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Abstract. The ATLAS EventIndex currently runs in production in order to build
a complete catalogue of events for experiments with large amounts of data. The
current approach is to index all final produced data files at CERN Tier0, and at
hundreds of grid sites, with a distributed data collection architecture using Ob-
ject Stores to temporarily maintain the conveyed information, with references to
them sent with a Messaging System. The final backend of all the indexed data is
a central Hadoop infrastructure at CERN; an Oracle relational database is used
for faster access to a subset of this information. In the future of ATLAS, instead
of files, the event should be the atomic information unit for metadata, in or-
der to accommodate future data processing and storage technologies. Files will
no longer be static quantities, possibly dynamically aggregating data, and also
allowing event-level granularity processing in heavily parallel computing envi-
ronments. It also simplifies the handling of loss and or extension of data. In this
sense the EventIndex may evolve towards a generalized whiteboard, with the
ability to build collections and virtual datasets for end users. This proceedings
describes the current Distributed Data Collection Architecture of the ATLAS
EventIndex project, with details of the Producer, Consumer and Supervisor en-
tities, and the protocol and information temporarily stored in the ObjectStore.
It also shows the data flow rates and performance achieved since the new Ob-
ject Store as temporary store approach was put in production in July 2017. We
review the challenges imposed by the expected increasing rates that will reach
35 billion new real events per year in Run 3, and 100 billion new real events
per year in Run 4. For simulated events the numbers are even higher, with 100
billion events/year in run 3, and 300 billion events/year in run 4. We also out-
line the challenges we face in order to accommodate future use cases in the
EventIndex.

1 Introduction

The ATLAS EventIndex [1] is a catalog of real and simulated events, in all processing stages,
for satisfying several use cases. A small quantity of metadata per event is indexed and col-
lected worldwide, including event identifiers (run and event numbers, trigger stream, lumi-
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nosity block), the online trigger pattern (L1,L2,EF/HLT), and references to the files that con-
tain the event in the different processing step. Users can select single events from billions of
entries depending on selected constraints. Automatic systems can do production consistency
checks, including duplicate event checkings across different files and datasets, or compute the
overlaps in derivation framework detecting common events across different data files. Other
analytic use cases include counting or give an event list based on a trigger selection.

2 Distributed Data Collection Architecture

The Data Collection task is in charge of collecting all indexed data and forward it to the
Data Storage Services. The current distributed producer/consumer architecture based on a
Object Store was defined in 2016 [2] and is now being used in production since July 2017.
In this architecture, as depicted in Figure 1, Producers run at CERN Tier-0 and at Grid sites
worldwide, indexing input data files with an Athena Python transformation, and storing this
index in an Object Store. In addition small control messages are sent to a supervisor with
the ActiveMQ messaging Server. The Supervisor runs centrally at CERN, and controls all
the processes and validates the indexed data at the desired granularity, currently the dataset
level. It notifies the Consumers about valid unique data ready to be ingested to Hadoop
HDFS, where the data is finally available to users and other systems. A web application
provides information about all the operations and the current state of the Supervisor and the
data collection process.

Figure 1: Distributed Data Collection Architecture

2.1 Performance and results

Since the Object Store method was put in production, almost 2 million Producer jobs where
run at CERN Tier-0 and submitted to over 100 sites distributed worldwide. The index data
is collected by our system, but also other statistics per Producer like its identifiers (including
Tier-0 or Panda job Id, and task and attempt numbers), the start and end execution time, the
input dataset name and the number of input files, and the number of indexed events and the
output size of the index data (including the raw size and the actual size as stored in the Object

2

EPJ Web of Conferences 214, 04010 (2019)	 https://doi.org/10.1051/epjconf/201921404010
CHEP 2018



nosity block), the online trigger pattern (L1,L2,EF/HLT), and references to the files that con-
tain the event in the different processing step. Users can select single events from billions of
entries depending on selected constraints. Automatic systems can do production consistency
checks, including duplicate event checkings across different files and datasets, or compute the
overlaps in derivation framework detecting common events across different data files. Other
analytic use cases include counting or give an event list based on a trigger selection.

2 Distributed Data Collection Architecture

The Data Collection task is in charge of collecting all indexed data and forward it to the
Data Storage Services. The current distributed producer/consumer architecture based on a
Object Store was defined in 2016 [2] and is now being used in production since July 2017.
In this architecture, as depicted in Figure 1, Producers run at CERN Tier-0 and at Grid sites
worldwide, indexing input data files with an Athena Python transformation, and storing this
index in an Object Store. In addition small control messages are sent to a supervisor with
the ActiveMQ messaging Server. The Supervisor runs centrally at CERN, and controls all
the processes and validates the indexed data at the desired granularity, currently the dataset
level. It notifies the Consumers about valid unique data ready to be ingested to Hadoop
HDFS, where the data is finally available to users and other systems. A web application
provides information about all the operations and the current state of the Supervisor and the
data collection process.

