
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2010-051
CBCL-292

November 19, 2010

Generalization and Properties of the
Neural Response
Jake Bouvrie, Tomaso Poggio, Lorenzo Rosasco,
Steve Smale, and Andre Wibisono

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4424402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Generalization and Properties of the Neural Response

Jake Bouvrie∗,†, Tomaso Poggio†, Lorenzo Rosasco†,�, Steve Smale‡, Andre Wibisono†

∗ – Duke University

† – CBCL, McGovern Institute, MIT

‡ – City University of Hong Kong and University of California, Berkeley

� – Italian Institute of Technology

jvb@mit.edu, tpoggio@mit.edu, lrosasco@mit.edu, smale@cityu.edu.hk, wibisono@mit.edu

November 16, 2010

Abstract

Hierarchical learning algorithms have enjoyed tremendous growth in recent years, with many new
algorithms being proposed and applied to a wide range of applications. However, despite the apparent
success of hierarchical algorithms in practice, the theory of hierarchical architectures remains at an
early stage. In this paper we study the theoretical properties of hierarchical algorithms from a math-
ematical perspective. Our work is based on the framework of hierarchical architectures introduced
by Smale et al. in the paper “Mathematics of the Neural Response”, Foundations of Computational
Mathematics, 2010. We propose a generalized definition of the neural response and derived kernel
that allows us to integrate some of the existing hierarchical algorithms in practice into our frame-
work. We then use this generalized definition to analyze the theoretical properties of hierarchical
architectures. Our analysis focuses on three particular aspects of the hierarchy. First, we show that
a wide class of architectures suffers from range compression; essentially, the derived kernel becomes
increasingly saturated at each layer. Second, we show that the complexity of a linear architecture is
constrained by the complexity of the first layer, and in some cases the architecture collapses into a
single-layer linear computation. Finally, we characterize the discrimination and invariance properties
of the derived kernel in the case when the input data are one-dimensional strings. We believe that
these theoretical results will provide a useful foundation for guiding future developments within the
theory of hierarchical algorithms.

Contents

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Contributions and Organization of this Paper . 4

2 A Theoretical Framework of Hierarchical Architectures 5
2.1 Filtering and Pooling . 6

2.1.1 Filtering Operations . 6
2.1.2 Pooling Functions . 7

2.2 Hierarchy of Function Patches and Transformations . 8
2.3 Templates . 9
2.4 Neural Response and Derived Kernel . 10
2.5 Examples of Architectures . 12

1

3 Range Compression 13
3.1 Setting and Preliminaries . 14

3.1.1 Nonnegative Architectures . 14
3.1.2 Strongly Bounded Pooling Functions . 15
3.1.3 Dynamic Range of the Derived Kernel . 16

3.2 Range Compression: Normalized Kernel Functions . 16
3.3 Range Compression: Normalized Pooling Functions . 17
3.4 Empirical Results and Possible Fixes to Range Compression 21
3.5 Discussion . 24

4 Linear Architectures 24
4.1 Rank Constraint . 25
4.2 Basis Independence . 25

5 Analysis in a One-Dimensional Case 26
5.1 Setting and Preliminaries . 27
5.2 Reversal Invariance of the Derived Kernel . 28

5.2.1 Reversal Invariance from the Initial Kernel . 29
5.2.2 Reversal Invariance from the Transformations . 29
5.2.3 Reversal Invariance from the Templates . 30
5.2.4 Impossibility of Learning Reversal Invariance with Exhaustive Templates 31

5.3 Equivalence Classes of the Derived Kernel . 31
5.4 Mirror Symmetry in Two-Dimensional Images . 32
5.5 Discussion . 33

6 Conclusions and Open Questions 34

A Appendix: A Theoretical Framework of Hierarchical Architectures 36

B Appendix: Range Compression 36
B.1 Setting and Preliminaries . 36

B.1.1 Strongly Bounded Pooling Functions . 36
B.1.2 Dynamic Range of the Derived Kernel . 36

B.2 Range Compression: Normalized Kernel Functions . 40
B.3 Range Compression: Normalized Pooling Functions . 41

C Appendix: Linear Architectures 43
C.1 Rank Constraint . 43
C.2 Basis Independence . 44

D Appendix: Analysis in a One-Dimensional Case 45
D.1 Setting and Preliminaries . 45
D.2 Reversal Invariance of the Derived Kernel . 46

D.2.1 Reversal Invariance from the Initial Kernel . 46
D.2.2 Reversal Invariance from the Transformations . 47
D.2.3 Reversal Invariance from the Templates . 47
D.2.4 Impossibility of Learning Reversal Invariance with Exhaustive Templates 48

D.3 Equivalence Classes of the Derived Kernel . 50
D.4 Mirror Symmetry in Two-Dimensional Images . 54

References 56

2

1 Introduction

One of the remarkable powers of the human brain is its ability to learn and generalize from only a
few examples, a skill generally attributed to the structure of the cortex. Drawing inspiration from the
hierarchical structure of the visual cortex, many hierarchical algorithms have been proposed to improve
the performance on image classification tasks. In recent years, the successes of these initial algorithms
have led to applications of hierarchical algorithms in a wide range of areas. However, the reasons for
these successes are poorly understood. With the rapid empirical development of hierarchical learning
algorithms, a commensurate theory is needed to explain the phenomena encountered in practice, as well
as to guide the direction of future research. Smale et al. [56] introduced a theoretical framework of
hierarchical architectures that enables hierarchical algorithms in practice to be studied from a theoretical
perspective. The main objective of this paper is to continue the work of Smale et al. [56] in laying the
theoretical foundations of hierarchical architectures.

1.1 Background and Motivation

Classical kernel methods [53] such as regularization networks [14], splines [60], and support vector ma-
chines [12] can be described as single-layer networks because their inputs and outputs are generally related
by a single computation of kernel functions. In contrast, hierarchical algorithms are characterized by a
multi-layer architecture, where each layer of the architecture is performing similar computations con-
sisting of the filtering and pooling operations. At each layer, the filtering operation matches the input
data (or encodings from the previous layer) against a given set of templates, while the pooling operation
combines the outputs of the filtering step into a single value. The alternating filtering and pooling oper-
ations are repeated through the hierarchy to produce an encoding of the input data, that we can pass to
a classifier or use for further processing.

The recent development in hierarchical algorithms is to a large extent motivated by the advances in
neuroscience that lead to our improved understanding of the organization and functions of the brain.
Hubel and Wiesel [25] proposed that the early stages of the mammalian visual cortex are organized in
a hierarchy of simple and complex cells. The simple cells are selective to certain sizes or orientations,
while the complex cells are more invariant to small changes in the stimuli. As the input stimuli are
processed through the layers of the visual cortex, the interleaving of the simple and complex cells results
in a more complex representation of the stimuli. Starting with the work of Fukushima [16], many
hierarchical algorithms that try to replicate the hierarchical structure of the visual cortex have been
proposed [22, 31, 37, 50, 54]. The alternating filtering and pooling steps in the algorithms mimic the
interconnection between the simple and complex cells in the visual cortex.

Hierarchical algorithms have been applied to a wide range of problem domains, including image
classification [29, 48, 59], image segmentation [58], action recognition from video sequences [17, 27], speech
recognition [9, 15, 38], dimensionality reduction [23, 52], robotics [20, 34], natural language processing [11,
42], language identification [63], and even seizure detection [40, 41], with encouraging results. Hierarchical
algorithms have been shown to consistently outperform classical shallow networks in practice [21, 29,
33]. However, despite the apparent empirical success of hierarchical algorithms, so far there is little
understanding as to why these algorithms work as well as they do.

Several arguments have been proposed to explain the theoretical properties of hierarchical algorithms,
in particular regarding their representational powers. A classical result in the neural networks literature
states that neural networks with one hidden layer and sufficiently many hidden units can approximate
arbitrary measurable functions [24]. Similarly, neural networks with sufficiently many layers and only
one hidden unit in every layer have been shown to be universal classifiers [51]. More recently, Sutskever
and Hinton [57] showed that deep belief networks with limited width are universal approximators for
distributions over binary vectors, and Le Roux and Bengio [30] further improved the upper bound on
the number of parameters required to achieve the universal approximation. Finally, Bengio [3] and
Bengio and LeCun [5] argued that a deep architecture is necessary to find an efficient representation of

3

a highly-varying function.
Nevertheless, many fundamental questions remain unanswered and the work on hierarchical algorithms

remains largely empirical [4, 13, 29]. For example, one of the basic questions regarding hierarchical
algorithms is how to choose the parameters to build a good architecture. This turns out to be a difficult
question, in part because the answer might depend on the specific task at hand, and the theoretical answer
to this question has eluded our understanding thus far. Consequently, several authors have explored this
question empirically [26, 45].

Another example of a major area of empirical work in hierarchical algorithms is related to the invari-
ance properties of the architecture. The repeated operations of pooling over local regions intuitively lead
to some invariance properties in the hierarchy. Indeed, the trade-off between the discrimination and in-
variance properties in the architecture is central to the development of hierarchical algorithms in practice.
But can we formalize this intuition? Again, this question is surprisingly difficult to answer theoretically,
and invariance in hierarchical algorithms has generally only been analyzed empirically [19, 28].

Admittedly, empirical approaches can provide good results and intuitions about how hierarchical
algorithms work in practice. However, empirical works alone are not sufficient because they cannot
provide satisfying explanations about phenomena that occur in nature (for example, why the visual
cortex is structured as a hierarchy), or even in practice (why one algorithm works better than another).
We believe that in order to advance our understanding of hierarchical algorithms, a theory is needed. A
theoretical analysis of hierarchical algorithms can provide an insight into the behavior and characteristics
of hierarchical architectures. Furthermore, theoretical analysis can help identify problems that occur in
practice and propose solutions.

One of the main difficulties in performing a theoretical study on hierarchical algorithms is the lack
of a common framework. Existing hierarchical algorithms in practice are typically quite complex with
specific details that differ from algorithms to algorithms, thus preventing us from translating results
on one algorithm into another. In an attempt to overcome this difficulty, Smale et al. [56] proposed a
theoretical framework of hierarchical architectures. The elegant formalization of this framework strikes a
delicate balance between the complexity of the model and the faithfulness to neuroscience and hierarchical
algorithms in practice.

The central objects of interest in the framework that Smale et al. proposed are the neural response and
derived kernel. At each layer, the neural response is an encoding of the input data, and the derived kernel
is a similarity measure on the data that is defined in terms of the neural responses. The neural response
and derived kernel at each layer are constructed recursively using an alternating process of filtering and
pooling, much like the principal operations in hierarchical algorithms that we previously described.

The framework of neural response and derived kernel that Smale et al. introduced is based primarily on
the feedforward hierarchical model [50, 54]. However, this framework eliminates several implementation
and engineering details from the algorithms and only preserves the essential components that characterize
hierarchical architectures. As such, this framework is amenable to theoretical analysis. Furthermore, this
framework also has the potential to be generalized to include other hierarchical algorithms in practice.

Indeed, preliminary results on the analysis of hierarchical architectures using the framework of the
neural response and derived kernel are promising [56]. Further analysis on the invariance properties of
the derived kernel from a group-theoretic perspective is carried out in [8, 10]. However, the introduction
of this framework also presents a challenge of whether the framework of the neural response and derived
kernel can continue to live up to its promise to bridge the gap between the theory and practice of
hierarchical algorithms. This is the question that we seek to address in this paper.

1.2 Contributions and Organization of this Paper

In this paper we study the theoretical properties of hierarchical architectures using the framework intro-
duced by Smale et al. [56]. We present our results in the main sections, but we defer all proofs and more
technical discussion to the appendix corresponding to each section. We summarize our contributions as
follows.

4

Section 2 – A theoretical framework of hierarchical architectures. We describe the theoretical
framework of hierarchical architectures and propose a generalized definition of the neural response and
derived kernel. This generalized definition allows us to study a wider class of hierarchical algorithms
in our framework, including the feedforward hierarchical architecture [50, 54] and convolutional neural
network [26, 31, 32].

Section 3 – Range compression. We show that a wide class of hierarchical architectures suffers from
range compression; essentially, the derived kernel becomes increasingly saturated at each layer. Range
compression presents a problem in practice because the saturation effect is severe enough that it affects
the performance of the architecture, even when the architecture has only a few layers. We propose
several methods to mitigate the saturation effect and check that these correction methods restore the
performance of the architecture in practice. This result lends insight into how the interaction between
certain parameter choices in the architecture can influence its empirical performance.

Section 4 – Linear architectures. We study the limitations and properties of linear architectures.
We show that the complexity of a linear architecture is constrained by the complexity of the first layer,
and in some cases the architecture collapses into a single-layer linear computation. Furthermore, we also
show that when we use an orthonormal basis as templates for the filtering operation, the derived kernel
is independent of the basis.

Section 5 – Analysis in a one-dimensional case. We extend the discrimination and invariance
analysis of Smale et al. [56] in the case when the input data are one-dimensional strings. We demonstrate
several ways to build a reversal invariant derived kernel by choosing the appropriate parameters in the
model. We also show that when we use an exhaustive set of templates, it is impossible to learn reversal
invariance in the architecture. Finally, we characterize the equivalence classes of the derived kernel in the
case when we are working with a discriminative architecture. We can interpret these equivalence classes
as the intrinsic translation invariance in the architecture.

2 A Theoretical Framework of Hierarchical Architectures

In this section we propose a generalization of the theoretical framework of hierarchical architectures that
Smale et al. introduced in [56]. We extend the definition of the neural response and derived kernel to
allow the use of general pooling functions, kernel functions, and templates with suitable admissibility
properties. This generalized framework enables us to study a wider class of hierarchical architectures,
including several hierarchical algorithms in practice such as the feedforward architecture [50, 54] and
convolutional neural networks [26, 31, 32]. A theoretical analysis on this generalized framework can
thus be more applicable to problems in practice, and ultimately guide the development of more efficient
hierarchical learning machines.

The basic assumption underlying hierarchical learning algorithms is that each input can be decom-
posed into a hierarchy of parts of increasing size with increasing semantic complexity. Given a represen-
tation of the smallest parts, the hierarchical architecture recursively builds at each layer a representation
of the next larger parts by a combination of filtering and pooling operations. The filtering operation
measures the similarity between the input representations and a given set of templates, while the pool-
ing operation combines the filtered outputs into a single value. Intuitively, the filtering step induces
discrimination while the pooling step induces invariance in the architecture. Thus, the alternating ap-
plications of the filtering and pooling operations yield a complex representation of the input data with
nontrivial discrimination and invariance properties. This trade-off between discrimination and invariance
is widely seen as a key property of hierarchical architectures that makes hierarchical algorithms work well
in practice.

5

2.1 Filtering and Pooling

We first formalize the two basic operations performed at each layer in the architecture: filtering and
pooling.

2.1.1 Filtering Operations

We propose to describe the filtering operation using a reproducing kernel. Recall that given a space X,
a reproducing kernel is a symmetric and positive definite function K : X ×X → R. A map Φ from X to
a Hilbert space H is called a feature map associated to K if〈

Φ(x), Φ(y)
〉
H = K(x, y) for all x, y ∈ X .

It can be shown that any such map Φ defines a reproducing kernel, and conversely, given a reproducing
kernel it is always possible to construct an associated feature map [1].

In the class of hierarchical architectures that we are considering, the inputs to the filtering operation
will in general have different lengths from layer to layer. To address this issue, we define the kernel K
on a sufficiently large space that contains all the possible inputs, and work with the restrictions of K on
the appropriate domains of the inputs. Specifically, we begin by considering a kernel K : `2 × `2 → R,
where `2 is the space of square summable sequences. For every n ∈ N, we can consider the induced kernel
Kn : Rn × Rn → R given by

Kn(x, y) = K
(
εn(x), εn(y)

)
for all x, y ∈ Rn ,

where εn : Rn → `2 is the embedding of Rn as an n-dimensional subspace of `2,

εn(x) = (x1, . . . , xn, 0, 0, . . .) ∈ `2 for x = (x1, . . . , xn) ∈ Rn .

Equivalently, Kn is the restriction of K on the subspace εn(Rn) × εn(Rn) ⊆ `2 × `2, and is thus itself a
reproducing kernel. The induced kernels Kn are hereafter denoted by K since the dependence on n will
be clear from context. Moreover, all inner products and norms will denote the standard inner product
and norm in `2 unless specified otherwise. Some examples of kernel functions of interest are given in
Table 1.a

Name Expression

Inner product K(x, y) = 〈x, y〉

Normalized inner product K(x, y) =
〈x, y〉
‖x‖ ‖y‖

Gaussian K(x, y) = e−γ‖x−y‖
2

Table 1: Examples of kernel functions.

We will also often be working with a normalized kernel. We say that a kernel K : `2 × `2 → R is
normalized if K(x, x) = 1 for all x ∈ `2. For example, the normalized inner product and Gaussian
kernels given in Table 1 are normalized. Clearly the normalization of K is equivalent to the condition
that the feature map associated to K takes values in the unit sphere in `2, that is, ‖Φ(x)‖ = 1 for all
x ∈ `2. Furthermore, by the Cauchy–Schwarz inequality it is easy to see that if K is normalized, then

aFor the normalized inner product kernel, we take the domain of K to be (`2 \ {0})× (`2 \ {0}).

6

−1 ≤ K(x, y) ≤ 1 for all x, y ∈ `2. Finally, we note that given a reproducing kernel K : `2 × `2 → R, we
can construct a normalized reproducing kernel K̂ : `2 × `2 → R by

K̂(x, y) =
K(x, y)√

K(x, x)K(y, y)
for all x, y ∈ `2 ,

which corresponds to normalizing the feature map to be of unit length,

Φ̂(x) =
Φ(x)
‖Φ(x)‖ for all x ∈ `2 .

2.1.2 Pooling Functions

The pooling operation can be described as a function that summarizes the content of a sequence of values
with a single value, similar to aggregation functions used in voting schemes and database systems [2]. As
in the case of the filtering, the inputs to the pooling operation will in general have different lengths in
different layers. Following the treatment in [2], we define a pooling function to be a function

Ψ: R∗ → R ,

where R∗ =
⋃
n∈N Rn is the set of all finite-length sequences. We note that in general, the actions of Ψ on

input values with different lengths do not have to be related to each other. However, in the examples that
we are going to consider, Ψ is defined by an underlying formula that can be applied to input sequences of
arbitrary lengths. For example, the average pooling function can be described by the following formula,

Ψ(α) =
1
n

n∑
i=1

αi if α ∈ Rn .

In the definition of the neural response, we will often work with the case when the input to the
pooling function is a sequence indexed by a finite set H. In an abuse of notation, given one such sequence
α : H → R, we will write

Ψ
(
α(h)

)
to denote the output of the pooling operation on the input

(
α(h)

)
h∈H ∈ R|H|. Moreover, given a pooling

function Ψ: R∗ → R and a function ζ : R → R, we write Ψ ◦ ζ to denote the pooling function obtained
by first applying ζ componentwise on the input and then applying Ψ, that is,

(Ψ ◦ ζ)(α) = Ψ
(
(ζ(αi))ni=1

)
for all α = (α1, . . . , αn) ∈ Rn, n ∈ N .

This form of pooling function is particularly important when ζ is a sigmoid function (see Example 2.12
and Section 3.3). Several examples of common pooling functions are given in Table 2.

In anticipation of the upcoming development, we will at times impose the following condition on the
pooling function to ensure that the construction of the neural response and derived kernel is well defined.

Definition 2.1 (Weakly bounded pooling function). A pooling function Ψ: R∗ → R is weakly bounded
if for every n ∈ N there exists a constant Cn > 0 such that

|Ψ(α)| ≤ Cn ‖α‖ for all α ∈ Rn .

We note that weak boundedness is precisely the boundedness condition when Ψ is a linear functional.
In particular, weak boundedness is a very mild condition and is satisfied by most reasonable pooling
functions. For instance, all the pooling functions in Table 2 are weakly bounded. Clearly the max and
`∞-norm pooling functions are weakly bounded with Cn = 1. Moreover, by using the Cauchy–Schwarz
inequality we can show that the average and `1-norm pooling functions are also weakly bounded with
constants Cn = 1/

√
n and Cn =

√
n, respectively.

7

Name Expression

Average Ψ(α(h)) =
1
|H|

∑
h∈H

α(h)

`1-norm Ψ(α(h)) =
∑
h∈H
|α(h)|

Max Ψ(α(h)) = max
h∈H

α(h)

`∞-norm Ψ(α(h)) = max
h∈H

|α(h)|

Table 2: Examples of pooling functions.

On the other hand, weak boundedness also imposes some restrictions on the behavior of Ψ. For
example, by taking α = 0 in Definition 2.1 we see that a weakly bounded Ψ must satisfy Ψ(0) = 0.
Furthermore, the assumption that Ψ is bounded above by a norm implies that Ψ must have a homogeneous
growth rate. For instance, the function Ψ(α) = ‖α‖ is weakly bounded while Ψ(α) = ‖α‖2 is not, since
we do not have an upper bound on ‖α‖.

2.2 Hierarchy of Function Patches and Transformations

We now describe the fundamental structures of the inputs of the hierarchical architecture. This math-
ematical framework formalizes the decomposability assumption underlying the hierarchical structure of
the architecture, that each input is composed of parts of increasing size.

Functions. One convention that we maintain in our framework is that we represent every input as a
function f from a domain v to a set of values Ω. For example, in the case of vision, we can represent an
image as a real-valued function over a receptive field, which can be taken to be a square region in R2.
When we are working with (grayscale) images in computers, an image of size k × k pixels is a function
f : {1, . . . , k}×{1, . . . , k} → [0, 1]. Finally, in the case of one-dimensional strings (see Section 5), a string
of length k is a function f : {1, . . . , k} → S, where S is a finite alphabet.

