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Abstract
Two-neutron correlation in quasi two-dimensional (2D) neutron matter is stud-
ied by means of the BCS theory to understand formation ofnn pairs in nuclear
surface of neutron-rich nuclei. The spin-zeronn pair correlation in low den-
sity neutron systems confined in an infinite slab is investigated in a simplified
model that neutron motion of one direction is frozen. It is found that, when the
slab is thin enough, thenn pairing gap enhances and the size shrinking ofnn
Cooper pair occurs at finite low-density region in the quasi-2D system.

1 Introduction

Two-neutron correlation in neutron-rich nuclei is presently one of the fore-front subjects in the physics of
unstable nuclei. In two-neutron halo nuclei, the dineutroncorrelation was extensively investigated with a
three-body picture of a core and two valence neutrons [1–10]. It was discussed also in light neutron-rich
nuclei such as in8He [11–13] and in medium-heavy neutron-rich nuclei [14, 15]as well as asymmetric
nuclear matter (for example, Refs. [16–23] and references therein). The neutron-neutron interaction is
attractive in the1S channel, and therefore, it is natural to expect that spin-zero nn pair correlations may
enhance in nuclear systems though the interaction is not so strong as to form a two-neutron bound state in
a free space. We here call the spin-zeronn pair with strong spatial correlations "dineutron". Originally
the possible existence of a dineutron near the surface of nuclei was predicted by Migdal in 1972 [24]. His
idea describes the binding mechanism of a Borromean system and is extended to the dineutron cluster
picture in two-neutron halo nuclei.

Recently, dineutron correlations have also been discussedfrom the point of view of Bose-Einstein
condensation (BEC), which is considered along similar lines as deuteron andα-particle condensation
suggested in dilute nuclear matter [17,25–28] as well asα condensate states in excited states ofZ = N =
even nuclei [29–31]. From the analysis of the spatial structure of thenn Cooper pair in infinite neutron
matter, it was found that an enhancement of pairing gap and a size shrinking of Cooper pairs occur at
finite low density [18, 21, 22]. Similar shrinking of the pairsize were predicted also at the surface of
medium-heavy nuclei [14,15].

Thus, spatially correlated neutron pairs are expected to appear in the environment of dilute neutron
matter, and therefore, the spatial structure of neutron pairs at the surface of neutron-rich nuclei attracts
presently great interest. In the recent studies of neutron-rich nuclei with HFB calculations [14,15], it was
found that the extension of ann-Cooper pair rapidly decreases when going from inside to thesurface
before expanding again when leaving the nucleus. Thenn Cooper pair attains a minimum size of about
2-3fm that is very small size reaching the dimension of the deuteron. This is also highlighted by the fact
that in11Li even the single Cooper pair is very small in the surface [32].

Our aim in this paper is to understand mechanism of the formation of spatially correlatednn pairs
and the shrinking of the pair size in nuclear surface. For this aim, we consider a simplified model of quasi



two-dimensional (2D) neutron matter which mimics a neutronlayer in the surface where distribution of
valence neutrons concentrates. By ‘quasi two-dimensional(2D)’, we mean that the ‘bound’ Cooper pairs
are confined within a surface layer of about1 − 2 fm and that the degree of freedom in radial direction
is approximately frozen. Such a scenario could for example be realized by the fact that the density
distribution of valence neutrons in very neutron rich and heavy nuclei are in radial, sayz-direction,
concentrated in a surface layer and that the density distribution in z-direction can be approximated by a
frozen Gaussian packet, whereas the motion of the neutrons within the layer is free. Pursuing the picture
to its extreme, one could imagine a slab of low density neutrons where in the transverse (z) direction
only a single0s level below the Fermi energy is active.

In the present work, we investigate properties of neutron pairs in the quasi-2D neutron matter by
using finite-range effective nuclear forces. Concerning the degree of freedom in the transversez direction
perpendicular to the 2D plane, we for simplicity assume a Gaussian packet as mentioned above. We
investigate pairing properties of the quasi-2D neutron matter based on the BCS theory. Pairing gap and
size of the Cooper pair in quasi-2D neutron systems are analyzed, and BCS-BEC crossover phenomena
are discussed. We also discuss the dependence of pairing features on the thickness of the neutron slab.

