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Abstract. This paper presents the surface shaping numerical 

investigations results of truss space constructions mesh reflectors, such as 

antennas and calibration and adjustment satellites. Shape-generating 

structure of mentioned constructions adds up to set of triangular facets, 

made in the form of spatio-curvilinear bar frames, bearing reflecting 

knitted mesh fabric pulled on it. This work proposes the algorithm of 

calculation of step-by-step reflecting mesh pulling on the bearing frame’s 

bars process, using finite elements method. Numerical execution of the 

developed algorithm involves for resolving the linear elasticity theory first-

type boundary value problem, which implies integration of elastic body 

equilibrium equations without taking into account mass forces when 

kinematic boundary conditions are given. Analyzing when having done 

numerical calculations, it's possible to determine what grade obtained 

shapes of reflecting surfaces are precise with, and to find possible for 

developing variants of the antenna structure, which would allow to obtain 

the reflector surface shape with required accuracy by using flexible cables 

as a part of shape-generating structure. Comparing results of numerical 

investigations with experimental data received using full-scaled model of 

spherical calibration and adjustment satellite shows satisfactory qualitative 

and quantitative matching of both results. 

Introduction 

Increasing necessity of transformable reflectors with aperture of more than 12 m, which are 

used for telecommunication applications, compels such structures developers to find the 

best conceptual decisions that would meet the demands of minimal mass, high precision of 

reflecting surface, and necessary dynamic stiffness [1-3]. 

Modern technology of creating large-scaled structures is based on the module paradigm. 

This technology allows building in space rather large, one might say giant multikilometer 

                                                 
* Corresponding author: vitevm@yandex.ru 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 221, 01031 (2019) 
EPPS 2019

 https://doi.org/10.1051/epjconf/201922101031

mailto:vitevm@yandex.ru


 

frameworks of space vehicles, antenna reflectors, basic structures of solar power stations, 

large telescopes etc. It’s possible to build all such constructions on the basis of frame 

modules. 

During a near of semi-centennial history of the large space self-deployable reflectors 

technology evolution, dozens of variants of their structures have been put forward, but to 

the purposes of practical usage it makes sense to consider two of structure types, which 

vary in methods of reflecting surface shaping, that are 

– frame structures, where flexible reflecting surface is fixed to the load-bearing frame, 

forming required shape; 

– shell-based structures, where reflecting surface is made as a result of elastic 

deformations arising either by the assembly forces, or by the membrane forces when there 

is excess pressure in the closed shell. 

If this is the case that mechanical or else frame structures present almost the whole set 

of reflectors currently running in space, there are 50 of 60, or 83 percent with the sizes 

within the range of 4.5 to 22 meters, then part of elastic reflectors contains only 10 ones, at 

that, all of the elastic reflectors have dimensions of less than 7 meters. Inflatable 

constructions holding their much promise stay under development for now. 

Currently, in world practice there are four companies commanding in development of 

transformable reflectors, which develop frame reflectors with mesh reflecting surfaces. As 

of abroad, there are two U.S. companies, namely Harris and NGST, which one is 

subdivision of Northrop Grumman corp., and Toshiba the Japanese company one. In 

Russia, JSC Academician M.F. Reshetnev Information Satellite Systems company takes 

leading position in development of transformable reflectors. 

Harris develops umbrella-type scheme of reflector frame building (Radial Rib, Folding 

Rib) (Fig. 1a) [4, 5] and hoop-similar structure as of a last variant (Fig. 1b) (Harris 

Advanced Hoop-Truss Reflector). 

 

a) 

 

b) 

Fig. 1. Umbrella-type and hoop-type schemes of reflectors by Harris. 

The hoop-type structure was developed as alternative to the umbrella-type one. Initial 

investigations of the structure were provided by Northrop Grumman Corp. Hoop-type 

reflector consists of peripheral hoop, two meshes, and inner cable web interconnecting the 

meshes. One of the meshes is a shaping mesh, and reflecting surface is fixed to it (Fig. 2a) 

[6]. Further investigation have led to developing of large deployable hoop-type reflector 

with diameter of 11.5 meters as a specimen of “double pantograph” concept for BIOMASS 

mission (Fig. 2b) [7]. 
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JSC Academician M.F. Reshetnev Information Satellite Systems company works on 

umbrella-type reflector concept (Fig. 3) [8, 9]. Currently, reflectors of cable-stayed 

umbrella-type structure with larger diameters are under development. 

Frame reflectors engineering are carried out by another more companies. 

RSC Energia under the treaty with ESA tries to implement a concept of reflector of cable-

stayed umbrella-type structure with the circular peripheral pantograph and meshed 

reflecting surface [4]. 

 

a) 

 

b) 

Fig. 2. Structure of hoop-type reflectors by Northrop Grumman Corporation (AstroMesh structure). 

.  

Fig. 3. Reflectors with diameter of 4.5 m at Luch 5A satellite. 

Truss reflectors development has been started simultaneously with umbrella-type ones 

on 60th of last century. In USA, General Dynamics company on demand of NASA carried 

out the development, results of which were published in the shortening way in the article 

[10]. Next years, various conceptual nature works on the possibility of large reflectors 

creating have started publishing, the truss structures were under consideration among them. 

Special Design Bureau of the Moscow Power Engineering Institute for years has been 

developing a trend of truss framework with basic element in the form of tetrahedron and 

with the meshed reflecting surface [12]. Truss reflector structures like that have been 

developed and set among other at Kondor satellite by NPO Mashinostroyeniya [13] 

(Fig. 4a) and at China satellite of HJ-1С (Fig. 4b). 

Japan Aerospace Exploration Agency (JAXA) advances mesh modules based paradigm. 

(Fig. 5) [4], [14-18]. 

This paper presents truss structures, which are, in particular, the base elements of 

antenna reflectors and calibration and adjustment satellites with the mechanical foldable 

frames and reflecting surfaces made of knitted mesh fabric fixed to it. When considering 

such structures, special interest makes an accuracy of reflecting surface approximation 

relative to theoretical shape. 
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The purpose of this work is to perform the numerical investigations of shape of the 

reflecting surface made of knitted mesh fabric being pulled on the truss structure curvilinear 

frame. 

Fig. 4. Space satellites with truss reflectors. 

