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Abstract
Superconducting quantum interference devices (SQUID) are currently the most sensitive
magnetometers for geological samples. Standard SQUID magnetometers are able to
directly estimate the net moment of a sample, while SQUID microscopes require
complex inversion of maps of the magnetic field above the sample. In order to extract
magnetization information from SQUID microscope measurements, it is customary to
model the sample as a distribution of magnetic dipoles. The calculations required for this
operation in the space domain typically involve a pseudoinversion which becomes
problematic due to the large amount of data, measurement noise, inherent loss of
information in computational discretization, and ambiguity in determining an optimized
"best" solution. To ameliorate these problems, we have implemented several
regularization techniques and constraints. Using synthetic, computationally generated
measurements, our investigation demonstrates that Tikhonov regularization with a high-
pass filter matrix performs better than unregularized least square methods, truncated
singular value decomposition, and Tikhonov regularization using an identity matrix
(minimum norm). Our study also gives insight regarding the benefit and cost of setting
various constraints. Our findings are then tested on real measurements of a sample of
shocked basalt and a test sample comprised of a section of a refrigerator magnet.
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1. Introduction
From studying the remnant magnetic field of minerals and rocks it is possible to make

broad statements about the magnetic conditions of the environment where they formed
initially as well as the magnetic conditions the sample has been subjected to since
formation (Butler, 2004). This area of research is called paleomagnetism and it is often
used to describe the history of the magnetic field of earth and other planetary bodies
(Weiss, Lima, Fong, & Baudenbacher, 2007), (Gattacceca, Berthe, Boustie, Vadeboin,
Rochette, & de Resseguier, 2008), (Weiss, Fong, Vali, Lima, & Baudenbacher, 2008). It
was also instrumental in developing the theory of continental drift (Butler, 2004). As
instrumentation for this field advances to measure weaker magnetic fields with better
spatial resolution, a wider variety of minerals and rocks can be studied in greater detail
than ever before providing new directions for scientific exploration.

Superconducting quantum interference devices (SQUIDs) are the state of the art
magnetometers for making quantitative measurements of weak magnetic fields (Clarke &
Braginski, 2004), (Jenks, Thomas, & Wikswo, 1997). Their applications range from
measuring electrical impulses in organs such as the heart, to analyzing current flow in
integrated circuits. SQUID moment magnetometers, which measure the net magnitude
and orientation of a sample's moment, have been extensively used in paleomagnetic
laboratories for the past 20 years. Developed in the last decade, researchers are now
using SQUID microscopes (SMs) that are able to scan high resolution maps of a sample's
magnetic field. Using this technology, it is possible to display microscale distributions of
magnetism within a sample. Furthermore, SM can have sensitivity up
to 10-15 Am 2 while moment magnetometers are only sensitive up to 10-1 2Am 2.

While SQUID moment magnetometers are still better suited for measuring larger,
bulk samples with homogeneous magnetization distributions, SMs have clear advantages
when studying thin sections of geological samples containing small or complex magnetic
sources. If a sample has multiple minerals or multiple magnetic orientations, regions can
be constrained and analyzed individually using SM's-a feat that is not possible using a
standard moment magnetometer.

Scanning at a constant height above a sample, SQUID microscopes map a planar grid
of measurements of the vertical component of the magnetic field generated by the
specimen under analysis. In order to raster high resolution scans (50-100 tm), samples
need to be close (80-200 im) to the sensor. Along with this, the sensor needs to be
cooled to 4.2 K by liquid helium. Until recently, samples needed to be cooled down to 77
K in order to scan high resolution maps. SM's that scanned samples at room temperature
were available, but resolution for these microscopes was on the order of mm, too low for
most paleomagnetic research. Cooling samples to 77K is not an option in paleomagnetic
research because low temperatures agitate phase changes or magnetic transitions in many
common minerals. For example hematite's morin transition occurs around 260K, and
magnetite's Verwey transition occurs around 125K (Weiss, Lima, Fong, &
Baudenbacher, 2007). Furthermore, many minerals that are superparamagnetic at room
temperature can become single domain at lower temperatures. Recently developed
(Baudenbaucher 2002) high-resolution SQUID microscopes have the ability to scan
samples at room temperature, broadening the application of SM's to include
paleomagnetic research.



In order to understand the orientation and strength of the dipole moment, raw
magnetic field scans from SM can be modeled as a grid of dipoles (also referred to as a
dipole distribution or source distribution in this paper). The mathematics required to
make these conversions (explained in the Theory section of this paper) requires a matrix
inversion that optimizes the best values for the magnitude and orientation of dipoles.
Unfortunately, these optimizations are not perfect. They can amplify noise and yield
misleading results. In addition to this, the limitations imposed by Maxwell's equations,
noise inherent in all measurements, and data lost in computational approximations further
complicate this ill-posed problem. A magnetic scan can often be produced by multiple
source distributions. In order to mine the data for the most promising solutions, a proper
balance of constraints and regularization must be applied. This thesis explores ways to
apply these constraints and regularization techniques by assessing their effectiveness on a
simulated magnetic scan with a known source distribution. The most effective of these
techniques are applied to a real magnetic scan of shocked basalt and a scan of a small
piece of refrigerator magnet.

2. Measurement method for SQUID microscope
SM microscopes typically scan the magnetization of thin section samples using
horizontal grid spacing 50-100 ptm at a sample-to-sensor distance of 80-200 ptm.
Although scans of samples with rough surfaces require a higher sample-to-sensor
distance in order to account for the uneven height. To keep distances as small and
precise as possible, a spring loaded mechanism presses the sample against the sapphire
window that insulates the room temperature sample from the 4.2K SQUID sensor. A
sheet of 15 pm mylar is often placed over the sample to reduce friction and prevent
scratching during measurement.

Figure 1. SQUID Microscope Measurement Configuration
Lb

Sapphire window

l.a-b SQUID microscope sample measurement set-up from different camera angles
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3. Retrieving Dipole distributions from Magnetic Maps
Least Squares Method:

Most SQUID microscopes (an exception, for example, being Ketchen et al., 1997)
measure only the vertical component Bz of the magnetic field of a sample. From this
vertical component Bz it is possible to retrieve the two horizontal components B, and
By using an algorithm in the Fourier domain (Lima & Weiss, 2009). For the sake of
simplicity, this section will describe how to estimate a magnetic dipole distribution using
only the vertical component Bz of the magnetic scan (Weiss, Lima, Fong, &
Baudenbacher, 2007). The results are easy to extend to inversions of all three
components of the field.

Figure 2. Magnetic Measurements with Dipole
Magnetic field measurements at a set distance above a sample are used to construct a dipole field

.--/

M

Adapted From:
The SQUID Handbook. Vol. II: Applications of SQUIDs and SQUID Systems.
J ohn Clarke and Alex L. Braginski (Eds.)
Copyright-, 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-404M82

The magnetic field measurement of Bz at position a = (Xa, Ya, Za) near a sample
with volume Vcan be described as

Bz(na)=fy Gz(2 C) -(EdV ,,b (1)

where M(b) is the magnetization at location b = (Xb, Yb, Zb) within the sample and

z (a, -) is the Green's function which describes dependence of Bz at the location ' to

the magnetic element at location b.



Green's function (Weiss, Lima, Fong, & Baudenbacher, 2007) can be described
as

-0 3(za -Zb) -r 2 k (2)
Gz (d, 8) =4 r5

where k is a vertical unit vector oriented along the z axis, r =a - b, and [ is the
permeability of free space. In our case, the sample is assumed to be an infinitely thin
plane with an area of A oriented normal to the unit vector k. If we define x = xa - Xb,
Y = Ya - Yb, Z = Za - Zb, it is possible to expand equation (1.) into

B (d) f M(x My (x, y, z ) + (3)4 - AL r 5 X r5b Yb, ,Yb) + (3)5

5- r) Mz (xbb, zb)] dA.

In the equation above (Weiss, Lima, Fong, & Baudenbacher, 2007), the
magnetization or moment density (moment per unit area) of the sample is dissected into
three components, Mx, My, Mz. A common way of discretizing equations 1 and 3 consists

of replacing the continuous magnetization distribution M with an evenly spaced
distribution of Q individual dipoles with moments m;. If the spacing between adjacent
dipoles is sufficiently fine (as dictated by the distance between the sources and the
sample), such an approximation is often adequate to represent the physical sources of
magnetic field present in a geological sample. Hence, we can model the measurements of
the z-component of the magnetic field Bzi made at P locations as

Bzi = 1 zij (-a, b) - m-b(),()

where i = 1,2, ... , P.

