0 13 31
Hybrid 1 15 32
Hybrid 2 23 33
Hybrid 3 23 34
Hybrid 4 21 35
Hybrid 5 23 36
Hybrid 6 31 37
Hybrid 7 18 38
Hybrid 8 16 39
Hybrid 9 15 40
Hybrid 10 22 41
Hybrid 11 25 42
Hybrid 12 21 43
Hybrid 13 20 44
Hybrid 14 13 45
Hybrid 15 19 46
Hybrid 16 23 47
Hybrid 17 16 48
Hybrid 18 19 49
Hybrid 19 13 50

Table 6.3: Test Number for Each Network Topology and Number of Devices

the prediction. This allows for a comparison of the observed queue length time series

to our predicted time series and reflects the quality of our overall prediction.

Model Calibration

We implemented the model as described in Section 6.2 in Matlab, starting with defin-

ing the training window and recalibration. We define a training window, TT , equal

to 0.1 of the total intervals for the average queue length data. Either we do not

recalibrate the coefficients after the initial training or we recalibrate after we observe

a new training time window half the length of the original, or TT /2.
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Given these two parameter definitions, we analyzed the remaining parameters de-

scribing the models to determine optimal values. To pick the best values, we sweep

the order (the number of past values used) for the average queue length as well as

other input variables with and without including the error of the past prediction.

We find the optimal configuration for our metric; the one with the lowest root mean

square error.
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Figure 6.21: Lowest RMSE for Averaging=1 and Prediction=1

Model Results

We compute the results for all tests. As we have 3 averaging parameters and 3 pre-

diction values, we have 9 different sets of results. For each set, we plot the optimal

configurations for each test and lowest RMSE seen for each test.

Figures 6.21 and 6.22 display the results for averaging every interval and predict-

ing 1 interval in advance. We plot both the results for our model and the results for

persistence in Figure 6.21 outlining the RMSE achieved for each test. In this case, our

model clearly performs better than persistence for the majority of tests with persis-

tence providing the best results for a few tests. To understand the test configurations,

we examine Figure 6.22, which displays the configuration of parameters providing the
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Figure 6.22: Optimal Configurations for Averaging=1 and Prediction=1

lowest RMSE for each test. The configuration options consist of: job queue length,

reputation, number of service 1 jobs, number of service 2 jobs, number of service 3

jobs, if we recalibrate, if we include the prediction error seen so far, and if we use

the derivative of the job queue length data (giving the rate of change of that variable

which can indicate future trends). For each test, we indicate which of these options

were used through color bars, where lack of a variable’s color indicates that variable

is not used in the configuration. The time series variables also allow the model to

use more past time values (t, t − 1, t − 2, etc.), which the graph indicates by larger

blocks of that color. For example, Test 2 observes the best result using the past 2

measurements of the job queue length, 1 past measurement of the number of service 1

jobs, 2 past measurements of the number of service 2 jobs, the error of the prediction

for the last observed job queue length, and the last measurement of the derivative

of the job queue length. We can see in this graph that, while the majority require

complicated configurations provided by our model, 9 tests had the best results using

the persistence configuration of only the past measurement of the job queue.

Figures 6.23(a) through 6.25(f) display the two different figures for the remaining

8 configurations. By construction, our model always has the lowest RMSE although

in a couple cases our model configuration matches persistence. These cases always

account for less than 25% of all cases. As we rarely construct or maintain fixed net-
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Figure 6.23: Lowest RMSE and Optimal Configurations for Averaging=1 and Pre-
diction={5,10}

work configurations, this argues that our model can provide good predictions despite

changes to the network and in spite of the network parameters regarding the number

of devices, connections between devices, services supported, distribution of services

supported, and many other considerations.

Examining the figures for insights, we see that our model performs best for the

shortest prediction interval. This is unique in our experience as usually persistence

can capture the closest prediction windows best. In these shorter prediction windows,

though, the nonlinearities of the system emerge with job queue length changing er-

ratically. Our regression model captures this better because it includes so many other

variables, which we can see by examining the parameter breakdown for the tests. In

all three averaging cases, the prediction equals 1 scenario utilizes the full spectrum

of variables, always including the derivative in models performing better than persis-

tence and often using the prediction error as well. As the prediction window increases,

we see a transition to more job queue length measurements included in the model.

When the prediction equals 5, most models include more than 5 past job queue length

measurements with many including up to 10. Increasing the prediction to 10 shows
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Figure 6.24: Lowest RMSE and Optimal Configurations for Averaging=5 and Pre-
diction={1,5,10}

a slight decrease in this trend with a slight increase in the reliance on the service

type parameters. Overall, this explains why our model improves on persistence and

reinforces our need for dynamic forms of multiple linear regression models.

