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Abstract

Many geologically interesting features (e.g. fault zones) coincide with areas of high terrain
relief. The rugged topography causes distortion of radar imagery for these regions. Although
radar foreshortening can enhance large-scale geologic features like ridge offsets or scarps, this
effect may hide detailed structures that provide important insight. To obtain this "encrypted"
information so that it may be registered with other geologic and geophysical data, one must
minimize the adverse influence of topography on the radar image.

This thesis proposes migration, an active area of research in seismic exploration for imaging
irregular boundaries from backscattered seismic waves, as a fundamental step in the topographic
correction of radar images. Based upon the migration technique, an automatic method for
producing digital elevation data from radar imagery is presented.
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Chapter 1

Introduction

In order to establish a background for this thesis, before presenting its outline and objectives, I

will first provide a brief discussion of radar imaging applications - their history and current sta-

tus with respect to remote sensing in general and geoscience as a whole. My introduction serves

not only to motivate this specific work by citing the benefits of terrestrial radar imagery, but

also to suggest the importance of the goal to which this research contributes: the development

of a broad geoscience database.

Chronology

The pioneering interest in radar as a geologic tool emerged after World War II with the declas-

sification of radar-derived data; and by the late 1960's, "radar geology" had become an active

field. The Plan Position Indicator (PPI), constructed for military use during the war, presented

the first radar data. PPI images, though poor in resolution by today's standards, allowed the

development of two image analysis schemes: the compilation of radar image interpretation keys

(Hoffman, 1954), and the identification of geologic structural and textural features from radar

imagery (Feder, 1959). With the advent of side-looking airborne radar (SLAR) instrumenta-

tion and synthetic aperture radars (SAR) having high resolving capabilities, image coverage

increased enormously and led to many geological applications. The results of these efforts are

detailed in various bibliographical publications (Bryan, 1973; Bryan, 1979; Moore et al., 1974;

Sabins, 1976).

Since the early 1970's, NASA has taken a leading role in the production and distribution



of SAR imagery. After a brief hiatus, during the initial years of the Landsat program, NASA

refocused its energy toward microwave imaging and proposed Seasat (Pravdo et al., 1983), the

first spaceborne SAR, in 1973. The Seasat sensor, which was configured for oceanographic

experimentation, flew for just over 3 months in 1978, before suffering an equipment failure.

However, in its short life span, Seasat successfully provided synoptic radar imagery of both

oceanic and continental surfaces. Using Seasat SAR spare parts, a new radar was constructed

and flown aboard the space shuttle in 1981 (Shuttle Imaging Radar - Phase A or SIR-A) and

in 1984 (SIR-B).

The first SIR missions (Cimino and Elachi, 1982; Ford et al., 1986) were geared toward

continental observations and were designed as "proof-of-concept" experiments to determine

the importance of various instrumentation parameters for imaging. The SIR-A SAR sensor

had entirely fixed properties, including wavelength, polarization, and look angle; its primary

objective was to pick up where airborne SAR left off, furthering our understanding of land radar

"signatures". SIR-B employed a mechanically steerable antenna, which allowed for multiple

look angle (MLA) imaging, a technique that was also performed with airborne SAR. However,

the relatively steady spaceborne platform, i.e. the shuttle, made accurate surface reconstruction

from MLA imagery feasible. The Challenger accident has delayed the SIR-C mission (SIR-

C Science Plan, 1986), which plans to incorporate, variable wavelength, polarization, and look

angle capabilities. The SIR-C SAR will eventually be modified and flown on the Earth Orbiting

Satellite (EOS) (EOS SAR Science Plan, 1988), scheduled for launch in 1994.

Radar Geoscience

As the organization of this chapter might lead one to believe, microwave remote sensing has

progressed in an applications-driven manner. Radar observation was borne out of military and

space programs and thus funding has been prejudiced toward development of equipment and

toward experimentation, rather than toward analysis. While saving a detailed description of

the radar imaging process for Chapter 2, I find it necessary to briefly explain what the state-of-

the-'art microwave instrumentation affords the geoscience community - especially in comparison

with optical systems.

The value of microwave remote sensing is derived from distinct differences between SAR



and optical imaging geometry, and more importantly, radiometry. Microwave penetration of

the atmosphere gives radar imaging a fundamental advantage over optical systems. With

the deployment of spaceborne platforms, radar is an all-weather tool, having applications not

only for cloud-covered regions of this planet, but also for other celestial bodies with dense

atmospheres, e.g. Venus.

The reason for this atmospheric transparency stems from a four or five order-of-magnitude

difference in frequency between microwave and visible/infrared radiation. While optical anten-

nae record energy on the scale of one micron, making them sensitive to the molecular structure

of surface scatterers, SAR receivers measure electromagnetic energy of centimeter-scale wave-

length, owing to the physical nature of scatterers, e.g. roughness and moisture content.

SAR's unique geometry also provides for topological observation. Unlike optical imaging

devices, which are passive systems - the satellite focusses its "camera" straight down at the

earth's surface and records scattered sunlight, radar imaging requires that microwave energy be

transmitted toward the surface, where it is "backscattered" by terrain elements and recorded

at the receiving antenna. Thus, one refers to radar as an active imaging system. Landforms

and tectonic fabrics have distinctive radar signatures; lineament mapping is perhaps the most

widespread application of SAR imagery.

This particular thesis topic evolved from an ongoing effort at the Earth Resources Labo-

ratory to study some of the continental applications of radar imaging, namely mapping active

fault zones. As with most other geologic applications of radar, the initial purpose (Prange,

1985) was simple: determine the radar signatures of various fault zone features over a well-

known region and use these findings to improve mapping in remote terrain. This corresponded

to a qualitative classification scheme complete with a "training" area - around the San An-

dreas/Garlock Fault junction, northwest of Los Angeles, California, and an exploratory location

- along the North Anatolian Fault Zone (NAFZ) in Turkey. Manual lineament mapping was

chiefly used to define topographic features.

Because of the labor-intensive nature of lineament mapping and classification of image tex-

tures, we began to experiment with automated, and therefore more quantitative, interpretation

techniques. This lead to the implementation of computer algorithms for edge-detection and lin-

eament formation (Toks6z et al., 1986; Guler et al., 1986) to assist radar geologists in structural



mapping. Another goal of quantitative analysis was multispectral evaluation of remote sensing

data, i.e. the comparison of surficial scattering at different frequency bands. The Landsat

Multi Spectral Scanner (MSS) and Thematic Mapper (TM) produced this data set for optical

wavelengths. We desired to combine SAR imagery with Landsat; however, the distortion of

radar imagery, owing to topography, precluded attempts at accurately registering SAR images

with corresponding Landsat data.

This exposes the problem of merging radar imagery with other geographically organized

information, as well as optical imagery.

The Geoscience Database

As optical and thermal imagery (e.g. Landsat, SPOT) and radar imagery (Seasat, SIR-A &

B) become increasingly familiar to researchers, and as applications for remotely sensed images

become more diverse, techniques for quantitative analysis of the data will come under great

demand. The U.S. government (USGS, NASA), as well as major oil companies, including

ARCO, Chevron, and Mobil are currently developing a computational framework through which

this analysis can proceed: the geoscience database.

One important objective of geoscience database management systems is the registration of

satellite imagery, ground truth, and subsurface information to a common geographic coordinate

system. This provides prospective researchers with a medium through which to quickly and

efficiently compare all necessary and available data for a desired locale. For example, geologists

mapping a remote region might wish to augment ground truth data (geologic maps, paleon-

tologic data, seismics) with satellite imagery. Or an oil exploration company, planning new

offshore drill sites, would want bathymetry, 3-D seismic data, and ocean-floor geochemistry.

1.1 Objectives

In the case of radar imagery, registration of image data to a geographic reference grid is no

simple matter, especially in the absence of digital terrain elevation models (DTEM). Using

USGS DTEM data, which equates to a digitized "topo map", terrain distortions may be modeled

by generating synthetic SAR images. When a favorable match between simulated and real data

is obtained, knowledge of the forward model can be applied to unwarp the real image. In the



absence of DTEM data, one must attempt to infer shape, specifically slope, from the radar

image brightness values. Variation of radar return with parameters other than local slope, and

lack of a reference value severely limit the accuracy of this method.

However, given multiple look angle radar data and the active imaging nature of SAR, a mi-

gration technique may be used to obtain geometrically restored SAR images, producing DTEM

data as a by-product; this paves the way for radiometric restoration (i.e. finding "correct"

brightness values, normalized for the topographic effect) of the radar image, as well as for

registration with other geoscience data. To itemize:

" generate digital terrain data (in DTEM form) from MLA radar imagery;

" use the derived DTEM to correct the SAR images for topography;

" correlate SAR and DTEM data to radiometrically correct imagery; and,

* register restored SAR data with geoscience database.

1.2 Outline

Chapter 3 contains a description of the radar migration technique, which is the crux of this

thesis. The applicability of migration for topographic correction of SAR imagery is developed

through analogy to seismic migration. Key differences between SAR and seismic migration, in

their nature and implementation, are noted. The bulk of this chapter devotes attention to the

actual radar migration procedure, which is described as a series of "modular" steps.

Those unfamiliar with radar imaging should read through Chapter 2, which serves as some-

what of a tutorial on SAR. The second through fourth sections of this chapter describe various

aspects of the forward model, i.e. imaging, that are crucial to understanding the inversion.

This chapter ends with a discussion of other interesting SAR features, not currently essential

to radar migration.

Chapters 4 and 5 present trials and conclusions from the inversion. Migration is applied to

synthetic SAR data first, and its accuracy is assessed. Results are then obtained for real radar

images over known topography, so that SAR-derived DTEM accuracy may be determined, and

over a remote regions where no (unclassified?) terrain elevation data currently exists.



This thesis completes with a discussion of related inversion techniques. The relative merits

of each are identified, with emphasis on potential collaboration to improve accuracy.



Chapter 2

Radar Imaging

2.1 The SAR System

SAR employs a more complex set of instrumentation than does a passive optical imager, and as

a result it introduces additional geometric and radiometric considerations; however, the main

theme of SAR - the manner in which it produces high-resolution two-dimensional images - is

beautifully straightforward. This chapter mentions the more pertinent aspects of SAR; for a

more detailed "tutorial", see (Tomiyasu, 1978).

The SAR system consists of three basic components: a pulsed transmitter, an antenna,

and a phase-coherent receiver. Since both transmitted and received microwave energy pass

through the antenna, a circulator is required to coordinate timing. The circulator prompts the

transmitter to generate a pulsed signal at a specific rate, called the pulse repetition frequency

(PRF). The term interpulse period (IPP) refers to the gap between successive pulses and may

be related simply to the PRF:

IPP = 1/PRF + r, (2.1)

where r is the transmitted pulse width. During the IPP, the backscattered return is picked up

by the antenna and directed by the circulator to the receiver, which records the signal.

Since the definitive measure of an imaging system's capability is resolution and since active

systems suffer notoriously in this respect (think of how many shots and geophones must go

into the average 3-D seismic survey), SAR utilizes some "trickery". The safest answer to the

question, "How does one improve resolution?", is the reply, "Build a bigger antenna!" In the



case of seismic surveying, where both surficial and vertical techniques (VSP) exist, one may

cost-effectively design a large imaging array. For remote sensing purposes, large antennae make

for heavy and expensive (as well as offensive) payloads, and the logistics of flying a receiver

array comprising several satellites is harrowing. The SAR geometry allows that pulse travel-

time sampling determine range resolution (which is nothing new) and that the antenna size

determine azimuthal resolution in a directly (rather than inversely) proportional manner! In

other words, SAR attains finer resolutions with a smaller antenna. For the uninitiated, this

important feature will be detailed in a later section on resolution, providing a "bridge" between

discussions of SAR geometry and radiometry.

2.2 Geometry

To provide the setting for this explanation of SAR, I first present the imaging configuration

along with its jargon.

SAR platforms have flown on several aircraft, on a satellite (Seasat), and twice (so far) on

the Space Shuttle. The latter deployments (Seasat and SIR-A/B) fall under the category of

spaceborne imaging radar. Because these missions provided the data for this work, I will bias

the discussion toward them (away from airborne radars).

2.2.1 Orbital Configuration

Spaceborne SAR platforms circle the Earth along a path that is determined by many parameters

including the orbit's altitude, inclination, and periodicity. The trace of this "flight" path along

the Earth's surface is termed the nadir or ground track (see Figure 2-1); the platform velocity

vector v provides the direction of azimuth or along-track, mentioned earlier. Naturally the axis

of altitude lies perpendicular to the surface, and completing the orthogonal coordinate system

is the ground range or cross-track axis.

The radar platform is positioned on the spacecraft so that the antenna array faces in a

direction n perpendicular to the velocity vector and toward a portion of the surface known as

the footprint (see Figure 2-2). The footprint defines the surface area illuminated by the radar

at a given instant, and its dimensions (in azimuth Wa and in range W,) are determined by the
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Figure 2-1: Spaceborne SAR imaging geometry.
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following relations:

Wa R aR (2.2)
Da

W,= AR . RIcos i, (2.3)
Drcos S

where

A is the radar wavelength (23.5cm for SIR-A/B),

R is the slant range from antenna to target (footprint center),

Da and D, are the horizontal and vertical dimensions, respectively, of the antenna,

i is the incidence angle (at which the radar signal impinges upon the target), and

#a and P,. are the azimuth and range antenna beamwidths.

As the footprint moves (with spacecraft velocity) across the surface, it traces out the image

swath.

2.2.2 Slant Range vs. Ground Range

At present, synthetic aperture radar image products come in three successive grades, "raw"

images, ground range images, and geocoded images. Each grade represents conversion of the

image dimensions to a slightly more user-friendly coordinate system. Geocoded images attempt

to show the microwave backscatter in coordinates of latitude and longitude along a geoidal Earth

surface; over regions of shallow relief, this grade is desirable for purposes of registration. Ground

range images try simply to map the backscatter intensities back onto the image swath. Both

of these products require some knowledge of spacecraft ephemeris in the processing. The raw

image, however, records the return signal amplitude in the slant range image plane.

The slant range image plane is defined by the spacecraft velocity vector and the antenna

beam axis (see Figure 2-3), but this coordinate system is somewhat misleading. Slant range is

not a straightforward direction but rather a measure of the one-way travel time of the radar

signal as it is backscattered from the surface, i.e.