 

a) 

 

 

 

 

c) 

 

b) 

Fig. 5. Truss structure named as “modular mesh”: 

a) large deployable reflector with diameter of 19 m consists of 14 hexahedral unfurlable modules, 

b) mesh module with diameter of 4.8 m, 

c) structure of the mesh module. 

1 Construction of the truss module of a space system 

The key element of reflector frame is the repetitive volumetric element that is tetrahedron 

(Fig. 6a). At that, tetrahedrons interconnections are made in such a way that their vertices 

are placed at facing and rear surfaces, changing their own top and bottom directions by 

turns. As a result, the volumetric truss structure forms, being built as two surfaces 

 

a) 

 

b) 
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interconnected by diagonal rods (Fig. 6b) Structurally, each surface is a package of foldable 

rods consisting of two joined tube elements. Diagonal and foldable rods are interconnected 

by nodal hinges, which makes kinematic constraints, thus this allows to consider truss 

framework as the whole of spatial cells in the form of tetrahedron. 

Fig. 6. Truss reflector framework. 

The mesh fabric is fixed to the facing surface, it is knitted material made from various 

metals microwires, such as molybdenum, tungsten, stainless steel ones, which are suitable 

to be processed on knitted machines and provide required mechanical and radiotechnical 

characteristics. It should be noted, that tetrahedron faces split ideal facing surface to 

triangular areas, or else to facets. 

Hereinafter, truss module of space antenna with reflector with diameter of 12 m and 

with focal length of 12 m containing 𝑁0 = 4 stages is shown as example. In this structure, 

main foldable bars length is 1.5 m, diagonal bars length is 1.6 m. Antenna aperture is 113.4 

m2 and height of arcs is ℎ = 11.7 mm. 
When folding, tube elements of foldable rods turn around axes located in the nodal hinges 

and stand inside the framework between diagonal rods. Last ones turn in the same way about 

their axes located in the nodal hinges and stand the near parallel position in folded state (Fig. 7). 

In orbit, the whole construction deploys by means of elastic energy initially accumulated in 

springs placed in the nodal hinges and the hinges of foldable rods when construction is being 

folded. Diameter of the truss module in a close-packed (transport) state is a value by order of 0.7 

m. The areas ratio is 0.7/113.4 = 0.0062. 

Generally, the shape-generating structure (SGS) of the truss reflector consists of rigid 

elements of the framework facing surface (nodes and rods) and flexible structure, which is inside 

the triangular facets, approximating the theoretical surface.  

The possibility of reflecting surface of the reflector to be represented as number of facets by 

means of rigid elements, probably, is the main advantage of the truss reflectors. 

When building SGS using rigid elements, four main advantages put into effect: 

– positions of the nodal points of the framework facing surface are set by a building berth, 

and there is no need for next adjustment, 

– SGS is made by facets in the form of triangle, and that is optimal facet form among all 

geometrical forms,  

– using the rigid connecting elements of the facing surface (rods), it is possible to use 

profiled ones, which increase precision of reflecting surface approximation in two times as 

compared with using straight rods [19, 20], 

– when profiled the facets borders, residual inaccuracies of approximation are independent, 

they are localized in the centers of triangular facets, therefore they can be decreased by using 

flexible SGS cables located inside the triangles. 

 

a) 

 

b) 
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Fig. 7. The truss module in folded transport state and unfolded operating state. 

Fig. 8a shows the framework and shape-generating structure elements of a single 

tetrahedron. In Fig. 8b the height of arcs is shown increased in 10 times to better visual 

comprehension of the curvilinear foldable rods geometry. 

 

a) 

 

b) 

Fig. 8. The framework and the shape-generating structure elements of a single tetrahedron. 

In the model being under consideration, it is supposed that middle points of the arcs (that are 

centers of the foldable rods hinges) and centers of the nodal hinges (that are points 

𝑀1, 𝑀2 and 𝑀3) lie on an ideal paraboloid surface, which is theoretical surface of the reflector. 

1.1 Performing of the knitted mesh fabric stress analysis 
of a reflector framework single facet 

Hereinafter, stress analysis of the knitted mesh fabric being pulled on the curvilinear frame 

of a single facet is described. Rods of the framework are supposed to be rigid. 
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The problem is put as the linear elasticity theory first-type boundary value problem, 

which implies integration of elastic solid body equilibrium equations without taking into 

account mass forces (1) 

∇ ∙ 𝜎̂ = 0,                                                                       (1) 

where 𝜎̂ is the Cauchy stress tensor, ∇=
𝜕

𝜕𝑥𝑖
𝒆𝑖  is the del operator, (⋯ ∙ ⋯ ) is the dot 

product, 

when kinematic boundary conditions are given (2), that are displacements specified on the 

body surface 𝑆𝑢 

𝒖 = 𝒖𝟎(𝒓),   where  𝒓 = 𝑥𝒊𝒆𝑖 ∈ 𝑆𝑢.                                            (2) 

The knitted mesh fabric nesting is in the shape of flat triangle similar to the triangle 

𝑀1𝑀2𝑀3 (Fig. 9). The nesting side that is opposite to the vertex 𝑀1 lies at distance of 𝛿 

from the line 𝑀1𝑀2, which allows to carry out a computations with various pulling of the 

mesh. 

Three variants, that are without SGS (Fig. 9a), with SGS made of flexible elements 

meeting in one point (Fig. 9b), and with SGS made of flexible elements coinciding with the 

facet medians (Fig. 9c), have been considered. 

Computations are made with the help of finite element method, using 

MSC.Patran/Nastran software. 

 

a) 

 

b) 

 

c) 

Fig. 9. Variants of SGS implementation. 

Finite element model of a single facet (Fig. 10a) is shown in Fig. 10b. The finite 

element model consists of mesh fabric model divided into Quad4 elements, flexible SGS 

cables model divided into Bar2 elements, and additional flexible SGS elements, which are 

guy lines modeled by MPC elements. 

Accepted characteristics of the knitted mesh fabric and the SGS cables are shown 

in Table 1.  

Table 1. Physical properties of the knitted mesh fabric and the SGS cables. 

 𝐸, Pa size, mm Grade 

knitted mesh fabric 6.0 ∙ 106 0.15 Atlas-Atlas 2G 

SGS cables 7.18 ∙ 109 0.70 Armalon 

The mesh fabric and the SGS cables pulling is made step-by-step when the finite 

element model node in the point 𝑀1 is constrained. Shown below the given problem 

boundary conditions answer to each step. 
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a) 

 

b) 

Fig. 10. The single facet of the reflector framework 

and the finite element model of knitted mesh fabric with SGS cables. 

