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Abstract

Sequences of experimental ground-state energies for blotlaind eve are
mapped onto concave patterns cured from convexities duaitmg. These
patterns yield improved estimates by interpolation orapdaiation (as appro-
priate) of ground-state energies for nuclei, which haveyetbeen measured.
An example of this procedure, using the tin isotopes is givelme same pat-
terns, completed by a list of excitation energies, give mirak estimates
of thermodynamical functions, which lead to the averagelemmc number
(A)(B, 1) becoming a continuous variable at low to moderate temp&stu
allowing extrapolations towards nuclear masses closeripdides. Estimates
of the free energy and the average energy, as functiogA pfprovide upper
and lower bounds, respectively, to ground-state energalllyj we discuss ex-
tensions to a two-dimensional analysis and how concavidyuaniversality are
related to the theory of the nuclear density functional.

1 Introduction

The role of concavity in nuclear structure is studied in¢hcases: 1.) empirical extrapolations and in-
terpolations, 2.) nuclear thermodynamical functions, andhe nuclear density functional. Our general
argument follows from the well-known observation regagdivi’> and Z2 terms, for the neutron and pro-
ton numbers, respectively, in the semi-emprical mass faror atomic nuclei [1]. They naturally lead
to a concave trend, when empirical data for nuclear grouaie-$g.s.) energies are plotted for isotopic,
isotonic or isobaric chains or as two-dimensional plotsviand Z. This is particularly evident, when
the overall linear trend in the data, due to the fact that thdibg energy (BE) per nucleon is 8 MeV,

is removed. We propose to smooth this trend towards corycewvthe nuclear data by removing pairing
effects and adding a small parabolic correction, so as teagtee an overall positive second derivative to
the plotted data. Such concave plots of the data lead to wegrestimates of unknown g.s. energies by
extrapolations (producing a lower bound) and interpotetiproducing an upper bound). An example
of this procedure is given for the tin (Sn) isotopes in Secflo

Since concavity is also a property of several nuclear thdgmamical functions, we also extend
our zero-termperature analysis to finite temperaturesetti@ 3 we observe that at finite temperatures
plots of the average enerd¥l) and the free energ¥ = (H) — T'S, as functions of the average particle,
(i.e., nucleon) numberfA), lead to upper and lower bounds, respectively, for the gnefgis allows
us to put error bars on our predicted results. In Section 4 iseuds the extension of our approach
to two-dimensionsi.e., NandZ, and the relation of concavity with the derivation of a nacldensity
functional [2]. A summary, discussion and conclusions @rergin Section 5.

2 Concavity for experimental ground-state energies

We now give an example of our approach using the experimgrdalenergies for the Sn isotopes, for
which considerable data is known [3—6]. The solid line in.Righows a plot of the energiek 4, in keV
for 11°Sn to!34Sn, in which the overall linear trend has been removed bynadti00.A + 115000 to E 4.
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Fig. 1: Snisotope energies: irregular line joiniregv experimental ground-state energiés + 7500 A + 115000;
pairing and parabolic corrections give the nonconnectaddidiots.

The general concave shape of the data is apparent as waHl addkeven staggering due to pairing. Next
we add to eaclevennucleus energy a fixed number, for examp{&V, Z) = 1250 keV, to suppress the
increased binding due to pairing. Calculating the secofierdnces (SDS)E 411 —2FE 4+ FE 41, we find
that a few of them are still slightly negative. We now makeSills positive by adding a small, artifical,
parabolic correctionP x (A—122)2, with P = 75 keV. The lowest pointd, = 122, is arbitrary, because
the SDs will increase by just a constant, namely twice théfictent P of the A term. Our result for the
new, purely concave energie@j4 = E4 + 75004 + 115000 + p x Mod[A +1,2] + P x (A — 122)2,

is illustrated by the black dots in Fig. 1.

An application of this procedure is shown in Fig. 2, in whittsiassumed that the g.s. energy for
1325 is unknown. The left-hand plot shows two extrapolatiomg @n interpolation, based on thew
dataF 4, while the right-hand plot gives two extrapolations andittterpolation, based on the concave
energiesE;x. Comparing the numerical results for both examples, onesfihdt in all three cases an
extrapolation or interpolation from the concave ene@é,syields a better estimate for the unknown
energy, than its counterpart from thew energiest/4. One also observes that for the concave energies
E’A, extrapolationglwaysyield lower bounds and interpolatioasvaysyield upper bounds and, thereby,
provide an error bar on our predictions. See Ref. [7] for tttaa numerical results and more examples.

