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Abstract. Human-robot collaboration is a key concept in modern intelligent manufacturing. Traditional 
human-robot interfaces are quite difficult to control and require additional operator training. The 
development of an intuitive and native user interface is important for the unobstructed interaction of human 
and robot in production. The control system of collaborative robotics described in the work is focused on 
increasing productivity, ensuring safety and ergonomics, minimize the cognitive workload of the operator in 
the process of human-robot interaction using contactless recognition of human actions. The system uses 
elements of technical vision to get of input data from the user in the form of gesture commands. As a set of 
commands for control collaborative robotic complexes and training the method proposed in the work, we 
use the actions from the UTD-MHAD database. The gesture recognition method is based on deep learning 
technology. An artificial neural network extracts the skeleton joints of the human and describes their 
position relative to each other and the center of gravity of the whole skeleton. The received descriptors feed 
to the input of the classifier, where the assignment to a specific class occur. This approach allows reducing 
the error from the redundancy of the data feed at the input of the neural network. 

1 Introduction  
In recent years, human-robot collaboration (HRC) has 
become a key technology of intelligent manufacturing. 
Conception HRC allows combining human-operator and 
the robot in one workspace over common tasks, instead 
of separating the responsibilities of them for safety 
reasons. These robots are called collaborative robots or 
cobots. According to the international standard ISO/TS 
15066:2016 [1], cobots are robots designed to work 
together with people within a specific workspace, 
equipped with visual and speech recognition. 

HRC combines the interaction of human and robot 
into a single intelligent system, and as a result, 
effectively organize flexible methods of automation and 
reconfiguration of production processes [2]. Human 
interaction with robotic systems reaches a new level and 
strives to become similar to human-human 
communication due to the development of speech, 
image, and video processing technologies.  

Currently, human-robot interaction interfaces can be 
divided into two categories: 

- remote interfaces using gestures and voice; 
- physical interfaces, such as pendant, teach pendant, 

tactile interfaces, etc. 
Teach pendant is the primary interface between 

humans and robots in traditional automated 

manufacturing. This control device is an information 
screen and a specific set of buttons for control. 
Generally, the pendant has an intricate layout of buttons 
to provide a wide range of functionality, and the 
graphical interface varies among different manufacturing 
companies. It is concerning, so any operation of the 
robot requires additional operator training.  

Gesture control may assume the use of additional 
contact controls, such as gloves, bracelets, and other 
body sensors. These devices track the position of the 
user's hand in real-time and provide the ability to send a 
control command to the robot through natural 
movements. 

However, gloves prevent the user from moving and 
are uncomfortable to wear. Also, using that device is 
often limited in an industrial context, because gloves and 
motion capture devices often require calibration before 
use, which significantly increases preparation time. 
Wearable devices also require frequent maintenance due 
to wear, which increases the cost. 

The rapid development of technical vision 
technologies and their implementation in various 
manufacturing sectors makes it relevant to use such 
technologies in the development of human-robot 
interaction systems using non-contact recognition of 
human actions. 
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Over the past decade, many studies have been 
presented on the methods of non-contact recognition of 
human actions. The variety and complexity of 
recognition problems, the specificity of the features, and 
the actions do not allow one universal approach to 
solving them to be implemented. Most methods have 
several drawbacks and require significant time and 
computational resources. 

Many methods consider only the contents of the 
frames and do not take into account the time features of 
the video.  

For practical purposes, methods implemented based 
on neural networks are especially popular [3-6]. In some 
situations, recognition is performed by minimizing the 
distance to the standard (the principle of nearest 
neighbors). Algorithms that perform the analysis of 
objects' features have acceptable results for simple tasks, 
but the recognition of three-dimensional scenes requires 
exceptionally large computing power, and the quality of 
the results is insufficient. 

Spatio-temporal “points of interest” or “local 
features” are those points where the local neighborhood 
has significant differences, both in the spatial and 
temporal domains. Most local space-time descriptors are 
extensions of functions built based on singular points of 
two-dimensional space into a three-dimensional region. 
These methods record changes in motion in spatial and 
temporal dimensions in the surround of points of interest 
[7]. Methods based on calculations of the spatio-
temporal local features have the stability to scaling, to 
the weak rotation of the image. There are difficulties 
when extracting the Spatio-temporal dependence, 
instability to images having a complex structure, and 
overflowing background. 

A global descriptor is a feature vector obtained by 
analyzing the entire image as a whole. Typically, in such 
methods, each point in the image contributes to the 
descriptor value. One of the methods for constructing 
descriptors for a video sequence is the global video 
descriptor (Global Video Descriptor) [8]. This approach 
works well with video sequences containing simple sets 
of actions. The method's performance decreases when 
occlusions occur, the background is full, or several 
objects appear in the frame.  

Texture features such as LBP-TOP [9-11] are used in 
the recognition of human actions. The use of that 
descriptors requires an additional pre-processing step, 
which increases the computational cost. 

