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Abstract. HEPCloud is rapidly becoming the primary system for 
provisioning compute resources for all Fermilab-affiliated experiments. In 
order to reliably meet the peak demands of the next generation of High 
Energy Physics experiments, Fermilab must plan to elastically expand its 
computational capabilities to cover the forecasted need. Commercial cloud 
and allocation-based High Performance Computing (HPC) resources both 
have explicit and implicit costs that must be considered when deciding 
when to provision these resources, and at which scale. In order to support 
such provisioning in a manner consistent with organizational business 
rules and budget constraints, we have developed a modular intelligent 
decision support system (IDSS) to aid in the automatic provisioning of 
resources spanning multiple cloud providers, multiple HPC centers, and 
grid computing federations. In this paper, we discuss the goals and 
architecture of the HEPCloud Facility, the architecture of the IDSS, and 
our early experience in using the IDSS for automated facility expansion 
both at Fermi and Brookhaven National Laboratory. 

1 Introduction 

HEPCloud is becoming the scientific gateway to computing resources for all Fermilab-
affiliated experiments and is rapidly becoming the primary system for provisioning the 
resources for all Fermilab-affiliated experiments. This provisioning is responsible for 
managing time allocations and monetary budget usage. It spans facilities including the 
High Performance Computing (HPC) centers such as Cori at the National Energy Research 
Scientific Computing Center (NERSC) and commercial clouds like Google Compute 
Engine (GCE) and Amazon Web Services (AWS). As part of the Fermilab HEPCloud 
project [1], we have been constructing an intelligent decision support system (IDSS) [2]. 
Our IDSS, known as the Decision Engine [3, 4], provides the automation of requests for 
computing resource allocations across all participating experiments and affiliated facilities. 
An overall goal of the Decision Engine (DE) is to use both administration-defined and 
management-defined policies to create resource scheduling requests on behalf of the 
HEPCloud facility. The DE is responsible for ensuring that policies are applied in a 
reliable, traceable and consistent manner. The policies that are carried out ultimately result 
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in resource requests, and ensure that these requests match incoming job requirements. 
Included in the DE is a software framework with stages for acquiring data, performing data 
analytics, and generating decisions using an inference engine. A knowledge base is used to 
manage all data made available within the running system. Careful attention is paid to the 
system-wide configuration coherency, addressing the needs of all user groups. 

In this paper we describe the goals and high level architecture of the HEPCloud facility, 
architecture of the DE and our early experience in using the DE for automated facility 
expansion at Fermi and Brookhaven National Laboratory.  

2 The HEPCloud Facility 

The Fermilab scientific computing staff supplies software and services to support the 
physics program and provide essential resources for leading high energy physics (HEP) 
experiments including US-CMS [5], NOvA [6], g-2 [7], and MicroBooNE [8], along with 
future experiments DUNE and mu2e. These resources include several types of dedicated 
and shared resources (CPU, disk, hierarchical storage, including disk cache, tape, tape 
libraries), for both data intensive and compute intensive scientific work. Support for these 
resources is currently limited to resources provisioned by and hosted at Fermilab, or to 
remote resources made available through the Open Science Grid (OSG) [9]. Expanding 
beyond the traditional HEP computing grid is essential to supplying the ever-growing need 
for simulation, experimental data processing, and end-user analysis. 

 
Fig. 1. Components involved in provisioning resources in the HEPCloud Facility. 
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In order to reliably meet peak demand, Fermilab must plan to provision enough 
resources to cover this forecasted peak, rather than using some other statistic such as 
median demand. This can be cost ineffective, since some resources may be underutilized 
during non-peak periods even when resource sharing (enabled by HEP grids) is accounted 
for. Scientific productivity will be affected if the forecasted demand is too low, since there 
is a long lead time to significantly increase the use of local or remote resources. HEPCloud 
intends to mitigate these problems by intelligently extending the current Fermilab compute 
facility to execute jobs submitted by scientists on a diverse set of resources, including 
commercial and community clouds, grid federations, and HPC centers. This will allow 
provisioning in a more efficient and cost-effective and elastic way. Additionally, this will 
enable the facility to respond to demand peaks without over-provisioning local resources.  