Equation 4 can be expanded into

B = 10=1 3zmjxq + 3z my; + mzj (5)

where xi; = Xai - Xbi, Yii = Yai - Ybi, Zii = Zai - Zb, ri; = x + yiz + z . The

components of m are mxy, my, mzy. By describing the dipole moments in terms of their
orientation (i.e., in spherical coordinates) mxj = m sin O; cosp3 , myj =
m; sin 6; sin (p;, mz; = m; cos6; we can rewrite equation (5.) as.



Q (6)110 N- 3zyx
Bzi = 4 rs 1 3 i i m sin Ojcos tp (6

j=1 El nJ5m

3zy Y

+ rli m sin la sin e m
2

53zU 1 O~
ij I

Previous studies (Weiss, Lima, Fong, & Baudenbacher, 2007) have estimated
moments employing various least squares methods. In least squares methods, we
minimize the squared Euclidean norm D2 of the difference of the measured field values
and the field generated by our approximated solution at the same locations.

D2 = E -_1[Bzi - -Gzi (a ) -m*)] 2. (7)

In the equation above, Bzi is the symmetrical rectangular grid of measured vertical
components of the magnetic field and - are the estimated dipole moments of the dipole
distribution. Because each of the Q dipoles is decomposed into three components,
without further constraints there are 3Q = N parameters to solve for.

Equation 4 shows that the magnetic field is linearly related to the dipole moments.
Therefore, we can express the system of linear equations in matrix form Ad = b, where
A is the M x N Jacobian (Green's matrix) (Weiss, Lima, Fong, & Baudenbacher, 2007),

aBz1/ama1 aBz1/amy1 aBz1/amz1 9Bzj 1/am 2  Bz 1/amy 2 aBz1/dmz 2 ... aBzl/amZQ1

A = BZ2/amxl

[aBzP /Mg1 aBzPlamzQ

And from Eq. (5.)

aBzi/8mxi = N 3zy1xy /47rr (8)
aBzi /imyj = o 3zy yi; /41r5

aBzi/amzi = [to3z /41ri - po /47rr-,

where d is an N x 1 vector containing the values of the dipole moments reduced to their
component values,

d = [mXi myi mz1 mx 2 my 2 mz 2 - mZQ ]T,

and b is an M x 1 vector containing magnetic field measurements.

b= [Bz1 Bz2 ' zP]T



The model dipole distribution d is approximated by determining d* through least squares
approach. To do this, the residual norm IIAd* - ill is minimized using the Euclidian
norm between the measured data and the field generated by the modeled dipole
distribution. Simply put, residuals represent the mismatch between the modeled and
measured map. This mismatch is caused by the limited information reserved in the finite
resolution of the field maps, as well as noise and uncertainties inevitably present in
experimental data.

When approximating the source distribution it is important to understand the
limitations of the model. In general, the magnetic inverse problem is severely non-
unique (Clarke & Braginski, 2006). Discretization of the source model and field maps
further aggravates this issue. Without further constraints, there may be multiple or even
infinite dipole distribution solutions that explain the experimental data. However, these
multiple solutions may be distinguished because some are more realistic representations
of the physical sources of magnetic field present in the sample than others. Although a
smaller residual norm usually indicates a better solution, the solution with the smallest
residual norm is not necessarily the best physical solution. In order to extract meaningful
solutions from the data, we need to apply a balance of constraints and regularization
techniques as well as a variety of metrics to compare their abilities to determine an
accurate source distribution.

4. Constraints
Unidirectional Solution:

A variety of geological samples like freshly cooled lavas and unaltered
sedimentary rocks exhibit unidirectional behavior, owing to the physical and chemical
processes that rocks may experience upon formation or subsequent alteration. In this
study, we focused on unidirectional magnetization distributions, as they allow us to
investigate relevant terrestrial and extraterrestrial samples while improving uniqueness
and retaining mathematical tractability. Thus, the elements of the modeled dipole
distributions have identical orientation (0, qp) and varying magnitude (Weiss, Lima, Fong,
& Baudenbacher, 2007). We will explore modeled fields by applying two modes, bipolar
and unipolar. Bipolar dipole distribution models will be free to have negative and
positive values, whereas unipolar field models will be constrained to purely non-negative
dipole distribution values (m; ;_ 0 for all j). By constraining the orientation of the dipole
distribution, we can redefine the matrices

d =[m1 m 2 --- mIQ

raBz1/am1 dBz1/dm 2  --- aBz1/mQ -

A . .- ,

[dBzP 1am, -.. dBzP /mQ J
where



dB go 
3
zijx sin9 cosp + sin sin + (9)

am 4r rq 41r r4

-0 Cos 0.

And for all j

mzj = mxj and myj = mxj tan <. (10)

With the orientation of the dipoles constrained, we can describe the three components of
a magnetic moment knowing only one. This provides a model where N = Q parameters
instead of the unconstrained model where N = 3Q parameters.

5. Regularization
Tikhonov Regularization

Often minimizing the residual norm IIAd* - 1|| alone is not sufficient to arrive at
an acceptable solution and more sophisticated regularization techniques are applied to
derive better results from the data. This study explores ways to find solutions through
Tikhonov regularization (Hansen, 1994). Tikhonov regularization searches for a solution
by minimizing

xx = ||Ad* - b||2 + A2 ILd*||\, (1)

which is a combination of the residual norm (first term) and a weighted side constraint
(second term). In the equation above, the stabilizing operator L is used to specify the side
constraint. The matrix L can be constructed to fit the context of the problem. Its core
function is to reduce noisy components or nonrealistic solutions. In this study, L is either
the unity matrix-in which case the norm of the solution is minimized-or a matrix
representing a high-pass filter that reduces high frequency oscillations between positive
and negative moment values over the spatial distribution. To distinguish between the two
methods, we refer high-pass Tikhonov regularization when L is conditioned to be a high-
pass filter and we refer to Tikhonov regularization when L is set to the identity matrix.
The regularization parameter A controls the weight of the side constraint. Setting A = 0
is equivalent to applying the unregularized least squares method, whereas making a large
leads to solutions dominated by the side constraint.
Regularization improves the quality of the solution because smaller-norm source
distributions (or distributions where high-frequency components are small) are less likely
to have high spatial frequency magnetization patterns. As A increases, the magnitude of
the source distribution (or of the high-frequency components) will decrease while the
residuals will increase, such that, a A that is too high can produce a source distribution
that is too weak or too smooth. There is often a choice of lambda which optimizes the
tradeoff between over smoothing the solution and over fitting the data with low residuals.



Singular Value Decomposition
Another regularization tool applied in this study is truncated singular value
decomposition (TSVD). Since A E RMxN and is a rectangular matrix with M N, the
singular value decomposition (SVD) of A will be

N (12)
A = UEVT = uitgvi,

i=1

where ui and vi are the left and right singular vectors of A, U = (u 1 , ... , UN) , and

V = (vI, ... , VN). The matrices U and V have orthonormal columns: UTU = VTV = IN-
X is a diagonal matrix with the singular values of A (ui, ... , UN) arranged in non-
increasing order (U 1  - ON U 0). As i increases, the singular values of ou gradually
decay to zero.

After decomposing the matrix A with SVD, we determine A~1 and find d by
A-19h = d*. It is possible to find the A- 1 using the property

A-' = VI~1UT. (13)

In what this paper refers to as soft TSVD we define 1 as a diagonal matrix of values

N

j;-1 = ZN Y or, ' (14)

where y is a varied parameter that can be manipulated to control the magnitude of Z-1
and prevent small values og from approaching infinity during the inversion process. This
regularization method is referred to as "soft' because it tapers off the smaller values of
og smoothly as opposed to hard TSVD, which defines 1-1 as

Y1 (15)

i=1
where y is a number smaller than N used to remove the smaller, less significant values of
oi from the data. Tapering (soft TSVD) or removing (hard TSVD) small values of ogi
reduces detrimental influences of noisy measurements and errors in computational
approximations that are amplified during the inversion process.

6. Application
Simulation:

We tested the effectiveness of the constraints and regularization techniques on a
synthetic magnetic map with a known magnetic field. The map we tested was made up
of extended strips of continuous, uniform magnetization shaped as the 'M' of the MIT
logo. The magnetization intensity of the 'M' and the orientation (0,p) could be
manipulated in a controlled manner. To better simulate real measurements, we applied
white noise and position noise.



White Noise = Tw[randn(max(Bz) - min(Bz))] (16)

White noise simulates the Gaussian distributed noise common during actual
magnetic microscopy measurements. It is controlled by percent T, of the peak-to-peak
value (computed over the whole map) of the magnetic field. In studies testing white
noise, every measurement has white noise added to the ideal magnetic field value.
Unless otherwise specified, we assume Tw = .05 in this paper (125 decibel signal-to-
noise ratio). This amount of noise simulates an extreme case where the levels of noise
are larger than what is found in most magnetic microscopy measurements.