Hierarchical architecture. A hierarchical architecture with n ∈ N layers consists of a nested sequence
of patches v1 ⊆ v2 ⊆ · · · ⊆ vn. At each layer 1 ≤ m ≤ n we have a function space Im(vm) consisting of
the functions f : vm → Ω that we will be working with. The nested structure of the patches corresponds
to the assumption that the functions at lower layers are less complex than the functions on higher layers.
Note that we do not require Im(vm) to contain all possible functions f : vm → Ω, nor do we assume any
algebraic or topological structures on Im(vm).

Transformations. The connection between adjacent patches vm and vm+1 is provided by a set Hm of
transformations h : vm → vm+1. Each such transformation h specifies how to embed a patch in a larger
patch. Equivalently, the transformations specify how to decompose a patch into a collection of smaller
patches, as well as how to decompose a function into function patches. Given a function f : vm+1 → Ω
in Im(vm+1) and a transformation h : vm → vm+1, we can restrict f with h to obtain a function patch
f ◦h : vm → Ω. In order for this restriction operation to be well defined, we need the following assumption.

Assumption 1. For 1 ≤ m ≤ n− 1, we have f ◦ h ∈ Im(vm) if f ∈ Im(vm+1) and h ∈ Hm.

8

Note that Assumption 1 is very mild and can be easily satisfied in practice. For example, we can take
Im(vm) to be the set of all possible functions f : vm → Ω. Another way to construct function spaces that
satisfy Assumption 1 is to start with the function space Im(vn) at the highest layer and recursively define
the function spaces at the lower layers by restricting the functions,

Im(vm) = {f ◦ h | f ∈ Im(vm+1), h ∈ Hm} for 1 ≤ m ≤ n− 1 .

Examples of transformations in the case of images include translations, rotations, or reflections. Note
further that as in the case of function spaces, we do not require Hm to contain all possible transformations
h : vm → vm+1, nor do we assume any structures on Hm. However, in this paper we always make the
following assumption.

Assumption 2. For 1 ≤ m ≤ n− 1, the set of transformations Hm is nonempty and finite.

2.3 Templates

A key semantic component in the hierarchical architecture is a dictionary of templates that is usually
learned from data. The templates will play the role of the filters that we are comparing against in the
filtering operation. The templates also provide a connection between the architecture and the underlying
distribution of the input data. For example, one way to generate templates is to sample from the
probability distribution on the function space. As an illustration, in the case of vision, the templates can
be thought of as representing the primary images that we want the architecture to learn, either because
they are the predominant images in our world, or because they can serve as a building block to represent
other images.

To describe the concept of templates, we first need the following definition of admissible sets.

Definition 2.2 (Admissible set). Given a Hilbert space H, a set T ⊆ H is admissible if there is a
constant C > 0 such that ∑

τ∈T
〈α, τ〉2H ≤ C‖α‖2H for all α ∈ H .

Clearly any finite set is admissible. When H = `2, an example of an infinite admissible set is when
we take T to be an orthonormal basis (τi)∞i=1 of `2, and in fact in this case we have

∑∞
i=1〈α, τi〉2 = ‖α‖2.

The admissibility condition is also satisfied by more general dictionaries, for example if T is a frame for
H.

Given the definition above, we can formalize the notion of templates. Recall that given a normed
vector space V and a non-empty subset W ⊆ V , the closed linear span of W , denoted by Span(W), is
the closure of the linear span of W in V .

Definition 2.3 (Templates). Consider the function space Im(vm) at some layer m, and let F : Im(vm)→
H be a feature map, where H is a Hilbert space. We say that Tm is an m-th layer set of templates associated
to F if Tm is a nonempty admissible set in the closed linear span of {F (t) | t ∈ Im(vm)}.

We note that the admissibility condition is needed for theoretical reasons to ensure that we can work
with an arbitrarily large, possibly infinite, set of templates. In practice, the number of templates is always
finite and the admissibility condition is always satisfied.

As is clear from the definition, there are two inherently different forms of templates: those that are
the encoded functions in Im(vm), and those that are linear combinations of the encoded functions. Given
a set of templates Tm associated to F , we distinguish these two cases as follows.

1. Templates of the first kind. We say that Tm is a set of templates of the first kind if every
template τ ∈ Tm is of the form

τ = F (t)

for some t ∈ Im(vm). This is the dictionary used in [56] when the feature map F is the neural
response (see Definition 2.6) and will be our primary example in this paper.

9

2. Templates of the second kind. Otherwise, we say that Tm is a set of templates of the second
kind if it is not of the first kind. In this case every template τ ∈ Tm is a (possibly infinite) linear
combination of the encoded functions F (t), for some t ∈ Im(vm). For example, we can take Tm to
be a set of convex combinations of templates of the first kind (see Section 3.1), or we can take Tm
to be an orthonormal basis of Span{F (t) | t ∈ Im(vm)} (see Section 4.2).

Remark 2.4 (Templates learning). In addition to the examples of templates given in the discussion
above, we can also use other learning schemes to obtain the dictionary of templates. For example,
given a set Tm of templates of the first kind, we can extract a set T ′m of templates of the second kind
by using techniques such as PCA, ICA, sparse coding [36, 39], and nonnegative matrix factorization
[35]. Therefore, our analytical framework provides us with an abstraction to treat the different learning
methods in practice as a change of templates for the filtering operation at each layer.

Remark 2.5 (Multiset of Templates). In the remainder of this paper we treat the template set as a
multiset; that is, we allow the possibility of having two identical templates. In particular, when we are
using templates of the first kind, we start with a set of function patches Tm ⊆ Im(vm) and take the
templates to be Tm = {N̂m(t) | t ∈ Tm}. In this case, even when we have two distinct function patches
t1 6= t2 with N̂m(t1) = N̂m(t2), we still keep both templates in Tm, so that Tm has the same number of
elements as Tm.

2.4 Neural Response and Derived Kernel

Given the settings described in the previous sections, we are now ready to define the central objects
of interest in a hierarchical architecture, namely the neural response and derived kernel. At each layer
m, the neural response is an encoding of the functions in Im(vm), and the derived kernel is a similarity
measure between between functions in Im(vm), defined in terms of the neural response encodings. Nat-
urally, since we are working with a hierarchical architecture, the neural response and derived kernel are
defined recursively. In the definition below, `2(Tm−1) denotes the space of all square summable sequences
α : Tm−1 → R. Recall from our discussion in Section 2.1 that `2(Tm−1) can be embedded into `2.

Definition 2.6 (Neural response and derived kernel). Let K : `2 × `2 → R be a reproducing kernel with
an associated feature map Φ: `2 → `2, let Ψ: R∗ → R be a pooling function, and let N1 : Im(v1)→ `2 be
a feature map. The m-th layer neural response Nm : Im(vm)→ `2(Tm−1) is defined as

Nm(f)(τ) = Ψ
(〈Φ(Nm−1(f ◦ h)), τ〉) for all f ∈ Im(vm) and τ ∈ Tm−1 , (1)

where the pooling operation is performed over h ∈ Hm−1, and Tm−1 is a set of templates associated to
Φ ◦Nm−1. The m-th layer derived kernel Km : Im(vm)× Im(vm)→ R is given by

Km(f, g) = K
(
Nm(f), Nm(g)

)
=
〈
Φ
(
Nm(f)

)
, Φ
(
Nm(g)

)〉
for all f, g ∈ Im(vm) .

We note that the template sets Tm at each layer are computed after we have constructed the neural
response Nm. As we mentioned in Section 2.3, the primary example of templates that we are going to
use is templates of the first kind. In this case we start with a set of function patches Tm ⊆ Im(vm), and
take the set of templates Tm to be

Tm = {N̂m(t) | t ∈ Tm} .
Then the definition of the neural response in (1) takes a more familiar form

Nm(f)(τ) = Ψ
(
Km−1(f ◦ h, t)) for all f ∈ Im(vm) and τ = N̂m−1(t) ∈ Tm−1 ,

which is precisely the definition given in [56] in the case when Ψ is the max pooling function. The function
patches in Tm can be either a fixed set of patterns that we want to use, for instance oriented bars or
Gabor filters [44, 55] in the case of vision, or sampled from the probability distribution on Im(vm).

10

When the template sets are finite, the neural response in Definition 2.6 is finite dimensional and well
defined. When the template sets are infinite, however, the assumption on the weak boundedness of the
pooling function together with the admissibility condition of the templates are crucial to ensure that the
neural response is still well defined.

Proposition 2.7. Suppose the template set Tm is infinite for some 1 ≤ m ≤ n−1. If the pooling function
Ψ is weakly bounded, then Nm+1(f) ∈ `2 for all f ∈ Im(vm+1).

In light of the result above, throughout this paper we assume that the pooling function Ψ is weakly
bounded whenever we are working with infinitely many templates.

Assumption 3. If the template set Tm is infinite for some 1 ≤ m ≤ n − 1, then we assume that the
pooling function Ψ: R∗ → R is weakly bounded.

Note that we do not make the assumption that Ψ is weakly bounded when the template sets are
finite. This is not only because this assumption is unnecessary when we are working with finitely many
templates, but also because this assumption will preclude some common settings that occur in practice.
For example, the composite pooling function Ψ◦ζ is not weakly bounded if ζ(0) 6= 0 and Ψ is the `1-norm
pooling function. However, this is precisely the situation in convolutional neural network when ζ = σ is
the logistic function (see Example 2.12).

Remark 2.8 (Normalization). Normalization is a procedure that standardizes the outputs of different
layers in the architecture. Normalization is usually performed to enable us to meaningfully compare
the results between different layers in the architecture, or between different architectures with poten-
tially different number of layers. Hierarchical algorithms in practice typically have some normalization
procedures, in one form or another [26, 45, 54].

Normalization is primarily performed either via the kernel or via the pooling function. Normalization
via the kernel is achieved by using a normalized reproducing kernel, for example the normalized inner
product or Gaussian kernel. On the other hand, normalization via the pooling function is achieved by
using a pooling function that has a thresholding behavior, so that the values of the neural response
and derived kernel can be controlled to lie in a certain range. We will consider these two methods of
normalization in more detail in Section 3 and study their effects on the dynamic range of the derived
kernel.

We note that in addition to the normalization methods that we describe here, there are also other
ways to perform normalization that are employed in practice. For example, one normalization method
that is suggested in practice is to use the normalized cross-correlation of the neural responses as the
derived kernel [45].

Remark 2.9 (Extension). In some architectures in practice, for example in the feedforward hierarchical
model [54] and convolutional neural network [26], there is an intermediate step between the pooling
and the filtering operations that we call the extension step. In this step, a function on an input patch
is decomposed into smaller subpatches, each of which is encoded into a neural response independently
following the procedure described in Definition 2.6. The results are then concatenated together to form
the neural response of the original function. The kernel function on the concatenated neural response is
taken to be the sum of the kernel functions on the individual components, and this recombined kernel
function is used in Definition 2.6 to construct the neural response at the next layer.

More formally, we can describe the extension step in our framework as follows. At each layer m
we take an intermediate patch wm such that vm ⊆ wm ⊆ vm+1. Consequently, we have two sets
of transformations: Hvm,wm contains the transformations h : vm → wm, and Hwm,vm+1 contains the
transformations h : wm → vm+1. Given a neural response Nvm : Im(vm)→ `2 on the patch vm, we extend
it to construct the neural response on the patch wm,

Nwm
: Im(wm)→

⊕
h∈Hvm,wm

`2 ∼= `2 ,

11

obtained by concatenating the neural responses of the smaller subpatches,

Nwm(f) =
(
Nvm(f ◦ h1), Nvm(f ◦ h2), . . . , Nvm(f ◦ hk)

)
for all f ∈ Im(wm) ,

where hi ∈ Hvm,wm
for 1 ≤ i ≤ k = |Hvm,wm

|. The feature map Φ extends to this framework by acting
on the individual components separately,

Φ
(
Nwm(f)

)
=
(
Φ(Nvm(f ◦ h1)), Φ(Nvm(f ◦ h2)), . . . , Φ(Nvm(f ◦ hk))

)
.

Finally, the kernel function on wm manifests as a linear combination of the kernel functions on the
individual components,

Kwm
(f, g) =

〈
Φ(Nwm

(f)), Φ(Nwm
(g))

〉
=

∑
h∈Hvm,wm

Kvm
(f ◦ h, g ◦ h) for all f, g ∈ Im(wm) . (2)

Having constructed Kwm , we then proceed to define the neural response at the next layer, Nvm+1 , in
terms of Kwm

by following Definition 2.6.

2.5 Examples of Architectures

The generalized definition of hierarchical architectures that we just described allows us to capture several
hierarchical algorithms in practice in our framework. However, we note that in each case we are only
considering a simplification of the algorithm that retains only the essential elements of the hierarchical
structure.

Example 2.10. The original definition of the neural response and derived kernel proposed in [56] corre-
sponds to the choice of the max pooling function, normalized inner product kernel, and templates of the
first kind.

Example 2.11. The feedforward hierarchical model [50, 54] corresponds to the choice of the max pooling
function and the Gaussian kernel. The templates are typically of the first kind. Given a template of the
first kind τ ∈ Tm−1 corresponding to a function t ∈ Im(vm−1), the induced neural response can be written
as

Nm(f)(τ) = max
h∈Hm−1

e−γ‖Nm−1(f◦h)−Nm−1(t)‖2 .

An alternative architecture can be obtained by replacing the Gaussian kernel with the normalized inner
product kernel, so that

Nm(f)(τ) = max
h∈Hm−1

〈
Nm−1(f ◦ h), Nm−1(t)

〉
‖Nm−1(f ◦ h)‖ ‖Nm−1(t)‖ .

Example 2.12. The convolutional neural networks [26, 31, 32] use the pooling function

Ψ = `1 ◦ σ ,

where `1 denotes the (normalized) `1-norm pooling function and σ is a sigmoid function that is applied to
each component of the input separately (see Definition 3.9). The kernel function is taken to be the inner
product kernel, and the templates are typically of the second kind. The neural response corresponding
to convolutional neural networks is then

Nm(f)(τ) =
1

|Hm−1|
∑

h∈Hm−1

∣∣σ(〈Nm−1(f ◦ h), τ〉)∣∣ .
Example 2.13. The feedforward neural networks can be written as a hierarchical architecture where all
the patches are of the same size, v1 = v2 = · · · = vn. In this case there is no decomposition of inputs
and the set of transformations at each layer contains only the identity. The pooling function is a sigmoid
nonlinearity, and does not result in any nontrivial invariance properties. The kernel function is taken to
be the inner product kernel, so the corresponding neural response is

Nm(f)(τ) = σ
(〈Nm−1(f), τ〉) .
12

3 Range Compression

One property that applies to a wide class of hierarchical architectures is range compression. This property
states that the dynamic range of the derived kernel is reduced at every layer, to the point that the derived
kernel converges to a constant function when the number of layers becomes arbitrarily large. In effect,
this loss of dynamic range means that all the input functions are eventually mapped to the same neural
response, and hence the hierarchical architecture loses its discrimination property. Range compression
has been observed in practice and is suspected to be responsible for poor classification performance in
some tasks [18].

Broadly speaking, range compression is endemic in the class of architectures in which we are perform-
ing normalization on positive values, either via the kernel or the pooling function. If all the input values
are positive, normalization introduces a tendency for the resulting values to shift away from 0. When
quantified with the right measure, this drift amounts to exactly the loss of dynamic range that we just
described. For example, we shall see that range compression is present in the following architectures:

1. The feedforward hierarchical model (Example 2.11) with the normalized inner product kernel and
max pooling function.

2. The convolutional neural network (Example 2.12) with the inner product kernel, normalized `1-
norm pooling with a componentwise sigmoid function, and a large class of templates of the second
kind.

In this section we study the precise conditions on the architecture that lead to range compression.
Our approach is to establish a layerwise lower bound for the compression rate of the derived kernel. This
layerwise bound will yield the convergence of the derived kernel and neural response in the limit when the
number of layers approaches∞, as claimed above. We remark that our theoretical result is a conservative
worst-case lower bound, and we observe in practice that the convergence rate is much faster.

In fact, the high rate at which range compression occurs poses a real problem in practice. Because
the rate of convergence is fast enough, the derived kernel becomes saturated after only a small number
of layers. That is, the effective range of the derived kernel becomes too small compared to the machine
precision so that the kernel values become indistinguishable, thus rendering multilayer architectures
unusable. This problem is particularly severe when we are working in a limited-precision environment,
for example when we are using single precision floating points that GPUs commonly use, because then
the saturation effect occurs earlier. Thus, this problem also prevents us from taking the full advantage
of recent fast implementations of deep architectures using multipurpose GPU machines [43, 45, 47].

0.2 0.4 0.6 0.8 1
0

1000

2000

3000

Layer 1

0.96 0.97 0.98 0.99 1
0

1000

2000

3000

4000

5000

Layer 2

0.9999 1
0

2000

4000

6000

Layer 3

0

2000

4000

6000

8000

10000

Layer 4

1 − 10−8 1

Figure 1: The effect of range compression on the sample distribution of Km(f, g) in an m-layer architec-
ture, for 1 ≤ m ≤ 4. Note the different scales on the plots.

To illustrate the range compression problem, Figure 1 shows the sample distribution of the derived
kernel Km in an m-layer architecture, for 1 ≤ m ≤ 4.b Each plot shows the histogram of Km(f, g)
computed using every pair of different f, g from a collection of 500 images randomly sampled from the

bDetails of implementation: we use the normalized inner product kernel and max pooling function. For each 1 ≤ m ≤ 4
we choose the patch sizes of the m-layer architecture to be uniformly spaced up to 28× 28 pixels. The initial feature map is

13

MNIST dataset of handwritten digits [32]. In particular, the histogram for the 1-layer architecture
corresponds to the distribution of the normalized inner product between the original images. Note the
different scales on the plots. The horizontal axis in each plot shows the empirical range of the kernel
values.

From Figure 1 we clearly see the effect of range compression. The empirical lower bound of the derived
kernel is drastically increased at each layer. In particular, in the case of the 4-layer architecture we see
that the effective range of the derived kernel has a width of approximately 10−8. Since single precision
variables in MATLAB can represent values up to about seven decimal places, Figure 1 suggests that
the kernel values in a 4-layer architecture would be indistinguishable in MATLAB with single precision
floating point computations. Indeed, this phenomenon is reflected in the poor classification performance
of a 4-layer architecture, as we shall see in Section 3.4.

3.1 Setting and Preliminaries

We first introduce some definitions and notations that we are using in this section. Throughout, let
R0 denote the set of nonnegative real numbers and `20 denote the set of square summable nonnegative
sequences,

`20 = {α = (αi)i∈N ∈ `2 | αi ≥ 0 for i ∈ N} .
Given x ∈ `2 \ {0}, let x̂ = x/‖x‖. Similarly, given m ∈ N, let N̂m denote the normalized neural response
at layer m,

N̂m(f) =
Nm(f)
‖Nm(f)‖ for f ∈ Im(vm) ,

and let K̂m denote the normalized inner product between the neural responses at layer m,

K̂m(f, g) =
〈
N̂m(f), N̂m(g)

〉
for f, g ∈ Im(vm) .

3.1.1 Nonnegative Architectures

In the analysis of range compression we shall only consider a nonnegative architecture, which is a hier-
archical architecture where the neural response and derived kernel at each layer only take nonnegative
values. Specifically, to obtain a nonnegative architecture it suffices to make the following assumptions:

• Initial feature map. The initial feature map N1 maps the functions in Im(v1) to vectors of
nonnegative values, that is,

N1 : Im(v1)→ `20 .

For example, in the case of images, we can take N1 to be the vector representation of the pixel
values of the images.

• Kernel function. The kernel function K : `2 × `2 → R maps nonnegative inputs to nonnegative
outputs, that is,

K(x, y) ≥ 0 if x, y ∈ `20 .

For example, the inner product, normalized inner product, and Gaussian kernels satisfy this non-
negativity property.

• Pooling function. The pooling function Ψ acts on nonnegative inputs and produces nonnegative
outputs, that is,

Ψ: R∗0 → R0 ,

the vector representation of the pixel values. At each layer we take the template set to be a set of 500 templates of the first
kind, randomly sampled from the MNIST dataset. Finally, we choose the transformations at each layer to be all possible
translations from one patch to the next larger patch.

14

where R∗0 =
⋃
n∈N R0 is the set of all finite-length sequences of nonnegative real numbers. For

example, we can restrict the domains of the pooling functions given in Table 2 to satisfy this
requirement.

• Templates. Each template set Tm consists of nonnegative linear combinations of templates of the
first kind.

In particular, we will take the template set Tm to be a finite set of convex combinations of templates of
the first kind. That is, if Φ: `2 → `2 is the feature map corresponding to the kernel function K : `2×`2 →
R, then every template τ ∈ Tm is of the form

τ =
d∑
i=1

ci Φ(Nm(fi)) for some d ∈ N, fi ∈ Im(vm), and ci ≥ 0 with
d∑
i=1

ci = 1 .

For brevity, we will refer to this set of templates as convex templates. Note that templates of the first
kind are convex templates.

3.1.2 Strongly Bounded Pooling Functions

In addition to the assumption regarding the nonnegativity of the pooling function Ψ, we will also assume
that Ψ satisfies the following property, which states that Ψ maps bounded inputs to bounded outputs.

