L=
View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by DSpace@MIT

I|I'I- Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2010-051 November 19,2010
CBCL-292

Generalization and Properties of the
Neural Response

Jake Bouvrie, Tomaso Poggio, Lorenzo Rosasco,
Steve Smale, and Andre Wibisono

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

https://core.ac.uk/display/4424402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Generalization and Properties of the Neural Response

Jake Bouvrie*, Tomaso Poggiof, Lorenzo Rosasco’*, Steve Smale!, Andre Wibisonof
* — Duke University
t — CBCL, McGovern Institute, MIT
1 - City Unwversity of Hong Kong and University of California, Berkeley
o — Italian Institute of Technology

jvbOmit.edu, tpoggio@mit.edu, lrosasco@mit.edu, smale@cityu.edu.hk, wibisono@mit.edu

November 16, 2010

Abstract

Hierarchical learning algorithms have enjoyed tremendous growth in recent years, with many new
algorithms being proposed and applied to a wide range of applications. However, despite the apparent
success of hierarchical algorithms in practice, the theory of hierarchical architectures remains at an
early stage. In this paper we study the theoretical properties of hierarchical algorithms from a math-
ematical perspective. Our work is based on the framework of hierarchical architectures introduced
by Smale et al. in the paper “Mathematics of the Neural Response”, Foundations of Computational
Mathematics, 2010. We propose a generalized definition of the neural response and derived kernel
that allows us to integrate some of the existing hierarchical algorithms in practice into our frame-
work. We then use this generalized definition to analyze the theoretical properties of hierarchical
architectures. Our analysis focuses on three particular aspects of the hierarchy. First, we show that
a wide class of architectures suffers from range compression; essentially, the derived kernel becomes
increasingly saturated at each layer. Second, we show that the complexity of a linear architecture is
constrained by the complexity of the first layer, and in some cases the architecture collapses into a
single-layer linear computation. Finally, we characterize the discrimination and invariance properties
of the derived kernel in the case when the input data are one-dimensional strings. We believe that
these theoretical results will provide a useful foundation for guiding future developments within the
theory of hierarchical algorithms.

Contents

1 Introduction 3
1.1 Background and Motivation Lo 3
1.2 Contributions and Organization of this Paper 4

2 A Theoretical Framework of Hierarchical Architectures 5
2.1 Filtering and Pooling L 6
2.1.1 Filtering Operations e 6

2.1.2 Pooling Functions 7

2.2 Hierarchy of Function Patches and Transformations. 8
2.3 Templates e e 9
2.4 Neural Response and Derived Kernel0 oL 10
2.5 Examples of Architectures L 12

3 Range Compression
3.1 Setting and Preliminaries L L
3.1.1 Nonnegative Architectures L
3.1.2 Strongly Bounded Pooling Functions
3.1.3 Dynamic Range of the Derived Kernel
3.2 Range Compression: Normalized Kernel Functions
3.3 Range Compression: Normalized Pooling Functions
3.4 FEmpirical Results and Possible Fixes to Range Compression
3.5 Discussion e e e

4 Linear Architectures
4.1 Rank Constraint e
4.2 Basis Independence L e e

5 Analysis in a One-Dimensional Case
5.1 Setting and Preliminarieso
5.2 Reversal Invariance of the Derived Kernel
5.2.1 Reversal Invariance from the Initial Kernel
5.2.2 Reversal Invariance from the Transformations
5.2.3 Reversal Invariance from the Templates
5.2.4 Impossibility of Learning Reversal Invariance with Exhaustive Templates
5.3 Equivalence Classes of the Derived Kernel
5.4 Mirror Symmetry in Two-Dimensional Images
5.5 Discussion L e e e

6 Conclusions and Open Questions
A Appendix: A Theoretical Framework of Hierarchical Architectures

B Appendix: Range Compression
B.1 Setting and Preliminaries
B.1.1 Strongly Bounded Pooling Functions,
B.1.2 Dynamic Range of the Derived Kernel
B.2 Range Compression: Normalized Kernel Functions,
B.3 Range Compression: Normalized Pooling Functions

C Appendix: Linear Architectures
C.1 Rank Constraint e
C.2 Basis Independence L

D Appendix: Analysis in a One-Dimensional Case
D.1 Setting and Preliminaries L
D.2 Reversal Invariance of the Derived Kernel
D.2.1 Reversal Invariance from the Initial Kernel
D.2.2 Reversal Invariance from the Transformations
D.2.3 Reversal Invariance from the Templates
D.2.4 Impossibility of Learning Reversal Invariance with Exhaustive Templates
D.3 Equivalence Classes of the Derived Kernel
D.4 Mirror Symmetry in Two-Dimensional Images

References

13
14
14
15
16
16
17
21
24

24
25
25

26
27
28
29
29
30
31
31
32
33

34

36

36
36
36
36
40
41

43
43
44

45
45
46
46
47
47
48
50
o4

56

1 Introduction

One of the remarkable powers of the human brain is its ability to learn and generalize from only a
few examples, a skill generally attributed to the structure of the cortex. Drawing inspiration from the
hierarchical structure of the visual cortex, many hierarchical algorithms have been proposed to improve
the performance on image classification tasks. In recent years, the successes of these initial algorithms
have led to applications of hierarchical algorithms in a wide range of areas. However, the reasons for
these successes are poorly understood. With the rapid empirical development of hierarchical learning
algorithms, a commensurate theory is needed to explain the phenomena encountered in practice, as well
as to guide the direction of future research. Smale et al. [56] introduced a theoretical framework of
hierarchical architectures that enables hierarchical algorithms in practice to be studied from a theoretical
perspective. The main objective of this paper is to continue the work of Smale et al. [56] in laying the
theoretical foundations of hierarchical architectures.

