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Abstract
The equation of state of asymmetric nuclear matter given by the parameterized
form of the relativistic Brueckner-Hartree-Fock mean fieldwith vector cross
interaction is applied to construct spherically symmetricneutron star models.
The masses and radii of the models are given as functions of the central energy
density and compared with astrophysical data. The calculated radii appear to
be confined to a narrow band between 12 and 13 km, nearly independent of the
calculated masses. Our models are in agreement with known data and the ones
with vector cross interaction cope well with the recent limitations imposed by
the double pulsar J0737-3039.

1 Introduction

A wide spectrum of different equations of state (EoS) of nuclear matter and their applications to astro-
physical problems has been reported in literature (see, e.g., [1–6]). Some of the EoS collections (even
though not all of them are up-to-date already) give an amazingly rich general overview of the state-of-the-
art, whereas the others emphasize some specific aims. All these EoS yield (nearly) the same properties
close to the standard nuclear density (ρN ≈ 0.16 nucleon/fm3 ≈ 2.7 × 1014 g/cm3), but when one is far
off this value, s/he has to rely more on underlying principles than on possible experimental verification
of predicted physical observables.

Here we concentrate our attention on a relativistic asymmetric nuclear matter where the EoS stem
from an assumed form of the interaction Lagrangian. The calculations use the relativistic mean-field
theory with allowance for an isospin degree of freedom [7,8]. Assuming static, homogeneous and infinite
nuclear matter allows for using its invariances and symmetries. We employed the Dirac-Brueckner-
Hartree-Fock mean-field approach in its parameterized formsuggested by Gmuca [9] which reproduces
the nuclear matter results of Huberet al. [10]. That has been used to calculate high-density behavior
of asymmetric nuclear matter with varying neutron-to-proton ratio [11]. The proton fraction has been
determined from the condition ofβ-equilibrium and charge neutrality, and it is density-dependent. We
have extended our calculations up to4 × ρN , what is the region typical for the interior of neutron stars.

The EoS is used to model the static, spherically symmetric neutron star in the framework of general
relativity. The calculated properties i.e. its mass, radius etc. can be efficiently tested by confronting them
with astrophysical data of various kind (see, e.g., [12–19]). Two recent cases were specifically selected,
namely the isolated neutron star RXJ 1856.5–3754 and the double pulsar J0737–3039.

2 Asymmetric nuclear matter in relativistic mean-field approach

We follow here the Dirac-Brueckner-Hartree-Fock (DBHF) mean field (see [20–23] which easily allows
to consider different neutron-proton composition of the matter, and also the inclusion of non-nucleonic
degrees of freedom.

The full mean-field DBHF calculations of nuclear matter (Huber et al. [10, 24]) have been pa-
rameterized by Kotulǐc Bunta and Gmuca [25], and we employ their parameterizationreproducing the
calculations of Huberet al. [10, 24] with one-boson-exchange (OBE) potential A of Brockmann and
Machleidt [26]. The model Lagrangian density includes the nucleon fieldψ, isoscalar scalar meson field
σ, isoscalar vector meson fieldω, isovector vector meson fieldρ and isovector scalar meson fieldδ,
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including also the vector cross-interaction. The Lagrangian density in the form used by Kotulič Bunta
and Gmuca [25] is

L(ψ, σ,ω,ρ, δ) = ψ̄[γµ(i∂µ − gωω
µ) − (mN − gσσ)]ψ
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where the antisymmetric tensors are

ωµν ≡ ∂νωµ − ∂µων ,

ρµν ≡ ∂νρµ − ∂µρν ; (2)

the strength of the interactions of isoscalar and isovectormesons with nucleons is given by (dimen-
sionless) coupling constantsg’s and the self-coupling constants (also dimensionless) are bσ (cubic), cσ
(quartic scalar) andcω (quartic vector). The second and the fourth lines representnon-interacting Hamil-
tonian for all mesons,ΛV is the cross-coupling constant of the interaction betweenω andρ mesons.
Furthermore,mN is the nucleon mass,∂µ ≡ ∂

∂xµ
andγ’s are the Dirac matrices [20,25,27].

This Lagrangian is the starting point to obtain the nuclear matter EoS. These EoS have been used
as an input to construct the models of neutron stars and theirproperties (mass, radius etc.) for different
central parameters.