Definition 3.1 (Strongly bounded pooling function). A pooling function Ψ: R∗0 → R0 is strongly bounded
if there exists a non-decreasing concave function ζ : R0 → R0 with the property that for all n ∈ N, we can
find Cn > 0 such that

Cn ζ
(

min
1≤i≤n

αi

)
≤ Ψ(α) ≤ Cn ζ

(
max

1≤i≤n
αi

)
for all α = (α1, . . . , αn) ∈ Rn0 .

In this case, we also say that Ψ is a strongly bounded pooling function that is dominated by ζ.

Strong boundedness is a relatively mild condition and is satisfied by most pooling functions that we
consider in practice. For example, all the pooling functions given in Table 2 are strongly bounded with
ζ being the identity function, ζ(x) = x for x ∈ R0. Specifically, the average, max, and `∞-norm pooling
functions are strongly bounded with the constant Cn = 1. On the other hand, the `1-norm pooling
function is strongly bounded with the constant Cn = n.

We use the term strongly bounded because when the dominating function ζ is the identity function
(which is the case for most common pooling functions, as we saw in the preceding paragraph), a strongly
bounded pooling function is also weakly bounded. However, in general there is no relation between strong
and weak boundedness. For example, a constant nonzero pooling function is not weakly bounded, but it
is strongly bounded with ζ being a constant function.

Evidently the zero pooling function is not very interesting since, for example, in this case the neural
response is identically zero. Thus in the remainder of this section we impose an additional assumption that
we only consider a strongly bounded pooling function that is not the zero pooling function. Equivalently,
we assume that the dominating function ζ satisfies ζ(x) > 0 for x > 0.

Finally, noting that the composition of two non-decreasing concave functions is again non-decreasing
and concave, we have the following simple result, which is particularly important in Section 3.3 when we
are considering normalization procedures in the pooling function.

Lemma 3.2. If Ψ: R∗0 → R0 is a strongly bounded pooling function and σ : R0 → R0 is a non-decreasing
concave function, then Ψ ◦ σ is also a strongly bounded pooling function.

15

3.1.3 Dynamic Range of the Derived Kernel

Since the values of the derived kernel can have different scales from layer to layer, in order to compare
the properties of the derived kernel at different layers we need a standardized measure. The following
concept of dynamic range achieves this goal by measuring the spread of the derived kernel relative to its
own absolute scale.

Definition 3.3 (Dynamic range). For each m ∈ N, the dynamic range of the derived kernel Km is the
ratio between the smallest and largest values of Km,

δ(Km) =
inff,g∈Im(vm)Km(f, g)
supf,g∈Im(vm)Km(f, g)

.

Because we only consider architectures with nonnegative values, we see that 0 ≤ δ(Km) ≤ 1 for
m ∈ N.c A larger δ(Km) corresponds to a “smaller” range of values in the sense that the values of Km

are more tightly concentrated, even though their absolute values can be arbitrarily large. We will state
the range compression results in terms of the dynamic range of the derived kernel.

More precisely, we will show that under the presence of normalization procedures, the dynamic range
δ(Km) converges to 1 as m→∞. As stated earlier, our approach is to show that δ(Km) is an increasing
function of m. The following theorem then implies that we also have the convergence of the normalized
neural responses.

Theorem 3.4. Consider a nonnegative architecture with a strongly bounded pooling function and convex
templates. If the dynamic range of the derived kernel converges to its maximum value,

lim
m→∞ δ(Km) = 1 ,

then the normalized neural response converges to a constant vector,

lim
m→∞ sup

f,g∈Im(vm)

‖N̂m(f)− N̂m(g)‖ = 0 .

We note that the convergence result in Theorem 3.4 is expressed only in terms of the normalized
neural response because we do not make any assumptions on the size of the template sets. In general, the
`2 distance ‖Nm(f) −Nm(g)‖ will depend on the dimension of the space in which the neural responses
Nm(f) lie, which is |Tm−1|. Therefore, even when the componentwise differences between Nm(f) and
Nm(g) are small, we can make ‖Nm(f)−Nm(g)‖ arbitrarily large by increasing the cardinality of Tm−1.

Remark 3.5 (Range compression in architectures with extension). Consider the extension step described
in Remark 2.9, and recall from (2) that the derived kernel Kwm

at the extension step can be expressed
as a summation of the derived kernel Kvm

at the previous layer. From (2) we immediately see that the
dynamic range of Kwm

is bounded below by the dynamic range of Kvm
,

δ(Kwm) ≥ δ(Kvm) .

This means if an architecture suffers from range compression, then when we extend the architecture by
inserting extension steps, the extended architecture also suffers from range compression.

3.2 Range Compression: Normalized Kernel Functions

The first approach to perform normalization is to use a normalized kernel function. Recall from Section 2.1
that a kernel K : `2 × `2 → R is normalized if K(x, x) = 1 for all x ∈ `2. In particular, by the Cauchy–
Schwarz inequality this implies K(x, y) ≤ 1 for all x, y ∈ `2. Moreover, since at every layer m ∈ N the
derived kernel Km achieves its maximum value,

sup
f,g∈Im(vm)

Km(f, g) = Km(f, f) = 1 ,

cNote that here we assume supf,g∈Im(vm)Km(f, g) > 0, for otherwise Km(f, g) = 0 for all f, g ∈ Im(vm).

16

in this case the dynamic range of the derived kernel is equal to its minimum value,

δ(Km) = inf
f,g∈Im(vm)

Km(f, g) .

The range compression result in the case of normalized kernel is the following.

Theorem 3.6. Consider a nonnegative architecture with a normalized kernel K, a strongly bounded
pooling function Ψ, and convex templates. Assume that the feature map Φ corresponding to K is 1-
Lipschitz with respect to the normalized metric,

‖Φ(x)− Φ(y)‖ ≤ ‖x̂− ŷ‖ for all x, y ∈ `2 \ {0} . (3)

Then at every layer m ∈ N,

δ(Km+1) ≥ 2δ(Km)
1 + δ(Km)2

. (4)

In particular, if at some layer m ∈ N we have δ(Km) > 0, then

lim
n→∞ δ(Kn) = 1 .

Now we consider examples of normalized kernel functions that satisfy the hypothesis of Theorem 3.6.

Example 3.7. The normalized inner product kernel

K(x, y) =
〈x, y〉
‖x‖ ‖y‖

has the associated feature map Φ(x) = x̂, which satisfies the Lipschitz continuity condition in (3) with
equality.

Example 3.8. The Gaussian kernel with the normalized inner product

K(x, y) = e−γ‖x̂−ŷ‖
2

= e−2γ(1−〈 x̂,ŷ 〉)

is 1-Lipschitz when 0 < γ ≤ 1/2. This can be seen as follows. Since the Gaussian kernel is normalized,
condition (3) is equivalent to requiring K(x, y) ≥ 〈 x̂, ŷ 〉 for all x, y ∈ `2 \ {0}. This inequality is clearly
true when 〈 x̂, ŷ 〉 ≤ 0 since the Gaussian kernel is nonnegative. Thus, considering only the case when
a = 〈 x̂, ŷ 〉 ≥ 0, we then must have

γ ≤ inf
0≤a≤1

log(1/a)
2(1− a)

=
1
2
.

The value 1/2 is obtained by noting that the function that we are trying to minimize above is decreasing
in a, so its minimum occurs at a = 1, and indeed it is easy to show that the minimum value is 1/2 by an
application of the L’Hôspital’s rule.

3.3 Range Compression: Normalized Pooling Functions

Another approach to perform normalization is to use a pooling function that has a thresholding effect.
Namely, the pooling function treats the input values as if they lie in a bounded region by clipping the
values that are higher than some threshold. This thresholding behavior is usually achieved by choosing
a pooling function has a horizontal asymptote, for example by considering a pooling function of the form

Ψ̃ = Ψ ◦ σ ,

17

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1

1/(1 + e−x)

tanh(x)

Figure 2: Plots of the sigmoid functions σ(x) = 1
1+e−x and σ(x) = tanh(x).

where Ψ is a pooling function and σ is a sigmoid function. Some sigmoid functions that are commonly
used in practice are the logistic function σ(x) = 1

1+e−x and the hyperbolic tangent σ(x) = tanhx (see
Figure 2).

When we are working with a nonnegative architecture, the presence of the sigmoid function also leads
to range compression. Intuitively, this is because the sigmoid function is approximately constant for
sufficiently large inputs, which implies that the values of the derived kernel converge to a stable limit.
Accordingly, a sigmoid function that approaches its asymptote more slowly should be more resistant to
range compression than a sigmoid function that rises sharply. Indeed this is the case, as we shall see in
Example 3.13.

Before proceeding further with our discussion, we first need to formalize the notion of a sigmoid
function. As we are working with a nonnegative architecture, we only need to define a sigmoid function
σ on R0. However, for the sake of completeness we can also define σ on (−∞, 0) by assuming that σ is
antisymmetric with respect to 0,

σ(−x) = 2σ(0)− σ(x) for all x ∈ R0 .

For example, the sigmoid functions shown in Figure 2 satisfy this property.

Definition 3.9 (Sigmoid). A sigmoid function is a non-decreasing, concave, and differentiable function
σ : R0 → R0 with a horizontal asymptote,

lim
x→∞σ(x) <∞ .

We note that the assumption that σ is concave and has a horizontal asymptote actually implies that
σ is non-decreasing on R0. Moreover, as the case when σ is the constant zero function is of hardly any
interest to us, we further assume that a sigmoid function σ satisfies σ(x) > 0 for x > 0. Next, recall
from Lemma 3.2 that if Ψ is a strongly bounded pooling function then Ψ ◦ σ is also a strongly bounded
pooling function. This is the form of the pooling function that we use in Theorem 3.10 below.

Now, given a sigmoid function σ, the assumption that σ is concave and has a horizontal asymptote
implies that σ approaches its asymptote at a certain rate (see Lemma B.4 in Appendix B.3). In particular,
we can show that

Fσ(x) :=
2xσ′(x)
σ(x)

→ 0 as x→∞ .

Intuitively, this quantity Fσ(x) measures how fast the sigmoid function converges to its asymptote. A
sigmoid function σ that converges fast to its asymptote corresponds to a function Fσ that approaches 0
more quickly, which in turn will yield a higher rate of convergence of the derived kernel.

18

Specifically, given 0 < η < 1, the fact that Fσ(x)→ 0 implies that Fσ(x) ≤ η for all sufficiently large
x. Let εη,σ denote the first time this happens,

εη,σ = inf
{
b ∈ R0 | η ≥ Fσ(x) for all x ≥ b} . (5)

The quantity εη,σ plays the role of limiting the effective region of range compression, in the sense that
our result only applies if the values of the derived kernel are at least εη,σ. We shall see that for common
pooling functions the value of εη,σ is very small, so Theorem 3.10 is applicable in practice.

Theorem 3.10. Consider a nonnegative architecture with the inner product kernel, convex templates,
and a strongly bounded pooling function of the form

Ψ̃ = Ψ ◦ σ ,

where Ψ is a strongly bounded pooling function that is dominated by ζ and σ is a sigmoid function. Given
m ∈ N, if we have

inf
f,g∈Im(vm)

Km(f, g) ≥ εη,σ for some 0 < η < 1 , (6)

then
δ(Km+1) ≥ δ(Km)η .

Moreover, if (6) holds at layer m ∈ N and

|Tm| ≥ εη,σ

C2
|Hm| ζ

(
σ(εη,σ)

)2 , (7)

then (6) also holds at layer m+ 1 with the same value of 0 < η < 1.d In particular, if (6) holds at some
layer m ∈ N with δ(Km) > 0 and (7) holds at all layers n ≥ m, then

lim
n→∞ δ(Kn) = 1 .

We consider some examples of sigmoid functions that are commonly used in practice and illustrate
the values of the various parameters in Theorem 3.10 above.

Example 3.11 (Hyperbolic tangent). Consider σ(x) = tanh(x). Then σ′(x) = 1/ cosh(x), and

Fσ(x) =
2xσ′(x)
σ(x)

=
2x

sinh(x)
.

Figure 3(a) shows the plot of the function Fσ(x) for σ(x) = tanh(x). For η = 0.5, for example, we have
εη,σ ≈ 3.26. When the dominating function ζ is the identity function and the constant C|Hm| is 1 (for
example, when Ψ is the max or average pooling function), the condition in (7) becomes

|Tm| ≥ εη,σ
σ(εη,σ)2

≈ 3.26
tanh2(3.26)

≈ 3.28 .

Example 3.12 (Logistic function). Now consider the logistic function σ(x) = 1
1+e−x . Then

σ′(x) = σ(x)
(
1− σ(x)

)
=

e−x

(1 + e−x)2
,

and

Fσ(x) =
2xσ′(x)
σ(x)

= 2x
(
1− σ(x)

)
=

2xe−x

1 + e−x
.

dHere C|Hm| is the constant in the definition of the strong boundedness of Ψ in Definition 3.1.

19

Figure 3(b) shows the plot of the function Fσ(x) for σ(x) = 1
1+e−x . For η = 0.5 we have εη,σ ≈ 1.86.

When the dominating function ζ is the identity function and C|Hm| = 1, the condition in (7) becomes

|Tm| ≥ εη,σ
σ(εη,σ)2

≈ 1.86 (1 + e−1.86)2 ≈ 2.48 .

Interestingly, we see from Figure 3(b) that when σ is the logistic function we actually have Fσ(x) < 0.6
for all x ∈ R0. This means εη,σ = 0 for η = 0.6, and hence the convergence assertion in Theorem 3.10
holds without further assumptions on the template sets Tm.

0 2 4 6 8
0

0.5

1

1.5

2

(3.26, 0.5)

(a) The function Fσ(x) for σ(x) = tanh(x).

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

(1.86, 0.5)

(b) The function Fσ(x) for σ(x) = 1
1+e−x .

Figure 3: Plots of the function Fσ(x) = 2xσ′(x)
σ(x) for some common choices of the sigmoid function σ.

Example 3.13 (Slow sigmoid function). Finally, consider a sigmoid function that approaches its asymp-
tote slowly. For example, given k ≥ 1 and a sigmoid function σ, we can take σk(x) = σ(x/k). The function
σk is obtained by stretching the domain of σ by a factor of k, so that σk approaches its asymptote k
times slower than σ. In this case we have σ′k(x) = 1

kσ
′(x/k), and

Fσk
(x) =

2xσ′k(x)
σk(x)

=
2xσ′(x/k)
kσ(x/k)

= Fσ

(x
k

)
.

Therefore, from the definition of εη,σ in (5) we see that

εη,σk
= kεη,σ .

That is, a slower sigmoid function imposes a stronger hypothesis on Theorem 3.10, namely the lower
bound of Km in (6) becomes larger. We can also estimate the lower bound on the number of templates
in (7). Given 0 < η < 1 and m ∈ N, let Mσ ≡Mm,η,σ denote the lower bound on the number of templates
defined by (7),

Mσ =
εη,σ

C2
|Hm| ζ

(
σ(εη,σ)

)2 .

When we use σk as the sigmoid function, this lower bound becomes

Mσk
=

εη,σk

C2
|Hm| ζ

(
σ(εη,σk

)
)2 =

kεη,σ

C2
|Hm| ζ

(
σ(kεη,σ)

)2 ≤ kεη,σ

C2
|Hm| ζ

(
σ(εη,σ)

)2 = kMσ .

20

This means when we use σk as the sigmoid function, condition (7) in Theorem 3.10 can be replaced with

|Tm| ≥ kεη,σ

C2
|Hm| ζ

(
σ(εη,σ)

)2
to guarantee that (6) still holds at subsequent layers.

3.4 Empirical Results and Possible Fixes to Range Compression

We now present some empirical results related to range compression and propose several possible ways
to alleviate this issue. In this section we focus on the case of the normalized inner product kernel
(Example 3.7), but our discussion can be extended to the general setting in a straightforward manner.

We saw in Figure 1 that the rate at which range compression occurs in practice is much faster than the
lower bound given in Theorem 3.6. In particular, Figure 1 suggests that single precision floating points
cannot distinguish the derived kernel values in a 4-layer architecture. Indeed, this observation is reflected
in the poor performance of a 4-layer architecture when we are working with single precision variables in
MATLAB, as shown in Figure 4. We measure the performance using the classification accuracy on the
image classification task on the MNIST dataset. The classification rule is 1-nearest neighbor using the
derived kernel as the similarity measure.e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Patch sizes

(4,
 8,

 12
)

(4,
 8,

 16
)

(4,
 8,

 20
)

(4,
 8,

 24
)

(4,
 12

, 1
6)

(4,
 12

, 2
0)

(4,
 12

, 2
4)

(4,
 16

, 2
0)

(4,
 16

, 2
4)

(4,
 20

, 2
4)

(8,
 12

, 1
6)

(8,
 12

, 2
0)

(8,
 12

, 2
4)

(8,
 16

, 2
0)

(8,
 16

, 2
4)

(8,
 20

, 2
4)

(12
, 1

6,
20

)

(12
, 1

6,
24

)

(12
, 2

0,
24

)

(16
, 2

0,
24

)

Ac
cu

ra
cy

Normalized inner product, single precision
Normalized inner product, double precision
Linear stretching, single precision
Gaussian stretching, single precision

Chance level

Figure 4: Average accuracy on the MNIST digit classification task using a 4-layer architecture. The
performance of the normalized inner product kernel with single precision is significantly lower than that
with double precision due to range compression. The proposed stretching techniques can restore the
accuracy of the single precision to be comparable with the accuracy of the double precision.

eDetails of implementation: we perform each experiment in a 4-layer architecture using the normalized inner product
kernel and max pooling function. We fix the largest patch size to 28 × 28 pixels and vary the smaller patch sizes. The
initial feature map is the vector representation of the pixel values. At each layer we use 500 randomly sampled templates
of the first kind and all possible translations. Both the training and testing sets consist of 30 images per digit class. The
classification rule is 1-nearest neighbor using the derived kernel as the similarity measure. Each reported accuracy is an
average over 10 independent trials.

21

From Figure 4 we see that the accuracy of the normalized inner product kernel with single precision
is significantly lower than that with double precision. In fact, the average accuracy of the normalized
inner product kernel with single precision is very close to the chance level 1/10 = 0.1. This confirms
our observation that range compression on a 4-layer architecture is severe enough that the derived kernel
values are indistinguishable using single-precision floating points. Moreover, this result shows that range
compression can render a multilayer architecture unusable due to the saturation effect.

There are several possible ways to counteract the effect of range compression, based on the idea of
introducing a tuning parameter to stretch the dynamic range of the derived kernel. Namely, given a
derived kernel Km that suffers from range compression, we build a stretched derived kernel K̃m that
recovers the dynamic range of Km. The stretched derived kernel K̃m is then used to construct the neural
response Nm+1 at the next layer, following Definition 2.6. Since we showed that range compression occurs
layerwise, the derived kernel Km+1 will again be subject to range compression, and we can repeat the
stretching technique at each subsequent layer.

The stretching step from Km to K̃m can be interpreted as adapting each layer of the architecture to
work on the effective range of the kernel function. This is in part inspired by the evidence that neurons
in the brain only represent information with a finite amount of bits [49]. Therefore, if range compression
or a similar effect occurs in the brain, then the each neuron will have to learn to operate in the effective
range of the data that it is working with.

We now describe two possible stretching techniques and see how they affect the performance of the
architecture.

• Linear stretching. Given the derived kernel Km, choose the stretched derived kernel K̃m to be a
linear transformation that stretches the range of Km to be [0, 1]. More specifically, let

a = inf
f,g∈Im(vm)

Km(f, g) ,

so that a ≤ Km(f, g) ≤ 1 for all f, g ∈ Im(vm). Then by choosing

K̃m(f, g) =
Km(f, g)− a

1− a for all f, g ∈ Im(vm) ,

we ensure that
inf

f,g∈Im(vm)
K̃m(f, g) = 0 and sup

f,g∈Im(vm)

K̃m(f, g) = 1 .

• Gaussian stretching. Another stretching strategy is to consider a Gaussian tuning operation at
each layer. More precisely, we take the stretched derived kernel to be

K̃m(f, g) = e−γm‖N̂m(f)−N̂m(g)‖2 = e−2γm(1−Km(f,g)) for all f, g ∈ Im(vm) ,

where γm ≥ 0 is a scale parameter that can vary from layer to layer. Intuitively, even if Km(f, g) is
very close to 1, we can choose γm big enough to spread the range of K̃m(f, g). Contrast this with
the case of Gaussian tuning with a fixed scale in Example 3.8, in which case we still have range
compression.

For example, given the stretched derived kernel K̃m−1 at layer m− 1, we can choose γm such that

inf
f,g∈Im(vm)

K̃m(f, g) = inf
f,g∈Im(vm−1)

K̃m−1(f, g) ,

so that the range of the stretched derived kernel K̃m(f, g) at each layer remains the same. Letting

a = inf
f,g∈Im(vm)

Km(f, g) and b = inf
f,g∈Im(vm−1)

K̃m−1(f, g) ,

22

then we want to choose γm such that

inf
f,g∈Im(vm)

K̃m(f, g) = inf
f,g∈Im(vm)

e−2γm(1−Km(f,g)) = e−2γm(1−a) = b ,

which gives us

γm = − log b
2(1− a)

.

We check empirically that these stretching techniques restore the dynamic range of the derived kernel
by computing the sample distribution of Km(f, g) in an m-layer architecture, for 1 ≤ m ≤ 4, following
the same procedure as in Figure 1. Figure 5 shows the resulting histograms in the case of the normalized
inner product kernel (no stretching), linear stretching, and Gaussian stretching. Evidently both the
linear and Gaussian stretching techniques succeed in restoring the dynamic range of the derived kernel.
However, we observe that since linear stretching assigns equal weight on each interval of values in the
transformation, the resulting distribution tends to be skewed to the right with a long tail. On the other
hand, Gaussian stretching manages to recover the symmetry of the distribution better.

