
BBF RFC 55 MoDeL

BBF RFC 55: Standard Biological Part Automatic Modeling

Database Language (MoDeL)

Zhen Wang, Chen Liao, Hao Jiang, Xiaomo Yao, Kun Jiang

27 October 2010

1. Purpose

This BioBricks Foundation Request for Comments (BBF RFC) describes the Standard Biological Part

Automatic Modeling Database Language (MoDeL). MoDeL provides a language and syntax standard

for automatic modeling databases used by synthetic biology software. Meanwhile, MoDeL allows

detailed description of biological complex, and presents the concept of Chain-Node Model.

2. Relation to other BBF RFCs

BBF RFC 55 does not update or replace any earlier BBF RFC.

3. Copyright Notice

Copyright (C) The BioBricks Foundation (2010). All Rights Reserved.

4. Table of Contents

1. Purpose ... 1

2. Relation to other BBF RFCs .. 1

3. Copyright Notice ... 1

4. Table of Contents .. 2

5. Introduction .. 3

5.1. iGEM2010 .. 3

6. Features .. 3

6.1. Chain-Node Model ... 3

6.2. Modeling with Templates ... 6

7. Standard Biological Part Automatic Modeling Database Language .. 8

7.1. Overview of MoDeL ... 8

7.2. Suggestions for Programmers ... 10

7.3. Relationship with SBML .. 11

8. Preliminary definitions and principles ... 11

8.1. Parameter Management .. 11

8.2. The id and name attributes on MoDeL components ... 12

8.3. The interface element .. 13

8.4. The math element .. 14

9. MoDeL components .. 14

9.1. System ... 14

9.2. Compartment .. 20

9.3. Part .. 23

9.4. Species ... 33

9.5. Reaction ... 39

10. Table of detailed MoDeL structure .. 46

11. A complete example of database construction .. 50

12. Future Work .. 65

13. Author’s Contact Information .. 65

14. Known Bugs .. 66

15. References .. 66

5. Introduction

MoDeL (Standard Biological Part Automatic Modeling Database Language) is a database

representation format for synthetic biology automatic modeling. This project of MoDeL aims at

providing a language and syntax standard for automatic modeling databases used in synthetic

biology models on a number of topics, including cell signaling pathways, metabolic pathways,

biochemical reactions, gene regulations, and so on.

MoDeL is developed as a machine-readable format in XML fashion, programming languages with

XML library API (such as libxml2 for C++) are strongly recommended for reading MoDeL database.

Examples of MoDeL databases can be downloaded from

http://2010.igem.org/Team:USTC_Software

MoDeL is an attempt to define a universal database markup language for synthetic biology

automatic modeling. It supports descriptions of a wide variety of different parts, including biobrick,

compound, compartment, substituent, and so on. It can also describe the species constructed by

these parts, and reactions happen with the species, such as binding of species, dilution of species,

degradation of proteins, amplification of cells, multi-compartment reactions, and so on.

Many traditional methods fail to consider structure of species when trying to markup reactions with

only reactants, modifiers, products and kinetic laws. The best part of MoDeL is that it can preserve

detailed structure in species and reactions using Chain-Node Model. Based on the model, MoDeL is

able to markup almost all kinds of reactions in a detailed and clear way.

5.1. iGEM2010

MoDeL is also the core of the iGaME project of USTC_Software in iGEM 2010. To learn more about

our team and project, please visit: http://2010.igem.org/Team:USTC_Software

6. Features

6.1. Chain-Node Model

In most manual modeling, complex is treated as a whole entity in reactions. Plenty of synthetic

biology automatic modeling software treats complex the same way. However, there is a big

difference between manual and automatic modeling, that is: Model constructors always know

which detail of complex needs to be ignored or preserved, but software does not. So in most

software, detailed structure has to be specified by modelers, otherwise will be ignored. In most

cases, this requires plenty of manual operations and thus making the software not so automatic.

Knowing this, MoDeL chooses to preserve detailed structure in complex and present Chain-Node

Model, which view complex as a construction of its parts throughout the modeling process. With

http://2010.igem.org/Team:USTC_Software
http://2010.igem.org/Team:USTC_Software

chain and nodes, describing large biological complex with a great number of basic units and binding

sites becomes possible. It also offers great flexibility in modeling. Detailed concepts are explained

below.

6.1.1. The Abstract Concept of Chain

When it comes to biobrick assembly, DNA of plasmid is often considered as an abstract straight line

where biobricks can be placed on and connected together. It actually acts as the basic frame of

biobrick assembly. Inspired by this, we present the abstract concept of chain, which also acts as the

basic frame of part assembly. Chain is an abstract straight line where different parts can be placed

on and connected together. Part is the basic unit of chain, and chain can have as many parts as

possible.

To go beyond DNA, and to unify the data structure of Species, we extend the concept of chain in

MoDeL to include all the parts we can describe, including RNA, protein, and even compartment,

compound, substituent, etc. Parts of DNA, RNA and protein, are all originated from DNA, and they

are considered as “Sequence”. Sequence can be connected to other parts of sequence on a chain.

On the contrary, parts of compartment and compound are considered as “Non-sequence”. Parts of

non-sequence cannot be connected to any other part on a chain, which means, they can only exist

on a One-Part-Chain. Substituent is used as a substitution of any other part, so it can be either

sequence or non-sequence.

It is important here to mention that the Sequence/Non-sequence division is only a suggestion of

modeling. It is not a constraint to Chain-Node model. Actually, we choose to maximally preserve the

flexibility and leave all the freedom of constructing a species to users. Users are allowed to

construct ANY species they can using Chain-Node Model. For example, one can create a strange

species with compartment, compound, and DNA parts on the same chain, which makes little sense

in biology. So, it is really up to the users to decide how to use Chain-Node Model in modeling.

6.1.2. The Abstract Concept of Node

Node is used to characterize binding structure in biological complex. Node is an abstract concept of

binding site or site that can be bound. Links always exist between a binding site and the sites it

binds together, indicating the relationship between them. We use trees to represent the binding

structure in complex. The parent node represents the binding site, and the child node represents

the bound sites. For example the binding structure of TetR dimer is considered as a TetR2 node with

two TetR nodes as its children. There is one exception though, the ROOT node. ROOT node is used

as the top node in a tree. It can only have one child and no parent. The function of ROOT is to

indicate that its child is the last binding site in this tree, and it binds to nothing any more.

In the reactions of promoter repression and activation, the promoter is repressed or activated after

binding with repressor or inducer. With its properties changed, it is not the original promoter any

more. This is an example where binding changes the properties of node. Since we do not store all

the possible property alterations within one part, the solution is to replace the old part with a new

part that stores the correct properties.

Available nodes can be both a part on a chain or a node of binding site, which leaves a lot of

possibilities in constructing complicated binding structure. Again, there are no restrictions, but parts

of compartments are not suggested to appear in a binding structure.

6.1.3. The Basic Assumption

The basic assumption of Chain-Node Model is that a part ALWAYS carries its properties wherever it

is placed in an instance of Chain-Node Model. This means no matter how complicated the complex

is, you can always keep track of the location and properties of every single part. By letting complex

inherits its parts’ properties, the assumption saves modelers from rewriting the structure and

function of each new complex. However, we should address that the assumption is not suitable for

all circumstances. For example, under this assumption, a fusion protein will carry the properties of

the fused proteins, which is not true in many cases. A fusion protein may not remain its old

properties and even have new properties that none of the original parts have. In this case, our

suggestion is to define the fusion protein as a new part. So it is suggested that users choose

different strategies of describing the same thing in Chain-Node Model base on different situations,

instead of modeling everything in the same way.

6.1.4. Examples

Here are a few examples of species described in Chain-Node Model:

Example of a species: E.coli cell

In MoDeL, the cell of E.coli is described as a species with only one part of E.coli (see Figure). Since

the concept of part has been extended greatly, living cells can be described in the same way other

species. Compartment belongs to “Non-sequence”, so it is suggested that E.coli only exists as a

one-part-species.

Figure 6.1. The Chain-Node Model of an E.coli cell

Example of a species: pLacI*:LacI4 and its tree structure of binding.

Here is another example of template species with more complicated structure (Figure 6.2). In

biology, LacI tetramer (or LacI4) can bind with promoter pLacI as a repressor. When bound with

LacI4, pLacI is repressed and its transcription rate will decrease significantly. In order to express this

alteration, as mentioned above, we use another part of pLacI* with decreased transcription t

instead of pLacI in the species.

Figure 6.2 Species of pLacI*:LacI4

The structure of binding sites is shown in Figure below. The graph indicates that LacI monomers first

bind together to form LacI dimer, then LacI dimers forms LacI tetramer, and finally LacI4 binds with

pLacI* to form pLacI*:LacI4.

Figure 6.3 Tree structure of binding in pLacI*:LacI4

6.2. Modeling with Templates

Manual modeling of biological system is widely used in synthetic biology. However, it requires an

overall understanding of the biological network and large amount of data, making it difficult even

for professionals. Actually, the data provided manually are redundant because different reactions

may occur with a same mechanism. Based on this idea, we introduce the concept of Template,

which is the minimal data set for describing biological reaction networks, as a feasible way to

implement automatic modeling. The term “Automatic” does not mean modeling without providing

any information. Instead, we aim at providing minimal amount of data. Similar to C++ programming

language, templates allow generic description of species of a certain structural pattern or reactions

of a certain reaction mechanism.

6.2.1. Substituent and Template

There are two kinds of templates: Template Species and Template Reactions. They are designed to

represent a family of species with similar structure and a family of reactions with similar mechanism

respectively. In order to realize this idea, we add the container of Substituent into MoDeL. There

are currently six objects in this container, ANY, ANYUB, ONE, ONEUB, NZ and NZUB. Though defined

differently, they actually serve the same purpose: representing other parts. Let’s take ANY as an

example (see Figure 6.4). ANY, represents parts on ONE chain and the number of represented parts

can range from zero to infinity. For example, a DNA species with structure ANY - pTetR - ANY

represents any DNA with part pTetR.

Figure 6.4

A reaction with template species as its reactants, modifiers or products is a Template Reaction. A

template reaction describes the core structure of reactant that causes the reaction to happen and

provides a specification for generating reactions with the same mechanism. This could be

understood more clearly by dividing parts in a species into functional groups -- a reaction template

describes the interaction mechanism of these functional groups. For example, pTetR promoter is

deactivated in presence of TetR dimer. The template species are pTetR DNA template and TetR

dimer protein template (see Figure 6.5) and the functional groups are pTetR promoter and TetR

dimer. All the parts of ANY should also be counted as a functional group, though they don’t have

functions in this reaction. Any pair of species which partially contain pTetR DNA and TetR protein

dimer respectively would bind according to the description of this reaction template. Modeling with

templates allows users to define species and reactions only once for one certain family without

rewriting them again in database.

Figure 6.5

We are still looking for more substituents. We are planning to have more detailed substituents that

can replace certain number of parts on certain number of chains. Even the arrangement of parts

and chains can be specified. We believe it will make our template modeling more powerful.

7. Standard Biological Part Automatic Modeling

Database Language

MoDeL aims at providing support language support for automatic modeling. We will discuss a few

relevant topics in the following sections.

7.1. Overview of MoDeL

The following is an example of a simple network of biochemical reactions that can be automatically

constructed using MoDeL:

pTetR + TetR2 = pTetR*:TetR2

Figure 7.1

MoDeL supports automatic construction of such network with only the input of its initial conditions

and environmental parameters. In order to do this, obviously the data of parts, species, reactions,

compartment, units and so on is needed. Besides, relationships between these components are also

needed, so we can link to a reaction when we find a species. Data of relationship is stored as

references and exists in most MoDeL components.

To define all the needed components in a systematic way, MoDeL organizes them in five component

containers at the top level:

 System: This container contains definitions of units, functions, rules and global parameters.

These are all basic elements for other components of MoDeL, and many are mathematical

concepts without direct synthetic biology meanings. The name of the container, System,

separates this container from others which contains components of biological significance, and

indicates this container includes the basic parameters of the whole system.

 Compartment: This container contains definitions of compartments. Compartment here is

considered as a holder of substance with certain volume, so it only stores related data such as

units and volume. It also stores a list of compartments that are permitted to be placed inside.

For compartments like E.coli that can multiply, a corresponding compartment with the same id

will be created as a component of compartment in Part.

 Part: This container contains definitions of parts. Part includes the basic units that can be

inserted in an abstract chain. The container of Part has five components which are:

compartment, biobrick, compound, plasmidBackbone, and substituent. Biobrick contains

biobricks from PartsRegistry together with other similar components created by users.

