
Characterization of a Pre-curved Stylet Distal Tip Manipulation

Mechanism for use in Volume Targeting

by

Hao Ding

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ENGINEERING
AS RECOMMENDED BY THE DEPARTMENT OF MECHANICAL ENGINEERING

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHIVES

MASSACHUSETTS INST17UE
OF TECHNOLOGY

JUN 3 0 2010

LIBRARIES

JUNE 2010

C2010 Hao Ding. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole or in part
in any medium now known or hereafter created.

Signature of Author:
-- ~ ~~a~bepartment of Mechanical Engineering

May 18, 2010

Certified by: ( )

Accepted by: (

Alexander H. Slocum
sor of Mechanical Engineering

Thesis Supervisor

John H. Lienhard V
ei '. ,unus rruiessor of Mechanical Engineering

Chairman, Undergraduate Thesis Committee

-1-





Characterization of a Pre-curved Stylet based Distal Tip
Manipulation Mechanism for use in Volume Targeting

by

Hao Ding

Submitted to the Department of Mechanical Engineering on
May 18, 2010 in partial fulfillment of the

requirements for the Degree of Bachelor of Science in
Engineering as Recommended by the Department of

Mechanical Engineering
ABSTRACT

The characterization of the volume targeting capabilities of a telerobotic device
capable of needle distal tip manipulation with a pre-curved needle is the focus of this
thesis. The concept of deploying a pre-curved stylet from a concentric stiff cannula that
is capable of both translational and rotational motions allows the device to achieve
targeting of volumes through a single needle insertion into a soft medium. Each
mechanism component was analyzed for its motion, and separate functional requirements
were determined for experiments to characterize its accuracy and repeatability.

Three main areas of mechanical studies were selected for experimentation: (1)
accuracy and repeatability of the robot drive mechanisms; (2) 3D experiments measured
the positional accuracies of the device in being able to command the cannula or stylet tips
to travel to the desired location input into the control box; (3) 2D experiments in body
tissue simulating ballistics gelatin analyzed the accuracy and repeatability of the device in
being able to target a small volume inside simulated surgical environments in one plane,
as well as the potential effects the gelatin may have had on the stylets' travel paths. Each
set of experimental protocols and setup were specifically designed to target the
characterization of that mechanism or component of the device. A kinematic model was
used as a basis of comparison for the two latter experiments.

The robot drive mechanism has a fundamental driving repeatability of 0.209mm in
cannula axial translation, 0.034mm in stylet axial translation and 0.2200 in cannula
rotation. For the 0.838mm diameter 30mm radius of curvature stylet, the stylet has an
actual radius of curvature of 31.72mm as determined through a scan measurement. The
tip positions experiments in the CMM and gel yielded radii of curvature changes of -
1.461mm or -4.606% between the CMM data and the actual measured stylet, and
+1.202mm or +3.789% between the gel data and the stylet. 2D volume targeting
experiments yielded an average distance of 1.8822mm + 0.2628mm between the
measured stylet tip positions and the model based calculated positions. The stylet with
the highest targeting accuracy and repeatability was the 0.838mm diameter 20mm radius
of curvature stylet with a targeting accuracy of 1.2760mm ± 0.7256mm, making it the
ideal stylet for use in volume targeting procedures.

Thesis Supervisor: Alexander H Slocum
Title: Neil and Jane Pappalardo Professor of Mechanical Engineering
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Chapter 1: Introduction and Background

In recent years, noninvasive percutaneous procedures have replaced many of the

traditional surgical procedures, but the procedures have been primarily operated manually

[1]. Though the accuracy of these procedures has greatly improved over time with the

introduction of the use of high resolution imaging technologies, there are still many

improvements to be explored. Standard methods require the long needle (10-20 cm) to

be fixed in a specific orientation on the skin, and inserted into the body along a

preselected path determined based on the information derived from some form of

imaging technology such as Computed Tomography (CT), Ultrasound, and Fluoroscopy

[2]. These procedures require multiple imaging scans during the procedure, and are

subject to misalignments which can prolong the procedure and may cause unnecessary

tissue damage, leading to longer patient recovery time [3].

Body structure often proves to be difficult problems for doctors to work around when

performing percutaneous procedures. Often, bones and other tough tissues get in the way

of the needle when targeting a volume deep inside the body. Standard needles can only

target one point at a time, and multiple targets require multiple needle insertions,

increasing the overall tissue damage.

Distal tip manipulation is a concept that provides a solution to the issues present in

many current percutaneous procedure methods and devices. Distal tip manipulation

easily bypasses body structures that are in the way of the needle, and multiple adjacent

points may be targetable with the same needle, removing the need for multiple insertions

and the resulting excessive tissue damage.

Pre-curved Stylet

One possible method of distal tip manipulation uses the control of a pre-curved stylet

as the percutaneous tool. In order to achieve all the desired motions, an access cannula

must be used in conjunction with the pre-curved stylet. The cannula fits on the outside of

the stylet and keeps the stylet straight during axial translations. The cannula can also be

rotated to allow the pre-curved needle to target volumes in 3600, allowing for a greater

working volume in which the pre-curved stylet is effective [4].
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The combined stylet and cannula allow 3 degrees of freedoms to be actuated, 2 in

cannula axial translation and rotation, and 1 in stylet axial translation. Together, these 3

degrees of freedoms allow a cylindrical volume to be targeted. Even though the last

degree of freedom is not a purely translational motion as the stylet is pre-curved, thus

giving it a rotational nature of up to 900, it is carefully actuated thus making it a

controllable degree of freedom.

Several factors that may influence the accuracy of using a pre-curved stylet to target

a volume in a medium must be carefully considered. The stylet would ideally be pre-

curved such that the arc of the stylet follows a quarter circle as closely as possible to

make modeling simple and targeting inputs easy to calculate. Another important factor

that must be examined is the interactions between the pre-curved stylet and the medium it

must travel through. When the stylet is deployed into the medium similar in stiffness and

consistency to body tissue, in this case, ballistics gelatin, the stylet tip would experience a

force that would cause it to deflect away from its original shape [5]. This deflection

could cause the targeting accuracy to decrease.

Steedle

An automated device called Steedle was previously developed with a pre-curved

stylet as the distal tip manipulation mechanism [6]. The Steedle was designed to enable

the positioning of the distal tip of a pre-curved stylet within a working volume in the

body. A CAD presentation of the device is shown in figure 1.1. The device has a

protruding access cannula with a pre-curved stylet pre-assembled inside. The cannula is

attached to a hollow spline-screw with the pre-curved stylet attached to a screw fixed

inside the spline-screw. Two motors engage the cannula spline-screw through nuts to

give it translational and rotational motion. This moves the entire spline-screw which

effectively moves the stylet in the same motions. The stylet screw is attached to a motor

through a nut to give it axial translational motion.

-12-



Stylet
Screw

Cannula
Screw-spline

Spline Nut

Screw Nut

Figure 1.1: Section view Steedle showing the cannula and stylet actuating mechanisms.