0 0.5 1
0

2000

4000

0 0.5 1
0
2
4
6
8

x 104

0 0.5 1
0

5

10

x 104

0 0.5 1
0

5

10

x 104

0 0.5 1
0

2000

4000

0 0.5 1
0

2000

4000

0 0.5 1
0

2000

4000

0 0.5 1
0

2000
4000
6000
8000

0 0.5 1
0

2000

4000

0 0.5 1
0

2000

4000

0 0.5 1
0

1000

2000

0 0.5 1
0

1000

2000

Layer 1 Layer 2 Layer 3 Layer 4

Normalized
inner product

Linear
stretching

Gaussian
stretching

Figure 5: Sample distributions ofKm(f, g) in anm-layer architecture, for 1 ≤ m ≤ 4, using the normalized
inner product kernel, linear stretching, and Gaussian stretching. Both stretching techniques restore the
dynamic range of the derived kernel, but Gaussian stretching recovers a more symmetric distribution.

Furthermore, our experiments also confirm that both linear and Gaussian stretching techniques can
restore the performance of the 4-layer architecture in the single precision environment. Figure 4 shows
that the classification accuracy of the linear stretching with single precision is virtually identical to the
accuracy of the normalized inner product kernel with double precision. Moreover, the accuracy of the
Gaussian stretching with single precision is slightly higher compared to that of the linear stretching,
which might be attributed to the earlier observation that Gaussian stretching recovers a more symmetric
distribution.

These results, in particular the performance of the normalized inner product kernel with double
precision, suggest that range compression by itself does not lead to poor performance as long as we are
working in an environment with sufficiently fine precision. However, range compression is prevalent in
many algorithms that perform normalization, and consequently, range compression prohibits us from
taking advantage of the faster processing speed of GPUs, which commonly use single precision floating
point computations.

23

3.5 Discussion

We have seen that range compression is a ubiquitous property that presents a serious problem for ex-
periments and empirical studies of hierarchical architectures. However, our analysis currently relies on
the assumption that we are working with a nonnegative architecture. It remains to be seen if range
compression also occurs when we allow the architecture to use negative values.

Glorot and Bengio [18] reported that they observed saturated hidden units in the feedforward neural
networks (that can have positive and negative values) when they used the logistic function, hyperbolic
tangent, and softsign function σ(x) = x/(1 + |x|) [6] as sigmoid functions. Moreover, Glorot and Bengio
also observed that the saturation effect in the case of the softsign function is less severe and the perfor-
mance of the model is better than the case of the logistic and hyperbolic tangent functions. Since the
softsign function has a polynomial convergence rate to its asymptote, as opposed to exponential rate in
the case of the logistic and hyperbolic tangent functions, this latter observation is in accordance to our
remark in Section 3.3 that a slower sigmoid function is more robust to range compression.

However, in order to fully explain the saturation effect that Glorot and Bengio reported, we need
to extend our theory of range compression to the general case when the architecture can take positive
and negative values. We suspect that the range compression and convergence results in this case will be
probabilistic. The first step that we can take is to study the case when the negative values are introduced
by the normalization procedure.

For example, a normalization method that is suggested in practice [45] is to take the derived kernel
to be the normalized cross correlation of the neural responses. Specifically, suppose that for some m ≥ 2
the template set Tm−1 is finite. Given the neural response Nm at layer m, we can consider the centered
neural response N c

m : Im(vm)→ `2(Tm−1) given by

N c
m(f)(τ) = Nm(f)(τ)− 1

|Tm−1|
∑

τ ′∈Tm−1

Nm(f)(τ ′) for all f ∈ Im(vm) and τ ∈ Tm−1 .

The derived kernel Km is then given by the normalized inner product of the centered neural responses,

Km(f, g) =
〈N c

m(f), N c
m(g)〉

‖N c
m(f)‖ ‖N c

m(g)‖ for all f, g ∈ Im(vm) .

Note that some of the components of the centered neural responses will be negative, so the derived kernel
values can in general be negative.

On the other hand, Jarrett et al. [26] recently emphasized the importance of positivity in the architec-
ture to improve performance, typically by rectifying the values before the pooling step. In our framework,
this corresponds to using a pooling function that is derived from a norm, for example the `1-norm or
`∞-norm pooling function. The brief presence of negative values at each layer might contribute to coun-
teracting range compression, achieving a similar effect to the stretching techniques that we described in
Section 3.4.

4 Linear Architectures

An oft-emphasized point about hierarchical algorithms is the importance of nonlinearities in the architec-
ture. Several authors argued that nonlinearities are necessary to represent complex intelligent behaviors
[3, 18], and indeed nonlinearities have generally been considered as a prerequisite for hierarchical ar-
chitectures [5]. Furthermore, the max pooling function has been consistently shown to outperform the
average pooling function in classification tasks, especially when the remainder of the architecture is linear
[7, 26, 62]. Boureau et al. [7] proposed an explanation that the max pooling function has a better per-
formance because it is more robust to clutter than the average pooling function. Another argument that
might explain this contrast is to recall that one of the motivation for building a hierarchical architecture
is to achieve a level of complexity that cannot be captured by shallow architectures, and the presence of

24

nonlinearities is essential to prevent the architecture from collapsing into a one-stage linear computation.
In this section we investigate this issue and study the properties and limitations of linear architectures
using the framework of the derived kernel.

We first formally define the notion of a linear architecture. We say that a pooling function Ψ: R∗ → R
is linear if each restriction of Ψ on inputs of a certain length is linear. That is, Ψ is linear if for each
n ∈ N we have

Ψ(α+ β) = Ψ(α) + Ψ(β) and Ψ(cα) = cΨ(α) for every α, β ∈ Rn, c ∈ R .

Equivalently, Ψ is linear if for each n ∈ N we can find ω ∈ Rn such that

Ψ(α) = 〈α, ω〉 for all α ∈ Rn .

For example, the average pooling function is linear. A linear architecture is a hierarchical architecture
with the normalized inner product kernel and a linear pooling function.f For 1 ≤ m ≤ n, let Nm denote
the closed linear span of the neural responses at layer m,

Nm = Span
({Nm(f) | f ∈ Im(vm)}) ⊆ `2 ,

and let dim(Nm) denote the dimension of Nm. Finally, let N̂m(f) denote the normalized neural response
of a function f ∈ Im(vm),

N̂m(f) =
Nm(f)
‖Nm(f)‖ .

4.1 Rank Constraint

We first investigate how the choice of the parameters at the first layer limits the complexity of the
architecture. We find that in a linear architecture, the dimensionality of the neural response at each layer
is restricted by that of the first layer. We refer to this phenomenon as the rank constraint, stemming
from the observation that when the template set Tm at each layer is finite and we conjoin the templates
in Tm into a matrix, then the rank of the matrix is constrained by the rank of the templates matrix at
the first layer.

Note that, however, this result on rank constraint holds without any assumption on the set of tem-
plates. In particular, this result means that when we use a linear architecture, using a large number of
templates at each layer will result in an inefficient and redundant computation since the architecture is
incapable of generating more complexity than that prescribed by the first layer.

Theorem 4.1. Consider a linear architecture with n ∈ N layers. For each 1 ≤ m ≤ n− 1, we have

dim(Nm+1) ≤ dim(Nm) .

For example, in the case of images in computers, suppose at the first layer we are working with image
patches of size k× k pixels. Suppose further that the initial feature map N1 represents every such image
patch as a vector of pixel intensities in Rk2

. This means the space of neural responses N1 at the first
layer has dimension at most k2. In the case of a linear architecture, Theorem 4.1 then tells us that all
subsequent spaces of neural responses Nm are at most k2-dimensional, for 2 ≤ m ≤ n, regardless of the
number of templates that we are using.

4.2 Basis Independence

We now consider the case when we use an orthonormal basis of Nm as templates of the second kind Tm
at each layer 1 ≤ m ≤ n− 1. This case is motivated by the use of several basis approximation techniques

fWe can also use the inner product kernel, and all the results in this section still hold.

25

for templates learning in practice. For example, given a finite set of templates of the first kind at a
layer, we can employ reduction schemes such as PCA or ICA to infer an approximate basis of the space
of the neural responses Nm. It is then reasonable to study the limiting case when we have a complete
information about Nm, in which case we are able to use an orthonormal basis of Nm as templates of the
second kind.

Perhaps not surprisingly, the linearity of the pooling function allows the orthonormal basis of the
neural responses to disappear from the final expression of the derived kernel. Just as the normalized
inner product in a vector space is independent of the basis of the space, the derived kernel Km+1 is
independent of the choice of the orthonormal basis of Nm that we use as templates of the second kind
Tm.

Theorem 4.2. Consider a linear architecture with n ∈ N layers. Suppose that at each layer 1 ≤ m ≤ n−1
the template set Tm is taken to be an orthonormal basis of Nm. Then derived kernel Km+1 is independent
of the choice of the basis of Nm.

We note that the proof of Theorem 4.2 above (provided in Appendix C.2) also shows that when we
use the inner product kernel instead of the normalized inner product kernel, the derived kernel at each
layer can be written explicitly as a linear combination of the derived kernel at the previous layer, that is,

Km+1(f, g) =
|Hm|∑
j=1

|Hm|∑
k=1

ωj ωk Km(f ◦ hj , g ◦ hk) for all f, g ∈ Im(vm+1) .

Proceeding recursively to apply this relation at every layer, in the end we find that the derived kernel
Km+1 is a linear combination of the derived kernel K1 at the first layer, for each 1 ≤ m ≤ n − 1. For
example, in the case when Ψ is the average pooling function, we can write

Km+1(f, g) =
1

|H̃m|2
∑

h,h′∈H̃m

K1(f ◦ h, g ◦ h′) for all f, g ∈ Im(vm+1) ,

where H̃m is the set of all composed transformations to layer m+ 1,

H̃m = {hm ◦ hm−1 ◦ · · · ◦ h1 | hi ∈ Hi for 1 ≤ i ≤ m} ,
and |H̃m| is the cardinality of H̃m,

|H̃m| =
m∏
i=1

|Hi| .

Hence in this case the linear architecture is equivalent to a single-layer network.

5 Analysis in a One-Dimensional Case

One of the most intriguing questions about hierarchical architectures is whether and to what extent the
hierarchy gives rise to discrimination and invariance properties. Yet, even though the tradeoff between
discrimination and invariance is at the heart of many hierarchical algorithms in practice, so far there is
little theoretical understanding about the precise effect of hierarchical computations to the discrimination
and invariance properties of the output. A first step in quantifying this effect was taken in [56], in
which it was shown that in the case of one-dimensional strings, an exhaustive derived kernel architecture
discriminates input strings up to reversal and checkerboard patterns.

In this section we generalize this analysis on strings and study the discrimination and invariance
properties of the derived kernel in a more general architecture. We will demonstrate several ways to
build an architecture that induces reversal invariance on Kn. We will also characterize the equivalence
classes of the derived kernel in the case of a discriminative architecture. We hope that our analysis in this
section can provide an insight into the emergence of discrimination and invariance in general hierarchical
architectures, in particular in the case of two-dimensional images.

26

5.1 Setting and Preliminaries

We first describe the framework that we are working with in this section. Given a nonempty finite alphabet
S, a k-string is a function f : {1, . . . , k} → S, and we write f = a1 . . . ak to indicate f(i) = ai ∈ S for
1 ≤ i ≤ k. For example, in the case of binary strings we have S = {0, 1}, and in the case of DNA
sequences we have S = {A,C,G, T}.

We are working with an n-layer architecture, n ∈ N, with the max pooling function and normalized
inner product kernel. The patches are of the form vm = {1, . . . , |vm|} for some |vm| ∈ N with |vm| <
|vm+1|. We assume that the function spaces consist of all possible strings of the appropriate size,

Im(vm) = {f | f : vm → S} = S|vm| .

Corresponding to the use of the normalized inner product kernel, the templates of the first kind at each
layer are of the form N̂m(t) for some t ∈ Im(vm), where N̂m(t) denotes the normalized neural response
of t,

N̂m(t) =
Nm(t)
‖Nm(t)‖ .

But in general, in this section we will also use templates of the second kind.
The discussion on the transformation sets Hm requires some notations. For 1 ≤ m ≤ n − 1, let Lm

denote the set of all possible translations h : vm → vm+1. That is,

Lm = {h1, . . . , h|vm+1|−|vm|+1} ,
where for 1 ≤ i ≤ |vm+1| − |vm|+ 1, the translation hi : vm → vm+1 is given by

hi(j) = j + i− 1 for 1 ≤ j ≤ |vm| .
Thus, each translation hi ∈ Lm shifts the domain vm = {1, . . . , |vm|} to {i, i+1, . . . , i+ |vm|−1} ⊆ vm+1.
The translations in Lm will be the primary example of transformations that we are going to use in this
section, although at times we will also consider a more general set of transformations. Next, consider the
following concept of the counterpart of a translation.

Definition 5.1 (Counterpart). Let 1 ≤ m ≤ n− 1. Given a translation hi ∈ Lm, the counterpart of hi
is

χ(hi) = h|vm+1|−|vm|+2−i .

Similarly, given a set of translations L ⊆ Lm, the counterpart of L is

χ(L) = {χ(h) | h ∈ L} .
Note that χ(h) ∈ Lm if h ∈ Lm and χ(L) ⊆ Lm if L ⊆ Lm. Also note that χ is an involution, that is,

χ(χ(h)) = h for h ∈ Lm and χ(χ(L)) = L for L ⊆ Lm.
Finally, the initial feature map is denoted by N1 : Im(v1)→ `2 \ {0}. Since every such N1 induces an

initial kernel K1 : Im(v1)× Im(v1)→ [−1, 1] given by

K1(f, g) =
〈N1(f), N1(g)〉
‖N1(f)‖ ‖N1(g)‖ for f, g ∈ Im(v1) ,

in the following we will consider the properties of K1 instead of N1. The primary example of K1 that we
are going to use is

K1(f, g) = 1− dH(f, g)
|v1| for f, g ∈ Im(v1) , (8)

where dH(f, g) is the Hamming distance between f and g that counts the number of times f and g differ.
Equivalently, we can write K1 as

K1(f, g) =
#
{

1 ≤ i ≤ |v1| | f(i) = g(i)
}

|v1| .

27

This choice of K1 corresponds to the initial feature map N1 : Im(v1)→ R|v1|×|S| given by

N1(f)(i, a) =

{
1 if f(i) = a ,

0 else

for all f ∈ Im(v1), 1 ≤ i ≤ |v1|, and a ∈ S.

Example 5.2 (Exhaustive architecture). The analysis of Smale et al. in [56] considers an exhaustive
architecture, which is an architecture where:

1. the patch sizes are |vm| = m, for 1 ≤ m ≤ n,

2. the template sets Tm consist of all possible templates of the first kind,

3. the transformation sets Hm = Lm consist of all possible translations, and

4. the initial kernel K1 is given by (8).

In this case we have the following explicit characterization of the equivalence classes of the derived kernel.

Theorem 5.3 (Theorem 4.1 in [56]). In an exhaustive architecture, Kn(f, g) = 1 if and only if either
f = g, f is the reversal of g, or f and g have the checkerboard pattern: f = ababab . . . and g = bababa . . .
for some a, b ∈ S.

In the next two sections we investigate the generalization of this result to a more general setting.
In particular, we will see that the reversal and checkerboard patterns in the equivalence classes of Kn

in Theorem 5.3 arise from essentially different origins: the reversal invariance of Kn is induced by the
reversal invariance of K1, while the checkerboard pattern emerges because of the hierarchical structure
of the architecture.

In our analysis, we shall use the following preliminary result for an architecture with an exhaustive
set of templates of the first kind. This result, which is a refinement of Proposition 4.1 in [56], states that
the derived kernel and the neural response measure the same equivalences.

Proposition 5.4. Consider an architecture with n ≥ 2 layers with an exhaustive set of templates of the
first kind at each layer,

Tm = {N̂m(t) | t ∈ Im(vm)} for all 1 ≤ m ≤ n− 1 .

Given 2 ≤ m ≤ n and f, g ∈ Im(vm), we have Km(f, g) = 1 if and only if Nm(f) = Nm(g).

We remark that, as noted in Remark 2.5, when we use exhaustive templates of the first kind we treat
the template set as a multiset. That is, we keep all the encoded strings N̂m(t) in Tm even when some of
them are duplicated, so that Tm contains |S||vm| templates.

5.2 Reversal Invariance of the Derived Kernel

In this section we study the reversal invariance of the derived kernel Kn. We are particularly interested in
how the parameters of the architecture influence the reversal invariance of Kn. Before launching ourselves
into the discussion, we first formalize the notions of reversal and reversal invariance.

For k ∈ N, let rk : {1, . . . , k} → {1, . . . , k} denote the reversal operation,

rk(i) = k + 1− i for 1 ≤ i ≤ k .

Given a string f = a1 . . . ak ∈ Sk, the reversal of f is f ◦ r ≡ f ◦ rk = ak . . . a1 ∈ Sk. In the development
that follows, we will often write r to denote rk if the domain size k is clear from context. We will explicitly
write rk only when it is necessary to distinguish the domain {1, . . . , k}. Next, a kernel is reversal invariant
if it cannot distinguish a string from its reversal.

28

Definition 5.5 (Reversal invariance). For 1 ≤ m ≤ n, we say that the derived kernel Km is reversal
invariant if

Km(f, f ◦ r) = 1 for all f ∈ Im(vm) .

We now look at several ways to build a hierarchical architecture where the derived kernel Kn is reversal
invariant.

5.2.1 Reversal Invariance from the Initial Kernel

Our first approach is to start with an initial kernel K1 that is reversal invariant and try to use this to
induce reversal invariance on Kn. Indeed, as Smale et al. showed in [56], we can propagate invariance up
in the hierarchy provided that the set of transformations Hm is rich enough. In our case, the condition
on Hm turns out to be that each Hm consists of some translations and their counterparts. This condition
arises because given a translation h ∈ Hm and a string f ∈ Im(vm+1), the substring of f obtained from
composing with χ(h) is the reversal of the substring of f ◦ r obtained from composing with h. This
relation then allows us to propagate reversal invariance from one layer to the next.

Theorem 5.6. Consider an architecture with n ∈ N layers. Suppose that at each layer 1 ≤ m ≤ n − 1
the transformation set Hm is a set of translations that is closed under taking counterparts, that is,

Hm ⊆ Lm and χ(Hm) = Hm .

If K1 is reversal invariant, then Kn is reversal invariant.

In particular, if we take Hm to be the set of all transformations Lm then we automatically satisfy the
hypothesis of Theorem 5.6. Therefore we can start with |v1| = 1 and use the initial kernel K1 given by (8),
which is reversal invariant when |v1| = 1, to obtain a reversal invariant Kn. Note that Theorem 5.6 does
not make any assumption on the template sets Tm, and in particular we can also use templates of the
second kind.

5.2.2 Reversal Invariance from the Transformations

Another approach that we can pursue to build a reversal invariant Kn is to encode the information
regarding the reversal operation in the transformation sets Hm. Specifically, instead of considering only
translations in Hm, we can also consider reversals of translations. In effect, when comparing two strings,
the architecture will compare not only their substrings, but also the reversals of their substrings. It is then
easy to show that the resulting derived kernel will always be reversal invariant, without any additional
assumptions on the initial kernel or the template sets. Moreover, it turns out that it suffices to make the
assumption on the transformation set only at layer n− 1, as the following result shows.

Theorem 5.7. Consider an architecture with n ≥ 2 layers. Suppose that the transformation set Hn−1

consists of some translations and their reversals, that is, Hn−1 is of the form

Hn−1 = L ∪ (χ(L) ◦ r) for some L ⊆ Ln−1 ,

where χ(L) ◦ r is the set of the reversals of the translations in χ(L),

χ(L) ◦ r ≡ {h ◦ r | h ∈ χ(L)} .

Then Kn is reversal invariant.

29

5.2.3 Reversal Invariance from the Templates

The third approach to obtain reversal invariance on Kn is to encode the notion of reversals in the set
of templates Tm. One reasonable attempt at constructing such templates is to require each Tm to be
symmetric with respect to the reversal operation. More precisely, given a template of the second kind

τ =
d∑
i=1

ciN̂m(ti) ,

where d ∈ N, c1, . . . , cd ∈ R, and t1, . . . , td ∈ Im(vm), let τ ◦ r denote the template that is the reversal of
τ ,

τ ◦ r =
d∑
i=1

ciN̂m(ti ◦ r) .

Then we can try to assume that we only use templates that are themselves invariant to reversals, that is,

τ ◦ r = τ for all τ ∈ Tm .

By doing so, we hope that the architecture can learn from these templates and induce reversal invariance
on Kn. Indeed this is the case, as we shall show in Theorem 5.9. However, before discussing this result
in more detail, we need to introduce the following concept of reversal symmetry.

Definition 5.8 (Reversal symmetry). For 1 ≤ m ≤ n, we say that the derived kernel Km is reversal
symmetric if

Km(f, g) = Km(f ◦ r, g ◦ r) for all f, g ∈ Im(vm) .

Contrast this with the definition of reversal invariance, which can be equivalently formulated as the
following condition,

Km(f, g) = Km(f ◦ r, g) for all f, g ∈ Im(vm) .