Compartment contains cells and other microscopic organisms that can multiply. compound

contains small molecules like IPTG and other compounds. PlasmidBackbone contains plasmid

backbones come from PartsRegistry or defined by users. Substituent contains substitutes for

template modeling.

 Species: This container contains definitions of various species defined by Chain-Node Model.

Each component stores the cnModel structure of chains and trees. Related reactions are also

stored. It is suggested that the constructor of a database stores template species instead of real

species in this container. Only in this way can he make use of the power feature of template

modeling of MoDeL.

 Reactions: This container contains definitions of various reactions. Each component has its own

compartments, reactants, modifiers, products, substituent transfers, and kinetic law. This forms

a detailed description of reactions. Again, constructor of a database is suggested to store

template reactions instead of real reactions .

The organizational structure of components in MoDeL is shown in the following figure.

Figure 7.2

As mentioned above, reference relationships are stored in most components. The following figure

shows the relationship between different components, the pointer pointing to a component

indicates referencing to that component.

Figure 7.3

It is worth noting that MoDeL does not attempt to include all information about each component.

In PartsRegistry, a long list of data in XML format is provided including part author, status, sequence,

and even group access information. Such data are redundant for our database since they are not

necessary elements needed to construct reaction network. Only the useful data is retained.

7.2. Suggestions for Programmers

The project of MoDeL aims at providing a language and syntax standard for automatic modeling

databases. Usually, we assume such databases are used by automatic modeling software. In this

way, hopefully, MoDeL can set biologists free from inputting mass of data and constructing

biological reaction networks manually.

There is actually no right or wrong way for software to implement automatic modeling. However,

since MoDeL is new, providing the workflow of iGaME may be helpful. Steps taken in iGAME to

complete the automatic modeling process are listed in the following:

1. Users construct biological systems using standard parts, and setting up environmental

parameters.

2. iGaME kernel program starts to construct reaction network automatically and output a model

of reaction network encoded in SBML[1].

3. Numerical analysis will be performed after reading the SBML file as input. Dynamic curves of

species (relations of concentration depending on time) in this network are given as output.

The algorithm flow chart of iGaME within step 2 is like following:

1. Setup initial conditions and environmental parameters read from the input file.

2. Species produced are inserted into a list in the order of time. For each species, we search the

database to find template species which could be matched to this species in structural pattern.

If not found, kernel will go for the next species.

3. For each template species we found, we continue to search template reactions containing this

template species as a reactant or modifier or both. Only forward or reverse reaction is handled,

never for both.

4. For each template reaction found, we search in the species list for possible species which could

be instances of templates of other reactants and modifiers. If not found, kernel goes for the

next reaction.

5. For each possible combination of reactants and modifiers, if the reaction parameter conditions

are satisfied, we generate the structure of products based on the transfer table and structural

templates of products. And then add this new reaction to the reaction list.

6. Go to step 2 until the end of the species list.

We believe this is not the only way of realizing automatic modeling. Programmers are encouraged

to use any method they can think of to do so within the frame of MoDeL.

7.3. Relationship with SBML

SBML[1](The Systems Biology Markup Language) is a machine-readable language in XML fashion.

It's oriented towards describing systems where biological entities are involved in, and modified by,

processes that occur over time. As a widely used model exchange standard, SBML is chosen to be

the output of our auto-modeling module.

Generally speaking, MoDeL needs not to be conformed to any constraints set by SBML. However,

since SBML is a widely used standard, it is better for MoDeL to share common concepts and

components with SBML as many as possible. For example, MoDeL still uses rules, function

definitions and unit definitions in SBML. By doing so, it will be easier for software tools to change

formats between MoDeL and SBML.

8. Preliminary definitions and principles

This section covers certain concepts and constructs that are used repeatedly in the rest of MoDeL.

8.1. Parameter Management

There are three types of components related to parameter definition. The objects of

GlobalParameter are defined in the container of System. The components of GlobalParameter

represent global parameters that are allowed to be changed by user for modeling. The objects of

ConditionalParameter are defined in the components in Part container. They represent properties

of the components whose values depend on conditions, such as compartments in which the part

locates. All conditional parameters are required to be constant and could not be changed during

simulation process of software. The LocalParameter element is designed for parameters defined in

kinetic laws of reactions, which are required to be constant, too.

The syntaxes for referencing parameters defined elsewhere are different for different parameter

types. Global parameters could be used by directly referencing its id. Local parameters are not

allowed to be referenced externally. For referencing conditional parameters, users must use an

external reference, which is defined in the element of ReferencedParameter in the component of

Reaction. We will give details in the section of Reaction.

8.2. The id and name attributes on MoDeL components

As will become apparent below, most objects in MoDeL include two common attributes: id and

name. These attributes are not defined on some objects, but where they do appear, the common

rules of usage described below apply.

8.2.1. The id attribute

The id attribute is mandatory on most objects in MoDeL. It is used to identify a component within

the MoDeL. Other MoDeL objects can refer to the component by using this identifier. Identifier

conforms to no syntax, yet the data type must be text string.

A database can contain a large number of objects. This leads to a problem in deciding the scope of

an identifier: in what contexts does a given identifier X represent the same thing? The solution we

provide is to divide the collection of components into three categories: global, the case of

compartments, and local. The identifier of global components must be unique across the set of all

such identifiers in the MoDeL, so that a global identifier X represents the same thing wherever it

appears in a given context.

The identifiers of compartment belongs to the set of global identifiers, however, it is not unique in

the global set since there are actually two compartment containers in MoDeL, one is located at the

top level, the other is inside the container of Part. Two objects with one from each of the two

containers may have a same identifier, for example E_coli. When handling compartment in iGaME,

we combine data from the two objects and treat them as one whole concept of compartment in

biology. When one object is missing, we consider the whole compartment do not have that part of

data. So in the sense of biology concept, compartment still have a unique id. We admit this is an

inconsistency of MoDeL, and may cause confusion in software developing. The detailed description

of this problem is in the section of compartment. In summary, the main reason is that we have to

break the properties of compartment into two parts, so we need two types of object. Luckily, this

problem does not cause any trouble in iGaME, because both id and the path of container are

required when doing cross-referencing.

The identifier of local components is placed in a separate identifier namespace, depending on the

context. For example, individual rate expressions are separate namespaces, same local identifier X

can represent different quantities in different rate expressions.

The detailed scoping rule in MoDeL is here:

 Biobrick, Compound, PlasmidBackbone, Substituent, Species, Reaction, GlobalParameter,

UnitDefinition, Rule, FunctionDefinition are all global components, the identifier of these must

be unique across the set of all such identifiers in the MoDeL. This means, for example, that a

biobrick and a species cannot both have the same identifier.

 Each of the component from the Compartment container at the top level is allowed and

recommended to have the same id as ONLY ONE component of compartment in Part, but must

not be the same as any other components in iGaME. Having the same id means the two

components are of the same concept of compartment in biology.

 Each instance of component in container of Part establishes a separate private local space for

ConditionalParameter, within the definition of a Part of any type, the identifier of each

ConditionalParameter must be unique. Each instance of Reaction establishes a separate private

local space for LocalParameter, within the definition of a Reaction, the identifier of each

LocalParameter must be unique.

Hopefully, the guidelines described here will provide a clean idea for users, and a clean transition

path to future versions of MoDeL, which will hopefully resolve the inconsistency of current version.

8.2.2. The name attribute

Different from the id attribute, the name attribute is optional and is not intended to be used for

cross-referencing purposes within a database. Its purpose is to provide a human-readable label for

the component. The data type of name is string, and the length is recommended to be limited

within a few words, longer description should be placed in shortDesc instead.

The recommended practice for handling name is as follows. If a software tool using the database

has the capability for displaying the content of name attributes, it should display the content to the

user as a component’s label instead of id. If the content of name cannot be displayed or if the

content of name is left empty, the attribute of id should be displayed.

8.3. The interface element

Most objects of MoDeL include the common element of interface. Just as the name implies,

interface was designed for the User Interface part of iGaME to provide useful supplemental

information and external links of part, species, reactions, etc. The modeling core of iGaME will

always ignore this element when reading data from database.

The interface element contains two subelements: url and shortDesc. Both are optional. The content

of url is the address of a webpage which contains detailed information about this object, usually a

Wikipedia or PartsRegistry link. The content of shortDesc is a short human-readable sentence that

describes the meaning and function of the object in brief.

The recommended practice for handling interface is similar as the attribute of name. If a software

tool using the database has the capability for displaying information within interface element, it

should display the information to the user together with name. If the information in interface

cannot be displayed or if the content of interface is left empty, the value of name attribute should

be displayed.

The element of interface always has the same meaning and usage wherever it appears in a database,

so we summary it in this paragraph and organize it in front of the detailed description of each

MoDeL components. In the following document the details of interface will not be mentioned again.

8.4. The math element

MoDeL borrows the math element of SBML L2V4[1] to define functions and other mathematical

expressions. The only difference is that the namespace of XML must not be written in a math

element. In this version of MoDeL, only the components of Reaction, FunctionDefinition and Rule

can have the element of math. Details will be discussed in relevant sections. The content of math

element is represented using MathML 2.0[2](W3C, 2000b). For more details, please refer to SBML

L2V4 (ref) Section 3.4.

9. MoDeL components

MoDeL organizes its components in a tree structure, and they primarily fall into five categories:

System, Compartment, Part, Species, and Reaction, we call them containers. In this section, we

define each of the containers of MoDeL, and the components defined in them. We also illustrate

the use of SBML components by giving partial model definitions in XML.

9.1. System

There are five components defined in the container of System. They are listOfFunctionDefinitions,

listOfUnitDefinitions, listOfRules and listOfGlobalParameters, and they define a list of

FunctionDefinitions, UnitDefinitions, Rules, GlobalParameters respectively. Components in System

container all have a global scope, and can be referenced by other components directly. For these

five components, MoDeL partly borrows the syntax of corresponding components in SBML, since

the concept of the components is similar in both languages.

9.1.1. FunctionDefinition

The definition of FunctionDefinition in MoDeL is similar to that in SBML. The FunctionDefinition

object associates an identifier with a function definition. This identifier can then be used as the

function called in other MoDeL components.

The id and name attributes

The id and name attributes both have the type of string, and operate in the manner described in

Section 4.2. Since the scope of FunctionDefinition is global, other components can directly refer to

the function definition using the value of its id attribute.

The math element

The math element of FunctionDefinition defines a function with arguments, and is the only place

where a lambda element can be used. Syntax to define a math element is the similar to that used in

SBML, the only difference is that there must not. Followings are some restrictions:

 The math element is a container for MathML that defined the function. The content of this

element can only be a MathML lambda or a MathML semantics element containing a lambda

element.

 Content of the math element cannot contain references to variables other than the variables

declared to the lambda itself.

Example

Following gives an example of FunctionDefinition that defines a piecewise function with four

arguments t, ts, te, s. The function returns zero when t is less than ts, or s when t is greater than te.

When t is between ts and te, it returns a linear function. Notice that in the example, XML

namespace is not written according to the restriction of math element described in Section 4.4.

<MoDeL>

 ...

 <functionDefinition id="square_wave">

 <math>

 <lambda>

 <bvar><ci> t </ci></bvar>

 <bvar><ci> ts </ci></bvar>

 <bvar><ci> te </ci></bvar>

 <bvar><ci> s </ci></bvar>

 <piecewise>

 <piece>

 <cn type="integer"> 0 </cn>

 <apply>

 <lt/>

 <ci>t</ci>

 <ci>ts</ci>

 </apply>

 </piece>

 <piece>

 <apply>

 <times/>

 <apply>

 <minus/>

 <ci>t</ci>

 <ci>ts</ci>

 </apply>

 <apply>

 <divide/>

 <ci>s</ci>

 <apply>

 <minus/>

 <ci>te</ci>

 <ci>ts</ci>

 </apply>

 </apply>

 </apply>

 <apply>

 <and/>

 <apply>

 <geq/>

 <ci>t</ci>

 <ci>ts</ci>

 </apply>

 <apply>

 <leq/>

 <ci>t</ci>

 <ci>te</ci>

 </apply>

 </apply>

 </piece>

 <piece>

 <ci>s</ci>

 <apply>

 <gt/>

 <ci>t</ci>

 <ci>te</ci>

 </apply>

 </piece>

 </piecewise>

 </lambda>

 </math>

 </functionDefinition>

 ...

