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Abstract

It is shown that superscaling is due to the high-momentum tail of the nucleon
momentum distributionn(k) which is similar for all nuclei and is caused by
the short-range and tensor nucleon-nucleon correlations.It is pointed out also
that superscaling gives information about the general power-law asymptotics
of n(k) and the nucleon-nucleon forces in the nuclear medium. The Coherent
Density Fluctuation Model (CDFM) is used to calculate the total, longitudinal
and transverse scaling functions on the basis of the hadronic tensor and the
corresponding response functions in the RFG model. The results show a good
agreement with the data and superscaling of the scaling function f(ψ′) for neg-
ativeψ′ including the regionψ′ < −1, where the RFG model fails. The CDFM
scaling functions are used to calculate the cross sections of the quasielastic
(QE) electron scattering on nuclei in the mass region12 < A < 208, as well
as charge-changing and neutral current neutrino (antineutrino) scattering on
12C in the QE and the∆-resonance regions at energies from 1 to 2 GeV.

1 Introduction

Over the past four decades electron scattering has providedimportant information on nuclear structure
and dynamics. Form factors and charge distributions have been extracted from elastic scattering data,
whereas inelastic measurements have been allowed for a systematic study of the dynamic response over a
broad range of momentum (q) and energy (ω) transfer. The scaling analyses of inclusive electron scatter-
ing from a large variety of nuclei (see e.g. [1,2] fory-scaling and [3–8] forψ′ -scaling and superscaling)
showed the evidence for the existence of high-momentum components of the nucleon momentum distri-
butionn(k) at momentak > 2 fm−1. It has been shown that it is due to the presence of nucleon-nucleon
(NN) correlations in nuclei (for reviews, see e.g. [9]). It has been pointed out that this specific feature of
n(k)/A is similar for all nuclei, and that it is a physical reason forthe scaling and superscaling phenom-
ena in nuclei. The latter is related to the independence of the reduced cross section on the momentum
transferq (scaling of first kind) and the mass numberA (scaling of second kind). As known, the mean-
field approximation (MFA) is unable to describe simultaneously the two important characteristics of the
nuclear ground state, the density and momentum distribution. Therefore, a consistent and simultaneous
analyses of the role of the NN correlations on both quantities is required using theoretical methods be-
yond the MFA in the description of relevant phenomena, e.g. those of the scaling ones. Such a possibility
appears in the Coherent Density Fluctuation Model (CDFM) [9, 10] and this will be considered in the
present work.
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2 Superscaling and general properties of the nucleon momentum distribution and the
NN forces in medium

The scaling variableψ′ has been introduced and superscaling considered in [3, 4] onthe basis of the
relativistic Fermi gas (RFG) model. However, the scaling function in this model isf(ψ′) = 0 for
ψ′ ≤ −1, whereas the experimental scaling function extracted form(e, e′) data extends up toψ′ ≈ −2,
where the effects beyond the MFA become important. Even more, it has been shown in [11] that the
behavior of the scaling functionf(ψ′) for ψ′ < −1 depends on the particular form of the power-law
asymptotic ofn(k) at largek related to a corresponding behavior of the in-medium NN forces around
the core [12]:

n(k) −−−→
k→∞

[
ṼNN(k)

k2

]2

, (1)

whereṼNN(k) is the Fourier transform of the NN interactionVNN(r). In principle, it is shown in the
hard-sphere dilute Fermi gas [13,14] thatn(k) decrease like∼ 1/k4+m [14], wherem > 0. Using this,
in [11] we obtained the following expression for the scalingfunction

f(ψ′) = 0.12

(
1 +m

2 +m

)
1

|ψ′|2+m (2)

that thus exhibits superscaling. Fitting the value ofm from (2) to the experimental data forf(ψ′) (see
Fig. 1) one can see that the agreement with the scaling function is achieved when the value ofm is in the

interval4 ≤ m ≤ 5. The inverse Fourier transform of̃VNN(k) givesVNN(r) ∼ 1

r
andVNN(r) ∼ 1

r1/2
for

m = 4 andm = 5, respectively. Thus, the result obtained in [11] implies that inclusive quasielastic (QE)
electron scattering from nuclei provides important information about the particular power-law form of
the asymptotic ofn(k) and on the NN forces in the nuclear medium.

Fig. 1: The scaling function in a dilute Fermi gas calculated using Eq. (2) for different values ofm in the asymp-
totics of the momentum distributionn(k) ∼ 1/k4+m given in comparison with the RFG result. The grey area
shows experimental data taken from [6].

