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Abstract

Two-neutron correlation in quasi two-dimensional (2D) tnea matter is stud-
ied by means of the BCS theory to understand formatiamgbairs in nuclear
surface of neutron-rich nuclei. The spin-zeta pair correlation in low den-
sity neutron systems confined in an infinite slab is investigian a simplified
model that neutron motion of one direction is frozen. It isrfd that, when the
slab is thin enough, then pairing gap enhances and the size shrinkingof
Cooper pair occurs at finite low-density region in the qi3isystem.

1 Introduction

Two-neutron correlation in neutron-rich nuclei is preseanhe of the fore-front subjects in the physics of
unstable nuclei. In two-neutron halo nuclei, the dineutrorrelation was extensively investigated with a
three-body picture of a core and two valence neutrons [1-t@}as discussed also in light neutron-rich
nuclei such as iffHe [11-13] and in medium-heavy neutron-rich nuclei [14,a8well as asymmetric
nuclear matter (for example, Refs. [16—23] and referengesein). The neutron-neutron interaction is
attractive in thé S channel, and therefore, it is natural to expect that spin-ze pair correlations may
enhance in nuclear systems though the interaction is ndt@msas to form a two-neutron bound state in
a free space. We here call the spin-zeropair with strong spatial correlations "dineutron”. Origliy
the possible existence of a dineutron near the surface ¢dinuas predicted by Migdal in 1972 [24]. His
idea describes the binding mechanism of a Borromean systdnsaxtended to the dineutron cluster
picture in two-neutron halo nuclei.

Recently, dineutron correlations have also been disciussetthe point of view of Bose-Einstein
condensation (BEC), which is considered along similarsiae deuteron and-particle condensation
suggested in dilute nuclear matter [17,25—-28] as well esndensate states in excited stateg 6 N =
even nuclei [29-31]. From the analysis of the spatial stimecof thenn Cooper pair in infinite neutron
matter, it was found that an enhancement of pairing gap ankashkrinking of Cooper pairs occur at
finite low density [18, 21, 22]. Similar shrinking of the paize were predicted also at the surface of
medium-heavy nuclei [14, 15].

Thus, spatially correlated neutron pairs are expectedgeadn the environment of dilute neutron
matter, and therefore, the spatial structure of neutrors @dithe surface of neutron-rich nuclei attracts
presently great interest. In the recent studies of neuiamnnauclei with HFB calculations [14,15], it was
found that the extension ofan-Cooper pair rapidly decreases when going from inside tosthiéace
before expanding again when leaving the nucleus. 7ih€ooper pair attains a minimum size of about
2-3fm that is very small size reaching the dimension of thege®n. This is also highlighted by the fact
that in''Li even the single Cooper pair is very small in the surfacg.[32

Our aim in this paper is to understand mechanism of the foomaff spatially correlatedn pairs
and the shrinking of the pair size in nuclear surface. Fardhn, we consider a simplified model of quasi



two-dimensional (2D) neutron matter which mimics a neutayer in the surface where distribution of
valence neutrons concentrates. By ‘quasi two-dimensi@ia)’, we mean that the ‘bound’ Cooper pairs
are confined within a surface layer of abdut- 2 fm and that the degree of freedom in radial direction
is approximately frozen. Such a scenario could for exampledalized by the fact that the density
distribution of valence neutrons in very neutron rich anduyenuclei are in radial, say-direction,
concentrated in a surface layer and that the density disimib in z-direction can be approximated by a
frozen Gaussian packet, whereas the motion of the neutrithithe layer is free. Pursuing the picture
to its extreme, one could imagine a slab of low density negtnohere in the transverse) (direction
only a single0s level below the Fermi energy is active.