1.1 Background and Motivation

Classical kernel methods [53] such as regularization networks [14], splines [60], and support vector ma-
chines [12] can be described as single-layer networks because their inputs and outputs are generally related
by a single computation of kernel functions. In contrast, hierarchical algorithms are characterized by a
multi-layer architecture, where each layer of the architecture is performing similar computations con-
sisting of the filtering and pooling operations. At each layer, the filtering operation matches the input
data (or encodings from the previous layer) against a given set of templates, while the pooling operation
combines the outputs of the filtering step into a single value. The alternating filtering and pooling oper-
ations are repeated through the hierarchy to produce an encoding of the input data, that we can pass to
a classifier or use for further processing.

The recent development in hierarchical algorithms is to a large extent motivated by the advances in
neuroscience that lead to our improved understanding of the organization and functions of the brain.
Hubel and Wiesel [25] proposed that the early stages of the mammalian visual cortex are organized in
a hierarchy of simple and complex cells. The simple cells are selective to certain sizes or orientations,
while the complex cells are more invariant to small changes in the stimuli. As the input stimuli are
processed through the layers of the visual cortex, the interleaving of the simple and complex cells results
in a more complex representation of the stimuli. Starting with the work of Fukushima [16], many
hierarchical algorithms that try to replicate the hierarchical structure of the visual cortex have been
proposed [22, 31, 37, 50, 54]. The alternating filtering and pooling steps in the algorithms mimic the
interconnection between the simple and complex cells in the visual cortex.

Hierarchical algorithms have been applied to a wide range of problem domains, including image
classification [29, 48, 59], image segmentation [58], action recognition from video sequences [17, 27|, speech
recognition [9, 15, 38], dimensionality reduction [23, 52], robotics [20, 34], natural language processing [11,
42], language identification [63], and even seizure detection [40, 41], with encouraging results. Hierarchical
algorithms have been shown to consistently outperform classical shallow networks in practice [21, 29,
33]. However, despite the apparent empirical success of hierarchical algorithms, so far there is little
understanding as to why these algorithms work as well as they do.

Several arguments have been proposed to explain the theoretical properties of hierarchical algorithms,
in particular regarding their representational powers. A classical result in the neural networks literature
states that neural networks with one hidden layer and sufficiently many hidden units can approximate
arbitrary measurable functions [24]. Similarly, neural networks with sufficiently many layers and only
one hidden unit in every layer have been shown to be universal classifiers [51]. More recently, Sutskever
and Hinton [57] showed that deep belief networks with limited width are universal approximators for
distributions over binary vectors, and Le Roux and Bengio [30] further improved the upper bound on
the number of parameters required to achieve the universal approximation. Finally, Bengio [3] and
Bengio and LeCun [5] argued that a deep architecture is necessary to find an efficient representation of

a highly-varying function.

Nevertheless, many fundamental questions remain unanswered and the work on hierarchical algorithms
remains largely empirical [4, 13, 29]. For example, one of the basic questions regarding hierarchical
algorithms is how to choose the parameters to build a good architecture. This turns out to be a difficult
question, in part because the answer might depend on the specific task at hand, and the theoretical answer
to this question has eluded our understanding thus far. Consequently, several authors have explored this
question empirically [26, 45].

Another example of a major area of empirical work in hierarchical algorithms is related to the invari-
ance properties of the architecture. The repeated operations of pooling over local regions intuitively lead
to some invariance properties in the hierarchy. Indeed, the trade-off between the discrimination and in-
variance properties in the architecture is central to the development of hierarchical algorithms in practice.
But can we formalize this intuition? Again, this question is surprisingly difficult to answer theoretically,
and invariance in hierarchical algorithms has generally only been analyzed empirically [19, 28].

Admittedly, empirical approaches can provide good results and intuitions about how hierarchical
algorithms work in practice. However, empirical works alone are not sufficient because they cannot
provide satisfying explanations about phenomena that occur in nature (for example, why the visual
cortex is structured as a hierarchy), or even in practice (why one algorithm works better than another).
We believe that in order to advance our understanding of hierarchical algorithms, a theory is needed. A
theoretical analysis of hierarchical algorithms can provide an insight into the behavior and characteristics
of hierarchical architectures. Furthermore, theoretical analysis can help identify problems that occur in
practice and propose solutions.

One of the main difficulties in performing a theoretical study on hierarchical algorithms is the lack
of a common framework. Existing hierarchical algorithms in practice are typically quite complex with
specific details that differ from algorithms to algorithms, thus preventing us from translating results
on one algorithm into another. In an attempt to overcome this difficulty, Smale et al. [56] proposed a
theoretical framework of hierarchical architectures. The elegant formalization of this framework strikes a
delicate balance between the complexity of the model and the faithfulness to neuroscience and hierarchical
algorithms in practice.