R = ct/2, (2.4)



Figure 2-3: The slant range image plane vs. ground range.
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where t is the two-way travel time, and c the velocity of light.

To summarize the distinction between slant and ground ranges: slant range is defined as

a function of time while ground range is defined as the distance from nadir to target along a

spheroidal Earth surface.

2.2.3 Look Angle vs. Incidence Angle

While two distinct "ranges" exist in SAR lingo, four different angular measures of the antenna

orientation and the direction of radar signal propagation appear. These are look angle 0,

incidence angle i, depression angle ac, and local incidence angle 91oac. Incidence angle, as noted

earlier, measures the angle between the spheroidal surface normal at the target and the direction

of microwave signal propagation. The local incidence angle is a slight, yet important variation,

which takes into account the actual surface normal (a function of topography) at the target.

Look angle measures the orientation of the antenna beam axis with respect to vertical at the

antenna/spacecraft, and the depression angle is its complement.

Owing to the great distances involved in the imaging configuration, the Earth's curvature

may not be neglected, and the look angle will differ from the incidence angle by several degrees.

In fact, the incidence angle may change by several tenths of a degree over the ground range

dimension of the image.

These angles are summarized graphically in Figure 2-4.

2.2.4 Relief Displacement

Geometrical distortions owing to topography may be explained through the concept of relief

displacement. Simply put, mountains and ridges that strike parallel to the flight path appear

to lean toward the radar in a direction exactly perpendicular to the platform velocity vector.

For example, if one erects a (highly reflective) flagpole a given geographical location (latitude

and longitude) and then images the pole on a passing orbit, the receiver will register a return

from the top of the pole before it obtains the return from the pole's base.

Relief displacement manifests itself on the SAR image in two ways. It modulates ground

resolution and, as a result, affects the return signal power. These topics will be discussed in

the next several subsections.
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2.2.5 Resolution

This section begins by addressing the question, "How did SAR get its name?", because the idea

of a synthetic aperture grew out of the azimuth resolution problem.

Conventional radars employed a physically large antenna, which comprised an array of small,

identical radiating elements. This array effectively focussed the radiation pattern, narrowing

the beamwidth in both range and azimuth. The resolution of this system was given by the

dimensions of the beam footprint (see earlier equations). The range resolution, however, could

be improved by time sampling (or "range gating") the received signal; the azimuth resolution

could only be increased by expanding the array's azimuth dimension.

To eliminate this problem, researchers developed a method for synthesizing a large antenna

by recording a target's "history" as the physical antenna moves along the orbit. This target

history, in effect, represents the returned signal that would be recorded by a larger physical

antenna having an azimuthal length,

Leff = VTD, (2.5)

where v is the platform velocity, and TD the dwell time (time interval in which the target falls

within the footprint of the antenna).

Earlier, in the discussion of radar imaging geometry, azimuth resolution was given by the

width of the antenna beam footprint (Equation 2.2); however, one must modify this for SAR

applications. With conventional radar, antenna beamwidth only effects reception (i.e. scat-

tering area is illuminated once, and any backscattered return within the beamwidth of the

antenna is recorded). However, with SAR, angular "selectivity" applies to transmission as well

(the target is illuminated by a succession of bursts; see Figure 2-5), and the phase difference

over the two-way path determines the antenna pattern. The effective azimuthal beamwidth for

SAR is approximately

#a,eff = A/2Leff, (2.6)

and the azimuthal resolution becomes

6a = 8a,eff R = . (2.7)
2 Le55
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Figure 2-5: SAR target imaging geometry.



In the final step, one reconsiders Figure 2-5to equate the synthetic aperture length, Leff to

that of the physical antenna, D.. From the geometry,

Leff = RA/D,. (2.8)

By combining the last two equations, one solves for the azimuthal resolution,

A R Da Da
baR= ._ (2.9)

2RA 2

This well-known result, which is derived more vigorously elsewhere (Cutrona, 1970), shows

that azimuthal resolution for SAR is independent of range and of the synthetic aperture length.

More profoundly, smaller low-gain physical antennae produce finer resolution with one obvious

constraint: very high transmitter power is required for target detection.

Range resolution is derived from time sampling the returned signal with respect to a the

transmitted pulse width. This range gating technique provides a range resolution,

6r = creff /2, (2.10)

where rff is the effective transmitted pulse width of the radar.

Signal processing techniques, generally labeled pulse compression, increase this resolution

by decreasing rff. Commonly, the SAR system designer accomplishes this through linear

frequency modulation; if the transmitted pulse is linearly frequency-modulated, or "chirped",

Teff = -- , (2.11)
ar

where a is twice the FM raLe (Cutrona, 1970). Other techniques, including non-linear FM and

phase-coding may be employed.

Currently operational spaceborne SARs resolve to tens of meters both in azimuth and in

range; however, rugged terrain can severely effect the actual ground resolution. To illustrate

this, one may consider the ground resolution for inclined planar surfaces. Figure 2-6 shows two

cases: (a) a surface sloping away from the radar and (b) a surface sloping toward the radar.

Relative to a flat (uninclined) surface, slopes facing away from the SAR exhibit one of two

resolution distortions - elongation, or in more severe cases, shadowing. Ground resolution is

given by the relation:

6, = r/,cosO 01oc, (2.12)
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where 01,.1 is the local incidence angle. Elongation, or "stretching" of the imaged surface

occurs whenever 01oca exceeds the incidence angle (for a flat surface) but remains less than

90 (left hand side of Figure 2-6a). For these slopes, the ground range resolution approaches

6,. Shadowing occurs if the local incidence angle exceeds 90* (right hand side of Figure 2-6a).

These slopes are occluded and produce no return.

Similarly, two types of distortions, one more severe than the other, exist for slopes facing

the radar. Foreshortening decreases ground resolution by increasing the scattering area that

is sampled within one range resolution cell (Figure 2-6b - right). As the local incidence angle

approaches zero, the incline becomes parallel to the microwave fronts, and the whole section

of slope images at one travel time (Figure 2-6b - middle). As elocal goes negative, the surface

becomes overlayed - backscatter from the top of the slope arrives before scatter from the

bottom. Layover also provides an opportunity for multiple scattering (Figure 2-6b - left), or

"double-bouncing". Resolution in this region loses meaning.

Figure 2-7 presents an actual SAR image of Mt. Shasta to demonstrate these distortions.

The flight path of the SAR platform is shown, confirming the poor ground resolution (fore-

shortening) on the slope facing toward the radar and the increased resolution (elongation) on

the slope facing away.

2.3 Radiometry

In closing the preceding section with a discussion on the geometry of resolution, I stopped

short of addressing a closely related topic - the effect of geormetry on radar backscatter. Before

reaching this point, and tying this chapter together, I will provide an outline of SAR radiometry.

2.3.1 The Radar Equation

The radar equation provides a simple description of the factors influencing radar return. The

relationship may be posed in two ways: a sequential factorization of the elements involved in

transmitting a pulse, scattering it at the imaged surface, and receiving the returned signal; or

as a multiplication of radar instrumentation characteristics and those of the scattering surface.



The first form (Skolnik, 1970) gives the received signal power P, as

P r - 4,* -R2 Ar. (2.13)

The radar transmitter radiates an amount of power Pt through a SAR antenna having a gain

Gt. The denominator of the first factor accounts for spherical spreading of the transmission

with range R (in meters). Therefore, the first term as a whole defines the power density at a

distance (or range) R from the SAR antenna. The second factor identifies the amount of power

per square meter that is both scattered by the surface and returned toward the radar. Again,

a spherical spreading factor is required in the denominator. The numerator involves an all-

encompassing variable, having units of square meters, which sums up the scattering properties

of the surface; this is referred to as the radar target cross section o. Finally, a portion of the

returned power Pr is intercepted by the SAR antenna and is passed along to the receiver. The

effective aperture of the antenna is given by the term A, in square meters and is related to the

antenna gain Gt as

A, = GtA2/42r, (2.14)

where A is the electromagnetic wavelength.

The second manner in which to factor the radar equation,

P, = (instrumentf actor) - (scattererf actor), (2.15)

allows one to separate the controllable parameters from those which vary according to the

imaged surface properties.

2.3.2 Instrument Parameters

The primary SAR instrument parameters are the transmitted power Pt, the antenna gain Gt,

and the radar wavelength A as described above. These terms combine to form the instrument

factor of the simple radar equation.

An important characteristic of the SAR imaging which does not enter into the simple radar

equation is noise. Noise comes in two forms - additive and multiplicative. Noise produced by

the electrical system components (thermal noise) and by voltage accumulation in the antenna

sidelobes (Frankot and Chellappa, 1987) combines to bias the return power. Multiplicative



noise, often referred to as clutter or speckle, affects more strongly the total noise power. How-

ever, since speckle originates from coherent interference (owing to rough surface scattering) in

the return from a resolution cell, it may looked upon as a feature of the surface rather than a

measurement uncertainty (George, 1980). These noise sources may be incoherently smoothed by

increasing the pulse repetition frequency so that a given resolution cell is sampled (or "looked"

at) more than once. Naturally, this also beats down the electrical (thermal) noise, which adds

random power to the system (Blake, 1970). Thermal noise power P is given by the equation

P, = kT.B, (2.16)

where k is Boltzmann's constant, T, the system noise temperature (derived empirically through

testing electrical system components), and B the system bandwidth (B = 1/reff).

The signal-to-noise ratio of a SAR system is simply the ratio P/Pa. To achieve suitable

signal-to-noise in SAR imagery, one desires a bandwidth as large as possible to keep noise to a

minimum; but certainly more freedom exists in obtaining a strong return signal power P,. A

radar system may be designed with a maximum (far) range in mind such that at the far range

the signal-to-noise ratio falls below a predetermined threshold.

2.3.3 Range and Scattering Area

Since the instrumentation parameters are known for a particular mission, one is solely con-

cerned with how the return power is modulated by the surface properties within the image

swath. The macroscopic reflectivity of the surface is controlled by its shape (i.e. topography).

The microscopic reflectivity arises from a number of factors which are collectively named the

normalized radar backscatter cross section a*; the normalized cross section is equal to o in the

radar equation divided by the area of the scattering target At.

Topography warps the SAR image by controlling target range and scattering area. Though

technically a geometric effect, the distortions characterize themselves radiometrically, i.e. show

up as variations in backscatter on a typical SAR image. The key relationship is that within an

image, ground resolution is equivalent to the scattering area, which in turn is proportional to

the return power:

P, oc o



oc o0*At

oC 0 '0g*,8a. (2.17)

This characteristic of radar is actually a feature of any active imaging system (e.g., seismics),

but it sets radar apart from most other remote sensing systems. To emphasize this point, one

may contrast SAR with optical imagery, where surface resolution depends on viewing angle.

In a Landsat image, or even a basic photograph, object resolution increases as one moves from

viewing the surface obliquely toward viewing normal to the surface. The opposite holds true

for radar. Of course, the actual angular resolution of the optical camera is fixed, just as the

slant range resolution of SAR is fixed.

To summarize, slopes facing toward the radar have poorer resolution than, and therefore

appear "brighter" than slopes facing away from the radar.

2.3.4 The Normalized Radar Cross Section

What happens to microwave energy when it is scattered by a surface is summarized by the

normalized radar cross section o*. Geologists, agriculturalists, and biologists have devoted

much effort to determining the components of this variable, and the most conclusive result

suggests that these components are many and that o* has a large range of values. Although

scattering scenarios have been found to fit theoretical models (e.g. densely vegetated terrain

approximates an ideal volume scatterer, and fine-grained sedimentary cover provides a good

specular scatterer), almost all surface types combine several scattering properties.

Scattering may be divided into two elements: volume scattering and surface scattering.

Surface scattering depends entirely on the roughness properties of the boundary layer and may

be subdivided into two end-members - diffuse and specular scatter corresponding respectively to

very rough and very smooth surfaces. Volume scattering often depends on subsurface properties

like soil moisture, which controls the dielectric constant of medium and determines microwave

absorption, and inhomogeneity of buried sediments or debris. Volume scattering may also

originate from thick forest canopies. Generally, penetration depth distinguishes volume from

surface scattering; whenever the penetration depth of the boundary layer exceeds zero, one

expects some volume scattering component.

Further complicating the fact that many different scattering types exist, is the observation



that widely varying types may occur in the same region, (e.g. a given image swath). It

is hardly a coincidence that the most interesting geological regions have the most complex

scattering mechanisms. One can afford to make few assumptions about the normalized cross

section without some a priori knowledge of the imaged region (i.e. ground truth).

2.4 Multiple Incidence Angle SAR

The data set used for this work is produced by special style of imaging called multiple incidence

angle SAR. The objective of this approach is to image a given ground swath at different antenna

orientations so that backscatter from the surface can be analyzed as a function of incidence

angle. To accomplish this, a given region of the Earth's surface provides the objective image

swath for several successive platform orbits. On each orbit the radar antenna is tilted to direct

the beam toward the desired swath (see Figure 2-8).

The degree of topographic distortion varies with incidence angle. At low incidence angles,

the antenna is pointed near-vertically to the Earth's surface. Elevation is roughly in the di-

rection of wave propagation so that relief displacement is strong. At high incidence angles,

the antenna is aimed obliquely to the surface and relief displacement is weak. Resolution is

always better at higher incidence angles, but this results in poorer signal to noise with respect

to low incidence angles. At very high angles, terrain shadowing may occur, while conversely at

low angles layover tends to mar resolution. Interpreters of SAR imagery of rugged topography

desire a medium angle (~ 45*) as a suitable trade-off between signal-to-noise and resolution,

avoiding the effects of shadowing and layover.

2.5 Synthetic Imaging

In keeping with the theory that one can't invert what cannot be properly modeled, the ground

work for this thesis involved creating synthetic radar image products and comparing them

to the real thing (i.e. SIR-B and Seasat). Specifically, I attempted to qualitatively identify

features of the real images that were suitably reproduced in the synthetics, and to eliminate

from consideration those features not amenable to modelling.
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Figure 2-7: Multiple incidence angle SAR geometry.



2.5.1 Input Data

To generate the synthetics, I chose a site near the San Andreas/Garlock Fault Zone junction

north of Los Angeles, California. Figure 2-9 details the area, which includes Pyramid Lake,

with Interstate 5 on its northeastern side and the San Gabriel Fault Zone to the southwest. This

location was imaged during the SIR-B mission (scene AM-098.20-017), owing to its proximity

to the major fault zones. The rugged terrain ranges from 574m downstream from the lake to

2437m in the range to the southwest according to digital topography purchased from the USGS.

