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Abstract
Microscopic optical model potentials for elastic hadron-nucleus scattering usu-
ally take the form of a convolution of a two-body effective interaction with the
target ground-state mixed density. Within the Brueckner-Bethe-Goldstoneg-
matrix approach for the effective interaction, nuclear medium effects are made
explicit by means spatial integrals throughout the bulk of the nucleus. In this
contribution we discuss a novel and exact approach to track down the mani-
festation of intrinsic nuclear medium effects. After examining the momentum-
and coordinate-space structure of a two-body effective interaction –spherically
symmetric in itsmean coordinate– it is demonstrated that the intrinsic medium
effects in the optical potential depend solely on thegradient of a reduced in-
teraction. This feature implies the confinement of intrinsic medium effects to
regions where the density varies most, i.e. the nuclear surface. This finding
may be of special significance in the study of nuclear collisions sensitive to
the peripheric structure of nuclei. We illustrate some of its implications in the
context of10Be + p elastic scattering at 39.1A MeV.

1 Introduction

Common approaches for the construction of a microscopic optical model potential (OMP) for nucleon-
nucleus (NA) scattering result in the folding of an antisymmetrized nucleon-nucleon (NN) effective in-
teraction with the target ground-state mixed density of thenucleus. Even though models based on the
Brueckner-Bethe-Goldstone (BBG)g matrix account for a broad body of scattering data [1, 2], there
remain puzzling limitations –specially at nucleon energies below 100 MeV– which require further at-
tention. This is specially relevant considering current trends aiming to the study of radioactive isotope
beams colliding against hydrogen targets. When the energies of these unstable beams reach 100A MeV,
the physics behind the collision mechanisms is the same as that of NA scattering at 100 MeV, typical
nucleon energies explored in the seventies. Thus, current activities involving radioactive beams provide
a stimulating ground to revisit the challenges to describe the interaction of nucleons with nuclei.

To quote some of these shortcomings we mention the calculated differential cross sections forNA
scattering at energies below 60 MeV, which lack an adequate consistency when considering different
targets or energies below 80 MeV [1,3]. Another case is the Ramsauer effect exhibited by the total cross
sections for neutron-nucleus scattering. Although some success has been reported in the description of
this phenomena at energies as low as 65 MeV [4], the microscopic description of the cross section at
lower energies and heavy targets remains an open problem [5]. In quasi-elastic(p,n) charge-exchange
reactions to the isobaric analog state, the use of the full-folding optical potentials cannot account properly
for the forward-angle (Fermi) cross sections, underestimating it by factors as large as of five [6]. From a
theoretical point of view, these shortcomings call for a closer scrutiny of the way microscopic OMP are
being calculated, addressing issues such as the adequacy ofthe effective interaction and/or the accuracy
of simplifying assumptions needed in their current realizations. Some progress along these lines has been
reported recently, where a closer scrutiny of the OMP in momentum space yields some novel features in
the structure of the OMP.
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2 The unabridged optical potential

The collisions between a nucleon with energyE and a composite target can be described by means of an
OMP, a one-body operator which in momentum space takes the general form [7]

U(k ′,k;E) =

∫
dp ′ dp 〈k ′p ′ | T̂ (E) | k p 〉 ρ̂(p ′,p) , (1)

with T̂ a two-body effective interaction which, in general, contains information about the discrete spec-
trum of the many-body system. The one-body mixed density in momentum space,̂ρ(p ′,p), represents
the ground-state structure of the target. A complete evaluation of the optical potential considering all
these elements is far from feasible with current computing capabilities. Part of the difficulties can be
avoided if one treats separately the target ground-state and the NN effective interaction, a reasonable
strategy for intermediate and high energy collisions. A remaining difficulty is to account for the Fermi
motion of the target nucleons, present in thedp dp′ integration.

As demonstrated in Ref. [8], the disentanglement of intrinsic medium contributions from its free-
space counterpart stems from a general analysis of the momentum-space structure of the two-body ef-
fective interaction. The matrix elements ofT̂ in coordinate space are denoted with〈r ′s ′ | T̂ | r s〉,
where the ‘prior’ coordinates of each particle are denoted by r ands, respectively. Analogously,r ′ and
s ′ refer to the ‘post’ coordinates of the same particles, as illustrated in Fig. (1). These vectors define the
mean coordinate Z, given by the simple average of the prior and post coordinates:

Z = 1

4
(r + s + r′ + s′)

In momentum space, thêT -matrix elements are denoted with̃T ≡ 〈k ′p ′ | T̂ | k p〉, wherek and
p represent the projectile and struck-nucleon momenta priorto interaction, respectively. Analogous
definitions, using prime marks, follow for the the post momenta. These two representations of theT̂ -
matrix are related by means of Fourier transforms, which following Ref. [8] yields