6.3.3 Congestion Prediction on Network Simulation

We implement our congestion prediction in the MFD network simulator. Doing so

requires using the NumPy [67] package as Python does not support matrix opera-

tions. Other than that change, we only need to add the prediction and calibration

algorithms.
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Figure 6.25: Lowest RMSE and Optimal Configurations for Averaging=10 and Pre-
diction={1,5,10}

Our implementation includes the same parameters as used in simulation: job

queue length, reputation, number of service 1 jobs, number of service 2 jobs, and

number of service 3 jobs.

Each device already maintains a record of all devices’ reputations and needs to

add monitoring the number of service jobs. While the simulator environment makes

this especially easy, we do not think communicating these extra parameters will strain

the system and any real implementation will include update messages of these pa-

rameters. A device attempting to predict its future job congestion maintains a list

of the matrix parameters including the calibration window (defining the number of
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rows), the variables and number of each (defining the number of columns), and the

prediction window. The structure of this allows for future addition of algorithms to

dynamically redefine these parameters; for the purpose of this test we use our simu-

lation results. The device then enlists its one-hop neighbors in computing the model,

dynamically determining who they are and partitioning matrix variables amongst

them equally. Unlike our previous implementation, we allow unequal partitioning

of the columns; devices equally share the variables with each device maintaining all

columns associated with that variable. As each column of a given variable includes

only one more past value, this actually eases storage requirements as the device only

needs to store a number of past values equal to the calibration time plus the number

of columns.

Once the matrix is partitioned, the predicting device initiates calibration using

the same message queue as for jobs. This allows jobs to take priority over the model

and interleaves model calibration with job processing so that computing the model

does not affect the quality of service. Each device will first receive a message in-

dicating the beginning of calibration. Following that, calibration occurs according

to the model and distributed algorithms. Once calibration concludes, the predicting

device communicates the coefficients and distributed prediction begins. The device

recalibrates the model according to a fixed calibration window.
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Figure 6.26: Results for Device 0 with Congestion Prediction In Network Simulator

We ran the model using the hybrid configuration shown in 6.5 for the parameters

outlined by our simulator analysis: simulation time of 5400 intervals, α = 0.4, θ = 10,
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and η = 24. We perform no averaging and predict 1 intervals into the future, which

allows time to avert the congestion. Figure 6.26 displays our results for Device 0. The

device first performs calibration at approximately 530, hence the lack of predicted

values until then. Device 0 in this configuration had 4 neighbors so each maintained

the variables and number of columns as outlined in Table 6.4.

Device Number Variable Stored Number of Columns
0 Job Queue 2
1 Reputation 1
2 Number of Service 1 Type Jobs 1
3 Number of Service 2 Type Jobs 1
4 Number of Service 3 Type Jobs 2

Table 6.4: Variables and Columns Maintained by Each Device in Hybrid Configura-
tion

Within the test, we define a congestion level and decide when our prediction indi-

cates future congestion. In these cases, as a initial pass to congestion control and job

balancing, we simply forward the next few packets to neighboring nodes. Our test

shows that this simple policy reduces the load on the device by 9.68% and removes

some of the congestion before it can occur. Figure 6.27 shows the improvement in the

job queue over time as we add in our simple congestion control. One simplification of

this policy is that we only redirect partial jobs (others require a physical artifact so

need more information to redirect). Also, implementing this policy for all nodes might

simply move the problem around the network and not balance the load; full analysis of

this policy and other policy options we leave for future work and discuss in Chapter 7.

With this test, we complete the full system implementation. Our congestion model

successfully works within the MFD network simulator and provides an initial control

behavior that reduces congestion.

6.4 Conclusions

In this chapter, we outlined the problem of job congestion on multi function device

networks. We defined MFD networks and developed a simulator based on our de-

scription. Given this network, we then defined congestion and created a model for
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Figure 6.27: Results of Congestion Policy: Device 0 Queue Length Before and After

congestion based on job queue lengths. In creating this congestion model, we used

abstract, internally measured variables, a very different approach from our other ap-

plications. Our model allows this definition, which demonstrates its flexibility and

indicates a wider set of problems for which we can use this model than previously

considered.

We tested all components. For our simulator, we analyzed the overall behavior

and the effects of certain parameters, defining a specific set that provided interest-

ing yet reasonable behavior. Utilizing these parameters, we verified the congestion

model in Matlab and showed that our model performs best in the majority of sce-

narios, especially due to our flexibility in including a variety of variables. We then

implemented the congestion model within the MFD network simulator. Our imple-

mentation introduces several new possibilities, including dynamic repartitioning of

columns among neighbors and unequal partitioning of columns. This implementation

correctly predicts future congestion and performs a simple local response to prevent

this congestion.
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Chapter 7

Conclusions and Future Work

In this thesis, we presented distributed algorithms for computing, on a sensor network,

a matrix pseudoinverse and the related multiple linear regression model. We used

these algorithms to solve 3 very different prediction problems: (1) river flooding for

disaster mitigation, (2) solar current for energy management, and (3) job congestion

for multi function device networks. Each of these share requirements for limited

computation, limited communication, and self-calibrating models. Each also provided

a different challenge. River flooding required design and implementation of a sensor

network capable of autonomously operating in Honduras (or more generally, rural

and developing regions), covering a large geographic area with a small number of

sensor nodes, and surviving a natural disaster. Solar current required transferring

the algorithms to a different sensor network platform and beginning to explore the

requirements for dynamic models. Job congestion required defining and developing a

MFD network simulator, and ensuring the model could work with abstract, internally

measured variables.