The EoS of Kotulǐc Bunta and Gmuca, both with and without the cross-interaction term (parameter
sets A and B, see [25]), which have been found to be a good description of asymmetric nuclear matter,
are easily expressed up to about4 × ρN .

3 Neutron star models

We consider spherically symmetric models with matter beingin β-equilibrium and electrically neutral.

3.1 β-equilibrium

The total energy density ofn-p-e-µ matter is given as

E = EB(nB, xp) + Ee(ne) + Eµ(nµ), (3)

whereEB(nB, xp) is the binding energy density of asymmetric nuclear matter,ni is the number density
of different particles (i = n, p, e,µ), nB = np + nn is the baryon number density andxp = np/nB is
the proton fraction. The leptonic contributionsEl(nl) (l = e,µ) to the total energy density are given by

El(nl) =
2

h3

pF (l)
∫

0

(

m2
l c

4 + p2c2
)1/2

4πp2dp, (4)

wherepF (l) is the Fermi momentum ofl-th kind of particle.

The matter in neutron stars is inβ-equilibrium, i.e. in equilibrium with respect ton ↔ p + e− ↔
p + µ 1. The equilibrium is given by equality of chemical potentials µn = µp + µe = µp + µµ, where
the chemical potential of each kind of particle is given byµi = ∂E/∂ni.

1The (anti)neutrinos contribution could be neglected, because the matter is assumed to be cold enough that they can freely
escape.
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Fig. 1: Proton fraction calculated fromβ-equilibrium as a function of density for both considered interactions.

The binding energy density of asymmetric nuclear matter could be expressed in terms of proton
fractionxp as [28]

EB(nB, xp) = ESNM(nB) + (1 − 2xp)2S(nB), (5)

whereESNM is the energy density of symmetric nuclear matter (xp = 0.5) andS(nB) is the symmetry
energy density, that corresponds to the difference of binding energy density between pure nuclear matter
and symmetric nuclear matter

S(nB) = EB(nB, xp = 0) − EB(nB, xp = 0.5). (6)

The condition ofβ-equilibrium then reads

µe = µµ = µn − µp = 4
S(nB)

nB
(1 − 2xp) . (7)

and is solved together with condition of charge neutrality (np = ne + nµ) to obtain the proton fraction
of neutron star matter. The are depicted in Fig. 1.

3.2 EoS for low densities

The nuclear EoS have been the dominant input for the calculations in the high-density region, namely
ρ ≥ 1014 g/cm3. For lower densities, the EoS used are the following (see also Fig. 2):

– Feynman-Metropolis-Teller EoS for7.9 g/cm3 ≤ ρ ≤ 104 g/cm3 where matter consists ofe−

and56
26Fe, [29];

– Baym-Pethick-Sutherland EoS for104 g/cm3 ≤ ρ ≤ 4.3 × 1011 g/cm3 with Coulomb lattice
energy corrections [30];

– Baym-Bethe-Pethick EoS for4.3 g/cm3 × 1011 ≤ ρ / 1014 g/cm3: here, e−, neutrons and
equilibrated nuclei calculated using the compressible liquid drop model are considered [31].

We use the internal Schwarzschild metric withc = G = 1 (see, e.g., [32]). The hydrostatic
equilibrium is given by the Tolman-Oppenheimer-Volkov equation (TOV) [33,34], which in this notation
reads

dp

dr
= −(ρ+ p)

m(r) + 4πr3p

r(r − 2m(r))
, (8)
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Fig. 2: Dependence of pressure in the matter density. In the nuclearregion, both the calculations with and without
the vector cross interaction are drawn.

where

m(r) = 4π

∫ r

0
ρr1

2dr1 (9)

is the mass inside the sphere of radiusr, ρ is the energy density andp is the pressure, that are both
functions of radial coordinater. Integration of TOV starting from given central energy density ρc uses
the EoS and finally yields the radiusR, given by the boundary conditionp(R) = 0, and the gravitational
massM = m(R) of the neutron star. Another useful quantity to calculate isthe so-called baryonic mass
that is given

MB = 4πu

R
∫

0

nB(r)

[

1 −
2m(r)

r

]−1/2

r2dr, (10)

wherenB(r) is the baryon number density at the radiusr and u is the atomic mass unit.