Position noise simulates the measurement error inherent in the (x,y) position of
the sensor by adding a range of random values to the location of every measurement. In
this study, position noise will always add a distance ranging from Onm to 50 nm unless
otherwise specified.

Real Samples
This study applies the most effective modes of regularization on two real samples, a
shocked basalt and a refrigerator magnet. The SQUID microscope scan of the shocked
basalt comes from a previous study (Gattacceca, Boustie, Lima, Weiss, de Resseguier, &
Cuq-Lelandais, 2010), but a more complete analysis of the rock's petrography and
magnetic properties can be found in (Gattacceca, Berthe, Boustie, Vadeboin, Rochette,
& de Resseguier, 2008). The thin section of the shocked basalt has dimensions 10 mm
tall, 9.5 mm in diameter and 0.5 mm thick. In a previous study, the sample was
demagnetized with an alternating field (AF) and then given an initial thermal remnant
magnetization (TRM) in an ambient field of intensity between 50 and 300 T. The
magnetization of the shocked basalt was then scanned by the SQUID microscope in MIT
Paleomagnetism Laboratory (www.mit.edu/paleomag) with 121 x 121 (150 pm step size)
spatial resolution. The refrigerator magnet measures 20 mm x 140 mm and uses data
from a 36 x 48 (5 mm step size) magnetometer measurement.

Figure 3. Photographs of Shocked Basalt and Refrigerator Magnet
3.a 3.b

20mm

E
E E

EE
0

10 mm

3.a shocked basalt (Gattacceca, Boustie, Lima, Weiss, de Resseguier, & Cuq-Lelandais, 2010) 3.b
refrigerator magnet



Analysis Methods

With simulated data, where the ideal source distribution d is known, it is possible
to compare it to the recovered source distribution, d*. This is a powerful tool in
developing effective analysis techniques, but it is limited in application to purely
synthetic data, since d is unknown in real samples. Along with qualitatively comparing
maps through visual analysis of d*, d, and d* - d, we employ the normalized root-mean
square deviation (NRMSD) to measure discrepancies, as utilized in a previous study
(Lima & Weiss, 2009)

~ [d 2.~ 1/2 (17)
NRMSD = Z I

Along with the NRMSD value derived above, to compare d* to d we map the difference
between the source distribution derived by inversion and the ideal source (d* - d). This
paper will refer to these maps difference maps.

Although this method is the most direct and therefore the most effective tool for
determining the accuracy of the constraints and normalization, we developed other
analysis methods that could be applied to both synthetic and real data sets. We can
compare the dipole distribution maps indirectly through b and Ad*, the measured and
computationally generated SQUID scan maps, respectively. We examined b and Ad*
and Ad* - b in a similar way we examined the dipole distributions. We also applied
normalized root-mean square deviation in order to quantify the differences.

- R [d'B]2 1/2 (18)
normalized residuals = .]

In this study, we refer to the normalized root-mean square deviation of the magnetic field
scans as normalized residuals. For further analysis we also map the differences between
the inversion generated field and the original scan (Ad* - b). This paper will refer to
these maps as residual maps.

While magnetic field comparison can indicate the accuracy of a certain method
for recovering a dipole distribution, it is important to understand the limits of this
analysis. There can be many or possibly infinite dipole distribution solutions for any
magnetic field scan. And although it is fair to say that solutions with lower normalized
residuals tend to better represent the actual dipole distributions, a solution with the lowest
normalized residuals is not necessarily the most accurate dipole distribution.
A common problem that occurs when modeling bipolar solutions with low normalized
residuals is that dipoles tend to oscillate between positive and negative magnitude with
unrealistic frequency. While such oscillations may produce a solution that is
theoretically a better mathematical fit for the model, these source distributions are poor
indicators of any real phenomenon. It is possible to tame this problem by constraining
the dipoles in unipolar analysis, but it is also at times advantageous to merely limit
(instead of completely eliminating) unreal negative dipoles. In controlled situations
where the magnitude of the dipoles must be positive, such as synthetically generated



fields and samples with strongly defined orientation (shocked basalt), we can sum the
square of negative dipole values and compare that to the known total magnetic moment
of the object as a test of the accuracy of the inversion. These values can be evaluated
alone in isolated form or multiplied by normalized residuals values to create a mixed
parameter analysis that can determined a balanced minimum of normalized residuals and
the negative values of the dipole distribution. When examining data it is important to
note that unipolar inversions have no negative values in their source distribution.
Therefore, summed negative values and mixed parameter analysis do not apply to
unipolar analysis.

7. Results and Analysis
Synthetic Scans

In order to apply the methods discussed above to magnetic microscopy maps, we
must evaluate their effectiveness on synthetic data. We used as synthetic sources three
magnetic strips arranged in the shape of the letter "M" of the MIT logo (Figure 4.a). The
strips were homogeneously magnetized in a specific direction and were used to generate
synthetic magnetic field maps such as the one shown in Figure 4.b. Because these
synthetic source distributions are continuous and the analytical expression for their
magnetic field is known, they constitute a useful tool for analyzing the quality of the
inverse solution as well as the effects of source discretization. In order to create an ideal
discretized source distribution to test the inversions (Figure 4.c), we divided up the
distribution in small square elements of constant magnetization. The magnetization
strength of each element was calculated according to the fraction of a slab that fell within
the area of the element, so as to correctly account for the edges of the slabs. We then
modeled each element as a magnetic dipole and multiplied the ideal source distribution
by the calculated Green's matrix (Ad) to generate the corresponding synthetic field map.
To quantify the error due to source discretization, we subtract the field map of the
continuous distribution from the map of the discretized distribution (i.e., Ad - b), as
depicted in Figure 4.d.

Figure 4. Generating the Ideal Source distribution of a Synthetic Map
4.a 4.b
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4.c 4.d
Ideal Source Distribution [pT] Amx 10  0 Discretization Error [T] p0.5

700 .4
600

500 ++ +++ +++ 2 50

++++ 300

500 .. ++ 200

0+ ++ +ff4 0 -0.

0 200 400 600 0 200 400 60

(E= 0) (0 = 00)

Measurements in Figure 4. were simulated with a vertical field (0=00). Because 0=00, the value of p is
irrelevent. The 700x700 pim sample area is scanned with 90x90 resolution and modeled with a 30x30

dipole distribution. Like all synthetic fields in this study, the sample to sensor distance is 1 50 pm. 4.a The
dimensions of the synthetic sample with uniform magnetic intensity. 4.b The magnetic field map of the

synthetic sample (z-component of the field). 4.c The discretized distribution of the synthetic sample. 4.d
Difference between the field maps generated by the discretized (4.c) and non-discretized (4.a) source
distributions (normalized residuals = 3.73 x 10-3.)

Although the shapes of the magnetic strips are always the same, we can vary the
direction of their magnetization, thereby changing its magnetic field. Evidently, the
magnitude of the ideal source distribution remains the same.

Figure 5. Effects of source discretization for (0=45*, ep=3 0*) and (0=90*, p=3 0 )
5.b5.a
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5.c
Discretization Error [PT]

0 200 400 600
gm

(0=450 , (D=3 0')

5.d
Discretization Error [ll

U ZUU 4UU UU

pm

5.a synthetic 90x90 scan for 0=450, p=3 0 0. 5.b synthetic 90X90 scan for 0=900, e=300 .5.c error resulting
from a 30x30 discretization of the synthetic source used in 4.a (normalized residuals= 3.87 x 10-3). 5.d
error resulting from a 30x30 discretization of the synthetic source used in 5.b (normalized residuals=
4.21 x 10-3).

In order to assess the pervasive effects of noise on the inversions, we added
Gaussian white noise or position noise to synthetic maps when appropriate, as illustrated
in Fig. 6.

Figure 6. Maps of Noisy Measurements
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6.a is a synthetic SQUID 90x90 scan oriented 0=00 with white noise added (
SQUID 90x90 scan oriented 0=00 with position noise added ('p = 50 nm).

'F = 5%). 6.b is a synthetic

Least Squares Method

In noiseless simulations, when the height and orientation is known, bipolar least
squares inversions can provide a fairly accurate solution (see figure 7.a-f). An exception
to this trend occurs when 0 = 90' (see figure 7.g-i). At this orientation, the solution
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'I
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becomes non-unique and has many possible solutions, making it difficult to determine the
proper orientation.