Figure 1: Distributed Data Collection Architecture

2.1 Performance and results
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Store). These control messages and statistics are received and maintained in a local database
by the Supervisor, which then we can use to produce the numbers and graphics presented in
the following subsections, which summarizes one year of operation and statistics collection.

2.1.1 Event processing rates

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

200

220

#
E

v
e
n
ts

 [
M

ill
io

n
s
]

Events over days Tier 0

0 50 100 150 200 250 300 350
Days

0

2000

4000

6000

8000

10000

12000

14000

#
E

v
e
n
ts

 [
M

ill
io

n
s
]

Events over days Tier 0 (cumulative)

Figure 2: Tier-0 processed events
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Figure 3: Grid processed events

The main indicator that the overall distributed data collection system is performing cor-
rectly is throughput, measured in the rate of indexed events. In the following Figures we can
see the number of events indexed and stored in our system during last year. Figure 2 shows
the number of events indexed per day at CERN Tier-0, while Figure 3 represents the number
of events indexed per day at all ATLAS grid sites. The x-axis represents time in number of
days since the start, so basically 1 year (350 days) of data taking. The y-axis represents the
number of events indexed, in millions. Each figure is divided in two frames, so we can see
the blue bars in the upper part of the figure that represent the number of events indexed each
day, and in the lower part of the figure we can see in green the accumulated number of events
until that day. The red line in Figure 2 represents the mean, accounting for around 60 million
events indexed per day at CERN Tier-0. There are periods of time when there are no jobs run-
ning at Tier-0 for different reasons (no production, maintenance, etc), and others with higher
production peaks, reaching 220 million events processed in one day. The green filled graph
provides the total number of events indexed at the day 350 (June 2018) which is over 13.5
billion events. Correspondingly, in the Figure 2 representing the Grid production, we can see
the mean of indexed events is higher, about 280 million events every day on the ATLAS Grid
sites. There are peaks of 3500 million events in a single day, and the total indexed over last
year was about 91 billion events. The totals summing CERN Tier-0 and all Grid sites account
for 105 billion events indexed during last year with the new Object Store system, with peaks
of 3.5 billion events indexed in a single day.

2.1.2 Object Store rates

The CERN Object Store based on Ceph[3] is used as intermediary storage where the Produc-
ers submit their payload when they finish the indexing phase of one or more input files. From
there, Consumers can get the intermediate results to consolidate them at the CERN Hadoop
instance at the desired granularity, usually at the dataset level. Therefore the Object Store is
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an important component and in this section we will show the object creation rates and amount
of space that we are using. Figure 4 shows the object creation rate by the Producers and the
red line representing the mean of 5.6k objects created per day, with peaks of 44k objects
created in one day. A total of 2 million objects were created so far. In Figure 5 we show the
objects size, so the y-axis represents the amount of data in objects created (in GiB) during a
particular day in the blue bars, and the mean of data created per day is 15 GiB, represented
by the red line. The total amount of data created on CERN Ceph was over 5 TiB at the end of
last day, corresponding to June 2018. It must be noted that the data is a factor 10 compressed
related to the original event index information. Figure 6 represents a histogram of the object
size, so we can obtain more information on how the amount of data is distributed among the
different stored objects. The x-axis represents the size of the object (in MiB) and the y-axis
the frequency or the number of occurrences. The mean object size is 2.6 MiB, and 99 % of
the objects are less than 15 MiB. There are some bigger objects, being the biggest one 670
MiB in size.
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Figure 4: Object creation in time
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Figure 5: Object size in time
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Figure 6: Objects size histogram Figure 7: Hadoop(HDFS) storage usage

2.1.3 Ingestion rates

Ingestion is performed by the Consumers, that read the information from one or more valid
objects from the Object Store and consolidate final data in the Hadoop HDFS Storage. The
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2.1.3 Ingestion rates

Ingestion is performed by the Consumers, that read the information from one or more valid
objects from the Object Store and consolidate final data in the Hadoop HDFS Storage. The

granularity of the ingestion is determined by the Supervisor, which currently waits until a
complete dataset is indexed and temporarily stored at the Object Store. At this point the
Supervisor signals the Consumers which objects contains unique valid data. Currently around
40% of the datasets are contained in a single object. Most of the datasets occupy less than
75 MiB, and the biggest one comprises 8000 objects and around 7 GiB. A single consumer
can ingest in the order of 15k events/s and we can scale horizontally increasing the number
of Consumers. The data is consolidated at the dataset level writing a single HDFS file per
dataset in a directory named after the container. This reduces the total number of written files
compared with the previous approach. In Figure 7 we can see the current event index data
stored in Hadoop HDFS, summing up the data indexed for all campaigns. It contains 37 TiB
of indexed events data in Hadoop in a compressed mapfile format, which corresponds to the
original 167 TB before compression. From this data, 31 TiB correspond to real data, and 6
TiB from Montecarlo simulated data.