The control system based on technical vision is non-
contact in nature, which means that it is not invasive for 
the movement of the user and the process associated 
with it. Also, the current state of such systems can 
support tracking the position of the human body, which 
allows you to execute gesture commands or enter body 
movements. To make full use of human skills when 
interacting with a collaborative robot, it is necessary to 
provide informative input data for the robot and intuitive 
commands for the operator. Thus, some collaborative 
robotic system should be convenient for the operator and 
allow the novice user to interact without any expert 
knowledge. 

The development of a new system of human-robot 
interaction using gestures or speech, or augmented 
reality, is a very relevant task and allows to avoid the 
disadvantages of traditional means of interaction, such as 
keyboards, mice, touch pendant and learning panels. 

The purpose of this work is to develop a control 
system for collaborative robotic complexes to increase 
productivity, safety, and ergonomics in the process of 
human-robot interaction using non-contact recognition 
of human actions. 

2 Robot control system 
The developed control system for the robotic complex is 
an interface of interaction between a person and a robot, 
which receives commands from the operator in the form 
of gestures. The system uses elements of technical vision 
to contactless receive input from the user. 

The architecture of the robot control system is shown 
in Figure 1, which consists of an industrial robot, a data 
processing unit, an IP stack (TCP/UDP), and a robot 
control controller. 

The data processing unit consists of software 
(software). It is a central user interface control element 
that receives input signals from visual information 
sensors and generates input data for a decoder program 
in the robot controller. The controller receives a signal 
from the software of the data processing unit via the IP 
stack and starts an industrial robot to perform actions. 

 

Fig. 1. Robot control system. 

It is supposed to use a specialized microcontroller 
with the RISC-V computing core optimized for vector 
and floating-point operations as a hardware platform. 
This microcontroller is under development at the State 
Engineering Center “MST” STANKIN” jointly with the 
Scientific-manufacturing complex “Technological 
centre”.  

When we work with neural networks, especially deep 
ones, our network itself can occupy hundreds of 
megabytes. For example, the memory requirements of 
object detection networks are as follows: 

model input 
size 

param 
memory 

feature 
memory 

rfcn-res50-pascal 600 x 
850 122 MB 1 GB 

rfcn-res101-pascal 600 x 
850 194 MB 2 GB 
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ssd-pascal-vggvd-300 300 x 
300 100 MB 116 MB 

ssd-pascal-vggvd-512 512 x 
512 104 MB 337 MB 

ssd-pascal-mobilenet-
ft 

300 x 
300 22 MB 37 MB 

faster-rcnn-vggvd-
pascal 

600 x 
850 523 MB 600 MB 

In the case of using ASIC, which in essence is an 
accelerator combined with the RISK-V core, there are 
the following advantages and disadvantages: 

Pros: 
1. The lowest chip cost compared to all previous 

solutions. 
2. Lowest power consumption per unit of operation. 
3. Quite high speed (including, if desired, a record). 
Minuses: 
4. Very limited options for updating the network and 

logic. 
5. Highest development cost compared to all previous 

solutions. 
6. Using ASIC is cost-effective mainly for large runs. 
The choice of this architecture is due to the presence 

of an open set of instructions, which already contains, as 
an extension, tools for working with vector data, such as 
32 separate vector registers v0 - v31, which are scalable 
sections of memory (Figure 2). 

 

Fig. 2. The structure of vector registers. 

In addition, instructions for working with vector 
registers, such as vmul, vadd, are added in this 
extension.  

The open architecture allows the use of such 
advanced instruction sets and add specialized hardware 
computers (Figure 3). 

 
Fig. 3. Structure of the interaction of a neural accelerator and 
the RISC-V core. 

Microcontrollers of the RISC-V family are 
characterized by scalable architecture, which in some 
cases allows them to approach the DSP microprocessors 
in computational capabilities. 

3 The human gesture recognition 
algorithm  
To generate input commands to the robot controller, an 
algorithm for recognizing the actions of human gestures 
based on previously prepared high-level skeleton data 
based on a neural network is developed. The use of 
human skeleton data can reduce the error of redundant 
information. 

The coordinates of the three-dimensional joints of the 
human-operator are calculated based on the processing 
of depth sensor data. These include the neck, right 
shoulder, right elbow, right wrist, left shoulder, left 
elbow, and left wrist (Figure 4).  

To prepare the data at the input of the neural 
network, coordinates are normalized with respect to 
body length and relative to the center of gravity. The 
method of recognizing actions based on the construction 
of the human skeleton is described in detail in [13–15]. 