This paper is organized as follows. In the next section, we explain our simplified model of quasi-
2D neutron matter and formulation of the present work. In section 3, the results obtained for neutron
matter are shown and pairing properties are discussed. Finally, we give a summary and outlook in section
4.

2 Formulation of Nuclear 2D Pairing

We here explain our framework of the simplified model of quasi-2D neutron system confined in a slab
with a certain thickness. We first describe the wave functionand the Hamiltonian for a quasi-2D neutron
system. We then explain the formalism for the quasi-2D infinite neutron matter within the BCS theory.
More details of the formulation are described in Ref. [33].

2.1 Quasi-2D neutron systems

According to the outline of the Introduction, we propose a model for a system of neutrons confined in a
slab with a certain thickness. We assume that the neutron motion in the transverse (z) direction is frozen
and is represented by a simple Gaussian packet of the width parametera. As already mentioned, this
thicknessa of the slab may mimic the concentration of the amplitudes of single particle wave functions
in a surface layer, wherez corresponds to the radial direction in finite neutron-rich nuclei.

The wave function for a single neutron is written as

Φ(r) = Φ2D(r⊥, χ) ⊗ φ0s(z), φ0s(z) =

(

1

πa2

)1/4

exp

[

− z2

2a2

]

, (1)

wherer⊥ indicates the coordinates in the slab,(x, y), andχ is the intrinsic spin. The thickness, i.e., the
rms width, of the slab is2

√

〈z2〉 =
√

2a. In a similar way, aN -neutron wave function is given as

Φ(r1, · · · , rN, χ1, · · · , χN ) = Φ2D(r1⊥, · · · , rN⊥, χ1, · · · , χN ) ⊗ φ0s(z1) · · ·φ0s(zN ). (2)

HereΦ andΦ2D are the antisymmetrized many-body wave functions.

Neutrons are interacting with each other via two-body nuclear forces. The interactionV (rij)
between two neutrons is the two-body effective nuclear force in theT = 1 channel. The central part of
theT = 1 channel in the Gogny [35, 36] and Minnesota [37] forces are represented by a superposition

of two Gaussians,V (r) =
∑2

m=1 (Wm + BmPσ − HmPτ − MmPσPτ ) exp
[

− r2

b2m

]

.

We freeze the transverse (z) motion as mentioned before. By integrating overzi coordinates, we
reduce the three-dimensional Schrödinger equation forΦ to the two-dimensional equation forΦ2D with

292



respect tori⊥, and get the following equation for quasi-2D neutron systems,

H2DΦ2D(r1⊥, · · · , rN⊥, χ1, · · · , χN ) = E2DΦ2D(r1⊥, · · · , rN⊥, χ1, · · · , χN ), (3)

H2D =
∑

i

ti⊥ +
∑

i<j

V 2D(rij⊥), (4)

whereti⊥ is the 2D-kinetic term andV 2D(rij⊥) is the 2D-interaction term,

V 2D(r⊥) =
〈

φ0s(z1)φ
0s(z2)

∣

∣V (r)
∣

∣φ0s(z1)φ
0s(z2)

〉

=
2
∑

m=1

Zbm
(a) (Wm + BmPσ − HmPτ − MmPσPτ ) exp

[

− r2
⊥

b2
m

]

, (5)

Zbm
(a) ≡

(

b2
m

b2
m + 2a2

)1/2

. (6)

It should be pointed that the strength of the quasi-2D two-body potentialV 2D(r⊥) depends on the thick-
ness of the slab with the factorZbm

(a) as seen from (5) and (6). The strength decreases with the increase
of the width parametera. It means that the effectivenn force in quasi 2D is stronger in thinner slab than
in thicker one.

Of course, the present assumption of frozenz motion with a simple Gaussian form might be too
simple to describe the detailed behavior of the radial motion of valence neutrons. However, it is expected
that such effects may effectively be taken into account by a modification of the width parametera. In
the present work, we analyze properties of neutron pairs in quasi-2D neutron systems by taking various
values of the slab thicknessa.

2.2 Quasi two-dimensional neutron matter within BCS theory

We here apply the BCS theory, which is equivalent to the HFB approximation in a homogeneous case, to
the quasi-2D infinite neutron matter in the slab in order to investigate the behavior of neutron pairing.