The central objects of interest in the framework that Smale et al. proposed are the neural response and
derived kernel. At each layer, the neural response is an encoding of the input data, and the derived kernel
is a similarity measure on the data that is defined in terms of the neural responses. The neural response
and derived kernel at each layer are constructed recursively using an alternating process of filtering and
pooling, much like the principal operations in hierarchical algorithms that we previously described.

The framework of neural response and derived kernel that Smale et al. introduced is based primarily on
the feedforward hierarchical model [50, 54]. However, this framework eliminates several implementation
and engineering details from the algorithms and only preserves the essential components that characterize
hierarchical architectures. As such, this framework is amenable to theoretical analysis. Furthermore, this
framework also has the potential to be generalized to include other hierarchical algorithms in practice.

Indeed, preliminary results on the analysis of hierarchical architectures using the framework of the
neural response and derived kernel are promising [56]. Further analysis on the invariance properties of
the derived kernel from a group-theoretic perspective is carried out in [8, 10]. However, the introduction
of this framework also presents a challenge of whether the framework of the neural response and derived
kernel can continue to live up to its promise to bridge the gap between the theory and practice of
hierarchical algorithms. This is the question that we seek to address in this paper.

1.2 Contributions and Organization of this Paper

In this paper we study the theoretical properties of hierarchical architectures using the framework intro-
duced by Smale et al. [56]. We present our results in the main sections, but we defer all proofs and more
technical discussion to the appendix corresponding to each section. We summarize our contributions as
follows.

Section 2 — A theoretical framework of hierarchical architectures. We describe the theoretical
framework of hierarchical architectures and propose a generalized definition of the neural response and
derived kernel. This generalized definition allows us to study a wider class of hierarchical algorithms
in our framework, including the feedforward hierarchical architecture [50, 54] and convolutional neural
network [26, 31, 32].

Section 3 — Range compression. We show that a wide class of hierarchical architectures suffers from
range compression; essentially, the derived kernel becomes increasingly saturated at each layer. Range
compression presents a problem in practice because the saturation effect is severe enough that it affects
the performance of the architecture, even when the architecture has only a few layers. We propose
several methods to mitigate the saturation effect and check that these correction methods restore the
performance of the architecture in practice. This result lends insight into how the interaction between
certain parameter choices in the architecture can influence its empirical performance.

Section 4 — Linear architectures. We study the limitations and properties of linear architectures.
We show that the complexity of a linear architecture is constrained by the complexity of the first layer,
and in some cases the architecture collapses into a single-layer linear computation. Furthermore, we also
show that when we use an orthonormal basis as templates for the filtering operation, the derived kernel
is independent of the basis.

Section 5 — Analysis in a one-dimensional case. We extend the discrimination and invariance
analysis of Smale et al. [56] in the case when the input data are one-dimensional strings. We demonstrate
several ways to build a reversal invariant derived kernel by choosing the appropriate parameters in the
model. We also show that when we use an exhaustive set of templates, it is impossible to learn reversal
invariance in the architecture. Finally, we characterize the equivalence classes of the derived kernel in the
case when we are working with a discriminative architecture. We can interpret these equivalence classes
as the intrinsic translation invariance in the architecture.

2 A Theoretical Framework of Hierarchical Architectures

In this section we propose a generalization of the theoretical framework of hierarchical architectures that
Smale et al. introduced in [56]. We extend the definition of the neural response and derived kernel to
allow the use of general pooling functions, kernel functions, and templates with suitable admissibility
properties. This generalized framework enables us to study a wider class of hierarchical architectures,
including several hierarchical algorithms in practice such as the feedforward architecture [50, 54] and
convolutional neural networks [26, 31, 32]. A theoretical analysis on this generalized framework can
thus be more applicable to problems in practice, and ultimately guide the development of more efficient
hierarchical learning machines.

The basic assumption underlying hierarchical learning algorithms is that each input can be decom-
posed into a hierarchy of parts of increasing size with increasing semantic complexity. Given a represen-
tation of the smallest parts, the hierarchical architecture recursively builds at each layer a representation
of the next larger parts by a combination of filtering and pooling operations. The filtering operation
measures the similarity between the input representations and a given set of templates, while the pool-
ing operation combines the filtered outputs into a single value. Intuitively, the filtering step induces
discrimination while the pooling step induces invariance in the architecture. Thus, the alternating ap-
plications of the filtering and pooling operations yield a complex representation of the input data with
nontrivial discrimination and invariance properties. This trade-off between discrimination and invariance
is widely seen as a key property of hierarchical architectures that makes hierarchical algorithms work well
in practice.

2.1 Filtering and Pooling

We first formalize the two basic operations performed at each layer in the architecture: filtering and
pooling.

2.1.1 Filtering Operations

We propose to describe the filtering operation using a reproducing kernel. Recall that given a space X,
a reproducing kernel is a symmetric and positive definite function K: X x X — R. A map ® from X to
a Hilbert space H is called a feature map associated to K if

(®(x), ‘Il(y)>H =K(z,y) forallz,ye X .