1.2 Steps of the knitted mesh fabric and the SGS cables pulling 

When performing an analysis, the finite element model node in the point 𝑀1 is considered 

to be constrained, which prevent the mesh fabric displacement as a solid body (Fig. 11). 

1.2.1 1st step 

Displacements of the mesh nodes for the 1st step are shown by arrows in Fig. 11, which 

corresponds to the mesh fabric being pulled in the plane of triangle 𝑀1𝑀2𝑀3. 

 

Fig. 11. 1st step of the knitted mesh fabric deformation. 

Nodes 𝑀𝑖 that belong to line 𝑀1 𝑀2𝑟 shift along line 𝑀1 𝑀2 in compliance with the law 

of (3) 

𝑢1𝑖
(1)
=
𝑥1𝑖
(0)

𝐿1
(0)
𝛿

𝑣1𝑖
(1)
= 0

𝑤1𝑖
(1)
= 0 }

 
 

 
 

,                                                              (3) 
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where 𝑥1𝑖
(0)

 is the abscissa of the node 𝑀𝑖, 𝐿1
(0)

 is the length of the line 𝑀1𝑀2𝑟 . 

Accepted law of movement of nodes 𝑀𝑖 is similar to shifting of elastic rod sections 

while stretched along their axis. 

Nodes 𝑀𝑘 that belong to line 𝑀2𝑟 𝑀3𝑟 shift along rays derived from point 𝑀1 in 

compliance with the law of (4) 

𝑢2𝑘
(1)
= 𝑥2𝑘

(1)
− 𝑥2𝑘

(0)

𝑣2𝑘
(1)
= 𝑦2𝑘

(1)
− 𝑦2𝑘

(0)

𝑤2𝑘
(1)
= 0

},                                                          (4) 

where 

𝑥2𝑘
(1)
= 𝑥2𝑘

(0) 𝐿2𝑘
(1)

𝐿2𝑘
(0), 𝑦2𝑘

(1)
= 𝑦2𝑘

(0) 𝐿2𝑘
(1)

𝐿2𝑘
(0), 

𝐿2𝑘
(0)
= √(𝑥2𝑘

(0)
)
2
+ (𝑦2𝑘

(0)
)
2
, 𝐿2𝑘
(1)
= 𝐿2𝑘

(0)
+ 𝐿2𝑘

(0)
(
𝐿1
(1)

𝐿1
(0) − 1). 

Nodes 𝑀𝑗 that belong to line 𝑀1 𝑀3𝑟 shift along line 𝑀1 𝑀3 in compliance with the law 

of (5) 

𝑢3𝑗
(1) =

𝐿3𝑗
(0)

𝐿3
(0)
(𝐿3
(1) − 𝐿3

(0))
𝑥3

𝐿3
(1)

𝑣3𝑗
(1) =

𝐿3𝑗
(0)

𝐿3
(0)
(𝐿3
(1) − 𝐿3

(0))
𝑦3

𝐿3
(1)

𝑤3𝑗
(1) = 0 }

 
 
 

 
 
 

,                                                 (5) 

𝐿3𝑗
(0)
= √(𝑥3𝑗

(0)
)
2

+ (𝑦3𝑗
(0)
)
2

. 

Positions of the mesh fabric and the SGS cables just after 1st step of pulling are shown 

in Fig. 12.  

 

 

 

 

Fig. 12. Positions of the mesh fabric and the SGS cables just after 1st step of pulling. 
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1.2.2 2nd step 

Displacements of the mesh nodes for the 2nd step of deformation are shown in Fig. 13. In 

this case, nodes that belong to the flat triangle 𝑀1𝑀2𝑀3 edges shift to the arcs 

corresponding to the curvilinear rods of the facet.  

 

Fig. 13. 2nd step of the knitted mesh fabric deformation. 

Nodes 𝑀𝑖 that belong to line 𝑀1 𝑀2 shift along axis 𝑀1𝑧  in compliance with the law of 

(6) (along the arrows in Fig. 13) 

𝑢1𝑖
(2) = 0

𝑣1𝑖
(2) = 0

𝑤1𝑖
(2) = 𝑧1𝑐 − √𝑅1

2 + (𝑥1𝑖
(1) − 𝑥1𝑐)

2

}
 
 

 
 

,                                              (6) 

where 𝑥1𝑐 , 𝑧1𝑐 are coordinates of the center of circle that includes arc 𝑀1𝑀01𝑀2, (𝑦1𝑐 = 0), 
𝑅1 is the radius of the circle. 

Nodes 𝑀𝑘 that belong to line 𝑀2 𝑀3 shift along axis 𝑀1𝑧  in compliance with the law of 

(7) (along the arrows in Fig. 13) 

𝑢2𝑘
(2) = 0

𝑣2𝑘
(2) = 0

𝑤2𝑘
(2) = 𝑧2𝑐

′′ −√𝑅2
2 − (𝑥2𝑘

′′(1) − 𝑥2𝑐
′′ )2

}
 
 

 
 

,                                              (7) 

where  

𝑥2𝑘
′′(1) = 𝑒11

′′ (𝑥2𝑘
(1) − 𝑥2) + 𝑒12

′′ (𝑦2𝑘
(1) − 𝑦2), 𝑥2𝑐

′′ = 𝑒11
′′ (𝑥2𝑐 − 𝑥2) + 𝑒12

′′ (𝑦2𝑐 − 𝑦2), 

𝑧2𝑐
′′ = 𝑧2𝑐,  𝑒11

′′ =
𝑥3−𝑥2

𝐿2
(1) , 𝑒11

′′ =
𝑦3−𝑦2

𝐿2
(1) , 

𝑥2, 𝑦2 are coordinates of the point 𝑀2, 

𝑥3, 𝑦3 are coordinates of the point 𝑀3, 

𝑥2𝑐 , 𝑦2𝑐 , 𝑧2𝑐 are coordinates of the center of circle that includes arc 𝑀2𝑀02𝑀3, 

𝐿2
(1)
= √(𝑥3 − 𝑥2)

2 + (𝑦3 − 𝑦2)
2. 