In the present work, we investigate properties of neutrarspa the quasi-2D neutron matter by
using finite-range effective nuclear forces. Concernimgdidgree of freedom in the transvetsdirection
perpendicular to the 2D plane, we for simplicity assume asSian packet as mentioned above. We
investigate pairing properties of the quasi-2D neutrontendtased on the BCS theory. Pairing gap and
size of the Cooper pair in quasi-2D neutron systems are aed/\and BCS-BEC crossover phenomena
are discussed. We also discuss the dependence of pairtngefean the thickness of the neutron slab.

This paper is organized as follows. In the next section, wataéx our simplified model of quasi-
2D neutron matter and formulation of the present work. Irtisac3, the results obtained for neutron
matter are shown and pairing properties are discussedlyiina give a summary and outlook in section
4,

2 Formulation of Nuclear 2D Pairing

We here explain our framework of the simplified model of gt8ineutron system confined in a slab
with a certain thickness. We first describe the wave functiot the Hamiltonian for a quasi-2D neutron
system. We then explain the formalism for the quasi-2D itdinieutron matter within the BCS theory.
More details of the formulation are described in Ref. [33].

2.1 Quasi-2D neutron systems

According to the outline of the Introduction, we propose aeldor a system of neutrons confined in a
slab with a certain thickness. We assume that the neutroiomiotthe transversez{ direction is frozen
and is represented by a simple Gaussian packet of the widdmgdera. As already mentioned, this
thicknessa of the slab may mimic the concentration of the amplitudesrajle particle wave functions
in a surface layer, wherecorresponds to the radial direction in finite neutron-riciclgi.

The wave function for a single neutron is written as

z

B(r) = 2P (. v) ® 6%(2). ¢°S<z>=<%)l/4exp[ ] ®

Ta 2a?

wherer indicates the coordinates in the sldb, ), andy is the intrinsic spin. The thickness, i.e., the
rms width, of the slab i&/(2?) = v2a. In a similar way, aV-neutron wave function is given as

Pley, v X, xn) @ 8% (z1) 0% (zn). ()

Here® and®?P are the antisymmetrized many-body wave functions.

(I)(I']_,--- y TN, X1, 7XN) =

Neutrons are interacting with each other via two-body rarckerces. The interactiof (r;;)
between two neutrons is the two-body effective nucleardanctheT” = 1 channel. The central part of
theT" = 1 channel in the Gogny [35, 36] and Minnesota [37] forces apeasented by a superposition

of two Gaussiansy (r) = 2 . (Wi + B Py — HyPr — My, Py Py) exp [_g‘;]

m=1
We freeze the transverse) (motion as mentioned before. By integrating oygcoordinates, we
reduce the three-dimensional Schrodinger equatio®far the two-dimensional equation f@>” with
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respect ta; |, and get the following equation for quasi-2D neutron system

HZD(I)2D(I'1J_"” Sy INL, X1, aXN) = EZDQ)ZD(I‘IJ_"" sIN L, X1, 7XN)a (3)
Ztu +ZV szJ_ (4)
1<J

wheret; | is the 2D-kinetic term and?” (r;;, ) is the 2D-interaction term,

VP (r) = <¢OS<21 ¢" (22)| V(1) [6% (21) 9" (22))

b

b2 1/2
(b%n + 2a2> ' ©)

It should be pointed that the strength of the quasi-2D twdytytentiall 2? (r | ) depends on the thick-
ness of the slab with the factd,  (a) as seen from (5) and (6). The strength decreases with thesiser
of the width parametet. It means that the effectiven force in quasi 2D is stronger in thinner slab than
in thicker one.

Of course, the present assumption of frozemotion with a simple Gaussian form might be too
simple to describe the detailed behavior of the radial nmadifovalence neutrons. However, it is expected
that such effects may effectively be taken into account byodifitation of the width parameter. In
the present work, we analyze properties of neutron pairsi@sig2D neutron systems by taking various
values of the slab thickness

2
- Zme Wi, + By Py — Hy Py — MPP)exp[—%], (5)

Zp,, (a)

2.2 Quas two-dimensional neutron matter within BCStheory

We here apply the BCS theory, which is equivalent to the HRB@amation in a homogeneous case, to
the quasi-2D infinite neutron matter in the slab in order t@#tigate the behavior of neutron pairing.