</MoDeL>

9.1.2. UnitDefinition

MoDeL borrows the unit system from SBML L2V4. The component of UnitDefinition of MoDeL is the

same as that of SBML. We summarize the important information and list it here.

The id and name attribute

The required elements id and name are both have the type string. The id element is used to give

the defined unit a unique identifier by which other components of MoDeL can refer to it. The name

element is intended to be used for giving the UnitDefinition a human-readable name.

UnitDefinition follows the listed restrictions, same as SBML:

 The id of a UnitDefinition must not contain a value listed in Table 1 on Page 37 in SBML L2V4

Document[1] since they are reserved base unit names that are prevented from redefinition.

 There is a set of reserved identifiers for the predefined units in SBML; these identifiers are

"substance", "volume", "area", "length", and "time". Redefinition of these units will have effect

on database-wide default units for the corresponding quantities (Refer to Section 4.4.3 in SBML

L2V4 Document[1] for more details).

The ListOfUnits element

The listOfUnits element defines a composite unit by separately defining each of its subunit using

unit element. The composite unit is the product of all its subunits.

Each unit element has four children elements to define it: kind, exponent, scale, and multiplier.

Same as SBML unit system, a unit in MoDeL is defined by following rule:

*𝑢+ = (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∙ 10𝑠𝑐𝑎𝑙𝑒*𝑢𝑏+)𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

where ub is the reserved base unit in unit system. Please refer to section 4.4.2 of SBML L2V4

Document[1] for more details about SBML unit system.

Example

The following skeleton of a unit definition illustrates an example use of

UnitDefinition:

<MoDeL>

 ...

 <unitDefinition id="litre_per_mole_per_second">

 <listOfUnits>

 <unit kind="litre" exponent="1"/>

 <unit kind="mole" exponent="-1"/>

 <unit kind="second" exponent="-1"/>

 </listOfUnits>

 </unitDefinition>

 ...

</MoDeL>

9.1.3. Rule

Same as SBML, Rules in MoDeL provide additional ways to define the values of variables, their

relationships, and the dynamical behaviors of those variables. Rules are separated into three

subclasses: AssignmentRule, RateRule, AlgebraicRule. The three subclasses are based on the

following three different possible functional forms:

𝐴𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐 𝑙𝑒𝑓𝑡 − 𝑕𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 𝑖𝑠 𝑧𝑒𝑟𝑜 0 = 𝑓(𝑊)

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑙𝑒𝑓𝑡 − 𝑕𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 𝑖𝑠 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 𝑥 = 𝑓(𝑉)

𝑅𝑎𝑡𝑒 𝑙𝑒𝑓𝑡 − 𝑕𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 𝑖𝑠 𝑎 𝑟𝑎𝑡𝑒 − 𝑜𝑓 − 𝑐𝑕𝑎𝑛𝑔𝑒 𝑑𝑥/𝑑𝑡 = 𝑓(𝑊)

To read the detailed descriptions and restrictions of the three subclasses, please refer to SBML L2V4

Document[1] Section 4.11.

The variable element

Different from SBML, variable of Rule is written as an element instead of attribute. The variable

element can refer to the identifier of a species, compartment, or global parameter object (but not a

reaction or a conditional parameter or a local parameter) in a database, indicating certain property

of the object acts as variable x in the above functions (ref function). Only RateRule and

AssignmentRule can have this element, AlgebraicRule does not need this element due to its

functional form.

The math element

The component of Rule has a required element called math, containing a MathML expression

defining the mathematical formula of the rule. Mathematical expressions defined in Rule follow the

restrictions in Section 4.4. More details about math and units of the formula can be found in Section

4.11.2, 4.11.3 and 4.11.4 in SBML L2V4 Document[1]. Here we list one important principle on the

units of rule:

 In AssignmentRule, the overall units of the formula in math element should be the same as the

units of the related variable of this AssignmentRule, while in a RateRule, the overall units

should be x/time, where x is the units of related variable of RateRule.

Example

The following example of AssignmentRule defines the GlobalParameter of t to be equal to the

simulation time of the system (please refer to SBML L2V4 Document[1] Section 3.4.7). In this way

the variable of t can be used explicitly representing time.

<MoDeL>

 ...

 <assignmentRule>

 <variable> t </variable>

 <math>

 <csymbol encoding="text" definitionURL="http://

www.sbml.org/sbml/symbols/time">

 time

 </csymbol>

 </math>

 </assignmentRule>

 ...

</MoDeL>

9.1.4. GlobalParameter

As is mentioned in Section 4.1, in the parameter family, only GlobalParameter have a global scope

and can be directly referred to by its identifier. So GlobalParameter is used to define parameters

that will be used in the whole database. Meanwhile, GlobalParameter is also the only one in the

parameter family that can be changed by a Rule.

The id and name elements

For some historical reasons in the development process of MoDeL, the id and name of

GlobalParameter is stored as elements instead of attributes. However, their meanings and usages

are the same, and follow the principles in Section 4.2. The id element is required, and name is

optional. The data type of both must be string.

The units, value and constant elements

All of the three elements are optional. The units element associates the value of the global

parameter with specified units. The units must be chosen from pre-defined units or user-defined

units in ListOfUnitDefinitions(Section 5.1.2). The value element determines the value of global

parameter, and the default value is set to zero. When it is left empty, the value should be

determined by a rule or some other external resources. The boolean element of constant indicates

whether a global parameter can vary. The element’s default value is “true”. A value of “false”

indicates the GlobalParameter’s value can be changed by rules and that the value is actually

intended to be the initial value of the global parameter.

Example

The following is an example object of GlobalParameter. It defines the variable of t that can be used

explicitly as the simulation time (please refer to SBML L2V4 Document[1] Section 3.4.7) in a

database.

<MoDeL>

 <system>

 <listOfGlobalParameters>

 <globalParameter>

 <id> t </id>

 <units> second </units>

 <constant> false </constant>

 </globalParameter>

 </listOfGlobalParameters>

 </system>

</MoDeL>

9.2. Compartment

In biology, the description of a living cell includes its growing, death, size, inner compartments,

naturally existed species associated with related reactions, and even more. Modeling of every detail

is next to impossible. MoDeL chooses to describe only the growing, death, size and permitted inner

compartments of a compartment. MoDeL places the properties of size and permitted inner

compartment in the compartment component in Compartment container, and the properties of

growing and death in the compartment component in Part container.

We have to separate the properties because we choose to support synthetic biology model encoded

with SBML. In SBML, a compartment only represents a bounded space in which species are located.

In order to describe growing and death, we have to add a species of that compartment. Of course,

the corresponding data in a database can still be stored in one place. However, we tried and found it

can cause big problem in the consistency of MoDeL. Finally, we choose to separate the concept of

compartment into two components with a same identifier, indicating they describe the same thing.

A compartment is not always required to have both of the two components. An artificial one may

not have its own correspondence in Part if it does not reproduce. However, if it does, users must

create a species in correspondence to the compartment in Part and link it to a reproduction

reaction.

The component in Compartment container still represents a bounded space in which species are

located, as SBML does. So in this container, the compartments of living cells, for example E.coli,

have no difference with artificial compartments such as flask. In summary, the compartments in the

container of Compartment do not necessarily have to correspond to actual structures inside or

outside of a biological cell. The compartments in the Part container act just as other parts do, we

will discuss it later in the section of Part.

The worry about distinguishing the two types of compartment components is not necessary, for we

will separate them by container when referencing.

From here on in this section, when we mention “compartment” we mean the component of

compartment in Compartment container.

9.2.1. The id and name attributes

As most components of MoDeL, the compartment have a mandatory attribute of id. It also has an

optional attribute of name. The data types of both attributes are string. The id of compartment,

though not unique across the set of global identifier, has its own constraints. Details are described

in Section 8.2.1.

Since MoDeL is aimed to support synthetic biology model encoded with SBML, we inherit the

semantics that id of a compartment indicates its size.

9.2.2. The spatialDimensions attribute

Same as SBML, a compartment has an optional attribute of spatialDimensions, whose value must

be a positive integer indicating the number of spatial dimensions possessed by the compartment.

The possible values in SBML are “3” (a three-dimension volume), “2” (a two-dimension area), “1” (a

one-dimension curve), and "0" (for a point). To simplify MoDeL, we choose to only support the

dimension of “3”, and the default value is set to “3”.

9.2.3. The size attribute

Each compartment has a required attribute, size, representing the initial total size of the

compartment. This element could not be allowed to leave undefined since it will make other

quantities whose definitions are based on that of compartment size ambiguous. The value of size

may be changed by a Rule. In which situation, the value of size is actually the initial value of size.

9.2.4. The units attribute

The units associated with the compartment's size value may be set using the optional attribute units.

The value of the units attribute must be one of the base units defined in Table 1 on Page 37 in SBML

L2V4 Document[1], or the predefined unit identifiers "volume", "area", "length", or "dimensionless",

or a new unit defined by a unit definition.

9.2.5. The constant attribute

A Compartment also has an optional boolean attribute called constant that indicates whether the

compartment’s size stays constant or can be varied. The default value is false when the attribute is

left empty, and if it is written explicitly, the value must be false too. This is required by the

automatic modeling algorithm of iGaME. Currently when dealing with density in a

multi-compartment system, iGaME will sum up the volumes of all compartments of the same type

in the same area. iGaME do this by adding a rule to the compartment automatically. So in most

situations the size must not be constant. It is recommended that users just don’t write this attribute

so it will use its default.

9.2.6. The interface element

The required element of interface contains optional URL and short description that provide

additional information to the compartment. The usage of interface follows the principle in Section

8.3.

9.2.7. The listOfInnerCompartmentPermitted element

This required element defines a list compartments that are allowed to be placed inside current

compartment. Though compartment here represents only a bounded space, it is recommended that

users write this element according to biological facts. For example, the compartment of E.coli

should not have the compartment of mitochondrion listed as permitted inner compartment. If the

element is left empty, it means no compartment is allowed to be placed inside.

9.2.8. Example

The following skeleton of a compartment definition illustrates an example use of compartment

component:

<MoDeL>

 <compartment id="E_coli" name="Escherichia coli" spatialDimensions="3"

size="1E-14" units="litre">

 <interface>

 <url>http://en.wikipedia.org/wiki/Escherichia_coli</url>

 <shortDesc>Escherichia coli is a Gram negative rod-shaped bacterium

that is commonly found in the lower intestine of warm-blooded

organisms.</shortDesc>

 </interface>

 <listOfInnerCompartmentPermitted>

 <compartmentReference>ribosome</compartmentReference>

 </listOfInnerCompartmentPermitted>

 </compartment>

</MoDeL>

9.3. Part

BioBrick standard biological parts are DNA sequences of defined structure and function. They share

a common interface and are designed to be composed and incorporated into living cells such as E.

coli to construct new biological systems. The desired functions could be cell death, biosynthesis,

cell-cell signaling, quorum sensing, and so on. With unified BioBrick prefix and suffix and standard

assembly, BioBrick parts becomes standard and interchangeable. We try to have standard abstract

biological parts in MoDeL, and we also try to go beyond DNA and describe all of the parts we can

describe in a unified way. To realize this, we construct the container of Part, standardize the

properties of all the parts we have, and categorize them into five types of components:

 Biobrick: Standard biological parts of PartsRegistry or other resources.

 PlasmidBackbone: Vector that propagates the Biobrick part.

 Compound: Compounds in chemistry like IPTG and ATC.

 Compartment: Living cells and organelles.

 Substituent: Species with unknown but constrained structure.

All of the above categories share the same elements and attributes in MoDeL, so we can discuss

them together here.

9.3.1. The id and name attributes

All components in Part container have the common mandatory attribute of id and the optional

attribute of name. Id, as is described in Section 8.2.1, is used as the identifier of component in

cross-referencing, and name is provided as a human-readable text. Both of the attributes are of the

type string.

9.3.2. The registryName attribute

The optional attribute of registryName is designed to store the name of BBa_... according to

PartsRegistry. With this information, users are able to view the registryName or choose the part

they want by searching its name in PartsRegistry. Since only the components of biobrick and

plasmidBackbone have a registry name, registryName of other components in Part should be left

empty.

9.3.3. The originalConformation attribute

The optional attribute of originalConformation is designed to indicate the relationship between the

original component of a biobrick and the component of the same biobrick in binding state. The

component in binding state should have this attribute with the value of the identifier of the original

component. In this way they are linked together. Components that are not in a binding state should

not have this attribute.