We successfully achieved each. In doing so, we learned several lessons regarding

sensor network deployments and international development projects; we feel these

may be of interest and use to the wider community so share them here. Additionally,

we determined many areas for future work, in all application areas as well as in

the broader contexts of predicting events on sensor networks and of environmental

monitoring sensor networks.
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7.1 Lessons Learned

Here we would like to share lessons regarding: theory and algorithms, sensor network

platform design, and experiments.

7.1.1 Theory and Algorithms

We learned some lessons regarding the algorithms and simulation that we share here.

Regression models have a nice simplicity to them regarding what data they can

use and what they can predict. All that the model requires is that we can describe

our event of interest using a time series. Any related (or unrelated) time series can

be included in the model as can transformed versions of the event time series (such

as differentiation). The methods prefer that the columns of the matrix are linearly

independent; one benefit of utilizing real measurements as we do is that the noise

naturally existing in the measurements ensures this for us. These models can solve a

wide variety of problems. However, they are limited to those problems where sufficient

data exists to generate a time series. Binning or averaging the data can help when

the problem is only due to a couple missing measurements, but if large holes exist in

the data, regression models cannot help.

Additionally, trickiness does arise in these models due to indexing. Where and

what data goes in the calibration matrix defines the model and many parameters

define where and what data. The number of rows within the matrix depends on

the calibration window; however we cannot calibrate the matrix until sufficient time

passes to gather the appropriate measurements. This time not only depends on

the calibration window but the prediction window as we also have to observe the

related predictions associated with each row in the calibration matrix. As several

columns are time-shifted variations on the same variable, we also have to observe

the appropriate number of those past values which will extend back in time farther

than our calibration window. Since each variable could have a differing number of

time-shifted columns, we need to ensure each is loaded corresponding to the correct

tnow. If we are using the prediction error or derivatives, we need to include those
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values within our time calculations and matrix indexing. Overall, regression models

require careful record keeping: what past data values of each variable go where, what

additional computations are necessary and where they go in the matrix, and what is

the total observed time window.

Finally, related to our other “theory” area, we had mixed experiences using Python

for network simulation. SimPy and Python made implementing the device behav-

iors easy. We had no problems determining the interactions between the processes,

controlling the simulation behavior, and monitoring the internals of the simulator.

However, mathematical operations in Python are painful. NumPy provides a nice

package for many operations, but we still had difficulties implementing complicated

matrix operations. We would recommend SimPy for behavioral analysis of sensor

network operations, but recommend finding a different simulator for application im-

plementation and analysis.

7.1.2 Sensor Network Platform Design

We can say little about the Fleck platform design; however, we designed a sensor net-

work for our flood prediction system and learned several lessons from the experience.

In the beginning of our platform work, several people collaborated on a base platform

(both hardware and software) for an easily reconfigurable sensor network architec-

ture. This hardware formed the base for our sensor network platform of Chapter 4

(used also in two other applications to date: underwater coral reef monitoring [96]

and virtual fencing for cattle [79]). Collectively, all of us designing and using this

system learned several lessons generally applicable to platform design. We outline

here these larger lessons in the context of the more general multi-application sensor

network platform.

The startup costs of designing our multi-functional system have been high both

on the hardware and the software sides. With such a variety of needs, we found it

difficult to initially design each part with the necessary flexibility, often requiring

development first for one project style and later modification for the other. However,

by sharing the same base hardware and software, debugging is very fast; usually the
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other project successfully breaks the new addition in minutes. From this, we suggest

multi-application platforms use the same base code, separating out only that code

specific to the application, but ensuring both many layers of abstraction and access to

functions on all abstraction layers. It is nearly impossible to foresee all usage models

of any aspect of the software so access to the various layers ensures the base code

remains the base code instead of fragmenting into different software projects.

The predominance of serial peripherals ensures that no processor exists that pro-

vides enough serial connections. Having some form of external serial multiplexer is

necessary, whether it is a simple serial multiplexer, a SPI-to-UART converter, or a

more complicated CPLD/FPGA as we use. This allows for simultaneous use of sev-

eral communication methods and sensors, a situation that has arisen in all three of

our applications.

The communication abstraction infrastructure makes adding and using a new com-

munication device fast and simple. By creating such a complex serial routing struc-

ture and utilizing an abstraction encompassing all different bus protocols, we have no

problems routing messages through different radios, different expansion boards, and

different devices. Given that each application uses a different messaging structure

and has different operational behaviors, having this abstraction becomes a necessity

and enables future application modalities.