It can be shown that any such map ® defines a reproducing kernel, and conversely, given a reproducing
kernel it is always possible to construct an associated feature map [1].

In the class of hierarchical architectures that we are considering, the inputs to the filtering operation
will in general have different lengths from layer to layer. To address this issue, we define the kernel K
on a sufficiently large space that contains all the possible inputs, and work with the restrictions of K on
the appropriate domains of the inputs. Specifically, we begin by considering a kernel K: (2 x (> — R,
where ¢? is the space of square summable sequences. For every n € N, we can consider the induced kernel
K, : R" x R" — R given by

Kn(2,y) = K (en(2), €u(y)) for all z,y € R" |
where €, : R — (2 is the embedding of R" as an n-dimensional subspace of £2,
en(t) = (T1,...,2,,0,0,...) €L* forx = (x1,...,2,) ER" .

Equivalently, K, is the restriction of K on the subspace €, (R") x €,(R") C ¢? x £2, and is thus itself a
reproducing kernel. The induced kernels K, are hereafter denoted by K since the dependence on n will
be clear from context. Moreover, all inner products and norms will denote the standard inner product

and norm in ¢2 unless specified otherwise. Some examples of kernel functions of interest are given in
Table 1.2

Name Expression

Inner product K(z,y) = (z,y)

Normalized inner product K(z,y) = M
]| Iy

Gaussian K(z,y) = e llz—yl?

Table 1: Examples of kernel functions.

We will also often be working with a normalized kernel. We say that a kernel K: 2 x 2 — R is
normalized if K(x,x) = 1 for all x € ¢2. For example, the normalized inner product and Gaussian
kernels given in Table 1 are normalized. Clearly the normalization of K is equivalent to the condition
that the feature map associated to K takes values in the unit sphere in ¢2, that is, ||®(x)| = 1 for all
x € (2. Furthermore, by the Cauchy-Schwarz inequality it is easy to see that if K is normalized, then

aFor the normalized inner product kernel, we take the domain of K to be (£2\ {0}) x (¢2\ {0}).

—1 < K(z,y) <1 for all z,y € £2. Finally, we note that given a reproducing kernel K : ¢? x > — R, we
can construct a normalized reproducing kernel K : £? x {2 — R by

7> _ K($, y)
Koy = o Koy

which corresponds to normalizing the feature map to be of unit length,

for all z,y € £* |

_ e
*@) = @)

for all z € ¢? .

2.1.2 Pooling Functions

The pooling operation can be described as a function that summarizes the content of a sequence of values
with a single value, similar to aggregation functions used in voting schemes and database systems [2]. As
in the case of the filtering, the inputs to the pooling operation will in general have different lengths in
different layers. Following the treatment in [2], we define a pooling function to be a function

U:R*— R,

where R* = |,y R" is the set of all finite-length sequences. We note that in general, the actions of ¥ on
input values with different lengths do not have to be related to each other. However, in the examples that
we are going to consider, ¥ is defined by an underlying formula that can be applied to input sequences of
arbitrary lengths. For example, the average pooling function can be described by the following formula,

1 n
U(a) :EZai if o e R" .
i=1

In the definition of the neural response, we will often work with the case when the input to the
pooling function is a sequence indexed by a finite set H. In an abuse of notation, given one such sequence
a: H — R, we will write

U(a(h))

to denote the output of the pooling operation on the input (a(h))heH e R, Moreover, given a pooling
function ¥: R* — R and a function ¢: R — R, we write ¥ o ¢ to denote the pooling function obtained
by first applying (componentwise on the input and then applying ¥, that is,

(Tol)(a)=¥((¢(a;)iy) foralla=(o,...,a,) ER", neN .

This form of pooling function is particularly important when (is a sigmoid function (see Example 2.12
and Section 3.3). Several examples of common pooling functions are given in Table 2.

In anticipation of the upcoming development, we will at times impose the following condition on the
pooling function to ensure that the construction of the neural response and derived kernel is well defined.

Definition 2.1 (Weakly bounded pooling function). A pooling function ¥: R* — R is weakly bounded
if for every n € N there exists a constant C,, > 0 such that

U ()] < Cplle]| for all « € R™ .

We note that weak boundedness is precisely the boundedness condition when ¥ is a linear functional.
In particular, weak boundedness is a very mild condition and is satisfied by most reasonable pooling
functions. For instance, all the pooling functions in Table 2 are weakly bounded. Clearly the max and
{>°-norm pooling functions are weakly bounded with C,, = 1. Moreover, by using the Cauchy—Schwarz
inequality we can show that the average and ¢'-norm pooling functions are also weakly bounded with
constants C,, = 1/y/n and C,, = \/n, respectively.

Name Expression

1
Average U(a(h — Z

Il
¢-norm Z

eH

Max U(a(h)) = max a(h)
£>°-norm U(a(h)) = max la(h)|

Table 2: Examples of pooling functions.