This will be better explained by giving an example. When protein of TetR2 binds with promoter of

pTet, pTet is repressed and the transcription rate of which will decrease significantly. Since MoDeL

does not store all the possible attributes alterations within one component of part, the solution is to

replace the old component with a new component that stores the correct properties. In this case,

we create a new component with the id R0040_ptetR_bs1 to represent the bound component, and

we have the original component with the id of R0040_ptetR. The component of R0040_ptetR_bs1

should have an originalConformation attribute, whose content is R0040_ptetR. In this way, the two

components are connected. This is required by certain algorithm in iGaME.

9.3.4. The interface element

Like most components of MoDeL, components in Part have a required element of interface, which

contains two optional elements of url and shortDesc. The usage and restrictions of this element

follows the descriptions in Section 8.3

9.3.5. The listOfConditionalParameters element

The listOfConditionalParameters contains a list of conditional parameters that locally define the

properties of component under different circumstances. In this version of MoDeL, only the

component of biobrick has conditional parameters, and we consider only compartments can have

effect on the value of parameter. The effect is defined by adding a parameterValue element

associated with each compartment. When parameterValue is left empty, the default value is got

from the optional commonValue element. Besides compartment conditions, more conditions may

be added to determinate values of parameters in future version.

Different with global parameters, parameters defined here are local and not allowed to be changed

during simulation process. Based on this, we eliminate element of constant since it is always "true".

The id, name and units attributes

Being a member of the parameter family, the id, name and units attributes of conditional

parameter is similar to those of global parameters described in Section 9.1.4. The only difference is

the scope of their identifiers. The scope of conditional parameter is local so we can place them in

different components with a same identifier. Optional name attribute is still used to provide human

readable text describing the parameter, and units can only be chosen from pre-defined units or the

set of units in listOfUnitDefinitions.

The commonValue attribute

When parameterValue is left empty, the default value could be obtained from the optional

commonValue element, which is used to indicate the common value under any circumstances.

Though this attribute can be used any way with the definition, we recommend users to use it

according to biological facts.

For example, the conditional parameter of forwardStartCodonEfficiency in biobrick can have the

integer value of 0 or 1, knowing that the existence of start codon on a DNA won’t shift due to

different compartments, we save the value of current biobrick as a commonValue. When database

constructor is not sure about the common value or only have the knowledge of values under a few

circumstances, it is not recommended to write a commonValue. Instead, store the value as

parameterValue and left the commonValue undefined is recommended.

In the situation where the parameterValue and commonValue are both left undefined, the value of

a conditionalParameter will be set as zero by default.

The parameterValue element

The element of parameterValue is used to relate a value with a certain circumstance. There may be

one or more parameterValues in a conditionalValue element. This element has a required attribute

of compartment, which stores the identifier of related compartment. The data type of

parameterValue is must be the same as the parent element of conditionalParameter.

Example

The following skeleton of a conditionalParameter definition illustrates an example use of

conditionalParameter component:

<MoDeL>

 <part>

 <biobrick id="pcIlam189_bs1" originalConformation="pcIlam189">

 ...

 <listOfConditionalParameters>

 <conditionalParameter id="forwardPromoterEfficiency"

units="per_second">

 <parameterValue

compartment="E_coli">0.000</parameterValue>

 </conditionalParameter>

 </listOfConditionalParameters>

 ...

 </biobrick>

 </part>

</MoDeL>

9.3.6. The listOfReferencedSpecies element

The listOfReferencedSpecies element is an auxiliary element to help construct reaction network

more easily. Each species defined in listOfReferencedSpecies contains the part as the basic unit on

some chain. We use an optional element referencedSpecies to indicate the species identifier and

partType to denote the type of current part in the species. The value of partType must be from(ref)

However, the element is not necessary and may be eliminated in the future.

When to use this attribute might be a little complicated. The situations can be divided into following

categories:

 When the referencedSpecies is a template species with substituent parts (ST) together with

other non-substituent parts (NST), the part of STs must not have the element of

referencedSpecies, while the NSTs must have one.

 When the referencedSpecies is a template species with only ST parts (such species are used to

handle universal reactions happen to all substance or substance of a certain kind), all possible

related parts should have an element of referencedSpecies. By “possible related” we mean a

part that can possibly be consisted in an actual species that can have the reaction of this

template species. For example the biobrick of TetR will exist in both RNA and protein form, and

will have the reaction of degradation of both forward or reverse RNA and forward or reverse

protein, so the part of TetR will have four elements of referencedSpecies indicating the

relationships with certain template species. The example of TetR will be shown below.

There is still one more point need to be mentioned. The modeling of DNA in MoDeL is different

from other sequence of RNA and protein, since DNA is considered as a double-strand structure thus

having both forward and reverse directions. Actually, it makes no difference reversing a DNA

molecule as a whole, since there are no preferable directions. However, when it comes to modeling,

we have to manually assign a preferable direction that determines which end of the DNA strand is

called LEFT, and which RIGHT. In the current version of iGaME, the program will choose one by

certain algorithm automatically. The consequence of this is the partType of a DNA part may be

switching between ForwardDNA and ReverseDNA. Our solution is to create a duplicate species with

DNA in the opposite direction, and have relevant parts store a referencedSpecies of this species.

Of course we have noticed that it is not an easy task to write this attribute correctly, we are looking

forward for a better way of handling it. For more details about the algorithm, please refer to

Algorithm on USTC_Software wiki (ref).

Example

The following is an example of referencedSpecies element used in biobrick of placI. The species

referened are listed below:

fw_placI185_dna: The template DNA species with a forward placI.

rev_placI185_dna: The template DNA species with a reverse placI.

protein_sc: The template species of any protein. This is used to handle degradation of protein.

rna_sc: The template species of any RNA. This is used to handle degradation of RNA.

any_species: The template of all species. This is used to handle dilution.

<MoDeL>

 <part>

 <biobrick id="placI185" name="lacI-reg promoter (BBa_R0010)">

 ...

 <listOfReferencedSpecies>

 <referencedSpecies

partType="ForwardDNA">fw_placI185_dna</referencedSpecies>

 <referencedSpecies

partType="ReverseDNA">rev_placI185_dna</referencedSpecies>

 <referencedSpecies

partType="ForwardProtein">protein_sc</referencedSpecies>

 <referencedSpecies

partType="ReverseProtein">protein_sc</referencedSpecies>

 <referencedSpecies

partType="ForwardRNA">rna_sc</referencedSpecies>

 <referencedSpecies

partType="ReverseRNA">rna_sc</referencedSpecies>

 <referencedSpecies>any_species</referencedSpecies>

 </listOfReferencedSpecies>

 </biobrick>

 </part>

</MoDeL>

9.3.7. Biobrick

Following PartsRegistry, we borrow the term of Biobrick to represent standard parts of sequence.

DNAs, RNAs, and proteins do not make a difference here and an identifier can actually represent its

DNA part, RNA part after transcription, protein part after translation simultaneously. It is needed to

be mentioned that the components of biobrick is not limited to the biobrick parts in PartsRegistry.

Any standard part of sequence can be a biobrick.

The component of biobrick has ten conditionalParameters representing its properties. They are

listed below. We must emphasize that the ten parameters are suitable for all biobricks, and there

are not essential differences between different biobricks. Actually, by altering the

conditionalParameters, you can turn a promoter into a terminator.

 forwardPromoterEfficiency and reversePromoterEfficiency represents the efficiency of starting

a transcription reaction by a part when placed in forward or reverse direction, respectively. By

“reverse” we mean rotating the part for 180 degrees on the same surface and then insert it in a

chain, which is shown in the Figure below. The concept can also be understood comparing

BBa_K093008 and BBa_R0011 and other similar pairs of parts in PartsRegistry.

 forwardTerminatorEfficiency and reverseTerminatorEfficiency represents the efficiency of

terminating a transcription reaction by a part when placed in forward or reverse direction,

respectively. The “reverse” here have the same meaning as above.

 forwardRbsEfficiency and reverseRbsEfficiency represents efficiency of starting a translation

reaction by a part when the part is transcripted forwardly or reversely. The “reverse” here

means the transcriptional direction according to the part’s direction. Following Figure shows

this:

The six parameters above can have any value of type double between 0.0 and 1.0.

The data types following four parameters are all integer type, and can have value of 0 or 1.

 forwardStartCodonEfficiency and reverseStartCodonEfficiency represents if there is a start

codon on the part when transcripted forwardly and reversely, respectively. The value of 0

represents FALSE, and the 1 represents TRUE.

 forwardStopCodonEfficiency and reverseStopCodonEfficiency represents if there is a stop

codon on the part when transcripted forwardly and reversely, respectively. The value of 0

represents FALSE, and the 1 represents TRUE.

Example

The following example shows biobrick definition within MoDeLs:

<MoDeL>

 <part>

 <biobrick id="ptetR187" name="tetR-reg promoter (BBa_R0040)">

 <interface>

 <url>http://partsregistry.org/cgi/xml/part.cgi?part=BBa_R0040</url>

 <shortDesc>promoter (tetR repressor regulated)</shortDesc>

 </interface>

 <listOfConditionalParameters>

 <conditionalParameter id="forwardPromoterEfficiency"

units="per_second">

 <parameterValue compartment="E_coli">0.5</parameterValue>

 </conditionalParameter>

 </listOfConditionalParameters>

 <listOfReferencedSpecies>

 <referencedSpecies

partType="ForwardDNA">fw_ptetR187_dna</referencedSpecies>

 <referencedSpecies

partType="ReverseDNA">rev_ptetR187_dna</referencedSpecies>

 <referencedSpecies

partType="ForwardProtein">protein_sc</referencedSpecies>

 <referencedSpecies

partType="ReverseProtein">protein_sc</referencedSpecies>

 <referencedSpecies

partType="ForwardRNA">rna_sc</referencedSpecies>

 <referencedSpecies

partType="ReverseRNA">rna_sc</referencedSpecies>

 <referencedSpecies>any_species</referencedSpecies>

 </listOfReferencedSpecies>

 </biobrick>

 </part>

</MoDeL>

9.3.8. Compartment

Since the identifier of compartment defined in Compartment container represents its size when it

appears in a MathML expression, we need to define a correspond species to indicate its

concentration when it appears in MathML formula. To indicate the relation with its compartment

definition, both components’ identifiers are required to be same. There are no specified conditional

parameters for compartment. The behaviors of its growth and death are described in relevant

reactions.

Example

The following example shows Compartment definition in Part container within MoDeLs:

<MoDeL>

 <part>

 <compartment id="E_coli" name="Escherichia coli">

 <interface>

 <url>http://en.wikipedia.org/wiki/Escherichia_coli</url>

 <shortDesc>a Gram negative rod-shaped bacterium that is commonly

found in the lower intestine of warm-blooded organisms (endotherms)</shortDesc>

 </interface>

 <listOfReferencedSpecies>

 <referencedSpecies

partType="Compartment">E_coli_cell</referencedSpecies>

 <referencedSpecies>any_species</referencedSpecies>

 </listOfReferencedSpecies>

 </compartment>

 </part>

</MoDeL>

9.3.9. Compound

Compound represents compounds like IPTG and ATC that appears frequently in biological system.

Same as Compartment, there are no specified conditional parameters for Compound.

Example

The following example shows Compound definition within MoDeLs:

<MoDeL>

 <part>

 <compound id="IPTG" name="IPTG">

 <interface>

 <url>http://en.wikipedia.org/wiki/Isopropyl_%CE%B2-D-1-thiogalactopyranos

ide</url>

 <shortDesc>Isopropyl-beta-D-thiogalactopyranoside, abbreviated

IPTG, is a molecular biology reagent</shortDesc>

 </interface>

 <listOfReferencedSpecies>

 <referencedSpecies

partType="Compound">IPTG_compound</referencedSpecies>

 <referencedSpecies

partType="Compound">IPTGlacI153_4</referencedSpecies>

 <referencedSpecies>any_species</referencedSpecies>

 </listOfReferencedSpecies>

 </compound>

 </part>

</MoDeL>

9.3.10. PlasmidBackbone

The plasmid backbone propagates the assembled parts. It is defined as the sequence beginning with

the biobrick suffix, including the replication origin and antibiotic resistance marker, and ending with

the Biobrick prefix.

PlasmidBackbone has two more optional attributes. One is origin, indicating the genetic element

responsible for the replication of plasmids during cell growth and division. Another is resistance,

which allows the cell to grow even in the presence of a particular antibiotic, making it possible to

select cells that contain desired plasmid.