Our system enabled easy prototyping of each application but at higher cost and

more complexity than would occur in an application-specific design. Should we want

a long-term production system, it would be more optimal from cost, hardware and

software standpoints to design separate systems for each application.

7.1.3 Experiments and Deployments

In attempting this work, we attempted, and sometimes achieved, 15 field deployments

of sensor networks. Only one of these occurred on a campus network, 3 occurred in

the Charles River upstream of Boston in its more suburban location, and 11 occurred

in Honduras. A few lessons apply to all experiments, many apply to those in off-

campus settings, and some apply only to international development; we will address
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those we feel are the most useful and perhaps less obvious below. Some of what we

learned in working in Honduras we initially discussed in [7]; we reiterate those lessons

here and add new ones.

Power

Power issues plagued all of our deployments in varying degrees. These problems fell

into two major categories: solar panel output or power design issues. Solar panel

issues occurred with the Fleck and Dover deployments, which all occurred during

winter. These deployments saw problems with placing the panels such that they could

receive enough solar exposure to offset the power used. With the Fleck deployment,

the solution was to move the boxes to another part of campus, easy enough as we had

plenty of room to move them. With the Dover deployments, we were constrained in

placing the sensor nodes; the river is only accessible in a 2-3 kilometer stretch with

very narrow banks and forest on both sides. We solved this by only installing in

winter, after enough leaves fell and our panels had solar exposure. This solution did

have the drawback of the weaker solar exposure of winter, but that provided more

solar exposure than under the leaf-laden trees (and spring was best for Honduras

deployments).

The second issue of power system design affected our Dover and Honduras de-

ployments. Obviously, ensuring our sensor networks had a continuous power supply

was a key design issue we addressed in our system development. We calculated the

expected power draw based on the manufacturer specifications for the major system

components. When we had the physical boards, we performed lab tests to under-

stand the power usage and verify our calculations. Based on this, we designed the

solar panel and batteries necessary for ensuring one week of operation without any

solar current. Yet, in deploying our nodes outside, our calculations did not save our

nodes from failing due to lack of power. The larger scale operations, the effects of

the environmental conditions on the nodes (heat and high humidity in Honduras,

freezing cold and low humidity in Massachusetts), battery aging (leading to capacity

reduction), and limitations on solar panel placement all affected the overall system

power and reduced the lifetime.
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Several approaches helped us deal with these problems. First, we added intelli-

gent battery monitoring to the lithium-polymer batteries, providing the charge cur-

rent and estimate of remaining capacity. With this information and the solar panel

charge current, we created more intelligent policies that took into account time of

day and likelihood of receiving more solar power in the near future. We also be-

came overly conservative in our choice of battery capacity, upgrading the system to

lithium-polymers with larger-than-necessary capacity and lead-acid batteries at our

nodes.

Ultimately, we learned three lessons. First, strongly consider solar exposure when

defining a deployment location (if a choice exists), taking daily and seasonal effects

into account. Second, obsessively measure all aspects of the power in-situ as it is the

only way to truly understand how the node behaves in the environment and how the

power operations change. Finally, power system design requires overly conservative

estimates, even slightly beyond what one might think reasonable; nothing will ruin a

deployment more than lack of power.

Aerocomm AC4790 Radios

Choosing the Aerocomm AC4790 radio was a bad design decision we paid for during

field experiments. We picked them after comparative testing of possible radios at

MIT using the development boards for all candidates. In those tests, the AC4790

subjectively performed the best (we did not actually measure distances, but consid-

ered tests relatively) and promised the longest range, range being our most important

consideration at the time. Sadly, they did not live up to their promise.

First, we never saw the promised range. In multiple field trials around MIT with

a variety of antennas using both our board and the Aerocomm development board,

we achieved at most 2km. Moving our systems to our remote field location where we

would expect better performance, we achieved at most 2km. This created significant

limitations in placing nodes, especially in the urban areas of Honduras, and led to a

few bad placements that led to stolen nodes. We could find no solutions to increase

the range and received limited help from Aerocomm in solving this.
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Second, we could not use functionality such as “Ready-To-Send” (RTS) signals.

RTS allows the host to tell the radio it needs to stop sending data as the host buffer

is full. To use this signal on the AC4790, the host microcontroller must switch to

something called “Auto Destination” mode. This mode automatically sends all future

packets to the last destination from which it received a packet, using the point-to-

point protocol. We use the radios in broadcast mode so, in order to use RTS, we

must switch in to auto destination mode while receiving packets from the AC4790,

but switch out of it to send packets. As sending and receiving are often interleaved

within the radio such that the microcontroller does not really know what state the

radio is in, performing this little auto destination dance is impossible and meant we

could not use the useful RTS signal.