Figure 1 shows various components in the HEPCloud facility. It also shows a typical 
flow of events involved in provisioning compute resources to run jobs in the facility. The 
DE periodically queries different systems and services to identify computational jobs in 
various job queues that are in need of compute resources. Based on the jobs and resource 
manifests, the DE short lists candidate resources eligible to run these jobs. The DE uses the 
price-performance metrics of these resources, their costing information, current occupancy 
and state. It then applies administrative-defined and management-defined policies to 
generate resources requests that are used by a provisioner to expand the facility. 

3 Decision Engine 

New capabilities are continuously being made available for the open market as commercial 
clouds continue their fast-pace adoption and deployment of new computing technologies. 
At the same time, HPC sites are beginning to target scientific communities that run 
applications that differ from the MPI-style fine-grained parallel jobs common to these 
machines. These new communities are influencing the design of future HPC machines. 
This presents us with an opportunity to make use of resources at scales which were 
previously unreachable. These new capabilities, along with the desire to satisfy the ever-
increasing demand for compute resources, has led to new and existing experimental 
communities to request access to these machines and providers. As a result, a new way of 
matching job requirements to resource capabilities and associated costs is now necessary. 

Both commercial cloud and allocation-based HPC resources have explicit and implicit 
costs that must be considered during resource provisioning. Commercial clouds require 
payment in monetary currencies, while HPC sites grant allocations in wall hours. Grid 
federations such as the OSG offer their resources on an opportunistic basis. The DE must 
use algorithms to compare relative costs to relative value of running jobs to be able to 
determine the best mix of resources to satisfy customer and management needs. The DE 
must compare the requirements of the workflow with the requirements of the facility, which 
may include budgetary constraints, while enforcing administrative and management 
policies.    

3.1. Decision Engine Architecture 

The primary drivers of the DE design were: (1) the need for a framework that enforces the 
processing stages defined and implemented by the program, and which provides for the 
injection of user-supplied code and expert knowledge; (2) the need for a configuration and 
assembly system that instantiates the appropriate user-supplied code, and that provides the 
necessary context-dependent information to realize different parameterizations of that code; 
and (3) a means to manage the data being processed and the varying timescales for the 
relevance and validity of those data. 
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Figure 2 shows the high-level architecture of the DE. The DE consists of a DataSpace 
acting as a Knowledge Management system, a ConfigManager acting as the Configuration 
Factory, and one or more TaskManagers responsible for the scheduling of processing. A 
single Engine is responsible for coordinating their work.  

 

 
Fig. 2. The Decision Engine top-level components. 

 
Fig. 3. Key elements on the design. 

3.1.1 Decision Channel 

The DE can manage and run algorithms of varying complexity for the purpose of 
requesting resources for computing jobs. The DE defines a Decision Channel as a grouping 
of tasks that generate a decision. A decision consists of a recommendation of one or more 
actions that should be executed (such as allocation of computing resources), actions that are 
directly executed (such as updating of monitoring systems), or both. The modularity 
provided by Decision Channels allows the DE to manage decision making processes as 
distinct units. A Decision Channel can be brought online or offline as needed, thus 
changing the state of the entire DE. Because of the modular design, this feature allows 
different algorithms to be developed and tested independently by different domain experts. 

Each Decision Channel task, implemented as a Python class, contains several modules, 
each of which adheres to a common protocol and interface. We currently define four 
module types: Source, Transform, Logic, and Publisher. A Decision Channel minimally 
consists of one of each of these kinds of modules as shown in Figure 3. Each module 
adheres to a specific contract that governs how the modules connect. For example, each 
module (except Sources) expresses the names of all the data products the module 
consumes, and (except for Publishers) the names of all the data products the module 
produces. 

 
Fig. 4. Logic engine: Evaluation of facts and rules. 

Each Source module is scheduled periodically by the framework. A Source is 
responsible for communicating with an external system (via the native APIs of that system) 
to gather data that acts as input to the decision-making process. A Transform module 
contains algorithms to convert input data into new data. A Transform consumes one or 
more data products (produced by one or more Sources, Transforms, or both) within a 
Decision Channel, and produces one or more new data products. A runtime error is 
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produced if one of the input data products does not exist. Transforms are expected to 
produce the data products they claim they will produce according to their contract. The 
Logic Engine (Figure 4) is a rule-based forward-chaining inference based on the Message 
Analyzer package [10], a software product developed and supported in-house. 