Let us explain the equations foiS pairing in the BCS theory applied to the 2D Schrédinger
equation (3). TheS-wave pairing gap depends ¢, | and it is written as

Alp)=—= | —=v -k , e(pp==+V . 7
(p) 2/(%)2 pp(PL J_)\/(e(k) EEESN(E (p) =5~ (). ()
Herep and k denote|p, | and |k, |, respectively, and,, and VZ ¥ (p) is the pairing force and the
Hartree-Fock potential. The occupation probability is

2 1 _ e(k) —p
3 (1 NEoEnE A(k)?) | ©

and the chemical potential is determined so as to satisfy the number equatos; i = El;’fg Vi
wherep and kr are the density and the Fermi momentum in 2D, respectiveiythis paper, the g
dependence of pairing properties in neutron matter is diggli as a function of the ratig- /&, where
ko = 1.36 fm~! is the Fermi momentum at the normal density of 3D symmetradear matter.

To analyze the spatial structure oha-Cooper pair it is useful to study the pair wave function in
the coordinate space. It is defined by the Fourier transfdrtheoanomalous density(k),

k.
(2m)?

Upair(r1) = no(®@pes|a’ (v, Tal (] |)|®@pes) = no/ k(k)e (LT, (9)
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Herer, = |r/, —r'/|, andny is the normalization factor so thgftd%lytllpair(m)]z = 1. The pair size
(coherence length, is calculated from the root-mean-square distance of threwaaie function

£ = (ri>, where <7ﬁ>:/dzrlril\llpair(m_)]Q. (10)

In the low-density limitk; — 0, the pair wave functiow ,,;, and the energy of the BCS state approach
the wave function and the half of the binding energy of therabstate of an isolate two neutron system.

3 Reaults

In this section, two-neutron correlations in quasi-2D ngutsystems are investigated by performing
BCS calculations for 2D neutron matter with the Gogny D1SMnthesota forces, which are often-used
effective nuclear forces. The results for various values affthe confinement in the frozen directios) (
are analyzed, and the behavior of Cooper pairs in quasi-2ifrare matter is discussed as a function of
Fermi momentunky / ko).

‘a=1fm —

Fig. 1: Pairing gap at the Fermi momentufnyz = A(k = kp) in quasi-2D neutron matter as a function of
kr/ko (ko = 1.36 fm~1). Left and right panels show the results with the Gogny DI8d@nd Minnesota force,
respectively.

We first show the pairing gap at the Fermi momentiym = A(k = k) as a function ok /kg in
Fig. 1. The Gogny D1S and Minnesota forces give qualitatigghilar results in the lowkr region. At
kr/ko > 0.3, the pairing gap is more suppressed in case of the Minnesate, fbecause the short-range
repulsion is larger than with the Gogny force. Foe= 1 fm, the pairing gap obtained with the Gogny
D1S force has a peak about 4 MeV highkat/k, ~ 0.4, while that calculated with the Minnesota force
has a peak- 3 MeV high atkr/ky ~ 0.3. With the increase of the width of the slab, the pairing gap
Ar is quenched because the attraction of the pairing force &kerdn a wider slab.

We next discuss the pair siZe in quasi-2D neutron matter plotted as a functionkef/k( in
Fig. 2. In thekr — 0 limit, the pair size¢, equals the size of then bound state in the quasi-2D
two-neutron system. With the increasekgf, the pair size reduces first before it becomes large again
with further increase ofr. Thus the minimum pair sizg, is found to be smaller than the sig&" of
the isolated two-neutron bound state in the quasi-2D sysiéis size reduction of then-Cooper pair
indicates the enhancement of the dineutron correlatiomédé fiow kg, i.e. due to the existence of a
Fermi sea. It should be pointed out that the pair size sigmiflg depends also on the widthof the slab.