Digital terrain elevation model (DTEM) data and normalized radar cross section a* infor-

mation provide the two "ground truth" sets required for a complete simulation; in this case,

however, I chose to perform only a partial simulation without a* data. The DTEM used here

has a grid resolution of 30m and corresponds to portions of two 15 minute quadrangles, 'Liebre

Mt." and "Black Mt.", as mapped by the USGS.

I excluded u* data for two reasons, which are somewhat related. First, the normalized radar

cross section is, as previously mentioned, an abstract property of the surface and cannot be

easily ascertained. In certain cases (Saunders et al., 1980), (Frankot and Chellappa, 1987), a

region may be classified by one or more categories of scattering properties. For example, one

would create a map of the region and divide the surface cover into several classes for which

the backscatter properties are known. "Thick forest canopy" or "sparsely vegetated dry soil"

are examples of terrains for which backscatter models have been experimentally determined.

However, the Pyramid lake site exhibits a wide variety of undefined scattering regimes, corre-

sponding to different geological structures and vegetation covers.

Secondly, I wanted to determine how well topography alone influences the radiometric prop-

erties of the image. Knowing this allows one to decide between a purely geometrical inversion

or a combination geometric/radiometric inversion. If topography dominates all other surface

parameters in determining the backscatter, one would make use of amplitude data in the inver-

sion. If vegetation, cultural features (buildings, roads), and other surface properties dominate

topography, then amplitude data would be useful only in determining boundaries rather than

predicting the surface shape. I will discuss this further in Chapter 3.



Figure 2-8: Pyramid Lake, CA test site for SAR data simulation. Blank areas in the lower left
and lower right corners fall outside the boundary of digital elevation (DTEM) data. Topographic
contours are shown in the background; notable surface features appear on the overlay. The
entire region is imaged by SIR-B scene AM-098.20-017.
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Figure 2-8: Pyramid Lake, CA test site for SAR data simulation. Blank areas in the lower left
and lower right corners fall outside the boundary of digital elevation (DTEM) data. Topographic
contours are shown in the background; notable surface features appear on the overlay. The
entire region is imaged by SIR-B scene AM-098.20-017.
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2.5.2 Procedure

The algorithm for synthesizing a radar image from topography comprises two main parts:

range location and amplitude determination. For each geographic location (or grid point)

in the DTEM, the distance to the shuttle orbit and time of imaging are calculated (using

ephemeris data). This provides the range and azimuth coordinates of the ground target in the

synthetic image. The amplitude of the return is then computed for this range and azimuth.

If the normalized radar cross section, a* is set to 1, then the return power is a function only

of scattering area, which may be computed from the incidence angle and local slope (of the

surface) as shown in Figure 2-10:

P, = CA (2.18)

= CLaLg (2.19)

2
= C grid (2.20)

cos Oa cos 4,

where

C equals the product of the instrument parameters (see previous discussion),

A is the scattering area of the target,

La is the azimuth dimension of the target, and

L, is the range dimension of the target.

The latter two parameters are rewritten in terms of Oa and 0,, the local slope in azimuth and

range respectively, and the grid spacing Lgrid (30m).

For most surface geometries, the target's range dimension is actually controlled by the radar

range resolution 6,., and by the local incidence angle 0Boeal - 0,, rather than by the local slope:

L9 = 6r/ sin(Oloca - 4g). (2.21)

In fact, the local slope in the range direction only acts to limit the return when the denominator

of the preceding equation becomes too small, i.e. when the wavefront is parallel to the local

surface. Because of this, L. is calculated both ways, and the smallest value is chosen.
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Figure 2-9: Scattering area geometry. See text for explanation.



This last point leads to another important consideration: for very steep slopes facing toward

the radar, several grid points of the same azimuth may also have approximately the same range;

they fall into the same resolution cell. In these cases the return powers corresponding to each

grid point are added and their sum assigned to the cell.

Finally, the return power at each cell location in the synthetic image is converted to a DN

(Digital Number = VP?), in accordance with real SAR image processing, and a synthetic slant

range radar image results. The real and synthetic images for the Pyramid Lake site are shown

in Figure 2-11.

In the creation of the synthetic images shown, no allowance for spherical spreading of the

microwave energy is made. This simply keeps the DN bandwidth to a minimum and provides

for more display contrast.

2.5.3 Comparison

Aside from the absence of noise in the synthetic example, one notices that the topography does

strongly influence the return, but surface cover has an effect that cannot be easily separated.

One can visually correlate many features, even those of fine resolution, between the two images.

The ridges at the top and bottom of the images are well defined. However, the apparently

diffuse scattering nature of the rough terrain produces a stronger return than predicted. The

normalized radar cross section is greater than unity for this region. Conversely, the lake surface

and valley (left center) have smoother surface cover and tend to scatter specularly; the return

from these regions is less than predicted ( 0* < 1). It is also less, in general, than the return

from the backsides of the ridges!

This forward modelling helps to direct efforts for inversion. The inability to closely pre-

dict backscatter using only topography suggests that simple shape-from-shading algorithms

employing one image (incidence angle) will give suspect results for most terrain (exceptions

exist (Frankot and Chellappa, 1987)). This leaves at least two possible paths which will be

explored in the remainder of this thesis: the use of multiple incidence angle imagery to improve

shape-from-shading results, and the use of MLA imagery with geometrical inversion (boundary

matching).



Figure 2-10: Comparison of synthetic (a) and SIR-B (b) SAR data for the Pyramid Lake test
site.
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Chapter 3

Radar Inversion

Existing radargrammetric techniques take many forms: shape-from-shading, interferometry,

stereo, and DN-matching; these are detailed in Chapter 5. Shape-from-shading is perhaps

the simplest technique, deriving surface elevation information from the image DN, which cor-

respond to backscattered power. Interferometry determines surface location by comparing

backscattered phase information across an antenna baseline. Stereo-radargrammetry is an in-

teractive method by which an interpreter visually matches features between a stereo pair of

MLA images. DN-matching attempts to automatically emulate stereo-radargrammetry, per-

forming two-dimensional cross-correlation between MLA images at coarse-to-fine resolution.

In studying these methods, one notes that only shape-from-shading and interferometry take

advantage of the active nature of radar imaging. The other techniques are simply applications

of photogrammetry to radar. Shape-from-shading uses range information along with a priori

knowledge of the surface microwave reflectance to determine the surface shape from a single

radar image view. Interferometry uses range and phase information to locate the surface.

Stereo-radargrammetric algorithms match conjugate points between MLA images based on DN

statistics. Only after the set of conjugate points pertaining to the imaged surface is produced,

range information from the imagery is used to construct from these points the surface.

Stereo methods have proven successful, however, because regardless of the type of imaging,

passive or active, visible surface features provide a wealth of clues about the surface shape.

The human visual system doesn't need an interferometer to tell it the location and shape of an

object!



The key in comparing the various techniques is to analyze the assumptions that each makes,

and shape-from-shading arguably makes the most tenuous - that surface reflectance is known

a priori. Surface reflectance depends on several parameters - roughness, moisture, and type of

scattering (e.g. volume, surface, multiple). Not only do many types of surfaces exist, each with

its own characteristic combination of these variables, but these surfaces coexist at a fine scale.

Theoretically, there are regions of the Earth and of other planets where the scattering properties

may fit a well known empirical law, and shape-from-shading can be applied with accurate

results. In general, however, shape does not exclusively determine shading, and shading cannot

exclusively determine shape.

If one accepts that shape-from-shading won't work, one also accepts, in effect, that topog-

raphy cannot be conceived from one image; at least two images (preferably more) are needed.

The fundamental requirement of any algorithm which uses MLA imagery to determine topog-

raphy is that a given surface feature can be identified in each image. This seems obvious for

stereo-mapping, but it applies to interferometry as well.

Interferometric systems simply compute the difference in phase, as received across the an-

tenna baseline, of the radiation arriving from a specific point on the surface. The surface

point is "imaged" at each of the receiving antennae. The longer the baseline between the two

antennae, the more accurate the angular (and therefore, surface) resolution. For spaceborne

applications, owing to the long slant range to target, the baseline length requirement suffers;

launching and deploying such a system proves difficult. To circumvent this problem, Zebker

and Goldstein (1985) , and later Li and Goldstein (1987) , described a method for using repeat

orbits of Seasat to simulate an interferometer. (The details are discussed in Chapter 5.) First,

they chose a surface site and assembled the images from each of the orbital passes. Then they

"used a statistical correlation technique to determine the range and azimuth offsets between

any two images." After completing this, they computed for each surface point the phase in-

formation necessary for the interferometry. This last step is redundant, however, because once

the conjugate image points are determined, one is left with a simple stereo problem; the inter-

ferometry is only as good as the correlation permits. To use their words, "misregistration of

the two images relative to each other in the coherent combination process can lead to severe

degradations in the height measurement accuracies."



So, one needs to somehow identify surface features in each of the images, and then use these

conjugate points to locate the surface. In attempting to assume as little as possible about the

scattering properties of the surface, one must ask the following question, "What are the most

reliable surface markers in (radar) imagery?" The answer at which I will arrive is "edges".

Before explaining my answer, I must first define what it is I call an edge. (A more general

definition is given in Appendix A.) An edge (as viewed in SAR images) is the image represen-

tation of a surface boundary between two distinct scattering regimes. A shoreline provides an

obvious example, where the smooth, specularly reflecting waters of a lake meet rough-scattering,

vegetated land. Other examples include a fault exposure where different geologic units abut, or

a boundary between field and forest. The contrast in scattering properties across the boundary

manifests itself as an abrupt change in the amount power scattered back to the receiver. The

result, as depicted in a radar image, is a "sharp" change in DN or pixel intensity. By "sharp", I

specifically mean a local maximum in the DN gradient with respect to the direction normal to

the boundary. Referring back to the shoreline example, the image of the shoreline would show

a darker area (the water) abutting a lighter area (the land).

The argument for using edges to locate the surface arises from a comparison between edge

information and actual DN information, which is normally used for radar inversion. Automated

DN-matching algorithms operate on the assumption that radar-bright regions in one image of

the MLA data set correspond to radar-bright areas in a conjugate image. This is usually the case

for parallel, same-side imaging configurations, but this certainly does not apply to opposite-side

or convergent observations. Secondly, DN-matching employs two-dimension cross-correlation

between images to determine conjugate points, but this correlation is susceptible to the same

topographic image distortions that it intends to remove. Some rationale for the use of edges

rather than DNs is presented in this chapter. The final judgement can only come when the end

results (DTEMs) of each method are evaluated; I offer this for future work.

3.1 Radar Migration

In defining radar migration, the work in this chapter plays to the discussion above. Since the

primary development of this thesis is the application of migration, in the sense of seismic inver-

sion, to radargrammetry, I first justify radar migration by analogy to seismic migration. Next,



I explore the important differences between the two applications and consider the assumptions

that must be satisfied to successfully implement radar migration. "Raster migration" provides

the context for this examination. Finally, I present an algorithm (Hierarchical Boundary Match-

ing) for generating topography, based on the assumption that surface boundaries produce the

most easily identifiable radar terrain signatures.

3.1.1 A Simple Seismic Analogy

The essence of migration, as presented here, is to project the wavefield backward from a receiver

to recover the loci and associated amplitudes of all possible scattering points for that receiver

(French, 1974; Schneider, 1978; Robinson, 1983; Stolt and Benson, 1986; Keho, 1986). In seismic

applications, this "back-projection" is performed for many different receiver locations, and the

geometrical shape of the subsurface scatterer is resolved by simply summing the amplitudes

where the loci intersect.

Figure 3-1 diagrams the configuration/procedure. In performing the imaging, a linear array

of receivers (depicted as triangles) is placed along the earth's surface. Generally, a source is

buried at either end of the array and exploded, scattering seismic waves off of the subsurface

and on to the receivers, where ground displacement is recorded with respect to travel time

(time from blast). In this particular set-up, each receiver has a collocated source; the wavefield

generated from the explosion of this, and only this, source is recorded at the receiver.

The initial wavefront generated from each source explosion travels a distance, shown by the

vertical displacement of the circles below the surface, before interacting with the subsurface

interface. The seismogram, or wavefield record, generated at the receiver is plotted above the

surface, and scaled as half-travel-time (assuming unit velocity, this is equivalent to the depth

scale). The amplitude peaks on each of the traces correspond to the half-travel-time of the

reflected wavefront.

One can determine the position of the subsurface simply by fitting a line (labeled the "imaged

subsurface") to the travel time data; however, this imaged interface does not correspond exactly

to the actual position of the subsurface. To get the actual position of the subsurface, one may

perform an elementary Kirchoff migration - backproject the wavefield from each receiver and

stack the amplitudes to resolve the interface. The diagram depicts this as drawing circular arc
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Figure 3-1: Schematic of seismic migration. See text for details.
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centered at the source/receiver and having a radius corresponding to the half-travel-time of the

wavefront. If enough collocated source/receivers are employed and the respective wavefields

are stacked (i.e. summed), the maximum amplitudes should line up along the position of the

subsurface.

3.1.2 Additional Constraints

At first glance, radar image restoration represents a simple form of migration, i.e., migration

in a homogeneous medium with the Earth's surface as the scatterer; but complications to this

straightforward method result from the sparse configuration of sources and receivers provided

in radar imaging. For the Shuttle Imaging Radar-B (SIR-B) mission, designed specifically for

multiple look angle imaging, one could expect up to four MLA images for a given ground swath.

To make radar migration more closely analogous to seismic migration, the number of required

shuttle passes per location would need to increase by at least an order of magnitude.

To demonstrate the difficulties of applying a simple Kirchoff migration to the spaceborne

radar inversion problem, one may design an imaging/inversion example. Starting with a syn-

thetic topographic profile, I simulate the imaging process by assuming several spacecraft passes

in a direction perpendicular to the profile, so that the profile is imaged as one cross-track raster

in each of the MLA images. The method for computing the brightness information for this

raster is discussed in Chapter 2. Figure 3-2 shows the sample topography and the slant range

images generated for several different look angles.

Once the images have been constructed, one performs the inversion by backprojecting each

of the illuminations and stacking the results. Figure 3-3 shows the backprojections for four

same-side look angles. In stacking the results, it is readily apparent that the surface is poorly

resolved; this exposes another important difference between seismic and radar imaging - seismic

imaging (and thus migration) depends greatly on specularly scattered waves, while radar imag-

ing depends on backscatter (diffuse scattering). One could potentially employ a greater number

of look angles in the imaging and subsequent migration to enhance the surface reconstruction.

