

Alignment Of The ATLAS Inner Detector

Mahsana Ahsan, University of Texas at Dallas, (On behalf of the ATLAS collaboration)

Advanced Computing and Analysis Techniques in Physics Research, ACAT 2010, Feb 22-27, 2010, Jaipur, India.

Introduction

Alignment of the precision tracking detectors to determine the true geometry is very important for the physics measurements. Imprecise knowledge of the position and orientation of the detector elements would cause biases and degradation in resolutions of physics quantities, e.g. mass resonances, transverse momentum. The geometry of as-installed detector is not the same as designed due to finite assembly tolerances, mechanical stress, electrical power consumption, humidity etc. Global deformations in the position and orientations of up to O(1) mm and O(1)mrad respectively, have been determined for the pixel detector relative to the SCT. At the smallest detector element scale (modules), the misalignments of O(100) μ m in position and O(0.1) mrad have been measured. The misalignment actually determined using real tracks are consistent with expectations from the assembly tolerances.

Available alignment techniques at ATLAS: Assembly survey and hard-ware based alignment

• Track-based alignment

Assembly survey & hardware-based alignment

- Mechanical or optical survey of as-built detector before and after installation
- Precise survey (at a few micron level) was done for limited substructures of the Pixels only
- Survey can be used as constraint in track-based alignment

• Capable of monitoring in real time (~10 min) the

System consisting of 842 grid line interferometers, reference interferometer, and tunable laser for frequency scanning. The grid lines are arranged into geodetic grid, separate for the barrel and end-caps

Baseline: To achieve the physics goals, the position and orientation should be known to a precision so that the track parameter resolution is not degraded by more than 20% and precision in momentum scale less than 0.1%. The target is 7 μ m for the pixels, 12 μ m for the SCT and 30 μ m for the TRT.

Element size	50 μm x 400 μm		80 µm x 12 cm		4 mm x 74 cn	
Resolution (rox rz)	14 μm x 115 μm		17 μm (two set of strips)		130 µm	
No. of layers/disks	3	3x2	4	9x2	3	14x 2
No. of modules	1456	144x2	2112	988x2	96 modules	28
	1744 408		4088	124		
Total	5832 Silicon modules			124 TRT alignable elements		
 Data processing Computing reso Infrastructure and Tracking algorithm 	g. ources. nd softwar thms.	re implement	tations.	Data Stream	Operatio Beam spot position determination	Datab
 Monitoring & v Numerical & co 	alidations	of alignmen nal challenge	t algorithms.		Silicon alignment	Alignment & Validatio
5832 (Silicon r	nodules) x	x 6 = 34992 _	2 DoFs!		Silicon COG	
96 (TRT barre	l modules) x 5 + 28 (7.	FRT end-caps	s) x 6	alignment	Δ1
= 048 D0FS.		.7			Silicon + TRT CoG	ge

 movements at the micron level in the structure due to e.g. by temperature v Has not been used for actual detector is being commissioned. 	ralignment. It				
Track-based alignment algorithms at ATLAS					
here are four algorithms developed at TLAS: Global χ^2 algorithm (GX2) Local χ^2 algorithm (LX2) Robust Alignment algorithm (RA) Pixel standalone algorithms (PSA) –without overlap residuals –with overlap residuals	All of these algorithms produce consistent results The LX2 and RA algorithms differ mainly from GX2 algorithm in the correlations between modules via the common track. The GX2 algorithm introduces correlations through the implicit track refit represented by $(\partial r/\partial \pi) \ge (d\pi/da)$ term, while LX2 and RA ignore this term.				

