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Abstract
Charge exchange reactions serve as alternative tests of thestructures of exotic
nuclei. Of particular relevance is the(p, n) reaction, which is related to the
Gamow-Teller matrix element. The(p, n) reaction is also related to(p, p′)
in the case of transitions to the isobaric analogue state (IAS). There are few
measurements of (p, n) reactions using exotic beams. We revisit the case of
6He(p, n)6Li and discuss apparent discrepancies with other availabledata.

1 Introduction

Charge exchange reactions are an important alternative to scattering as sensitive tests of nuclear structure.
In the case of photon-induced reactions,(γπ±) reactions on stable nuclei may lead to exotic nuclear
states, including the population of excited states, as was illustrated in the case of17O(γ, π−)17F [1], and
of 6Li(γ, π+)6He [2]. The latter was recently measured at the tagged photonfacility at Mainz MAMI-
B [3], to resolve discrepancies associated with earlier measurements using bremsstrahlung.

The simplest hadron-induced charge exchange reactions are(p, n) and(n, p). These are of interest
as: (a) the exchange reaction proceeds primarily through the isovector part of the nucleon-nucleus (NA)
optical potential; (b) the matrix elements of the transition relate to the Gamow-Teller (GT) matrix ele-
ments; and (c) the (p, n) reaction is related to(p, p′) scattering in the case of transitions involving isobaric
analogue states. The relationship to the GT transitions is important as ground state halos are particle-
bound butβ-decay through the GT matrix element. Hence(p, n) reactions are investigated in radioactive
beam experiments using hydrogen targets. One such case, which we consider herein, is the6He(p, n)6Li
reaction to the ground and isobaric analogue states in6Li, which was measured at GANIL by the Saclay
group [4]. Those data, which used a41.6A MeV 6He beam incident on a hydrogen target, were anal-
ysed using the JLM optical model, but the analysis required avery large increase in the strength of the
imaginary potential (λW = 1.8) in order to explain the very small differential cross sections measured.

This paper will present a reanalysis of those data, using theMelbourneg-folding optical model [5],
and discuss the connection to the available6He(p, p) and6He(p, p′) data taken at the same energy [6].

2 Charge exchange reactions in the Melbourne optical model

The Melbourne optical model, or Melbourneg-folding model, is extensively described in the review arti-
cle [5], to which we refer the reader. We present the salient points herein as they relate to the description
of charge exchange reactions.

The basis for the optical potential are theg matrices, which are the momentum-space solutions of
the Brueckner-Bethe-Goldstone (BBG) equation in infinite matter,viz
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in which Q̄(q,K; kf ) is an angle-averaged Pauli operator with an average centre-of-mass momentum
K, and the energies̄E are medium-modified by the use of auxiliary potentials usingthe prescription
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of Haftel and Tabakin [7]. TheV JST
LL′ is the nucleon-nucleon (NN ) interaction. Thoseg matrices are

dependent on the (two-body) total angular momentum,J , spin,S, and isospin,T . In that respect, one
obtains the isoscalar and isovector optical potentials self-consistently from the same set ofg matrices.

The effectiveNN interaction, which contain central, tensor, and two-body spin-orbit terms, is
then obtained inST channel form by mapping onto coordinate-space representations as sums of Yukawa
potentials,viz.
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where theθi are the characteristic operators for central forces (i = 1), containing{1, (σ · σ), (τ · τ) ,
(σ · στ · τ)} terms, for the tensor force(i = 2), and for the two-body spin-orbit force (i = 3). The

S
(i)
j (ω) are complex, energy- and medium-dependent strengths, andµ

(i)
j are the inverse ranges of the

interaction. The number of strengths and inverse rangesni can be as large as necessary;ni = 4 is
sufficient to reproduce the on-shell and a range of half-off-shellg matrices within 32NN S, T channels.

