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Abstract

Charge exchange reactions serve as alternative tests siftiztures of exotic
nuclei. Of particular relevance is th@, n) reaction, which is related to the
Gamow-Teller matrix element. Thi, n) reaction is also related t,p’)

in the case of transitions to the isobaric analogue stat8)(IAhere are few
measurements op(n) reactions using exotic beams. We revisit the case of
SHe(p, n)Li and discuss apparent discrepancies with other avaitidtiz.

1 Introduction

Charge exchange reactions are an important alternativattesng as sensitive tests of nuclear structure.
In the case of photon-induced reactioisr*) reactions on stable nuclei may lead to exotic nuclear
states, including the population of excited states, as lesrated in the case af O(y, 7—)'"F [1], and

of 6Li(~y, 71)%He [2]. The latter was recently measured at the tagged pHatslity at Mainz MAMI-

B [3], to resolve discrepancies associated with earliersmeanents using bremsstrahlung.

The simplest hadron-induced charge exchange reactiorig,areand(n, p). These are of interest
as: (a) the exchange reaction proceeds primarily througlistivector part of the nucleon-nucleus 4)
optical potential; (b) the matrix elements of the transitielate to the Gamow-Teller (GT) matrix ele-
ments; and (c) they( n) reaction is related t@, p’) scattering in the case of transitions involving isobaric
analogue states. The relationship to the GT transitions\gortant as ground state halos are particle-
bound but3-decay through the GT matrix element. Heripen) reactions are investigated in radioactive
beam experiments using hydrogen targets. One such cassy waiconsider herein, is théle(p, n)0Li
reaction to the ground and isobaric analogue statékijwhich was measured at GANIL by the Saclay
group [4]. Those data, which usedta.6A MeV SHe beam incident on a hydrogen target, were anal-
ysed using the JLM optical model, but the analysis requirgdrg large increase in the strength of the
imaginary potential Xy;y = 1.8) in order to explain the very small differential cross secs measured.

This paper will present a reanalysis of those data, usiniytglbourneg-folding optical model [5],
and discuss the connection to the availditie(p, p) andSHe(p, p’) data taken at the same energy [6].

2 Charge exchangereactionsin the Melbourne optical model

The Melbourne optical model, or Melbourgdolding model, is extensively described in the review-arti
cle [5], to which we refer the reader. We present the salieiritp herein as they relate to the description
of charge exchange reactions.

The basis for the optical potential are thenatrices, which are the momentum-space solutions of
the Brueckner-Bethe-Goldstone (BBG) equation in infinitgtter,viz
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where
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in which Q(¢, K; k) is an angle-averaged Pauli operator with an average cefitresss momentum
K, and the energie®& are medium-modified by the use of auxiliary potentials ustme prescription
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of Haftel and Tabakin [7]. ThéfLJLS,T is the nucleon-nucleonN\( V) interaction. Thoseg matrices are
dependent on the (two-body) total angular momentuispin, S, and isospin;Z’. In that respect, one
obtains the isoscalar and isovector optical potentialsceglsistently from the same set @¢fnatrices.

The effective NN interaction, which contain central, tensor, and two-bogdin-®rbit terms, is
then obtained irh'T" channel form by mapping onto coordinate-space represamseds sums of Yukawa
potentials iz
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where thef); are the characteristic operators for central for@ges- (1), containing{1, (¢ - o), (7 - 1),
(o-o7-7)} terms, for the tensor forceé = 2), and for the two-body spin-orbit forceé & 3). The

Sj( )( ) are complex, energy- and medium-dependent strengthS/,zj%dre the inverse ranges of the
interaction. The number of strengths and inverse rangesan be as large as necessaty;= 4 is

sufficient to reproduce the on-shell and a range of halbh#H g matrices within 32V N S, T channels.

From theg matrices, as mapped onto coordinate space represeniatiengptical potential for
elastic scattering may be written as

w%m—anﬂazg/ (8)0(Bis)¢a(s) ds + 3 Guph (1 Jvex( Riz)ou(ra),  (4)

whereR;; = |r; —r;|. The summation is over the shells defined in the basis frommdickear structure
model used in the calculation of the density, with being the occupation numbers for each shell as
obtained from the one-body density matrix elements (OBDMI&E subscripts D and Ex denote the sets
of elements of the effective interaction defining the disaud exchange parts of tiiéA optical potential,
respectively. Those interactions; andvgy, are complex and energy dependent by construction as the
effective interaction is derived from thematrices defined above. Note that the direct part of the alptic
potential is the familiagp form of the optical potentializ.