Finally, the AC4790 uses quite a bit of power, more than suggested in the data

sheet. This added to our frustrations with power issues during deployment. On

start-up (either initial power-on or waking from sleep mode), we also saw it pull

significant current, dropping the power plane to levels at which the rest of the board

did not function correctly. This caused SD card corruption issues during our system

integration test in Honduras. Fundamentally the AC4790 is not to blame for this,

what it taught/reminded us is the importance of separate power regulators for the

various board segments. Additionally, it points out the additional large power draws a

communication device may have, in addition to known current draws during transmit.

Overall, we learned to not use the AC4790 in future designs. We would have

switched had we discovered these problems earlier in our test process; unfortunately

many of them emerged only during deployments and after we had significant devel-

opment in the platform based on utilizing the AC4790. In the future, we plan to

exhaustively test our communication devices in the most stressful situations we can

devise to avoid the pain we experienced using the Aerocomm AC4790.

Testing

Every system needs testing at many different levels-most people agree on the obvi-

ousness of that statement. However, in our experience, a large-scale system such as
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ours that heavily relies on in-country infrastructure usually follows a test strategy

whereby component testing occurs in the lab and complete system testing occurs in

the field as an installation of the system in its planned location. In regards to our

flood prediction work, this strategy has repeatedly failed us.

On one hand, we needed the components in the US for component improvements

and debugging. On the other hand, we needed the entire system in Honduras for

complete testing and we could not be in Honduras all the time. This resulted in

a combination of approaches. Initially, we tested the components in lab to some

level, traveled to Honduras, installed the system as it existed, ran tests for a week

or so to find system problems, left some components for longer testing, and returned

home with the remaining components for further development. The status of the

components left, from a technical point of view, awaited our next trip to Honduras as

our in-country partner could tell us if they still existed and if they appeared to work,

but not any specifics on how they were working or what may have failed without

the remainder of the system. Thus we only discovered long-term problems when we

returned to Honduras, where we could perform some debugging but needed to return

to the lab for further debugging and most development work. This was not a good

system.

Ideally we would have a comparable system within the US, but arranging for a

10,000 km2 river basin where we could install antenna towers was not feasible. Instead,

we discovered local small-scale system testing. By this, we do not mean installing

the complete system in the lab or just outside the office; in our experience, this does

not show certain fundamental system problems and installation issues. Instead, we

mean to find a roughly similar location nearby to the lab that introduces some of the

more difficult features (such as measuring river level and outside deployments). This

we should have obviously figured out sooner as it would have saved money, time, and

sanities. However, we now share this blindness to an obvious fact in hopes others will

not repeat it.

What we did was talk to the government organizations in Massachusetts respon-

sible for measuring the river and asked for their help. This resulted in our Dover
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test site, which supplied access to the cement structures they use for their antennas,

computers, and sensors. Because we could use this existing site and infrastructure, we

could install a miniature version of the system (sans antenna towers and government

offices) in a local US river a short 40 minute drive away instead of a 6 hour flight.

This sped up our development work considerably. In all future development, we plan

to start with finding a comparable local location and test our system extensively there

first.

International Collaborations

We were very fortunate to collaborate with CSIRO, Brisbane on our solar current

project. This collaboration has gone very well over the last year and we look forward

to it continuing.

Specifically regarding lessons for deployments, we successfully collaborated on a

deployment in Brisbane, testing our solar current prediction, while we were at MIT.

Web access to the deployment data in near real-time was the key to the success of our

deployment for which all credit goes to CSIRO. CSIRO has a great online interface

to all their sensor network deployments, linking to the database storing their data

results and providing all the data for all the sensors in graphical online form as well

as downloadable for analysis.

For our deployment, we did see some early problems with the location and com-

munication by examining the system remotely, which we could then communicate to

CSIRO and have them reposition the nodes. Without an online interface, we would

have waited until CSIRO downloaded the data from the nodes and forwarded it to us

some time into the deployment, at which point the test would have failed as the nodes

ran out of power. Instead, the interface ensured a great deployment and successful

test.

Our work focuses on enabling autonomous deployments so has not yet examined

such an interface; however, we can unequivocally state that the existence of one is

necessary to remote monitoring and international collaborations.
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International Development Partnerships

The partnership we created with CTSAR in developing our flood prediction system

worked very well and the structure of the collaboration introduced us to one of the

more successful frameworks for international development projects. Key to everything

was their identification of the problem, request for our help, and securing initial

funding. Having them initiate the project ensured their commitment to it through all

of the setbacks and design changes such projects endure. They initiated it because of

community feedback, guaranteeing the support of the community in implementing and

maintaining the system. Had we introduced the project, given its need for community

input and lack of potential income, our eventual withdrawal would most likely begin

the slow decay of the system, as the force behind the project would disappear.

Within the partnership, we divided the work nearly equally between both partners

and divided the responsibility for providing resources. Allowing CTSAR to insulate

our work from the community ensured the progress of the work and cooperation of

all parties. We could not travel to Honduras all of the time and did not have a

continuous connection with the communities, but did have better access to technical

resources when in the US. CTSAR had both access to and a history of work with

the communities, creating a relationship that fosters cooperation, but they did not

have the technical skills nor access to materials. This equal division of tasks and

shared commitment through resource buy-in, while seemingly obvious, does not exist

in many projects and the lack of a committed partner often causes the failure of that

project.