From theg matrices, as mapped onto coordinate space representations, the optical potential for
elastic scattering may be written as

U (r1, r2) = δ (r1 − r2)
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whereRij = |ri − rj|. The summation is over the shells defined in the basis from thenuclear structure
model used in the calculation of the density, withζn being the occupation numbers for each shell as
obtained from the one-body density matrix elements (OBDME). The subscripts D and Ex denote the sets
of elements of the effective interaction defining the directand exchange parts of theNA optical potential,
respectively. Those interactions,vD andvEx, are complex and energy dependent by construction as the
effective interaction is derived from theg matrices defined above. Note that the direct part of the optical
potential is the familiargρ form of the optical potential,viz.
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The nonlocality in the optical potential comes explicitly from the exchange term in Eq. (4). Neglect of
that term leads to serious problems in the descriptions of scattering processes [8].

Inelastic scattering and charge exchange reactions may be described in the distorted wave approx-
imation (DWA), with the effectiveNN interaction defining the optical potential taken as the transition
operator. The transition amplitude is, with ’0’ denoting the projectile and ’1’ denoting the bound nucleon
in the nucleus,
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where the distorted wave functions are denoted byχ±

ν for an incoming/outgoing nucleon with spin pro-
jection ν, wave vectork, and coordinate set ’q’. A01 is an antisymmetrization operator between the
projectile and bound state nucleon. A cofactor expansion ofthe nuclear stateΨJM (1 . . . A) is made,
with the assumption that all pairwise interactions betweenthe projectile and target nucleons are taken to
be the same,viz.
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whereα = {n, (l, s), j, τz} denotes the set of quantum numbers, exclusive ofm, necessary to specify
the single-particle state. This allows the transition amplitude to be expanded to form
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where the nuclear matrix elements are given by (withãαm = (−1)j−maj−m)
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with application of the Wigner-Eckart theorem. The OBDME are the reduced matrix elements
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The transition amplitude is then expressed, in terms of sumsover the OBDME, as
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The choice of single particle wave function is also important in the descriptions of scattering and
charge exchange reactions involving exotic nuclei. Following Ref. [6], we choose two sets of single
particle wave function. The first is the standard set of harmonic oscillators, with the oscillator parameter
set by the requirements of the shell model interaction (in this case). That model we denote “non-halo”, as
the prescription gives rise for a standard neutron skin in the case of neutron-rich nuclei. To obtain a halo
or, more correctly, a more extensive neutron density than the standard skin, we use Woods-Saxon (WS)
functions, with the binding energies of the orbits which thevalence nucleons occupy set to the single
neutron separation energy of the exotic nucleus. Comparison of the two models with data then allows for
a proper test of the structure of the exotic nucleus under study. For example, such an approach allowed
for an unambiguous identification of the halo in6He [6].

Once all the pieces have been prescribed, we use the DWBA set of programs of Raynal [9] to
obtain the microscopic optical potential and the observables (differential cross section, reaction cross
section, analysing power) therefrom.

For the evaluation of the6He(p, n) reaction, we use the Bonn-B potential [10] as the starting
potential in the calculation of theg matrices. The6He wave functions are those as used in the analyses
of the(p, p) and(p, p′) data [6], which were obtained from a complete(0 + 2 + 4)~ω shell model using
the Zheng G matrix shell model interactions [11]. (These older interactions are used in preference to the
more recent Navrátil set as there have been some concerns associated with those [12].) The oscillator
parameter as required for that shell model was set tob = 1.7 fm. To specify the6He halo we use the
same set of WS single particle energies as was used in the analyses of the proton elastic and inelastic
scattering data [6].
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3 Charge exchange reactions involving the IAS

Charge exchange reactions involving transitions to isobaric analogue states (IAS) in the spectrum of the
target nucleus. In those instances, inelastic proton scattering and(p, n) reactions are related. Assuming
that the IAS has the same underlying wave function, when treating isospin as a good quantum number, the
transition amplitudes [Eq. (11)] only differ in the particle isospin Clebsch-Gordon coefficient selecting
an outgoing proton or neutron. The differential cross section for the(p, n) reaction then scales against
the(p, p′) to the IAS in the target spectrum, as measured at the same incident proton energy, as the square
of the ratio of those Clebsch-Gordon coefficients. Note thatthis is an aspect of the nuclear structure of
the reaction.