The Logic Engine operates on “facts”.  Each fact has a name and an expression that 
evaluates to a boolean. The value of a fact is the value of the expression. Expressions can 
access and operate on data produced by Source and Transform modules. A rule consists of 
a condition composed of references to facts and boolean operations on their values. Actions 
are triggered when the rule evaluates to boolean “True”. Logic Engine rules can produce 
new facts that evaluate to the result of the rule’s boolean expression. This fact can be used 
by subsequent rules. In this manner, rules can be developed separately as blocks and 
chained together. The Logic Engine processes all facts, followed by all rules to obtain the 
final decision. When processing rules, there is no inherent ordering implied. A Publisher 
module is the inverse of a Source. Publishers consume data products produced by Sources 
and Transforms. They use remotely exposed APIs to push the data products to the external 
systems. In a complex system defining several Decision Channels it is quite possible for 
data acquired by a Source to be usable by transforms from more than one Decision 
Channel. A special type of Source called Source Proxy is used to retrieve data from a 
different Decision Channel. 

3.1.2 Knowledge Management System 

The DataSpace is the knowledge management system of the DE. It is a time-sensitive data 
store that contains the complete state of the DE. All data management, archiving, and time 
management is accomplished through the management of self-contained private 
“databases” called DataBlocks. These DataBlocks are assigned to Decision Channels and 
contain all data gathered by Sources, all data generated by Transforms, all results from 
Logic Engines, and all data required for traceability, debugging, and logging. The 
DataSpace manages the versioning and archiving of DataBlocks. 

3.1.3 Decision Cycle 

A Decision Cycle is a scheduling concept that is implemented in the context of a Decision 
Channel. When a Decision Channel starts, it enters an initialization phase. All Source 
modules must run at least once before the channel is considered to be in steady state 
operation. This is considered the operational or running state. Sources always put generated 
data in the DataBlock versioned as tnext, where tnext represents the state of the system to be 
used by the next Decision Cycle. While in the operational state, a data product added to the 
DataBlock from any Source module triggers a Decision Cycle. When a Decision Cycle 
starts, the complete DataBlock is copied and versioned as tcurr. All interactions with the 
DataBlock during the Decision Cycle occur on the most recent backed up version, or tcurr 
while the running sources continue to add dataproducts to tnext.  

The first stage of the Decision Cycle is to run all configured Transforms followed by the 
Logic Engine. The Logic Engine then processes all facts and applies rules to produce a 
result that consists of a fact containing the publishers that should be run. This fact is stored 
in the tcurr version of the DataBlock. The publishers named by the Logic Engine then use 
the data products in the DataBlock to send information to external systems. At the end of 
the Decision Cycle the DataBlock tcurr is locked and permanently archived. The system 
does not allow a particular Decision Channel to run multiple Decision Cycles at any given 
time. This is enforced by preventing sources from triggering a Decision Cycle when a 
Decision Cycle is already in progress. 
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3.1.4 Task Manager 

The Task Manager is the implementer of a configured Decision Channel. It is responsible 
for scheduling and executing the configured modules. At any given time, a DE can be 
configured to run several asynchronous Decision Channels in parallel. Separating the 
runtime environment of the Decision Channels from the core framework component 
increases robustness by shielding the system from badly implemented plugins or badly 
configured Decision Channels. This separation also allows the DE to manage different task 
managers independently. The DE can safely shutdown a task manager executing a Decision 
Channel without impacting other Task Managers. 

4 Experience with DE 

4.1 Decision Engine with glideinWMS as the Resource Provisioner 

We performed an integration test to demonstrate the functioning of the system, and to 
evaluate the effectiveness of our design choices in a simplified but realistic setting. Our 
evaluation of the prototype investigated three main aspects of the DE: the separation of 
roles and responsibilities of the algorithm developers from the operators of the DE service, 
the expression of business requirements using facts and rules that can be interpreted by the 
inference engine, and the configuration of multiple Decision Channels that can be 
aggregated by the DE and the ability to execute them as per the instructions. We also used 
our evaluation to identify improvements we will make in our next round of development.  

We modelled a scenario in which resources from AWS, NERSC, and opportunistic 
resources from the OSG were available to be provisioned by glideinWMS [11] and made 
part of the facility’s local computing cluster. We introduced jobs that expressed a 
preference for one of the types of resource. We simulated a limited amount of funds for 
running on AWS and limited allocations at NERSC. Figure 5 shows resources provisioned 
during the DE evaluation.  

 

Fig. 5. Acquiring compute slots at AWS, NERSC Grid sites with the Decision Engine. 