3 Evolution for the Next Generation EventIndex

During this year 2018 the recording rate for all ATLAS processes was measured up to 30
billion events/day (up to 350 Hz on average). In the future Run-3 that starts in 2021 there will
be an increase of trigger rates, so we need to scale at least half an order of magnitude. Beyond
the future increasing demanding rates, there are other guidelines that will drive the evolution
of the EventIndex. The first driver is improving the current implementation approach. One is-
sue in this area is how different incarnations of the same event in each processing step (RAW,
ESD, AOD, DAOS, NTUP) is represented in the EventIndex. Currently every reprocessing is
physically stored in different Hadoop HDFS files. This is due to the organization of storage
by dataset name, that in fact contains the processing step type. A guideline is to explore
approaches and technologies that ease the procedure of maintaining one and only one logical
record per event. A second driver for the evolution of the EventIndex is the inclusion of new
functionality. In this area we are aiming to include support for Virtual Datasets, created either
explicitly (providing a collection of event identifiers) or implicitly (a selection based on some
other collection or event attributes). In addition it would be useful to have the possibility to
label individual events with key-value attributes, either by a process or by a final user.

3.1 New Backend solution: Kudu

Searching new solutions for the optimization and unification of data storage for the different
use cases of the EventIndex, we have first decided to explore new backend solutions. Apache
Kudu[4] is a new columnar-based storage that allows fast insertions and retrieval, and fills
the gap of applicability between HDFS and HBase. In terms of the pace of Data, HDFS is
designed for storing unchanging of append-only data, but Kudu allows frecuent updates and
fast changing data, without reaching HBase performance on real-time changing updates. In
addition Kudu allows Fast analytics ouperforming HBase, without reaching HDFS hability
to do fast scans on static data only. In particular for our EventIndex application, we would
benefit from two main characteristics. First, the unification of the data for all use cases which
is currently not possible in our implementation. Currently, all EventIndex data is stored in
HDFS, which provides a reliable and safe method to maintain them. Use cases that involve
searching across a large amount of data are done in a performant way. This includes searching
for event duplicates, calculate the overlap matrix of events or specific triggers across different
dataset derivations, or any other analytic workload. On the other hand, HDFS is not well
suited for use cases that involve fast access to a small and defined amount of data. For
example for event picking, or selecting the location of a particular event among billions,
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we should tackle the problem with a different approach. In this case a small quantity of
data is replicated in HBase, including the event identification and the GUID of the file in
the grid. HBase is performant enough to provide real-time access to such information. The
disadvantage is the non-negligible amount of replicated data, and the cost in the management
of the life cycle of this replicated data, including the copy and deletion of no-longer valid data
to be synchronized with the main data in the HDFS repository. In addition more data is copied
outside Hadoop to Oracle, to provide fast dataset discovery. With Kudu we aim to unify the
data store to solve the random access and analytic use cases, effectively reducing the amount
of total data stored and avoiding complex and error-prone synchronization procedures. The
second benefit would arise from the fact that in Kudu, we can make related data (reprocessing
of the same events) sit close to each other on disk. On Kudu, the data organization is done
in tables that have a defined schema, with primary keys and partitions defined with a subset
of the keys. It is not possible to define foreign keys like in traditional relational databases,
but this is not a constraint for our use cases. The ingestion and query scanning are distributed
amontg the servers holding the partitions, called tablets. This improves performance and
alsoavailability, as data is also replicated in several tablets on different servers. A careful key
and partition schema definition for the EventIndex is being designed[5], with the aim to allow
that row entries that define different reprocessings of the same data sit in the same partition
and close in disk storage. This fact improves navigation through locality, and also benefits
from better compression ratios of the same data due to this locality. More details about the
implementation on Kudu and the tests that we have been performing related with the Data
Collection task can be seen in Ref. [5].

4 Summary

The EventIndex Distributed Data Collection is currently running in production for the Run-
2 of the ATLAS Experiment, indexing and collecting billions of events worldwide. The
system was redesigned and implemented after some congestion problems detected with the
messaging system, that could compromise scaling up the data rates for future years. The
new Object Store based implementation was put in production in 2017, and during last year
we have indexed 300 million events per day. We have improved the system in other areas
compared with the previous implementation. Producer payloads can now be encoded in a
single object, that is temporary stored in the Object Store for consumption. The current
binary data encoding is more compact, and can reduce the amount of data up to a factor
10. This reduces the amount of data transported, temporarily stored, and finally consolidated
in Hadoop HDFS. This possibility, in addition of the compression of the previously loaded
data into HDFS, has meant a reduction of the space used within the EventIndex project. The
Supervisor can select unique validated data, without consuming duplicate data into HDFS and
reducing the need of extra cleaning steps on the Hadoop cluster. The consumption process
has also seen improved performance, with no blockings detected as it was occurring with
the messaging implementation in some situations. There are future challenges regarding the
increasing production rates, and the use cases to be solved. The current work is focused on
new storage technologies to support fast insertion, and to reduce data replication, unifying
low latency random access, and analytic use cases. We performed first ingestion test on Kudu
with good results, suggesting that it is a promising backend for the future evolution of the
EventIndex project.
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