On the other hand, weak boundedness also imposes some restrictions on the behavior of ¥. For
example, by taking o = 0 in Definition 2.1 we see that a weakly bounded ¥ must satisfy ¥(0) = 0.
Furthermore, the assumption that ¥ is bounded above by a norm implies that ¥ must have a homogeneous
growth rate. For instance, the function ¥(a) = ||« is weakly bounded while ¥(a) = |||? is not, since
we do not have an upper bound on ||«]|.

2.2 Hierarchy of Function Patches and Transformations

We now describe the fundamental structures of the inputs of the hierarchical architecture. This math-
ematical framework formalizes the decomposability assumption underlying the hierarchical structure of
the architecture, that each input is composed of parts of increasing size.

Functions. One convention that we maintain in our framework is that we represent every input as a
function f from a domain v to a set of values €. For example, in the case of vision, we can represent an
image as a real-valued function over a receptive field, which can be taken to be a square region in R2.
When we are working with (grayscale) images in computers, an image of size k x k pixels is a function
f:{1,...,k} x{1,...,k} — [0,1]. Finally, in the case of one-dimensional strings (see Section 5), a string
of length k is a function f: {1,...,k} — S, where S is a finite alphabet.

Hierarchical architecture. A hierarchical architecture with n € N layers consists of a nested sequence
of patches v1 C vg C -+ C v,. At each layer 1 < m < n we have a function space Im(v,,) consisting of
the functions f: v,, — € that we will be working with. The nested structure of the patches corresponds
to the assumption that the functions at lower layers are less complex than the functions on higher layers.
Note that we do not require Im(v,,) to contain all possible functions f: v, — €, nor do we assume any
algebraic or topological structures on Im(v,,).

Transformations. The connection between adjacent patches v, and v,,+1 is provided by a set H,, of
transformations h: vy, — vVm,41. Each such transformation h specifies how to embed a patch in a larger
patch. Equivalently, the transformations specify how to decompose a patch into a collection of smaller
patches, as well as how to decompose a function into function patches. Given a function f: v, 41 — Q
in Im(v,41) and a transformation h: v, — vm,41, we can restrict f with h to obtain a function patch
foh: v, — Q. In order for this restriction operation to be well defined, we need the following assumption.

Assumption 1. For 1 <m <n—1, we have f oh € Im(vy,) if f € Im(vymy1) and h € Hy,

Note that Assumption 1 is very mild and can be easily satisfied in practice. For example, we can take
Im(vy,) to be the set of all possible functions f: v, — Q. Another way to construct function spaces that
satisfy Assumption 1 is to start with the function space Im(v,,) at the highest layer and recursively define
the function spaces at the lower layers by restricting the functions,

Im(vy,) ={foh| fe€Im(vmsi), h€ Hy} forl<m<n-—1.

Examples of transformations in the case of images include translations, rotations, or reflections. Note
further that as in the case of function spaces, we do not require H,, to contain all possible transformations
h: vy — Umy1, nor do we assume any structures on H,,. However, in this paper we always make the
following assumption.

Assumption 2. For 1 <m <n —1, the set of transformations H,, is nonempty and finite.

2.3 Templates

A key semantic component in the hierarchical architecture is a dictionary of templates that is usually
learned from data. The templates will play the role of the filters that we are comparing against in the
filtering operation. The templates also provide a connection between the architecture and the underlying
distribution of the input data. For example, one way to generate templates is to sample from the
probability distribution on the function space. As an illustration, in the case of vision, the templates can
be thought of as representing the primary images that we want the architecture to learn, either because
they are the predominant images in our world, or because they can serve as a building block to represent
other images.
To describe the concept of templates, we first need the following definition of admissible sets.

Definition 2.2 (Admissible set). Given a Hilbert space H, a set T C H is admissible if there is a
constant C' > 0 such that

Z(a,ﬂ% <COlealf, foralacH .

TeT

Clearly any finite set is admissible. When H = ¢2, an example of an infinite admissible set is when
we take 7 to be an orthonormal basis ()22, of £2, and in fact in this case we have > ;= (a, ;)% = |||
The admissibility condition is also satisfied by more general dictionaries, for example if 7 is a frame for
H.

Given the definition above, we can formalize the notion of templates. Recall that given a normed
vector space V' and a non-empty subset W C V, the closed linear span of W, denoted by Span(W), is
the closure of the linear span of W in V.

Definition 2.3 (Templates). Consider the function space Im(vy,) at some layer m, and let F: Im(v,,) —
'H be a feature map, where H is a Hilbert space. We say that T, is an m-th layer set of templates associated
to F if T,, is a nonempty admissible set in the closed linear span of {F(t) |t € Im(vm)}.

We note that the admissibility condition is needed for theoretical reasons to ensure that we can work
with an arbitrarily large, possibly infinite, set of templates. In practice, the number of templates is always
finite and the admissibility condition is always satisfied.

As is clear from the definition, there are two inherently different forms of templates: those that are
the encoded functions in Im(v,,), and those that are linear combinations of the encoded functions. Given
a set of templates 7, associated to F', we distinguish these two cases as follows.

1. Templates of the first kind. We say that 7, is a set of templates of the first kind if every
template T € 7,,, is of the form
T=F(t)
for some ¢t € Im(v,,). This is the dictionary used in [56] when the feature map F' is the neural
response (see Definition 2.6) and will be our primary example in this paper.