Figure 3-4 shows stack using a fuller set of look angles, but the results are still relatively poor.

To compensate for the small number of MLA images, on must more carefully scrutinize the

amplitude information; that is, migrated amplitudes from the MLA imagery cannot simply be



Figure 3-2: (a) Sample topographic profile imaged at (b) 30* and (c) 600 illumination from
the left, and (d) 300 and (e) 600 from the right. panels (b) through (e) are slant range rasters
with range along the horizontal. For panels (b) and (c), range increases from the left; range
increases from the right for panels (d) and (e).
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Figure 3-3: Slant range rasters for (a) 30*, (b) 40*, (c) 50*, and (d) 600 look angles. Result
(e) of backprojecting and stacking the data to resolve the surface. Panel (e) has ground range
along the horizontal and elevation along the vertical.
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Figure 3-4: Migration stack generated from images having look angles varying from 600 left to
60* right in 10* increments.
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summed, but instead must be compared somehow in order to determine the surface shape.

Two methods of performing this amplitude "scrutinization" are discussed in the remainder

of this chapter. The first, which I worked on for approximately a year, is the two-dimensional

migration problem illustrated previously with an added assumption about surface scattering

(to be explained). The section devoted to this method was presented at IGARSS (International

Geoscience and Remote Sensing Symposium) '87 in Ann Arbor, MI and is abstracted from those

proceedings (Matarese et al., 1987). The second technique, hierarchical boundary matching

(HBM), is based upon my belief that edge information is superior to amplitude information for

use in the inversion. This refinement was prompted after my stay at Jet Propulsion Laboratory,

Pasadena, CA, during the summer of 1987, where I gained a better working knowledge of the

spaceborne radar imaging system.

3.2 Two-dimensional (Raster) Migration

Migration, like radar-stereo-mapping, takes advantage of the two-dimensional nature of the

topographic distortions in radar, i.e. each cross-track raster in the radar image is a recording

of a slice of topography, or topographic profile, perpendicular to the orbital (or flight) path of

the spacecraft. In producing a MLA image set of a given ground swath, several nearly-parallel

spacecraft overpasses are used (as described in Chapter 2). This configuration allows for the

imaging of each topographic profile by one cross-track raster in each of the MLA images. If

the azimuth resolution for each of the images is equivalent, the images may be "aligned" in

azimuth (along-track direction) so that the only apparent distortions in the imagery are in the

range direction. For images with good signal-to-noise this alignment is used for stereo viewing.

(One may just put two of the MLA images side-by-side and cross one's eyes.) Figure 3-5 shows

a cartoon illustration of the alignment procedure.

To make the radar inversion amenable to raster migration, alignment of the MLA imagery is

critical; however, owing to the uncertainty in shuttle ephemeris, use of orbital parameters alone

cannot adequately accomplish this task. A method for establishing this alignment through the

use of ground control points (GCPs) to refine the orbit information is summarized by (Leberl

et al., 1986b). This ephemeris correction, or a similar one, is required as a preprocessing step

for the migration.
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After aligning the MLA imagery, the migration process begins. The steps are listed here

with discussion to follow.

1. Corresponding (or conjugate) cross-track rasters are taken from each of the MiLA images.

2. For each raster, the pixel DNs within the raster are normalized to span a common range

of grey-levels.

3. Each of the conjugate rasters is backprojected into the object 8pace.

4. The variance of the backprojected pixel values at each location in the object space is

computed.

5. An optimization routine combines the variance data with surface shape constraints to

determine the topography.

3.2.1 Receiver Array Orientation

The first step in the process, gathering conjugate cross-track rasters (which I will call simply

"rasters" from here on) from the MLA images, is straightforward once the images have been

properly aligned in the pre-processing. In gathering the conjugate rasters, one establishes the

two-dimensional migration problem. The seismic analog to each of the rasters is a seismogram;

each raster measures return power versus travel time just as each seismic trace records dis-

placement versus travel time. The set of conjugate rasters is analogous to a linear array of

geophones. One important difference, however, is the scattering surface resolution perpendic-

ular to the receiver line. The topographic profile corresponding to the MLA rasters has an

approximate width of 25m (the azimuthal resolution of the radar), while the seismic resolution

of a subsurface is much worse. (To apply radar antenna terminology, seismic sources have large

beamwidths.)

3.2.2 Histogram Equalization

Histogram equalization describes the normalization of the DN in the MLA rasters to a com-

mon range of grey-levels (0 to 255). Since the brightness data has already been processed in

generating the image product, this amounts to a re-normalization. Usually, this equalization is



carried out in the form of a linear stretch, whereby the maximum and minimum DN for each

raster are determined, and new DN are calculated as follows:

D Nnrm = (DN - DNmin) x 255 (3.1)
DNma. - DNmin

This portion of the procedure, though it seems harmless, attempts to derive surface in-

formation from the DN amplitudes. The normalization to a common range of DN serves to

remove the differences in mean brightness between each of the rasters; one expects images hav-

ing small look angles to be uniformly brighter than images having large look angles. (Remember

that brightness decreases with increasing range, owing to spherical spreading, and that range

is inversely proportional to the cosine of the look angle.) The normalization also attempts to

identify a brightness value with each surface location, i.e. a resolution cell along the topographic

profile will produce the same normalized brightness on each of the MLA rasters.

The backscatter assumption which histogram equalization attempts to take advantage of

more precisely involves brightness relation8hips between locations along the topographic profile.

If point A images brighter than point B at one look angle, then A must return more power

than B at all other same-side look angles. Naturally, this will break down wherever layover

effects exist, so one should use an MLA image set with a minimum look angle of, say, 30*. I'll

refer to this as the assumption of look-angle independent relative return.

Since a linear stretch normalization proceeds slightly beyond this simple assumption, one

can design a "scaling" procedure for performing the equalization more rigorously. The linear

stretch also assumes that one knows the relationship between brightness and look angle to

be linear. Unfortunately, this relationship is not only nonlinear, but it is unknown for most

terrestrial surfaces. A better approach is to perform a ranking of the DN in each raster,

assigning normalized DN on a percentile basis, i.e. if a given DN is brighter than 70% of the

DN in the raster, compute its value as 0.7 x 255.

One difficulty relating to migration that these normalization techniques cannot address is

that each of the corresponding MLA rasters does not exactly image the same portion of the

topographic profile. Surface locations that are imaged in one MLA raster and not in the others

will provide backscatter data that corrupt the normalization procedure. One must therefore

attempt to remove this data, before normalization is attempted, so that each MLA raster

corresponds to the same section of topography. Of course, this amounts to a restatement of the



problem one wishes to solve, and as a result, one can only hope that these corruptions are not

significant.

3.2.3 Backprojection

The third step begins the actual migration process, using the refined orbital parameters of each

pass to project conjugate rasters into the object space. The object space comprises a grid of

elevation and ground range coordinates which act as a "window" containing the surface profile.

The dimensions of the object space come from a priori knowledge of the imaged area - orbital

parameters of the spacecraft, swath width, and approximate maximum and minimum terrain

elevations. In effect, the object space is the smallest window which one expects to encompass

the topographic profile; smaller windows lead to reduced computation.

As illustrated earlier in the seismic case, migration involves projecting a raster, which dis-

plays return power as a function of travel time, into the object space window. Specifically, for

each pixel in the raster, its one-way travel time is used to place its DN onto that portion of a

circular arc which intersects the object space. This backprojection is performed for each look

angle so that each grid point in the object space window has a DN value from each of the MLA

rasters.

3.2.4 The Variance Field

After the conjugate DN values have been assembled for each grid location in the object space

window, one computes the sample variance; this provides the variance field. If the assumption

about surface scattering properties holds, one expects points along the surface to have a low DN

variance, although other positions in the object space, not coinciding with the surface profile,

may have associated low DN variances also. The variance field only indicates that locations

having low DN variance are more likely surface points than locations having high DN variance.

3.2.5 Surface Determination

Identifying the topographic profile of the scatterer from the variance field involves fitting a

surface to the low DN variance values. An important constraint to this surface fitting routine

applies a priori knowledge of the terrain slope characteristics. Since the angle of repose for



most geologic structures rarely exceeds 30* from the horizontal, one must find a low DN vari-

ance profile meeting this criterion. In reality, some small scale surface features, e.g. cliffs or

scarps, violate this rule, so this slope constraint will act somewhat like a high pass filter on

the topography. The specific method I chose to accomplish this surface fitting was to apply a

stochastic optimization technique which I discuss in Appendix B.

3.2.6 Results

To illustrate the raster migration procedure, I procured a digital terrain elevation model

(DTEM) from the United States Geological Survey. The DTEM, as well as the procedure

for generating synthetic SAR images, is described in Section 2.5. I then chose a topographic

profile, a horizontal raster, from the image to test the migration algorithm.

In this example, the migration is performed using two MLA images, having look angles of

33.80 and 50.10 respectively. (Why I chose those angles I can no longer remember.) Figure 3-

6 shows these MLA images. Using the raster from each MLA image which corresponds to

the topographic profile, performing the backprojection, and computing the variance field, one

arrives at a representation of the surface. Figure 3-7 shows the backprojected wavefields for

each of the looks and the variance field (Figure 3-8) computed from the backprojections. After

applying the surface fitting routine, I generated elevation data for the topographic profile which

nearly matched the original elevations; this is displayed in Figure 3-9.

The artifacts in the results are caused by incorrect surface location. The program predicts

the surface based upon low variance values; if these values appear at points in the object space

that don't coincide with the surface, the program can potentially produce erroneous results.

Low variance is a result of "mismatching" surface points based upon their associated DN values.

As illustrated in Figure 3-10, one can imagine a profile containing two points, A and B. If A

and B have identical scattering properties and produce identical normalized DN values on the

MLA rasters, then the migration may mismatch the backprojected DN value corresponding to

A in one raster to the backprojected DN value corresponding to B in the other raster. The

variance at points AB' and AB", as well as at points A and B, is zero, and all points are

considered equally likely to lie on the profile. I will return to this problem later.



Figure 3-6: Synthetic SAR images generated from the Pyramid Lake DTEM, using bore angles
of (a) 33.80 and (b) 50.1*. Vertical axis denotes the flight direction; horizontal axis is ground
range.
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Figure 3-7: The object space window containing backprojected rasters is shown for the (a) 33.80
and (b) 50.1* looks. Elevation is in the vertical direction; ground range is in the horizontal
direction. The variance field representation of the topographic profile is given on the next page.
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Figure 3-8: The variance field expresses the likelihood of a point lying on the surface. This
likelihood increases with decreasing pixel intensity, so that the surface appears as a dark curve.
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Figure 3-9: A comparison of the surface locations calculated by migration (data points) and
the digital topography (solid line). Data spacing is 30m ground range and 6m elevation (chosen
arbitrarily). Data points at far left suffer from incomplete image data. Note the artifact at
4400m ground range.
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Figure 3-10: The mismatch problem for raster migration. See text for details.



3.2.7 Additional Comments

Unfortunately, this example only shows that given a topographic profile, and synthetic data

generated from that profile which satisfies the scattering brightness assumption, one can invert

for the surface; this method has yet to be tested on real data. The reason I am unable to apply

raster migration to real data owes to the orbital geometry of the spaceborne SAR - no two

MLA orbits are parallel enough to produce conjugate rasters of surface topographic profiles.

The migration of spaceborne MLA images cannot be made two-dimensional. This method may

still have potential for aircraft SAR image inversion, where parallel flight lines may be achieved.

Before I explain how to handle the problem of non-parallel orbits, I want to leave a few hints

on alternative routes for raster migration (in case one chooses to apply it to airborne data).

The fragile step in this method involves the histogram equalization; does the assumption about

relative return I made earlier actually hold?

Noise certainly influences the answer. Images with low SNR will disrupt histogram equal-

ization to some extent. It may be possible to use a hierarchical approach to reduce noise effects;

one could start with a coarse resolution migration on smoothed raster data and determine the

topography at a large scale. Then one could iterate to finer resolutions.

More importantly, however, a systematic error may occur when a particular surface harbors

scattering properties which violate the relative brightness assumption. Conceivably, scattering

surfaces exist for which return power may decrease over a range of decreasing look angles. A

less extreme, and quite probable situation, might be a transposition of backscatter efficiency

between two scattering regimes with a change in look angle. For example, let areas A and B

neighbor each other. On image one, area A might appear brighter than B, but on the other

image B might "outshine" A; this scenario probably isn't restricted to opposite looks (Leberl,

1979), though I know of no examples from the literature.

Other methods that may be used in place of the histogram equalization step include cross-

correlation and edge-detection. Cross-correlation between pairs of MLA rasters may be applied

to take advantage of local relationships in surface scattering properties. Given two correspond-

ing MLA image rasters z and y, one first notes that each is simply a time series of return power.



The normalized cross-correlation between the the rasters is computed

En/2
c(ri, r2 ) = t2-n/2 ,I.Ti+t)/(r2 + t) (3.2)

n/fl 2 X(r1 + t)2]1 2 [n/2 + t)2]1/2

where

ri and r2 are lags corresponding to rasters z and y respectively,

n is the number of pixels (surrounding ri and r2) in each raster to be correlated, and

-1 c(r, to) 1,

For same-side look angles, one calculates the lags for which c is maximized, and then uses these

lags to migrate for the location of the corresponding surface position. This computation is the

basis for automated stereomapping algorithms, which are discussed in Chapter 5.

The MLA rasters may also be edge-detected, and the resulting "edge maps" migrated. The

surface can then be resolved where these backprojected edges intersect in the object space. It

is precisely this concept which I pursue in the next round.

3.3 Hierarchical Boundary Matching

Hierarchical Boundary Matching (HBM) incorporates three major concepts gleaned from my

work with raster migration:

o the assumption that boundaries are reliable surface markers;

e the use of migration-style matching to reconstruct the location of these boundaries based

upon edge information in the MLA imagery; and

* a hierarchical iteration to locate coarse-resolution boundaries first and then successively

finer-resolution features.