An example is that of12C(p, n)12Ngs [13,14]. The12N ground state is the isobaric analogue of the
15.11 MeV1+; 1 state in12C. The(p, n) reaction scales as that to the(p, p′) as the ratio,
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The data for both the(p, n) and(p, p′) in this case illustrate this factor of two, which is also the case in
the calculations of both using the Melbourneg-folding model [14].

4 6He(p, n) and 6He(p, p
′)

The reactions involving6He are special cases. The ground state of6He is 0+; 1 and is the isobaric
analogue state of the 3.56 MeV0+; 1 state in6Li. The 6He(p, n) differential cross section then scales to
the elastic scattering cross section with the ratio
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The6He(p, n) differential cross section was measured at an energy of41.6A MeV [4], while the elastic
scattering cross section was measured at an energy of40.9A MeV [6], making comparison of the two
measured cross sections ideal. The(p, n) cross sections to the ground and IAS in6Li are shown in
Fig. 1. Therein, the differential cross-section data for the 6He(p, n) reaction to the ground and IAS in
6Li, taken at41A MeV, are denoted by the squares and crosses, respectively, while the data for the elastic
scattering, taken at40.9MeV are denoted by the circles. The results for the differential cross sections of
calculations made using the Melbourneg-folding model for the6He(p, n) to the IAS and ground states
in 6Li are displayed by the solid and dot-dashed lines, respectively. The dashed line corresponds to the
differential cross section to the IAS multiplied by 2.

It is apparent by comparison of the two sets of data [(p, n) and (p, p)] that the differential cross
section for elastic scattering is greater than the (p, n) to the IAS by a factor of 30. The result of the
calculation of the differential cross section for the(p, n) is greater than the corresponding set of data
by a factor of 20. Yet, multiplying that result by a factor of 2gives the dashed curve in Fig. 1 which
agrees reasonably with the data for elastic scattering. Note that, while the magnitudes agree quite well,
the momentum transfer dependence is different as the elastic scattering contains contributions from the
isoscalar and isovector parts of the optical potential, while the(p, n) reaction is isovector only. But the
factor of 1/2, as indicated by Eq. (13), is confirmed between our calculations and the elastic scattering
data. It is also noteworthy that the JLM potential used in [4]is not capable of explaining the elastic
scattering data as the imaginary strength of that potentialis too large. A reanalysis of the elastic scattering
using a different weighting of the imaginary potential may be needed. Such analysis may yield a value
of λW much closer to unity.
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Fig. 1: Differential cross sections for the6He(p, n) and6He(p, p) reactions. The data for the (p, n) at41.6A MeV,
displayed as squares (ground state transition) and crosses(IAS transition), are taken from Ref. [4], while those
of elastic scattering at40.9A MeV, displayed as circles, are taken from Ref. [6]. The results for the(p, n) to the
ground and IAS as calculated from the Melbourneg-folding model are the dot-dashed and solid lines respectively.
The dashed line is the result of the calculation of the differential cross section to the IAS multiplied by 2.

5 Conclusions

We have presented a new analysis of the available6He(p, n) reaction data. The results of our calculations
of the differential cross sections to both the IAS and groundstates in6Li seriously overestimate the
quoted data, but for the IAS the result is in the correct ratiowith the available elastic scattering data.

The comparison of the data sets for the elastic scattering and the (p, n) to the IAS is most problem-
atic. Irrespective of the results of our calculations, the data sets do not reflect the ratio of 2 as required
by the particle isospin Clebsch-Gordon coefficients, stemming from the nuclear structure, indicating a
problem in either of the two measurements. The elastic scattering was a direct measurement of the ab-
solute cross section, while the measurement of the(p, n) was not. Instead it was a relative measurement
with the absolute cross section obtained by comparison withavailable6Li(n, p)6He data. It would seem
that a problem may then lay in the analyses of the(p, n) data, although only a new measurement of that
reaction can only confirm it. It is hoped that such a measurement is done with a measurement also of the
elastic scattering to ensure that the optical potentials used in the analyses are properly defined.
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