2. Templates of the second kind. Otherwise, we say that 7, is a set of templates of the second
kind if it is not of the first kind. In this case every template 7 € 7, is a (possibly infinite) linear
combination of the encoded functions F(t), for some ¢ € Im(v,,). For example, we can take 7y, to
be a set of convex combinations of templates of the first kind (see Section 3.1), or we can take 7,
to be an orthonormal basis of Span{F(t) | t € Im(v,,)} (see Section 4.2).

Remark 2.4 (Templates learning). In addition to the examples of templates given in the discussion
above, we can also use other learning schemes to obtain the dictionary of templates. For example,
given a set 7, of templates of the first kind, we can extract a set 7./, of templates of the second kind
by using techniques such as PCA, ICA, sparse coding [36, 39], and nonnegative matrix factorization
[35]. Therefore, our analytical framework provides us with an abstraction to treat the different learning
methods in practice as a change of templates for the filtering operation at each layer.

Remark 2.5 (Multiset of Templates). In the remainder of this paper we treat the template set as a
multiset; that is, we allow the possibility of having two identical templates. In particular, when we are
using templates of the first kind, we start with a set of function patches T,, C Im(v,,) and take the
templates to be 7., = {Ny,(t) | t € T),}. In this case, even when we have two distinct function patches
t1 # to with J\Afm(h) = ﬁm(tg), we still keep both templates in 7,,, so that 7, has the same number of
elements as T;,.

2.4 Neural Response and Derived Kernel

Given the settings described in the previous sections, we are now ready to define the central objects
of interest in a hierarchical architecture, namely the neural response and derived kernel. At each layer
m, the neural response is an encoding of the functions in Im(v,,), and the derived kernel is a similarity
measure between between functions in Im(v,,), defined in terms of the neural response encodings. Nat-
urally, since we are working with a hierarchical architecture, the neural response and derived kernel are
defined recursively. In the definition below, £2(7,,_1) denotes the space of all square summable sequences
a: T,,—1 — R. Recall from our discussion in Section 2.1 that ¢2(7,,_1) can be embedded into ¢2.

Definition 2.6 (Neural response and derived kernel). Let K : 2 x (2 — R be a reproducing kernel with
an associated feature map ®: (2 — (2, let U: R* — R be a pooling function, and let Ny: Im(vy) — £ be
a feature map. The m-th layer neural response Ny, : Im(v,,) — €?(Tp,_1) is defined as

No(F)(7) = U(@(Npr(f 0 1)), 7)) for all f € Im(vn) and 7 € Ty | (1)

where the pooling operation is performed over h € Hy,_1, and T,,_1 is a set of templates associated to
® o N,,—1. The m-th layer derived kernel K,,: Im(vy,) X Im(vy,) — R is given by

Kn(f,9) = K(Nm(f)aNm(g)) = <(I)(Nm(f)>v q)(Nm(g))> for all f,g € Im(vy,) .

We note that the template sets 7, at each layer are computed after we have constructed the neural
response N,,. As we mentioned in Section 2.3, the primary example of templates that we are going to
use is templates of the first kind. In this case we start with a set of function patches T, C Im(v,,), and
take the set of templates 7,, to be

~

T ={Nn(t) |t €Ty} .
Then the definition of the neural response in (1) takes a more familiar form
Noo(f)(7) = U (Km-1(foh, t)) forall f € Im(v,) and 7 = Nyo1(t) € Lo

which is precisely the definition given in [56] in the case when W is the max pooling function. The function
patches in T, can be either a fixed set of patterns that we want to use, for instance oriented bars or
Gabor filters [44, 55] in the case of vision, or sampled from the probability distribution on Im(v,,).

10

When the template sets are finite, the neural response in Definition 2.6 is finite dimensional and well
defined. When the template sets are infinite, however, the assumption on the weak boundedness of the
pooling function together with the admissibility condition of the templates are crucial to ensure that the
neural response is still well defined.

Proposition 2.7. Suppose the template set T, is infinite for some 1 < m < n—1. If the pooling function
VU is weakly bounded, then Ny, +1(f) € €2 for all f € Im(vyy1).

In light of the result above, throughout this paper we assume that the pooling function ¥ is weakly
bounded whenever we are working with infinitely many templates.

Assumption 3. If the template set T, is infinite for some 1 < m < n — 1, then we assume that the
pooling function ¥: R* — R is weakly bounded.

Note that we do not make the assumption that ¥ is weakly bounded when the template sets are
finite. This is not only because this assumption is unnecessary when we are working with finitely many
templates, but also because this assumption will preclude some common settings that occur in practice.
For example, the composite pooling function Wo(is not weakly bounded if ¢(0) # 0 and W is the /!-norm
pooling function. However, this is precisely the situation in convolutional neural network when ¢ = o is
the logistic function (see Example 2.12).

Remark 2.8 (Normalization). Normalization is a procedure that standardizes the outputs of different
layers in the architecture. Normalization is usually performed to enable us to meaningfully compare
the results between different layers in the architecture, or between different architectures with poten-
tially different number of layers. Hierarchical algorithms in practice typically have some normalization
procedures, in one form or another [26, 45, 54].