〈k′p′ | T̂ | k p〉 =

∫
dZ

(2π)3
eiZ·K⊥gZ(K

‖
; b′, b) . (2)

Here thereduced interaction, gZ, is evaluated at the mean coordinateZ and depends on the relative
momentab andb′, and the current of the interacting pair momentumK

‖
. These vectors are given by

b′ = 1

2
[K − P − 1

2
(q + Q)] ;

b = 1

2
[K − P + 1

2
(q + Q)] ;

K
‖

= K + P ;

K⊥ = Q − q .

where we have denotedq = k′ − k, the projectile momentum transfer;Q = p − p′, the momentum
transferred to the target nucleon;K = (k+k′)/2, the projectile mean momentum; andP = (p+p′)/2,
the target-nucleon mean momentum.
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Fig. 1: Representation of the prior/post coordinates and momenta in a two-body operator.
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At this point it is worthwhile to examine the particular caseof a spherically symmetric finite
nucleus. In such a case we assume thatgZ depends only on the magnitude of the mean coordinate,
|Z| = Z. Additionally, we assume that far away from the center of thenucleus the effective interaction
gZ tends to its free-space formg∞ ≡ t. To simplicity the writing we omit the momentum arguments
in the interactiongZ and replacegZ = (gZ − g∞) + g∞, in Eq. (2). After performing the solid angle
integration (dẐ) and subsequent integration by parts [8], we obtain theasymptotic separation

T̃ = δ(K⊥)g∞ − 1

2π2

∫
∞

0

Z3 dZ Φ1(Z K⊥)
∂gZ

∂Z
, (3)

whereΦ1(t) = j1(t)/t, with j1 the spherical Bessel function of order 1. What is interesting about this
result is that it disentangles very clearly the free-space contribution, theg∞ term, from its medium-
dependent counterpart. The medium dependence appears as the gradient of the reduced interaction,
whereas the medium-independent contribution exhibits momentum conservation, as dictated byδ(K⊥):
K⊥ = 0 ⇒ k + p = k′ + p′. The presence of aZ dependence in the reduced interaction inhibits
momentum conservation in thêT matrix. Momentum conservation is restored when∂gZ/∂Z = 0, as in
the cases of translationally invariant systems such as infinite nuclear matter or free space.

After replacing the above expression forT̃ into Eq. (1) forU we obtain theunabridged optical
model potential,U ≡ U0 + U1, where

U0(k
′,k;E) =

∫
dP ρ̂(q;P )t(K

‖
; b′, b) ; (4)

U1(k
′,k;E) =

1

2π2

∫
dQ dP ρ̂(Q;P )

∫
∞

0

Z 3dZΦ1(Z|Q − q|)
(
− ∂gZ

∂Z

)
, (5)

and ρ̂(Q;P ) ≡ ρ̂(p ′,p). The term ‘unabridged’ has been coined here to indicate thatthe expression
has not been subject to any simplifying consideration otherthan the spherical symmetry in the mean
coordinate. All implicit non-localities and genuine momentum dependence off-shell are fully retained.
Each matrix element ofU involves a seven-dimensional integral, six of which account for the Fermi
motion of the target nucleons (dP dQ), and one dimension for the radial integral onZ. Note that if
∂gZ/∂Z = 0, thenU → U0, the freet-matrix limit of thefull-folding optical potential introduced in the
nineties to studyNA scattering at intermediate energies [2].

Thus far we have made no allusion to any specific approach to model theT̂ matrix, rendering the
framework enough flexibility to investigate alternative approaches to represent theNN effective interac-
tion in the realm of a finite nucleus. A realization of the optical can be made if we model the reduced
interactiongZ by means of the reaction matrix in the BBG theory for infinite nuclear matter. Here at
each coordinateZ, where the local (diagonal) density of the nucleus isρ(Z), we identify the reduced
interactiongZ with the (antisymmetrized) reaction matrix. As demonstrated in Ref. [8], this model re-
produces thein-medium folding model introduced by Arellano, Brieva and Love [3] ifone assumes a
Slater approximation for the mixed density. However, the above expression is general enough to allow
the use of the full (off-shell) mixed density.