3.3.1 Chronology

The driving force toward the development of the HBM method was my desire to tailor the

radargrammetric inversion to spaceborne imaging SAR. Spaceborne platforms, such as Seasat



and the Shuttle Imaging Radars, have proven successful for large-scale mapping of of terrestrial

and oceanographic surfaces. Though both programs were aborted, owing to equipment failures

(to put it mildly in the case of SIR-B), they provided tantalizing imagery of the Earth's surface

and prompted the design of a sophisticated orbital SAR to occupy a spot on the future EOS

platform. Additionally, results from the Magellan mission may someday spawn an EOS-type

orbital platform for Venus. Any useful radargrammetric techniques must allow for the imaging

geometry of satellites.

This places raster migration at a dead end, since the laws of orbital mechanics prohibit

exactly parallel overflights. Relief displacement in SAR imagery operates in a direction perpen-

dicular to the ground track of the radar platform. This is an inherent feature of SAR design,

and it cannot be manipulated in post-processing (Leberl, 1979).

One remaining alternative involves the backprojection of MLA image data from the non-

parallel 8ub-tracks into a three-dimensional object space. The object space grows from a window,

in the raster migration scenario, to a volume, but the same backprojection principles apply. The

user supplies a range of elevations to encompass the topographic surface, which now has latitude

and longitude dimensions instead of the simple ground range dimension of a topographic profile.

The algorithm then attempts to resolve the surface by matching the conjugate features of the

MLA imagery in the three-dimensional object space.

As one might expect, this process has the potential for computational nightmarishness,

lending importance to any pre-processing step which can reduce the amount of data provided in

the MLA imagery. Histogram equalization accomplishes this type of filtering in the preparation

of the raster DN values for raster migration; however, this normalization becomes more difficult

to apply when backprojecting image data into a three-dimensional object space. Figure 3-11

illustrates this problem. The ground track (azimuth) directions of two MLA radar passes are

given by vectors Pi and P2. Both passes image the target A. However, P1 images A as part of

surface profile S1, which lies perpendicular to its nadir. Likewise, P2 images A as part of S2.

Because of the angle (or skew) between the ground tracks of the two orbits, the surface profiles

Si and S2 intersect. One cannot reduce the inversion to two dimensions, as in raster migration,

because MLA rasters corresponding to a single profile cannot exist. In the raster migration

case, the histogram equalization succeeds because all of the return power in each of the MLA
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Figure 3-11: The difficulty in performing histogram equalization to prepare MLA image data
for migration into the object space volume. See text for details.



rasters originates from the same topographic profile; for spaceborne MLA images, this is no

longer the case.

Of course, one can attempt to equalize each MLA image in its entirety, but two problems

arise. Surface regions imaged on one pass may not have been imaged on the others. This

introduces many DN values in each image that do not correspond to those of the other images;

these "exclusive" values disrupt the normalization. Secondly, the illumination vector for each

MLA image is different; surface slopes "seen" in one image are not the same as those "seen"

in the others. This problem can be corrected for in the post-processing of the imagery because

the illumination direction is somewhat controllable by way of squinting (SIR-C Science Plan,

1986). Histogram equalization of the MLA radar imagery and subsequent 2-D cross-correlation

form the basis of DN-matching automated stereo techniques.

Edge-detection, or the identification of surface boundary features in the MLA imagery, offers

another solution to this problem by reducing spatial information to binary point data, i.e. a

given location in the image either does or does not occur along a boundary between distinct

scattering regimes. Automated edge-detection turns an image into an edge map, a binary

representation of all of the abrupt DN changes in the image. (The edge-detection algorithm

used in this thesis was developed by Canny (Canny, 1983) and is summarized in Appendix A.)

Therefore, as histogram equalization prepares MLA rasters for migration into the object space

window, edge-detection prepares MLA images for backprojection into the object space volume.

The hierarchy of resolutions used in HBM also helps to speed the inversion. As I will show

presently, merely creating an edge map (by means of the edge-detector) of a full-resolution SAR

image still leaves a glut of information for the boundary matching algorithm to process. To

expedite computation, the algorithm first matches coarse-resolution edges between the MLA

images to locate their corresponding surface boundary. After generating digital elevation data

for these large-scale boundary features, the program moves to finer-resolution edge information

to extract additional surface boundary locations/elevations, filling in the DTEM with each

iteration.



3.3.2 The Algorithm

HBM is marked by five major sub-processes which combine to derive surface information from

multiple look angle imagery.

Hierarchy - Creation of multiple resolution data sets.

Edge-detection - Demarcation of the image edges.

Pre-filtering - Selection of edge information to migrate. (Start of coarse-to-fine resolution

processing loop.)

Automated Migration - Identification and matching of conjugate edges to locate the posi-

tion of associated surface boundaries.

Post-filtering - Application of slope criterion to surface location data to remove anomalous

information.

I broadly divide the method into preparative (steps one and two) and iterative (remaining

steps) domains. The creation of the multiple resolution data sets from the MLA images and

the subsequent imaging of this multiple resolution data simply transforms the data from MLA

images to MLA multiple resolution edge maps for use in the pre-filtering. The last three steps

equate to the general "pre-filter, backproject, and post-filter" approach of raster migration. This

portion of the algorithm resolves the surface boundaries from the MLA edge maps, iterating

from coarse to fine resolution. The flow of the algorithm through each of these steps is diagramed

in Figure 3-12.

For the remainder of this section, I will assume a same-side MLA configuration for the SAR

data. Indeed, all of the MLA radar images collected thus far have conformed to this geometry.

Difficulty in performing the required orbital maneuvers has precluded opposite-look imaging

efforts, although future missions may allow for this possibility. I will also assume that one's

choice of look angles must lie in the range 30* to 600. Between look angles, one can assume that

MLA imagery will remain clear of large-scale shadowing and layover effects owing to rugged

topography with steep slopes (see Chapter 2).



Figure 3-12: Flowchart of the Hierarchical Boundary Matching (HBM) algorithm.
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3.3.3 Automated Migration

Instead of proceeding through the algorithm in a step-by-step manner, I'll start at the core of

the method, the automated backprojection routine. For the purposes of this work, I modified a

program originally developed at JPL (Curlander, 1984) for projecting slant range SAR images

onto the Earth's surface. This routine uses the orbital ephemeris of the radar platform in

conjunction with existing digital terrain data for the image swath to convert the slant range

SAR image to a ground range (latitude/longitude) representation. In the absence of DTEM

data, the terrain surface is assumed to be at sea level, and image distortions appear wherever

the assumption fails. This process is described in Chapter 2.

To illustrate how this backprojection routine is incorporated into the migration, one may

consider the following example:

A corner reflector is placed in the middle of a (virtually) specularly scattering terrain having

minimal relief.

The local relief varies between a minimum elevation hmin and a maximum elevation h,.", but

is not known exactly for the location of the corner reflector.

MLA imagery of the region shows the strong return of the reflector, surrounded by weak,

uniform return from specularly scattering surface.

Given the slant range coordinates (azimuth, range) of the reflector in image A and the orbital

ephemeris for image A, one can calculate the ground position as a function of elevation

for the reflector, based upon the range of possible surface elevations, hmin through h

One repeats this step for the other images.

If the ephemeris and imaging parameters are accurate, the calculations of ground position

versus elevation for the MLA images should produce one common result which identifies

the location of the reflector on the surface. Figure 3-13 illustrates this procedure, assuming

three MLA images having parallel orbital paths (for simplicity of drawing).
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Figure 3-13: Location of a corner reflector (surface point) using migration. Scene (a) shows

the topographic surface containing the corner reflector at A; the slant ranges - ri, r2, and r3
- from target to spacecraft are recorded during imaging. This information, along with a priori

constraints on target elevation h and on geographic position z,y are later used to invert (b)
for target position. In the inversion, Pi(z, y,k) represent arcs of constant radius r; from the
associated shuttle pass (these are arcs - not spheres - owing to the Doppler constraint). The

position of the corner reflector is resolved where the P, intersect.
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Resolution

One also notes that the resolution, in elevation and ground range, at which the reflector is

located improves with increasing look angle disparity, 102 - 0il. The theoretical formulation of

surface resolution error as a function of the radar pulse resolution for two look angles is given

by (Leberl, 1979). (sn 0r + sin2 0)1/2

sin(02 - 01)

0 Or (cos 2 02 + cos2 01)1/2
sin(02 - 01)

where

0r equals half of the radar pulse (or slant range) resolution, assuming this resolution error is

normally distributed.

3.3.4 Filtering

I have described HBM as an automated process that resolves the surface by migrating MLA

image edge maps in much the same way that a human being can stereo-interpret an MLA

image pair; however, while a human interpreter can easily identify spatial features - a pond,

for example - in an MLA image pair, the computer only "sees" the edges corresponding to the

pond's boundaries. The algorithm has no way of knowing a priori that these edges mark a pond

shoreline; it must derive this information from other criteria. These criteria form the basis of

the filtering routines, which attempt to ensure that HBM properly reconstructs the surface.

Before describing the theory and practice of filtering, however, I must first explain the two

preparative steps in HBM - creating multiple resolution images and edge-detecting.

Multiple Resolution Images

Creating a multiple resolution image set simply equates to pixel averaging. Starting with a 512

by 512 portion of a full resolution MLA image (pixel size = (12.5m) 2), one can produce a 256

by 256 image of the same area by averaging 4-pixel neighborhoods from the original image into

single pixels of size (25m) 2. Likewise, one can continue to produce coarser resolution images.

An example of this pixel averaging is presented in Figure 3-14.



Figure 3-14: Creation of a multiple resolution image set. The original 512 by 512 image (a) is
reduced to 256 by 256 (b), 128 by 128 (c), 64 by 64 (d), 32 by 32 (e), and 16 by 16 (f). With
each reduction, the resolution of the image coarsens by a factor of 2 in both the range and
azimuth directions.
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Edge-detection

After the multiple resolution image set is generated for each of the look angles, the imagery

is edge-detected using the Canny algorithm (with a = 1.0) resulting in a multiple resolution

edge map set. Implementation and sample results of the Canny edge detector are described

in Appendix A. In this application, edge-detection is performed in the range direction only,

so that the edge maps reflect abrupt changes in DN with respect to changes in range. In

effect, the edge-detection is only sensitive to surface boundary orientations with a component

in the azimuth direction. Another notable feature is that the separation between adjacent,

azimuthally aligned edges can be as small as, but never less than, one image pixel. Localization

by the edge-detector prevents edges from occupying neighboring range pixels. These last two

points are illustrated in Figure 3-15. Figure 3-16 displays each of the images from Figure 3-14

after undergoing edge-detection. The "grey" edges mark abrupt increases in DN with increasing

range while "white" edges mark abrupt decreases in DN with increasing range.

I edge-detected exclusively in the range direction because the MLA images have nearly

parallel orbit paths. One can imagine a surface boundary running perpendicular to the orbit

path (in the cross-track direction). This boundary would produce an edge oriented in the range

direction on each of the MLA images. If these edges are migrated to locate the position of the

associated surface boundary, the applicable range resolution or is proportional to the length

of the edge rather than half of the pulse resolution (as mentioned earlier). Therefore, relative

to azimuthally aligned edges, these range-oriented edges do not allow good resolution of their

associated surface boundaries.

The effect of edge-detecting the images at multiple resolutions is to identify edge features

corresponding to those resolutions; i.e. the edges in the coarse-resolution edge map correspond

to large-scale boundary features on the surface, while the edges in the fine-resolution edge map

correspond to the smallest-scale surface boundaries resolvable by the radar.

Looking at this fine-resolution edge map, one would not be surprised that in matching con-

jugate edge information between the several look angles, an automated algorithm will produce

spurious results. Even a human stereo-interpreter would find the identification of conjugate

features in a stereo-pair of edge maps to be an arduous task.
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Figure 3-15: Alignment and localization of edges identified by the detection algorithm.



Figure 3-16: Edge maps corresponding to the multiple resolution imagery. The "16 by 16"
coarse-resolution map is enlarged and shown at upper right.
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The Mismatching Problem

As alluded to earlier, in describing raster migration, mismatching presents the key obstacle

toward achieving accurate surface location. In order to justify the pre- and post-filtering steps,

I'll describe how the mismatch problem applies to HBM.

Simply stated, mismatching leads to the the calculation of incorrect surface positions. To

explain this, I return to the raster migration scenario employing two edge-detected MLA images.

As illustrated in Figure 3-17, a topographic profile is imaged by a cross-track raster in each of

the two MLA images. The propagation (raster) orientations for each of the MLA images are

labeled pi and p2. In the forward model, point A, which

When the inversion is performed (Figure 3-17(d)), migrating the two rasters into the object

space window, the surface is resolved wherever the backprojected edge data for each raster

intersect. This intersection occurs at points A' and B' which correspond, respectively, to points

A and B on the topographic profile. However, the backprojected edges also intersect at points

C' and D', which do not correspond to actual surface positions. C' and D' are, therefore,

incorrect locations which resulted from mismatching edge information. Specifically, the edge in

raster P2 corresponding to point A intersects the edge in raster pi associated with B; since the

algorithm identifies the surface based upon these edge intersections, it obediently (but wrongly)

places the surface at point C'. The false location D' is computed similarly.

Pre-filtering

The HBM method relies upon two techniques for preventing the occurrence of mismatching.

Obviously, the use of more than two MLA images helps significantly in that these additional

images act to verify the surface locations determined in matching the initial pair. However, the

only rigorous method for mismatch suppression is to enforce a minimum distance between the

surface boundary locations to be determined. This concept is illustrated in Figure 3-18. If the

geographic distance (in the cross-track direction) between A and B exceeds a certain value, z,

then no mismatching can occur.

Since one has no control over the location of scattering boundaries on the surface, one must

instead filter the edge information, which corresponds to these boundaries, as it appears in the

MLA imagery. In the current example, the edges produced by A and B are separated by at
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Figure 3-17: Imaging of a topographic profile (a) containing surface boundaries at positions A
and B. The orientation of two MLA image azimuths are assumed parallel so that the profile
is imaged by one cross-track raster at each angle of incidence (panels (b) and (c)). Panel (d)
shows the corresponding inversion.
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Figure 3-18: Prevention of the mismatch problem. If the geographic separation between points

A and B exceeds a certain value, z, no mismatching can occur. Panel (a) presents the topo-

graphic profile; panels (b) and (c) are MLA rasters generated from the topographic profile.

The raster locations of edges corresponding to the surface boundary points A and B are shown.