3 CDFM approach (I)

The drawback of the RFG model to describe the scaling function atψ′ < −1 and the more general results
from [11] have shown the necessity of considering the superscaling on the basis of a more complex dy-
namical picture of realistic finite nuclear systems beyond the RFG and MFA. So, as a particular example,
in the first version of the CDFM approach (which is a natural extension of the Fermi gas model based on
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the generator coordinate method [15] and includes long-range correlations (LRC) of collective type) the
scaling function is obtained [7] on the basis of the RFG scaling function:

fCDFMI (ψ
′) =

α/(kF |ψ′
|)∫

0

|F (x)|2fRFG(ψ′, x)dx, where fRFG(ψ′, x) ≃ 3

4

[
1 −

(
kFx|ψ′|
α

)2
]
, (3)

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

at
dρ(r)

dr
≤ 0, or |F (x)|2 = −3π2

2

α

x5

dn(k)

dk

∣∣∣∣
k=α/x

at
dn(k)

dk
≤ 0

(4)
with

α =

(
9πA

8

)1/3

≃ 1.52A1/3, ρ0(x) =
3A

4πx3
, kF (x) =

α

x
, andkF =

∞∫

0

kF (x)|F (x)|2dx, (5)

ρ(~r) andn(~k) being normalized toA, and|F (x)|2 to unity.

4 CDFM approach (II)

In contrast to the CDFMI, in this work and in [16] a more general CDFM approach (CDFMII ) was
developed starting not from the scaling function, but from the hadronic tensor, the response functions
and related quantities in the RFG model with a densityρ0(r) and a Fermi momentumkF (x), weighting
the RFG model ones by the function|F (x)|2 (Eq. (4)) [16]:

W µν
CDFM =

∞∫

0

|F (x)|2W µν
(RFG)(x)dx, (6)

RL(ψ) =

∞∫

0

|F (x)|2R(RFG)
L (x, ψ)dx, RT (ψ) =

∞∫

0

|F (x)|2R(RFG)
T (x, ψ)dx, (7)

whereW µν
(RFG)(x) andR(RFG)

L,T (x, ψ) are those for the RFG [3] with a densityρ0(x), ηF (x) =
kF (x)

mN
,

εF (x) =
√

1 + η2
F (x) and the scaling variableψ is: ψ ≡ 1√

ξF

λ− τ√
(1 + λ)τ + κ

√
τ(1 + τ)

, where

ξF =
√

(1 + η2
F ) − 1, λ =

ω

2mN
, κ ≡ q

2mN
, τ = κ2 − λ2. Then the total, longitudinalL, and

transverseT scaling functions are obtained by:

fCDFMII (ψ) = kF × CCDFM(ψ)

S
, fL(ψ) = kF × RL(ψ)

GL
, fT (ψ) = kF × RT (ψ)

GT
, (8)

where

CCDFM(ψ) ≡ d2σ

dΩdε′
= σM

{ (
Q2

q2

)2

RL(ψ) +

[
1

2

∣∣∣∣
Q2

q2

∣∣∣∣ + tan2 θ

2

]
RT (ψ)

}
, (9)

S = σM

{ (
Q2

q2

)2

GL(τ) +

[
1

2

∣∣∣∣
Q2

q2

∣∣∣∣ + tan2 θ

2

]
GT (τ)

}
(10)

is the single-nucleoneN elastic cross section [17] with the single-nucleon functionsGL andGT being
expressed by the proton and neutron electric and magnetic Sachs form factors [3,16] andkF is calculated
using Eq. (5).
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5 Results of calculations on scaling functions and electron- and neutrino-nuclei
scattering cross sections

We present firstly our results of longitudinal [Fig. 2(a)] and transverse [Fig. 2(b)] scaling functions at
fixed values of momentum transferq = 0.3, 0.5, 0.8 and 1.0 GeV/c calculated within the CDFMII
approach compared with results of the relativistic plane-wave impulse approximation (RPWIA) with
Lorentz gauge [18]. In contrast with our previous results, where the CDFMI scaling functions are equal,
fCDFMI
L (ψ) = fCDFMI

T (ψ) = fCDFMI(ψ), and do not depend on the momentum transferq, in the CDFMII

the scaling functions depend on the momentum transferq till a sufficiently highq. As can be seen from
Fig. 2, scaling of first kind is clearly violated for lowq values (q < 0.5 GeV/c) in the negativeψ region,
whereas forq of the order of0.5 GeV/c, scaling violation slowly disappears asq increases and the
CDFMII and RPWIA scaling functions reach their asymptotic values.The result for the total quasielastic
scaling function can be seen in the next Fig. 3, where we present our results of calculations offQE(ψ)
[Eq. (8)] for 12C within the CDFMII model forq = 0.3 − 1.0 GeV/c with a step of0.1 GeV/c. Note that
the asymmetry in the scaling function, clearly observed forlow q values, tends to disappear asq goes up.

Fig. 2: The longitudinal scaling functionsfL(ψ) (a) and the transverse scaling functionsfT (ψ) (b) for 12C cal-
culated in the CDFMII for q = 0.3, 0.5, 0.8, and1.0 GeV/c and RPWIA (Lorentz gauge) forq = 0.5, 0.8, and
1.0 GeV/c.

In Fig. 4 we present results for the ratiofL(ψ)/fT (ψ) for 12C calculated in the CDFMII and
RPWIA (Lorentz gauge) at fixed values of momentum transferq = 0.3, 0.5, 0.8, and1.0 GeV/c. In
the CDFMII calculations we observe violation of the scaling of the zeroth kind [fL(ψ) 6= fT (ψ)], at
variance with the CDFMI one. The behavior of the ratiofL(ψ)/fT (ψ) in our model is similar to that in
the RPWIA for positiveψ values where the response is positive except for very lowq (q = 0.3 GeV/c),
while in the negativeψ region, the ratiofL(ψ)/fT (ψ) becomes negative for RPWIA and positive for
CDFMII .

