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Abstract
Sequences of experimental ground-state energies for both odd and evenA are
mapped onto concave patterns cured from convexities due to pairing. These
patterns yield improved estimates by interpolation or extrapolation (as appro-
priate) of ground-state energies for nuclei, which have notyet been measured.
An example of this procedure, using the tin isotopes is given. The same pat-
terns, completed by a list of excitation energies, give numerical estimates
of thermodynamical functions, which lead to the average nucleon number
〈A〉(β, µ) becoming a continuous variable at low to moderate temperatures,
allowing extrapolations towards nuclear masses closer to drip lines. Estimates
of the free energy and the average energy, as functions of〈A〉, provide upper
and lower bounds, respectively, to ground-state energy. Finally, we discuss ex-
tensions to a two-dimensional analysis and how concavity and universality are
related to the theory of the nuclear density functional.

1 Introduction

The role of concavity in nuclear structure is studied in three cases: 1.) empirical extrapolations and in-
terpolations, 2.) nuclear thermodynamical functions, and3.) the nuclear density functional. Our general
argument follows from the well-known observation regarding N2 andZ2 terms, for the neutron and pro-
ton numbers, respectively, in the semi-emprical mass formula for atomic nuclei [1]. They naturally lead
to a concave trend, when empirical data for nuclear ground-state (g.s.) energies are plotted for isotopic,
isotonic or isobaric chains or as two-dimensional plots inN andZ. This is particularly evident, when
the overall linear trend in the data, due to the fact that the binding energy (BE) per nucleon is∼ 8 MeV,
is removed. We propose to smooth this trend towards concavity in the nuclear data by removing pairing
effects and adding a small parabolic correction, so as to guarantee an overall positive second derivative to
the plotted data. Such concave plots of the data lead to improved estimates of unknown g.s. energies by
extrapolations (producing a lower bound) and interpolations (producing an upper bound). An example
of this procedure is given for the tin (Sn) isotopes in Section 2.

Since concavity is also a property of several nuclear thermodynamical functions, we also extend
our zero-termperature analysis to finite temperatures. In Section 3 we observe that at finite temperatures
plots of the average energy〈H〉 and the free energy,F = 〈H〉−TS, as functions of the average particle,
(i.e., nucleon) number〈A〉, lead to upper and lower bounds, respectively, for the energy. This allows
us to put error bars on our predicted results. In Section 4 we discuss the extension of our approach
to two-dimensions,i.e., NandZ, and the relation of concavity with the derivation of a nuclear density
functional [2]. A summary, discussion and conclusions are given in Section 5.

2 Concavity for experimental ground-state energies

We now give an example of our approach using the experimentalg.s. energies for the Sn isotopes, for
which considerable data is known [3–6]. The solid line in Fig. 1 shows a plot of the energies,EA, in keV
for 110Sn to134Sn, in which the overall linear trend has been removed by adding7500A+115000 to EA.
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Fig. 1: Sn isotope energies: irregular line joiningraw experimental ground-state energiesEA +7500 A+115000;
pairing and parabolic corrections give the nonconnected black dots.

The general concave shape of the data is apparent as well as the odd-even staggering due to pairing. Next
we add to eachevennucleus energy a fixed number, for examplep(N,Z) = 1250 keV, to suppress the
increased binding due to pairing. Calculating the second differences (SDs),EA+1−2EA+EA−1, we find
that a few of them are still slightly negative. We now make allSDs positive by adding a small, artifical,
parabolic correction,P×(A−122)2, with P = 75 keV. The lowest point,A0 = 122, is arbitrary, because
the SDs will increase by just a constant, namely twice the coefficient P of theA2 term. Our result for the
new, purely concave energies,E

′

A = EA + 7500A + 115000 + p × Mod[A + 1, 2] + P × (A − 122)2,
is illustrated by the black dots in Fig. 1.

An application of this procedure is shown in Fig. 2, in which it is assumed that the g.s. energy for
132Sn is unknown. The left-hand plot shows two extrapolations and an interpolation, based on theraw
dataEA, while the right-hand plot gives two extrapolations and theinterpolation, based on the concave
energiesE

′

A. Comparing the numerical results for both examples, one finds that in all three cases an
extrapolation or interpolation from the concave energiesE

′

A yields a better estimate for the unknown
energy, than its counterpart from theraw energiesEA. One also observes that for the concave energies
E

′

A, extrapolationsalwaysyield lower bounds and interpolationsalwaysyield upper bounds and, thereby,
provide an error bar on our predictions. See Ref. [7] for the actual numerical results and more examples.