Panel (d) shows the result of migrating the rasters to identify the surface positions for A and

B. The circular arcs of the previous illustration are approximated by lines (since the distance

from spacecraft to target is great).



least z sin 6; on each of the MLA rasters, where 9; is the look angle for raster i. Therefore, one

can migrate the rasters to uniquely determine the positions of A and B. However, if another

surface boundary C, producing an edge in the MLA imagery, lies between A and B, such that

both the distance between C and A and the distance between C and B are now less than z,

then mismatching will prevent any of the points, A, B, or C, from being uniquely determined

in the migration (Figure 3-19).

One can compute, for the purpose of pre-filtering, the minimum boundary separation dis-

tance, z, from a priori knowledge of the elevation spread for the ground region. For example,

if one knows that elevations range from hmin to hmja, for the swath imaged by the MLA data,

one can safely assume that no mismatching will occur for a minimum boundary separation,

(ta 1 te 1 - sin(#1 - 62) (3.5)
tan 02 tan 01 sin01 sin 02

where

h is the difference between a priori maximum and minimum elevations, hma, - hmin, and

01 and 62 are two of the MLA look angles.

(Note that this equation assumes that the radar is in the far field, i.e. arcs of constant range

translate to lines. I will adhere to this approximation in the discussion and illustrations to

follow.) Inspecting this equation, one notes that as 61 approaches 62, z is minimized; but this is

balanced by resolution considerations. Obviously, if the two look angles are equal, i.e. 01 = 02,

a degeneracy occurs - we have no point of intersection between the backprojected edges.

For example, given two MLA images with look angles 30* and 6 0"", one may use the above

findings to calculate the mismatch-avoidance criterion. The minimum slant range 8so between

the edges in the 30* raster should be

sin 30* sin(60* - 30*) = h/i/i. (3.6)
sin 60* sin 30*

Similarly, for the 60* raster, 86o = h.

To provide perspective, remember that the separation s between adjacent edges, as detected

by the Canny algorithm, may be as small as one pixel. For a full resolution, edge-detected image,

the range dimension of one pixel is 12.5m! From Equation 3.5, unless the h is also suitably
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Figure 3-19: Addition of surface boundary point C. Panel (a) shows the location of C on the
topographic profile. Panels (b) and (c) show the appearance of the edge corresponding to C
in each of the MLA rasters. Panel (d) shows the result of migrating these edges. Note the
occurrence of incorrect surface positions CA and CB owing to mismatching.
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small (if it were, we would not need to determine the topography), mismatching will present a

problem.

The pre-filtering procedure addresses this issue by using the multiple resolution edge maps,

where the edge pixel separation (in meters) is greater. As stated earlier, the coarse-resolution

edge maps show the large-scale boundary features in the image. In pre-filtering, one removes

all edge information except that which identifies these boundaries. For example, say that in

order to avoid mismatching, one must achieve an edge separation of 400m. If th6 edge spacing

in the full-resolution (512 by 512) edge map is 12.5m, one must appeal to the coarse-resolution

(16 by 16) edge map which satisfies the 400m spacing requirement.

My pre-filtering algorithm works by pinpointing at fine-resolution the coarse-resolution

boundary. First, one determines the resolution which satisfies the separation requirement.

This edge map is then used to "mask" the next-finer-resolution edge map to locate the bound-

aries more precisely. Iterative masking is performed until the position of the boundary on the

full-resolution edge map is determined. Figure 3-20 illustrates this procedure. This pre-filtering

produces edge maps, for each of the MLA images, which are ready for automated migration.

Before heading on to the subject of post-filtering, I make one final note about look angles.

If one were given more than two MLA images having look angles 01 through On, one would

determine the surface resolution capability from the pair of look angles, 0, and 65, having the

greatest disparity. However, the spacing requirement 8 would be determined from the pair

having the least disparity; this reduces the amount of necessary pre-filtering.

Post-filtering

After migrating the first set of edge maps produced by way of pre-filtering, one has a reliable

source of surface location data for the large scale boundary features. The next step is to begin

"filling in" the data by deriving additional surface information for the finer-resolution features.

This involves pre-filtering the edge map data again, but this time one starts with the next-

to-coarsest-resolution edge map, rather than the coarsest one used in the first pass. One then

migrates this new edge information, generating surface locations which must be combined with

the existing data.

Post-filtering dictates the manner in which the new data is amalgamated. Because this data



Figure 3-20: The pre-filtering routine.
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has the potential for mismatching (the edge maps from which it was derived do not satisfy the

spacing requirement), it must be compared with the existing data to identify inconsistencies.

This is accomplished by applying a slope criterion. For each new surface location, one can

compute both the planimetric distance z to each existing surface position and the corresponding

elevation difference y. If 4 = tan-1(z/y) is greater than a certain angle (slope), the new location

is thrown out (Figure 3-21); otherwise it is added into the database. Regional angle of repose

serves as the basis for the slope criterion; in my experiments I have used an'angle of 30*.

This "pre-filter, migrate, post-filter" loop may be repeated until all possible surface in-

formation has been extracted from the edge maps, however this proved to be beyond the

computational limits of my CPU. The results that I was able to achieve are given next.



9

Figure 3-21: Post-filtering based upon the slope criterion. If A and B are known surface

locations, then the post-filtering constraint allows only those positions (denoted by circles)

which do not cause the surface gradient to exceed a reasonable angle of repose (in this case

; 45*.) Other computed surface points (denoted by x's) not meeting this requirement are

ignored.



Chapter 4

Implementation and Results

For better or worse, I performed all of the coding and testing of this algorithm on the Earth

Resources Laboratory's DEC VAXen, including a MicroVAX, an 11/780, and an 11/750. All of

the routines, including the modified migration routine (originally written in FORTRAN), are

written in the C language for greater compatibility with the UNIX operating system used at

the Earth Resources Lab. Assuredly, this environment is not optimum for handling imagery

without the aid of an array processor, however it certainly promotes austere and efficient pro-

gramming! A major breakthrough came in February (1988) when I figured out a way to reduce

the computation time for my test data down to seven hours from roughly 100. (Up to that

point, debugging had been a real horror story.)

As stated in the previous chapter, the algorithm comprises five steps, which equate to six

distinct routines - one each for creating multiple resolution images, edge-detection, pre-filtering,

and post-filtering; two for the migration. Pixel averaging, as well as general image processing,

employed software developed by Peter Ford (Ford, 1985) of the Center for Space Research.

Edge-detection was performed using an in-house implementation of the Canny algorithm; I had

originally written this code for the identification of linear fault features in the SAR imagery.

I also accept responsibility (or blame) for the filtering routines. By far, migration is the rate-

determining step for HBM. Its implementation is two-pronged: the modified JPL algorithm is

used to calculate the possible surface positions (on a latitude/longitude/elevation grid) for each

of the MLA edge maps, and then another routine searches the grid (object space volume) for

edge intersections.



To test HBM, I chose a site on the northwest side of Mt. Shasta, CA, containing a basalt

flow. Owing to the contrast in scattering properties between the basalt flow surface and the

surrounding terrain, the boundaries of the flow are imaged clearly by MLA imagery. The basalt

flow is also well defined on 15' USGS topo maps (Hotlum and Juniper Flat quadrangles). The

basalt flow spans approximately 7km in length (NW to SE) and 2.5km in width (SW to NE).

Between October 27 and 30, 1984, the Shasta region (including the basalt flow) was imaged

by SIR-B as described in the following table:

Data Take (Scene #) Azimuth Center Incidence

Angle Angle
AL-039.4 (019) 118.00 60.10

AL-055.4 (035) 118.80 53.50

AL-087.4 (022) 120.40 29.5*

Azimuth angles indicate the direction of the orbital ground track with respect to true north; one

should note that these azimuths are nearly, but not precisely, parallel. Both the ground range

imagery and accompanying listings of the orbital ephemeris are presented in Figures 4-1-4-6.

In each image, a box surrounds the basalt flow area.

In the MLA imagery, one can clearly see Mt. Shasta, which rises to 4300m in elevation,

and the basalt flow, situated to the left of the mountain on each of the images. The images are

all oriented with respect to the shuttle pass so that azimuth is along the horizontal and range

is along the vertical. Owing to differences in the imaging parameters between data takes, the

swath width varies. The SAR illuminated the images from the top, i.e. the platform passed to

the northeast of the mountain. The image distortions caused by the extreme relief make the

mountain appear to lean toward the radar and also affect the positioning of the basalt flow with

respect to the mountain. The terrain distortions are especially apparent on data take AL-087.4,

which has the smallest look angle.

In order to extract elevation data for the area surrounding the basalt flow, I localized

a 512 by 512 region from each of the MLA slant range images. These full resolution sub-

images (Figure 4-1), along with the corrected shuttle ephemeris and an a priori stipulation that

calculated elevations fall between sea level and 4800m, provided the input for HBM

I use the phrase "corrected ephemeris" because ground control was required to improve
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DIGITALLY C09PZP'=7!-
MENU 7-PE

ANNOTAT ION PRAdtrT;:

SITE NAME: SHASTA CENTER TItfE iGMT): 22/20:52:39.613DATA TAKE-SCENE NO.: AL-039.40-019 CORRELATION DATE: 0z.-i2/:3S
CENTER LAT/LONG: 41 DES 37.0 MIN / -122 DES 27 4 MIN CENTER IN'iICENCE fANGLE: 60. 1 DEG
CENTER RESOLUTION (GROUND RANGE X AZIMUTH): 16.2 M ' 33 1 M FIxEL SIZE: 12. 5 M
TRACK (DEG TO TRUE NORTH): 118.0 R&W DATA: 5 SPS

SHUTTLE PARAMETERS

X POSITION: -4103.695 KM VELOCITY. -141.767 M/S
Y POSITION: -2363.093 KM Y VELOCITY. -6857.613 M/S

FOR IMAGE CENTER Z POSITION: 4596.656 KM Z VELOCIT': -3651. 939 M/S
SLANT RANGE TO NEAR EDGE: 432. 62 KM EARTH RADIUS AT TARGET: 636$. 70 KM
ALTITUDE: 231.86 KM ROLL: 90 0 CEO
YAW: .0 DES PITCH: .0 DES

Rt4DAR PARAMETERS

RECEIVER GAIN: 98.60 Do PRF: 1274.9 HZ CALISRATOR LEVEL SETTING:
BORE ANGLE : 32.4 DE * DATA WINDOW POSITION: 44 DOWNLINK RATE: 30.4 MHZ

IMAGE PARPMETERS

PROCESSOR SOFTWkPE VERSION NO:: N/A
REMARKS: SLANT RANGE AND RECTIFIED IMAGE TAPE ON FILE.

Figure 4-2: Imaging parameters for data take AL-039.4, scene 019.

NO. IMAGE RECORDS: 1685
LINES PER REF. UPDATE: a

NO. SAMPLES PER IMAGE LINE: 7012
NO. SAMPLES/SLANT RANGE IMAGE LINE: 3*40

COEFFICIENTS

ACROSS TPACK: FD:A= .0

ACROSS TRACK: FR:D=.
ALONG TRACK : FP:Al= .

EARTH RADIUS AT NADIR: 636
GROUND RANGE PIXEL SIZE: A

NEAR EAR
CORNER NEAR LATl
COORDINATES FAR EARL

FAR LATE

CALIBRATION LEVEL ESTIMATE:
BLOCKS PER FOOCT AZIMUtH IN
SIGNAL TO NOISE RATIO: 4

STARTING SAMPLE NO.: I
NO. SLANT RANGE IMAGE RECORDS:

USED TO CALCULATE DOPPLER F#EQUENCY

185£

0 NZ FD:9= -. 2a HZ FD:C= 20S7.37 HZ

COEFFICIENTS USED TO CALCULATE DOPPLER =REGUENCY RATE

00 HZ/S FR:E= -23.33 HZ/S FR:F= 1069.45 HZ/S
00 HZ/S FR:A2= .00 HZ/S FR- A3= .00 HZ/S

7.66 KM AZIMUTH SKEW: -25 PIXELS SOUINT ANGLE: 0.47 DEG
ZIMUTH = N/A PANGE = N/M SWATH VELOCITY: 7. 2322 KM,

LY LATITUDE: 41 DES 56.8 MIN NE-AR EARLf LONGITUDE: -122 DES 46.4 MIN
E LATITUDE : 41 DEG 26.2 MINr NEAR LATE LONGITUDE : -121 DES 58.9 MIN
Y LATITUDE : 41 DES 47.9 MIN FAR EARLY _CNGITUOE : -122 DEG 55.9 MIN
LATITUDE : 41 DES 17.3 MIN FAR LATE LONGITUDE : -122 DES 8.4 MIN

98. 66 BIT ERROR RATE. -56. 60 DO SCALE FACTOR: ao. 00
CREMENT: 18 FR AZIMUTH INCREMENT FLAG. 0 START TIME (GMTJ:21/20:S2:2i
.09 DB NOISE: 47.10 0 REQUEST NUMBER: 1846
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Figure 4-3: Ground range image for data take AL-055.4, scene 035.