Let us explain the equations for1S pairing in the BCS theory applied to the 2D Schrödinger
equation (3). TheS-wave pairing gap depends on|p⊥| and it is written as

∆(p) = −1

2

∫

d2k⊥
(2π)2

vpp(p⊥ − k⊥)
∆(k)

√

(e(k) − µ)2 + ∆(k)2
, e(p) =

p2
⊥

2m
+ V HF (p). (7)

Here p and k denote|p⊥| and |k⊥|, respectively, andvpp and V HF (p) is the pairing force and the
Hartree-Fock potential. The occupation probability is

v2
k =

1

2

(

1 − e(k) − µ
√

(e(k) − µ)2 + ∆(k)2

)

, (8)

and the chemical potentialµ is determined so as to satisfy the number equation,ρ
2 =

k2

F

4π =
∫ d2k⊥

(2π)2
v2
k,

whereρ andkF are the density and the Fermi momentum in 2D, respectively. In this paper, thekF

dependence of pairing properties in neutron matter is discussed as a function of the ratiokF /k0, where
k0 = 1.36 fm−1 is the Fermi momentum at the normal density of 3D symmetric nuclear matter.

To analyze the spatial structure of ann-Cooper pair it is useful to study the pair wave function in
the coordinate space. It is defined by the Fourier transform of the anomalous densityκ(k),

Ψpair(r⊥) ≡ n0〈ΦBCS|a†(r′⊥ ↑)a†(r′′⊥ ↓)|ΦBCS〉 = n0

∫

d2k⊥
(2π)2

κ(k)eik⊥·(r′
⊥
−r

′′

⊥
). (9)
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Herer⊥ = |r′⊥ − r′′⊥|, andn0 is the normalization factor so that
∫

d2r⊥|Ψpair(r⊥)|2 = 1. The pair size
(coherence length)ξ⊥ is calculated from the root-mean-square distance of the pair wave function

ξ⊥ ≡
√

〈r2
⊥〉, where 〈r2

⊥〉 =

∫

d2r⊥r2
⊥|Ψpair(r⊥)|2. (10)

In the low-density limitkf → 0, the pair wave functionΨpair and the energy of the BCS state approach
the wave function and the half of the binding energy of the bound state of an isolate two neutron system.

3 Results

In this section, two-neutron correlations in quasi-2D neutron systems are investigated by performing
BCS calculations for 2D neutron matter with the Gogny D1S andMinnesota forces, which are often-used
effective nuclear forces. The results for various values ofa of the confinement in the frozen direction (z)
are analyzed, and the behavior of Cooper pairs in quasi-2D neutron matter is discussed as a function of
Fermi momentum(kF /k0).
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Fig. 1: Pairing gap at the Fermi momentum∆F = ∆(k = kF ) in quasi-2D neutron matter as a function of
kF /k0 (k0 = 1.36 fm−1). Left and right panels show the results with the Gogny D1S force and Minnesota force,
respectively.

We first show the pairing gap at the Fermi momentum∆F ≡ ∆(k = kF ) as a function ofkF /k0 in
Fig. 1. The Gogny D1S and Minnesota forces give qualitatively similar results in the lowkF region. At
kF /k0 ≥ 0.3, the pairing gap is more suppressed in case of the Minnesota force, because the short-range
repulsion is larger than with the Gogny force. Fora = 1 fm, the pairing gap obtained with the Gogny
D1S force has a peak about 4 MeV high atkF /k0 ∼ 0.4, while that calculated with the Minnesota force
has a peak∼ 3 MeV high atkF /k0 ∼ 0.3. With the increase of the widtha of the slab, the pairing gap
∆F is quenched because the attraction of the pairing force is weaker in a wider slab.

We next discuss the pair sizeξ⊥ in quasi-2D neutron matter plotted as a function ofkF /k0 in
Fig. 2. In thekF → 0 limit, the pair sizeξ⊥ equals the size of thenn bound state in the quasi-2D
two-neutron system. With the increase ofkF , the pair size reduces first before it becomes large again
with further increase ofkF . Thus the minimum pair sizeξ⊥ is found to be smaller than the sizeξnn

⊥ of
the isolated two-neutron bound state in the quasi-2D system. This size reduction of thenn-Cooper pair
indicates the enhancement of the dineutron correlation at finite low kF , i.e. due to the existence of a
Fermi sea. It should be pointed out that the pair size significantly depends also on the widtha of the slab.