10

EPJ Web of Conferences 221, 01031 (2019) 
EPPS 2019

 https://doi.org/10.1051/epjconf/201922101031



 

Nodes 𝑀𝑗 that belong to line 𝑀1 𝑀3 shift along axis 𝑀1𝑧  in compliance with the law of 

(8) (along the arrows in the Fig. 13) 

𝑢3𝑗
(2) = 0

𝑣3𝑗
(2) = 0

𝑤3𝑗
(2) = 𝑧′3𝑐

′′
− √𝑅3

2 − (𝑥3𝑗
′′′(1) − 𝑥3𝑐

′′′)2
}
 
 

 
 

,                                            (8) 

where 

𝑥3𝑗
′′′(1) = 𝑒11

′′′𝑥3𝑗
(1)
+ 𝑒12

′′′𝑦3𝑗
(1)
, 𝑥3𝑐

′′′ = 𝑒11
′′′𝑥3𝑐 + 𝑒12

′′′𝑦3𝑐 , 

𝑧2𝑐
′′′ = 𝑧3𝑐,𝑒11

′′′ =
𝑥3

𝐿3
(1)
, 𝑒11
′′ =

𝑦3

𝐿3
(1)
, 

𝑥3, 𝑦3 are coordinates of the point 𝑀3, 

𝑥3𝑐 , 𝑦3𝑐 , 𝑧3𝑐 are coordinates of the center of circle that includes arc 𝑀1𝑀03𝑀3, 

𝐿3
(1)
= √𝑥3

2 + 𝑦3
2. 

Positions of the mesh fabric and the SGS cables just after 2nd step of pulling are shown 

in Fig. 14.  

  

Fig. 14. Positions of the mesh fabric and the SGS cables just after 2nd step of pulling. 

1.2.3 3d step 

Two variants of nodes shift of the SGS flexible cables mesh have been considered at 3d 

step of the knitted fabric deformation (Fig. 15): 

a) shift of the guy line connected to the node, where SGS cables intersect, is given 

(Fig. 15a)  

b) additional set of six guy lines is introduced that are connected to the central guy line, 

which interconnects the node, where SGS cables intersect, with the hinge of the rear 

surface. Shift of the guy lines common node is given, which is equal to difference of z-

coordinate of this node and corresponding point, which belongs to the theoretical 

paraboloid. 

11

EPJ Web of Conferences 221, 01031 (2019) 
EPPS 2019

 https://doi.org/10.1051/epjconf/201922101031



 

 

a) 

 

b) 

Fig. 15. 3d step of the knitted mesh fabric deformation. 

1.3 Variants of performing of the root mean square deviation analysis 
and the stress analysis of the mesh fabric 

When performing the calculations, special attention is paid to defining the mesh fabric root 

mean square deviation (RMSD) from the theoretical paraboloid surface, which is based on 

customary in mathematical statistics RMSD concept. According this, RMSD value is 

defined as (9) 

𝑅𝑀𝑆𝐷 = √
1

𝑆
∫[𝑑(𝒓) − 𝑑̅]

2
𝑑𝑆,

 

𝑆

    where  𝑑̅ =
1

𝑆
∫𝑑(𝒓)𝑑𝑆.

 

𝑆

                      (9) 

After transformation, the formula for root mean square deviation 𝑅𝑀𝑆𝐷𝑖  can be 

received, which is corresponding to each part of the reflecting surface 𝑆𝑖 (10) 

𝑅𝑀𝑆𝐷𝑖 = √𝑑𝑖
2̅̅ ̅ − 𝑑𝑖̅

2
, 𝑖 = 1,2,3,⋯ ,𝑁∆,                                       (10) 

where  

𝑑𝑖
2̅̅ ̅ =

1

𝑆𝑖
∫𝑑𝑖

2(𝒓)

 

𝑠𝑖

𝑑𝑆𝑖 , 𝑑̅ =
1

𝑆𝑖
∫𝑑𝑖(𝒓)𝑑𝑆𝑖

 

𝑆𝑖

, 

𝑑𝑖(𝒓) is the deviation of the point 𝑀𝑖(𝒓) ∈ 𝑆𝑖 from the theoretical paraboloid surface 𝑆𝑝𝑎𝑟 , 

𝑑̅𝑖  is the mean value of deviation 𝑑𝑖 over the 𝑆𝑖 , 𝑑𝑖
2̅̅ ̅ is the mean value of squared deviation 

𝑑𝑖 over the 𝑆𝑖 . 

The results of the single facet with various SGS flexible elements root mean square 

deviation analysis and stress analysis are given below. 

While working on considered model of deformation of the mesh fabric with the SGS 

flexible elements, it is possible to vary the following parameters: 

1) parameter 𝛿 defining initial sizes of the mesh fabric nesting, it is shown in Fig. 9. 

This parameter allows changing the meshed fabric stressed state;  

2) arcs curvature, i.e. positions of the points defining the heights of arcs. The 

coordinates of the points can be found from the conditions of lying the points on the 

theoretical paraboloid surface or locating on outside of the paraboloid. 

3) number and positions of the SGS cables. 
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1.3.1 Distribution of RMSD value along the module surface 

The estimation of RMSD value distribution along the module surface is shown 

in Fig. 16. Facets with the curvilinear foldable rods is considered being without SGS cables, 

under condition that the points corresponding to heights of arcs lie on the paraboloid 

surface.  

 

Fig. 16. Distribution of RMSD value along the module surface. 

Following values for RMSD are found: 1.637 mm for facet 1, 1.62 mm, 1.61 mm, and 

1.57 mm for facets 2, 3, and 4 respectively, which is explained by decreasing of the 

paraboloid surface curvature when moving away from its peak.  

It should be noted, that RMSD of facet 1, on the assumption that foldable rods are 

rectilinear, is equal to 3.02 mm, i.e. the facet is a flat triangle. 

1.3.2 Deformation of a single facet without SGS cables 

Here is calculation without the SGS cables, the foldable rods are curvilinear, points 

corresponding to the arcs heights are shifted by 2 mm towards the external normal to the 

paraboloid surface (Fig. 17). The RMSD value equal to 1.44 mm is obtained in this 

calculation. 

 

a) 

 

b) 

 

c) 

Fig. 17. Points corresponding to the arcs heights are shifted 

by 2 mm towards the external normal to the paraboloid surface. 
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1.3.3 Deformation of a single facet enhanced by three SGS cables 

Here is calculation with the SGS cables, the foldable rods are curvilinear, points 

corresponding to the arcs heights lie on the paraboloid surface. Three flexible elements and 

a guy line are added (Fig. 18). 