3 Concavity with thermodynamical functions
Consider the particle number operatarand an usual two-body nuclear Hamiltonikh= 224:1 t; +

Z;‘;jzl v;j, whereA = N + Z, t andv are the mass number, one-body kinetic energy and two-body

interaction, respectively. Nuclear data tables [8, 9] girecise values for a large number of lowest-lying
eigenvaluesr,, 4 of H for many nuclei. One may, thus, reasonably estimate thedgrartition function,

Z(1,B) = Tr exp [ (pA —H)] = > " (2na + 1) exp [B (1A — Epa)], (1)
nA

and the negative of the grand potential
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Fig. 2. Left, raw energies: full line, interpolation frod#!Sn and!33Sn; long dashes, extrapolation froi?Sn
and'3'Sn; short dashes, extrapolation frdfASn and'33Sn. Dots represent the experimental energigsRight:
same inter- and extrapolations, concave data.

~Qu,8) = (LA —H))+TS=F"In Z=(""In {Z@jm + 1 exp B (nA - EnA)]} ; (2)

nA

provided that i) the temperaturé,= 3!, is low enough to allow a truncation of the spectrum to include
only those states provided by the tables and ii) the cherpi@ntial, ., selects mainly those nuclei in
which we are interested. We us€?, because it is known to be a concave functio’and .

From Egs. (1) and (2) and the derivatives-ef2 with respective tqu andT’, we can determine
(A), the entropyS, (H), and, consequently, the free enelgy= (H) — T'S. Our goals are:

1. To determinéH) and(A) as a function of: for a given finite temperatur.

2. To obtain(H) as a function of A) by eliminating.. between these two quantities. Note tHais
discrete but A) can be treated as a continuous variable at an appropriagetatare. From the
definition of the free energy, it follows th&tis also a continuous function ¢A). In addition, it
is straightforward to prove th&tis a concave function ofA).

3. To determine a sufficient temperatdfeat which(A) can be treated as a continuous variable and
(H) is a concave function ofA).

4. To utilize (H) andF to set error bars on our predicted, extrapolated g.s. ezeergi

Figure 3 gives a plot of the particle number fluctuation far 8n isotopes for two values @,
i.e.,7 =60 and 150 keV. Our criterion, fdrA) to be continuous, is that the particle number fluctuation
be at least 0.5 or larger, which is seen to be truelfer 150 keV but not fofl" = 60 keV. We also find
that forT ~ 150 keV (H) becomes a concave function @). As seen in Fig. 4(H) approaches the
physical g.s. energy from above and the free enérgpproaches it from below, in the limit Gf — 0.
Thus, at a given temperatufg (H) andF provide upper and lower bounds, respectively, on the physic

269



del taA

<A>’

119 120 121 122 123 124

Fig. 3: Particle number fluctuation. Upper (lower) curifé= 150 (60) keV.

g.s. energy for a given value @f. These bounds allow us to place error bars on our predictegdva
of unknown g.s. energies, as we extrapold® as a function of A) towards the drip lines. From Fig.
4 we observe that for the Sn isotopes dhd- 150 keV we obtain an error bar of 500 keV between
the energy and the free energy. Note that in Fig. 4 we have timedoncavity tuned energids, ,;
consequently, the primes on all quantities.

4 Two-dimensional analysisand the nuclear density functional

What we have done in Sections 2 and 3 for one-dimensionalestuid NV or Z can be extended in a
similar manner to a two-dimensional analysis in term&/oand Z. Again one can calculate SDs in the
N,Z, AandN — Z directions and make aA-dependent pairing correction [10] plus a small parabolic
term.

Rather than make a systematic study in two-dimensions $npuper, we would prefer to discuss
the relation of concavity with the derivation of a nucleansiéy functional. Recall that, given an arbitrary
many-body density matriX1 in Fock space, the density functional follows from the déifomi [11],

Flpp, pn] = Inf p—pp,0, TEH M. 3)

Here the symbolM — p,, p,, means that a minimization of the energy is performed uporsiten
matrices having the same neutron and proton profile®,. A nucleus is identified by the integrals,
N = [dip,(f)andZ = [ dr p,(7), and a later minimization is performed with respect to thdile®
Pn Pp UNder such identification constraints,

Ezn =1Inf,, N, p,—2z Flpn, ppl- 4)