That is, Km is reversal symmetric if we can reverse both input strings simultaneously without changing
the output. On the other hand, Km is reversal invariant if we can reverse each input string independently
and still preserve the kernel value. Clearly reversal invariance implies reversal symmetry, but in general
the converse is not true. For example, the initial kernel K1 given by (8) is reversal symmetric but not
reversal invariant, unless |v1| = 1.

Theorem 5.9. Consider an architecture with n ≥ 2 layers. Suppose that at each layer 1 ≤ m ≤ n − 1
the transformation set Hm is a set of translation that is closed under taking counterparts,

Hm ⊆ Lm and χ(Hm) = Hm ,

and the template set Tm consists of symmetric templates,

τ ◦ r = τ for all τ ∈ Tm .

If K1 is reversal symmetric, then Kn is reversal invariant.

We note that Theorem 5.9 is presented in full generality with templates of the second kind. If we
prefer to stay within the domain of templates of the first kind, we can restrict ourselves to use the
normalized neural responses of palindrome strings, which are strings f ∈ Im(vm) with the property that
f ◦ r = f . Considering the initial kernel K1 given by (8), which is reversal symmetric, in this case we
have the following corollary.

Corollary 5.10. Consider an architecture with n ≥ 2 layers, where Hm = Lm and the template sets are

Tm ⊆
{
N̂m(f) | f ∈ Im(vm), f ◦ r = f

}
.

If the initial kernel K1 is given by (8), then Kn is reversal invariant.

30

5.2.4 Impossibility of Learning Reversal Invariance with Exhaustive Templates

In Sections 5.2.1, 5.2.2, and 5.2.3, we have seen how to learn reversal invariance on Kn by appropriately
choosing the parameters of the architecture. Given these encouraging results, we can start asking the
converse question: if we know that Kn is reversal invariant, what can we say about the architecture?
Equivalently, we can try to investigate to what extent the hypotheses of the results are necessary. For
example, in the hypothesis of Theorem 5.9, instead of requiring the templates to be symmetric, can we
still derive the same conclusion if we require the template sets to be symmetric? That is, can we learn
reversal invariance only by assuming that τ ◦ r ∈ Tm whenever τ ∈ Tm?

The answer, as it turns out, is no; essentially, this is because the symmetry of the template sets does
not sufficiently capture the notion of reversal invariance. In fact, we will show that when we take Tm
to be the set of all possible templates of the first kind, which satisfies the symmetry property that we
just proposed, the derived kernel Kn cannot be reversal invariant unless K1 is also reversal invariant.
One way to interpret this result is to say that the templates contribute to the discrimination power of
the architecture. By using a more exhaustive set of templates, the architecture will be discriminative
to more patterns. In particular, if the template set contains some patterns and their reversals, then the
architecture will be discriminative to the reversal operation.

In the following result, the choice of Tm to be the exhaustive set of templates of the first kind allows
us to propagate reversal non-invariance up in the hierarchy.

Theorem 5.11. Consider an architecture with n ∈ N layers. Suppose that at each layer 1 ≤ m ≤ n− 1
the transformation set Hm is taken to be the exhaustive set of translations Lm, and the template set Tm
is taken to be the exhaustive set of templates of the first kind,

Tm = {N̂m(t) | t ∈ Im(vm)} .

Suppose further that either one of the following conditions is true:

(1) |vm+1| − |vm| = 1 for 1 ≤ m ≤ n− 1, or

(2) K1 is reversal symmetric.

If Kn is reversal invariant, then K1 is reversal invariant.

As a concrete example of the result above, note that the kernel K1 given by (8) is reversal invariant
if and only if |v1| = 1. Then Theorem 5.6 together with Theorem 5.11 give us the following corollary.

Corollary 5.12. Consider an architecture with n ∈ N layers, where Hm = Lm is the set of all possible
translations and Tm is the set of all possible templates of the first kind. With the choice of the initial
kernel K1 given by (8), the derived kernel Kn is reversal invariant if and only if |v1| = 1.

5.3 Equivalence Classes of the Derived Kernel

We now turn our attention to the discrimination power of the derived kernel. That is, given f, g ∈ Im(vn)
such that Kn(f, g) = 1, what can we say about f and g? We are particularly interested in the analysis
of the equivalence classes of the derived kernel that arise because of the intrinsic recursive structure of
the hierarchical architecture. For this purpose, in this section we consider an architecture where:

1. the transformation set Hm is the set of all possible translations Lm, for 1 ≤ m ≤ n− 1;

2. the template set Tm is the set of all possible templates of the first kind, for 1 ≤ m ≤ n− 1; and

3. the initial kernel K1 is fully discriminative, that is,

K1(f, g) = 1 if and only if f = g .

31

For example, the kernel K1 given by (8) is fully discriminative. Having made these choices, the only
remaining free parameter is the patch sizes |vm|.

We note that when |v1| = 1, a fully discriminative K1 is still reversal invariant since in this case
f ◦ r = f for all f ∈ Im(v1). Theorem 5.6 then tells us that Kn is also reversal invariant. So we now
consider the case when |v1| > 1, so that K1 is no longer reversal invariant. It turns out, as we shall see
in Theorem 5.13, that in this case Kn can discriminate input strings up to periodic patterns, provided
that |v1| is sufficiently large.

To state the theorem more precisely, we first need the following definitions. Given 2 ≤ k < p, we say
that a p-string f = a1 . . . ap is k-periodic if f is periodic with period k, that is, ai = ai+k for 1 ≤ i ≤ p−k.
Note, however, that saying f is k-periodic does not imply that k is the smallest period of f . In particular,
if f is k-periodic, then f is k`-periodic for any ` ∈ N for which `k < p. Next, given two p-strings f and
g, we write f

(k)∼ g if f and g are k-periodic and g is some shifted version of f , that is, there exists
1 ≤ j ≤ k − 1 such that g(i) = f(i + j) for all 1 ≤ i ≤ k. Note that f (2)∼ g means f and g have the
checkerboard pattern.

Theorem 5.13. Consider an architecture with n ≥ 2 layers. Let ` ∈ N be the maximum jump in the
patch sizes of the subsequent layers,

` = max
2≤m≤n

(|vm| − |vm−1|
)
.

If |v1| ≥ 3`+ 2, then Kn(f, g) = 1 if and only if f = g or f (k)∼ g for some 2 ≤ k ≤ `+ 1.

We note that the bound on |v1| in the theorem above is not tight. Wibisono [61] showed that the
conclusion of Theorem 5.13 holds for |v1| ≥ 2 when ` = 1, and for |v1| ≥ 3 when ` = 2. However, the proof
in [61] is considerably more complicated and involves an exhaustive case analysis. By only considering
the case when |v1| is large enough, we are able to provide a more elegant proof for the general case.

Intuitively, the condition on the lower bound of |v1| is necessary for the conclusion to hold because
when the initial patch sizes are too small, the periodic patterns interfere with each other to yield new
equivalence classes which are hard to characterize. When |v1| is sufficiently large, however, the periodic
patterns separate into distinct equivalence classes that we can identify explicitly. The shifted periodic
patterns in the equivalence classes of Kn can be interpreted as the translation invariance that one hopes to
obtain from the pooling operations in the hierarchy, and the periodicity of the patterns emerges because
we are working with finite function patches.

5.4 Mirror Symmetry in Two-Dimensional Images

In the proof of Theorem 5.11 (case (2)), we have also proved the following result regarding the propagation
of reversal symmetry.

Proposition 5.14. Consider an architecture with n ≥ 2 layers. Suppose at layer 1 ≤ m ≤ n − 1 we
know that Km is reversal symmetric. Then given τ ∈ Tm with τ ◦ r ∈ Tm, we have

Nm+1(f)(τ) = Nm+1(f ◦ r|vm+1|)(τ ◦ r|vm|) for all f ∈ Im(vm+1) .

In particular, if the template set Tm is closed under the reversal operation, that is, if τ ∈ Tm implies
τ ◦ r ∈ Tm, then Km+1 is also reversal symmetric.

In this section we extend the notion of reversal symmetry to the case of two-dimensional arrays,
and discuss the analog of the result above in the case of mirror symmetry. The framework that we are
considering is the two-dimensional version of the string setting previously described. That is, we now
work with square lattices as patches, and consider functions from these patches to a finite alphabet. For
example, we can describe an image as a function from the pixel locations to a finite set of pixel values,
say integers between 0 and 255, representing the grayscale values.

32

Formally, let S be a nonempty finite alphabet. We are working with an n-layer architecture, n ∈ N,
with the max pooling function and normalized inner product kernel. The patches are two-dimensional
square arrays vm = {1, . . . , |vm|} × {1, . . . , |vm|}, where |vm| < |vm+1|. We assume that the function
spaces consist of all possible images of the appropriate size,

Im(vm) = {f | f : vm → S} .

We also assume that the transformation set Hm consists of all possible translations h : vm → vm+1, that
is,

Hm = {hi,j | 1 ≤ i, j ≤ |vm+1| − |vm|+ 1}
where for each 1 ≤ i, j ≤ |vm+1| − |vm|+ 1, the translation hi,j : vm → vm+1 is given by

hi,j(k, `) = (k + i− 1, `+ j − 1) for 1 ≤ k, ` ≤ |vm| .

We can see that f ◦ h is a patch of the image f , for f ∈ Im(vm+1) and h ∈ Hm.
Thinking of the first and second coordinates of each patch as the x and y-axis, respectively, we now

define the analog of the reversal operation on images, which is the reflection about the y-axis. Given
k ∈ N, let rk : {1, . . . , k} × {1, . . . , k} → {1, . . . , k} × {1, . . . , k} denote the reflection operation,

rk(i, j) = (k + 1− i, j) for 1 ≤ i, j ≤ k .

Given an image f : {1, . . . , k} × {1, . . . , k} → S, the reflection of f is f ◦ r ≡ f ◦ rk. Intuitively, the
reflection of an image is what we see when we put the image in front of a mirror. We then introduce the
following concept of reflection symmetry, which we also call mirror symmetry.

Definition 5.15 (Reflection symmetry). For 1 ≤ m ≤ n, we say that the derived kernel Km is reflection
symmetric if

Km(f, g) = Km(f ◦ r, g ◦ r) for all f, g ∈ Im(vm) .

We can show that the result of Proposition 5.14 extends naturally to the case of reflection symmetry.

Proposition 5.16. Consider an architecture with n ≥ 2 layers. Suppose at layer 1 ≤ m ≤ n − 1 we
know that Km is reflection symmetric. Then given τ ∈ Tm with τ ◦ r ∈ Tm, we have

Nm+1(f)(τ) = Nm+1(f ◦ r|vm+1|)(τ ◦ r|vm|) for all f ∈ Im(vm+1) .

In particular, if the template set Tm is closed under the reflection operation, that is, if τ ∈ Tm implies
τ ◦ r ∈ Tm, then Km+1 is also reflection symmetric.

A corollary to the result above that is of special interest is the following, which says that a reflection-
symmetric template induces the same response in an image and its reflection.

Corollary 5.17. In the setting of Proposition 5.16, if τ ∈ Tm has the property that τ = τ ◦ r, then

Nm+1(f)(τ) = Nm+1(f ◦ r|vm+1|)(τ) for all f ∈ Im(vm+1) .

5.5 Discussion

The analysis on strings provides a starting point toward understanding the invariance of a hierarchical
architecture. Through the results in this section, we have seen a glimpse of how the discrimination and
invariance properties of the architecture interact with the different choices of the parameters. These
results suggest two main avenues that we can pursue to continue our work.

33

Further analysis on one-dimensional strings. The case of one-dimensional strings is a relatively
fruitful frontier because the analysis is simple and tractable. In spite of our initial attempt at exploring
this landscape, there are still many questions left to be resolved. For example:

• In Section 5.2 we have seen three main methods to induce reversal invariance on Kn: via the initial
kernel K1, the transformation sets Hm, and the template sets Tm. What other ways are there
to build a reversal invariant Kn? What can we say about the architecture when Kn is reversal
invariant? A preliminary attempt at answering the latter question is provided in Theorem 5.11.

• Another interesting question is related to the robustness of the derived kernel to small transforma-
tions, that is, the approximate invariance of Kn. For example, if we have two strings f, g ∈ Im(vn)
that are not equivalent under Kn but they only differ in one or few letters, what can we say about
Kn(f, g)? This question is partially motivated by applications to biology and DNA analysis, where
the bases of the DNA constantly undergo mutations. This analysis might also be of relevance in
the case of binary strings, because in practical situations some of the bits are corrupted due to
transmissions through noisy channels.

Extension to two-dimensional images. One way of working with images is to treat them as two-
dimensional strings with a finite set of values, for example using the finite-precision representation of real
values on a computer. This viewpoint should allow us to extend some of the results in this section to
the case of images. In particular, as alluded to at the end of Section 5.3, the shifted periodic patterns in
Theorem 5.13 might correspond to the grating patterns that are commonly observed in the topographic
filter maps when the architecture is specifically built to incorporate translation invariance [26, 28]. More-
over, in the case of images the domain will be a two-dimensional grid {1, . . . , k}×{1, . . . , k}, and thus we
expect the invariance properties to involve more complex transformations, including the symmetry group
of the square, the dihedral group D4. The discussion in Section 5.4 is an initial step in this direction.

However, this treatment of images as two-dimensional strings is not without limitation because it
ignores the algebraic structure of the set of values, namely the real (or rational) numbers. In particular,
real numbers have an ordering relation and arithmetic operations. These structures will affect the choice
of the initial kernel, as well as what constitutes an invariance. For example, we might want to consider
invariance under multiplying the values of an image by a constant, which can be interpreted as looking
at the same image under different lighting conditions.

6 Conclusions and Open Questions

Conclusions. In this paper we proposed a theoretical framework of hierarchical architectures that
generalizes the definition introduced by Smale et al. [56]. This generalized definition of the neural response
and derived kernel allows us to study a wider class of hierarchical algorithms, including simplified versions
of the feedforward hierarchical model [50, 54] and convolutional neural networks [26, 31, 32]. We then
used this framework to study the following theoretical properties of hierarchical architectures:

• Range compression. We showed that hierarchical architectures with nonnegative values and nor-
malization procedures are susceptible to range compression; essentially, the derived kernel becomes
increasingly saturated at each layer. This saturation effect presents a challenging problem in prac-
tice because it can lead to decreased performance of the architecture in some empirical tasks. We
proposed several methods to mitigate this range compression effect and demonstrated that these
methods succeeded in restoring the performance of the architecture.

• Linear architectures. In the case of a linear architecture, we proved that the dimensionality of the
neural response at each layer is restricted by the dimensionality at the first layer. Moreover, we
showed that when we use an orthonormal basis of the neural responses as templates, the derived

34

kernel is independent of the choice of basis. In particular, when we use the inner product kernel,
the architecture collapses into a single-layer linear computation.

• One-dimensional strings. We investigated the discrimination and invariance properties of the de-
rived kernel when the input data are one-dimensional strings. We showed how to induce reversal
invariance in the hierarchy by appropriately choosing the model parameters. Furthermore, we
proved that it is impossible to learn reversal invariance when we use an exhaustive set of templates.
Finally, we characterized the equivalence classes of the derived kernel in the case of a discriminative
architecture.

These results represent an exciting and promising beginning of a rigorous theory of hierarchical ar-
chitectures. We hope that our results provide some insight into the theoretical properties of hierarchical
algorithms, and will be useful for guiding the development of hierarchical algorithms in the future.

Open questions. Thus far our analysis has been focused on the intrinsic properties of hierarchical
architectures, namely, properties that are inherent in the architectures and do not depend on external
tasks. On the other hand, one could also investigate the extrinsic properties of hierarchical architectures.
For example, given a classification problem, we could look into the performance of the architecture when
we use the derived kernel as the similarity measure for classification. Studying the extrinsic properties
of hierarchical architectures is more difficult than studying the intrinsic properties because there might
not be a universally correct answer; instead, as Bengio argued in [3], the optimal answer might depend
on the specific task at hand.

Nevertheless, the extrinsic properties of hierarchical architectures are more relevant to the problems
in practice, and, as such, need to be investigated theoretically. Several questions in this direction that
we believe are of immediate interest are:

• Number of layers. What is the optimal number of layers in the architecture? Can we show that
having more layers is always better in terms of performance? Hinton et al. [22] showed that learning
an extra layer in a deep belief network increases the lower bound of the log-likelihood of the
data. Surprisingly, many hierarchical algorithms in practice are running with relatively few layers
[26, 37, 54]. We believe that a theoretical analysis on the effect of the number of layers in the
architecture can give some insight into this problem.

• Parameter choices. How should we choose the parameters of the model to achieve a good perfor-
mance? For example, once we fix the number of layers in the architecture, how should we choose
the patch sizes at each layer? In the case of image classification on the MNIST digit dataset, Smale
et al. [56] suggested that there is an optimal configuration of patch sizes for a 3-layer architecture.
From our results in this paper, Figure 4 also suggests that there is an optimal configuration of patch
sizes for a 4-layer architecture. Moreover, the performance results in [56] and Figure 4 seem to ex-
hibit similar up-and-down patterns as the patch sizes vary. This leads to the question of whether
we can characterize the optimal patch sizes theoretically.

• Sample complexity. How does the hierarchical architecture influence the sample complexity of
the problem? As previously mentioned, the human brain is exceptionally skilled at learning and
generalizing from only a small subset of examples. Poggio and Smale [46] argued that this capability
might be due to the hierarchical structure of the cortex, and that hierarchical architectures might
also have the advantage of low sample complexity. Therefore, it will be interesting to study this
question from a theoretical perspective using the framework of the neural response and derived
kernel.

35

A Appendix: A Theoretical Framework of Hierarchical Archi-
tectures

Proof of Proposition 2.7. From the the weak boundedness of Ψ and the admissibility of Tm, we have

‖Nm+1(f)‖2 =
∑
τ∈Tm

∣∣Ψ(〈Φ(Nm(f ◦ h)), τ〉)∣∣2
≤ C2

|Hm|
∑
τ∈Tm

∑
h∈Hm

〈
Φ
(
Nm(f ◦ h)

)
, τ
〉2

= C2
|Hm|

∑
h∈Hm

∑
τ∈Tm

〈
Φ
(
Nm(f ◦ h)), τ

〉2
≤ C2

|Hm| C
2
∑
h∈Hm

∥∥Φ
(
Nm(f ◦ h)

)∥∥2

<∞ .

Note that the last inequality holds because we assume Hm to be finite.

B Appendix: Range Compression

In this section we present the proofs of the results from Section 3.

B.1 Setting and Preliminaries

B.1.1 Strongly Bounded Pooling Functions

Proof of Lemma 3.2. Let ζ : R0 → R0 be a non-decreasing concave function that dominates Ψ. We
claim that Ψ ◦ σ is dominated by ζ ◦ σ. Clearly ζ ◦ σ is nonnegative since both ζ and σ are nonnegative.
Moreover, since ζ and σ are non-decreasing and concave, for all x, y ∈ R0 and 0 ≤ λ ≤ 1 we have(

ζ ◦ σ)(λx+ (1− λ)y
) ≥ ζ(λ σ(x) + (1− λ) σ(y)

) ≥ λ (ζ ◦ σ)(x) + (1− λ)
(
ζ ◦ σ)(y) ,

which means that ζ ◦ σ is a concave function.
Now, using the fact that σ is non-decreasing, for each n ∈ N and α = (α1, . . . , αn) ∈ Rn we have(

Ψ ◦ σ)(α) ≤ Cn ζ
(

max
1≤i≤n

σ(αi)
)

= Cn
(
ζ ◦ σ)(max

1≤i≤n
αi

)
.

Similarly, (
Ψ ◦ σ)(α) ≥ Cn ζ

(
min

1≤i≤n
σ(αi)

)
= Cn

(
ζ ◦ σ)(min

1≤i≤n
αi

)
.

This shows that Ψ ◦σ is a strongly bounded pooling function that is dominated by ζ ◦σ, as desired.

B.1.2 Dynamic Range of the Derived Kernel

We first state the following preliminary results that will be helpful to prove Theorem 3.4 and Theorem 3.6.

Lemma B.1. Let ξ = (ξ1, . . . , ξk) and ω = (ω1, . . . , ωk) be two vectors in the positive orthant of Rk, that
is, assume ξi, ωi > 0 for 1 ≤ i ≤ k. Let θ denote the angle between ξ and ω. If we hold ξ fixed and vary
ω along ω1 ∈ (0,∞), then cos θ has one extremum point, which is a maximum. In particular, if ω1 lies
in an interval [r1, r2], then cos θ is minimized at either ω1 = r1 or ω1 = r2.

36

Proof. Recall that

cos θ =
〈ξ, ω〉
‖ξ‖ ‖ω‖ =

∑k
i=1 ξiωi(∑k

i=1 ξ
2
i

)1/2 (∑k
i=1 ω

2
i

)1/2
.

Since we hold everything fixed except for ω1, we can consider cos θ as a function of ω1 only. For simplicity,
write

cos θ =
Aω1 +B

C(ω2
1 +D)1/2

,

where

A = ξ1, B =
k∑
i=2

ξiωi, C =
(k∑
i=1

ξ2i

)1/2

, and D =
k∑
i=2

ω2
i .

Note that A,B,C,D > 0. Take the derivative of cos θ with respect to ω1,

d cos θ
dω1

=
A(ω2

1 +D)1/2 − (Aω1 +B)ω1(ω2
1 +D)−1/2

C(ω2
1 +D)

=
A(ω2

1 +D)− (Aω1 +B)ω1

C(ω2
1 +D)3/2

=
AD −Bω1

C(ω2
1 +D)3/2

.