Figure 7. Bipolar Least Squares Inversions
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The Figures above demonstrate the effectiveness of bipolar least squares method when no noise is added
and the heigh and orientation are known. By analyzing the source distribution, difference between the
estimated and ideal solution, and the residuals, it is possible to evaluate the effectiveness of an inversion
method. 7.a-c For 0=0', NRMSD=0.0914 normalized residuals= 1.5840 x 10-8, Summed Negative
Values=3.2776 x 10-10, Mixed Parameter Analysis= 5.1916 x 10-13 7.d-f For 0=45', (=30*,

NRMSD=0.1631, normalized residuals=l.5416 x 10-8, Summed Negative Values= 7.4716 x 10-10,
Mixed Parameter Analysis= 1.1518 x 10-17 7.g-i For 0=90', p=30', NRMSD=0.8262, normalized
residuals=1.4718 x 10-, Summed Negative Values= 4.2821 x 10-9. Mixed Parameter Analysis=
6.3024 x 10-17

Often, the orientation of the magnetization distribution within a sample is not
known beforehand. In this situation, we can calculate a number of solutions
corresponding to different orientations and inspect the normalized residuals or some other
measure of the quality of the solution to estimate the correct orientation. Under ideal
conditions, the inversion obtained with the correct orientation should have the smallest



error. When no noise is added, bipolar least squares method is effective at estimating
proper orientation by means of angle searches (see Figure 8.1). However, when noise is
added, least squares method is no longer sufficient (see Figure 6.1). The examples below
are bipolar least square inversions of synthetic measurements with white noise added,
where the slabs were magnetized in the direction (0=45', p=3 0 '). They are prime
examples of failed inversions without regularization, and demonstrate that the smallest
errors do not correspond to the correct orientation.

Figure 8.1 0 Search Using Bipolar Least Squares Method with White Noise Added
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The figures above demonstrate that bipolar least squares method is not effective at searching for the proper
orientation when white noise is added. The error indicators should have a minimum at 0 = 450 (marked by
the red dotted line) because the correct solution should yield the smallest amount of errors. 8.1.a is a plot
of residual values of bipolar least squares method for a range of angles. 8.1.b is a plot of summed negative
values of bipolar least squares method for a range of angles. 8.1.c is a plot of mixed parameter values of
bipolar least squares method for a range of angles. 8.1.d is a plot of NRMSD of bipolar least squares
method for a range of angles.

Another parameter that is not accurately known beforehand is the sensor-to-sample
distance. Even though good estimates can be obtained by scanning a current-carrying
wire along a line and fitting a model for the magnetic field, there is usually an uncertainty
of~ ±15 ptm in this parameter. Therefore, we can try to improve the accuracy of the
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estimate by calculating inversions for different distances and analyzing the error in the
solution. Below is another example of a bipolar least squares inversion to estimate model
parameters. The nominal height, z, for these simulations is 150 pm. If the inversion
methods worked properly, the solution with smallest error should occur at 150 Im.
However, height (i.e., sensor-to-sample distance) searches using the bipolar least squares
method do not work on samples with noise added, as illustrated in Figure 8.2.

Figure 8.2 Height Search Using Bipolar Least Squares Method with White Noise
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The figures above demonstrate that bipolar least squares method is not effective at searching for the proper

height when white noise is added. The error indicators should have a minimum at z = 150 pm (marked by
the red dotted line) because the correct solution should yield the smallest amount of errors. 8.2.a is a plot
of residual values of bipolar least squares method for a range of heights. 8.2.b is a plot of summed negative
values of bipolar least squares method for a range of heights. 8.2.c is a plot of mixed parameter values of

bipolar least squares method for a range of heights. 8.2.d is a plot of NRMSD of bipolar least squares

method for a range of heights.

As mentioned before, in addition to NRMSD, we utilized difference maps (i.e.,
d* - d ) to analyze discrepancies in the inverse solutions. We found that with synthetic
data with very low noise levels, bipolar inversions are more effective at producing source
distributions than unipolar inversions. Bipolar inversions have smaller NRMSD and
Residual values, besides being much faster to calculate. Furthermore, they produce maps
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that qualitatively appear closer to the ideal source distribution. However, when higher
levels of noise are added (both white noise and position noise), bipolar analysis fails at
retrieving physical magnetization distributions, and unipolar becomes the more desireable
method. Even though unipolar least squares inversions perform better than bipolar least
squares inversions for noise field maps, it is important to note that both unregularized
least squares methods are still significantly less effective than other regularization
techniques.

The source distribution generated from noisy samples through bipolar inversions
of least squares method (Figure 8.3) no longer resembles the ideal source distribution.
While NRMSDs are seven orders of magnitude larger than in the noiseless case, the
residuals in the field map are relatively low, being essentially dominated by additive
noise present in the synthetic field map..

Figure 8.3 Bipolar Least Squares Inversions with White Noise
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The figures above demonstrate that bipolar least squares method is not effective at finding the solution to
measurements with white noise added. The estimated source distributions do not represent the ideal source
distributions. 8.3.a-b NRMSD=4.3355x 106, Normalized Residuals=1.0256 x 10-1, Summed Negative
Values= 3.3452x 10-2, Mixed Paramater Values=3.4309x 10-3 8.3.c-d NRMSD=6.7293ex 106,
Normalized Residuals= 1.3853 x 10-1, Summed Negative Values=5.0429x 10-2, Mixed Parameter
Analysis=6.9860x 10-3 8.3.e-f NRMSD=1.4043x 10', Normalized Residuals=1.7832x 10-1,
negcheck=9.4504x 10-2, Mixed Parameter Analysis=1.6852x 10-2

Tikhonov regularization performs significantly better than unregularized least

squares method in all metrics of effective evaluations of measurements. The major
drawback is that it involves the inversion of matrix with twice the size of the original one.
Regular Tikhonov and High-Pass Tikhonov regularization have similar abilities for
determining the correct angle of orientation and height, but high-pass Tikhonov yields
lower values for Normalized Residuals, Summed Negative Values, Mixed Parameter
Analysis, and NRMSD. Even though it increases accuracy of inversions, high-pass
Tikhonov takes more computational time to arrive at similar results as conventional
Tikhonov. Therefore, it was advantageous in this study to apply Tikhonov for the
majority of inversions, and high-pass Tikhonov only when it was necessary.

As suggested above, the angle searches using bipolar high-pass Tikhonov
regularization (Figure 9.1) yielded the best indicators estimates of the proper orientation.
The figures below demonstrate that the Summed Negative Values analysis is the best
method to determine the proper orientation out of the sample for the bipolar case.

Figure 9.1 0 Search using High-Pass Tikhonov Regularization with White Noise
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The figures above demonstrate that high-pass Tikhonov Regularization is effective at searching for the
proper orientation when white noise is added. The error indicators should have a minimum at
o = 450 (marked by the red dotted line) because the correct solution should yield the smallest amount of
errors. Lambda is set to one for these scans because practice shows giving equal weight to the residual
norm and the side constraint is an effective method for optimizing angles and height. , cannot be properly
optimized before knowing the orientation or height, so setting X = 1 is a quick way to include Tikhonov
regularization into the 0 search. 9.1.a is a plot of residual values of bipolar least squares method for a
range of angles. 9.1.b is a plot of summed negative values of bipolar least squares method for a range of
angles. 9.1.c is a plot of mixed parameter values of bipolar least squares method for a range of angles. 9.1.d
is a plot of NRMSD of bipolar least squares method for a range of angles.

Although the Tikhonov regularization methods applied in this study are succesful
at estimating the orientation of a synthetic sample within a few degrees, they are not as
effective at improving the estimates of the sample to sensor distance. The Tikhonov
regularizations can provide a rough, order of magnitude estimation of the proper height,
but these searches are not as accurate as their capability to determine the angular
orientation of a sample's source distribution when higher levels of noise are present. The
graph of height vs. NRMSD (9.2.d) has a desireable shape which indicates that the source
distribution tends to be more accurate as simulations approach the proper height.
However, such knowledge could not help determine the unknown height of a
measurement as an ideal source distribution is a resource only available in synthetic data.



Figure 9.2 Height Searches using Bipolar High-Pass Tikhonov Regularization with
White Noise
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The figures above demonstrate that high-pass Tikhonov regularization can yield a rough estimate, but

cannot provide a precise estimation of height through searching when white noise is added. The error

indicators should have a minimum at z = 150 im (marked by the red dotted line) because the correct
solution should yield the smallest amount of errors. 9.2.a is a plot of residual values of bipolar least
squares method for a range of heights. 9.2.b is a plot of summed negative values of bipolar least squares
method for a range of heights. 9.2.c is a plot of mixed parameter values of bipolar least squares method for
a range of heights. 9.2.d is a plot of NRMSD of bipolar least squares method for a range of heights. While
the NRMSD plot has an accurate result, this technique is not applicable to real data with an unknown ideal
source field.