4 Results

The resulting masses and the star radii are shown in Figs. 3 and 4. Whereas the mass–density dependence
(Fig. 3) is monotonic for both sets (with and without the cross interaction), the mass–radius one (Fig. 4)
shows S-shape typical for this kind of calculations. For a comparison, we have drawn also the relation
imposed by the analysis of the isolated neutron star RX J1856.5–3754.

4.1 Recent observations — EoS tests

4.1.1 Double pulsar J0737–3039

Podsiadlowskiet al. [15] investigated possible formation scenarios of double pulsar J0737–3039. They
have shown that one can test EoS assuming the double pulsar isformed in electron-capture supernova.
Such scenario enables formation of the second pulsar of veryaccurately measured massM = 1.2489 ±
0.0007M⊙ [19]. If this pulsar is born under the presented scenario, its baryonic massMB is in the
range 1.366 to 1.375M⊙. The relation between the gravitational and the baryonic masses together with
the limitations derived from the double pulsar observations are presented in Fig. 5. One can see that
the interaction with cross interaction meet the requirement represented by the rectangle, while the one
without cross interaction does not.
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Fig. 3: Predicted mass of the neutron star as a function of the central density for two types of the EoS, namely with
(dashed) and without (dotted) cross-interaction term.
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Fig. 4: The same calculations as in the preceding figure, but the radius-mass dependence. In addition, the mass-
radius relation of the RX J1856.5–3754 pulsar is depicted asa full line.

4.1.2 Isolated neutron star RX J1856.5–3754

Several authors [16, 17] discussed observations of the isolated neutron star RX J1856.5–3754 and they
found constraints on the mass-radius relation of this particular neutron star. They found the lower limit
of the apparent radius to beR∞ = 16.5 km and a simple relation between the neutron star mass and its
radius, which is drawn also in Fig. 4. That could serve as a test of equation of state and also as an estimate
for the mass of this neutron star. Our EoS gives mass of the isolated neutron star RX J1856.5–3754 to be
M > 1.795M⊙ (M > 1.685M⊙ neglecting vector cross interaction).

5 Discussion

Our results (Figs. 3 to 6) do not contradict the recent compilations of the deduced radii of observed
and analyzed compact objects. Several dozens of neutron stars and/or similar objects have their masses
reported; a great majority of them is in very close vicinity of 1.4M⊙, and only very few are significantly
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Fig. 5: Relation of calculated gravitational massM and the baryonic oneMB with and without the cross interac-
tion. The limitations imposed by the analysis of the J0737–3039 double pulsar are drawn as a small rectangle.
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Fig. 6: Sound velocity relative to that of light, as calculated for our EoSs.

above (see, e.g., the compilations in [35, 36] and observations and analyses [5, 6, 15–19, 23, 36–42]),
but the interpretation of the observations contains some model-dependent aspects. Note, however, that
recent results of the data fitting of kHz quasiperiodic oscillations observed in the low-mass X-ray systems
containing neutron stars indicate relatively high masses of M > 2M⊙ [43–46], which have not been
considered until recently. Our calculations allow for the existence of neutron stars even for so heavy
masses.

We have also tested the velocity of sound in nuclear matter with respect to the velocity of light —
whenever the former one exceedsc, one enters physically forbidden region (causality violation). This
dependence is drawn in Fig. 6, and we are safely below the limit. (A small bumps seen in both curves
are just artefacts of joining two different density regions.)
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6 Conclusions

We have employed the parameterized form of the relativisticmean-field EoS for asymmetric nuclear
matter with vector cross interaction. The proton fraction was varied in accord with the need of theβ-
equilibrium and charge neutrality. Assuming spherically symmetric geometry and using TOV equation,
we constructed models of neutron stars for different central parameters. We have found the neutron
star radii lie in a narrow band between 12 and 13 kms and the masses do not contradict the constraints
imposed by recent neutron star analyses, including that of adouble pulsar J0737–3039. They do not
contradict to the earlier reported observed ones either andthey are in line with the results published
by other authors using different approaches. Our present calculations have been done considering only
neutrons and protons inβ-equilibrium with electrons and muons. We aim to continue intests of given
EoS in future. One of our plans is to include hyperons. Another is to perform more detailed tests based on
the fitting of observational data of quasi-periodic oscillations in low-mass X-ray systems measurements.
This necessitates to investigate the rotational effects onneutron star models based on the Hartle-Thorne
metric reflecting mass, spin and the quadrupole moment of theneutron star. All these improvements
could bring a new information on the validity of EoS ( [14,47]).
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