Example

<MoDeL>

 <part>

 <biobrick id="pSB1A3" name="pSB1A3" origin="pMB1" resistance="A">

 <interface>

 <url>http://partsregistry.org/cgi/xml/part.cgi?part=pSB1A3</url>

 <shortDesc>High copy BioBrick assembly plasmid</shortDesc>

 </interface>

 <listOfReferencedSpecies>

 <referencedSpecies

partType="ForwardDNA">tm_pSB1A3_fw</referencedSpecies>

 <referencedSpecies

partType="ReverseDNA">tm_pSB1A3_rev</referencedSpecies>

 <referencedSpecies

partType="ForwardRNA">rna_sc</referencedSpecies>

 <referencedSpecies

partType="ReverseRNA">rna_sc</referencedSpecies>

 <referencedSpecies

partType="ForwardProtein">protein_sc</referencedSpecies>

 <referencedSpecies

partType="ReverseProtein">protein_sc</referencedSpecies>

 <referencedSpecies>any_species</referencedSpecies>

 </listOfReferencedSpecies>

 </biobrick>

 </part>

</MoDeL>

9.3.11. Substituent

Components of substituent are special ones that are designed to enable template modeling in

MoDeL. For a better understanding of template modeling, please refer to Section 6.2.

Current version of MoDeL only contains six substituents, they are:

1. ANY: Represents unknown parts of any amount on one chain.

2. ANYUB: Represents unknown parts which are unbound of any amount on one chain.

3. ONE: Represents one unknown part on one chain.

4. ONEUB: Represents one unknown part that is unbound on one chain.

5. NZ: Represents one or more unknown parts on one chain.

6. NZUB: Represents one or more unbound unknown parts on one chain.

There are no conditional parameters specified for substituent.

The identifiers of substituents are all global. Moreover, they are reserved as keywords in this version

of MoDeL. We admit that this requirement is due to the drawbacks of iGaME. Solutions to this

problem are planned in the next version.

Example

The following example shows Substituent definition within MoDeLs:

<MoDeL>

 <part>

 <substituent id="ANY" name="substituent of ANY">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <shortDesc>monochain substituent of anything</shortDesc>

 </interface>

 <listOfConditionalParameters>

 </listOfConditionalParameters>

 <listOfReferencedSpecies>

 <referencedSpecies>anyspecies</referencedSpecies>

 </listOfReferencedSpecies>

 </substituent>

 </part>

</MoDeL>

9.4. Species

A species refers to a pool of reacting entities that take part in reactions and are located in a

specified compartment. Since Chain-Node description of species has been introduced in Section 6.1,

here we are going to specify its structure by defining its chains and trees in the element of

cnModel.

9.4.1. The id and name attributes

As with other components in MoDeL, Species has a mandatory attribute, id, used to give the

species an identifier, the identifier conforms to no syntax, yet must be a text string. The species also

have an optional name attribute, of type string. The two attributes must be used as described in

Section 8.2

9.4.2. The interface element

The required element of interface is used to provide additional information as described in Section

8.3. If the software supports the display of this element, it should present the information inside to

users on its interface.

9.4.3. The cnModel element

A preview of the structure of cnModel is given below:

<cnModel>

 <listOfChains>

 <chain>

 <listOfParts>

 <part>

 ...

 </part>

 </listOfParts>

 </chain>

 </listOfChains>

 <listOfTrees>

 <tree>

 <listOfNodes>

 <node>

 ...

 </node>

 </listOfNodes>

 </tree>

 </listOfTrees>

</cnModel>

The listOfChains element

The listOfChains element is composed of one or more chain element that describes the concept of

chain. There is no ordering of chains in a Chain-Node Model species, all chains are equivalent. So

the order of chain elements in a listOfChain element is trivial, and switching them will not make any

difference to the species.

Each chain element is constructed in a multilevel structure, each level is required. From top to

bottom, the elements are chain, listOfParts and part, respectively. Just as chains, there must be one

or more part elements in the listOfParts. Unlike chain, order of part elements does make sense. In

this version of MoDeL, we consider the order of elements represents the actual order of parts

placed on a chain, and we have made the restriction that the part of plasmidBackbone must be the

first part on a chain if present. Within part lie four required elements of partReference, partLabel,

partType and partCategory.

The partReference and partLabel elements

The element of partReference indicates the reference of a part. The content of partReference must

be the identifier of existing part in database. The element of partLabel is used to assign a unique

label to each part within the species, uniqueness across species is not required.

The partType element

The element of partType marks the form of each part on a chain. Currently in MoDeL, we have

eleven partTypes. They are, ForwardDNA, ReverseDNA, ForwardRNA, ReverseRNA,

ForwardProtein, ReverseProtein, DNA, RNA, Protein, Compartment and Compound.

For a DNA part, there are three available partType which are ForwardDNA, ReverseDNA and DNA,

indicating a DNA part in forward direction, DNA in reverse direction and DNA without specified

direction respectively. The meanings of forward and reverse are the same as those of

forwardPromoterEfficiency and reversePromoterEfficiency described in Section 9.3.7 错误!未找到

引用源。.

For a RNA part, there are also three available partType: ForwardRNA, ReverseRNA and RNA. The

partType of RNA indicates the direction is not specified. Forward and reverse here means the

direction a part is transcripted, same as the forwardRBSEfficiency and reverseRBSEfficiency in

Section 9.3.7 错误!未找到引用源。.

For a protein part, it can have the partType of ForwardProtein, ReverseProtein and Protein.

Meanings of forward and reverse are the same as RNA part. The partType of Protein indicates the

direction is not specified.

For a compartment part, the partType is always Compartment.

For a compound part, the partType is always Compound.

The partCategory element

The element of partCategory marks the category of a part. Knowing there are five categories in the

container of Part, the available values are biobrick, compound, compartment, plasmidBackbone,

substituent. The rules to apply them are obvious.

This element is required by the algorithm of iGaME. Having this element will make the search of

parts more quickly and precisely, however, partCategory can be eliminated in the future.

The listOfTrees element

The listOfTrees element defines the binding structure in a complex using Chain-Node Model. There

can be tree elements of any amount (including zero) in the listOfTrees. The structure of tree

element is organized in three levels: tree, listOfNodes, node.

As described in Section 6.1.2, binding of nodes forms a tree. In order to describe the tree structure,

there are two elements: currentNodeLabel and parentNodeLabel in an element of node. They store

the label of a node itself and the label of parent node respectively. Users should pay attention to

the uniqueness of labels within one species. The Figure shown below will gives a better

understanding.

Each node except ROOT is required to have a node element to specify itself and its parent. And is

shall be mentioned that the word “ROOT” is reserved as another keyword of MoDeL.

9.4.4. The listOfReferencedReactions element

Each species has a required element, listOfReferencedReactions, used to record the list of reactions

which contain this species pattern as reactants or modifiers, or products if the reaction is

reversiable. Each referecedReaction element stores the identifier of corresponding reaction, and

has an attribute of speciesType indicating the role of current species in that reaction. Avaliable

speciesTypes are product, modifier and product.

When does a reaction have to be referenced? The answer is as follows:

 When the reaction is reversible, all species in the reaction must have this reaction referenced.

 When the reaction is not reversible, only its reactants and modifiers are required to have this

element.

Similar to listOfReferencedSpecies, listOfReferencedReactions is designed for the convenience of

searching database to construct reaction network. However, it is possible to eliminate this element

in the future version of MoDeL.

9.4.5. Example

The following example defines the species of pTet*:TetR2. The asterisk is added to indicate the

difference between parts in bound and unbound states. This is a species with three chains: two

protein chains and one DNA chain.

<MoDeL>

 <species id="fw_ptetR187_tetR154_2" name="forward ptetR187:tetR154_2">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <shortDesc>binding product of forward ptetR187 and tetR

dimer</shortDesc>

 </interface>

 <cnModel>

 <listOfChains>

 <chain>

 <listOfParts>

 <part>

 <partReference>ANY</partReference>

 <partLabel>X0</partLabel>

 <partType>DNA</partType>

 <partCategory>substituent</partCategory>

 </part>

 <part>

 <partReference>ptetR187_bs1</partReference>

 <partLabel>ptetR187_bs1_0</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>ANY</partReference>

 <partLabel>X1</partLabel>

 <partType>DNA</partType>

 <partCategory>substituent</partCategory>

 </part>

 </listOfParts>

 </chain>

 <chain>

 <listOfParts>

 <part>

 <partReference>ANY</partReference>

 <partLabel>X2</partLabel>

 <partType>Protein</partType>

 <partCategory>substituent</partCategory>

 </part>

 <part>

 <partReference>tetR154</partReference>

 <partLabel>tetR_0</partLabel>

 <partType>ForwardProtein</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>ANY</partReference>

 <partLabel>X3</partLabel>

 <partType>Protein</partType>

 <partCategory>substituent</partCategory>

 </part>

 </listOfParts>

 </chain>

 <chain>

 <listOfParts>

 <part>

 <partReference>ANY</partReference>

 <partLabel>X4</partLabel>

 <partType>Protein</partType>

 <partCategory>substituent</partCategory>

 </part>

 <part>

 <partReference>tetR154</partReference>

 <partLabel>tetR_1</partLabel>

 <partType>ForwardProtein</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>ANY</partReference>

 <partLabel>X5</partLabel>

 <partType>Protein</partType>

 <partCategory>substituent</partCategory>

 </part>

 </listOfParts>

 </chain>

 </listOfChains>

 <listOfTrees>

 <tree>

 <listOfNodes>

 <node>

 <currentNodeLabel>tetR_0</currentNodeLabel>

 <parentNodeLabel>tetR2</parentNodeLabel>

 </node>

 <node>

 <currentNodeLabel>tetR_1</currentNodeLabel>

 <parentNodeLabel>tetR2</parentNodeLabel>

 </node>

 <node>

 <currentNodeLabel>tetR2</currentNodeLabel>

 <parentNodeLabel>ptetRtetR2</parentNodeLabel>

 </node>

 <node>

 <currentNodeLabel>ptetR187_bs1_0</currentNodeLabel>

 <parentNodeLabel>ptetRtetR2</parentNodeLabel>

 </node>

 <node>

 <currentNodeLabel>ptetRtetR2</currentNodeLabel>

 <parentNodeLabel>ROOT</parentNodeLabel>

 </node>

 </listOfNodes>

 </tree>

 </listOfTrees>

 </cnModel>

 <listOfReferencedReactions>

 <referencedReaction

speciesType="product">bid_fw_ptetR187_tetR154_2</referencedReaction>

 </listOfReferencedReactions>

 </species>

</MoDeL>

9.5. Reaction

A reaction represents any transformation, transport or binding process, typically a chemical

reaction that can change the quantity of one or more species. MoDeL characterizes a reaction

mainly the same as SBML does. However, with species described in Chain-Node Model, we have to

record the transfer of substituent. Otherwise it is impossible to track the source and destination of a

substituent. In the following sections, we will emphasize on the new elements in MoDeL.

9.5.1. The id and name attributes

As with other components in MoDeL, Reaction has a required element, id, used to give the reaction

an identifier. The identifier must be a unique text string. MoDeL also has a name element with type

string. It is not required to be unique.

9.5.2. The reversible attribute

The boolean element reversible indicates whether the reaction is reversible. The default is "true".

A reaction is reversible means it can proceed in either the forward or the reverse direction.

Although the reversibility of a reaction can sometimes be deduced by inspecting

forwardKinecticLaw and reverseKineticLaw, this flag supports the ability to perform some kinds of

model analyses in the absence of performing a time-course simulation of the model.

Moreover, both forwardKineticLaw and reverseKineticLaw are optional and allowed to be left

undefined. In which case, a flag to indicate the reversibility is quite useful.

9.5.3. The fast attribute

The optional boolean element fast, with its default value, "false", indicates whether the reaction is

operating on a time scale significantly faster than the other reactions. Compared to slow reactions,

fast ones are considered to be instaneous. Further research reveals that it may lead to different

results if software tools ignore the value of the fast. Most prevailing software tools provide support

of fast reaction using a pseudo steady-state approximation for the set of fast reactions when

constructing the system of equations for the model. Hence, this flag is important over the course of

simulation, and it must be careful to make the separation of time scales between the fast reactions

and other processes.

9.5.4. The interface element

The element of interface contains two optional elements of url and shortDesc. They must be used

as described in Section 8.3.

9.5.5. The listOfCompartments element

Reaction has an element, listOfCompartments, used to define compartments in which the reaction

happens. MoDeL views compartments in a nested structure, the inner compartment is considered

as child, and the outer one parent. In this way, the structure of compartments can be described in a

tree form. This way of describing compartments is very useful since some reactions may only

happen under certain structure of compartments.