The RMSD values obtained in this calculation are next: 

a) 𝑅𝑀𝑆𝐷 = 1.476 mm. The point of the SGS cables common node doesn’t lie on the 

paraboloid, and that corresponds to the guy line node shift by (-11.7) mm. 

b) 𝑅𝑀𝑆𝐷 = 0.985 mm. The point of the SGS cables common node lies on the 

paraboloid, and that corresponds to the guy line node shift by (-15.6) mm. 

In the calculations, the SGS cables common node shift is accepted with minus sign, 

because of it occurs in the negative direction of axis 0𝑧. 

 

a) 

 

b) 

 

c) 

Fig. 18. SGS consisting of three cables coming together at one node. 

1.3.4 Deformation of a single facet 
enhanced by three SGS cables and a set of guy lines 

Here is calculation with the SGS cables, the foldable rods are curvilinear, points 

corresponding to the arcs heights lie on the paraboloid surface. 

Three flexible elements are carried out from vertices to opposite sides and a guy line are 

added (Fig. 19). The cables common node shift provides their placing on the paraboloid 

surface. 

Following calculations of RMSD are carried out: 

a) 𝑅𝑀𝑆𝐷 = 0.925 mm. The point of the SGS cables common node lies on the 

paraboloid, and that corresponds to the guy line node shift by (-15.6) mm (Fig. 19c); 

b) 𝑅𝑀𝑆𝐷 = 1.05 mm. Additionally, points corresponding to the arcs heights are shifted 

by 2 mm. This makes surface approximation to be worse (Fig. 19c) 

c) Additional guy lines are entered, which have the common node connected with the 

central guy line (Fig. 19d): 

– 𝑅𝑀𝑆𝐷 = 0.74 mm, when 𝛿 = 70 mm in the case of three additional guy lines; 

– 𝑅𝑀𝑆𝐷 = 0.83 mm, when 𝛿 = 5 mm in the case of three additional guy lines; 

– 𝑅𝑀𝑆𝐷 = 0.50 mm, when 𝛿 = 5 mm in the case of six additional guy lines; 
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a) 

 

b) 

 

c) 

 

d) 

Fig. 19. SGS consisting of three cables and additional guy lines. 

1.3.5 Deformation of a single facet 
with taking into account nonlinear properties of the SGS cables 

Here is the calculation variant when nonlinear way of the SGS cables deformation is taken 

into account. Deformation of the cables can be considered by two steps: 

1) straightening of the cables, which is attended by friction forces action on mesh fabric, 

while it being deformed; 

2) deformation of the cables. 

To modeling gradual beginning of the SGS cables operation, nonlinear force 

characteristics of cables deformation is accepted, which is shown in Fig. 20. 

 

Fig. 20. Stress-strain curve 𝜎(𝜀) of the SGS cables. 
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Following values of 𝜀0, 𝜀1, 𝜎0, 𝜎1 are accepted: 

𝜀0 = 0,010; 𝜎0 = 1000 Pa; 𝜀1 = 0,015; 𝜎1 = 3,6 ∙ 10
7 Pa; 𝐸 = 7,18 ∙ 109 Pa. 

𝜀1 value corresponds to 𝛿 = 15 mm, while 𝜀0 value corresponds to 𝛿 = 10 mm. 

Deformation of the cables starts when current distance between free edge of the mesh 

fabric and line 𝑀2𝑀3 at first deformation step makes up value by order of 5 mm. Before 

this moment, the straightening of the cables appears, which is attended by friction forces 

action on mesh fabric, while it being deformed. This deformation step answers to section 

[0, 𝜀0] at the stress-strain curve.  

Described approach to the SGS cables deforming representation allows getting 

necessary mesh fabric tension and allowable stresses arising in the cables themselves.  

The value of RMSD obtained in this calculation amounts 𝑅𝑀𝑆𝐷 = 0.27 mm.  

The greatest stresses arising in the cables amount σ𝑚𝑎𝑥 = 5.84 MPa, while allowable 

stress amounts [σ] = (4.9 ÷ 6.8) MPa. Stresses arising in the mesh fabric amount 

σ𝑚𝑎𝑥 = 0.086 ÷ 0.091 MPa, while operating stress amounts σ𝑜𝑝 ≈ 0.1 MPa. 

Fig. 21a shows equivalent stresses 𝜎𝑒 distribution along the knitted mesh fabric, while 

Figures 21b and 21c show principal stresses 𝜎1 и 𝜎2 distribution.  

The calculation results show that both of principal stresses arising in the mesh fabric are 

positive, therefore, it can be concluded that uniaxial areas in the mesh fabric aren't to be 

observed.  

Fig. 21 shows stressed state of the knitted mesh fabric. 

 

a) 

 

b) 

 

c) 

Fig. 21. Stressed state of the knitted mesh fabric in Pa: 

a) equivalent stresses 𝜎𝑒 distribution, 

b) principal stress 𝜎1 distribution, c) principal stress 𝜎2 distribution. 

Distribution of magnitude of displacement vector |𝐮| over the mesh fabric nodes and 

distribution of value 𝑢𝑧, which is projection of the displacement vector on the axis 0𝑧, are 

shown in Fig. 22. 

In the case in question, according the paraboloid surface curvature at the facet is small, 

deflections are determined as differences of z-coordinates of paraboloid and meshed 

surface, they are shown in Fig. 23 on the enlarged scale. At that, the plus sign corresponds 

to deflections along the inner normal of the paraboloid, while the minus sign corresponds to 

deflections along the outer one.  

Positive values of the deflections surface answer to pillow effect when some areas of the 

surface are convex upwards. Light, convex downwards areas of the deflections surface 

answer to SGS cables effect, which in this case pull over the meshed surface towards the 

outer region of the paraboloid. The middle guy line provides its application point to be 

lying on the paraboloid surface. 
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a) 

 

b) 

Fig. 22. Distribution of knitted mesh fabric points displacements: 

a) distribution of magnitude of displacement vector |𝐮|, 

b) distribution of the displacement vector |𝐮| projections 𝑢𝑧 on the axis 0𝑧. 

 

Fig. 23. Isometric view of the deflections surface. 

The approach that is described above to perform the knitted mesh fabric stress analysis 

is used to calculate the surface shape of the real space calibration and adjustment sattelite 

(reflector), which have its reflecting surface geometry instrumentally measured. 