Security

Our Dover installations did not see security issues (although we always feared them

occurring); however, in Honduras, we dealt with many security issues throughout our

project. While our in-country partnership aided in providing community support, the

scale of our work region limited the number of people directly aware of the reasoning

and goals of our work. This led to thefts and confusion.
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Several early sensor prototypes were stolen from their installation near the river

because, while the sensor was in the river, the electronics and cable were placed at

the top of bridges or near the bank for water protection and easy retrieval. In one

instance, someone stole over 180 meters of cable running along the bridge connecting

the electronics to the sensor. We had connected it to electricity cables running along

the bridge in order to disguise it and the person, in taking those cables, took ours as

well. Children climbed on our towers because they were there and, after providing

more security, shot marbles at boxes on top of the towers. One marble punctured a

plastic box, creating a small hole in which rainwater entered, damaging our battery

and radio stored there because we had not expected marble damage (a story also

applicable to the general theme that field deployments never turn out how one expects

and certain errors are never predictable).

Overall, our lesson has repeatedly been that there is no such thing as too much

security and if we find accessing our equipment difficult for routine work, then it

presents too much work for thieves. In response to these problems, we placed all our

cable within PVC pipes that we bolted to the bridge so that people could not cut or

easily steal them. We later upgraded this to a fully wireless design (which then had

problems due to the Aerocomm radios, see the above sections for more information).

We upgraded our tower security to include razor wire, padlocks too small for chain

cutters, and metal panels. Our towers can only be climbed with a ladder (see Figure

7.1) and we upgraded our boxes to metal after the marble incident.

We did figure out some methods requiring less construction as well. Our very

white rainfall sensors now wear camouflage, cut from girls’ pants and providing a

cheap, effective method of hiding these nodes (see Figure 7.2). For our sensors, espe-

cially the rainfall and temperature sensors, we discovered a couple of friendly families

within our urban site to host the sensors thereby protecting them from thieves and

minimizing the infrastructure needed. This solution was not without problems; sev-

eral people did not understand the nature of our system and threatened the families

into giving them the boxes or hiding the boxes. Unsurprisingly, the sensor network

did not survive either behavior. In future work, we need to address the social side
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Figure 7.1: 5 Meter Antenna Tower with Security

in addition to the technical, holding town meetings to introduce the project to those

communities where we install sensor nodes and providing them with enough informa-

tion to understand the system.

Community Knowledge

Lacking historical data in which to develop flood prediction algorithms or train mod-

els, our initial plan consisted of installing sensors and gathering the data for ourselves.

The realization that we could not gather all the data necessary in a reasonable time-

frame led us to consider other methods than those commonly used by the hydrology

community. We discovered that we could achieve the results for which we wanted

the historical data, at some level, from the memories of the community members who

view the river every day along with the historical effects of floods. This allowed us

to leapfrog the many years necessary to gather enough data for current models and,
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Figure 7.2: Camouflaged Rainfall Sensor

using a much simpler and cheaper method, generate a table of what constitutes a

flood. We also plan to utilize this insight in providing a check on the system by al-

lowing users to input information on the current state of the river and details on past

flooding, which the system can then use to refine the models and verify sensor activity.

Permission

We also dealt with issues of permission throughout our deployments, some less obvious

than others. In Dover, we needed permission for land use. We learned of the site

through the USGS and received permission from them to use their small location.

However, to deploy the system in a useful and interesting way, we needed to expand

beyond their location. It appeared that the land across the river was a public park

and refuge so we placed nodes on that side as well. In a classic case of not making

assumptions, we then discovered that it was actually private property. Fortunately,

the owners kindly let us keep our sensors on their land and our deployment successfully

concluded. For future deployments, the lesson is to identify the full area before

deployment and make sure permission exists for all of it.

In Honduras, we had much different experiences. One benefit of working there

is the lack of concern about permission. We asked the government about radio fre-

quencies to use and they did not care what frequency we used as long as we did not

monopolize it. For land use, we worked with local officials to identify where we could

install our towers, again seeing a lack of care as we only wanted unoccupied space

near the town dump (a fun place for a deployment). After that, when we needed to
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install cable along the bridge, we just did it and no one cared about permission (which

would not occur in the US). However, the opposite side emerged when we did need

permission for using existing structures, as we did once we started having security

issues. Then it became difficult to talk to the appropriate people and required several

trips to remote cities attempting to meet with the right people. For one location

where we wanted to place an antenna and box on an existing tower, despite calling

in advance to ensure the right people were available, they never were once we arrived

and we never managed to get permission, but had to reconsider our installation plans.

Overall, we cannot sum these experiences into a single pithy lesson, but share

them in order to emphasize the details that arise in deploying systems in the “real-

world” and the considerations we need to take before doing so.