Setting the derivative to 0, we see that cos θ has an extremum point at ω1 = AD/B. Since d cos θ/dω1 > 0
for ω1 < AD/B and d cos θ/dω1 < 0 for ω1 > AD/B, we conclude that ω1 = AD/B is a maximum point
of cos θ, as desired.

Using the preceding lemma, we can prove the following result.

Lemma B.2. Let b ≥ a > 0, and let C be the hypercube

C =
{
x = (x1, . . . , xk) ∈ Rk | a ≤ xi ≤ b for i = 1, . . . , k

}
.

Then
inf
x,y∈C

〈 x̂, ŷ 〉 ≥ 2ab
a2 + b2

.

Proof. Let F : C × C → R be the function F(x, y) = 〈 x̂, ŷ 〉. Since F is continuous and C is a compact
subset of Rk, by the extreme value theorem we know that F achieves its minimum in C, say at (x′, y′).
Let θ denote the angle between x′ and y′, and note that we can write F(x′, y′) = cos θ. Lemma B.1 then
tells us that x′ and y′ must be some vertices of C. This is because if one of the points, say x′, is not a
vertex, then it has a coordinate xi such that a < xi < b. By holding y′ fixed and setting xi to either a
or b we can decrease the value of cos θ, thus contradicting the minimality of (x′, y′).

Now that we know (x′, y′) is a vertex of C, we can write x′ = (x1, . . . , xk) and y′ = (y1, . . . , yk) with
x1, . . . , xk, y1, . . . , yk ∈ {a, b}. Define

α = #{1 ≤ i ≤ k | xi = b, yi = a},
β = #{1 ≤ i ≤ k | xi = a, yi = b},
γ = #{1 ≤ i ≤ k | xi = b, yi = b}, and
δ = #{1 ≤ i ≤ k | xi = a, yi = a} .

37

Clearly α, β, γ, δ ≥ 0 and α+ β + γ + δ = k. This allows us to write

〈
x̂′, ŷ′

〉
=

∑k
i=1 xiyi(∑k

i=1 x
2
i

)1/2 (∑k
i=1 y

2
i

)1/2

=
δa2 + (α+ β)ab+ γb2(

(β + δ)a2 + (α+ γ)b2
)1/2 ((α+ δ)a2 + (β + γ)b2

)1/2 .

By the arithmetic-geometric mean inequality,

(
(β + δ)a2 + (α+ γ)b2

)1/2 ((α+ δ)a2 + (β + γ)b2
)1/2 ≤ (α+ β + 2δ)a2 + (α+ β + 2γ)b2

2
,

and hence 〈
x̂′, ŷ′

〉 ≥ 2
(
δa2 + (α+ β)ab+ γb2

)
(α+ β + 2δ)a2 + (α+ β + 2γ)b2

.

Intuitively, we expect the angle of separation θ to be maximized when x′ and y′ are two opposite
vertices of C. This corresponds to the choice γ = δ = 0, in which case the right hand side of the
inequality above becomes 2ab/(a2 + b2). Indeed, we can check that

2
(
δa2 + (α+ β)ab+ γb2

)
(α+ β + 2δ)a2 + (α+ β + 2γ)b2

− 2ab
a2 + b2

=
2
((
δa2 + (α+ β)ab+ γb2

)(
a2 + b2

)− ab((α+ β + 2δ)a2 + (α+ β + 2γ)b2
))(

(α+ β + 2δ)a2 + (α+ β + 2γ)b2
)(
a2 + b2

)
=

2
((
δa4 + (α+ β)a3b+ (γ + δ)a2b2 + (α+ β)ab3 + γb4

)− ((α+ β + 2δ)a3b+ (α+ β + 2γ)ab3
))(

(α+ β + 2δ)a2 + (α+ β + 2γ)b2
)(
a2 + b2

)
=

2
(
δa4 − 2δa3b+ (γ + δ)a2b2 − 2γab3 + γb4

)(
(α+ β + 2δ)a2 + (α+ β + 2γ)b2

)(
a2 + b2

)
=

2
(
δa2(b− a)2 + γb2(b− a)2

)(
(α+ β + 2δ)a2 + (α+ β + 2γ)b2

)(
a2 + b2

)
=

2(δa2 + γb2)(b− a)2(
(α+ β + 2δ)a2 + (α+ β + 2γ)b2

)(
a2 + b2

)
≥ 0 .

This shows that
〈
x̂′, ŷ′

〉 ≥ 2ab/(a2 + b2), as desired.

Finally, the following lemma connects the dynamic range of the derived kernel at each layer with the
normalized inner product between the neural responses at the next layer.

Lemma B.3. Consider a nonnegative architecture with a strongly bounded pooling function and convex
templates. At each layer m ∈ N we have

K̂m+1(f, g) ≥ 2δ(Km)
1 + δ(Km)2

for all f, g ∈ Im(vm+1) .

Proof. Let
a = inf

f,g∈Im(vm)
Km(f, g) and b = sup

f,g∈Im(vm)

Km(f, g) ,

38

so that δ(Km) = a/b. Note that a ≥ 0 since we are working with a nonnegative architecture. If a = 0
then 2δ(Km)/(1 + δ(Km)2) = 0 and there is nothing to prove, so assume a > 0. Let ζ : R0 → R0 be a
non-decreasing concave function that dominates the pooling function Ψ.

Let f ∈ Im(vm+1). Given a template τ ∈ Tm, write

τ =
d∑
i=1

ciΦ(Nm(fi)) where d ∈ N, fi ∈ Im(vm), and ci ≥ 0 with
d∑
i=1

ci = 1 .

Then for every transformation h ∈ Hm we have

a =
d∑
i=1

cia ≤
d∑
i=1

ciKm(f ◦ h, fi) = 〈Φ(Nm(f ◦ h)), τ〉 ≤
d∑
i=1

cib = b ,

and since Ψ is strongly bounded,

C|Hm| ζ(a) ≤ Nm+1(f)(τ) = Ψ
(〈Φ(Nm(f ◦ h)), τ〉) ≤ C|Hm| ζ(b) .

This means the neural response Nm+1(f) lies in the |Tm|-dimensional hypercube

C =
{
x ∈ R|Tm| ∣∣ C|Hm| ζ(a) ≤ xi ≤ C|Hm| ζ(b) for i = 1, . . . , |Tm|

}
.

Lemma B.2 then tells us that for every f, g ∈ Im(vm+1), we have the lower bound

K̂m+1(f, g) ≥ inf
x,y∈C

〈 x̂, ŷ 〉 ≥
2 C2
|Hm| ζ(a) ζ(b)

C2
|Hm| ζ(a)2 + C2

|Hm| ζ(b)2
=

2
(
ζ(a)/ζ(b)

)
1 +

(
ζ(a)/ζ(b)

)2 .

Now note that since ζ is a concave function,

ζ(a) = ζ
((

1− a

b

)
· 0 +

a

b
· b
)
≥
(

1− a

b

)
ζ(0) +

a

b
ζ(b) ≥ a

b
ζ(b) = δ(Km) ζ(b) ,

which gives us ζ(a)/ζ(b) ≥ δ(Km). Therefore, since x 7→ 2x/(1 + x2) is an increasing function on
0 ≤ x ≤ 1, we conclude that

K̂m+1(f, g) ≥ 2δ(Km)
1 + δ(Km)2

,

as desired.

Given Lemma B.3, Theorem 3.4 then follows easily.

Proof of Theorem 3.4. If δ(Km)→ 1, then Lemma B.3 implies that we also have

lim
m→∞ inf

f,g∈Im(vm)
K̂m(f, g) = 1 .

Therefore, noting that for all f, g ∈ Im(vm) we can write

‖N̂m(f)− N̂m(g)‖2 = 2− 2K̂m(f, g) ,

we then conclude that

lim
m→∞ sup

f,g∈Im(vm)

‖N̂m(f)− N̂m(g)‖ =
√

2− 2 lim
m→∞ inf

f,g∈Im(vm)
K̂m(f, g) = 0 .

39

B.2 Range Compression: Normalized Kernel Functions

Proof of Theorem 3.6. We begin by squaring the Lipschitz continuity condition in (3) and using the
assumption that K is normalized to obtain

K(x, y) ≥ 〈 x̂, ŷ 〉 for all x, y ∈ `2 \ {0} .

Given f, g ∈ Im(vm+1), we can substitute x = Nm+1(f) and y = Nm+1(g) to the inequality above and
use Lemma B.3 to get

Km+1(f, g) ≥ K̂m+1(f, g) ≥ 2δ(Km)
1 + δ(Km)2

.

Since this holds for all f, g ∈ Im(vm+1), we then conclude that

δ(Km+1) = inf
f,g∈Im(vm+1)

Km+1(f, g) ≥ 2δ(Km)
1 + δ(Km)2

.

Now to show the convergence assertion, we note that the inequality above implies

1 ≥ δ(Kn) ≥ Λ(n−m)
(
δ(Km)

)
for n ≥ m+ 1 , (9)

where Λ: [0, 1]→ [0, 1] is the function Λ(a) = 2a/(1 +a2), and Λ(n−m) is the composition of Λ with itself
n −m times. Observe that Λ is an increasing function and a ≤ Λ(a) ≤ 1 for 0 ≤ a ≤ 1, with equality
occurring when a = 0 or a = 1 (see Figure 6). This means the mapping a 7→ Λ(a) only has two fixed
points, a = 0 and a = 1, and the point a = 0 is unstable. Once we have a > 0, the value of a under
this mapping will increase monotonically until it converges to a = 1. Therefore, from (9) we see that if
δ(Km) > 0 then Λ(n−m)

(
δ(Km)

)→ 1 as n→∞, and therefore,

lim
n→∞ δ(Kn) = 1 ,

as desired.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

2a/(1 + a2)
a

Figure 6: Plot of the function Λ(a) = 2a
1+a2 .

40

B.3 Range Compression: Normalized Pooling Functions

We first show that given Definition 3.9, a sigmoid function approaches its asymptote at a certain rate.
Specifically, we claim that the derivative σ′(x) approaches 0 faster than 1/x. Since σ(x) has a finite limit
as x→∞, this will then imply that

Fσ(x) =
2xσ′(x)
σ(x)

→ 0 as x→∞ ,

as claimed in Section 3.3.

Lemma B.4. Given a sigmoid function σ,

lim
x→∞xσ

′(x) = 0 .

Proof. Since σ is non-decreasing and concave on R0, σ′ is nonnegative and non-increasing on R0. Fur-
thermore, we know that σ′ is integrable on R0,∫ ∞

0

σ′(x) dx = lim
x→∞σ(x)− σ(0) < ∞ .

Now suppose the contrary that
lim sup
x→∞

xσ′(x) = c > 0 .

Then there exists a sequence {xn}n∈N in R0 such that xn → ∞ and xnσ
′(xn) > c/2 for all n ∈ N.

Let {yn}n∈N be a subsequence of {xn}n∈N such that yn+1 ≥ (n + 1)yn/n for all n ∈ N. Since σ′ is
non-increasing,

σ′(x) ≥ σ′(yn+1) >
c

2yn+1
if yn < x ≤ yn+1 .

This implies∫ ∞
y1

σ′(x) dx =
∞∑
n=1

∫ yn+1

yn

σ′(x) dx >
∞∑
n=1

c

2
(yn+1 − yn)

yn+1
≥ c

2

∞∑
n=1

(
1− n

n+ 1

)
=

c

2

∞∑
n=1

1
n+ 1

= ∞ ,

contradicting the integrability of σ′. Thus we must have

lim sup
x→∞

xσ′(x) ≤ 0 .

Finally, since σ′(x) ≥ 0 for x ∈ R0, we conclude that

lim
x→∞ xσ′(x) = 0 ,

as desired.

We add two remarks.

Remark B.5. The proof of Lemma B.4 above can be extended to show that x log(x)σ′(x)→ 0 as x→∞,
so xσ′(x) must eventually decrease faster than 1/ log(x). This gives the upper bound εη,σ = O(e1/η) as
η → 0, which is achieved, for example, when σ is given by

σ(x) =
1

log k
− 1

log(x+ k)
for some k > 1 .

However, as we saw in Section 3.3, for common sigmoid functions the values of εη,σ are small, which
makes Theorem 3.10 applicable in practice.

41

Remark B.6. We note that the assumption that σ is non-decreasing and concave on R0 is necessary to
conclude Lemma B.4. To see this, suppose we do not assume σ to be non-decreasing or concave, so that
σ′ does not have to be nonnegative and non-increasing. Take σ defined by σ(0) = 0 andg

σ′(x) = (−1)bxc
1

x+ 1
for x ≥ 0 ,

where bxc is the largest integer less than or equal to x. Clearly σ′ is still integrable on R0, for example by
decomposing the integral into a sum of integrals on the intervals [n, n+ 1) and then using the alternating
series test. However, in this case

xσ′(x) = (x+ 1)σ′(x)− σ′(x) = (−1)bxc − σ′(x)

does not converge, since (−1)bxc is alternating between 1 and −1, and σ′(x) → 0 as x → ∞. Next,
suppose we assume that σ is non-decreasing but we do not assume that σ is concave. This means σ′ is
nonnegative but it is allowed to oscillate. Consider σ defined by σ(0) = 0 andh

σ′(x) =

{
1

x+1 if x ∈ N,
1

(x+1)2 if x ∈ R0 \ N .

Clearly σ′ is still integrable on R0, so σ has a horizontal asymptote. However, we see that when x ∈ N,

xσ′(x) =
x

x+ 1
→ 1 as x→∞ ,

so clearly xσ′(x) does not converge to 0.

We now prove Theorem 3.10.

Proof of Theorem 3.10. Let

a = inf
f,g∈Im(vm)

Km(f, g) and b = sup
f,g∈Im(vm)

Km(f, g) ,

so that δ(Km) = a/b. Note that we assume a ≥ εη,σ ≥ 0. If a = 0 then there is nothing to prove, so
assume a > 0.

Let f ∈ Im(vm+1). Given a template τ ∈ Tm, recall that we are using the inner product kernel, and
write

τ =
d∑
i=1

ciNm(fi) where d ∈ N, fi ∈ Im(vm), and ci ≥ 0 with
d∑
i=1

ci = 1 .

Then for every transformation h ∈ Hm we have

a =
d∑
i=1

cia ≤
d∑
i=1

ciKm(f ◦ h, fi) = 〈Nm(f ◦ h), τ〉 ≤
d∑
i=1

cib = b ,

and since σ is a non-decreasing function,

σ(a) ≤ σ(〈Nm(f ◦ h), τ〉) ≤ σ(b) .

Therefore, the strong boundedness of Ψ gives us

C|Hm| ζ
(
σ(a)

) ≤ Nm+1(f)(τ) =
(
Ψ ◦ σ)(〈Nm(f ◦ h), τ〉) ≤ C|Hm| ζ

(
σ(b)

)
.

gOr take σ′ to be a continuous approximation of the proposed function above.
hOr, as before, we can take σ′ to be a continuous approximation of the proposed function.

42

This gives us a bound on the value of the derived kernel,

|Tm| C2
|Hm| ζ

(
σ(a)

)2 ≤ Km+1(f, g) ≤ |Tm| C2
|Hm| ζ

(
σ(b)

)2 for all f, g ∈ Im(vm+1) . (10)

Therefore, we can also bound the dynamic range

δ(Km+1) ≥
|Tm| C2

|Hm| ζ
(
σ(a)

)2
|Tm| C2

|Hm| ζ
(
σ(b)

)2 =
ζ
(
σ(a)

)2
ζ
(
σ(b)

)2 .

As we saw in the proof of Lemma B.3, since ζ is concave we have

ζ
(
σ(a)

)
ζ
(
σ(b)

) ≥ σ(a)
σ(b)

,

and thus

δ(Km+1) ≥ σ(a)2

σ(b)2
.

Now to conclude that
δ(Km+1) ≥ δ(Km)η =

aη

bη
,

it suffices to show that the function

S(x) :=
σ(x)2

xη

is non-increasing for x ≥ a. Computing the derivative of S, we obtain

S′(x) =
2σ(x)σ′(x)xη − ησ(x)2xη−1

x2η
=
σ(x)

[
2xσ′(x)− ησ(x)

]
xη+1

.

Therefore, from the definition of εη,σ we see that S′(x) ≤ 0 for x ≥ εη,σ. Since a ≥ εη,σ by assumption,
this means S is non-increasing for x ≥ a and hence S(a) ≥ S(b), as desired.

Finally, if condition (7) holds, then from (10) we see that

Km+1(f, g) ≥ εη,σ

C2
|Hm| ζ

(
σ(εη,σ)

)2 C2
|Hm| ζ

(
σ(a)

)2 ≥ εη,σ for all f, g ∈ Im(vm+1) .

In particular, if (7) holds at all layers n ≥ m, then since 0 < η < 1,

δ(Kn) ≥ δ(Km)η
n−m → 1 as n→∞ .

This completes the proof of Theorem 3.10.

C Appendix: Linear Architectures

In this section we present the proofs from Section 4.

C.1 Rank Constraint

Proof of Theorem 4.1. Let 1 ≤ m ≤ n−1. If dim(Nm) =∞ then there is nothing to prove, so assume
that dim(Nm) = p < ∞. Let (φ1, . . . , φp) be an orthonormal basis of Nm. Note that each normalized

43

neural response N̂m(f) lies in Nm, so we can write N̂m(f) as a linear combination of φ1, . . . , φp for all
f ∈ Im(vm). Furthermore, using the linearity of Ψ we can find ω = (ω1, . . . , ω|Hm|) ∈ R|Hm| such that

Ψ(α) = 〈α, ω〉 =
|Hm|∑
i=1

αiωi for all α = (α1, . . . , α|Hm|) ∈ R|Hm| .

Now, given f ∈ Im(vm+1) and τ ∈ Tm we can write

Nm+1(f)(τ) = Ψ
(〈
N̂m(f ◦ h), τ

〉)
=
|Hm|∑
i=1

ωi
〈
N̂m(f ◦ hi), τ

〉
.

Since N̂m(f ◦hi) ∈ Nm and τ ∈ Tm ⊆ Nm, we can expand the inner product in terms of the orthonormal
basis of Nm as follows, 〈

N̂m(f ◦ hi), τ
〉

=
p∑
j=1

〈
N̂m(f ◦ hi), φj

〉 〈τ, φj〉 .
Substituting this summation to the original expression and rearranging the terms give us

Nm+1(f)(τ) =
|Hm|∑
i=1

ωi

 p∑
j=1

〈
N̂m(f ◦ hi), φj

〉 〈τ, φj〉
 =

p∑
j=1

|Hm|∑
i=1

ωi
〈
N̂m(f ◦ hi), φj

〉 〈τ, φj〉 .
Since this holds for all τ ∈ Tm, we can write

Nm+1(f) =
p∑
j=1

|Hm|∑
i=1

ωi
〈
N̂m(f ◦ hi), φj

〉 ϕj ,

where for j = 1, . . . , p we define ϕj ∈ `2(Tm) by

ϕj(τ) = 〈τ, φj〉 for all τ ∈ Tm .

Note that ϕj is well defined because by the admissibility condition of Tm we have

‖ϕj‖2 =
∑
τ∈Tm

〈τ, φj〉2 ≤ C ‖φj‖2 = C <∞ for i = 1, . . . , p .

The computation above shows that for every f ∈ Im(vm+1) we can write Nm+1(f) as a linear combi-
nation of {ϕ1, . . . , ϕp}. This means {ϕ1, . . . , ϕp} spans Nm+1, and hence we conclude that

dim(Nm+1) ≤ p = dim(Nm) ,

as desired.

C.2 Basis Independence

Proof of Theorem 4.2. Given 1 ≤ m ≤ n− 1, we will show that the inner product between Nm+1(f)
and Nm+1(g) is independent of the choice of the orthonormal basis of Nm in Tm, for all f, g ∈ Im(vm+1).
This will then imply the desired conclusion that the derived kernel

Km+1(f, g) =
〈Nm+1(f), Nm+1(g)〉√〈Nm+1(f), Nm+1(f)〉 〈Nm+1(g), Nm+1(g)〉

44

is also independent of the choice of the orthonormal basis of Nm.
Let (φ1, . . . , φp) be the orthonormal basis of Nm that Tm takes as templates of the second kind, where

p ≤ ∞. Note that for each f ∈ Im(vm) we have N̂m(f) ∈ Nm, so (φ1, . . . , φp) is also an orthonormal
basis of the normalized neural responses.

Next, since the pooling function is linear, we can find ω = (ω1, . . . , ω|Hm|) ∈ R|Hm| such that

Ψ(α) = 〈α, ω〉 =
|Hm|∑
i=1

αiωi for all α = (α1, . . . , α|Hm|) ∈ R|Hm| .

Then for every f ∈ Im(vm+1) and 1 ≤ i ≤ p, we have

Nm+1(f)(φi) = Ψ
(〈
N̂m(f ◦ h), φi

〉)
=
|Hm|∑
j=1

ωj
〈
N̂m(f ◦ hj), φi

〉
.

Now, given f, g ∈ Im(vm+1) we can compute

〈
Nm+1(f), Nm+1(g)

〉
=

p∑
i=1

Nm+1(f)(φi)Nm+1(g)(φi)

=
p∑
i=1

|Hm|∑
j=1

ωj
〈
N̂m(f ◦ hj), φi

〉|Hm|∑
k=1

ωk
〈
N̂m(g ◦ hk), φi

〉
=
|Hm|∑
j=1

|Hm|∑
k=1

ωj ωk

(
p∑
i=1

〈
N̂m(f ◦ hj), φi

〉 〈
N̂m(g ◦ hk), φi

〉)

=
|Hm|∑
j=1

|Hm|∑
k=1

ωj ωk
〈
N̂m(f ◦ hj), N̂m(g ◦ hk)

〉
=
|Hm|∑
j=1

|Hm|∑
k=1

ωj ωk Km(f ◦ hj , g ◦ hk) .