Tip positioning accuracy and volume targeting accuracy measurements typically

yielded data in the form of 2D or 3D coordinates. Inputs for control box, however, are in

the form of axial translations in millimetres and rotations in degrees. In order to provide

a basis of comparison for the measured data, stylet tip positions must be calculated.

Trigonometry was used to calculate where the stylet tip positions should be based on the

inputs to the control box. A system of cylindrical coordinates was defined based on the

geometries of Steedle, as shown in figure 1.2.

Simple trigonometry and Cartesian-Cylindrical coordinate conversions were used to

define the kinematic equations necessary to convert the measured data back to cylindrical

coordinate system. Alternatively, by reversing the kinematic equations, the Cartesian

coordinates could also be derived for where the inputs should command the stylet tip to

travel to.
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stylet tip position

stylet radius (X,y,Z)
of curvature p ( ,Z)

R/
Zs/c

Zc/g Z

ground
(telerobot casing)

x P

Figure 1.2: Coordinate system and position variables for cannula and stylet. In order to

position the distal tip of the stylet in a volume, three degrees of freedom have to be

controlled; zc/g, the axial position of the cannula with respect to ground (i.e. the casing);
0 ,g, the angle of rotation between the cannula and the casing and zc, the axial position of

the stylet with respect to the cannula. [7]

According to figure 1.2, the Cartesian coordinates from the measured data would

simply be represented by p and z, with p encompassing both x and y, and z encompassing

both Z, and Zc. The stylet tip position in the p-z plane is simply a function of Z, stylet

axial translation, Z, cannula axial translation and R the stylet bend radius. Simple

trigonometry dictates that:

p=R(1-cosI (1)

z=zC +Rsin zsRj) (2)

The angle between the x axis and the p-z plane is simply the cannula rotational

angle, in this case, <p. By reversing these equations and solving for Zs and Ze

respectively, cylindrical coordinates may be obtained:

z, = R cos-'( 1 (3)
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z, =z-Rsin( zsj (4)

Ge= (5)

Equations (1) and (2) were used to analyze the positional accuracy of the cannula

rotational motion studies, whereas (3), (4), and (5) were converted into Cartesian

coordinates and compared to the data of the cannula and stylet axial translational motion

studies.

The accuracy to which the distal tip of the stylet can be positioned within a desired

working volume will determine how the device is used clinically. Before the Steedle can

be put into clinical trials and studied for use as a percutaneous device, its accuracy and

repeatability must be characterized. This thesis focuses on characterizing the accuracy

and repeatability of Steedle and its ability to target a volume using distal tip manipulation

with a pre-curved needle. This thesis begins by characterizing the motional accuracies of

the steering and driving mechanisms in chapter 2. 3D experiments to determine tip

positioning accuracy and repeatability in air without the interaction of a medium, and 2D

experiments to analyze the volume targeting accuracy and repeatability of Steedle inside

body tissue simulating ballistics gelatin are examined in chapters 3 and 4 respectively. In

the process of performing these experiments and analyzing the data, the effects of gelatin

on the Steedle tip positioning accuracy and repeatability can be quantified, and the model

used to describe the motions and estimate the tip positions of Steedle can be verified and

improved to more accurately predict the motions of Steedle.
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Chapter 2: Actuation Mechanism Repeatability
The translational and rotational motions of Steedle were found to have a fundamental

movement error of 0.243 mm and 0.2200 respectively. System backlash was found to be

1.984' ± 0.208' in cannula rotation. These results act as benchmarks against which all

other error measurements would be compared, and show the lowest possible error the
system can exhibit when positioning the stylet tip as they measure the most fundamental

errors found in the separate components of the driving and steering mechanisms of
Steedle. To make these measurements, a test rig was designed and built to allow accurate

measurements to be performed on the work bench on a rigid experimental setup that
eliminated most human error contributions.

Design of the Test Rig

To begin motions characterization, confirmation that the mechanism was in proper

working order was crucial. For this purpose, an experimental rig was designed and built
with the specific functional requirements listed in table 2.1 to provide a solid mounting

platform for the mechanism so that it could be evaluated on the work bench.

Table 2.1: Functional requirements and design parameters for Steedle evaluation fixture.

Functional requirements Design parameters

Concentricity When mounted, Steedle spline-screw and tapped hole must

be concentric for accurate force measurements

Rigidity Rig must be rigid as to not deform during Steedle

benchmarking or force experiments

Adjustable Length must be adjustable to allow room for different

equipment and cannula/stylet axial translational motions

Experiment flexibility Can be used to run multiple experiments that test every

component of the Steedle

Mountable to other setups Can be attached to the camera gel box fixture for

experimentation - provides rigid structure for testing

-16-



A picture of the rig is shown in Figure 2.1. The rig consisted of a "boxed" % inch thick

aluminum frame where the walls could be positioned at various points along the base.

One of the walls provided a mounting region for the plastic part of the mechanism that

supported the screw spline nuts and bearings. The other wall provided a tapped hole for

mounting measuring instruments such as load cells and potentiometers.

The front mounting plate is a U-shaped piece containing mounting holes that keep

the device centered and concentric with the load cell or potentiometer. The mounting

holes were machined into the piece with dimensions from the plastic piece through which

the spline-screw is centered from the original Steedle CAD files. This piece is concentric

with the spline-screw, making it the ideal piece for centering the mounting piece.

Figure 2.1: Experimental rig for evaluating Steedle mechanism.

Initial experiments performed by Conor Walsh included measurements of the

translational and rotational accuracy of the spline-screw and as well as the translational

accuracy of the stylet screw when a specific command was input into the control box.

For the translational experiments, the drive mechanisms were attached to the U-shaped

mounting plate with the zero position defined at the face between the mounting plate and

the Steedle. The tail end of the digital caliper used to make the translation measurements

fitted into the slots of both the stylet screw and cannula spline-screw, and so was able to

be repeatably positioned for each measurement. This setup is shown in figure 2.2. Using

the digital caliper with a resolution of 0.001mm, measurements of the axial translations
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of the cannula spline-screw and stylet screw were taken and the data is listed in tables 2.2

and 2.3.

Figure 2.2: Digital calipers with tail end fitted

measurements of axial translation. Measurement

the same except with a smaller screw.

into slot of cannula spline-screw for

setup for the stylet screw would look

Table 2.2: Stylet screw axial translation data.

Commanded Position Actual Position [mm] Standard Deviation
5 4.975 0.057
20 20.018 0.056
25 24.969 0.082

Table 2.3: Cannula spline-screw axial translation data.

Commanded Actual [mm] Relative [mm]
0 0
5 5.167 5.167
10 10.006 4.839
15 15.24 5.234
20 20.017 4.777
15 15.225 4.792
10 9.985 5.24
5 5.177 4.808
0 -0.011 5.188
-5 -5.057 5.046

The stylet screw had an axial translation repeatability of 4.9962mm L 0.039mm. The

mean relative axial translation of the cannula spline-screw was measured to be 5.01 1mm

± 0.204mm. The axial error of the two components combined is much less than 1mm

under the ideal conditions.