After determining the correct orientation of the sample, and estimating the sample
to sensor distance, better inversions can be obtained by optimizing A. A is optimized by
finding the X value on an L-curve where the residual norm and the solution norm find a

balance (see Figure 9.3). The best value for k will occur at the intersection of the two
trends, where the solution norm and residual norm where the combination of the two
values is at a minimum. In this case of high-pass Tikhonov regularization for the

synthetic measurement with white noise added, k = .1.
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Figure 9.3 Determining Ideal Value for I by L-Curve Analysis

After determining the ideal value for A through L-curve analysis, it is applied to
inversions (see Figure 9.4).

Figure 9.4 Bipolar High-Pass Tikhonov Regularization with White Noise
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2i in order to determine the combined minimum of the two values This minimumn ocnr 1t~=



Hard TSVD 0 searches performed similar to Tikhonov 0 and height searches,
although the minimum was less distinct. Hard TSVD inversions (Figure 10.1-4) took
significantly longer to compute (high-pass Tikhonov is roughly 7.5 times faster than
TSVD) and had slightly higher levels of error in comparison to Tikhonov regularization.
Similar to how A was determined for high-pass Tikhonov regularization, y is determined
by minimizing the combination of the solution norm and residual norm (see Figure 10.1).
For the synthetic measurements with white noise added, the ideal value was optimized at
approximately y = 100.



Figure 10.1 Determining Ideal Value for y by L-Curve Analysis
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The optimized value for y can be applied to the 0 search (see Figure 10.2).

Figure 10.2 0 Searches using Bipolar Hard TSVD with White Noise
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The figure above compares the solution norm to the residual norm on a log-log plot for a range of values of
y in order to determine the combined minimum of the two values. This minimum occuirs 2t 10
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The figures above demonstrates that TSVD is effective at searching for the proper orientation when white

noise is added. The error indicators should have a minimum at 0 = 45* (marked by the red dotted line)
because the correct solution should yield the smallest amount of errors. 10.2.a is a plot of residual values
of bipolar least squares method for a range of angles. 10.2.b is a plot of summed negative values of bipolar
least squares method for a range of angles. 10.2.c is a plot of mixed parameter values of bipolar least
squares method for a range of angles. 10.2.d is a plot of NRMSD of bipolar least squares method for a
range of angles.
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TSVD shares similar accuracy to high-pass Tikhonov regularization in its ability
to search for the proper sample-to-sensor distance (see Figure 10.3).

Figure 10.3 Height Searches using Bipolar Hard TSVD with White Noise
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The figures above demonstrate that hard TSVD, like high-pass Tikhonov regularization can yield a rough
estimate, but cannot provide a precise estimation of height through searching when white noise is added.
The error indicators should have a minimum at z = 150 pm (marked by the red dotted line) because the
correct solution should yield the smallest amount of errors. 10.3.a is a plot of residual values of bipolar
least squares method for a range of heights. 10.3.b is a plot of summed negative values of bipolar least
squares method for a range of heights. 10.3.c is a plot of mixed parameter values of bipolar least squares
method for a range of heights. 10.3.d is a plot of NRMSD of bipolar least squares method for a range of
heights. While the NRMSD plot has an accurate result, this technique is not applicable to real data with an
unknown ideal source field.

When the orientation and proper height are known, TSVD performs at a similar
level of accuracy in comparison to high-pass Tikhonov regularization (see Figure 10.4).
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The figures above profile the effectiveness of hard TSVD when high levels of white noise are present for

three orientations. Hard TSVD performs with similar accuracy as high-pass Tikhonov regularization.
However, computation is 7.5 times slower. 10.4.a-b For 0=0*, NRMSD=0.3210, Residual=0.1062, Summed
Negative Values=1.2258x 10-9, Mixed Parameter Analysis=1.3022x 10-10 10.4.c-d For 0=45', p=30 0,
NRMSD=0.3708 , Residual=0.1480, Summed Negative Values=1.4286x 10-9, Mixed Parameter
Analysis=2.1146x 10-10 10.4.e-f For 0=90', p=30', NRMSD=0.5764, Residual=0. 1924, Summed Negative
Values=3.2887x 10-9, Mixed Parameter Analysis=6.3289x 10-10

In previous studies, three-component unipolar least squares method was shown to
surpass 1-component unipolar least squares method (Lima & Weiss, 2009). However our
investigation of three-component bipolar regularization techniques found no clear
advantages to using three-component Tikhonov regularization (Figure 11.). It is
important to note, three-component SVD could not be tested due to lack of memory
available at our disposal (4GB and Windows XP 64 bits).

Figure 11.1 0 Searches using Bipolar Three-component Tikhonov Regularization
with White Noise
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Figure 11.2 Height Searches using Bipolar
Regularization with White Noise
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The figures above demonstrates the effectiveness of bipolar three-component regularization at searching for
the proper orientation when white noise is added. The error indicators should have a minimum at
0 = 450 (marked by the red dotted line) because the correct solution should yield the smallest amount of
errors. 11.1.a is a plot of residual values of bipolar least squares method for a range of angles. 11.1.b is a
plot of summed negative values of bipolar least squares method for a range of angles. 11.1.c is a plot of
mixed parameter values of bipolar least squares method for a range of angles. 11.1.d is a plot of NRMSD
of bipolar least squares method for a range
of angles.
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The figures above demonstrates that bipolar three-component Tikhonov regularization can yield a rough
estimate, but cannot provide a precise estimation of height through searching when white noise is added.
The error indicators should have a minimum at z = 150 pm (marked by the red dotted line) because the
correct solution should yield the smallest amount of errors. 11.2.a is a plot of residual values of bipolar
least squares method for a range of heights. 11.2.b is a plot of summed negative values of bipolar least
squares method for a range of heights. 11.2.c is a plot of mixed parameter values of bipolar least squares
method for a range of heights. 11.2.d is a plot of NRMSD of bipolar least squares method for a range of
heights. While the NRMSD plot has an accurate result, this technique is not applicable to real data with an
unknown ideal source field.

Using three-component analysis it is possible to measure the total strength of the
measured field as well as the vertical z-component (see Figure 11.3).

Figure 11.3 Bipolar Three-component Tikhonov Regularization with White Noise
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Summary
In order to assess which methods are more effective, we have compared their

computational time for a single inversion, height estimation ability, orientation estimation
ability, NRMSD, normalized residuals, Summed Negative Values, and Mixed Parameter
Analysis. The results are summarized in the table below.

Table 1 Bipolar Vs. Unipolar

Criteria: Bipolar Unip olar
Computational Time 11 seconds for Tikhonov 254 seconds for Tikhonov

regularization regularization



Estimating Height Both perform poorly at Both perform poorly at
precise optimizations, yet precise optimizations, yet
can be used as rough can be used as rough
indicators. indicators.

Estimating Orientation Smoother optimization More erratic optimization
NRMSD Better (lower) with Better (lower) with

measurements that have measurements that have
lower quantities of noise and higher quantities of noise.
when TSVD or Tikhonov is Also, can produce results
applied from noisy data without

TSVD or Tikhonov
Re ularization

Orientation NRMSD Orientation NRMSD
0=0 0.0914 0=0* 0.2984
0=45 , 9=30' 0.1631 0=45 , 9=300 0.2751

0=90 , =30' 0.8262 0=90 , 9=300 0.2667

Orientation NRMSD Orientation NRMSD
0=00 4.3355x 106 0=00 .30071
0=450, 9= 3 0 0  6.7293ex 106 0=450 ,=300 .28452

0=900, =300 1.4043x 107 0=900, =300 .30235

normalized residuals Better (lower) with Similar values with
measurements that have measurements that have
lower quantities of noise higher quantities of noise

Orientation Normalized Orientation Normalized
residuals residuals

0=00 1.5840x 0=00 1.7715x
10-11 10-2

0=45 , P=3 0  1.5416x 0=45 , 9=30  1.5103x

10-_ 10-2

0=90 , 9=30' 1.4718x 0=90 , 9=3 00  1.0856x
10-8 10~2

Orientation Normalized Orientation Normalized
residuals residuals

0=00 1.0256x 10-1 0=0' 1.0971x 10-1
0=45,9=30' 1.3853x 10-1 0=450, =300 1.4706x 10-1

L 0=900, =300 1.7832x 10-1 0=90 , =300 1.9250x 10 -1



Summed Negative Values Advantage: Has this Advantage: Only models
additional indicator dipole distribution in the
Disadvantage: Models dipole preferred orientation
distribution with possible Disadvantage: Does not have
unrealistic negative values. this additional indicator

Mixed Parameter Advantage: Has this Advantage: Only models
Analysis additional indicator dipole distribution in the

Disadvantage: Models dipole preferred orientation
distribution with possible Disadvantage: Does not have
unrealistic negative values. this additional indicator

Our studies show that the bipolar method is better to use when computing inversions for
magnetic microscopy maps with lower levels of noise. However, it can be advantageous
to employ unipolar with noisy measurements.