Each compartment element has three child elements:

 compartmentReference: Available compartment identifier defined in the compartment

container of database.

 currentCompartmentLabel: a unique label in this reaction for current compartment.

 parentCompartmentLabel: a unique label in this reaction label of compartment outside of

current compartment.

The description of tree structure of compartments is similar to that of species, a node of ROOT is

also required here to denote the parent of the outermost compartment, indicating there’s no more

compartments outside.

9.5.6. The listOfReactants, listOfModifiers and listOfProducts elements

The species participating as reactants and products in a reaction are declared using element

listOfReactants, and listOfProducts. Sometimes a species appears in the kinetic rate formula of a

reaction but is itself neither created nor destroyed in that reaction (for example, because it acts as a

catalyst or inhibitor). Same as SBML, in MoDeL all such species are simply called modifiers without

regard to the detailed role of those species in the model.

Each reactant/modifier/product has the same child elements:

 speciesReference: Reference of species identifier defined in Species Container.

 speciesLabel: A unique label of species in this reaction.

 compartmentLabel: The label of compartment in which this species locates in.

The element of compartmentLabel also has an attribute of “itself”. As described in Section 9.2, we

have to add a species of compartment to record its concentration, later we find it necessary to

know which compartment is used as which species. This is done by writing the label of

compartment in the attribute of itself in the corresponding species. Without this attribute, the

template reactions happen between a compartment and a species may get a wrong match.

9.5.7. The listOfSubstituentTransfers element

Based on the design principle of species, each template species may contain several substituent

parts. Since the actual parts represented by substituent are unknown, there must be a way to

record the transfer of a substituent. Only in this way can we construct a product from reactants and

modifiers. Therefore, each substituent transfer relation is constructed with two elements: from and

to.

 The From element has an attribute of speciesLabel, which contains the label of species where

the substituent comes from. Label of reactants and modifiers should be used here. The content

of From is the partLabel of the substituent.

 The To element has the same structure as From, only the content and attribute are the labels of

destination species and destination substituent.

Here is another suggestion for writing a reasonable substituentTransfer element. The two partTypes

of the two substituents in a transfer should be the same. This is because transfers actually don’t

change the type of parts.

9.5.8. The kineticLaw element

The element of kineticLaw is divided into subelements of forwardKinecticLaw and

reverseKineticLaw. They describe the kinetic law of reaction in forward and reverse direction

respectively. We borrow the KineticLaw element defined in SBML and make little modification to

use in MoDeL. Both of forward and reverse kinetic laws defined in MoDeL have four elements, math,

listOfLocalParameters, listOfReferencedParameters, and listOfConstriants.

The math element

Same as SBML, forwardKineticLaw and reverseKineticLaw both have a math element for holding a

MathML formula defining the rate of the reaction. It is important to know the rate is written in

substance/time units instead of substance/volume/time units in order to handle

multi-compartment reactions. Refer to SBML Document L2V4[1] for more details about math

element.

There must be some reason why MoDeL separates the definitions of forwardKineticLaw and

reverseKineticLaw. The reason is complicated. Since each reaction in MoDeL represents not just one

reaction, but a reaction of a specific pattern. Each set of reactants and modifiers which match

species structure in database can have this reaction. This will leads to a complex problem: The real

number of products may be less than that defined in Reaction because different products may be

connected by substituent to form a new complex. It is actually an intermolecular reaction. However,

current version of MoDeL does not support intermolecular reactions, and we assume different

substructure in one complex would not react with each other. Consequently, only forward reaction

is allowed, and that is why we separate the kinetic law definitions of forward and reverse reaction.

Identifiers of five objects are allowed to appear in math element: global parameters defined in

System container, speciesLabel and compartmentLabel defined in Reaction container, conditional

parameters defined in Part container, and local parameters defined within kinetic law definition in

Reaction container. In math element, the identifier of a species represents its concentration. The

identifier of a compartment represents its size, and the identifier of a parameter represents the

value of the parameter.

The listOfLocalParameters element

The element listOfLocalParameters defines local parameters in Reaction. The structure of this

element is the same as global parameter. However, the scope of identifier is local and the value is

required to be constant.

The listOfReferencedParameters element

The element listOfReferencedParameters can contain a list of one or more external parameter

references, which are defined in Part container. Each referencedParameterve element has a

required subelement of id, which can be used in a math element representing its value.

To refer an external parameter defined in Part container, one have to specify the required

subelement of extRefSource together with two attributes:

 extRefSource: content of this element is the identifier of referred external parameter.

 partLabel: contains the partLabel of the part which includes the referenced parameter.

 speciesLabel: contains the speciesLabel of the species which includes the part.

The listOfConstraints element

This element contains a list of constraints on forward of reverse reaction. If any one of the

constraints is not satisfied, the reaction in that direction won’t happen.

Each constraint element has two required subelements. One is formula, which stores the string

form of a mathematical expression. The formula is used as the judgment condition of the constraint,

and the return value of this formula is required to be boolean. The other is listOfVariables, which

contains a list of all the identifiers of global parameters needed in the formula.

9.5.9. Example

The following example defines the binding reaction of the promoter of ptetR and the protein of TetR

dimer.

<MoDeL>

 <reaction id="bid_fw_ptetR187_tetR154_2" name="binding forward-ptetR:tetR2"

reversible="true" fast="false">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <short_desc>binding of forward ptetR187 DNA and tetR

dimer</short_desc>

 </interface>

 <listOfCompartments>

 <compartment>

 <compartmentReference>Flask</compartmentReference>

 <currentCompartmentLabel>Flask</currentCompartmentLabel>

 <parentCompartmentLabel>ROOT</parentCompartmentLabel>

 </compartment>

 <compartment>

 <compartmentReference>E_coli</compartmentReference>

 <currentCompartmentLabel>E_coli</currentCompartmentLabel>

 <parentCompartmentLabel>Flask</parentCompartmentLabel>

 </compartment>

 </listOfCompartments>

 <listOfReactants>

 <reactant>

 <speciesReference>fw_ptetR187_dna</speciesReference>

 <speciesLabel>ptetR187_dna</speciesLabel>

 <compartmentLabel>E_coli</compartmentLabel>

 </reactant>

 <reactant>

 <speciesReference>tetR154_dimer</speciesReference>

 <speciesLabel>tetR154_dimer</speciesLabel>

 <compartmentLabel>E_coli</compartmentLabel>

 </reactant>

 </listOfReactants>

 <listOfModifiers>

 </listOfModifiers>

 <listOfProducts>

 <product>

 <speciesReference>fw_ptetR187_tetR154_2</speciesReference>

 <speciesLabel>ptetR187tetR154_2</speciesLabel>

 <compartmentLabel>E_coli</compartmentLabel>

 </product>

 </listOfProducts>

 <listOfSubstituentTransfers>

 <substituentTransfer>

 <from speciesLabel="ptetR187_dna">X0</from>

 <to speciesLabel="ptetR187tetR154_2">X0</to>

 </substituentTransfer>

 <substituentTransfer>

 <from speciesLabel="ptetR187_dna">X1</from>

 <to speciesLabel="ptetR187tetR154_2">X1</to>

 </substituentTransfer>

 <substituentTransfer>

 <from speciesLabel="tetR154_dimer">X0</from>

 <to speciesLabel="ptetR187tetR154_2">X2</to>

 </substituentTransfer>

 <substituentTransfer>

 <from speciesLabel="tetR154_dimer">X1</from>

 <to speciesLabel="ptetR187tetR154_2">X3</to>

 </substituentTransfer>

 <substituentTransfer>

 <from speciesLabel="tetR154_dimer">X2</from>

 <to speciesLabel="ptetR187tetR154_2">X4</to>

 </substituentTransfer>

 <substituentTransfer>

 <from speciesLabel="tetR154_dimer">X3</from>

 <to speciesLabel="ptetR187tetR154_2">X5</to>

 </substituentTransfer>

 </listOfSubstituentTransfers>

 <kineticLaw>

 <forwardKineticLaw>

 <math>

 <apply>

 <times/>

 <ci> kon </ci>

 <ci> ptetR187_dna </ci>

 <ci> tetR154_dimer </ci>

 <ci> E_coli </ci>

 </apply>

 </math>

 <listOfLocalParameters>

 <localParameter>

 <id>kon</id>

 <value>1.00E+6</value>

 <units>litre_per_mole_per_second</units>

 <constant>true</constant>

 </localParameter>

 </listOfLocalParameters>

 <listOfReferencedParameters>

 </listOfReferencedParameters>

 <listOfConstraints>

 </listOfConstraints>

 </forwardKineticLaw>

 <reverseKineticLaw>

 <math>

 <apply>

 <times/>

 <ci> koff </ci>

 <ci> ptetR187tetR154_2 </ci>

 <ci> E_coli </ci>

 </apply>

 </math>

 <listOfLocalParameters>

 <localParameter>

 <id>koff</id>

 <value>1.00E-5</value>

 <units>per_second</units>

 <constant>true</constant>

 </localParameter>

 </listOfLocalParameters>

 <listOfReferencedParameters>

 </listOfReferencedParameters>

 <listOfConstraints>

 </listOfConstraints>

 </reverseKineticLaw>

 </kineticLaw>

 </reaction>

</MoDeL>

10. Table of detailed MoDeL structure

In this section we present a detailed table of MoDeL structure. Indent in table indicates the level of

an element, {} in identifier means an element with one or more subelements, {} in datatype are

used to contain available values.