Rotational motion was measured through the use of a rotary potentiometer mounted

on the back plate and attached to the spline-screw. This setup is shown in figure 2.3.
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Figure 2.3: Steedle mechanism and a rotary potentiometer mounted in testing rig.

The cannula spline-screw was commanded to rotate in 50, 100 and 200 increments and the

resultant data was collated for mean rotation and repeatability error calculations. The

results show that on average, the largest mean error is seen in the 50 commanded angle

where the actual measured rotation was 4.97* ± 0.22*.

Table 2.4: Commanded vs. actual angular displacements of cannula spline-screw.

Commanded Angle 10  Actual Angle [0]
5 4.97 0.22
10 10.15 0.36
20 19.84 0.47

The rotational backlash in the screw-spline was evaluated by applying gentle positive and

negative moments by hand while measuring the angular displacement. This backlash was

measured to be 1.9840 E 0.2080. All these errors ultimately trace back to the backlash

caused by clearances in between the teeth of mating gears from imperfections in gear

material and manufacturing, and from imperfect center distance mounting of the gears

[8].

These initial experiments show promising repeatability, though more robust

experiments must be performed to analyze the actual tip positioning accuracy of the

entire device as well as the volume targeting capabilities of the system in gel.
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Chapter 3: Distal Tip Positioning in Air
The purpose of these measurements was to analyze the accuracy and repeatability of

the different motions of Steedle in air without the interaction of a tissue-like medium.

Specifically, the motions that were commanded were cannula axial translation, cannula

rotation and stylet axial translation. The positioning accuracy errors for each of the three

motions were found to be: ±0.2560mm in cannula axial translation, ±3.990' in cannula

rotation, and ±1.2316mm in stylet axial translation. For these measurements, the CMM

measurement repeatability error was found to be ±0.1450mm when the stylet was

retracted and ±0.2006mm when the stylet was deployed.

Functional Requirements of Experimental Setup

Several functional requirements were taken into consideration for these experiments.

The Steedle must be able to control each motion with no movement in the main body
itself to minimize errors. The act of taking the measurement must not change the position

of the tip of the stylet or cannula being measured. Only one standard frame of reference

must be used to make all measurements to ensure statistical consistency. Measurement

must be made in 3 dimensions by the same measuring device. Finally, each motional

error must be characterized individually to eliminate other potential sources of errors.

Description of CMM Experimental Setup

A coordinate measuring machine, or CMM was chosen to be the measurement

device. The machine itself satisfies 3 of the 5 functional requirements regarding the act

of taking the measurements. A vice attached to the CMM test bed was used to grip the
Steedle, thus satisfying the 4 th functional requirement.

The CMM consists of a 2 axes (X and Y axes) motion carriage carrying a position

measurement probe at the bottom tip of the vertical axis (Z axis) arm. In figure 3.1, the

different axes as recognized by the CMM are shown in their respective positive

orientations. Due to the nature of the machine, the zero position is preset such that one

cannot reset the zero freely. All measurements were taken with a point on the Steedle as

the zero reference point in the CMM preset axes coordinates, and the reference point was
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set at the end of the access cannula from where the stylet is extend out, which can be seen

in figure 3.2.

Figure 3.1: CMM test bed shown with the positive axes. The measurement probe is the

sharp vertical protrusion.

Figure 3.2: Zero point at the end of the access cannula, the reference point for all

measurements.
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The measurement probe takes position readings in Cartesian coordinates when the

probe tip touches a surface and is deflected, see figure 3.3. When this occurs, the CMM

restricts further movement in that direction until either the probe is backed up or the

object is removed. The machine automatically accounts for the radius of the probe tip

and subtracts that from the position where the measurement is taken, to obtain the exact

position of the edge of the object that it is measuring.

Figure 3.3: Measuring probe tip pushed against a stylet tip for taking a position

measurement.

This means that for measuring a tip of a stylet, assuming that the stylet tip is sufficiently

small, it makes no difference which direction the probe approaches the tip from, the

differences in positions measured are so sufficiently small that the error is below the

resolution of the CMM. To be consistent, all measurements were taken with the probe

approaching the stylet tip from the right, or positive X direction moving towards the left

or the negative X direction as seen in figure 3.3. This guaranteed that neither the axial

translation motions nor the rotational motion of the cannula had any influence on the way

the probe took measurements.

CMM Measurement Repeatability
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To determine the repeatability of taking measurements using the CMM, two

different sets of data were taken. One characterized the repeatability of measuring the

zero position of the cannula and stylet where the deflection of the stylet tip, which is fully

supported by the cannula, is smallest. The other characterized measuring the stylet tip

position when it was fully deployed, where the interaction with the probe tip would cause

the greatest amount of deflection in the stylet tip. Doing these two experiments allowed

the characterization of the smallest and largest repeatability errors found in taking

position measurements with the CMM when being controlled manually.

The repeatability of taking measurements on the CMM was found to be ±0.1450mm

at the Omm position, and ±0.2006mm when the stylet was deployed 50mm out. For

targeting purposes using the 30mm stylet, this error is between 0.343% and 0.475% the

distance traveled by the tip of the stylet.

Homogeneous Transformation Matrix Model

In order to provide a basis for the measured data to be compared against, stylet tip

positions must be accurately calculated using the different experimental settings. A

homogeneous transformation matrix (HTM) model was used to calculate the stylet tip

positions. This model takes into consideration several factors that could affect the final

stylet tip positions. Two primary factors taken into account were factors that could be

observed during CMM and initial gel experiments. The cannula deflected radially in the

direction of the pre-curved stylet when the stylet was retracted into the cannula, giving

the stylet tip an initial radial displacement. This positively affects the final position of the

tip because the gel does prevent the cannula from spring back to the zero position when

the stylet is deployed, giving the stylet tip a larger radial position.

The second factor is that the stylet does not exit the cannula completely tangentially.

Instead it exits at an angle, giving the stylet an even larger radial displacement compared

to the axial displacement. The HTM model accounts for these by adding a new reference

frame and a new coordinate system at each cannula/motor, stylet/motor or cannula/stylet

interaction location. This allows the model to have different starting positions for each

separate component of the Steedle, so the cannula can have a starting position that is non-
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zero, and the stylet can have a starting angle that is also non-zero. See Appendix A for a

figure and equations of the HTM model.

Stylet Deployment Measurements

The stylet deployment experiments measured the positional accuracy of deploying

the stylet from 0mm to 50mm. This was done in two experiments. The first only

measured how accurately the device could deploy the stylet to 50mm starting at 0mm.

The second did the same positional translation, but deployed the stylet from 0mm to

50mm in 5mm increments to analyze the behavior of the stylet tip as it was deployed.