Normalization is primarily performed either via the kernel or via the pooling function. Normalization
via the kernel is achieved by using a normalized reproducing kernel, for example the normalized inner
product or Gaussian kernel. On the other hand, normalization via the pooling function is achieved by
using a pooling function that has a thresholding behavior, so that the values of the neural response
and derived kernel can be controlled to lie in a certain range. We will consider these two methods of
normalization in more detail in Section 3 and study their effects on the dynamic range of the derived
kernel.

We note that in addition to the normalization methods that we describe here, there are also other
ways to perform normalization that are employed in practice. For example, one normalization method
that is suggested in practice is to use the normalized cross-correlation of the neural responses as the
derived kernel [45].

Remark 2.9 (Extension). In some architectures in practice, for example in the feedforward hierarchical
model [54] and convolutional neural network [26], there is an intermediate step between the pooling
and the filtering operations that we call the extension step. In this step, a function on an input patch
is decomposed into smaller subpatches, each of which is encoded into a neural response independently
following the procedure described in Definition 2.6. The results are then concatenated together to form
the neural response of the original function. The kernel function on the concatenated neural response is
taken to be the sum of the kernel functions on the individual components, and this recombined kernel
function is used in Definition 2.6 to construct the neural response at the next layer.

More formally, we can describe the extension step in our framework as follows. At each layer m
we take an intermediate patch w,, such that v,, C w,, C v,+1. Consequently, we have two sets
of transformations: H,,, w,, contains the transformations h: vy, — wp,, and Hy,, .,,,, contains the
transformations h: w,, — vmy+1. Given a neural response N, : Im(v,,) — £2 on the patch v,,, we extend
it to construct the neural response on the patch w,,,

Ny, : Im(wy,) — @ 0?2

heH,

Um,Wm,

11

obtained by concatenating the neural responses of the smaller subpatches,

Ny, ()= (Nvm(f ohy), Ny, (foha), ..., N, (fo hk)) for all f € Im(w,,) ,
where h; € Hy, u,, for 1 <i<k=|H,,_ v,
on the individual components separately,

®(Nu,, () = (2(Ny,, (f 0 1)), (N, (f 0 h2)), ..., (N, (f 0 hi))) -

Finally, the kernel function on w,, manifests as a linear combination of the kernel functions on the
individual components,

me(f7 g) = <‘I)(Nwm (f))v CI)(Nwm (g))> = Z Kvm (f oh, go h) for all f,g € Im(wm) . (2)
heH

The feature map ® extends to this framework by acting

Having constructed K,,,, we then proceed to define the neural response at the next layer, N, _,, in
terms of K, by following Definition 2.6.

2.5 Examples of Architectures

The generalized definition of hierarchical architectures that we just described allows us to capture several
hierarchical algorithms in practice in our framework. However, we note that in each case we are only
considering a simplification of the algorithm that retains only the essential elements of the hierarchical
structure.

Example 2.10. The original definition of the neural response and derived kernel proposed in [56] corre-
sponds to the choice of the max pooling function, normalized inner product kernel, and templates of the
first kind.

Example 2.11. The feedforward hierarchical model [50, 54] corresponds to the choice of the max pooling
function and the Gaussian kernel. The templates are typically of the first kind. Given a template of the
first kind 7 € 7,,,—1 corresponding to a function ¢ € Im(v,,—1), the induced neural response can be written
as

2
N (f)(7) = henlll,a:)(_1 e~ VINm—1(foh) = Nm—1(B)II

An alternative architecture can be obtained by replacing the Gaussian kernel with the normalized inner
product kernel, so that

= max <Nm71(foh)’ Nm*l(t»
Nn(A)(T) = max e I T TN (O

Example 2.12. The convolutional neural networks [26, 31, 32] use the pooling function

UV="»"o0,
where ¢! denotes the (normalized) £!-norm pooling function and o is a sigmoid function that is applied to
each component of the input separately (see Definition 3.9). The kernel function is taken to be the inner
product kernel, and the templates are typically of the second kind. The neural response corresponding
to convolutional neural networks is then

Non(f)(7) =

- |Hm—1|

Z ’0(<Nm,1(foh), T>)‘ .

h€H 1

Example 2.13. The feedforward neural networks can be written as a hierarchical architecture where all
the patches are of the same size, vy = vo = --- = v,,. In this case there is no decomposition of inputs
and the set of transformations at each layer contains only the identity. The pooling function is a sigmoid
nonlinearity, and does not result in any nontrivial invariance properties. The kernel function is taken to
be the inner product kernel, so the corresponding neural response is

Nm(f)(T) = J(<Nm71(f)7 T>) :

12

3 Range Compression

One property that applies to a wide class of hierarchical architectures is range compression. This property
states that the dynamic range of the derived kernel is reduced at every layer, to the point that the derived
kernel converges to a constant function when the number of layers becomes arbitrarily large. In effect,
this loss of dynamic range means that all the input functions are eventually mapped to the same neural
response, and hence the hierarchical architecture loses its discrimination property. Range compression
has been observed in practice and is suspected to be responsible for poor classification performance in
some tasks [18].