The functionalF should be universal, in the nuclear physics sense. Namelypuld not depend
on N andZ. (In atomic and molecular physics, universality of the dgrfsinctional has a different mean-
ing; it refers to arbitrary external potentials.) While B@&d Hartree-Bogoliubov calculations allow a
distinction between even and odd particle numbers, uraligrsn density profile space does not allow
such a separate treatment. Observe, furthermore, thatbeof the fact that there are many convexities
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Fig. 4: Energy(H)’ (full curves) and free enerdy’ (dashed ones) as functions(@)’, calculated from concavity
tuned energieg, ,. Dots represent tuned, ground-state energigs, = £, already used in Fig. 1 and the rhs
part of Fig. 2. Upper full and lower dashed curvés= 150 keV. Lower full and upper dashed curvds,= 60
keV. Notice how the full curves turn out to be concave.

in the pattern ofaw energies, therexist many caseshere, for instance, three nuclel;, A,, As, are
such thatV, = (N7 + N3)/2 andZy = (Z1 + Z3)/2 and(Ey + E3)/2 < E,. Then, in a search faFs,

the mixture density matrixM,... = (|A1)(A1| + |As)(As]) /2, provides the correct average particle
numbersVs, Z5, but an absurd energy, lower thai. This effect can also be understood from the right-
hand side of Fig. 2, where the interpolated value from thecaoa-corrected dataust alwayse an
upper boundi.e., must be above the physical g.s. energy for a given valué. afhis is not necessarily
true for theraw data, although it happens to be so in the left-hand side ofZigherefore, we conclude
that concavity is anandatory conditiorfor the universalityof F.

5 Summary, discussion and conclusions

We have demonstrated how a list of g.s. energies for a segqudmsotopes can be turned into a concave
pattern. This involves simple manipulations; for instgnae explicit term, accounting for pairing in
even nuclei, can be subtracted from the bindings. This wnifie treatment of odd and even nuclei, a
notoriously difficult problem. If needed, a small quadrat@arrection can also be added to guarantee
concavity at all points along the sequence.

Similar arguments leading to concavity clearly hold fortesws as well, and, furthermore, for
any other sequence of neighboring nuclei in any directionsacthe nuclear table. Once this empirical
tuning has been implemented, linear (or more general) eaird interpolations of the concave pattern
can provide surprisingly accurate and robust estimatesr dfpunds for, binding energies. These tuning
terms, which are added to induce concavity, are, of coutddractedn fine (see Ref. [7] for details).

We then defined a more ambitious extra- and interpolatioerseh involving thermodynamical
functions from a grand canonical ensemble, because suctidna may have rigorous concavity proper-
ties. Theorems are, indeed, available to prove such piepeRor instance, the free energy is a concave
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function of the average particle number and is also a deiagedgnction of the temperature. We also
discovered that the average energy at nonzero temperatagedut, in general, to be a concave function
of the average particle number, depending upon the temyperat

For every given, finite temperature, we found that the avemtergy and the free energy, as func-
tions of the average particle number, give upper and lowends, respectively, for the concave envelope
of the g.s. energies. When the temperature vanishes, batidba@onverge to the exact results. At this
vanishing temperature, however, the analyticity of suehnrttodynamical functions is lost, because their
limit is only piecewise continuous. It is, therefore, nesay to retain a minimum temperature, if one
wants to obtain practical extrapolations for the predictid exotic nuclei. A minimum amount of par-
ticle number fluctuation is necessary to validate the caiwerof particle number, an initially discrete
quantity, into a continuous variable. We implemented nucakestimates of several thermodynamical
functions at moderate temperatures, a few hundred keV at Mbis yields a “band”, enclosing g.s. en-
ergies between the average energy and the free energy. @itteafithe band defines an error bar, which
can be trusted, when extrapolations are made. We can maké&admg conclusion that the combination
of concavity and extrapolations of thermodynamical fumtsi gives a systematic set of upper and lower
bounds for the prediction of g.s. energies.

Our last, and perhaps most important result, is the cororetigtween concavity and the univer-
sality of the density functional. In a two-dimensional asid, we argued that the nuclear Hamiltonian
mustbe concave in terms of the proton and neutron number opsraoias to guarantee obtaining con-
sistent energy minima everywhere in density space. Baseuloerical studies, we estimate that this
concavity correction can be made minimal if counterternrmg#oring are also added.
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