The stylet insertion repeatability was measured with the cannula fully retracted to

ensure all errors were due to the movements of the stylet and the stylet motor. In order to

do this, the stylet was initially retracted such that only the very tip of the stylet was

outside the cannula for the probe to interact with. The stylet was then translated 50mm,

allowing it to reach full deployment, thus no curved part of the stylet was still inside the

cannula. Once, the stylet was fully deployed, the tip position was recorded with the

CMM machine as depicted in figure 3.4. A measurement was taken here, and then the

stylet was retracted back into the cannula. This procedure was repeated a total of 10

times.

The second stylet deployment experiment was performed to analyze the behavior of

the stylet tip as it was being deployed. In order to see how the tip position of the stylet

changes as the stylet moves out of the cannula for targeting purposes, the stylet was

deployed from Omm - 50mm in 5mm increments. 5 measurements were taken at each

5mm increment to find the average position and to decrease the statistical significance of

each data point to avoid outlying measurement errors due to external factors such as

potential human interactions and errors. These stylet deployments were done with

cannula axial and rotational positions both in the zero position.
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Figure 3.4: Probe taking measurement when 30mm stylet is fully deployed to 50mm.

The measured data is plotted in 2D in figure 3.5 against the calculated positions of

the stylet. This plot only shows the x and z axes as the y axis was aligned vertically. The

Omm measured position had the stylet slightly outside the cannula for easier

measurement. An average accuracy error of ±1.2316mm was measured in the tip

positions with a CMM measurement repeatability of +0.2006mm.

Stylet Axial 0-50mm

0 5 10 15
X Axis (mm)

20 25 30

Figure 3.5: 2D plot showing measured (o) x and z coordinates of stylet deployment 0mm

-> 50mm against calculated positions (*). The zero position is near (0,0).
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Cannula Translational Measurements

Cannula translational measurements measured the positional accuracy of translating

the cannula by 10mm increments at a time. Error was calculated to determine for a

10mm translation in command input, how far the device actually moved the cannula. The

average translated distance for a 10mm commanded axial translation was measured to be

9.9889mm ± 0.2560mm.

The axial measurements were taken with the stylet fully retracted. This made for

easier measurements as the cannula has a much larger area for the probe to interact with.

Since Y and Z deflections cause very little change in position in the X direction, as long

as the probe interacted with the far end of the cannula, measurements were easy to take.

The stylet cannula was initially extended a few millimeters to ensure that the

measurement of the starting position was that of the stylet cannula and not the cannula

attached to the Steedle housing. This was considered as the zero position for the cannula

axial measurements. A command of 10mm axial translation was input into the control

box and a second reading was taken. The sequence of inputs and position readings were

as follows:

Omm -> 10mm -> 20mm -> 30mm -> 20mm -> 10mm -> 0mm

This was repeated a second time for extra data, and a total of 12 translational motion

measurements were recorded. Since the cannula moved 10mm each time, errors due to
backlash or inconsistencies in the code would have likely been captured in the

measurements.
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Figure 3.6: Cannula axial translation 2D graph showing the cannula tip axial translation

in X. The zero position is near (-2.5,0.5).

Axial translation was the Steedle commanded motion with the smallest average error.

The small angular backlash from the motor gearheads and nuts is passed down to an even

smaller translational backlash through the screw-spline. For a commanded cannula axial

translation of 10mm, the actual translated distance was found to be 9.9889mm ±

0.2560mm, and the CMM measurement repeatability error for this experiment is

±0.1450mm. The 2D graphical representation of the cannula axial translation as seen in

the x-z plane is shown in figure 3.6. For this graph, the zero position is situated near (-

2.5,0.5).

Cannula Rotational Measurements

Cannula rotational measurements measured the actual rotations of the cannula when

specific commands of 90', 180' and 360' rotations were input into the control box.

Having the stylet fully deployed and rotating the cannula allows the characterization of

the rotational positioning accuracy of the stylet tip. The largest absolute error, found in

the command of 180' cannula rotation motions, was measured to be 181.612' ± 5.728'.
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The rotation measurements were taken with the stylet deployed 50mm. This allows

the angles turned by the cannula to be amplified by the tip of the stylet for easier

measurements and analysis. The starting position was at 00. The first set of tests had the

cannula turn 900 for a position reading, then back to 00 for another. This was done 3
times for backlash measurements. Similar readings were done with 1800 and 3600
rotations. The entire set of data included the following rotation inputs and position

readings:

00 -> 90 ->00 -> 900 -> 00 -> 900

00 ->90 ->180 -> 900 -> 00 (x2)

0 ->1800 ->00 -> 1800 >00 -> 1800

00 ->1800 -> 3600 -> 1800 ->00 (x2)

00 ->3600 -> 00 -> 3600 -> 00 -> 3600

A position reading was taken at each angle input and backlash can be measured at

each change in direction of rotation. 00 -> 360' -> 7200 ->3600 -> 00 measurements were

not taken, because in theory, the Steedle should be able to reach any volume within the

work volume by turning up to 3600 in either direction.

Table 3.1: Commanded rotations, average measured rotations and corresponding mean error calculated
from 36 measurements.

X Y Z Measured Rotation Mean Error
Cannula Rotation 900 133.63 166.4118 -182.4693 93.9170 ±3.9900
Cannula Rotation 1800 132.5592 128.7598 -220.2905 181.6120 ±5.7280
Cannula Rotation 3600 130.026 129.807 -145.5147 359.980 ±3.8780

For these measurements, the CMM measurement error is ±0.2006mm, or

approximately +0.3620, which is an order of magnitude smaller than the mean error

measured in the device rotation motions. The largest error by percent rotated, was

measured in the 900 rotation, where the actual measured rotation was off by 3.917 0 and

the error was ±3.9900. This is within reason as compared to the initial device repeatability

which showed the fundamental machine repeatability error in chapter 2 as being 0.2080

for 50 rotations.

Figure 3.7 shows that the cannula rotation was not in perfect 900, though looking

through the X axis, it seems very close. By percent rotation, there was a rather large
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standard deviation in the tip position at 90' which was not propagated to the same extent

in the 1800 and 3600 positions, showing that backlash may have contributed more to the

overall error in the 900 rotations as compared to the 1800 and 360' rotations.

Cannutus Rotation 0-90-1W-360

0*->90L
! 7 :Z

1800->3600

90C-> 80C

I I I 1 1
35 30 25 20 15

Y Axis (mm)

Figure 3.7: Cannula rotation graph showing the 00 and 3600 positions at the top, the 900

position near 0 on the Z axis, and the 1800 position at the bottom. This graph shows the

view as seen from device, or the -X domain in the CMM coordinate system.

Stylet Tip Deployment Behavior Characterization

The behavior of the stylet tip as it is deployed from the cannula can have an effect on

the path the stylet follows inside a medium. An experiment was performed to analyze the

stylet tip positions by deploying the stylet from 0mm to 50mm in 5mm increments, and

tip positions were measured at each increment. This data was then plotted against the

calculated tip positions of the stylet using the HTM model.
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The graph below shows the measured stylet tip positions plotted against the

calculated tip positions.