2 Сalibration and adjustment satellite (reflector) 

For calibration and positioning purposes of ground radar staitions the calibration and 

adjustment satellites (CAS), which are launched to circumterrestrial orbits, are usable [21]. 

In the most simple case, to estimate the energy potential of a radar station, satellite holding 

only reflecting surface by given shape is usable. In particular, construction of a such 

satellite may represent the deployable spherical shell, reflecting surface of which is made 

from metallic knitted mesh fabric [22, 23] fixed to bearing deployable framework (Fig. 24). 

Main CAS units are central telescopic bar containing the holding assemblies that serve 

to hold the bar in folded transport state, and the entity of pivotally interconnected rods in 

common with bar combining into the load-bearing foldable framework. The reflector 

framework is made of sets of rods, which are sequentially interconnected by flexible hinges 

and in unfolded state form into curvilinear spokes of the framework, which are aligned 

along the meridionals sections and the equatorial section of the spherical surface. Ends of 

17

EPJ Web of Conferences 221, 01031 (2019) 
EPPS 2019

 https://doi.org/10.1051/epjconf/201922101031



 

meridional sets of rods (meridional ribs) are pivotally connected with the two pole hinges 

fixed to the ends of the telescopic bar. 

 

Fig. 24. General view of the reflector with fixed to it knitted mesh fabric. 

Steps of CAS deployment and the CAS framework in the unfolded state are shown 

in Fig. 25. 

 

a) 

 

b) 

Fig. 25. Steps of CAS deployment and the CAS framework in the unfolded state: 

a) unfolded, intermediate and folded states of the reflector framework, 

b) load-bearing framework in the unfolded state. 

2.1 Initial state 

Fig. 26 shows initial state of a reflector single lobe with radius R, which is defined by angle 

𝛼. The angle 𝛼 defines initial sizes of the lobe nesting, which is placed between two 

adjacent meridians of the reflector framework, i.e. there are known spherical and cartesian 

coordinates of the main points 𝑀1, 𝑀2, 𝑀3, 𝑀2𝑟 , 𝑀3𝑟 . 

Coordinates of points 𝑀𝑖 , 𝑀𝑘, 𝑀𝑗 belonging to arcs 𝑀1𝑀̆2𝑟 , 𝑀1𝑀̆3𝑟 and line 𝑀2𝑟𝑀3𝑟 are 

defined by coordinates of the finite element mesh nodes. 

1) Coordinates of points (11), which belong to the arc 𝑀1𝑀̆2 (𝜑 = 0) 

𝑀2:   𝑥2 = 𝑅, 𝑦2 = 0, 𝑧2 = 0 
𝑀2𝑟: 𝑥2𝑟 = 𝑅𝑠𝑖𝑛𝜃2𝑟 , 𝑦2𝑟 = 0, 𝑧2𝑟 = 𝑅𝑐𝑜𝑠𝜃2𝑟
𝑀𝑖:    𝑥𝑖 = 𝑅𝑠𝑖𝑛𝜃𝑖 , 𝑦𝑖 = 0, 𝑧𝑖 = 𝑅𝑐𝑜𝑠𝜃𝑖

},                             (11) 

where 𝜃2𝑟 =
𝜋

2
− 𝛼.  
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Fig. 26. Initial state of the mesh fabric of a single lobe. 

2) Cartesian coordinates of the points 𝑀𝑗 (12) 

𝑥𝑗 = 𝑟𝑗𝑠𝑖𝑛𝜃𝑗𝑐𝑜𝑠𝜑𝑗
𝑦𝑗 = 𝑟𝑗𝑠𝑖𝑛𝜃𝑗𝑠𝑖𝑛𝜑𝑗
𝑧𝑗 = 𝑟𝑗𝑐𝑜𝑠𝜑𝑗

}.                                                          (12) 

The equation of the chord (line) 𝑀2𝑀3 as a line being drawn through two given 

points (13) 

𝑀2 : 𝑥2 = 𝑅, 𝑦2 = 0, 𝑧2 = 0 
𝑀3 : 𝑥3 = 𝑅𝑐𝑜𝑠𝜑3, 𝑦3 = 𝑅𝑠𝑖𝑛𝜑3, 𝑧𝑖 = 0

},                                   (13) 

is of the form (14) 

𝑦 = 𝑘3𝑥 + 𝑏3, where 𝑘3 =
𝑦3

𝑦3 − 𝑅
, 𝑏3 = −

𝑦3
𝑥3 − 𝑅

.                        (14) 

The equation of the line 0𝑀𝑗
′ (15) 

𝑦 = 𝑘𝑗𝑥, where 𝑘𝑗 = 𝑡𝑔𝜑𝑗 .                                       (15) 

By the system of linear equations (16) 

𝑦𝑗
′ = 𝑘3𝑥𝑗

′ + 𝑏3

𝑦𝑗
′ = 𝑘𝑗𝑥𝑗

′ },                                                          (16) 

coordinates of the points 𝑀𝑗
′(𝑥𝑗

′, 𝑦𝑗
′, 0) (17), which belong to the chord 𝑀2𝑀3, can be found 

𝑥𝑗
′ =

𝑏3
𝑘𝑗 − 𝑘3

, 𝑦𝑗
′ =

𝑘𝑗𝑏3

𝑘𝑗 − 𝑘3
, 𝑧𝑗
′ = 0.                                                (17) 
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Coordinates of the points 𝑀𝑗
′′ (18) lying on the equator 

𝑥𝑗
′′ = 𝑅𝑐𝑜𝑠𝜑𝑗 , 𝑦𝑗

′′ = 𝑅𝑠𝑖𝑛𝜑𝑗 , 𝑧𝑗
′′ = 0.                                        (18) 

3) Coordinates of the points, which belong to arc 𝑀1𝑀̆3 (𝜑 = 𝜑3) (19) 

𝑀3 :   𝑥3 = 𝑅𝑐𝑜𝑠𝜑3, 𝑦3 = 𝑅𝑠𝑖𝑛𝜑3, 𝑧3 = 0 
𝑀3𝑟 : 𝑥3𝑟 = 𝑅𝑠𝑖𝑛𝜃3𝑟𝑐𝑜𝑠𝜑3, 𝑦3𝑟 = 𝑅𝑠𝑖𝑛𝜃3𝑟𝑠𝑖𝑛𝜑3, 𝑧3𝑟 = 𝑅𝑐𝑜𝑠𝜃3𝑟
𝑀𝑘 :   𝑥𝑘 = 𝑅𝑠𝑖𝑛𝜃𝑘𝑐𝑜𝑠𝜑3, 𝑦𝑘 = 𝑅𝑠𝑖𝑛𝜃𝑘𝑠𝑖𝑛𝜑3, 𝑧𝑘 = 𝑅𝑐𝑜𝑠𝜃𝑘

},       (19) 

where 𝜃3𝑟 = 𝜃2𝑟 =
𝜋

2
− 𝛼.  