Table 2. Tikhonov Vs. High-Pass Tikhonov

Criteria: Tikhonov Tikhonov High-Pass
Computational Time 13 seconds for bipolar 15 seconds for bipolar

regularization regularization
Estimating Height Very Similar Very Similar
Estimating Orientation Very Similar Very Similar
NRMSD Worse Better

Orientation NRMSD Orientation NRMSD
0=0' 0.4082 0=0' 0.3269
0=45 , 9=30 ' 0.5542 0=45 , 9=3 00  0.3256
0=90 , (p=3 0  0.7433 0=90 , p=3 0  0.3483

Normalized residuals Worse (slightly larger) Better (slightly smaller)

Orientation Normalized Orientation Normalized
residuals residuals

0=0' 0.1079 0=0' 0.1065
0=45 , P=3 0 ' 0.1473 0=45 , 9=30 0.1455
0=900, P=3 0  0.1903 0=900, 9=30 0.1899

Summed Negative Worse (slightly larger) Better (slightly smaller)
Values

Orientation Summed Orientation Summed
Negative Values Negative Values

0=00 1.7715x 10-9 0=0' 8.9341x 1010

0=450, 9=300 2.8109x 10-9 0=450, 9=30* 9.2106x 10-10

0=900, 9=300 3.5229x 10-9 0=900, 9=300 1.2088x 10-9

Mixed Parameter Worse Better



Analysis

Orientation Mixed Orentation Mixed
Parameter Parameter
Analysis Analysis

0=00 1.8867x 10-10 0=0 9.6392X 101"
0=450, (P=3 0  4.0891x 10-10 0450, 9=30 ' 1.3564X 10100 =0 9.39x10

0=90 , 9=3 0  6.6905x 10-10 0=90, P=300  6.6905x 1010

This study found high-pass Tikhonov regularization to perform better quality inversions
than identity matrix (minimum norm) Tikhonov regularization in NRMSD, normalized
residuals, Summed Negative Values and Mixed Parameter Analysis. Neither method had
a significant advantage in searching for the correct orientation and both performed
similarly in determining height.

Table 3. Tikhonov Single-Component Vs. Tikhonov Three-Component

Criteria: Tikhonov 1-Component Tikhonov 3-Component
Computational Time 13 seconds for bipolar 100 seconds for bipolar

regularization regularization
Estimating Height Similar ability Similar ability
Estimating Orientation Similar ability Similar ability
NRMSD Better for 0=00 and 0=450, Better at 0=90*, <p= 3 00

=300

Orientation NRMSD Orientation NRMSD
0=0 0.4082 0=00 0.4470
0=45, 9=300 0.5542 0=45 , 9=3 0 * 0.5568
0=90 , p=30 0.7433 0=90*, =30 0.6719

Normalized residuals Similar Similar

Orientation Normalized Orientation Normalized
residuals residuals

0=0 0.1079 0=00 0.1062
0=45 , =300 0.1473 0=45*, =30 0.1474
0=900, =300 0.1903 0=900, =300 0.1898



This study suggests single-component Tikhonov regularization is superior to three-
component regularization in producing lower or nearly equal values of NRMSD,
normalized residuals, Summed Negative Values, and Mixed Parameter Analysis when X
is optimized to be 0.1 by the L-curve. Single-component also performs roughly 7.5 times
faster than three-component Tikhonov.

Table 4. Hard Singular Value Decomposition Vs. Soft Singular Value
Decomposition

Criteria: TSVD Hard TSVD Soft
Computational Time 95 seconds for bipolar 77 seconds for bipolar

regularization regularization
Estimating Height Better with noisy Worse with noisy

measurements measurements
Estimating Orientation Better with noisy Worse with noisy

measurements measurements
NRMSD Better with noisy Worse with noisy

measurements measurements

Orientation NRMSD Orientation NRMSD
0=0' 0.3210 0=0' 0.4892
0=45 , 9=30' 0.3708 0=45 , 9=30' 0.5415

0=900 ,P=300 0.5764 0=90 , 9=3 0  0.6472

Residuals Better with noisy Worse with noisy



Soft TSVD with white measurements measurements
noise

Orientation Normalized Orientation Normalized
residuals residuals

0=00 0.1062 0=00 0.1525
0=45*, P=3 0  0.1480 0=45 , P=3 00  0.1858
0=90, 9=30 0  0.1924 0=90*, 9=300  0.2268

Summed Negative Better with noisy Worse with noisy
Values measurements measurements
Hard TSVD with
white noise

Orientation Summed Orientation Summed
Ne ative Values Negative Values

0=00 1.2258x 10-9 0=00 1.2488x 10-10
0=450, 9=3 0  1.4286x 10-9 0=450, =300 1.7582x 10-9
0=900, 9=3 0  3.2887x 10-9 0=900, =300 2.6805x 10-

Mixed Parameter Better with noisy Worse with noisy
Analysis measurements measurements

Orientation Mixed Orientation Mixed
Parameter Paraameter
Analysis Analysis

0=00 1.3022x 10~10 0=00 1.9039X 101
0=450, P=300  2.1146x 10-10 0=450 (P=3 00  3.2674x 1010
0=900, p=3 0  6.3289x 10-10 0=900, (p=3 0  6.0803x 10-10

This study demonstrates that hard TSVD performs more accurate inversions than
soft TSVD in terms of NRMSD, normalized residuals, Summed Negative Values, and
Mixed Parameter Analysis.

Table 5. Tikhonov High-Pass Vs. Hard TSVD

Criteria: Tikhonov High-Pass TSVD Hard
Computational Time 15 seconds for bipolar 95 seconds for bipolar

regularization regularization

Estimating Height Similar Similar
Estimating Orientation Better Worse



NRMSD Better at 0=45', (P=3 0 and Mixed, better at 0=00 but
0=900, (p=3 0 ' but slightly worse at at 0=45', (= 3 0 ' and
worse at 0=0 0=900, (P=30 0

Orientation NRMSD Orientation NRMSD
0=0_ 0.3269 0=00 0.3210

0=45 , (P=3 0  0.3256 0=45 , =300 0.3708
0=90 , 9= 3 0 ' 0.3483 0=90 , =300 0.5764

Residuals Similar Similar

Orientation Normalized Orientation Normalized
residuals residuals

0=00 0.1065 0=00 0.1062

0=45 , 9= 3 0  0.1455 0=45 , 9=30 0.1480
0=90 , 9=30' 0.1899 0=90 , 9=300 0.1924

Summed Negative Better (slightly smaller) Worse (slightly larger)
Values

Orientation Summed Orientation Summed
Negative Values Negative Values

0=0_ 8.9341x 10-10 0=0 1.2258x 109

0=45 , p=3 0  9.2106x 10-1 0=45 , p=3 00  1.4286X 0~0
0=900, 9=3 00  1.2088x 10-9 0=900, 9=3 0 ' 3.2887x 10-9

Mixed Parameter Slightly better at 0=00 and Slightly better at 0=90 ,
Analysis 0=450, 9=300 but slightly 9=300 but slightly worse at

worse at 0=90*, 9=30 0  0=0 and 0=450, 9=30'

Orientation Mixed Orientation Mixed
Parameter Parameter
Analysis Aayi

0=0_ 9.6392x 10"11 0=0' 1.3022X 1010

0=450, P=3 0 ' 1.3564x 1010 0450, 9p3 0 ' 2.1146X 1010
0=900, P=3 00  6.6905x 10-1 0=900, P=3 0  6.3289x 1010

In order to summarize how effective various methods are at determining proper
orientation, the 0 searches have been summarized in Figure 12.1 below. If not specified
to be unipolar, assume the regularization technique is bipolar, and if not specified to be
three-component, assume the regularization technique to be single-component.



Figure 12.1 Summary: 0 Searches of Noisy Synthetic Measurements
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The data shown in Figure 12.1 above suggests that three-component high-pass Tikhonov
is a superior method for searching for 0 given the optimization constant values X= 1, hard
TSVD y=100, and soft TSVD y=. 1. An interesting phenomenon to note is that Tikhonov
single-component has lower NRMSD than three-component when X is set to 0.1 by L-
curve optimization, if the orientation and height are previously known. However, when
X is set to equal 1 to simulate a standard 0 search, three-component Tikhonov high-pass
regularization out-perform all other methods tested in NRMSD search as well as
displaying the best normalized residual 0 search shape demonstrated on the scaled chart
of normalized residuals. Furthermore, 3-component high-pass Tikhonov manages to
have the second lowest values for Summed Negative Values as well as Mixed Parameter
Values in addition to a minimum at the proper orientation of 0=45*.