Stylet Axial CMM Measured (o) vs. Calculated (
5

E

-2*0

-25 0
0 0 0

-30 p

0 5 10 15 20 25 30 35 40
X Axis (mm)

Figure 3.8: Measured stylet tip positions in 5mm increments vs. calculated positions.

The actual tip of the stylet does have a portion that is relatively straight, thus naturally

changing the nature of the fit curve. A circle was fitted onto the measured data in

Matlab, and the circle traced out by the stylet tips was found to have a radius of

30.259mm, which is quite close to the 31.72mm radius of curvature that was measured

for this stylet. The two circles have a difference of 1.461mm or 4.606% in radii. This

data will become more useful when compared to the results from an experiment detailed

later in the gel experiments aimed to measure the same data but in gel instead of air.

Simulating Stylet Tip Positioning in 3D

An experiment was performed to simulate positioning the stylet tip to a set of desired

locations in 3D. The cannula axial position was kept constant at 10mm while the stylet

was deployed to 25mm and 50mm at 0* cannula rotation, and at every 90* rotation

thereafter. Since the error in each individual motion is known from the other

experiments, this combines the two motions that are controlled by all three motors. By
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performing this experiment, representative stylet tip positioning capabilities of Steedle

could be evaluated. This cannot officially be considered volume or position targeting

because Steedle was designed to target volumes inside tissue-like medium.

Figure 3.9 shows the data points from the CMM. The measured data had an average

distance of 0.2373mm from the calculated positions, and the tip positioning accuracy had

a variability of ±0.8155mm. The HTM model predicts stylet tip positions reasonably

well for the 25mm deployment, but not quite as accurately for the 50mm deployment.

This is due to the fact that the error propagates along a longer distance for the 50mm

deployment. The largest measured error is still within the errors found in the individual

motions errors found previously.

Cannula Rotational, Stylet Axial Measured (o) vs. Calculated (*)
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Figure 3.9: The leftmost 8 data points represent the measured and calculated stylet tip

positions when the stylet is only deployed 25mm, compared to the rightmost 8 points at

50mm.
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Conclusions

Of the three different motions in the cannula and stylet, the cannula rotation exhibits

the greatest amount of backlash and motional accuracy error. The cannula rotation

motion had an error of ±3.990' for a 900 commanded rotation. The largest contributor to

this error could be the fact that the rotational motion of the cannula is controlled by two

motors through two nuts both attached to the same spline-screw. Backlash in either the

motors or gearheads could positively affect the overall accuracy as the two motors spin in

the same direction to rotate the cannula. Also, unlike the translational motions where

backlash in the rotational directions of the motors and gearheads leads to very small

motion backlash in the axial translations, the backlash in motors and gearheads is directly

related to the rotational accuracy of the cannula.

Stylet axial translational motions also has a relatively large error at ±1.2316mm,

however the interactions between the measurement probe and the stylet tip may be an

influencing factor in this case due to the flexibility of the stylet when it is fully extended.

That deflection does not exist in cannula axial translational measurements as the stylet tip

is supported by the cannula which is much stiffer. The cannula axial translation motion

had on average, the smallest measured error of ±0.2560mm. The motor and gear

backlash inherently contribute less to the translational motion of the cannula than the

rotational because it is no longer a direct relationship. At the same time, only one motor

would spin to command the translational motion, thus decreasing the overall number of

potential sources of backlash and error.
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Chapter 4: Distal Tip Positioning in Gelatin

The purpose of these experiments was to analyze the effects of gel on the device

volume targeting capabilities using stylets of two different diameters, 0.635mm and

0.838mm, ranging in radii of curvature from 10mm to 30mm. To do so, first the tip

positions of the 30mm radius stylet must be measured as it is deployed into the gel, and

compared to the stylet deployment data taken on the CMM in air. Once the effect of the

gel on the 30mm stylet is estimated, the targeting accuracies can also be analyzed by

deploying all the stylets in a systematic manner and comparing the calculated input

positions to the measured positions. This would be done with 6 different stylets varying

in both radius of curvature (10mm, 20mm and 30mm) and stylet diameters (0.635mm and

0.838mm), to determine the different stylet targeting accuracies. These experiments

ultimately help to determine the ideal stylet to be used in volume targeting using the

Steedle.

Initial Experimental Setup

Initial experiments were performed to examine the viability of using a camera setup

to test stylet insertions in air and gel using stylets with diameters of 0.508mm, 0.635mm,

0.838mm and 0.990mm. The experimental setup is shown in figure 5.1. The stylet was

clamped into the force sensor which was attached to the stylet insertion machine. The

cannula in which the stylet was inserted was mounted in the center of the top plate of the

aluminum test fixture which also housed the gel box. To ensure that the frame of

reference of the camera was the same in every picture, and thus allowed for taking

pictures with the same viewing field every time, the camera was placed on a tripod placed

directly in front of the gel box, and the tripod was positioned such that no zoom was used

on the camera to take the pictures.

To enable measurements of the stylet radii of curvature using the same standard rule,

a 160mm x 80mm scaled grid paper was taped onto the back of the clear gel box.

Pictures were taken when the stylets were retracted inside the cannulus, and then again

when the stylets were fully deployed inside the gel. By doing so, the effects of the

stiffness of the prebent stylet on the cannulus could be seen, and the path the stylet would

take during deployment could be estimated. These pictures were then imported into
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Matlab for extraction of the stylet positions relative to the coordinate system defined

based on the grid paper. Finally, a set of circle-fitting algorithms were applied in Matlab

to these stylet position data points to determine the radius of curvature of the stylet from

the pictures they were extrapolated. Stylet radius of curvature were examined because

this directly affects the final position of the stylet tip, and no change in radius of

curvature would mean no change in final stylet tip position.

Figure 4.1: Experimental setup showing a needle deployed and a camera on a tripod.

Figure 4.1 shows the experimental setup, which includes the use of a needle or stylet

insertion machine, a gel box testing fixture, cannula and stylet, and a camera mounted

onto a tripod for picture taking stability and consistency. Many potential sources of error
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were accounted for through this setup such as stylet axial translational accuracy, grid

normalization and human errors during picture taking. Figure 4.2 shows a comparison of

different stylets deployed in gel, and one can tell immediately that certain experimental

design parameters need improvements.

Figure 4.2: 4.2a and 4.2b show a 0.838mm diameter 20mm radius of curvature stylet being deployed in air

and gel. The tip positions do not seem to be too different in the two photos, whereas 4.2c and 4.2d clearly

show very different stylet tip positions of a 0.635mm diameter 40mm radius of curvature stylet.