A striking difference of the pair size between the quasi-2D and 3D neutron matter is that the
pair size at thekF → 0 limit is finite in the quasi-2D neutron matter while it becomes infinite in the 3D
neutron matter. In the 3D neutron matter, the Cooper pair sizeξ has a minimum aroundkF /k0 = 0.5, and
it rapidly increases askF goes 0. Interestingly, the size shrinking of the Cooper pairin quasi-2D neutron
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Fig. 2: (a)(b) Sizeξ⊥ of a Cooper pairΨpair in quasi-2D neutron matter obtained with the Gogny D1S and
Minnesota forces. The calculated values are plotted as a function ofkF /k0 (k0 = 1.36 fm−1). The average inter-
neutron distanced = ρ−1/2 is plotted with the dotted lines. (a’)(b’) Same as (a)(b) butscaled up for the vertical
axis.

matter has a close analogy with that of the deuteron in 3D symmetric matter predicted by Lombardo and
Schuck [34].

As mentioned above, the spatial correlation of Cooper pairsenhances at finite lowkF in quasi-2D
neutron matter with a small widtha, where the BCS-BEC crossover phenomena is expected. To discuss
pairing properties from the point of view of the BCS-BEC crossover, it is useful to compare the pair
size ξ⊥ with the average inter-neutron distanced ≡ ρ−1/2 as discussed in the works for 3D neutron
matter [21, 22]. In the quasi-2D neutron matter, the ratioξ⊥/d monotonically deceases askF becomes
small, and finally the system goes to the strong coupling BEC limit. This is one of the interesting
differences from 3D neutron matter where the ratio decreases once in finite low-density region and it
goes to infinite again in thekF → 0 limit.

To reveal the features of BCS-BEC crossover it is also usefulto analyze the spatial structure of the
nn-Cooper pair wave function1 as done in Refs. [21,22]. Let us discuss the pair wave function Ψpair(r⊥)
in the quasi-2D neutron matter witha = 2 fm. At low kF such askF = k0/8 andkF = k0/4, the pair
wave function shows a single peak structure atr⊥ ∼ 0. It indicates the strong spatial correlation of the
Cooper pair, namely, a feature of a BEC-like dineutron pair.With increase ofkF from kF = k0/8 to
kF = k0/4, the first peak becomes narrow due to the Pauli principle fromthe other Cooper pairs, and
the size shrinking of the dineutron occurs as mentioned before. With further increase ofkF , the nodal
structure appears atkF = k0/2 which indicates the transition from the BCS-BEC crossover to the BCS
regime, and atkF = k0 the short-range correlation disappears as in the weak coupling BCS phase.

1We are aware that the notion ‘Cooper pair wave function’ has,recently, become a subject of debate (see, e.g., G.G. Dussel,
S. Pittel, J. Dukelsky, P. Sarriguren, Phys. Rev. C76, 011302 (2007) and references in there). We do not want to enter this
discussion here and stay with the traditional jargon.
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4 Summary and outlook

In order to understand mechanism of the formation of spatially correlatednn pairs and the shrinking of
the pair size in nuclear surface, we considered a simplified model of quasi two-dimensional neutron mat-
ter confined in an infinite slab which mimics a neutron layer inthe surface where distribution of valence
neutrons concentrates. Spin-zeronn pair correlations in low density neutron systems in an infinite slab
with a certain thickness were investigated by means of the BCS theory with a simple assumption that
neutron motion of one direction is frozen.

It is found that, when the slab is thin enough, thenn pairing gap enhances and the size shrinking
of nn Cooper pair occurs at finite low-density region in the quasi-2D system. We find that for reasonable
slab thicknesses ofa ∼ 1 fm, the pair radius is of the order of 2−3 fm in agreement with realistic 3D
HFB calculations [15]. We also show that the transition region of the BCS-BEC crossover appears in the
quasi-2D neutron matter atkF /k0 < 0.4 ∼ 0.5 for a ∼ 1 fm.
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K. Katō, and K. Ikeda, Prog. Theor. Phys.108, 133 (2002).

[7] T. Myo, S. Aoyama, K. Kat̄o and K. Ikeda, Prog. Theor. Phys.108, 133 (2002).

[8] T. Myo, S. Aoyama, K. Kat̄o and K. Ikeda, Phys. Lett.B576, 281 (2003).

[9] K. Hagino and H. Sagawa, Phys. Rev. C72, 044321 (2005).
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