This shows that the inner product between Nm+1(f) and Nm+1(g) is independent of the choice of
(φ1, . . . , φp), as desired.

D Appendix: Analysis in a One-Dimensional Case

In this section we present the proofs from Section 5.

D.1 Setting and Preliminaries

Proof of Proposition 5.4. Clearly if Nm(f) = Nm(g) then we have

Km(f, g) =
〈Nm(f), Nm(g)〉
‖Nm(f)‖ ‖Nm(g)‖ = 1 .

Conversely, suppose that Km(f, g) = 1. Since K is the normalized inner product kernel, this means
the neural responses Nm(f) and Nm(g) are collinear, that is, Nm(f) = cNm(g) for some c ≥ 0. Let
h ∈ Hm−1, and consider the template τ = N̂m−1(f ◦ h) ∈ Tm−1. Note that on the one hand we have

Nm(f)(τ) = max
h′∈Hm−1

〈
N̂m−1(f ◦ h′), τ〉 = max

h′∈Hm−1
Km−1(f ◦ h′, f ◦ h) = Km−1(f ◦ h, f ◦ h) = 1 ,

45

while on the other hand,

Nm(g)(τ) = max
h′∈Hm−1

〈
N̂m−1(g ◦ h′), τ〉 = max

h′∈Hm−1
Km−1(g ◦ h′, f ◦ h) ≤ 1 .

Therefore, from the relation Nm(f) = cNm(g) we obtain

c ≥ cNm(g)(τ) = Nm(f)(τ) = 1 .

Similarly, by considering another template τ ′ = N̂m−1(g ◦ h) ∈ Tm−1 we see that c ≤ 1. Hence we
conclude that c = 1, and thus Nm(f) = Nm(g).

D.2 Reversal Invariance of the Derived Kernel

D.2.1 Reversal Invariance from the Initial Kernel

We note that the result of Theorem 5.6 actually follows immediately from Proposition 3.1 and Corol-
lary 4.1 in [56]. However, for the sake of completeness we reconstruct the proof here because part of the
argument will be needed to prove Theorem 5.7 and Theorem 5.9.

Proof of Theorem 5.6. It suffices to show that if Km is reversal invariant then Km+1 is reversal
invariant, for 1 ≤ m ≤ n− 1. First, from the assumption that Km is reversal invariant we have

N̂m(g) = N̂m(g ◦ r) for all g ∈ Im(vm) .

Next, since Hm is closed under taking counterparts and χ is an involution, χ : Hm → Hm is a bijection.
Furthermore, given h = hi ∈ Hm, we note that for 1 ≤ j ≤ |vm| we have(

r|vm+1| ◦ hi
)
(j) = r|vm+1|(i+ j − 1)

= |vm+1|+ 1− (i+ j − 1)
= |vm+1|+ 2− i− j ,

and similarly, (
χ(hi) ◦ r|vm|

)
(j) =

(
h|vm+1|−|vm|+2−i ◦ r|vm|

)
(j)

= h|vm+1|−|vm|+2−i(|vm|+ 1− j)
= |vm+1| − |vm|+ 2− i+ (|vm|+ 1− j)− 1
= |vm+1|+ 2− i− j .

This shows that
r|vm+1| ◦ h = χ(h) ◦ r|vm| for all h ∈ Hm .

Therefore, for each f ∈ Im(vm+1) and τ ∈ Tm we have

Nm+1(f ◦ r|vm+1|)(τ) = max
h∈Hm

〈
N̂m(f ◦ r|vm+1| ◦ h), τ

〉
= max
h∈Hm

〈
N̂m(f ◦ χ(h) ◦ r|vm|), τ

〉
= max
h∈Hm

〈
N̂m(f ◦ χ(h)), τ

〉
= Nm+1(f)(τ) .

This gives us Nm+1(f ◦r) = Nm+1(f), and thus Km+1(f, f ◦r) = 1. Since this holds for all f ∈ Im(vm+1),
we conclude that Km+1 is reversal invariant.

46

Remark D.1. By inspecting the proof above, we see that Theorem 5.6 also holds when we use a general
pooling function Ψ that is invariant under permutations of its inputs. That is, we can replace the max
pooling function in Theorem 5.6 with a pooling function Ψ satisfying the property that for each k ∈ N,

Ψ(α) = Ψ(π(α)) for all α ∈ Rk and π ∈ Sk ,

where Sk is the symmetric group of degree k, and given α = (α1, . . . , αk) ∈ Rk and π ∈ Sk,

π(α) = (απ(1), . . . , απ(k)) ∈ Rk .

For example, the average pooling function is invariant under permutations of its inputs.

D.2.2 Reversal Invariance from the Transformations

Proof of Theorem 5.7. Recall from the proof of Theorem 5.6 that for each h ∈ L ⊆ Ln−1 we have

r|vn| ◦ h = χ(h) ◦ r|vn−1| .

Then, given f ∈ Im(vn) we note that{
f ◦ r|vn| ◦ h | h ∈ Hn−1

}
=
{
f ◦ r|vn| ◦ h | h ∈ L

} ∪ {f ◦ r|vn| ◦ χ(h) ◦ r|vn−1| | h ∈ L
}

=
{
f ◦ χ(h) ◦ r|vn−1| | h ∈ L

} ∪ {f ◦ r|vn| ◦ r|vn| ◦ h | h ∈ L
}

=
{
f ◦ χ(h) ◦ r|vn−1| | h ∈ L

} ∪ {f ◦ h | h ∈ L}
=
{
f ◦ h | h ∈ Hn−1

}
.

Therefore, for each τ ∈ Tn−1 we have

Nn(f ◦ r)(τ) = max
h∈Hn−1

〈
N̂n−1(f ◦ r ◦ h), τ

〉
= max
h∈Hn−1

〈
N̂n−1(f ◦ h), τ

〉
= Nn(f)(τ) .

This gives us Nn(f ◦ r) = Nn(f), and thus Kn(f, f ◦ r) = 1. Since this holds for all f ∈ Im(vn), we
conclude that Kn is reversal invariant.

Remark D.2. As noted in Remark D.1, by inspecting the proof above we see that Theorem 5.7 also
holds when we use a general pooling function Ψ that is invariant under permutations of its inputs.

D.2.3 Reversal Invariance from the Templates

Proof of Theorem 5.9. It suffices to show that if Km is reversal symmetric then Km+1 is reversal
invariant, for 1 ≤ m ≤ n − 1. The conclusion will then follow since we assume K1 to be reversal
symmetric, and as we noted above, reversal invariance implies reversal symmetry. First recall from the
proof of Theorem 5.6 that χ : Hm → Hm is a bijection and

r|vm+1| ◦ h = χ(h) ◦ r|vm| for all h ∈ Hm .

Let f ∈ Im(vm+1). Given a template τ ∈ Tm, write

τ =
d∑
i=1

ciN̂m(ti) for some d ∈ N, ci ∈ R, and ti ∈ Im(vm) .

Then, using the reversal symmetry of Km, we can write

Nm+1(f ◦ r|vm+1|)(τ) = max
h∈Hm

〈
N̂m(f ◦ r|vm+1| ◦ h), τ

〉
47

= max
h∈Hm

〈
N̂m(f ◦ χ(h) ◦ r|vm|), τ

〉
= max
h∈Hm

(
d∑
i=1

ci Km

(
f ◦ χ(h) ◦ r|vm|, ti

))

= max
h∈Hm

(
d∑
i=1

ci Km

(
f ◦ χ(h), ti ◦ r|vm|

))
= max
h∈Hm

〈
N̂m(f ◦ χ(h)), τ ◦ r|vm|

〉
= Nm+1(f)(τ ◦ r|vm|) .

Since we assume τ is symmetric, we then have

Nm+1(f ◦ r)(τ) = Nm+1(f)(τ) for all τ ∈ Tm .

This gives us Nm+1(f) = Nm+1(f ◦r), and thus Km+1(f, f ◦r) = 1. Since this holds for all f ∈ Im(vm+1),
we conclude that Km+1 is reversal symmetric, as desired.

Remark D.3. As noted in Remarks D.1 and D.2, by inspecting the proof above we see that Theorem 5.9
also holds when we use a general pooling function Ψ that is invariant under permutations of its inputs.

D.2.4 Impossibility of Learning Reversal Invariance with Exhaustive Templates

Proof of Theorem 5.11. In this proof we use of the following terminologies. Given a k-string
f = a1 . . . ak, the tail of f is the longest posterior substring aiai+1 . . . ak with the property that aj = ak
for i ≤ j ≤ k. Let λ(f) denote the length of the tail of f . Furthermore, given 1 ≤ m ≤ n − 1 and
f ∈ Im(vm), let ef ∈ Im(vm+1) denote the extension of f obtained by extending the tail of f , that is,

ef (i) =

{
f(i) if 1 ≤ i ≤ |vm|, and
f(|vm|) if |vm|+ 1 ≤ i ≤ |vm+1| .

For example, suppose S = {a, b, c, d}, |v1| = 5, and |v2| = 8. Given f = abcdd ∈ Im(v1), the tail of f is
dd and λ(f) = 2, and the extension of f is ef = abcddddd ∈ Im(v2).

We now consider two cases, corresponding to the two conditions in the statement of the theorem.

Case (1). Suppose |vm+1| − |vm| = 1 for 1 ≤ m ≤ n − 1. We will show that if Km is not reversal
invariant then Km+1 is not reversal invariant, for 1 ≤ m ≤ n − 1. This will imply that if K1 is not
reversal invariant then Kn is not reversal invariant, as desired.

Let 1 ≤ m ≤ n− 1, and assume Km is not reversal invariant. Choose a witness for the failure of Km

to be reversal invariant, that is, a string f ∈ Im(vm) such that Km(f, f ◦ r) < 1. We will use f to exhibit
a witness for the failure of Km+1 to be reversal invariant. To this end, we claim that either:

(a) Km+1(ef , ef ◦ r) < 1, or

(b) we can find another string f ′ ∈ Im(vm) with the property that λ(f ′) > λ(f) and Km(f ′, f ′◦r) < 1.

If we fall on Case (b), then we can repeat the procedure above with f ′ in place of f . However, observe
that since λ(f) ≤ |vm| and every iteration of this procedure through Case (b) increases λ(f), we must
eventually land in Case (a), in which case we are done since ef is a witness for the failure of Km+1 to be
reversal invariant. Thus it suffices to prove the claim above.

48

Since |vm+1| − |vm| = 1, the set Hm only consists of two translations h1 and h2. Note that

{ef ◦ h | h ∈ Hm} = {f, ef ◦ h2}

and
{ef ◦ r|vm+1| ◦ h | h ∈ Hm} = {ef ◦ h2 ◦ r|vm|, f ◦ r|vm|} .

If Km(ef ◦ h2 ◦ r, f) < 1, then with τ = N̂m(f) ∈ Tm we have

Nm+1(ef ◦ r|vm+1|)(τ) = max
{
Km(ef ◦ h2 ◦ r|vm|, f), Km(f ◦ r, f)

}
< 1 ,

while
Nm+1(ef)(τ) = max

{
Km(f, f), Km(ef ◦ h2, f)

}
= Km(f, f) = 1 .

This implies Nm+1(ef) 6= Nm+1(ef ◦ r), and hence Km+1(ef , ef ◦ r) < 1 by Proposition 5.4. Similarly,
if Km(ef ◦ h2, f ◦ r) < 1, then by considering τ ′ = N̂m(f ◦ r) we can show that Nm+1(ef)(τ ′) < 1 and
Nm+1(ef ◦ r)(τ ′) = 1, which implies Km+1(ef , ef ◦ r) < 1.

Now suppose that Km(ef ◦ h2 ◦ r, f) = 1 and Km(ef ◦ h2, f ◦ r) = 1. Then notice that we must have

Km(ef ◦ h2, ef ◦ h2 ◦ r) < 1 ,

for otherwise
Nm(f) = Nm

(
ef ◦ h2 ◦ r

)
= Nm

(
ef ◦ h2

)
= Nm(f ◦ r) ,

contradicting the fact that Km(f, f ◦ r) < 1. Since λ(ef ◦ h2) = λ(f) + 1 > λ(f), we can take the new
witness f ′ to be ef ◦ h2 ∈ Im(vm), and we are done.

Case (2). Suppose K1 is reversal symmetric. We will first show that if Km is reversal symmetric then
Km+1 is reversal symmetric, for 1 ≤ m ≤ n− 1. The assumption that K1 is reversal symmetric will then
imply that Km is reversal symmetric for all 1 ≤ m ≤ n.

Let 1 ≤ m ≤ n − 1, and suppose Km is reversal symmetric. Recall from the proof of Theorem 5.6
that χ : Hm → Hm is a bijection and

r|vm+1| ◦ h = χ(h) ◦ r|vm| for all h ∈ Hm .

Then, given a string f ∈ Im(vm+1) and a template τ = N̂m(g′) ∈ Tm, where g′ ∈ Im(vm), we can write

Nm+1(f)(τ) = max
h∈Hm

Km(f ◦ h, g′)
= max
h∈Hm

Km(f ◦ h ◦ r|vm|, g
′ ◦ r|vm|)

= max
h∈Hm

Km(f ◦ r|vm+1| ◦ χ(h), g′ ◦ r|vm|)

= Nm+1(f ◦ r|vm+1|)(τ ◦ r|vm|) .

Note that the mapping
Tm 3 τ = N̂m(g′) r7−→ N̂m(g′ ◦ r) = τ ◦ r ∈ Tm

is a bijection. This implies
‖Nm+1(f)‖ = ‖Nm+1(f ◦ r)‖ ,

and therefore,

N̂m+1(f)(τ) =
Nm+1(f)(τ)
‖Nm+1(f)‖ =

Nm+1(f ◦ r|vm+1|)(τ ◦ r|vm|)
‖Nm+1(f ◦ r|vm+1|)‖

= N̂m+1(f ◦ r|vm+1|)(τ ◦ r|vm|) .

49

Hence, for all f, g ∈ Im(vm+1) we have

Km+1(f, g) =
〈
N̂m+1(f), N̂m+1(g)

〉
=
∑
τ∈Tm

N̂m+1(f)(τ) N̂m+1(g)(τ)

=
∑
τ∈Tm

N̂m+1(f ◦ r|vm+1|)(τ ◦ r|vm|) N̂m+1(g ◦ r|vm+1|)(τ ◦ r|vm|)

=
〈
N̂m+1(f ◦ r), N̂m+1(g ◦ r)〉

= Km+1(f ◦ r, g ◦ r) ,

as desired.
Having proven that Km is reversal symmetric for 1 ≤ m ≤ n, we will now follow the general method

of Case (1) to show that Kn is not reversal invariant. Let 1 ≤ m ≤ n − 1 and assume that Km is not
reversal invariant. Let f ∈ Im(vm) be such that Km(f, f ◦ r) < 1. Then to prove that Km+1 is not
reversal invariant, it suffices to show that either Km+1(ef , ef ◦ r) < 1, or there exists f ′ ∈ Im(vm) such
that λ(f ′) > λ(f) and Km(f ′, f ′ ◦ r) < 1.

First suppose Km(f ◦ r, ef ◦ hi) < 1 for all 2 ≤ i ≤ |vm+1| − |vm|+ 1. Then, noticing that

ef ◦ h1 = f and ef ◦ r|vm+1| ◦ χ(h1) = ef ◦ h1 ◦ r|vm| = f ◦ r|vm| ,

by considering the template τ = N̂m(f ◦ r) ∈ Tm we see that

Nm+1(ef)(τ) = max
h∈Hm

Km(ef ◦ h, f ◦ r) < 1 ,

while
Nm+1(ef ◦ r)(τ) = max

h∈Hm

Km(ef ◦ r|vm+1| ◦ hi, f ◦ r|vm|) = Km(f ◦ r, f ◦ r) = 1 .

This shows that Nm+1(ef) 6= Nm+1(ef ◦ r), and hence Km+1(ef , ef ◦ r) < 1 by Proposition 5.4.
On the other hand, suppose Km(f ◦ r, ef ◦ hi) = 1 for some 2 ≤ i ≤ |vm+1| − |vm| + 1. Using the

reversal symmetry of Km, we get

Km(f, ef ◦ hi ◦ r) = Km(f ◦ r, ef ◦ hi) = 1 .

Then notice that we must have
Km(ef ◦ hi, ef ◦ hi ◦ r) < 1 ,

for otherwise
Nm(f) = Nm(ef ◦ hi ◦ r) = Nm(ef ◦ hi) = Nm(f ◦ r) ,

contradicting the fact that Km(f, f ◦ r) < 1. Since ef is constructed by growing the tail of f , we have
λ(ef ◦ hi) ≥ λ(f) + 1 > λ(f). Thus we can take the new witness f ′ to be ef ◦ hi ∈ Im(vm), and we are
done.

D.3 Equivalence Classes of the Derived Kernel

We first present a sequence of preliminary results that will help us prove Theorem 5.13. The following
lemma tells us that if we have a string that is periodic with two different periods, then that string is
actually periodic with a period that is the greatest common divisor of the two original periods.

Lemma D.4. Let f be a p-string that is both k1-periodic and k2-periodic, and let k = gcd(k1, k2). If
p ≥ k1 + k2, then f is k-periodic.

50

Proof. Without loss of generality we may assume k1 ≤ k2. Write f = a1 . . . ap. Since we already know f
is k1-periodic, to prove f is k-periodic it suffices to show that the substring a1 . . . ak1 is k-periodic.

Fix 1 ≤ i ≤ k1−k. Starting from ai, we repeatedly use the periodicity of f to move from one element
of f to the next by jumping either k1 indices to the right or k2 indices to the left. If we follow the rule
of jumping to the left whenever possible, then we can reach ai+k while staying within the string f . More
formally, consider the function j : N0 → Z given by j(0) = 0, and for d ∈ N,

j(d) =

{
j(d− 1)− k2 if j(d− 1)− k2 ≥ −i+ 1,
j(d− 1) + k1 otherwise.

We claim that −i + 1 ≤ j(d) ≤ k1 + k2 − i for all d ∈ N, and that j(d∗) = k for some d∗ ∈ N. The first
claim tells us that 1 ≤ i+ j(d) ≤ p for all d ∈ N, and thus using the periodicity of f , we have ai = ai+j(d)
for all d ∈ N. The second claim then gives us ai = ai+j(d∗) = ai+k, as desired.

For the first claim, it is clear from the definition of j that j(d) ≥ −i+ 1 for all d ∈ N. Now suppose
the contrary that j(d) > k1 + k2 − i for some d ∈ N; let d′ be the smallest such d. We consider the move
from j(d′−1) to j(d′). On the one hand, if j(d′) = j(d′−1)−k2, then j(d′−1) = j(d′)+k2 > k1 +k2− i,
contradicting our choice of d′. On the other hand, if j(d′) = j(d′ − 1) + k1, then j(d′ − 1) − k2 =
j(d′)− k1 − k2 > −i, which means we should have jumped to the left to go from j(d′ − 1) to j(d′). This
shows that j(d) ≤ k1 + k2 − i for all d ∈ N.

For the second claim, we first note that by the Euclidean algorithm we can find x, y ∈ N satisfying
k = xk1 − yk2. Let d̃1 be the first time we jump to the right x times. That is, d̃1 is the smallest d ∈ N
such that from j(0) to j(d) we have jumped to the right x times, not necessarily consecutively. Note that
such a d̃1 must exist, as we cannot jump to the left all the time. Similarly, let d̃2 be the first time we
jump to the left y times. Observe that d̃1 6= d̃2. We now consider two cases.

1. If d̃1 < d̃2, then by the time we reach j(d̃1) we would have jumped to the right x times and to the
left d̃1 − x < y times. Thus

j(d̃1) = xk1 − (d̃1 − x)k2 = k + yk2 − (d̃1 − x)k2 = k + (x+ y − d̃1)k2 .

Since x+ y − d̃1 > 0, we can now jump to the left x+ y − d̃1 times to obtain

j(x+ y) = j(d̃1)− (x+ y − d̃1)k2 = k ,

as desired.

2. If d̃1 > d̃2, then by the time we reach j(d̃2) we would have jumped to the left y times and to the
right d̃2 − y < x times. Thus

j(d̃2) = (d̃2 − y)k1 − yk2 = (d̃2 − y)k1 + k − xk1 = k + (d̃2 − x− y)k1 .

Note that since i ≤ k1 − k ≤ k2 − k, for any 0 ≤ d ≤ x+ y − d̃2 − 1 we have

j(d̃2) + dk1 − k2 ≤ k + (d̃2 − x− y)k1 + (x+ y − d̃2 − 1)k1 − k2 = k − k1 − k2 ≤ −i .

This means from j(d̃2), the next x+ y − d̃2 moves have to be jumps to the right, and thus

j(x+ y) = j(d̃2) + (x+ y − d̃2)k1 = k ,

as desired.

51

Now we present the following result, which constitutes a substantial part of the proof of Theorem 5.13.
The following lemma says that when the jump in the patch sizes is larger than the jumps in the previous
layer, we obtain a new equivalence class of the derived kernel.

Lemma D.5. Consider an architecture with n ≥ 2 layers. Let q ∈ N and 2 ≤ m ≤ n, and suppose that:
(i) |vm| − |vm−1| = q, (ii) |vm| ≥ 4q + 2, and (iii) at layer m− 1 we have

Km−1(f, g) = 1 implies f = g or f (k)∼ g for some 2 ≤ k ≤ q + 1 .