The DE requested resources on three grid sites, one AWS availability zone and at 
NERSC. The DE periodically queried the HTCondor schedulers for idle jobs. The DE took 
into account preferences expressed by jobs and made provisioning requests to one or more 
available resource types. Provisioning requests were evenly distributed for jobs that 
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preferred more than one resource type. During the evaluation over 1400 computation jobs 
for the CMS experiment were run on the provisioned resources.  

4.2 Decision Engine with VC3 as the Resource Provisioner 

Brookhaven National Laboratory (BNL) is a participating institution in the HEPCloud 
project and plans to leverage the facility in the future. BNL developers are members of the 
core team for the Virtual Clusters for Community Computation project (VC3) [12]. VC3 is 
a web-based central service that allows groups of researchers to aggregate their resource 
allocations (e.g. at campus clusters and other computing centers) to run fully dynamic 
virtual clusters. These clusters are typically HTCondor batch but can also be Spark or 
JupyterHub clusters.   

A typical use case would be an experiment with Principal Investigators and students at 
two universities, each of which have allocations on their local campus clusters. VC3 allows 
them to form a group project and pool their allocations, allowing both PIs and students to 
launch virtual clusters which span both campus clusters. The VC3 overlay abstracts away 
all heterogeneity so that each virtual cluster appears uniform, with the overlay satisfying 
dependencies as needed on each campus resource. Each virtual cluster is typically provided 
with a head node on the central infrastructure, where all project members login and work.  

BNL developers wrote DE modules to instantiate a Decision Channel which requests 
resources via the VC3 system. This was implemented as a publisher that uses the VC3 
client code to make virtual cluster requests. Rather than provisioning a head node on VC3 
central resources, these virtual cluster workers are configured to connect back to the 
HEPCloud pool(s). The deployment and testing of the VC3-related functionality required 
only that a VC3 client credential (in this case a host certificate) be made available to the DE 
publisher. VC3 then trusts that publisher to make requests.  

The primary benefit of this work was that it allowed a HEPCloud facility to provision 
on target resources that are not curated within HEPCloud. This avoids the need to go 
through the process of (re-)defining targets for HEPCloud that are already defined within 
VC3. In addition, due to the way VC3 instantiates virtual clusters, the DE can simply 
specify the target number and configuration of workers, and VC3 will satisfy the request as 
needed from the pool of target resources.  

A secondary benefit of this work was that it demonstrated the ability of external domain 
experts (in this case VC3 developers at BNL) to easily and effectively write DE plugins to 
handle novel requirements. This interoperability validates the plugin/module system of the 
DE and demonstrates the flexibility of both project codebases. 

5 Conclusion 

The prototype supported only a subset of the features expected from the production version 
of the DE. Upcoming releases of the framework will provide full support for Source 
Proxies, essential for effectively connecting multiple Decision Channels. The DE will also 
include an improved Configuration Manager that will allow users to express policies. The 
Configuration Manager will be able to validate rules based on the available standard 
library, thus, minimizing chance of operator error or invalid rules.  

We also plan to implement essential administrative tools to help the administrators to 
debug and troubleshoot Decision Channels, manage individual Decision Channels 
independently, perform configuration management via a user-friendly interface, provide 
support for high availability, etc. We also plan to perform more extensive testing of the DE 
to run at expected scales.  
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The current DE standard library implements functionality to generate resource 
provisioning requests based on the current status of the facilities pool. We plan to extend its 
functionality to incorporate network capacity and data locality into the decision-making 
process. For example, if jobs require heavy network I/O, requests can avoid resources with 
limited network connectivity. The standard library can be expanded to factor in the impact 
of one or more potential decisions on AWS financial status and allocations at NERSC.  

The DE design enforces the separation of the core framework from modules. Each 
module is a pluggable component. Its instantiation in the context of a Decision Channel can 
be customized using one or more configuration parameters. This plugin-based approach 
makes it easier for separation of the responsibilities based on expertise between the module 
maintainers and the DE service operators. Since each module can also be easily invoked in 
a standalone manner, it makes it easier to perform unit and black box testing enabling larger 
teams to work in a disconnected fashion—provided the modules follow the data access 
protocol.  
 
This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. 
This research used resources of the National Energy Research Scientific Computing Center, a DOE 
Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy 
under Contract No. DE-AC02-05CH11231.  
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