PAGE 2SIP-8
DIGITkLLr COPPELkTED IMkGEP(

MENU TAPE

ANNOTATION PARAMETERS

SITE NAME: SHASTA CENTER TIME (GMT): 2B2/20' 35: 46. 315
DATA TAKE-SCENE NO.: AL-055. 40-035 CORRELATION DATE: 0!'20/,25
CENTER LAT/LONG: 41 DEG 27.5 MIN / -122 DEG iS 3 MIN CENTER INCIGENCE ANGLE: 53.5 DEG
CENTER RESOLUTION (GROUND RANGE X AZIMUTH). 17.5 M X 23.1 M PIXEL SIZE: 12.5 M
TRACK (DEG TO TRUE NORTH): 115.3 RAW DATA. 5 BPS

SHUTTLE PARAMETERS

x. POSITION: -4297.309 KM vELOCITY. -617.172 M-S
Y POSITION: -2121.526 KM 'Y vELOCITY. -6777.020 M-S

FOR IMAGE CENTER Z POSITION: 4540. 445 KM Z vELOCITY. -374e.129 M/S
SLANT RANGE TO NEAR EDGE- 375.27 KM EARTH RADIUS AT TARGET: 636.9.75 KM
ALTITUDE. 233.55 KM ROLL: 90 0 DEG

1AW: .0 DEG PITCH: 0 DEG

RADAR PqRAMETERS

RECEIVER GAIN: 95.40 08 PRF: 1824. 1 HZ CALISRATOR LEVEL SETTING: i
SORE ANGLE : 3..8 DEG DATA WINDOW POSITION 37 DOWNLINK PATE: 30.4 MHZ

IMPGE PRRANETERS

NO. SAMPLES PER IMAGE LINE: 7172
NO. SAMPLES/SLANT PANGE IMAGE LINE. 5632

STARTING SAMPLE NO.: 1
NO. SLANT RANGE IMAGE RECORDS. 1134

NO. IMAGE RECORDS' 1i±12
LINES PEP REF. UPDATE:

COEFFICIENTS USED TO CkLCULATE DOPPLER FREQUENCY

ACROSS TRACK: F:A= .00 HZ FD.S= 32.4a HZ

COEFFICIENTS USED TO CALCULATE DOPPLER F9EQUENCf PkTE

ACROSS TRACK:
ALONG TRACK :

FR: D=
FR: Ai=

00 HZ, 5
00 HZ/S

FR E= -31. 99 mi./S
F0. t2= .00 -'Z.'S

FD:C= 1334 47 HZ

FR. F= 1235. 30 HZ.'5
FR-A3= .00 HZS5

EARTH RADIUS AT NADIR: t3a7.92 tM
GROUND RANGE PIXEL SIZE: AZIMUTH = N/A

CORNER
COORDINATES

NEAR EARLY LATITUDE:
NEAR LATE LATITUDE
FAR EARLY LATITUDE
FAR LATE LATITUDE

41 DEG
41 DEG
41 DEG
41 DEG

CALIBRATION LEVEL ESTIMATE: 72.40
BLOCKS PER FDDOT AZIMUTH INCREMENT. 25
SIGNAL TO NOISE R-TIO. 5.63 DB

-4ZIMUTH SKEW:
PANGE = NA

4t. 5 MIN
14. 3 MIN
40. 7 MIN
S.a MIN

-B PI.:ELS

NEAR EARLY LONGITUDE:
NEAR LATE LONGITUDE
FAR EARLY LONGITUDE
FAR LATE LONGITUDE

SIT ERROR RATE: -5. 34 018
FR AZIMUTH Ir4CREHENT FLAG:
NOISE: 44.42 DB

5GUINT ANGLE:
SWATH vELOCITY.

-0 21 DEG
7 2321 x, S

-122 DEG 39.0
-11 DEG 51.2
-122 DEG 45.4
-121 DEG 57 7

SCALE FACTOR: 34.4
STmPT TIME fGMTJ:2S2/'20:35 33
REQUEST NUMBER 1902

PEMr1P .5: 5L-04T PmNGE mND RECTIFIED
QOCESOR SOFTwoPE VEPSIO'4 NO

1MSE T..PE ON FILE.

Figure 4-4: Imaging parameters for data take AL-055.4, scene 035.

k'



*~A~ ~'

*4

-~-~ rn

Figure 4-5: Ground range image for data take AL-087.4, scene 022.
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DIGITALL' CRPEL,-TED IMAGEP

MEHU T-PE

ANNOTATION PMRAtiETER4_

SITE NAME: SHASTA CENTER TIME (GMT): 284/20:02:19.404DATA TAKE-SCENE NO.: AL-097. 40-022 CORRELATION DATE: 06/12/iS
CENTER LAT/LONS: 41 DES 19. 5 MIN / -122 DES 5. 9 MIN CENTER INCIDENCE ANGLE: 29. 5 DEGCENTER RESOLUTION (GROUND RANGE X AZIMUTHI: 28. 5 M X 28. 0 M PIXEL SIZE: 12.5 M
TRACK (DEG TO TRUE NORTHI: 120.4 RAW DATA: 5 BPS

SHUTTLE PARAMETERS

X POSITION: -4633.422 KM VELOCITY: -154S.149 H/S
Y POSITION: -1569. 744- KM Y VELOCITY: -67. 5 /S

FOR IMAGE CENTER Z POSITION: 4427. 5SI KM Z VELOCIn : -392S.179 M/S
SLANT RANGE TO NEAR EDGE: 256. 12 KM EARTH RADIUS AT TARGET: 6368. 79 KM
ALTITUDE: 229.76 KM ROLL: tQ5.: CES
YAW: .0 DEG PITCH: .0 DEG

RADAR PARAMETERS

RECEIVER GAIN: 86.67 Do ' PRF: 1539.8 HZ CALIBRATOR LEVEL SETTING- I
BORE ANGLE : 46. 4 DES DATA WINDOW POSITION: 41 DOWNLINK RATE: 30. 4 MHZ

IMAGE PARAMETERS

NO. SAMPLES PER IMAGE LINE: 7008 STARTING SAMPLE NO.: I NO. IMAGE RECORDS: 2290NO. SAIPLES/SLANT RANGE IMAGE LINE: 4609 NO. SLANT RANGE IMAGE RECORDS: 1441 LINES PER REF. UPDATE: 5
COEFFICIENTS USED TO CALCULATE DOPPLER FREQUENCY

ACROSS TRACK: FO:A .00 HZ FD:B= 107.90 HZ FD:Cz 1124.42 HZ

COEFFICIENTS USED TO CALCULATE DOPPLER FREQUENCY RATE

ACROSS TRACK: PR:Dz .00 HZ/S FR:E: -69.11 HZ/S FR:F= 1821.11 HZ/S
ALONG TRACK : FR:Alz .00 HZ/S FR:AE= .00 HZ/S FR:A3= .00 HZ/S

EARTH RADIUS AT NADIR: 6363. 41 KM AZIMUTH SKEW: -49 PIXELS SQUINT ANGLE: 0. 43 DEG
GROUND RANGE PIXEL SIZE: AZIMUTH a N/A RANGE = N/A SWATH VELOCITY: 7.2477 lcM/S

CORNER
COOROINATES

NEAR EARLY LATITUDE:
NEAR LATE LATITUDE :
FAR EARLY LATITUDE :
FAR LATE LATITUDE :

DEG
DEG
DEG
DEG

CALIBRATION LEVEL ESTIMATE: 63. 49
BLOCKS PER FOOT AZIMUTH INCREMENT:
SIGNAL TO NOISE RATIO: 11.78 Do

41. 7 MIN
8.9 MIN

30. 0 MIN
57.4 MIN

NEAR EARLY LONGITUDE:
NEAR LATE ..ONGITUDE
FAR EARLY "ONGITUDE
FAR LATE LONGITUDE

BIT ERROR RATE: -55.45 0 -

FR AZIMUTH INCREMENT FLAG. 0
NOISE: 35.57 DB

-122 DES 21.2
-121 DES 36.7
-122 DES 35.2
-121 DEG 50. 7

SCALE FACTOR: 20. :0
START TIME (GMT):234,20 :2 it
PERUEST NUMBER: 18339

REMARKS: SLANT RANGE AND RECTIFIED
PROCESSOR SOFTWARE VERSION NO.:

IMAGE TAPE ON FILE.

Figure 4-6: Imaging parameters for data take AL-087.4, scene 022.
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Figure 4-7: Full resolution slant
512 by 512 pixels. (a) AL-039.4.

range images centered about the basalt flow. All images are
(b) AL-055.4. (c) AL-087.4.



the ephemeris to the accuracy of a resolution cell. The sources of ephemeris error include

inaccuracies in spacecraft tracking and orbital modelling, as well as perturbations caused by

shuttle crew movement. In improving the ephemeris data for the region surrounding the basalt

flow, however, these errors reduced to a simple translation of the shuttle position. For this

example, I used five ground control points (GCP) to perform the correction. Since the ultimate

goal of automated migration is to avoid using GCP at all, I did not analyze their effect on

ephemeris improvement; this information is provided elsewhere (Leberl et al., 1986b). More

accurate spacecraft tracking may soon eliminate the need for ground control.

Having corrected the orbital ephemeris, one can compute the expected resolution error in

elevation and ground range using Equation 3.3. For o,. s 15m, 01 = 29.5*, and 62 = 60.10, Uh

and o, are both s 15m.

To compute the edge separation requirement s, I used 61 = 53.5*, 62 = 60.1*, and h =

4800m. From Equation 3.5, s = 792m. Since the full-resolution image pixels have a range

width of 12.5m, this would require pixel averaging the 512 by 512 MLA imagery down to 8

by 8 images having (800m) 2 pixels. However, these 8 by 8 images did not contain enough

information to accurately edge detect, so I settled for 16 by 16 images with (400m) 2 pixels and

hoped to avoid mismatches. Figures 4-8-4-10 show the multiple resolution image sets generated

for each of the MLA images. The multiple resolution imagery underwent edge-detection to

produce the edge maps shown in Figures 4-11-4-13.

Using the 16 by 16 edge map as a basis, I pre-filtered the edge map data to identify only

those edges associated with the large-scale surface boundaries. This filtering resulted in the

edge maps shown in Figure 4-2. One notes that the edges correspond to the northeast and

southwest boundaries of the flow.

After pre-filtering, I migrated the edge maps to locate the surface boundaries shown in

Figure 4-3. For each data point shown in the figure, the elevation has been computed. When

plotted on a properly scaled latitude/longitude grid, one can compare the shape of the flow as

migrated with the shape as defined on the USGS topo map.

Finally, I filled in intraflow boundaries by migrating higher-resolution edge maps and amal-

gamating them with the previous data by way of post-filtering. These contoured results are

presented in Figure 4-4.



Figure 4-8: Multiple resolution imagery of basalt flow for data take AL-039.4.
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Figure 4-9: Multiple resolution imagery of basalt flow for data take AL-055.4.
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Figure 4-10: Multiple resolution imagery of basalt flow for data take AL-087.4.
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Figure 4-11: Multiple resolution edge maps of basalt flow for data take AL-039.4.
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Figure 4-12: Multiple resolution edge maps of basalt flow for data take AL-055.4.



Figure 4-13: Multiple resolution edge maps of basalt flow for data take AL-087.4.
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Figure 4-14: Edge maps marking the northeast and southwest boundaries of the basalt flow.
(a) AL-039.4. (b) AL-055.4. (c) AL-087.4.
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Owing to the unavailability of DTEM data (on order from JPL) at the time of this writing,

I did not compute the rms elevation "error" of my data; however, I believe that such calculation

is still premature. Qualitative comparison of the contoured data with actual USGS (Figure 4-5)

topography clearly reveals the two primary results for elevation analysis.

" Given an object space volume spanning from sea level to 4800m, HBM accurately locates

the surface in the 1000m to 1700m range. The general slope of the basalt flow (i.e. sloping

down toward the northwest) is also correctly determined.

" At the 100m contour interval, distinct differences exist between the USGS and HBM

contours.

Possible explanations for the second observation are detailed in Chapter 6.



Chapter 5

Related Work

The purpose of this chapter is to briefly describe and compare several other methods for gen-

erating topography data from radar images; they are:

" radarclinometry,

" interferometry, and

" stereo mapping.

The important questions one must ask in assessing these radargrammetric techniques include:

9 What input data does each require?

o What assumptions does each make?

o How do the procedures work?

o What kind of results do they generate?

5.1 Radarclinometry

Radarclinometry (Frankot and Chellappa, 1987; Wildey, 1986), or "shape-from-shading", is

perhaps the simplest approach in that it requires the least data; however, for this very same

reason it is also the most difficult for which to formulate assumptions.

Shape-from-shading is a popular technique in the field of computational vision (Horn, 1986),

for recovering the shape of objects having known reflectance properties. However, a reflectance
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map is a two-dimensional representation of a three dimensional surface and is not sufficient to

fully define the surface. To address this problem, one can obtain additional reflectance images

of the surface for different illuminations and/or observations (stereo), or one can constrain the

surface shape by way of continuity assumptions and boundary conditions.

The reflectance map, R(p,q) (using the notation of Horn) can be generated for any given

surface whose reflectance distribution is known. For example, a matte surface which reflects all

incident radiation equally in all directions obeys Lambert's law of reflection,

1
L= -E cos i, (5.1)

where

L is the scene radiance (reflectance),

E is the illuminating source's radiance, and

i > 0 is the local incidence angle.

In order to relate this to the surface, z(z, y), one may first define the unit surface normal,

(-p, -q, 1)T
n = (5.2)

/1 + p2 + q2'

where

p = az/az, and

q = az/ay.

For a distant source, the unit illumination vector, , is given by

(-p,,, -q,, 1)T (5.3)

11 + pl + gl'

where (p,, q,) is the gradient of the incoming rays with respect to the surface coordinate system.

Taking the dot product of the two unit vectors one derives an equation for the local incidence

angle, which for Lambertian surfaces is related to the reflectance,

. . 1+p~p+ q~q
R(p,q) = C cos i = Cn -A = . (5.4)

V1 + pl TqTV1+ Tp7 + qi
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where C = E/7r.

Radarclinometry applies shape-from-shading to radar. For purposes of radargrammetry, one

knows the illumination and observer locations (they coincide) just as before, and one assumes

the surface reflectance properties based upon radar scattering theory and past experimentation.

Combining Equation 5.4 with surface constraints, one can use a radar image to solve for

z(z, y). For example, consider a topographic profile across a series of parallel ridges in a

direction perpendicular to the ridge axes; one can choose this direction as the x-axis. Imaging

(with SAR) the surface along this profile, one obtains a cross-track raster which equates to

a reflectance profile (R no longer varies with q). This reflectance map is then converted to

local incidence angle for each slant range pixel. For any two neighboring points on the surface

starting with the ground control, one can compute the average i. The separation d between

the points is given by

d = r/ sin i, (5.5)

and using the look angle 6, elevation z = dsine and ground separation z = d cos0 between the

points are determined.

If reflectance is a function of q, as well as p, one must appeal to other forms of surface

constraint (Wildey, 1986).

If asked to derive topography from only one SAR image, radarclinometry provides the

means, however microwave reflectance properties of the surface, though possibly more uniform

than those of other EM wavelengths, are still not well-determined for most terrestrial and

planetary surfaces. Methods also exist for handling noise speckle in the radar images (Frankot

and Chellappa, 1987); speckle poses yet another problem for shape-from-shading. However, a

combination of radarclinometry and MLA inversion methods may prove highly synergistic.

5.2 Interferometry

In a sense, SAR interferometric methods bridge the gap between single image and MLA image

methods. Interferometry involves the use of a second antenna, whether mounted on the same

radar platform as the first or simulated by a near-repeat orbital pass. The former technique

first appeared in the work of Graham (Graham, 1974), while the latter was attempted with the

Seasat SAR (Zebker and Goldstein, 1985). Figure 5-1 diagrams the two methods.
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T2T
r, r2

Figure 5-1: Interferometric methods: (a) dual-antennae airborne; (b) Seasat repeat orbit. See
text for description of parameters.
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Interferometry measures the phase difference across the antenna pair of radiation backscat-

tered by the surface. As shown in the figure, the two antennae are separated by a baseline B.