The edges and corners of the grid paper in figure 4.2a are clearly rounded due to the

focusing capabilities of the lens of the point and shoot digital camera. Alignment

differences can be observed between 4.2c and 4.2d, making choosing the same reference

frame for the two pictures difficult. Distortion due to the gel can be observed by

comparing the air photos to the gel photos. There is a huge change in radius of curvature,

and consequently the final stylet tip positions between the air and gel photos. These

were just a few issues that could be clearly seen from the photos in figure 4.2. Certain

deterministic conclusions could be seen from these experiments. 0.5mm diameter stylets
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are generally not ideal stylets for targeting purposes because they are very susceptible to

deflections due to the gel. 0.838mm and 0.990mm diameter stylets visually deflected

very little. Within each diameter, radius of curvature of the stylets also played a role in

targeting accuracy. The larger radius of curvature stylets had a much larger working

volume, thus allowing them to reach more volumes in one insertion. However, they also

displayed the greatest deflections, making them less accurate. Some variability in radius

of curvature comes from the effects of gel on the stylets. Especially for larger stylets, the

radii of curvature of the stylets are not constant along the length of the stylets because the

stylets are less supported the farther out they are deployed. This is difficult to model,
however it does provide a metric for how stylets deflect in gel.

Percent Change in Gel vs. Air Values based on 7.5% Gel
Distortion Effects

15

( 10 -

U 5
'4-
0

U:

c 10mm 20mm 30mm 40mm a0.990mI

(U

-10

Designed Needle Radius of Curvature

Figure 4.3: Percent change in radii of curvature of different stylets in gel versus air.

Figure 4.3 shows the percent change in differences in stylet radii of curvature of the

different stylets when inserted into air and gel. Some issues can be observed through

these results. Changes in radii do not exhibit any consistent trends that can be observed

throughout the 10mm radius of curvature stylets. Though the changes in radii of

curvature seem slightly more consistent in the other three stylets, no clear conclusions

can be drawn from this data. Also, the 0.990mm stylet exhibited a negative change in

radius of curvature in gel than air, which is opposite the normal seen in all the other 15
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stylets, suggesting something might not have worked as desired or planned. This

motivates the need to improve the experimental setup.

Pictures taken with the point and shoot digital camera and the small lens at such a

close distance distorted the view of the gel box, making the edges of the gel rounded.

This may have skewed the data as data points extracted from the photos were not where

they were in reality. Guaranteeing the parallelism of the camera lens and the stylet was

difficult because there was no standard method of camera alignment, and the act of

clamping in the stylet using the chuck often rotated the stylet itself out of plane. Some

data in the initial experiments were performed with multiple stylets inserted through the

same access hole in the gel, and some error was associated with the stylets' natural

tendency to travel down the path created by an earlier stylet.

One problem that was unforeseen and unavoidable by the experimental setup was the

fact that the gel greatly distorted the view of the camera as seen in figure 4.2. Light

travelling through different depths of the gel was refracted more, thus the distortion effect

was different for the grid paper compared to the stylet as seen by the camera. An attempt

to correct for this effect can be seen in figure 4.3, where the 7.5% distortion effect

correction made up some of the diffraction difference between the stylet and grid. All

these issues prompted for an improved set of experimental setup and protocols in

preparation for the 2D targeting experiments detailed below.

Design of Improved 2D Camera Experimental Setup

The following functional requirements and design parameters were used in the

design of the improved 2D targeting experiment.

Table 4.1: Improved experiment functional requirements and design parameters.

Functional Requirements Design Parameters

Picture taking consistency Components (camera, test fixture, gel box, etc.) must be

fixed relatively to each other

Simulate tissue Material properties must be able to simulate body tissue

to validate device effectiveness
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Table 4.1 continued: Improved experiment functional requirements and design parameters.

Functional Requirements Design Parameters

Accurate measurement No portion of the images to be used for data collection

can be distorted by the camera

Gel magnification correction A normalizing procedure must be able to account for the

magnification caused by the gel on the stylet and grid

Stylet alignment Stylets must be aligned before deploying into gel

With these functional requirements in mind, the following experimental protocols and

equipment were developed.

The Camera Test Rig and Setup

The rig included a long plate specifically designed for the dimensions of the gel box

rig and the Nikon D80 DSLR camera. Tapped holes were designed into the plate to

allow the gel box rig to be screwed into the plate. On the other end, mounting holes for

the camera were placed at 16in - 19in at lin increments to allow for multiple camera

positions and room for focus length adjustments. The camera was fixed to the plate using

the same %-20 screw hole that would normally be used to mount the camera to a tripod.

A different set of screw holes were made to the right to accommodate screws to be

attached that could act as stops for the camera. The screws act to align the camera such

that pictures are taken with the lens parallel to the gel box to ensure minimal distortion

from the camera being skewed.
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Figure 4.4: Plate shown with gel box rig mounting holes on the left and camera

mounting holes on the right.

Experimental Setup

Figure 4.5: Camera and gel box rig are both mounted to the camera test rig, ready for

taking pictures. Note the camera sits on two spacer blocks to raise the camera lens to

approximately the same level as the absolute center of the grid.
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Figure 4.5 shows the test setup. The lens is zoomed in slightly to ensure the lens is
focused on the stylet and the grid behind instead of the front of the gel box rig itself. The
Steedle was mounted to the gel box rig, and positioned such that the 0* cannula position
corresponded to the stylet curving to the right as seen from the camera. This is made
such that under ideal conditions, deposition of the stylet resulted in the stylet curving in a
plane parallel the camera's viewing plane. A grid paper is attached to the back of the gel
box rig to provide a stationary point of reference for each of the pictures taken, and to act
as a rule to measure the stylet against. Figure 4.6 shows the side view of the setup. Note
that the zoom of the lens and the stop screw are both visible in this picture.

Figure 4.6: Alternate view of the setup showing the screw underneath the camera acting
as a positioning stop to align the camera parallel to the gel box rig.

Grid Distortion Calibration

The grid as seen through the gel is distorted such that even though the original

square grids are 5mm per side, what the camera sees through the gel is not the same as

what it would normally see. By the same concept, the distortion amount is also different

looking through different depths of the gel, thus the stylet at the middle of the gel would

be distorted a different amount from the grid behind the gel. Because of this, the stylet

distortion must be calibrated according to the grid.
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Figure 4.7: Grid calibration plate shown in gel aligned with the cannulus. Measurements

of the aluminum grids are compared to the paper grid seen behind the gel box.

To do this calibration, a separate calibration plate was made such that 10mm per side

square grids were cut out of a 1/16in thick aluminum plate. This plate is then inserted

into the gel at the same plane in which the stylet would be inserted to provide a second

frame of reference. This grid is then measured against the grids in the back and a

calibration factor was found to relate the size of the aluminum grids to the paper grid.

The calibration factor was found to be 1.17, so by dividing the radius of curvature and

positions of the stylet measured against the paper grid by 1.17, the actual radius of

curvature and positions can be found.

Tip Position Characterization

The stylet was deposited in two different positions, at 0* and 180' cannula rotations.