The Unexpected

Finally, the phrase “expect the unexpected” holds true for deployments. Something

will occur during a field deployment that could not be planned for or expected; once

a person has performed enough deployments this becomes clear. For those just be-

ginning to deploy systems, we outline a few of our stories to illuminate this concept.

First, something always had broken by the time we arrived at our deployment

site. With Dover, as we traveled by car, this usually was a couple disconnected

cables, which we easily fixed. For Honduras, since our equipment first flew and then

jostled along a truck ride, this usually was more serious; we always had an office

day repairing unhappy nodes harassed by the TSA and travel. Often we ended up

replacing boards to ensure we could deploy the number of nodes we wanted; as we

always brought spares, this was usually sufficient. Once, however, a box of spare

boards disappeared between MIT and Honduras, requiring a FedEx delivery (no other

postal service exists) that took a week and delayed everything.

Our marble story (described earlier in the context of security) also provides a great

example of unexpected situations. We installed our node with its 144 MHz radio and

car battery inside a plastic box on top of a tower, assuming the plastic would protect

everything from rain and exposure. However, we did not count on children deciding
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our box would make a great target for marble shooting. One hit the box which was

brittle due to the sun and made a little hole in the box. Rain then entered the little

hole and ruined the radio. We had no reason to expect this problem and design

around it until it occurred.

Another issue we faced with our installation occurred after this event. Our instal-

lation procedure switched to using plastic Otter boxes to house anything damageable

by water. We installed this on top of a tower and everything worked well at first, but

we soon saw some issues with the radio transmissions failing. After debugging the

issue, it turned out that the structure became too hot after sitting in the sun and

the mechanical power relays stopped working. We had designed the system such that

it could withstand these temperatures, but the temperatures were too close to the

margins for the relays, apparently. We had to place a small fan within the box, add

ventilation, and provide a roof for the tower to avoid this problem, which became a

large amount of engineering in Honduras and could not have been predicted.

With the security issues surrounding our cables in Honduras, we also ran into

unexpected problems. After driving out to the site with no expectation that our

cable would be missing, we had to change all plans to figure out how to repair over

180 m of missing cable. When we installed the cable initially, we had soldered all the

connectors and spools together in the lab (it is hard to find a 180 m spool available

in Honduras and even harder to fly with that much cable). Now we were faced with

performing this same task in the field as well as running all that cable through PVC

pipes to reduce future occurrences. We managed it, but it was an adventure. In

addition to the obvious problems, we also faced issues with keeping the connectivity

correct for RS485 signals down to the sensor node at the bottom of the bridge (do

not decide to use 2 2-conductor cables instead of 1 4-conductor cable or take less-

than-idiot-proof notes!).

What also complicated much of our work was the fact that we were installing either

in a river or on a bridge above a river, and the river is big with a strong current. Most

of this required planning in advance, but occasionally we had to improvise solutions

to install in the river when it was too high for standing or too strong for swimming.

193



The best installation story was installing the cable to run from the sensor box up to

the top of the bridge. The cable has to be bolted to the bridge at least part of the

way up to avoid snagging on passing debris. We eventually had to place a ladder

inside a boat to reach high enough to place the bolts - not an installation strategy

one can plan in Boston!

This sub-set of our stories highlights the random things that arise during field

deployments for which one rarely can prepare. The only thing we recommend to

alleviate this is packing an assortment of supplies to enable addressing the issue in

the field. We suggest: duct tape, electrical tape, ziploc bags, zipties of assorted sizes,

a collection of resistors and capacitors (in addition to the spare parts kit we assume

you would already bring), nylon rope, a knife, an inverter, a car battery, a soldering

kit, spare batteries and fuses for your multimeter, tools (not just a multimeter, but

pliers, a wrench, and assorted screwdrivers, to name a few items), and a first aid kit.

Hopefully, most of it will be unnecessary (especially the first aid kit), but, in our

experience, you are sure to need them if you do not take them!

7.2 Future Work
With so many ideas of extensions and additions for our projects, we divide our future

work into three areas: (1) specific extensions of our application areas, (2) general

extensions of event prediction on sensor networks, and (3) general extensions in sensor

networks for environmental monitoring.

7.2.1 Application Areas

Within each of our three application areas, we have several ideas to extend the work

for that application area.

River Flooding

Our initial extension of this work is to fix the minor issues affecting our platform

performance, namely the AC4790 transmission range and power issues that corrupt

the SD cards. We should fix these easily with only the complexity of a board rebuild to

address. In addition to fixing these issues, we would also like to explore the use of cell
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phone modules to provide an alternative communication method to 144 MHz. The

coverage in Honduras has advanced significantly and, with three carriers in the same

area, significant competition exists to ensure reliable networks. This extension would

allow for installations in regions with poor line-of-sight for 144 MHz communication

and provide a possible method for transmitting the data from the remote office to the

capital.