For a given point A on the surface, the path difference

6r = r2 - ri = B sine, (5.6)

where 0 is the look angle. The interference pattern of this configuration projects into space

such that it's measured phase at point A is

4 = 27r6r/A, (5.7)

where A is the radar wavelength. Since the vertical distance h between the platform and point

A is given by

h = rcos8, (5.8)

this can be rewritten

h = r 1 2  (5.9)1 (2 B)2

In the case of Seasat, measurement of the interferometric phase required co-registration of

the images produced on each of the two overpasses. Only after conjugate pixels, corresponding

to a point on the surface, were determined, could the phase (and therefore the elevation) of the

surface point be calculated.

I mentioned earlier that this seems redundant because given these conjugate pixels, one

can determine the surface position stereoscopically; actually it exemplifies a synergy between

interferometry and stereo. For nearly equal look angles, one achieves very poor resolution of the

surface using stereo. The more precise nature of interferometric phase measurement, however,

allows this method to excel. If one can determine conjugate points to a pixel accuracy using

stereo, one can refine the surface location using interferometry. A similar "bootstrapping"

method is used in global positioning (Hatch, 1982).

Zebker and Goldstein (1985) reported rms elevation accuracies of 6m for airborne SAR and

5m to 100m for Seasat. Li and Goldstein (1987) attempted to identify the component of this

error owing to phase measurement inaccuracies, and they theorized that an optimal baseline may

exist. Unfortunately, no digital terrain data with accompanying rms elevation error estimates

has not been easily generated, and this method requires more extensive consideration.
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5.3 Stereomapping

The work presented in this thesis addresses one aspect of stereo-radargrammetric automation

- namely, the use of boundary information to resolve the surface; another group of automated

algorithms (Strong and Ramapriyan, ; Ramapriyan et al., 1986; Thomas et al., 1987) exist to

attempt stereomapping from a different standpoint - DN matching. I presented arguments for

the use of HBM rather than these methods, but again, a synergism exists between the two.

Automated DN matching implements a type of two-dimensional cross-correlation between

MLA imagery. This correlation appears in the form of a match criterion; for example, Thomas

et al (1987) use
E ; -|A(ij) - B(i - k, j - 1)1

F 'k (E;, A 2 (i, j) + E;, B 2 (i - k, j - 1))'

where

i and j are range and azimuth pixel coordinates in the image reference window, and

k and I are (relative) range and azimuth pixel disparities between the reference window loca-

tions in each image.

The algorithm establishes a match (k, 1) for which F is minimized, and uses this result to stereo-

scopically compute the surface position. To facilitate computation, a hierarchical approach is

applied to this method also; i.e. matching is performed for coarse resolution (smoothed imagery)

first and then performed for finer resolutions.

Although I know of no rms surface location errors that have been calculated for the re-

sults of these algorithms, Strong (personal communication) indicates, at least for Hierarchical

Warp Stereo (HWS), that the computed elevation data appear "smoothed" relative to actual

topography. He suggests that this effect is caused by the method's resolution limitations - for

small reference window dimensions at high resolution, the DN statistics become insufficient to

evaluate the match accurately. Apparently, either a boundary matching algorithm (HBM) or

interferometry may aid in resolving to higher resolution.
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Chapter 6

Conclusions and Future Work

The primary conclusion of this work, as shown by the success of HBM, is that edge-detection

based, automated matching is well-suited for use in radargrammetry. Though the algorithm

must (and shall) be applied to additional data in order to better determine its accuracy, sur-

face location results calculated from the Mt. Shasta imagery agree qualitatively with USGS

topography.

However, the HBM results, when compared with USGS terrain data, appear to exceed

theoretical error expectations (Equation 3.3). Possible explanations include the following.

1. HBM limitations: mismatching errors which survive filtering.

2. Data limitations: (as described by Leberl (Leberl et al., 1986a))

(a) effects of "specular point migration" and migration of edges [owing] to differences in

illumination;

(b) changes in backscatter [owing] to differences in incidence angles;

(c) variations in orbit azimuths and resulting edge migration; and

(d) effects of noise.

3. USGS topography inaccuracies: relatively small (% 5m) interpolation errors.

Quantifying these limitations necessitates three future tasks:

e comparison of HBM and stereomapping techniques on various data sets to evaluate HBM

mismatching errors;
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" comparison of mismatch-free HBM results with USGS DTEM to determine relative ac-

curacy; and

" evaluation of HBM results with regard to geodetic satellite surveying.

Unfortunately, the Mount Shasta region affords one of the few locations for which accurate

error analysis can be performed. A limited set of MLA imagery exists at present; this, coupled

with the lack of accurate DTEM data for areas having rugged topography, precludes rigorous

evaluation of HBM over various terranes. However, HBM results for Mount Shasta should be

wholly applicable elsewhere, justifying further investigation.
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Appendix A

Edge-detection

One of the primary features of a "typical" image is the edge. An edge is simply defined to

be step in brightness values across a boundary as shown in Figure A-1. However, owing to

the imperfect nature of imaging devices, including instrument noise, and "smooth' reflectance

properties of particular surfaces, edges must be alternatively defined as local maxima in the

brightness gradient at a given point in the image.

The task here is to "mark" or enhance these edges, and numerous discrete methods have been

suggested for accomplishing this. An image strip, or brightness profile, is perhaps the easiest

example to begin with. To locate the edges in this strip, one may convolve it (Figure A-2) with a

differencing operator described by a template. The strip resulting from this convolution will have

maxima corresponding to downsteps in the direction of convolution and minima corresponding

to upsteps. Another method involves applying a second-derivative filter to the brightness strip

and marking the edges at zero-crossings in the output.

Since images are generally two-dimensional, however, one must appeal to more complex

operators for detecting and localizing edges. Marr & Hildreth (1980) developed a popular

method which first applied a rotationally symmetric Gaussian filter, followed by a Laplacian

operator. Canny (Canny, 1983) later designed an operator, based upon the Gaussian, which

held the optimum trade-off between edge detection and localization in the presence of noise.

This rotationally symmetric operator featured orthogonal separability - i.e. it could be formed

by successive convolution along columns and rows of an image array - and it contained an

adjustable parameter o for detection of edges at different spatial frequencies. After convolving
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Figure A-1: Convolutional edge-detection. An image strip (top) is convolved by a "1, 0, -1"
template (middle), transforming the DN boundary into a DN gradient maximum or edge
(bottom).
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the image with this operator, one can directionally-differentiate the image to identify edges at

various orientations. Figure A-3 presents a simple application of the Canny detector.

Because of the speckle noise inherent in SAR imagery, Canny's operator has been applied

in a variety of radar image inversion problems. Matarese (Toks5z et al., 1986) first applied it

to SIR-A/B images of active fault zone lineaments in eastern Turkey and southern California.

This prompted its use in the Hierarchical Boundary Method for automated radargrammetry

described in this report. Recently, scientists at JPL have successfully incorporated it into a

motion-detection algorithm for studying ice flow movement in the arctic with airborne SAR.

Most research in edge-detection has come from the machine vision community; Horn pro-

vides an excellent summary of edge-detection and its applications in his book Robot Vision.
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Figure A-2: A boundary between two regions of constant brightness in images (a) without noise
and (b) with noise. Edge maps, (c) and (d), correspond to images (a) and (b), respectively.
Edge map (d) resulted from the application of Canny's edge detector.
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Appendix B

Surface Fitting

In my Chapter 3 discussion of the mismatch problem, I described the minimum parallax criterion

and explained how it necessitated the pre-filtering of edge map data in HBM. Specifically, the

range spacing between neighboring edges must exceed minimum allowable parallax, as computed

from the multiple look angles and from a priori knowledge of maximum and minimum surface

elevations. Pre-filtering of the edge map data, based upon the use of multiple resolution images,

allowed this criterion to be met, resulting in the generation of accurate (mismatch-free) surface

position data for the first HBM iteration. Subsequently, higher resolution edge map data not

meeting the parallax criterion could be migrated during successive iterations and the resulting

surface locations "fitted" to the initial data through post-filtering.

Surface fitting provides an alternative method to the hierarchical approach mentioned above;

it instead ignores the mismatch problem until after the migration, sorting the correct surface

locations from the incorrect ones as a stochastic, post-filtering process. Before abandoning

raster migration for HBM, I made use of surface fitting for converting variance field data to

a terrain profile. Though my implementation is far from rigorous, it presents an interesting

example of probabilistic modeling, and I include it for completeness.

The Stochastic Model

The variance field translates to a probability representation of the surface. As shown in Figure 3-

8, the low DN variance values correspond to likely positions of the surface while high DN
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variances correspond to unlikely surface locations. Low variances do not insure that the surface

passes through the associated grid point because of possible mismatching. Likewise, owing to

noisy image data or sampling artifacts, high variances might actually appear at grid locations

coincident with the surface. Qualitatively, however, the surface suggested by the variance field

may be readily apparent (Figure 3-8).

Surface fitting, through an optimization technique, converts the variance field representation

of the surface to an actual terrain profile. The object space is taken as a statistical model of

the surface, specifically a one-dimensional Markov random field along the horizontal (ground

range) axis of the object space window. The vertical, or elevation, axis supplies the possible

states for the surface position. The goal is find a "smooth" surface passing through most-likely

states. Surface fitting actually combines two probability fields, an exterior field given by the

variance data and an interior field given by the smoothness of the surface to be determined.

The interior field applies a probabilistic slope criterion to the surface, i.e. the slope between

neighboring points on the surface, as represented in the object space grid, should be minimized

(topographic gradients rarely exceed 300). Figure B-I shows how the interior field is represented

on the object space grid. In treating the object space window as a Markov chain, one assumes

that the probability P of the surface elevation e at ground range n equaling eo, given the

surface elevations at all other ground ranges, is the same as P given the surface elevations at

neighboring ground ranges n - 1 and n + 1.

P(e(n) = eole(m), m $ n) = P(e(n) = eoIe(n - 1), e(n + 1)). (B.1)

Therefore, a smooth surface, as defined here is one which minimizes the euclidean distance

between the surface position at neighboring ground range locations.

This type of statistical representation compares with the Ising model (Kindermann and

Snell, 1980) for predicting the alignment of a matrix of charged particles in the presence of a

magnetic field. Each particle has two possible states, positive (+) and negative (-) spin. The

interior field represents the influence of neighboring particle spins upon each other. The exterior

field describes the magnetic field applied to the particles. A comparison of the Ising model with

surface fitting is given in the following table.
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m+1

m+2

surface position

M+3

m+4

least likely

less likely

most likely

less likely

least likely

n n+1

Figure B-1: The interior field, as determined by a surface slope criterion. Rows m through
m+ 4 represent possible elevation states for the surface passing through columns n and n + 1.
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I Ising Model Surface Fitting
possible states 2 (+/- spin) n (elevations)

interior field spin of neighbors elevation of neighbors

exterior field magnetic field variance field

(uniform for (unique for each

all positions) ground range)

Resolving the Surface

The procedure which combines the field information to locate the surface profile is a modified

Metropolis (Metropolis et al., 1953) algorithm like that used in simulated annealing techniques

(Kirkpatrick et al., 1983). Simulated annealing treats the statistical model as a high "tempera-

ture" random field which, when cooled, crystallizes into a final state, determined by the global

energy minimum. In the case of surface fitting, this final state is the terrain profile, which

attempts to minimize the interior and exterior field energies by locating a smooth surface co-

incident with low DN variances.

Surface fitting requires two temperatures T, and Ti, which control the influence of the ex-

terior and interior fields, respectively, on the annealing process. The exterior field temperature

modulates the influence of the variance field likelihoods on the surface position. High T, dictates

that the DN variances have little effect on the surface location, while low T, favors positioning

of the surface at grid points having low DN variances. The interior field temperature applies

similarly to the slope constraint: high T mitigates the influence of the elevation at one ground

range location on the elevations at neighboring ground range locations while low Ti strengthens

this local surface constraint.

Given these temperature controls the algorithm proceeds as follows, with object space col-

umn denoting the ground range position and row denoting the elevation.

1. Choose T.

2. Initialize T,.

3. Initialize a random surface state.
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4. While lowering T,,

(a) Randomly choose a column.

(b) Randomly choose a new row for that column.

(c) If the new row has a lower DN variance than does the old row and if the new elevation

(associated with that row) is nearer the elevations of the surface in neighboring

columns,

move the surface position for that column to the new row.

(d) else,

move the surface position for that column to the new row, based on a computed

probability P.

For each potential movement of the surface position from an old row (elevation) to a new

row, one calculates an "energy" change, SE, which determines the probability of accepting

the move. Since surface fitting consists of two criteria, the interior and exterior field, one has

correspondingly two types of energy changes, SE, and SE. The change in exterior field energy

is calculated as the difference in DN variance between the old and new rows. The change in

interior field energy is calculated as the difference in the sum of euclidean distance to the surface

position in neighboring columns.

SEi(n) = (D'(n - 1) + D'(n + 1)) - (D(n - 1) + D(n + 1)), (B.2)

where,

n is the column (ground range position) in question.

D is the distance between the current surface elevation in column n and the current surface

elevation in either column n - 1 or n + 1.

D' is the distance between the new surface elevation in column n and the current surface

elevation in either column n - 1 or n + 1.

For SE, < 0 and SE;i <0, the move is accepted automatically. If either (or both) SE are greater

than zero, then one generates two random numbers, r, and ri, between 0 and 1. If

re exp(-SE,/T,) (B.3)
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and

ri < exp(-6E;/T;), (B.4)

accept the move; otherwise, reject the move, leaving unchanged the surface elevation for the

column.

Choosing the initial field temperatures and determining the rate at which to cool T tend

to frustrate this application. In Ising's model, the interaction between neighboring elements

and the interaction between an element and the exterior field differ only in magnitude. In the

case of surface fitting, the variance field and slope constraint are not easily related; one can

only minimize some combination of their respective field energies. Deciding on the combination

is a subjective matter. With this point in mind, I arrived at the surface fitting result shown

in Chapter 3 (Figure 3-9) only after extensive experimentation with initial temperature values

and with cooling rates. Certainly, a more rigorous study is warranted if this technique is to be

used in the future.
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