2.2 Actual state 

Pulling of the lobe is made by one loading step. 

This pulling variant is noticeable by the fact that nodes placed on the line 𝑀2𝑟𝑀3𝑟 move 

directly to arc 𝑀2𝑀3 belonging to the equator. 

 

 

a) 

 

b) 

Fig. 27. The mesh fabric pulling: 

a) direction of mesh fabric main nodes moving, 

b) mesh fabric actual state. 

The displacement of the point 𝑀2𝑟 in the Cartesian coordinate system is defined as (20) 

𝐮2𝑟 = 𝐫2 − 𝐫𝟐𝒓 = (𝑥𝟐 − 𝑥𝟐𝒓)𝐞𝟏 + (𝑦𝟐 − 𝑦𝟐𝒓)𝐞𝟐 − (𝑧𝟐 − 𝑧𝟐𝒓)𝐞𝟑               (20) 

or (21) 

𝑢2𝑟 = 𝑅(1 − 𝑠𝑖𝑛𝜃2𝑟)
𝑣2𝑟 = 0
𝑤2𝑟 = −𝑅𝑐𝑜𝑠𝜃2𝑟

}.                                                    (21) 
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The displacement of the point 𝑀3𝑟 in the Cartesian coordinate system is defined as (22)  

𝐮3𝑟 = 𝐫3 − 𝐫𝟑𝒓 = (𝑥𝟑 − 𝑥𝟑𝒓)𝐞𝟏 + (𝑦𝟑 − 𝑦𝟑𝒓)𝐞𝟐 − (𝑧𝟑 − 𝑧𝟑𝒓)𝐞𝟑                   (22) 

or (23) 

𝑢3𝑟 = 𝑅(1 − 𝑠𝑖𝑛𝜃3𝑟)𝑐𝑜𝑠𝜑3𝑟
𝑣3𝑟 = 𝑅(1 − 𝑠𝑖𝑛𝜃3𝑟)𝑠𝑖𝑛𝜑3𝑟
𝑤3𝑟 = −𝑅𝑐𝑜𝑠𝜃3𝑟

}.                                              (23) 

Points 𝑀𝑖 shift along the arc 𝑀1𝑀̆2 to positions 𝑀𝑖
′. Then, in the Cartesian coordinate 

system (24) 

𝐮𝑖 = 𝐫𝑖
′ − 𝐫𝑖 = (𝑥𝑖

′ − 𝑥𝒊)𝐞𝟏 + (𝑦𝑖
′ − 𝑦𝒊)𝐞𝟐 − (𝑧𝑖

′ − 𝑧𝒊)𝐞𝟑                        (24) 

or (25) 

𝑢𝑖 = 𝑅[𝑠𝑖𝑛(𝜃𝑖 + ∆𝜃𝑖) − 𝑠𝑖𝑛𝜃𝑖]
𝑣𝑖 = 0

𝑤𝑖 = 𝑅[𝑐𝑜𝑠(𝜃𝑖 + ∆𝜃𝑖) − 𝑐𝑜𝑠𝜃𝑖]
}.                                            (25) 

On proportionality of nodes displacement along the meridian 

∆𝜃𝑖
𝛼
=
𝑙𝑖
𝑙2𝑟

=
𝑅𝜃𝑖
𝑅𝜃2𝑟

=
𝜃𝑖
𝜃2𝑟

, 

angular displacement ∆𝜃𝑖 of the point 𝑀𝑖 can be found 

∆𝜃𝑖 =
𝜃𝑖
𝜃2𝑟

𝛼.                                                              (26) 

The same way, the displacements of the points 𝑀𝑘 in the Cartesian coordinate system 

can be found (27) 

𝐮𝑘 = 𝐫𝑘
′ − 𝐫𝑘 = (𝑥𝑘

′ − 𝑥𝒌)𝐞𝟏 + (𝑦𝑘
′ − 𝑦𝒌)𝐞𝟐 − (𝑧𝑘

′ − 𝑧𝒌)𝐞𝟑                    (27) 

or in the coordinate representation (28) 

𝑢𝑘 = 𝑅[𝑠𝑖𝑛(𝜃𝑘 + ∆𝜃𝑘) − 𝑠𝑖𝑛𝜃𝑘]𝑐𝑜𝑠𝜑𝑘
𝑣𝑘 = 𝑅[𝑠𝑖𝑛(𝜃𝑘 + ∆𝜃𝑘) − 𝑠𝑖𝑛𝜃𝑘]𝑠𝑖𝑛𝜑𝑘
𝑤𝑘 = 𝑅[𝑐𝑜𝑠(𝜃𝑘 + ∆𝜃𝑘) − 𝑐𝑜𝑠𝜃𝑘]

},                                (28) 

where  

∆𝜃𝑘 =
𝜃𝑘
𝜃3𝑟

𝛼. 