In order to summarize how effective various methods are at determining proper
sample-to-sensor distance, height searches have been summarized in Figure 12.2 below.
If not specified to be unipolar, assume the regularization technique is bipolar, and if not
specified to be three-component, assume the regularization technique to be single-
component.

The Figures above describe the ability for various regularization methods to search for the proper
orientation (0=45*). For all Tikhonov regularization, X=1. For hard TSVD, y=100. For soft TSVD y=0.1.
It is important to note that results will vary depending on the regularization parameter value used. 12.1.a
Provides a comparison of various regularization methods in order to measure NRMSD Vs. 0. Listed from
lowest to highest NRMSD values at 0=450: (1.) 3-Component High-Pass Tikhonov (2.) Unipolar High-Pass
Tikhonov (3.) High-Pass Tikhonov (4.) Hard TSVD (5.) 3-Component Tikhonov (6.)Tikhonov (7.) Soft
TSVD 12.1.b Provides a comparison of various regularization methods in order to measure normalized
residuals vs. 0. Listed from lowest to highest normalized residuals at 0=450: (1.) High-Pass Tikhonov (2.)
Hard TSVD (3.) 3-component High-Pass Tikhonov (4.) Unipolar High-Pass Tikhonov (5.) 3-Component
Tikhonov (6.) Tikhonov (7.) Soft TSVD 12.1.c Provides a comparison of various regularization methods in
order to measure Summed Negative Values vs. 0. Listed from lowest to highest Summed Negative Values
at 0=450: (1.) 3-Component High-Pass Tikhonov (2.) 3-Component High-Pass Tikhonov (3.) High-Pass
Tikhonov (4.) Tikhonov (5.) Hard TSVD (6.) Soft TSVD 12.1.d Provides a comparison of various
regularization methods in order to measure Mixed Parameter Values vs. 0. Listed from lowest to highest
Mixed Parameter Values at 0=45: (1.) 3-Component High-Pass Tikhonov (2.) 3-Component High-Pass
Tikhonov (3.) High-Pass Tikhonov (4.) Tikhonov (5.) Hard TSVD (6.) Soft TSVD 12.1.e The Normalized
Plot of a 0 search is shown to demonstrate the variation Normalized Residuals relative to the Normalized
Residual value at 0=35 . This graph demonstrates that unipolar High-Pass Tikhonov varies the most out
off the methods tested relative to its original value. 12.1.f Provides a scaled chart of normalized residuals
vs. height. This plot displays the optimization curve shapes of various regularization methods in order to
compare their ability to predict orientation through an absolute minimum of normalized residuals. To
examine the actual values of these normalized residuals, refer to figure 12.1 .b. 3-Component High-Pass
Tikhonov appears to be the most effective at predicting the orientation by this method given the level of
noise and the values of the regularization parameters (X= 1).



Figure 12.2 Summary: Height Searches of Noisy Synthetic Measurements
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Our study of height search found no method evaluated could accurately measure
the height of the sample. However, some could roughly approximate the height within 20
ptm. Out of the methods shown in Figure 12.2, single-component high-pass Tikhonov is
the suggested method to search for height because it is fast, has one of the lowest values
of NRMSD when k=1 and the lowest when X is optimized. It doesn't perform
significantly better than other methods, but it also does not perform significantly worse.

Our study found that aside from 0 searches where three-component Tikhonov
High-Pass is the preferred method, single-component Tikhonov High-Pass is the most
favorable regularization technique to employ because it is fast and performs better at the
metrics chosen for this study. Therefore, we will apply this regularization technique to
the real samples. On the other hand, when testing different values for the regularization
parameter, SVD is much faster, as it does not require decomposing the matrix multiple
times.

Real Measurements:
The magnetization within the shocked basalt was oriented in the vertical direction 0=0*.
We used single-component high-pass Tikhonov to confirm the sample's known
orientation of 0 = 0' and sample-to-sensor distance of 61 Opm. As the synthetic data
suggested, the Tikhonov high-pass solution was a good indicator of the proper
orientation, but a less adequate indicator of height. The normalized residuals were low
(0.0187). And qualitatively, the source distribution had a form that closely matched the
shape of the sample. Because the measurement had high levels of noise, unipolar
inversions yielded lower normalized residuals than bipolar inversions.

The Figures above describe the ability for various regularization methods to search for the proper height.
For all Tikhonov regularization, )=1. For hard TSVD, y=100. For soft TSVD y=0.1. It is important to
note that results will vary depending on the regularization parameter value used. 12.2.a Provides a
comparison of various regularization methods in order to measure NRMSD vs. height. Three-component
high-pass Tikhonov regularization has the lowest value out of the metrics examined as well as having one
of the most clearly defined minimums. 12.2.b Provides a comparison of various regularization methods in
order to measure normalized residuals vs. height. 12.2.c Provides a comparison of various regularization
methods in order to measure Summed Negative Values vs. height. 12.2.d Provides a comparison of various
regularization methods in order to measure Mixed Parameter Values vs. height. 12.2.e The Normalized
Plot of a 0 search is shown to demonstrate the variation Normalized Residuals relative to the Normalized
Residual value at 0=35'. This graph demonstrates that unipolar High-Pass Tikhonov varies the most out
off the methods tested relative to its original value. 12.2.f Provides a scaled chart of normalized residuals
vs. height. This plot displays the optimization curve shape of various regularization methods in order to
compare their ability to predict orientation through an absolute minimum of normalized residuals.



Figure 13.1 Shocked Basalt: 0 Search Using High-Pass Tikhonov
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The figures above document a 0 search of a shocked
basalt with a known orientation at 0=0. 13.1.a
normalized residuals of the shocked basalt inversion
with respect to 0 13.1.b Summed Negative Values
with respect to 0 13.1.b Mixed Parameter Values
with respect to 0. The red dotted line marks where a
previous study meausred the orientation to be.
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Synthetic data analysis earlier in this study suggested that Summed Negative
Values (Figure 13.1 .b) and Mixed Parameter Values (Figure 13.1 .c) are better indicators
of orientation than residuals (Figure 13.1 .a). However, these sample data suggest the
reverse. Future studies should understand that both methods can be employed as rough
indicators, but neither normalized residual nor Summed Negative Values nor Mixed
Parameter Analysis can claim to be precise measurements of the correct orientation of
noisy data. Often qualitative analysis can be an effective tool for finding better solutions
in real data where there is no known ideal source field to check results with. Often
misleading results can be identified by stray dipoles that are present outside where the
sample is located. Not only did past studies (Gattacceca, Boustie, Lima, Weiss, de
Resseguier, & Cuq-Lelandais, 2010) suggest the orientation was 0=0*, but quantitative
analysis of the source distribution at various angles confirmed that in this example,
normalized residuals was a better indicator than Summed Negative Values and Mixed
Parameter Analysis.
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The sample to sensor distance was recorded in a previous study (Gattacceca,
Boustie, Lima, Weiss, de Resseguier, & Cuq-Lelandais, 2010) to be 610 pm. Knowing
this, it was possible to assess the acuracy of the height search (Figure 13.2)

Figure 13.2 Shocked Basalt: Height Search Using Bipolar High-Pass Tikhonov
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effectiveness of bipolar high-pass Tikhonov
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effective at this analysis than examining the residual
values.
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As demonstrated on synthetic data, normalized residuals, Summed Negative
Values and Mixed Parameter Values are imprecise indicators of height. Similar to the
orientation analysis, the quantitative results of the inversion searches provided rough
indicators of proper values that could then be investigated qualitatively results that appear
closer to the real value.

13.2.a



Knowing the height and orientation, it is possible to invert the shocked basalt (see
figure 13.3 below)
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The above figures describe the measurement and
inversion analysis of the shocked basalt 13.3.a
SQUID microscope measurement of the shocked
basalt. 13.3.b Source distribution of the shocked
basalt. 13.3.c Residual map of the shocked basalt.
normalised residuals=0.0 187. The artifacts present
in the residuals are most likely caused by non-
unidirectional components present due to
contamination or sample damage during the
preparation process.

(6 = 00), A = 10-5 1

The refrigerator magnet was measured with a Magnetic Instrumentation Inc. hall sensing
teslameter Model 2100. Our setup placed the outermost tip of the teslameter 3 mm above
the sample, but the location of the actual sensor within the instrument could not be
precisely identified by the manual or by a company technician. The direction of the
magnetization of the sample was not known beforehand. Our analysis yielded estimates
for the orientation and sample-to-sensor distance of (6 = 100', Vp = 880), and 7 mm,
respectively.