Then at layer m we have

Km(f, g) = 1 if and only if f = g or f (k)∼ g for some 2 ≤ k ≤ q + 1 .

Proof. We first prove the forward implication. Let f = a1 . . . a|vm| and g = b1 . . . b|vm| be two strings in
Im(vm) such that Km(f, g) = 1. For 1 ≤ i ≤ q + 1, let fi = ai . . . ai+|vm−1|−1 and gi = bi . . . bi+|vm−1|−1

be the i-th |vm−1|-substrings of f and g, respectively. We divide the proof into several steps.

Step 1. By Proposition 5.4, Km(f, g) = 1 implies Nm(f) = Nm(g), and so Nm(f)(τ) = Nm(g)(τ)
for all templates τ ∈ Tm−1. In particular, by taking τ = N̂m−1(fi), 1 ≤ i ≤ q + 1, we see that
Nm(g)(τ) = Nm(f)(τ) = 1. This means there exists 1 ≤ j ≤ q+ 1 such that Km−1(fi, gj) = 1. Similarly,
for each 1 ≤ j ≤ q + 1 there exists 1 ≤ i ≤ q + 1 such that Km−1(fi, gj) = 1.

Step 2. We will now show that

f1 = g1 or f1 is periodic with period ≤ q + 1 .

Let j∗ be the smallest index 1 ≤ j ≤ q+1 such that Km−1(f1, gj) = 1. If f1
(k)∼ gj∗ for some 2 ≤ k ≤ q+1,

then f1 is k-periodic and we are done. Now assume f1 = gj∗ . If j∗ = 1, then f1 = g1 and we are done.
Suppose now that j∗ > 1. By the choice of j∗, we can find 2 ≤ i∗ ≤ q+1 such that Km−1(fi∗ , gj∗−1) = 1.
We consider two cases.

1. Case 1: fi∗ = gj∗−1, which means bd = ad+i∗−j∗+1 for j∗ − 1 ≤ d ≤ j∗ + |vm−1| − 2. Then for
each 1 ≤ d ≤ |vm−1| − i∗, from f1 = gj∗ we have ad = bd+j∗−1, and from fi∗ = gj∗−1 we have
bd+j∗−1 = a(d+j∗−1)+i∗−j∗+1 = ad+i∗ . This shows that f1 is i∗-periodic.

2. Case 2: fi∗
(k)∼ gj∗−1 for some 2 ≤ k ≤ q+1. Since gj∗−1 is k-periodic, the substring a1 . . . a|vm−1|−1 =

bj∗ . . . bj∗+|vm−1|−2 is also k-periodic. Moreover, since fi∗ is k-periodic, we also have a|vm−1| =
a|vm−1|−k. This shows that f1 = a1 . . . a|vm−1| is k-periodic.

Step 3. Similar to the previous step, we can show that the following conditions are true:

f1 = g1 or g1 is periodic with period ≤ q + 1,
fq+1 = gq+1 or fq+1 is periodic with period ≤ q + 1, and
fq+1 = gq+1 or gq+1 is periodic with period ≤ q + 1 .

Thus we can obtain the following conclusion:

f1 = g1 or f1 and g1 are periodic with period ≤ q + 1, and
fq+1 = gq+1 or fq+1 and gq+1 are periodic with period ≤ q + 1 .

Note that in the statement above, when f1 and g1 are periodic their periods do not have to be the same,
and similarly for fq+1 and gq+1.

Step 4. Finally, we now show that either f = g or f (k)∼ g for some 2 ≤ k ≤ q + 1. Using the conclusion
of the previous step, we consider four possibilities.

52

1. Suppose f1 = g1 and fq+1 = gq+1. In this case we immediately obtain f = g.

2. Suppose f1 = g1, fq+1 is k1-periodic, and gq+1 is k2-periodic, where k1, k2 ≤ q + 1. Then the
substring aq+1 . . . a|vm−1| = bq+1 . . . b|vm−1|, which is of length |vm−1| − q = |vm| − 2q ≥ 2q + 2, is
both k1-periodic and k2-periodic. By Lemma D.4, this implies that aq+1 . . . a|vm−1| = bq+1 . . . b|vm−1|
is periodic with period k = gcd(k1, k2). In particular, this means both fq+1 and gq+1 are also k-
periodic. Now given |vm−1| + 1 ≤ d ≤ |vm|, choose x ∈ N such that q + 1 ≤ d − xk ≤ |vm−1|, and
observe that ad = ad−xk = bd−xk = bd. Together with f1 = g1, we conclude that f = g.

3. Suppose f1 and g1 are periodic with period at most q+ 1, and fq+1 = gq+1. By the same argument
as in the previous case, we can show that f = g.

4. Now suppose that f1, fq+1, g1, and gq+1 are periodic with periods at most q + 1 (but the periods
do not have to be the same). Applying Lemma D.4 to the substring aq+1 . . . a|vm−1|, we see that
f1 and fq+1 are k1-periodic for some k1 ≤ q + 1, and hence f is also k1-periodic. Similarly, g is
k2-periodic for some k2 ≤ q + 1. Let 1 ≤ j ≤ q + 1 be such that Km−1(f1, gj) = 1. We have two
possibilities to consider.

(a) If f1 = gj , then by Lemma D.4 we know that f1 = gj is periodic with period k′ = gcd(k1, k2) ≤
q + 1, and thus f and g are also k′-periodic. Since f1 = gj , we conclude that f (k′)∼ g.

(b) On the other hand, suppose f1
(k)∼ gj for some 2 ≤ k ≤ q + 1. Since f1 is both k-periodic and

k1-periodic, Lemma D.4 tells us that f1 is periodic with period k3 = gcd(k, k1), and hence f is
also k3-periodic. Similarly, since gj is k-periodic and k2-periodic, Lemma D.4 tells us that gj
is periodic with period k4 = gcd(k, k2), and hence g is k4-periodic. In particular, this means
both f and g are k-periodic. Then from f1

(k)∼ gj , we conclude that f (k)∼ g.

This completes the proof of the forward direction.
Now we show the converse direction. Clearly if f = g then we have Km(f, g) = 1. Now suppose

f
(k)∼ g for some 2 ≤ k ≤ q + 1. This implies that the collection of |vm−1|-substrings of f contains the

same unique substrings as the collection of |vm−1|-substrings of g. That is, as sets, {fi | 1 ≤ i ≤ q+ 1} =
{gi | 1 ≤ i ≤ q + 1}. Then for all τ ∈ Tm−1,

Nm(f)(τ) = max
1≤i≤q+1

〈N̂m−1(fi), τ〉 = max
1≤i≤q+1

〈N̂m−1(gi), τ〉 = Nm(g)(τ) .

Therefore, Nm(f) = Nm(g), and we conclude that Km(f, g) = 1, as desired.

The following lemma, which is very similar to Lemma D.5, states that if at some layer we see a jump
in the patch sizes that we have encountered before, then we do not obtain new equivalence classes of the
derived kernel.

Lemma D.6. Consider an architecture with n ≥ 2 layers. Let q ∈ N and 2 ≤ m ≤ n, and suppose that:
(i) |vm| − |vm−1| ≤ q, (ii) |vm| ≥ 4q + 2, and (iii) at layer m− 1 we have

Km−1(f, g) = 1 if and only if f = g or f (k)∼ g for some 2 ≤ k ≤ q + 1 .

Then at layer m we have

Km(f, g) = 1 if and only if f = g or f (k)∼ g for some 2 ≤ k ≤ q + 1 .

Proof. The proof of the forward direction is identical to the proof of Lemma D.5. For the converse
direction, clearly f = g implies Km(f, g) = 1. Now suppose f

(k)∼ g for some 2 ≤ k ≤ q + 1. Let
d = |vm| − |vm−1| ≤ q. Then for each 1 ≤ i ≤ d + 1 we have fi

(k)∼ gi, where fi and gi are the i-th

53

|vm−1|-substrings of f and g, respectively. By our assumption, this means Km−1(fi, gi) = 1, and thus
N̂m−1(fi) = N̂m−1(gi). Then for all τ ∈ Tm−1,

Nm(f)(τ) = max
1≤i≤q+1

〈N̂m−1(fi), τ〉 = max
1≤i≤q+1

〈N̂m−1(gi), τ〉 = Nm(g)(τ) .

Hence Nm(f) = Nm(g), and we conclude that Km(f, g) = 1, as desired.

Given the preliminary results above, we can now prove Theorem 5.13 easily.

Proof of Theorem 5.13. Let `1 = 0, and for 2 ≤ m ≤ n let `m denote the maximum jump in the
subsequent patch sizes up to layer m,

`m = max
2≤m′≤m

(|vm| − |vm−1|
)
.

Note that `m ≤ `m+1 and `n = `. We will show that for each 1 ≤ m ≤ n,

Km(f, g) = 1 if and only if f = g or f (k)∼ g for some 2 ≤ k ≤ `m + 1 .

The statement of the theorem will then follow from the claim above by taking m = n.
We proceed by induction. The claim above is true for m = 1 since we assume K1 is fully discriminative.

Now assume the claim is true at layer m− 1. Note that at layer m we have

|vm| ≥ |v1|+ `m ≥ 3`+ 2 + `m ≥ 4`m + 2 .

If `m > `m−1, then |vm| − |vm−1| = `m. By the induction hypothesis, at layer m− 1 we have

Km−1(f, g) = 1 implies f = g or f (k)∼ g for some 2 ≤ k ≤ `m + 1 ,

and so by Lemma D.5 we conclude that the claim holds at layer m. On the other hand, if `m = `m−1,
then by the induction hypothesis at layer m− 1 we have

Km−1(f, g) = 1 if and only if f = g or f (k)∼ g for some 2 ≤ k ≤ `m + 1 ,

and so by Lemma D.6 we conclude that the claim holds at layer m.

D.4 Mirror Symmetry in Two-Dimensional Images

The proof of Proposition 5.16 is identical to the proof of Proposition 5.14, but for completeness, we
provide the detail below.

Proof of Proposition 5.16. Let χ : Hm → Hm be the function

χ(hi,j) = h|vm+1|−|vi|+2−i, j for 1 ≤ i, j ≤ |vm+1| − |vm|+ 1 .

Note that χ is a bijection, χ(χ(h)) = h, and by construction it has the property that

r|vm+1| ◦ χ(h) = h ◦ r|vm| for h ∈ Hm .

Let f ∈ Im(vm+1), and suppose we are given τ = N̂m(g′) ∈ Tm with the property that τ ◦r = N̂m(g′◦r) ∈
Tm. Then, using the assumption that Km is reflection symmetric,

Nm+1(f)(τ) = max
h∈Hm

Km(f ◦ h, g′)

54

= max
h∈Hm

Km(f ◦ h ◦ r|vm|, g
′ ◦ r|vm|)

= max
h∈Hm

Km(f ◦ r|vm+1| ◦ χ(h), g′ ◦ r|vm|)

= Nm+1(f ◦ r|vm+1|)(τ ◦ r|vm|) .

Now suppose Tm is closed under the reflection operation, which means τ ∈ Tm implies τ ◦ r ∈ Tm.
Noting that the mapping

Tm 3 τ = N̂m(g′) r7−→ N̂m(g′ ◦ r) = τ ◦ r ∈ Tm
is a bijection, the previous identity then gives us

‖Nm+1(f)‖ = ‖Nm+1(f ◦ r)‖ ,

and therefore,

N̂m+1(f)(τ) =
Nm+1(f)(τ)
‖Nm+1(f)‖ =

Nm+1(f ◦ r|vm+1|)(τ ◦ r|vm|)
‖Nm+1(f ◦ r|vm+1|)‖

= N̂m+1(f ◦ r|vm+1|)(τ ◦ r|vm|) .

Hence, for all f, g ∈ Im(vm+1) we have

Km+1(f, g) =
〈
N̂m+1(f), N̂m+1(g)

〉
=
∑
τ∈Tm

N̂m+1(f)(τ) N̂m+1(g)(τ)

=
∑
τ∈Tm

N̂m+1(f ◦ r|vm+1|)(τ ◦ r|vm|) N̂m+1(g ◦ r|vm+1|)(τ ◦ r|vm|)

=
〈
N̂m+1(f ◦ r), N̂m+1(g ◦ r)〉

= Km+1(f ◦ r, g ◦ r) ,

as desired.

55

References

[1] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68:337–404, 1950.

[2] Gleb Beliakov, Ana Pradera, and Tomasa Calvo. Aggregation Functions: A Guide for Practitioners.
Springer, 2007.

[3] Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning,
2(1):1–127, 2009.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In Advances in Neural Information Processing Systems 19 (NIPS’06). MIT Press,
2006.

[5] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large-Scale Kernel
Machines. MIT Press, 2007.

[6] James Bergstra, Guillaume Desjardins, Pascal Lamblin, and Yoshua Bengio. Quadratic polynomials
learn better image features. Technical Report 1337, Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal, 2009.

[7] Y-Lan Boureau, Francis Bach, Yann LeCun, and Jean Ponce. Learning mid-level features for recog-
nition. In Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR’10). IEEE, 2010.

[8] Jake Bouvrie. Hierarchical Learning: Theory with Applications in Speech and Vision. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 2009.

[9] Jake Bouvrie, Tony Ezzat, and Tomaso Poggio. Localized spectro-temporal cepstral analysis of
speech. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP’08), 2008.

[10] Jake Bouvrie, Lorenzo Rosasco, and Tomaso Poggio. On invariance in hierarchical models. In
Advances in Neural Information Processing Systems 22 (NIPS’09). MIT Press, 2009.

[11] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of the 25th International Conference on
Machine Learning (ICML’08). ACM, 2008.

[12] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

[13] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning
Research, 11:625–660, 2010.

[14] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization networks and support
vector machines. Advances in Computational Mathematics, 13(1):1–50, 2000.

[15] Tony Ezzat, Jake Bouvrie, and Tomaso Poggio. AM-FM demodulation of spectrograms using lo-
calized 2D max-Gabor analysis. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’07). IEEE, 2007.

[16] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, 1980.

56

[17] Martin Giese and Tomaso Poggio. Neural mechanisms for the recognition of biological movements.
Nature Reviews Neuroscience, 4:179–192, 2003.

[18] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS’10). Society for Artificial Intelligence and Statistics, 2010.

[19] Ian Goodfellow, Quoc V. Le, Andrew Saxe, Honglak Lee, and Andrew Y. Ng. Measuring invariances
in deep networks. In Advances in Neural Information Processing Systems 22 (NIPS’09). MIT Press,
2009.

[20] Raia Hadsell, Pierre Sermanet, Marco Scoffier, Ayse Erkan, Koray Kavackuoglu, Urs Muller, and
Yann LeCun. Learning long-range vision for autonomous off-road driving. Journal of Field Robotics,
26(2):120–144, February 2009.

[21] Bernd Heisele, Thomas Serre, Massimiliano Pontil, Thomas Vetter, and Tomaso Poggio. Categoriza-
tion by learning and combining object parts. In Advances in Neural Information Processing Systems
14 (NIPS’01). MIT Press, 2001.

[22] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, 2006.

[23] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507, July 2006.

[24] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989.

[25] David Hubel and Torsten Wiesel. Receptive fields and functional architecture of monkey striate
cortex. The Journal of Physiology, 195(1):215–243, 1968.

[26] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In Proceedings of the International Conference on
Computer Vision (ICCV’09). IEEE, 2009.

[27] Hueihan Jhuang, Thomas Serre, Lior Wolf, and Tomaso Poggio. A biologically inspired system for
action recognition. In Proceedings of the International Conference on Computer Vision (ICCV’07).
IEEE, 2007.

[28] Koray Kavukcuoglu, Marc’Aurelio Ranzato, Rob Fergus, and Yann LeCun. Learning invariant fea-
tures through topographic filter maps. In Proceedings of the International Conference on Computer
Vision and Pattern Recognition (CVPR’09). IEEE, 2009.

[29] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An empir-
ical evaluation of deep architectures on problems with many factors of variation. In Proceedings of
the 24th International Conference on Machine Learning (ICML’07). ACM, 2007.

[30] Nicolas Le Roux and Yoshua Bengio. Deep belief networks are compact universal approximators.
Neural Computation (to appear), 2010.

[31] Yann LeCun, Bernard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,
and Larry Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4):541–551, 1989.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

57

[33] Yann LeCun, Fu-Jie Huang, and Leon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In Proceedings of the International Conference on Computer Vision
and Pattern Recognition (CVPR’04). IEEE, 2004.

[34] Yann LeCun, Urs Muller, Jan Ben, Eric Cosatto, and Beat Flepp. Off-road obstacle avoidance
through end-to-end learning. In Advances in Neural Information Processing Systems 18 (NIPS’05).
MIT Press, 2005.

[35] Daniel Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factoriza-
tion. Nature, 401(6755):788–791, October 1999.

[36] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding algorithms. In
Advances in Neural Information Processing Systems 19 (NIPS’06). MIT Press, 2006.

[37] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the
26th International Conference on Machine Learning (ICML’09). ACM, 2009.

[38] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y. Ng. Unsupervised feature learning for
audio classification using convolutional deep belief networks. In Advances in Neural Information
Processing Systems 22 (NIPS’09). MIT Press, 2009.

[39] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman. Discriminative
learned dictionaries for local image analysis. In Proceedings of the International Conference on
Computer Vision and Pattern Recognition (CVPR’08). IEEE, 2008.

[40] Piotr Mirowski, Yann LeCun, Deepak Madhavan, and Ruben Kuzniecky. Comparing SVM and
convolutional networks for epileptic seizure prediction from intracranial EEG. In Proceedings of the
IEEE International Workshop on Machine Learning and Signal Processing (MLSP’08). IEEE, 2008.

[41] Piotr Mirowski, Deepak Madhavan, Yann LeCun, and Ruben Kuzniecky. Classification of patterns of
EEG synchronization for seizure prediction. Clinical Neurophysiology, 120(11):1927–1940, November
2009.

[42] Andriy Mnih and Geoffrey Hinton. A scalable hierarchical distributed language model. In Advances
in Neural Information Processing Systems 21 (NIPS’08). MIT Press, 2008.

[43] Jim Mutch, Ulf Knoblich, and Tomaso Poggio. CNS: A GPU-based framework for simulating
cortically-organized networks. Technical Report MIT-CSAIL-TR-2010-013, Massachusetts Institute
of Technology, 2010.

[44] Jim Mutch and David Lowe. Multiclass object recognition with sparse, localized features. In Pro-
ceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR’06).
IEEE, 2006.

[45] Nicolas Pinto, David Doukhan, James DiCarlo, and David Cox. A high-throughput screening ap-
proach to discovering good forms of biologically inspired visual representation. PLoS Computational
Biology, 5(11):e1000579, November 2009.

[46] Tomaso Poggio and Steve Smale. The mathematics of learning: Dealing with data. Notices of the
American Mathematical Society, 50(5):537–544, 2003.

[47] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised learning us-
ing graphics processors. In Proceedings of the 26th International Conference on Machine Learning
(ICML’09). ACM, 2009.

58

[48] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient learning of
sparse representations with an energy-based model. In Advances in Neural Information Processing
Systems 19 (NIPS’06). MIT Press, 2006.

[49] Fred Rieke, David Warland, Rob de Ruyter van Steveninck, and William Bialek. Spikes: Exploring
the Neural Code. MIT Press, 1999.

[50] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex.
Nature Neuroscience, 2(11):1019–1025, November 1999.

[51] Raúl Rojas. Networks of width one are universal classifiers. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN’03), 2003.

[52] Ruslan Salakhutdinov and Geoffrey Hinton. Learning a nonlinear embedding by preserving class
neighbourhood structure. In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS’07). Society for Artificial Intelligence and Statistics, 2007.

[53] Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors. Advances in Kernel
Methods: Support Vector Learning. MIT Press, Cambridge, MA, USA, 1999.

[54] Thomas Serre, Aude Oliva, and Tomaso Poggio. A feedforward architecture accounts for rapid
categorization. Proceedings of the National Academy of Sciences, 104(15):6424–6429, 2007.

[55] Thomas Serre, Lior Wolf, and Tomaso Poggio. Object recognition with features inspired by visual
cortex. In Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR’05). IEEE, 2005.

[56] Steve Smale, Lorenzo Rosasco, Jake Bouvrie, Andrea Caponnetto, and Tomaso Poggio. Mathematics
of the neural response. Foundations of Computational Mathematics, 10(1):67–91, 2010.

[57] Ilya Sutskever and Geoffrey Hinton. Deep, narrow sigmoid belief networks are universal approxima-
tors. Neural Computation, 20(11):2629–2636, 2008.

[58] Srinivas Turaga, Joseph Murray, Viren Jain, Fabian Roth, Moritz Helmstaedter, Kevin Briggman,
Winfried Denk, and H. Sebastian Seung. Convolutional networks can learn to generate affinity graphs
for image segmentation. Neural Computation, 22(2):511–538, 2010.

[59] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th International
Conference on Machine Learning (ICML’08). ACM, 2008.

[60] Grace Wahba. Spline Models for Observational Data. Society for Industrial and Applied Mathemat-
ics, 1990.

[61] Andre Wibisono. Generalization and properties of the neural response. Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2010.

[62] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid matching using
sparse coding for image classification. In Proceedings of the International Conference on Computer
Vision and Pattern Recognition (CVPR’09). IEEE, 2009.

[63] Guoshen Yu and Jean-Jacques Slotine. Fast wavelet-based visual classification. In Proceedings of
the International Conference on Pattern Recognition (ICPR’08). IEEE, 2008.

59