The displacements of the points 𝑀𝑗 (29) 

𝐮𝑗 = 𝐫𝑗
′′ − 𝐫𝑗 = (𝑥𝑗

′′ − 𝑥𝑗)𝐞𝟏 + (𝑦𝑗
′′ − 𝑦𝑗)𝐞𝟐 + (𝑧𝑗

′′ − 𝑧𝑗)𝐞𝟑.                   (29) 

Since 

𝑥𝑗
′′ = 𝑅𝑐𝑜𝑠𝜑𝑗 , 𝑦𝑗

′′ = 𝑅𝑠𝑖𝑛𝜑𝑗 , 𝑧𝑗
′′ = 0, 
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𝑥𝑗 = 𝑟𝑗𝑠𝑖𝑛𝜃𝑗𝑐𝑜𝑠𝜑𝑗
𝑦𝑗 = 𝑟𝑗𝑠𝑖𝑛𝜃𝑗𝑠𝑖𝑛𝜑𝑗
𝑧𝑗 = 𝑟𝑗𝑐𝑜𝑠𝜑𝑗

}, 

then components of the displacements of points 𝑀𝑗 in the spherical coordinate system 

become (30) 

𝑢𝑗 = (𝑅 − 𝑟𝑗𝑠𝑖𝑛𝜃𝑗)𝑐𝑜𝑠𝜑𝑗
𝑣𝑗 = (𝑅 − 𝑟𝑗𝑠𝑖𝑛𝜃𝑗)𝑠𝑖𝑛𝜑𝑗
𝑤𝑗 = −𝑟𝑗𝑐𝑜𝑠𝜑𝑗

}.                                                       (30) 

2.3 Calculation results 

Calculations are carried out for a single reflector lobe with the radius of 1.08 m and the 

mouth angle equal to 22.5. The knitted mesh fabric of the reflector with thikness of 150 µm 

is made of material Atlas-Atlas with the mechanical properties 𝐸 = 15 ∙ 104 Pa, 𝜈 = 0.4. 
Pulling of the lobe is modeled by stretching along the meridians by one loading step. 

Calculations are carried out for different length of the lobe nesting in the meridional 

direction. The length of the lobe nesting is specified by the value of angle 𝛼 (Fig. 26).  

Finite element model of the lobe is mesh of 390 finite elements, 380 of which are 

Quad4 type and 10 elements are Tria3 type. 

Fig. 28 shows deformed state of a single reflector lobe, when 𝛼 = 100. Initial nesting of 

the lobe is shown in Fig. 28a in the form of finite element mesh. Fig. 28b shows deformed 

state of a single lobe, which has dual curvature, on the enlarged scale. 

Fig. 29a shows lobe stressed state and the scale of equivalent stresses. 

Calculations show that maximum deflection 𝛿𝑚𝑎𝑥 of calculated shape of the mesh fabric 

from theoretical sphere for the different values of angle 𝛼 on average makes up value by 

order of 37.3 mm, which differs from experimentally measured deflection of shape of the 

real reflector by 14 %. It should be noted, that maximum values of deflection in the 

calculations and in the experiment practically answer to the same values of angles 𝜃 and 𝜑. 

Table 2. Maximum deflections of the mesh fabric under the different characteristics of pulling. 

𝛼, deg 𝜑, deg 𝜃, deg 𝛿𝑚𝑎𝑥, mm % 
7.25 11.3 72.0 36.8 15.0 

9.0 11.3 71.5 37.2 14.5 

10.0 11.3 71.5 37.3 14.3 

11.0 11.3 71.5 37.5 13.8 

15.0 11.3 72.0 37.7 13.3 

Experimental data 11.3 75.0 43.5  

Table 3. Stressed state of the mesh fabric under the different characteristics of pulling. 

𝛼, deg 𝜎𝑥 ∙ 10
−4, Pa 𝜎𝑦 ∙ 10

−4, Pa 𝑇𝑥 , gf/cm 𝑇𝑦, gf/cm 

7.25 0.82-2.19 1.15-2.19 1.23-3.29 1.73-3.29 

9.0 1.22-2.78 1.40-2.78 1.83-4.17 2.10-4.17 

9.9 1.45-3.09 1.53-3.09 2.18-4.63 2.30-4.63 

10.0 -0.92-19.3 -0.74-20.4 0.00-29.0 0.00-30.6 

10.1 1.50-3.16 1.56-3.16 2.25-4.74 2.34-4.74 

11.0 1.74-3.48 1.70-3.48 2.61-5.22 2.55-5.22 

15.0 2.95-5.00 2.37-5.00 4.43-7.50 3.56-7.50 
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As regards the stresses (Fig. 29a), it is evident from the Table 3 that when varying of 

angle 𝛼 value, it can be provided the pulling of the mesh fabric to allowable amounts of 

membrane forces 𝑇𝑥  и 𝑇𝑦 . 

 

a) 

 

b) 

Fig. 28. Deformed state of a single lobe: 

a) deformed state with indication of initial state in the form of finite element mesh, 

b) deformed lobe on the enlarged scale. 

Fig. 29b shows the reflecting surface shape of the CAS with radius of 1.08 m plotted by 

experimental data. 

 

a) 

 

b) 

Fig. 29. Stressed state of a single lobe: 

а) stressed state of a single lobe, 𝜎𝑒, Pa, 

б) quasispherical shape of the reflector with diameter of 2 m plotted by experimental data. 

Fig. 30a and 30b show distribution of principal stresses 𝜎1 и 𝜎2 over a single lobe of 

shell reflector with quasispherical shape after the knitted mesh fabric being pulled on the 

rigid frame. The calculation results show that both of principal stresses arising in the lobe 
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are positive, therefore, it can be concluded, that uniaxial areas in the mesh fabric aren't to 

be observed. At that, it should be noted, that circumferential principal stress 𝜎2 takes 

minimum value in the equatorial region, where a meridian meets the equator. It is the 

region, where the mesh fabric pleats can appear when parameters of the mesh fabric pulling 

on the frame are different from the considered in this work. 

 

 

a) 

 

 

b) 

Fig. 30. Principal stresses distribution: 

over the reflector shell with quasispherical shape lobe, 

a) principal stress 𝜎1, Pa, b) principal stress 𝜎2, Pa. 

Conclusion 

The numerical algorithm of calculation of stressed and deformed state of the reflecting 

mesh fabric step-by-step being pulled on the bearing frame, based on finite elements 

method, is proposed in this work. 

It is shown that sufficient approximation precision of facets mesh reflecting surface is 

achieved by using flexible cables to the surface shaping. 

Analyzing when having obtained results, it is possible to conclude what grade obtained 

shapes of reflecting surfaces are precise with, and to formulate variants of constructions, 

which would allow to obtain the facet surface shape with required accuracy, and in the 

wake, the whole reflector surface with the required precision. 

Numerical investigation of the reflecting surface calculations of the full-scaled model of 

spherical calibration and adjustment satellite shows satisfactory qualitative and quantitative 

matching of calculation results with the experimental data. 

Presented in this work investigation results allow to conclude that proposed algorithm 

can be practically usable to calculate stressed and deformed state of the reflecting surface 

made of knitted mesh fabric being pulled on the curvilinear frame when design calculations 

are carried out. 
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