With these fixes and changes, we would like to deploy the system for longer than

a month. This will also require addressing the social and security issues we have seen,

which we now have a better grasp on and our community partner should have the

capacity to help. A longer deployment will allow us to verify the validity of the system

for solving the disaster monitoring problem; we could then consider what facets still

need generalization for disseminating the project to other areas. We believe that the

base system is general enough, but the other aspects will need work, making it more

a project for other branches of engineering with whom we would be interested in

collaborating.

We also have interesting, unexplored questions regarding how to communicate the

information to the communities and wider audience. Significant issues arise with the

variety of education levels and issues of mispredicts which we will need to explore.

These questions will entail exploring user interfaces as well as other hardware methods

of alerting such as sirens or lights.

Finally, we would like to include our solar current prediction work in this system

to enable better overall power management. As the system already supports the

mathematical operations, this should be an easy extension with good benefits for the

system lifetime.

Solar Current

For solar current, we want to include the prediction on an environmental monitoring

sensor network, such as our flood prediction system. This would allow us to explore

any issues arising with this prediction and power management conflicting with regular

operation. If we also place it in a long-term deployment, we can explore the long-term

benefits of running this prediction on the sensor network system.
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Job Congestion

We would like to continue our work exploring control policies to balance jobs and

relieve congestion within the MFD network. Instead of just shifting the message to

any neighbor we could try analyzing which neighbors see less traffic due to the network

topology or based on their predictions of congestion. Additionally, issues arise with

the physical artifacts needed by the user of the device, but perhaps possibilities exist

to use other devices that are physically near the device.

Finally, we hope to test everything on a real system at some point. The simulator

matches the small, basic test system, but how it compares to a larger system still needs

verification. We also want to ensure the model runs with sufficiently low overhead on

the system to not interfere with normal operating behavior.

7.2.2 Event Prediction on Sensor Networks

We have many ideas to improve and extend our event prediction on sensor networks.

First, we need a more dynamic model extending the ideas introduced in Sec-

tion 5.3. The system needs to autonomously determine an appropriate structure;

to achieve this we must first have a reasonable centralized method and then opti-

mize the computation to work on a sensor network. This should include determining

reasonable time windows in addition to matrix structure. With a dynamic model,

we remove any reliance on an existing data set and human expertise to determine a

reasonable structure.

Next, the model requires fault tolerance. We need to include some form of data

replication across the nodes, which will also require memory management. We also

need a method to choose who participates in the calibration; perhaps a voting mech-

anism or a priority-based scheme that will allow nodes to self-identify if they are

“in” the model computation or not. This should include a method for transferring

ownership of the first column so that the system tolerates failure of that node in cases

where the prediction is used globally for the system.

We also want to implement the fully distributed version on a sensor network and

see what issues may arise. This version applies best to events with significant data
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needs in terms of number of variables used in the matrix, or number of columns,

as this relates to the ability of a node to maintain centralized versions of the SVD

matrices. Additionally, it requires reliable communication; the calibration can fail

gracefully already when communication fails, but it is hardly useful to have a model

that constantly fails due to messaging issues. This may limit the platform options

(we could not install it on our platform until we replace the AC4790).

Finally, we want to explore other modeling uses for the pseudoinverse and other

model possibilities for prediction. Other models do exist that use the pseudoinverse

including the wide variety of other regression models and logistic growth models;

these are other options that may better address certain prediction problems. Nonlin-

ear models that do not use the pseudoinverse could provide another set of possible

methods to predict events with significant nonlinearities. This would also introduce

questions of the system autonomously switching between model forms to find the best

one as environmental conditions change over the long-term.

7.2.3 Sensor Networks for Environmental Monitoring

In the broader area of sensor networks for environmental monitoring, we have several

ideas of future areas of work. Expanding to different application areas offers new

problems in measuring, detecting, and predicting events. One is our project from

Chapter 1 that of monitoring endangered species, specifically the Manzano Mountain

Cottontail. Disaster mitigation also provides a good use case for sensor networks

with interesting behavior patterns and reliability issues. Here, landslide detection and

forest fire detection provide two examples of problems that environmental monitoring

sensor networks could aid. Finally, agriculture, especially irrigation, could use this

technology to provide more efficiency, especially in the area of water use where the

inefficiencies in the face of increasing water shortages will affect the economics and

the environment.

Outside of application specific problems, two problems hinder widespread adoption

of sensor networks: reliability and robustness. Many innovations are needed to solve

this; initially, we need more fault tolerance within the software and better overall
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power management. Improving the ability of the sensor network to recover from

failures (from system-wide issues to individual node resilience) and improving the

lifetime of the system though power management will enable a more stable platform,

leading to more general usage of sensor networks outside the research community.

7.3 Summary

Overall, we provide a set of tools, applications, and experiences in this thesis. Hope-

fully through our explanations and lessons learned, we enable others to include more

event predictions within sensor networks. As we described in this chapter, many

interesting problems still remain and we look forward to solving them.
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