A striking difference of the pair size between the quasi-2idl 8D neutron matter is that the
pair size at thér — 0 limit is finite in the quasi-2D neutron matter while it becasrigafinite in the 3D
neutron matter. In the 3D neutron matter, the Cooper padias a minimum arounklr /ky = 0.5, and
it rapidly increases akr goes 0. Interestingly, the size shrinking of the Cooper ipajuasi-2D neutron
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Fig. 2: (a)(b) Size¢, of a Cooper paint,.;: in quasi-2D neutron matter obtained with the Gogny D1S and
Minnesota forces. The calculated values are plotted asaifumof k- /kq (ko = 1.36 fm~1). The average inter-
neutron distancé = p~'/2 is plotted with the dotted lines. (a’)(b’) Same as (a)(b) caled up for the vertical
axis.

matter has a close analogy with that of the deuteron in 3D sstmermatter predicted by Lombardo and
Schuck [34].

As mentioned above, the spatial correlation of Cooper mailences at finite lowg in quasi-2D
neutron matter with a small widtl, where the BCS-BEC crossover phenomena is expected. Tasdisc
pairing properties from the point of view of the BCS-BEC @woeer, it is useful to compare the pair
size £, with the average inter-neutron distanée= p~'/2 as discussed in the works for 3D neutron
matter [21, 22]. In the quasi-2D neutron matter, the r&tigd monotonically deceases &g becomes
small, and finally the system goes to the strong coupling Bi.l This is one of the interesting
differences from 3D neutron matter where the ratio decseasee in finite low-density region and it
goes to infinite again in theg — 0 limit.

To reveal the features of BCS-BEC crossover it is also usefahalyze the spatial structure of the
nn-Cooper pair wave functidras done in Refs. [21,22]. Let us discuss the pair wave fumdtiqu, (1 )
in the quasi-2D neutron matter with= 2 fm. At low kp such ascp = ko/8 andkr = ky/4, the pair
wave function shows a single peak structure at~ 0. It indicates the strong spatial correlation of the
Cooper pair, namely, a feature of a BEC-like dineutron pdiith increase ofcr from kr = ko/8 to
kr = ko/4, the first peak becomes narrow due to the Pauli principle fiteenother Cooper pairs, and
the size shrinking of the dineutron occurs as mentionedrbeef@/ith further increase dofr, the nodal
structure appears &t = ky/2 which indicates the transition from the BCS-BEC crossowehée BCS
regime, and akr = kg the short-range correlation disappears as in the weakiogupCS phase.

1\We are aware that the notion ‘Cooper pair wave function’ heently, become a subject of debate (see, e.g., G.G. Dussel
S. Pittel, J. Dukelsky, P. Sarriguren, Phys. Rev7682011302 (2007) and references in there). We do not want t&r émis
discussion here and stay with the traditional jargon.
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4 Summary and outlook

In order to understand mechanism of the formation of spatiarrrelatednn pairs and the shrinking of
the pair size in nuclear surface, we considered a simplifiedatof quasi two-dimensional neutron mat-
ter confined in an infinite slab which mimics a neutron layethie surface where distribution of valence
neutrons concentrates. Spin-zero pair correlations in low density neutron systems in an itdisiab
with a certain thickness were investigated by means of th8 Bteory with a simple assumption that
neutron motion of one direction is frozen.

It is found that, when the slab is thin enough, thepairing gap enhances and the size shrinking
of nn Cooper pair occurs at finite low-density region in the quA3isystem. We find that for reasonable
slab thicknesses af ~ 1 fm, the pair radius is of the order o3 fm in agreement with realistic 3D
HFB calculations [15]. We also show that the transition sagf the BCS-BEC crossover appears in the
quasi-2D neutron matter & /kg < 0.4 ~ 0.5 fora ~ 1 fm.
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