3 Concavity with thermodynamical functions

Consider the particle number operatorA and an usual two-body nuclear HamiltonianH =
∑A

i=1
ti +∑A

i>j=1
vij, whereA = N + Z, t andv are the mass number, one-body kinetic energy and two-body

interaction, respectively. Nuclear data tables [8,9] giveprecise values for a large number of lowest-lying
eigenvaluesEnA of H for many nuclei. One may, thus, reasonably estimate the grand partition function,

Z(µ, β) = Tr exp [β (µA− H)] =
∑

nA

(2jnA + 1) exp [β (µA − EnA)] , (1)

and the negative of the grand potential
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Fig. 2: Left, raw energies: full line, interpolation from131Sn and133Sn; long dashes, extrapolation from130Sn
and131Sn; short dashes, extrapolation from134Sn and133Sn. Dots represent the experimental energiesEA. Right:
same inter- and extrapolations, concave data.

−Ω(µ, β) = 〈 (µA − H) 〉 + T S = β−1 ln Z = β−1 ln

{
∑

nA

(2jnA + 1) exp [β (µA − EnA)]

}
, (2)

provided that i) the temperature,T = β−1, is low enough to allow a truncation of the spectrum to include
only those states provided by the tables and ii) the chemicalpotential,µ, selects mainly those nuclei in
which we are interested. We use−Ω, because it is known to be a concave function ofT andµ.

From Eqs. (1) and (2) and the derivatives of−Ω with respective toµ andT , we can determine
〈A〉, the entropyS, 〈H〉, and, consequently, the free energyF = 〈H〉 − TS. Our goals are:

1. To determine〈H〉 and〈A〉 as a function ofµ for a given finite temperatureT .

2. To obtain〈H〉 as a function of〈A〉 by eliminatingµ between these two quantities. Note thatA is
discrete but〈A〉 can be treated as a continuous variable at an appropriate temperature. From the
definition of the free energy, it follows thatF is also a continuous function of〈A〉. In addition, it
is straightforward to prove thatF is a concave function of〈A〉.

3. To determine a sufficient temperatureT , at which〈A〉 can be treated as a continuous variable and
〈H〉 is a concave function of〈A〉.

4. To utilize〈H〉 andF to set error bars on our predicted, extrapolated g.s. energies.

Figure 3 gives a plot of the particle number fluctuation for the Sn isotopes for two values ofT ,
i.e.,T = 60 and 150 keV. Our criterion, for〈A〉 to be continuous, is that the particle number fluctuation
be at least 0.5 or larger, which is seen to be true forT = 150 keV but not forT = 60 keV. We also find
that forT ∼ 150 keV 〈H〉 becomes a concave function of〈A〉. As seen in Fig. 4,〈H〉 approaches the
physical g.s. energy from above and the free energyF approaches it from below, in the limit ofT → 0.
Thus, at a given temperatureT , 〈H〉 andF provide upper and lower bounds, respectively, on the physical
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Fig. 3: Particle number fluctuation. Upper (lower) curve,T = 150 (60) keV.

g.s. energy for a given value ofT . These bounds allow us to place error bars on our predicted values
of unknown g.s. energies, as we extrapolate〈H〉 as a function of〈A〉 towards the drip lines. From Fig.
4 we observe that for the Sn isotopes andT ∼ 150 keV we obtain an error bar of∼ 500 keV between
the energy and the free energy. Note that in Fig. 4 we have usedthe concavity tuned energiesE ′

nA;
consequently, the primes on all quantities.

4 Two-dimensional analysis and the nuclear density functional

What we have done in Sections 2 and 3 for one-dimensional studies in N or Z can be extended in a
similar manner to a two-dimensional analysis in terms ofN andZ. Again one can calculate SDs in the
N,Z,A andN − Z directions and make anA-dependent pairing correction [10] plus a small parabolic
term.