Broadly speaking, range compression is endemic in the class of architectures in which we are perform-
ing normalization on positive values, either via the kernel or the pooling function. If all the input values
are positive, normalization introduces a tendency for the resulting values to shift away from 0. When
quantified with the right measure, this drift amounts to exactly the loss of dynamic range that we just
described. For example, we shall see that range compression is present in the following architectures:

1. The feedforward hierarchical model (Example 2.11) with the normalized inner product kernel and
max pooling function.

2. The convolutional neural network (Example 2.12) with the inner product kernel, normalized ¢!-
norm pooling with a componentwise sigmoid function, and a large class of templates of the second
kind.

In this section we study the precise conditions on the architecture that lead to range compression.
Our approach is to establish a layerwise lower bound for the compression rate of the derived kernel. This
layerwise bound will yield the convergence of the derived kernel and neural response in the limit when the
number of layers approaches co, as claimed above. We remark that our theoretical result is a conservative
worst-case lower bound, and we observe in practice that the convergence rate is much faster.

In fact, the high rate at which range compression occurs poses a real problem in practice. Because
the rate of convergence is fast enough, the derived kernel becomes saturated after only a small number
of layers. That is, the effective range of the derived kernel becomes too small compared to the machine
precision so that the kernel values become indistinguishable, thus rendering multilayer architectures
unusable. This problem is particularly severe when we are working in a limited-precision environment,
for example when we are using single precision floating points that GPUs commonly use, because then
the saturation effect occurs earlier. Thus, this problem also prevents us from taking the full advantage
of recent fast implementations of deep architectures using multipurpose GPU machines [43, 45, 47].

Layer 1 Layer 2 Layer 3 Layer 4

5000
3000 4000

2000 3000
2000

1000
1000

0
02 04 06 08 1 0.96 0.97 098 099 1

10000

6000

4000

2000

0.9999

8000
6000
4000
2000

01710*“ 1

Figure 1: The effect of range compression on the sample distribution of K,,(f,g) in an m-layer architec-
ture, for 1 < m < 4. Note the different scales on the plots.

To illustrate the range compression problem, Figure 1 shows the sample distribution of the derived

kernel K, in an m-layer architecture, for 1 < m < 4.> Each plot shows the histogram of K,,(f,9)
computed using every pair of different f, g from a collection of 500 images randomly sampled from the

bDetails of implementation: we use the normalized inner product kernel and max pooling function. For each 1 < m < 4
we choose the patch sizes of the m-layer architecture to be uniformly spaced up to 28 x 28 pixels. The initial feature map is

13

MNIST dataset of handwritten digits [32]. In particular, the histogram for the 1-layer architecture
corresponds to the distribution of the normalized inner product between the original images. Note the
different scales on the plots. The horizontal axis in each plot shows the empirical range of the kernel
values.

From Figure 1 we clearly see the effect of range compression. The empirical lower bound of the derived
kernel is drastically increased at each layer. In particular, in the case of the 4-layer architecture we see
that the effective range of the derived kernel has a width of approximately 10~8. Since single precision
variables in MATLAB can represent values up to about seven decimal places, Figure 1 suggests that
the kernel values in a 4-layer architecture would be indistinguishable in MATLAB with single precision
floating point computations. Indeed, this phenomenon is reflected in the poor classification performance
of a 4-layer architecture, as we shall see in Section 3.4.

3.1 Setting and Preliminaries

We first introduce some definitions and notations that we are using in this section. Throughout, let
Ry denote the set of nonnegative real numbers and ¢3 denote the set of square summable nonnegative

sequences,
0 ={a=()ien €* | ;>0 for i €N} .

Given z € £2\ {0}, let # = z/||z|. Similarly, given m € N, let N,,, denote the normalized neural response
at layer m,
Nin(f)

" INA ()]

and let [A(m denote the normalized inner product between the neural responses at layer m,

En(f,9) = (Nu(f), Nu(g)) for f,g € Im(vn)

Non(f) for f € Im(vy,) ,

3.1.1 Nonnegative Architectures

In the analysis of range compression we shall only consider a nonnegative architecture, which is a hier-
archical architecture where the neural response and derived kernel at each layer only take nonnegative
values. Specifically, to obtain a nonnegative architecture it suffices to make the following assumptions:

e Initial feature map. The initial feature map N; maps the functions in Im(v;) to vectors of
nonnegative values, that is,

Nli Im(vl) — £8 .

For example, in the case of images, we can take N7 to be the vector representation of the pixel
values of the images.

¢ Kernel function. The kernel function K : ¢? x 2 — R maps nonnegative inputs to nonnegative
outputs, that is,
K(z,y) >0 ifx,ycty .

For example, the inner product, normalized inner product, and Gaussian kernels satisfy this non-

negativity property.

e Pooling function. The pooling function ¥ acts on nonnegative inputs and produces nonnegative
outputs, that is,
v: Ry — Ry,

the vector representation of the pixel values. At each layer we take the template set to be a set of 500 templates of the first
kind, randomly sampled from the MNIST dataset. Finally, we choose the transformations at each layer to be all possible
translations from one patch to the next larger patch.

14

where R§ = (J, ey Ro is