Figure 13.3 Shocked Basalt:
Regularization
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Figure 14.1 Refrigerator Magnet: 0 Search Using Three-Component High-Pass
Tikhonov

Figure 14.1 above graphs a variety of indicators in order to search for 0. Along
with examining normalized residuals, Summed Negative Values and Mixed Parameter
Analysis, we qualitatively examined source distributions and found that the best
combination of quantitative indicators and qualitative realistic looking source
distributions occurred around 0 =1000.

After determining the proper orientation of the sample, the height could be
determined by searching for minimums in normalized residuals, Summed Negative
Values, and Mixed Parameter Analysis along with qualitative analysis of source
distribution maps (Figure 14.2). Although there is no ideal source distribution to check
the results of this inversion, it has normalized residuals as low as 0.0296. It also has a
very convincing residual map that posseses a random distribution of residuals. Still it is
important to note the small artifacts marring the source distribution image, revealing that
the orientation and height used to calculate the inversion are still not exactly precise.



Figure 14.2 Refrigerator Magnet: Height Search Using Bipolar High-Pass Tikhonov
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The figures above search for the sample-to-sensor
distance employing various error indicators. 14.a
normalized residuals with respect to height 14.b
Summed Negative Values with respect to height
14.c Mixed Parameter Values with respect to
height. Mixed Parameter analysis indicates that the
distance is 7 mm.

Height [mm]A = 1I_
In Figure 14.2 (above), Mixed Parameter Values have a defined minimum around

7 mm, suggesting that the sample-to-sensor is distance is roughly 7 mm. This argument
is strengthened by qualitativly realistic source distribution map that is generated when
inversions are applied at that height.

For the refrigerator magnet, bipolar inversions had lower residuals than unipolar
inversions because of the low levels of noise in the magnetic measurement. This is
demonstrated in Figure 14.3 (below).
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Figure 14.3 Refrigerator Magnet: Inversion
Tikhonov Regularization
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The above figure analyzes the magnetic field of a
refrigerator magnet. 14.3.a Hall sensor
measurement of refrigerator magnet. 14.3.b Source
distribution of refrigerator magnet. The artifacts
suggest that the inversion was not made with the
exact parameters such as the correct height or the
correct orientation. However, they are fairly close
as demonstrated by the low value for normalized
residuals=0.0296. 14.3.c The residual map has
Summed Negative Values=0.0817, Mixed
Parameter Values=0.00242

e= 8 8 0
), A = 10-6 |

9. Conclusion
In this study we analyzed different methods for retrieving information about the

magnetization distribution within planar samples from magnetic field maps measured
with scanning microscopes. In particular, we evaluated the effectiveness of bipolar and
unipolar constraints on the source distribution, and found that bipolar performs better
with measurements that have lower levels of noise, while unipolar performs equally well
or better with higher levels of noise. This trend persists in all types of regularization
tested. In normalized least squares inversions of synthetic data, bipolar is superior when
no noise was added (for 0=0*, NRMSD is 0.0914 for bipolar and 0.2984 for unipolar) ,
but when noise was added, bipolar failed while unipolar continued to function (for 0=0,
NRMSD is 4.3355x 106 for bipolar and for unipolar .30071). Through our analysis of
unregularized least for bipolar squares method, Tikhonov regularization, Tikhonov
regularization with a high-pass filter, TSVD soft and TSVD hard, we found that single-
component Tikhonov regularization with a high-pass filter matrix was usually the most
effective method of analysis. An exception to this trend was that three-component high-
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pass Tikhonov proves superior in 0 searches when we added noise to the sample and set
X=1. However, three-component Tikhonov regularization and high-pass Tikhonov
regularization take more time to compute and for most analysis do not have a significant
advantage over single-component Tikhonov regularization. After finding the best
methods for our purposes, we applied unipolar Tikhonov regularization with a high-pass
filter to a real SM magnetic field map of a shocked basalt with a known magnetization
orientation and an estimated sample-to-sensor distance. Our methods could accurately
predict the angle and could provide a rough estimate of the height. Our optimized
inversion of the field map yielded normalized residuals= 0.0187. We also applied high-
pass Tikhonov regularization to the inversion of experimental field maps of a refrigerator
magnet. Because of the low levels of noise it was advantageous to use bipolar models in
this case. The magnetization orientation was unknown as well as the sample to sensor
distance. We estimated the orientation at 6 =1000, p =880 and a sample-to-sensor
distance of 7 mm. A strong indication that these might be the right values is the fact that
the bipolar high-pass Tikhonov regularization worked very well: normalized
residuals=0.0296, Summed Negative Values=0.0817, Mixed Parameter
Analysis=0.00242.

10. Acknowledgements:
This project would not have been possible without the outstanding instruction and
guidance of Dr. Eduardo Lima. His deep understanding of electromagnetism physics and
SQUID technology along with his talent for educating others profoundly increased the
efficiency of my work. Thanks must as well be awarded to Professor Benjamin Weiss for
his fundamental contributions to this paper along with his planetary science lectures
which inspired my initial interest in paleomagnetism. Jane Connor and Professor Kamal
Youcef-Toumi were also of great importance in ensuring I effectively communicated my
findings. I also must thank Jer6me Gattacecca (CEREGE, France) for providing the
sample of the shocked basalt.



References
Brearley, A.J. (2003) Nebular vs parent body processing of chondritic meteorites. In
'Treatise on Geochemistry' , Cosmochemistry Vol. 1. Editors Holland and Turekian.
Elsevier. pp. 711. ISBN 0-08-043751-6. Elsevier, 2003., p.2 4 7-2 6 8 .

Butler, R. F. (2004, September). PALEOMAGNETISM: Magnetic Domains to Geological
Terranes. Retrieved April 10, 2010, from PALEOMAGNETISM: Magnetic Domains to
Geological Terranes Electronic Edition, September 2004:
http://www.pmc.ucsc.edu/-njarboe/pmagresource/ButlerPaleomagnetismBook.pdf

Clarke, J., & Braginski, A. I. (2004). The Squid Handbook Vol. 1. Weinheim, Germany:
Wiley-VCH.

Clarke, J., & Braginski, A. I. (2006). The SQUID Handbook, Vol. 2. Weinheim,
Germany: Wiley.

Gattacceca, J., Berthe, L., Boustie, M., Vadeboin, F., Rochette, P., & de Resseguier, T.
(2008). On the efficiency of shock magnetization processes. Phys. Earth Planet Interiors
166 , 1-10.

Gattacceca, J., Boustie, M., Lima, E., Weiss, B. P., de Resseguier, T., & Cuq-Lelandais,
J. P. (2010) Physics of the Earth and Planetary Ineriors, Submitted. Unraveling the
simultaneous shock magnetization and demagnetization of rocks.

Hansen, P. C. (1994). Regularization tools: a Matlab package for analysis and solution of
discrete ill-posed problems. Numerical Algorithms 6, 1-35.

Jenks, W. G., Thomas, I. M., & Wikswo, J. P. (1997). SQUIDS. Encyclopedia ofApplied
Physics, Vol. 19 , 457-468.

Krot, A. N., Hutcheon, I. D., Brearley, A. J., Pravdivtseva, 0. V., Petaev, M. I., &
Hohenberg, C. M. (2005). Timescales and Settings for Alteration of Chrondritic
Meteorites. In Meteorites and Early Solar System II (pp. 525-553).

Krot, A. N., Scott, E. R., & Zolensky, M. E. (1995). Mineralogical and chemical
modification of components in CV3 chondrites: Nebular or asteroidal processing?
Meteoritics , 748-775.

Lima, E. A., & Weiss, B. P. (2009). Obtaining Vector Magnetic Field Maps from Single-
Component Measurements of Geological Samples. Journal of Geophysical Research-
Solid Earth , Vol. 114, B06102, doi:10.1029/2008JB006006, 2009.

Scott, E. R., & Krot, A. N. (2007). In Chondrites and Their Components (pp. 1-72).
Honolulu, HI.



Weiss, B. P., Fong, L. E., Vali, H., Lima, E. A., & Baudenbacher, F. J. (2008).
Paleointensity of the Ancient Martian magnetic field. Geophysical Research Letters Vol.

35, L23207, 5 PP., 2008 doi:10.1029/2008GLO35585 .

Weiss, B. P., Lima, E. A., Fong, L. E., & Baudenbacher, F. J. (2007). Paleomagnetic
analysis using SQUID microscopy. Journal of Geophysical Research Vol. 112 , B09105,
20 PP., 2007doi: 10.1029/2007JB004940