optional datatype default

attribute id DBId

attribute name optional string

element math{}

element lambda

/System/listOfFunctionDefinitions/functionDefinition

optional datatype default

element assignmentRule/rateRule{} optional

attribute variable DBId

element math

element algebraicRule{} optional

element math

/System/listOfRules/rule

optional datatype default

attribute id DBId

attribute name optional string

element listOfUnits{}

element unit

attribute kind DBId

attribute exponent optional int

attribute scale optional int

attribute multiplier optional double

/System/listOfUnitDefinitions/unitDefinition

optional datatype default

element id DBId

element name optional string

element units optional DBId

element value optional double 0.00

element constant optional boolean true

/System/listOfGlobalParameters/globalParameter

optional datatype default

attribute id DBId{same as /Part/compartment}

attribute name optional string

attribute spatialDimensions optional int{3} 3

attribute size double 0.00

attribute units optional DBId

attribute constant optional boolean{false} false

element interface{}

element url optional string

element shortDesc optional string

element listOfInnerCompartmentPermitted{}

element compartmentReference optional DBId

/Compartment

optional datatype default

attribute id DBId

attribute name optional string

attribute registryName optional regName

attribute originalConformation optional DBId

element interface{}

element url optional string

element shortDesc optional string

element listOfConditionalParameters{}

element conditionalParameter{} optional

attribute id

DBId{forwardPromoterEfficiency,reversePromote

rEfficiency,forwardRbsEfficiency,reverseRbsEf

ficiency,forwardTerminatorEfficiency,reverseT

erminatorEfficiency}

attribute name optional string

attribute units optional DBId

attribute commonValue optional double 0.00

element parameterValue optional double

attribute compartment DBId

element conditionalParameter{} optional

attribute id

DBId{forwardStartCodonEfficiency,reverseStart

CodonEfficiency,forwardStopCodonEfficiency,re

verseStopCodonEfficiency}

attribute name optional string

attribute units optional DBId

attribute commonValue optional int{0,1} 0

element parameterValue optional int{0,1}

attribute compartment DBId

element listOfReferencedSpecies{}

element referencedSpecies optional DBId

attribute partType optional

string{ForwardDNA,ReverseDNA,ForwardRNA,Rever

seRNA,ForwardProtein,ReverseProtein,Compound,

Compartment,DNA,RNA,Protein}

/Part/biobrick

optional datatype default

attribute id DBId

attribute name optional string

attribute registryName optional regName

attribute originalConformation optional DBId

attribute origin optional string

attribute resistance optional string

element interface{}

element url optional string

element shortDesc optional string

element listOfConditionalParameters{}

element listOfReferencedSpecies{}

element referencedSpecies optional DBId

attribute partType optional

string{ForwardDNA,ReverseDNA,ForwardRNA,Rever

seRNA,ForwardProtein,ReverseProtein,Compound,

Compartment,DNA,RNA,Protein}

/Part/plasmidBackbone

optional datatype default

attribute id DBId{same as /Compartment}

attribute name optional string

attribute registryName optional regName

attribute originalConformation optional DBId

element interface{}

element url optional string

element shortDesc optional string

element listOfConditionalParameters{}

element listOfReferencedSpecies{}

element referencedSpecies optional DBId

attribute partType optional

string{ForwardDNA,ReverseDNA,ForwardRNA,Rever

seRNA,ForwardProtein,ReverseProtein,Compound,

Compartment,DNA,RNA,Protein}

/Part/compartment

optional datatype default

attribute id DBId

attribute name optional string

attribute registryName optional regName

attribute originalConformation optional DBId

element interface{}

element url optional string

element shortDesc optional string

element listOfConditionalParameters{}

element listOfReferencedSpecies{}

element referencedSpecies optional DBId

attribute partType optional

string{ForwardDNA,ReverseDNA,ForwardRNA,Rever

seRNA,ForwardProtein,ReverseProtein,Compound,

Compartment,DNA,RNA,Protein}

/Part/compound

optional datatype default

attribute id DBId{ANY,ANYUB,NZ,NZUB,ONE,ONEUB}

attribute name optional string

attribute registryName optional regName

attribute originalConformation optional DBId

element interface{}

element url optional string

element shortDesc optional string

element listOfConditionalParameters{}

element listOfReferencedSpecies{}

element referencedSpecies optional DBId

attribute partType optional

string{ForwardDNA,ReverseDNA,ForwardRNA,Rever

seRNA,ForwardProtein,ReverseProtein,Compound,

Compartment,DNA,RNA,Protein}

/Part/substituent

optional datatype default

attribute id DBId

attribute name optional string

element interface{}

element url optional string

element shortDesc optional string

element cnModel{}

element listOfChains{}

element chain{} optional

element listOfParts{}

element part{}

element partReference DBId

element partLabel string

element partType

string{ForwardDNA,ReverseDNA,ForwardRNA,Rever

seRNA,ForwardProtein,ReverseProtein,Compound,

Compartment,DNA,RNA,Protein}

element partCategory
string{biobrick,compound,compartment,plasmidB

ackbonesubstituent}

element listOfTrees{}

element tree{} optional

element listOfNodes{}

element node{}

element currentNodeLabel string{partLabel}

element parentNodeLabel string{partLabel}

element listOfReferencedReactions{}

element referencedReaction optional DBId

attribute speciesType string{reactant,modifier,product}

/Species

11. A complete example of database construction

In this section, we will present a detailed instruction on constructing a database using the language

of MoDeL. We choose a concrete and classical example that we have successfully modeled with our

software (see the second Demo on http://2010.igem.org/Team:USTC_Software). This example

includes the diffusion of AHL, the propagation of E.coli, the activation of pluxI by AHL:LuxR dimer,

and so on.

The construction of such a system is shown in the following figure. The outermost compartment is a

Flask, and it has a sub-compartment of E.coli, which is a species simultaneously since it can

propagate. The compound of AHL is placed in the flask outside of E.coli, and a rule of input is

attached to it indicating the time and amount of adding AHL.

Within E.coli is the user-constructed plasmid and the backbone is pSB3C5. As is mentioned in the

optional datatype default

attribute id DBId

attribute name optional string

attribute reversible optional boolean true

attribute fast optional boolean false

element interface{}

element url optional string

element shortDesc optional string

element listOfCompartments{}

element compartment{}

element compartmentRefernce DBId

element currentCompartmentLabel string

element parentCompartmentLabel string

element listOfReactants\Modifiers\Products{}

element reactant\modifier\product{} optional

element speciesReference DBId

element speciesLabel string

element compartmentLabel string{currentCompartmentLabel}

attribute itself optional string{currentCompartmentLabel}

element listOfSubstituentTransfers{}

element substituentTransfer{} optional

element from{} string{partLabel}

attribute speciesLabel string{speciesLabel}

element to{} string{partLabel}

attribute speciesLabel string{speciesLabel}

element kineticLaw{}

element forward/reverseKineticLaw{}

element math optional MathML2.0

element listOfLocalParameters{]

element localParameter{} optional

element id string{used in math}

element name string

element value double 0.00

element units DBId

element constant boolean true

element listOfReferencedParameters{}

element referencedParameter{} optional

element id string{used in math}

element extRefSource

attribute speciesLabel string{speciesLabel}

attribute partLabel string{partLabel}

element listOfConstraints{}

element constraint{} optional

element listOfVariables{}

element variable DBId{GlobalParameter}

element formula string{math form}

/Reaction

http://2010.igem.org/Team:USTC_Software

document, a backbone always comes first on a chain. The next part on the chain is TE the

terminator, and there are two more on the chain. All have 100% forward and reverse terminator

efficiency. This should be required especially for the first and last terminator on the chain, so that

the transcription starts from promoter won’t go through plasmid backbone. Then come the parts of

pTetR, RBS, LuxR, pLuxI, another RBS, GFP, and TE. They are drawn in a unified form intentionally to

show that all parts are equivalent in MoDeL.

We should mention here that in this simple example we do not take environmental conditions into

account, and the parameters we use here may not be experimentally correct.

Experiment of this system is done by Haseloff Lab, MIT

(http://partregistry.org/Part:BBa_F2620:Transfer_function), and our simulation result is in good

agreement with the experiment result.

The automatic modeling database of this system clearly needs to store all the reaction, species,

parts, inputs, functions, etc. It is important not to miss any element. The complete list is given

below:

Compartment Species Reaction
Flask AHL_compound tm_deg_rna_ecoli
E.coli AHL_LuxR tm_deg_protein_ecoli

AHL2_LuxR2 tm_dil_ecoli
AHL2_LuxR2_fw_pLuxI repro_ecoli_cell
AHL2_LuxR2_rev_pLuxI repli_tm_pSB3C5_fw
LuxR_prot repli_tm_pSB3C5_rev
GFP_prot repre_tm_pSB3C5_fw
E_coli_cell repre_tm_pSB3C5_rev
fw_pLuxI_dna deg_AHL_ecoli
rev_pLuxI_dna diffusion_AHL
protein_sc bid_AHL_LuxR
rna_sc dmr_AHL2_LuxR2
any_species bid_AHL2_luxR2_fw_pluxI

bid_AHL2_luxR2_rev_pluxI

http://partregistry.org/Part:BBa_F2620:Transfer_function

It is important to know the database just provide the necessary elements, actual compartment

structure, initial concentrations, input functions, and so on are defined by users in the input file.

An input file will be read by iGaME and provide missing information of the system. This should not

be described in this document about MoDeL, but the input file of this system is given below for

convenience.

<MoDeL>

 <dbInterface>

 <input>

 <listOfParameters>

 <parameter>

 <id> ts </id>

 <value> 10000 </value>

 <units> second </units>

 <constant> true </constant>

 </parameter>

 <parameter>

 <id> te </id>

 <value> 10001 </value>

 <units> second </units>

 <constant> true </constant>

 </parameter>

 <parameter>

 <id> s </id>

 <value> 1E-9 </value>

 <units> mole_per_litre </units>

 <constant> true </constant>

 </parameter>

compartment compound substituent biobrick plasmidBackbone
E.coli AHL ANY TE pSB3C5

ANYUB pTetR
RBS
LuxR
GFP
pLuxI

Part

functionDefinition rule unitDefinition globalParameter

piecewise function
t =
simulation
time

all used units t

System

 </listOfParameters>

 <listOfRules>

 <assignmentRule>

 <variable>sPecIes1</variable>

 $step_func (t, ts, te, s)$

 </assignmentRule>

 </listOfRules>

 <listOfRules>

 </listOfRules>

 <listOfCompartments>

 <compartment db="Flask">

 <id>Flask</id>

 <size>0.40</size>

 <outside>ROOT</outside>

 <constant>true</constant>

 </compartment>

 <compartment db="E_coli">

 <id>E_coli</id>

 <size>7E-16</size>

 <outside>Flask</outside>

 <constant>true</constant>

 </compartment>

 </listOfCompartments>

 <listOfSpecies>

 <species db="E_coli_cell">

 <id>sPecIes0</id>

 <compartment itself="E_coli">Flask</compartment>

 <initialConcentration>4.15135E-24</initialConcentration>

 </species>

 <species db="AHL_compound">

 <id>sPecIes1</id>

 <compartment>Flask</compartment>

 <initialConcentration> 0 </initialConcentration>

 <constant> false </constant>

 <boundaryCondition> true </boundaryCondition>

 </species>

 <species>

 <id>sPecIes2</id>

 <compartment>E_coli</compartment>

 <initialConcentration>2.37E-9</initialConcentration>

 <cnModel>

 <listOfChains>

 <chain>

 <listOfParts>

 <part>

 <partReference>pSB3C5</partReference>

 <partLabel>pSB3C5_0</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>TE_X_100</partReference>

 <partLabel>TE_X_100_0</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>Promoter1</partReference>

 <partLabel>Promoter1_0</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>RBS147</partReference>

 <partLabel>RBS147_0</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>C0062_luxR</partReference>

 <partLabel>C0062_luxR_0</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>TE_X_100</partReference>

 <partLabel>TE_X_100_1</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>R0062_pluxI</partReference>

 <partLabel>R0062_pluxI_0</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>RBS147</partReference>

 <partLabel>RBS147_1</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>E0040_GFP</partReference>

 <partLabel>E0040_GFP_0</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 <part>

 <partReference>TE_X_100</partReference>

 <partLabel>TE_X_100_2</partLabel>

 <partType>ForwardDNA</partType>

 <partCategory>biobrick</partCategory>

 </part>

 </listOfParts>

 </chain>

 </listOfChains>

 </cnModel>

 </species>

 </listOfSpecies>

 </input>

 </dbInterface>

</MoDeL>

With the knowledge of MoDeL components, it should be difficult to understand this input file.

We should explain some of the template species included. protein_sc, rna_sc are used to handle

degradation of any unbound protein and any unbound RNA. We consider only these two kinds of

species have degradation because DNA doesn’t degrade and complex first unbind into its each

composition. Following is the example protein_sc, and rna_sc is similar to it.

<MoDeL>

 <species id="Protein_sc" name="single Protein chain">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <shortDesc>species template for any unbinded Protein

chain</shortDesc>

 </interface>

 <cnModel>

 <listOfChains>

 <chain>

 <listOfParts>

 <part>

 <partReference>ANYUB</partReference>

 <partLabel>ANYUB</partLabel>

 <partType>Protein</partType>

 <partCategory>substituent</partCategory>

 </part>

 </listOfParts>

 </chain>

 </listOfChains>

 <listOfTrees>

 </listOfTrees>

 </cnModel>

 <listOfReferencedReactions>

 <referencedReaction

speciesType="reactant">tm_deg_protein_ecoli</referencedReaction>

 </listOfReferencedReactions>

 </species>

</MoDeL>

Another special template species is any_species, which is used to handle dilution caused by cell

reproduction. Any_species is written as follows.

<MoDeL>

 <species id="any_species" name="any species">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <shortDesc>species template for anything</shortDesc>

 </interface>

 <cnModel>

 <listOfChains>

 <chain>

 <listOfParts>

 <part>

 <partReference>ANY</partReference>

 <partLabel>ANY</partLabel>

 <partCategory>substituent</partCategory>

 </part>

 </listOfParts>

 </chain>

 </listOfChains>

 <listOfTrees>

 </listOfTrees>

 </cnModel>

 <listOfReferencedReactions>

 <referencedReaction speciesType="reactant">tm_dil_ecoli</referencedReaction>

 <referencedReaction

speciesType="reactant">tm_dil_ecoli_2</referencedReaction>

 <referencedReaction speciesType="reactant">tm_dil_chemo</referencedReaction>

 </listOfReferencedReactions>

 </species>

</MoDeL>

In the following we will discuss the reactions in the system. Notice that since the reaction rate is

written in substance/time units, a compartment volume is always multiplied in the rate expression.

First, let’s have a look at the template reaction of dilution.

The tm_dil_ecoli reaction has any_species as reactant, and E_coli_cell as modifier for the growth

rate will appear in rate expression. The rate of dilution is considered to be directly proportional to

the concentration of any_species and the growth rate of E_coli_cell. Knowing this, the template

reaction is written as follows.