This allowed pictures to be taken in the same plane in opposite directions. The stylet was

deposited at 5mm increments from 0mm to 50mm and back again in each cannula

angular position, and a picture was taken at each increment to obtain tip positions of the

stylet as it was deposited.
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Figure 4.8: Stylet is fully deposited 50mm into the gel. Note that the cannula is

deposited 20mm and the tip of the cannula is inside the gel.

The cannula was also deposited 20mm from the 0 position so that the tip of the

cannula is inside the gel when the stylet is deposited. The 0 position of the cannula

corresponds to the position at which the first length marking on the cannula is just outside

the green capped Steedle cannula. Even though this produces a slight curve at the tip of

the cannula due to the prebent stylet pushing on the cannula wall, this will be corrected in

the analysis of the data collected.

Different Stylet Measurements

To compare all the different stylets and their corresponding targeting accuracies,
each stylet is attached to the device and mounted to the test rig. They are aligned such

that the stylet initially deployed to the right in the plane parallel to the camera lens. The

gel is placed into the rig, and the cannula is axially translated 15mm such that the tip of

the cannula is about 5mm inside the gel. The stylets are then fully deployed, and a data

point is taken at this position. The stylets are then retracted, the cannula translated to

25mm and 35mm positions, and the same stylet motions were repeated at each cannula

position. These steps are then repeated with the cannula rotated 180' to obtain the same

data on the other side of the device. This path is shown in figure 4.9.
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Figure 4.9: Stylet path for volume targeting in gel.

Data Analysis

The pictures are imported into Matlab and analyzed for the stylet tip positions of

each deposition increment. The tip positions are defined based on a coordinate system

set by the grid paper in the program, which effectively normalizes all the pictures in the

same reference. The tip positions are then combined into one graph that represents the

overall profile of the tip positions as the stylet is deposited in 5mm increments. This

graph is then compared to an HTM model aimed at modeling the expected stylet tip

positions.

The stylets targeting accuracies data are normalized using the metal grid and graphed

into Matlab against the tip calculation model outlined in the previous section. The

differences in tip positions are found by plotting both the data and the calculations in the

same graph and finding the Cartesian coordinates between the two sets of points.

Results

Figure 4.10 show the coordinate positions of the measured and the calculated stylet

tip positions at 5mm deposition increments. The "+" points show all the measured data

and the "*" points show the calculated tip positions based on the HTM model which
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takes into account potential effects of stylet exit angle and cannula curvature prior to

stylet deployment.

Stylet Axial 0 Degrees Measured (+) vs. Calculated (*)

0 5 10 15 20 25 30
0 5 10 15 20 25 30

X Axis (mm)

Stylet Axial 180 Degrees Measured (+) vs. Calculated (*)

0 Position
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+
t+ +

-40 -35 -30 -25 -20
X Axis (mm)

35 40
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Figure 4.10: Plots showing the measured 00 and 1800 stylet deposition data (+) vs. the

calculated positions (*). Based on the data shown, it appears that at times, the stylet is

deployed in slightly less than 5mm increments.
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There may be other factors that contribute to the fact that the HTM model overshoots

the estimation of the stylet tip positions. The HTM model cannot accurately take into

account backlash which may have decreased the distance the stylet should have traveled.

Between certain data points in the measured data set, the distances seem to be less than

the full 5mm the stylet was instructed to travel, which may have skewed the data and

altered the tip positions. The cause of the errors is consistent in both direction of stylet

deposition, which makes these errors systematic. Potential causes for errors could arise

from data collection and analysis through the use of the Matlab code, model assumptions

errors, gel-stylet interactions, or Steedle systemic backlash and inaccuracies.

Position data from the stylet 5mm incremental deployment normalized to the zero

position defined at the tip of the access cannula is presented in figure 4.11. This data is

compared to the data collected on the CMM.

Stylet Deposition in 5mm Increments CMM (+) vs. Gel (o)

5 10 1 2 54

19...............

Fiur 4. 1 0 hows .the .... data... rotated.... 90.... clck ie.o.es.o.om arsn. g intote

E

+0

-20 .... . ......... + 0.

.0 0 0

0 5 10 15 20 25 3) 35 40
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Figure 4.11: Stylet 5mm incremental deployment data of the CMM (o) vs. gel ()

Figure 4.11 shows the data rotated 900 clockwise for ease of comparison against other

figures in this thesis. As can be seen in the graph, the two sets of data initially have a

very similar radius of curvature, but the farther the stylet tip is deployed, the more leveled

out the CMM tip positions are while the stylet tip positions in gel are axially displaced
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farther. Two reasons may have caused this difference in tip positions. The gel-stylet

interactions may have deflected the stylet tip downward, causing the larger stylet tip

displacement. The CMM data was taken with the CMM measurement probe pushed up

against the stylet tip towards the Steedle, potentially causing a stylet tip deflection that

makes the axial displacement of the stylet tip smaller. A circle fit was applied to the gel

data in Matlab, and a radius of curvature of 32.9219mm was calculated with the gel

distortion effect calibrated for, which is close to the 31.72mm radius the stylet has been

previously measured to have.

The same HTM model was used to calculate all the different stylet targeting trials

but with different parameters specific to each trial. The measured vs. the calculated tip

positions are graphed in figure 4.12. In order to normalize all the data, a reference point

was chosen based on the grid paper such that the same point was chosen in every picture,

thus the same reference frame could be used to extract all data points. This same

reference frame could then be used to graph all the data against the calculated positions.

In this case, the mouth of the access cannula could no longer be used as the zero position

because the access cannula had an axial translational motion.

From the graphs, it can be seen that as the cannula translated downward, the

calculated and measured data differed more and more. The differences in positions were

averaged across the different stylets and listed in table 4.2. A measurement repeatability

error was found by following the standard procedure of taking a stylet tip position

measurement 5 times for 2 different pictures. These measured positions were then

imported into Matlab and the measurement error was calculated to be 0.2628mm, which

is near the same measurement repeatability as the CMM.
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Figure 4.12: Measured vs. calculated stylet tip positions. "o"s represent the measured

data and "*"s represent the calculated positions.
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Table 4.2: Average difference between measured and calculated positions.

Stylet Mean Measured vs. Calculated Difference

0.635mm - 10mm 3.3422mm 0.7692mm

0.635mm - 20mm 1.6136mm ± 0.6165mm

0.635mm - 30mm 2.9623mm 2.1667mm

0.838mm - 10mm 3.2615mm± 1.0334mm

0.838mm - 20mm 1.2760mm ± 0.7256mm

0.838mm - 30mm 2.4722mm± 1.4141mm

Overall 2.4880mm ± 1.1209mm

One interesting observation to note is that as the cannula tip translates downward, the

difference in tip positions general tend to become bigger, suggesting that the bend in

cannula due to the stylet propagates the effect in the gel. This is likely due to the fact that

once the access path in the gel is created with a slightly skewed cannula tip, that path

positively influences the further translation of the cannula down that same path, thus

pushing the cannula to continue traveling down that same path, making the radial

displacement of the cannula tip larger and larger. If this assumption is true, then stylet

exit angle also effectively becomes larger with each cannula axial translation, thus

causing the effect seen in the trials where the model approximation did not exactly match

the measured data well. This seems reasonable as the trials generally have the cannula tip

positions fanning out horizontally the farther down the cannula tip travels.