Vo(r1) =6 (r; —ra ZCn/ (8)vp (Ris)pn(s) ds

=4 (r1 —r2) /P(S)’UD(Rls) ds. )

The nonlocality in the optical potential comes explicithprih the exchange term in Eqg. (4). Neglect of
that term leads to serious problems in the descriptionsaifexing processes [8].

Inelastic scattering and charge exchange reactions magdueilded in the distorted wave approx-
imation (DWA), with the effectiveNV N interaction defining the optical potential taken as theditam
operator. The transition amplitude is, with '0’ denoting throjectile and '1’ denoting the bound nucleon
in the nucleus,

My M;vv'
=1, (9)
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where the distorted wave functions are denoted Byfor an incoming/outgoing nucleon with spin pro-
jection v, wave vectork, and coordinate sey”. Ap; iS an antisymmetrization operator between the
projectile and bound state nucleon. A cofactor expansioth@fuclear stat&@ ;,,(1... A) is made,
with the assumption that all pairwise interactions betwiherprojectile and target nucleons are taken to
be the sameyiz
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wherea = {n, (I, s), j, 7.} denotes the set of quantum numbers, exclusiveiphecessary to specify
the single-particle state. This allows the transition amgé to be expanded to form

WL, ..A)>
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where the nuclear matrix elements are given by (With, = (—1)""™a;_,)
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with application of the Wigner-Eckart theorem. The OBDME #re reduced matrix elements
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ol % ]
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The transition amplitude is then expressed, in terms of smmasthe OBDME, as
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The choice of single particle wave function is also impariarthe descriptions of scattering and
charge exchange reactions involving exotic nuclei. FalgnRef. [6], we choose two sets of single
particle wave function. The first is the standard set of hamimoscillators, with the oscillator parameter
set by the requirements of the shell model interaction {@ahse). That model we denote “non-halo”, as
the prescription gives rise for a standard neutron skinérctise of neutron-rich nuclei. To obtain a halo
or, more correctly, a more extensive neutron density tharstandard skin, we use Woods-Saxon (WS)
functions, with the binding energies of the orbits which taéence nucleons occupy set to the single
neutron separation energy of the exotic nucleus. Compadkthe two models with data then allows for
a proper test of the structure of the exotic nucleus undelysttor example, such an approach allowed
for an unambiguous identification of the hald®ide [6].

Once all the pieces have been prescribed, we use the DWBA pebgrams of Raynal [9] to
obtain the microscopic optical potential and the obsepslitifferential cross section, reaction cross
section, analysing power) therefrom.

For the evaluation of théHe(p, n) reaction, we use the Bonn-B potential [10] as the starting
potential in the calculation of the matrices. ThéHe wave functions are those as used in the analyses
of the (p, p) and(p, p’) data [6], which were obtained from a compléte+ 2 + 4)hw shell model using
the Zheng G matrix shell model interactions [11]. (Thesepldteractions are used in preference to the
more recent Navratil set as there have been some concenwaasd with those [12].) The oscillator
parameter as required for that shell model was sét401.7 fm. To specify the’He halo we use the
same set of WS single particle energies as was used in thgsasadf the proton elastic and inelastic
scattering data [6].
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3 Charge exchangereactionsinvolvingthe IAS

Charge exchange reactions involving transitions to isolzaralogue states (IAS) in the spectrum of the
target nucleus. In those instances, inelastic protonesaagtand(p, n) reactions are related. Assuming

that the IAS has the same underlying wave function, whemitig&ospin as a good quantum number, the
transition amplitudes [Eq. (11)] only differ in the par@cdsospin Clebsch-Gordon coefficient selecting
an outgoing proton or neutron. The differential cross sector the(p, n) reaction then scales against

the(p, p’) to the IAS in the target spectrum, as measured at the sangentgiroton energy, as the square
of the ratio of those Clebsch-Gordon coefficients. Note thistis an aspect of the nuclear structure of
the reaction.