3 Surface-peaked medium effects

The medium-dependent termU1 can be conveniently expressed as

U1 =

∫
∞

0

u(Z) dZ ,

with u representing a potential density. Thus, by examining the behavior of u(Z) for selected matrix
elements ofU we can assess the importance of the various contributions tothe OMP. For illustration
purposes consider protons of massm and energyE colliding against a given nucleus. We examine the

169



(n)(p)

R
e

u
α

[
M

eV
fm

2
] 15

10

5

0

−5

−10

−15

(n)

Z [ fm ]

7654321

(p)

Z [ fm ]

Im
u

α
[
M

eV
fm

2
]

7654321

30

20

10

0

−10

−20

−30

Fig. 2: Radial behavior of the potential densityuα(Z) for 16O nucleus colliding with 30-MeV protons.

forward on-shell (k = k′; k =
√

2mE) matrix elements. Considering the case of16O, in Fig. (2) we plot
the real (upper frames) and imaginary (lower frames) components ofuα(Z) for E = 30 MeV. Here the
α label (dashed curves) represents, in decreasing order of importance, the 1p3/2, 1p1/2 and 1s1/2 shell
contributions, while the solid curves represent the sum of all of them. The (p) and (n) labels symbolize
couplings of the projectile (a proton) to the target protonsand neutrons, respectively. Notice that the scale
of Im uα doubles that of Reuα. This figure evidences quite neatly that medium effects become confined
to the region3−5.5 fm, with clear dominance of the coupling to neutrons over those to protons. Judging
from these figures, the inclusion/exclusion of proton densities in the evaluation ofU1 should have minor
impact in the evaluation of the optical potential. In other words, the main sensitivity to intrinsic medium
effects should come mainly from neutron densities.

To test these findings, we have evaluated optical potentialsin the so-calledδg−folding, namely,
an approximation where theQ dependence ofgZ has been dropped by replacingQ → q in Eq. (5) [9].
This consideration allows a dramatic simplifications in thenumerical evaluation of the optical potential,
making it accessible with the use of personal computers. In Fig. (3) we show the calculated differential
cross section for10Be + p elastic scattering at 39.1A MeV. The data are from Ref. [10].Here the
solid curves represent results within theδg−approach considering the two terms:U0 + U1. The dash-
dotted curves correspond to the case where onlyU0 is considered, namely the freet-matrix full-folding
potential. The dashed (dotted) curves represent results where, in the evaluation ofU1, proton (neutron)
matter distributions has been omitted. This selective switching illustrates clearly that the omission of
neutron densities in the evaluation ofU1 has a major effect in the cross section, consistent with Fig.
(2) for u(Z). In contrast, the omission of proton densities renders minor effects in the cross sections,
demonstrating its rather weak role in testing intrinsic medium effects. Overall, the description of the data
provided by theδg−folding approach is reasonable but not yet satisfactory. Itremains a pending issue
to identify the source of the disagreements, particularly regarding the deeper minimum predicted by the
theory but absent in the data. Work has been reported along these lines [10].

4 Summary and outlook

We have shown that the optical model potential can be expressed as the sum of two distinctive contri-
butions: one depending on the free-space effective interaction and another depending on the gradient of
a medium dependent effective interaction. When this mediumdependence is modeled by means of the

170



0 10 20 30 40 50 60 70 80
θ

c.m.
   [ deg ]

10
-1

10
0

10
1

10
2

10
3

dσ
/d

Ω
   

[ m
b/

sr
 ]

Full (g matrix)

U
1

(pp)
 = 0

U
1

(pn)
 = 0

U
1

(pp)
+U

1

(pn)
= 0

10
Be + p

39.1A  MeV

Fig. 3: Differential cross section for10Be+n elastic scattering at 39.1A MeV. The data are from Ref. [10].

BBG reaction matrix we observe that the intrinsic medium effects of the interaction become confined to
the nuclear surface, being this more pronounced in the case of the coupling of protons with neutrons.
These findings, based on the assumption of spherical symmetry on the mean coordinate, have been as-
sessed in the context of theδg-folding. These surface-sensitive phenomena, enhanced inthe case of the
peripheric neutrons, may be of particular importance in thestudy of rare isotope beams where exotic
nuclei collide against hydrogen targets.

Acknowledgements

H.F.A. acknowledges partial funding provided byFONDECYTunder grant 1080471.

References
[1] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis, and J. Raynal, Adv. in Nucl. Phys.

25, 275 (2000).

[2] L. Ray, G. W. Hoffmann and W. R. Coker, Phys. Rep.212, 223 (1992).

[3] H. F. Arellano, F. A. Brieva, and W. G. Love, Phys. Rev. C52, 301 (1995).

[4] P. K. Deb, K. Amos, S. Karataglidis, M. B. Chadwick, and D.G. Madland, Phys. Rev. Lett. 86,
3248 (2001).

[5] H. F. Arellano and M. Girod, Phys. Rev. C76, 034602 (2007).

[6] H. F. Arellano and W. G. Love, Phys. Rev. C76, 014616 (2007).

[7] K. M. Watson, Phys. Rev. 89, 575 (1953).

[8] H. F. Arellano and E. Bauge, Phys. Rev. C76, 014613 (2007).

[9] F. J. Aguayo and H. F. Arellano, Phys. Rev. C78, 014608 (2008).

[10] N. Keeley and V. Lapoux, Phys. Rev. C 77, 014605 (2008).

171