Conclusions

The test rig designed for 2D volume targeting experiments in ballistics gelatin

proved to be effective. The measurement repeatability error was found to be 0.2628mm,

which is very close to the CMM measurement repeatability. Comparing the stylet 5mm

incremental deployment data collected by the gel experimental setup against the scanned

needle, a difference of 1.2019 mm or 3.789% was found between the radii of curvature of
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the circles. At least some portion of this difference is likely due to the effects of gel-

stylet interactions.

Volume targeting experiments in gel in 2D yielded promising results for choosing

stylets that could work well for future volume targeting work. The measured data was

able to, on average, come within 2.4880mm ± 1.1209mm of the calculated stylet tip

positions. Some stylets came within much closer distances to the calculated positions.

For example, both the 20mm radius of curvature stylets had positional accuracies within

2mm of the calculated positions, suggesting those stylets would be the best choices for

volume targeting purposes using the Steedle. Based on the data, the 0.838mm diameter

20mm radius of curvature stylet would be the best stylet for volume targeting as it

yielded the highest accuracy with an average measured versus calculated tip position

difference of 1.2760mm 0.7256mm.

Several factors may add to the error in these experiments. The HTM model has

several parameters that are estimated and the real values cannot be known for sure. Some

assumptions were made about specific parameters and how the overall system acts in

response to different stylet setups. For example, the gel affects the stylets differently

based on stylet diameters and their corresponding stiffness. This effect can only be

confirmed with more experiments on the CMM using the 0.635mm diameter stylet. This

effect can only be generalized if experiments with all stylets are performed.

Looking at the overall data and errors, the HTM model does reasonably well in

predicting where the stylet would go without the gel effects, and the model can be a

method of estimating the final stylet tip positions based on the control box inputs. The

resolution of the measurements is small enough that it does not significantly alter the

differences measured. If the above mentioned factors can be accounted for, the

difference in tip positions between the calculated and measured data could become as low

as <1mm, making the model an extremely accurate method of estimating stylet tip

positions.
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Chapter 5: Conclusions and Future Work

The purpose of this thesis was to characterize the volume targeting capabilities of a

telerobotic device, Steedle, capable of needle distal tip manipulation with a pre-curved

needle. Three different experimental setups and protocols were designed and carried out

to measure the accuracy and repeatability of the device actuation mechanisms, stylet tip

positioning in air 3D, and stylet tip positioning in gel in 2D. In analyzing the results from

these experiments, the viability of an automated telerobotic device for use percutaneous

procedures is confirmed, and the ideal stylet for volume targeting was chosen.

An experimental testing fixture was designed and built to allow each of the three

motions of the actuation mechanism to be isolated and characterized. Repeatability in the

cannula axial translational motion was found to be +0.209mm. Stylet axial translation

was repeatable to +0.034mm, and cannula rotation was repeatable to ±0.220* per input

command. Torque was applied to the cannula without a motion command, and an

average backlash of 1.9840 0.208' was observed in the system. These values defined

the lowest systematic errors Steedle could have under the ideal experimental conditions.

Experiments on the CMM tested for the accuracies and repeatability errors found in

the assembled device, as well as the stylet tip positioning accuracy of the Steedle without

the interaction of a medium. Repeatability in the cannula axial translational motion was

measured at 0.2560mm, with a CMM measurement repeatability of +0.1450mm. Stylet

axial translation repeatability was +1.2316mm, measured for a 0.838mm diameter 30mm

radius of curvature stylet fully deployed at 50mm. Cannula rotation was observed to

have a repeatability of ±3.990'. These last two motions both had a CMM measurement

repeatability of +0.2006mm due to the fully deployed stylet having a tip more susceptible

to deflections caused by the measurement probe. A 50mm stylet deployment experiment

yielded data that traced a stylet radius of curvature change of -1.461mm or -4.606% from

the actual stylet radius of curvature. This result was expected as the measurement probe

likely caused a deflection in the stylet tip that decreased the overall radius of curvature.

2D experimentation in gelatin presented a method of analyzing the volume targeting

capabilities of Steedle in one plane as well as a way of estimating the effects of gel on

stylet paths. Taking position readings using the transparent gel, grid paper and camera
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setup yielded a measurement repeatability error of only 0.2628mm, which is highly

accurate and near the same accuracy as using the CMM. Another 50mm stylet

deployment experiment was performed in the gel, and a change in radius of curvature of

+1.2019mm or +3.789% was found between the measured data and the actual. This may

be accounted for by the fact that as the stylet is deployed in gel, its radius of curvature no

longer remains constant due to the gel pushing on the stylet. The stylet naturally wants to

bend into its pre-bent shape, but the gel prevents it from doing so, thus yielding a larger

radius of curvature. Six different stylets ranging in diameter (0.635mm and 0.838mm)

and radius of curvature (10.58mm, 21.32 and 31.72mm) were characterized for their

targeting accuracies, and an average targeting accuracy error was found to be 2.4880mm

± 1.1209mm. Of all the stylets characterized, the 0.838mm diameter 20mm radius of

curvature stylet had the highest accuracy at 1.2760mm ± 0.7256mm, making it the ideal

stylet for volume targeting purposes.

Future Work

Future experimentation on the characterization of the device volume targeting

capabilities include (1) isolation of the interaction between the cannula deflection and

stylet exit angles in gel and the resultant cannula and stylet tip paths, (2) analysis of the

targeting accuracies and repeatability of the device in gelatin and tissue in 3D using an

imaging technology like a CT scan, (3) and targeting using all different stylets available

to determine the best stylet for use in future clinical trial. Improvements in future HTM

models would (1) better account for exit angles of stylets, (2) predict cannula

displacements based on stylets used, and (3) discern stylet tip positions differences based

on effects of deploying the stylet in air versus gel. Finally, a set of targeting experiments

in actual tissue from pigs would provide the most representative testing environment for

human body tissue before putting Steedle into clinical trials. Actual tissue provides the

added benefit of allowing the analysis of the effects non-homogeneous medium would

have on the targeting accuracies of Steedle.
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Appendix A: HTM Model for Tip Position Calculations

By defining a new coordinate system, and thus a new reference frame at each

cannula/motor, stylet/motor or cannula/stylet interaction location, non-zero starting

positions and exit angles could be taken into account when predicting the stylet tip

positions [9].

CS 0: Origin

CS 1: S :rew-spline
end

CS 3: Stylet exit
position

CS 2: Cannula
distal tip

CS 4: Stylet tip
position

Figure A.1: Steedle section view with locations chosen for placement of new coordinate

systems and reference frames.
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By superpositioning each new HTM on the previous one, a model could be created

that takes into account many factors that may influence the end position of the stylet tip.
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