Rather than make a systematic study in two-dimensions in this paper, we would prefer to discuss
the relation of concavity with the derivation of a nuclear density functional. Recall that, given an arbitrary
many-body density matrixM in Fock space, the density functional follows from the definition [11],

F [ρp, ρn] = InfM→ρp,ρn
TrHM. (3)

Here the symbol,M → ρn, ρp, means that a minimization of the energy is performed upon density
matrices having the same neutron and proton profilesρn, ρp. A nucleus is identified by the integrals,
N =

∫
d~r ρn(~r) andZ =

∫
d~r ρp(~r), and a later minimization is performed with respect to the profiles

ρn, ρp under such identification constraints,

EZN = Infρn→N, ρp→Z F [ρn, ρp]. (4)

The functionalF should be universal, in the nuclear physics sense. Namely, it should not depend
onN andZ. (In atomic and molecular physics, universality of the density functional has a different mean-
ing; it refers to arbitrary external potentials.) While BCSand Hartree-Bogoliubov calculations allow a
distinction between even and odd particle numbers, universality in density profile space does not allow
such a separate treatment. Observe, furthermore, that, because of the fact that there are many convexities
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Fig. 4: Energy〈H〉′ (full curves) and free energyF′ (dashed ones) as functions of〈A〉′, calculated from concavity
tuned energiesE ′

nA. Dots represent tuned, ground-state energies,E ′

0A ≡ E ′

A, already used in Fig. 1 and the rhs
part of Fig. 2. Upper full and lower dashed curves,T = 150 keV. Lower full and upper dashed curves,T = 60

keV. Notice how the full curves turn out to be concave.

in the pattern ofraw energies, thereexist many caseswhere, for instance, three nuclei,A1, A2, A3, are
such thatN2 = (N1 + N3)/2 andZ2 = (Z1 + Z3)/2 and(E1 + E3)/2 < E2. Then, in a search forE2,
the mixture density matrix,Mmix = ( |A1〉〈A1| + |A3〉〈A3|) /2, provides the correct average particle
numbersN2, Z2, but an absurd energy, lower thanE2. This effect can also be understood from the right-
hand side of Fig. 2, where the interpolated value from the concave-corrected datamust alwaysbe an
upper bound,i.e.,must be above the physical g.s. energy for a given value ofA. This is not necessarily
true for theraw data, although it happens to be so in the left-hand side of Fig. 2. Therefore, we conclude
that concavity is amandatory conditionfor theuniversalityof F .

5 Summary, discussion and conclusions

We have demonstrated how a list of g.s. energies for a sequence of isotopes can be turned into a concave
pattern. This involves simple manipulations; for instance, an explicit term, accounting for pairing in
even nuclei, can be subtracted from the bindings. This unifies the treatment of odd and even nuclei, a
notoriously difficult problem. If needed, a small quadraticcorrection can also be added to guarantee
concavity at all points along the sequence.

Similar arguments leading to concavity clearly hold for isotones as well, and, furthermore, for
any other sequence of neighboring nuclei in any direction across the nuclear table. Once this empirical
tuning has been implemented, linear (or more general) extra- and interpolations of the concave pattern
can provide surprisingly accurate and robust estimates of,or bounds for, binding energies. These tuning
terms, which are added to induce concavity, are, of course, subtractedin fine(see Ref. [7] for details).

We then defined a more ambitious extra- and interpolation scheme, involving thermodynamical
functions from a grand canonical ensemble, because such functions may have rigorous concavity proper-
ties. Theorems are, indeed, available to prove such properties. For instance, the free energy is a concave
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function of the average particle number and is also a decreasing function of the temperature. We also
discovered that the average energy at nonzero temperature turns out, in general, to be a concave function
of the average particle number, depending upon the temperature.

For every given, finite temperature, we found that the average energy and the free energy, as func-
tions of the average particle number, give upper and lower bounds, respectively, for the concave envelope
of the g.s. energies. When the temperature vanishes, both bounds converge to the exact results. At this
vanishing temperature, however, the analyticity of such thermodynamical functions is lost, because their
limit is only piecewise continuous. It is, therefore, necessary to retain a minimum temperature, if one
wants to obtain practical extrapolations for the prediction of exotic nuclei. A minimum amount of par-
ticle number fluctuation is necessary to validate the conversion of particle number, an initially discrete
quantity, into a continuous variable. We implemented numerical estimates of several thermodynamical
functions at moderate temperatures, a few hundred keV at most. This yields a “band”, enclosing g.s. en-
ergies between the average energy and the free energy. The width of the band defines an error bar, which
can be trusted, when extrapolations are made. We can make thestrong conclusion that the combination
of concavity and extrapolations of thermodynamical functions gives a systematic set of upper and lower
bounds for the prediction of g.s. energies.

Our last, and perhaps most important result, is the connection between concavity and the univer-
sality of the density functional. In a two-dimensional analysis, we argued that the nuclear Hamiltonian
mustbe concave in terms of the proton and neutron number operators, so as to guarantee obtaining con-
sistent energy minima everywhere in density space. Based onnumerical studies, we estimate that this
concavity correction can be made minimal if counterterms for pairing are also added.
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