An example is that of*C(p, n)1?Ngs [13,14]. The'?N ground state is the isobaric analogue of the
15.11 MeV1t; 1 state in'2C. The(p, n) reaction scales as that to the p’) as the ratio,

111 -1
f‘ ) =2. (12)

The data for both thép, n) and(p, p’) in this case illustrate this factor of two, which is also tlese in
the calculations of both using the Melbourgéolding model [14].

4 °He(p, n) and °He(p, p’)
The reactions involvingHe are special cases. The ground statéHbé is 0F; 1 and is the isobaric

analogue state of the 3.56 MéW ; 1 state inLi. The ®*He(p, n) differential cross section then scales to
the elastic scattering cross section with the ratio

—_— (13)

The%He(p, n) differential cross section was measured at an energy.6f4 MeV [4], while the elastic
scattering cross section was measured at an enerdyy.@fi MeV [6], making comparison of the two
measured cross sections ideal. Tlpen) cross sections to the ground and IAS®in are shown in
Fig. 1. Therein, the differential cross-section data fa &He(p, n) reaction to the ground and IAS in
6Li, taken at41 A MeV, are denoted by the squares and crosses, respectively,the data for the elastic
scattering, taken af0.9MeV are denoted by the circles. The results for the difféa¢ctoss sections of
calculations made using the Melbourgidolding model for thé’He(p, n) to the IAS and ground states
in Li are displayed by the solid and dot-dashed lines, resggti The dashed line corresponds to the
differential cross section to the IAS multiplied by 2.

It is apparent by comparison of the two sets of datas[j and f, p)] that the differential cross
section for elastic scattering is greater than thenj to the IAS by a factor of 30. The result of the
calculation of the differential cross section for the n) is greater than the corresponding set of data
by a factor of 20. Yet, multiplying that result by a factor og®es the dashed curve in Fig. 1 which
agrees reasonably with the data for elastic scatteringe Mhatt, while the magnitudes agree quite well,
the momentum transfer dependence is different as theelastttering contains contributions from the
isoscalar and isovector parts of the optical potential leviiie (p, n) reaction is isovector only. But the
factor of 1/2, as indicated by Eq. (13), is confirmed betwe@nacalculations and the elastic scattering
data. It is also noteworthy that the JLM potential used ini§4hot capable of explaining the elastic
scattering data as the imaginary strength of that poteistiab large. A reanalysis of the elastic scattering
using a different weighting of the imaginary potential mayrieeded. Such analysis may yield a value
of Ay much closer to unity.
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Fig. 1: Differential cross sections for tHéde(p, n) and®He(p, p) reactions. The data for the,(n) at41.64 MeV,
displayed as squares (ground state transition) and cr@lgs®gransition), are taken from Ref. [4], while those
of elastic scattering at0.94 MeV, displayed as circles, are taken from Ref. [6]. The rssigr the(p, n) to the
ground and IAS as calculated from the Melbougrmlding model are the dot-dashed and solid lines respelgtiv
The dashed line is the result of the calculation of the diff¢ial cross section to the IAS multiplied by 2.

5 Conclusions

We have presented a new analysis of the avail&is(p, ) reaction data. The results of our calculations
of the differential cross sections to both the IAS and groatades in®Li seriously overestimate the
guoted data, but for the IAS the result is in the correct raiih the available elastic scattering data.

The comparison of the data sets for the elastic scatteridgreng, ») to the IAS is most problem-
atic. Irrespective of the results of our calculations, theadsets do not reflect the ratio of 2 as required
by the particle isospin Clebsch-Gordon coefficients, stemgrfrom the nuclear structure, indicating a
problem in either of the two measurements. The elasticesiragt was a direct measurement of the ab-
solute cross section, while the measurement of the) was not. Instead it was a relative measurement
with the absolute cross section obtained by comparison avitiiableSLi(n, p)®He data. It would seem
that a problem may then lay in the analyses of(ihe:) data, although only a new measurement of that
reaction can only confirm it. It is hoped that such a measunéis@one with a measurement also of the
elastic scattering to ensure that the optical potentiadsl s the analyses are properly defined.
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