<MoDeL>

 <reaction id="tm_dil_ecoli" name="dilution of species in E.coli" reversible="false"

fast="false">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <short_desc>dilution of species due to reproduction of E.coli</short_desc>

 </interface>

 <listOfCompartments>

 <compartment>

 <compartmentReference>Flask</compartmentReference>

 <currentCompartmentLabel>Flask0</currentCompartmentLabel>

 <parentCompartmentLabel>ROOT</parentCompartmentLabel>

 </compartment>

 <compartment>

 <compartmentReference>E_coli</compartmentReference>

 <currentCompartmentLabel>E_coli0</currentCompartmentLabel>

 <parentCompartmentLabel>Flask0</parentCompartmentLabel>

 </compartment>

 </listOfCompartments>

 <listOfReactants>

 <reactant>

 <speciesReference>any_species</speciesReference>

 <speciesLabel>any_species</speciesLabel>

 <compartmentLabel>E_coli0</compartmentLabel>

 </reactant>

 </listOfReactants>

 <listOfModifiers>

 <modifier>

 <speciesReference>E_coli_cell</speciesReference>

 <speciesLabel>E_coli_cell</speciesLabel>

 <compartmentLabel itself="E_coli0">Flask0</compartmentLabel>

 </modifier>

 </listOfModifiers>

 <listOfProducts>

 </listOfProducts>

 <listOfSubstituentTransfers>

 </listOfSubstituentTransfers>

 <kineticLaw>

 <forwardKineticLaw>

 <math>

 <apply>

 <times/>

 <ci> kgr </ci>

 <apply>

 <minus/>

 <cn type="integer"> 1 </cn>

 <apply>

 <divide/>

 <ci> E_coli_cell </ci>

 <ci> maxc </ci>

 </apply>

 </apply>

 <ci> any_species </ci>

 <ci> E_coli0 </ci>

 </apply>

 </math>

 <listOfLocalParameters>

 <localParameter>

 <id>kgr</id>

 <value>1.92E-4</value>

 <units>per_second</units>

 <constant>true</constant>

 </localParameter>

 <localParameter>

 <id>maxc</id>

 <value>1.66E-12</value>

 <units>mole_per_litre</units>

 <constant>true</constant>

 </localParameter>

 </listOfLocalParameters>

 </forwardKineticLaw>

 <reverseKineticLaw>

 </reverseKineticLaw>

 </kineticLaw>

 </reaction>

</MoDeL>

There are several template degradation reactions, tm_deg_protein_ecoli, tm_deg_rna_ecoli,

deg_AHL_ecoli, deg_AHL_flask. We decide to handle all degradations of RNA and protein in a

unified way since it’s impossible to obtain the rate for each species. However the situation of

compound is not so complicated and we can still write single reactions for each compound. The

degradation rate is considered to be proportional to the concentration of the species.

Tm_deg_protein_ecoli is given below.

<MoDeL>

 <reaction id="tm_deg_protein_ecoli" name="degradation of proteins in E.coli"

reversible="false" fast="false">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <short_desc>degradation of proteins in E_coli</short_desc>

 </interface>

 <listOfCompartments>

 <compartment>

 <compartmentReference>E_coli</compartmentReference>

 <currentCompartmentLabel>E_coli</currentCompartmentLabel>

 <parentCompartmentLabel>ROOT</parentCompartmentLabel>

 </compartment>

 </listOfCompartments>

 <listOfReactants>

 <reactant>

 <speciesReference>protein_sc</speciesReference>

 <speciesLabel>anyub_forwardprotein</speciesLabel>

 <compartmentLabel>E_coli</compartmentLabel>

 </reactant>

 </listOfReactants>

 <listOfModifiers>

 </listOfModifiers>

 <listOfProducts>

 </listOfProducts>

 <listOfSubstituentTransfers>

 </listOfSubstituentTransfers>

 <kineticLaw>

 <forwardKineticLaw>

 <math>

 <apply>

 <times/>

 <ci> kd </ci>

 <ci> anyub_forwardprotein </ci>

 <ci> E_coli </ci>

 </apply>

 </math>

 <listOfLocalParameters>

 <localParameter>

 <id>kd</id>

 <value>2.3E-3</value>

 <units>per_second</units>

 <constant>true</constant>

 </localParameter>

 </listOfLocalParameters>

 <listOfReferencedParameters>

 </listOfReferencedParameters>

 <listOfConstraints>

 </listOfConstraints>

 </forwardKineticLaw>

 <reverseKineticLaw>

 </reverseKineticLaw>

 </kineticLaw>

 </reaction>

</MoDeL>

Next is the diffusion of AHL between E.coli and Flask. Since this is a multi-compartment reaction,

the rate may seem confusing. We sum up the volume of all E.coli and multiply the volume to

forward and reverse kinetic law in order to solve the problem of volume conversion. The reaction is

written below.

<MoDeL>

 <reaction id="diffusion_AHL" name="AHL diffusion" reversible="true"

fast="false">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <short_desc>transport of AHL to Ecoli</short_desc>

 </interface>

 <listOfCompartments>

 <compartment>

 <compartmentReference>Flask</compartmentReference>

 <currentCompartmentLabel>Flask</currentCompartmentLabel>

 <parentCompartmentLabel>ROOT</parentCompartmentLabel>

 </compartment>

 <compartment>

 <compartmentReference>E_coli</compartmentReference>

 <currentCompartmentLabel>E_coli</currentCompartmentLabel>

 <parentCompartmentLabel>Flask</parentCompartmentLabel>

 </compartment>

 </listOfCompartments>

 <listOfReactants>

 <reactant>

 <speciesReference>AHL_compound</speciesReference>

 <speciesLabel>AHL_in</speciesLabel>

 <compartmentLabel>E_coli</compartmentLabel>

 </reactant>

 </listOfReactants>

 <listOfModifiers>

 </listOfModifiers>

 <listOfProducts>

 <product>

 <speciesReference>AHL_compound</speciesReference>

 <speciesLabel>AHL_out</speciesLabel>

 <compartmentLabel>Flask</compartmentLabel>

 </product>

 </listOfProducts>

 <listOfSubstituentTransfers>

 </listOfSubstituentTransfers>

 <kineticLaw>

 <forwardKineticLaw>

 <math>

 <apply>

 <times/>

 <ci> kon </ci>

 <ci> AHL_in </ci>

 <ci> E_coli </ci>

 </apply>

 </math>

 <listOfLocalParameters>

 <localParameter>

 <id>kon</id>

 <value>0.1</value>

 <units>per_second</units>

 <constant>true</constant>

 </localParameter>

 </listOfLocalParameters>

 <listOfReferencedParameters>

 </listOfReferencedParameters>

 <listOfConstraints>

 </listOfConstraints>

 </forwardKineticLaw>

 <reverseKineticLaw>

 <math>

 <apply>

 <times/>

 <ci> koff </ci>

 <ci> AHL_out </ci>

 <ci> E_coli </ci>

 </apply>

 </math>

 <listOfLocalParameters>

 <localParameter>

 <id>koff</id>

 <value>0.1</value>

 <units>per_second</units>

 <constant>true</constant>

 </localParameter>

 </listOfLocalParameters>

 <listOfReferencedParameters>

 </listOfReferencedParameters>

 <listOfConstraints>

 </listOfConstraints>

 </reverseKineticLaw>

 </kineticLaw>

 </reaction>

</MoDeL>

Last is the binding reactions, they are all written with a prefix of bid. The reaction rate is normally

handled. One of the reactions: bid_AHL_luxR is written below.

<MoDeL>

 <reaction id="bid_AHL_luxR" name="binding AHL:luxR" reversible="true"

fast="false">

 <interface>

 <url>http://2010.igem.org/Team:USTC_Software</url>

 <short_desc>binding of AHL compound and luxR</short_desc>

 </interface>

 <listOfCompartments>

 <compartment>

 <compartmentReference>E_coli</compartmentReference>

 <currentCompartmentLabel>E_coli</currentCompartmentLabel>

 <parentCompartmentLabel>ROOT</parentCompartmentLabel>

 </compartment>

 </listOfCompartments>

 <listOfReactants>

 <reactant>

 <speciesReference>AHL_compound</speciesReference>

 <speciesLabel>AHL_compound</speciesLabel>

 <compartmentLabel>E_coli</compartmentLabel>

 </reactant>

 <reactant>

 <speciesReference>luxR_prot</speciesReference>

 <speciesLabel>luxR_prot</speciesLabel>

 <compartmentLabel>E_coli</compartmentLabel>

 </reactant>

 </listOfReactants>

 <listOfModifiers>

 </listOfModifiers>

 <listOfProducts>

 <product>

 <speciesReference>AHL_luxR</speciesReference>

 <speciesLabel>AHL_luxR</speciesLabel>

 <compartmentLabel>E_coli</compartmentLabel>

 </product>

 </listOfProducts>

 <listOfSubstituentTransfers>

 <substituentTransfer>

 <from speciesLabel="luxR_prot">X0</from>

 <to speciesLabel="AHL_luxR">X0</to>

 </substituentTransfer>

 <substituentTransfer>

 <from speciesLabel="luxR_prot">X1</from>

 <to speciesLabel="AHL_luxR">X1</to>

 </substituentTransfer>

 </listOfSubstituentTransfers>

 <kineticLaw>

 <forwardKineticLaw>

 <math>

 <apply>

 <times/>

 <ci> kon </ci>

 <ci> AHL_compound </ci>

 <ci> luxR_prot </ci>

 <ci> E_coli </ci>

 </apply>

 </math>

 <listOfLocalParameters>

 <localParameter>

 <id>kon</id>

 <name>rate of binding</name>

 <value>1E+4</value>

 <units>litre_per_mole_per_second</units>

 <constant>true</constant>

 </localParameter>

 </listOfLocalParameters>

 </forwardKineticLaw>

 <reverseKineticLaw>

 <math>

 <apply>

 <times/>

 <ci> koff </ci>

 <ci> AHL_luxR </ci>

 <ci> E_coli </ci>

 </apply>

 </math>

 <listOfLocalParameters>

 <localParameter>

 <id>koff</id>

 <name>rate_of_unbinding</name>

 <value>0.01</value>

 <units>per_second</units>

 <constant>true</constant>

 </localParameter>

 </listOfLocalParameters>

 <listOfReferencedParameters>

 </listOfReferencedParameters>

 <listOfConstraints>

 </listOfConstraints>

 </reverseKineticLaw>

 </kineticLaw>

 </reaction>

</MoDeL>

And this is the end of the example. You can find the whole database on our Github page:

http://github.com/jkdirac/igame. Hopefully this example will answer most of your questions in

database construction.

12. Future Work

MoDeL is young, to be exact, just born. There must be a long way before he can stand up and run by

himself. At this stage, we have to take extra care of him.

Knowing the drawbacks of MoDeL, we have already got a list of improvements waiting to be

implemented in the next version of MoDeL. They are:

 Enhance MoDeL to support description of intra-molecular reactions.

If it is applied, our software will become a useful tool to study the competition mechanism between

intra-molecular and inter-molecular reactions.

 More powerful template.

Only six kinds of substituents are far from meeting the demands of more accurate modeling and

complex reaction mechanism. At present, substituent parts are limited to match only parts on one

chain, and they are not allowed to represent a structure with more than one chains and trees. This

needs the extension of definition of substituent parts by designing a unified format that can provide

enough information.

 Enable description of transcription and translation reactions.

Currently, transcription and translation are handled differently with other reactions. It is necessary

to modify MoDeL to incorporate description of the two reactions.

 Eliminate the inconsistencies.

In the current version of MoDeL, a bunch of inconsistencies exist. For example, the identifiers of

compartments follow different restrictions from other global identifiers, and some components’

attributes are required to be a certain value. These problems make MoDeL not so elegant when

looking at details. Work must be done to improve its consistency.

 Be more independent.

Currently, some of MoDeL syntaxes are defined for specific algorithms of iGaME. Being a language

for automatic modeling, cooperation with algorithm is reasonable. However, we believe there are

too many compromises, thus causing a number of inconsistencies. In the next version, we are

looking forward to a more independent MoDeL.

13. Author’s Contact Information

Zhen Wang xqqixp@mail.ustc.edu.cn

Chen Liao liaochen@mail.ustc.edu.cn

http://github.com/jkdirac/igame

Hao Jiang haojiang@mail.ustc.edu.cn

Xiaomo Yao soimort@mail.ustc.edu.cn

Kun Jiang jkdirac@mail.ustc.edu.cn

14. Known Bugs

1. The labels in a math element must not include another label in the same math element as its

sub-string. Otherwise it will cause error in iGaME. This is because the XML elements in math are

not analyzed separately.

15. References

1. Hucka, M., et al., Systems Biology Markup Language (SBML) Level 2 : Structures and

Facilities for Model Definitions ere California Institute of Technology , USA. Systems Biology,

2008.

2. W3C (2000b). W3C’s math home page. Available via the World Wide Web at

http://www.w3.org/Math/.

http://www.w3.org/Math/