The length of the body (6) is calculated as the sum of 
the lengths of the individual parts: head (1), torso (2), leg 
from the thigh to the knee and from the knee to the ankle 
(3, 4), the maximum length of the right or left leg (5) is 
selected: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒 = �(𝑗𝑗10(𝑥𝑥) − 𝑗𝑗9(𝑥𝑥))2 + (𝑗𝑗10(𝑦𝑦) − 𝑗𝑗9(𝑦𝑦))2      (1) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �(𝑗𝑗8(𝑥𝑥) − 𝑗𝑗7(𝑥𝑥))2 + (𝑗𝑗8(𝑦𝑦) − 𝑗𝑗7(𝑦𝑦))2         (2) 

Lengthleg_right = �(j3(x) − j2(x))2 + (j3(y) − j2(y))2 +
�(j2(x) − j1(x))2 + (j2(y) − j1(y))2     (3) 

Lengthlegleft = �(j4(x) − j5(x))2 + (j4(y) − j5(y))2 +
�(j5(x) − j6(x))2 + (j5(y) − j6(y))2     (4) 

Lengthleg = max (Lengthleg_right, Lengthleg_left)            (5) 

Lengthbody = Lengthhead + Lengthtorso + Lengthleg    (6) 

where 𝑗𝑗𝑛𝑛(𝑥𝑥) –the 𝑥𝑥-coordinate of the 𝑛𝑛-joint, 𝑗𝑗𝑛𝑛(𝑦𝑦) – the 
𝑦𝑦-coordinate of the 𝑛𝑛-joint, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎℎ𝑒𝑒𝑒𝑒𝑒𝑒  is the length of 
the head, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the length of the torso, 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡  is the length right leg, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  - 
the length of the left leg, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑙𝑙𝑙𝑙𝑙𝑙 - the maximum 
length of the leg, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  - the length of the whole 
body. 

The center of gravity is calculated by the formula (7, 
8): 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥 = ∑ 𝑗𝑗𝑛𝑛(𝑥𝑥)
16𝑛𝑛  (7) 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦 = ∑ 𝑗𝑗𝑛𝑛(𝑦𝑦)
16𝑛𝑛  (8) 
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Fig. 4. An example of building a skeleton for an image from 
the Leeds Sports Pose Dataset test kit [12]. 

At the next stage, the coordinates are normalized 
with respect to the body length and the center of gravity 
(9, 10). 

 𝑖𝑖𝑛𝑛(𝑥𝑥) = 𝑗𝑗𝑛𝑛(𝑥𝑥)− 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 (9) 

 𝑖𝑖𝑛𝑛(𝑦𝑦) = 𝑗𝑗𝑛𝑛(𝑦𝑦)− 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 10) 

where 𝑖𝑖𝑛𝑛(𝑥𝑥) – the 𝑥𝑥–normalized coordinate of the n–
joint, 𝑖𝑖𝑛𝑛(𝑦𝑦) – the 𝑦𝑦–normalized coordinate of the n – 
joint. 

Also, information about the distance between certain 
joints, which can characterize the features of the 
presented posture, namely, the distance from the wrist to 
the shoulder (11,12) and from the ankle to the hip 
(13,14), is also fed to the neural network entrance. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑟𝑟 =
�(𝑗𝑗13(𝑥𝑥) − 𝑗𝑗11(𝑥𝑥))2 + (𝑗𝑗13(𝑦𝑦) − 𝑗𝑗11(𝑦𝑦))2 (11) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑙𝑙 =
�(𝑗𝑗14(𝑥𝑥) − 𝑗𝑗16(𝑥𝑥))2 + (𝑗𝑗14(𝑦𝑦) − 𝑗𝑗16(𝑦𝑦))2 (12) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑖𝑖𝑖𝑖−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −𝑟𝑟 =
�(𝑗𝑗3(𝑥𝑥) − 𝑗𝑗1(𝑥𝑥))2 + (𝑗𝑗3(𝑦𝑦) − 𝑗𝑗1(𝑦𝑦))2 (13) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑖𝑖𝑖𝑖−𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 −𝑙𝑙 =
�(𝑗𝑗4(𝑥𝑥) − 𝑗𝑗6(𝑥𝑥))2 + (𝑗𝑗4(𝑦𝑦) − 𝑗𝑗6(𝑦𝑦))2 (14) 

The data described above is fed to the input of a 
neural network, which has 34 inputs. Since 8 types of 
actions were used to test the network, the output layer is 
represented by 8 neurons. 

During the experiments, various configuration 
options for the neural network were considered. The best 
result was achieved by using a perceptron consisting of 
34 neurons on the input layer (logsig activation 
function), 62, 32 and 16 neurons on three hidden layers 

(logsig activation function) and three neurons on the 
output layer (linear activation function). 

4 Investigation of the human gesture 
recognition algorithm 
The developed human gesture recognition algorithm is 
tested on the UTD-MHAD dataset [16]. The presented 
modification of the neural network allows you to get the 
correct recognition result in 85.5% of cases. 

5 Conclusion  
It was developed a control system for collaborative 

robotic systems to increase productivity, safety, and 
ergonomics in the process of human-robot interaction 
based on contactless recognition of human actions. In 
developing the gesture recognition method, deep 
learning technology was used to identify the main points 
of the skeleton, and to analyze their relative positions, 
which allows tracking multiple hypotheses for various 
gesture recognition scenarios in the interaction of a 
person and a robot. 
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