The next step in our studies is to examine the scaling of the second kind in the CDFMII . This
requires calculations of the scaling functions for different nuclei. In Fig. 5 we give the results for the
quasielastic scaling functions for12C, 27Al, 56Fe, and197Au calculated in the CDFMI and CDFMII ,
respectively. The result of the RFG model is also presented.One can see the essential difference between
the results of the RFG model and those of the CDFMI and CDFMII in the regionψ′ < −1. It can be seen
also from our results that the scaling of the second kind is good in the CDFM. The behavior of the CDFMI
and CDFMII scaling functions can be explained by the long-range collective correlations included in the
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Fig. 3: The quasielastic scaling functionfQE(ψ) for 12C
calculated in the CDFMII for q = 0.3− 1.0 GeV/c with
step0.1 GeV/c.
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Fig. 4: The ratiofL(ψ)/fT (ψ) for 12C calculated in the
CDFMII for q = 0.3, 0.5, 0.8, and1.0 GeV/c and RP-
WIA (Lorentz gauge) forq = 0.5, 0.8, and1.0 GeV/c.

CDFM. These correlations are important and they are reflected in the tail of the CDFM scaling functions
at negativeψ′. In contrast, the results of mean-field approaches (relativistic or not) are generally closer to
those of the RFG model. We note that the difference between the CDFM scaling function and that from
the RFG model for|ψ′| > 1 which can be seen in Fig. 5 is due to the large difference betweenn(k) in
CDFM and that in the RFG model, where the (dimensionless) momentum distribution is a step function.

A test of the CDFM superscaling functions is performed (Fig.6) by calculations of the cross
sections of electron scattering in quasielastic and∆-region for nuclei with12 ≤ A ≤ 208 at different
energies and angles using the CDFMI and CDFMII scaling functions. For the scaling function in the
∆-region we use our approach from Ref. [7]. As can be seen from Fig. 6 the results calculated with both
CDFMI and CDFMII scaling functions do not differ too much, agreeing well withexperimental data
in the QE region. Away from the QE and∆-peaks the behavior of the cross sections is due to higher
resonances. We also display the separate longitudinal and transverse contributions to the QE peak.

The features of superscaling in inclusive electron-nucleus scattering have made it possible to initi-
ate analyses of neutrino and antineutrino scattering off nuclei on the same basis (e.g. [17,20]). Neutrino-
(antineutrino-) nucleus charge-changing (CC) [20] or neutral-current (NC) [21] scattering cross sections
for intermediate to high energies can be calculated by multiplying the elementary single-nucleon CC or
NC neutrino (antineutrino) cross sections by the corresponding scaling functions. These assumptions
have been tested within the relativistic mean-field (RMF) plus final-state interaction (FSI) model [22]. A
number of other theoretical studies of CC and NC neutrino (antineutrino)-nucleus scattering has been per-
formed in recent years (for references see, e.g. [16,20–26]). In the present work (see also [27] and [16])
we applied the CDFM QE- and∆-scaling functions to the calculations of charge-changingneutrino-
nucleus scattering following the formalism given in [17]. In Fig. 7 we present the CDFM results for the
cross section of the charge-changing neutrino (νµ,µ−) reaction on12C atθµ = 45◦ andεν = 1 GeV. The
calculations are performed using not only the CDFMI but also the CDFMII quasielastic scaling func-
tion. In the figure we present also the result (labeled “CDFMII (asymmetric)”) achieved by introducing,
as done in our previous work [8], a phenomenological asymmetric tail of the superscaling function at
ψ > 0. Our results are compared with those from RFG model, SuSA andRPWIA approaches. We note
that the result for the CDFMII with asymmetry is closer to that calculated using the phenomenological
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Fig. 5: The quasielastic scaling functionfQE(ψ′) for 12C, 27Al, 56Fe, and197Au calculated in the CDFMII and
RFG. The experimental data are taken from [5,6] and the labels indicate the mass number for each set of data.

Fig. 6: Inclusive electron cross sections as function of energy loss. The results are given: the CDFMI dash-dotted
line, the CDFMII solid line, theL-contribution in CDFMII dashed line, theT -contribution in CDFMII dotted line.
The experimental data are taken from [19].
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Fig. 7: The cross section of charge-changing neutrino (νµ,µ−) reaction on12C atθµ = 45◦ andεν = 1 GeV.

(SuSA) scaling function that is extracted from the experimental data on inclusive electron scattering.
However, CDFMI and CDFMII models lead to very close results, with the maximum of the scaling func-
tion being slightly higher in the latter. The scaling functions for both approaches follow closely the
behavior exhibited by the RPWIA one.

The CDFM approach was also applied in this work (see also [23]) to calculate QE scattering via
the weak neutral current of neutrinos and antineutrinos from nuclei, using the basic formalism from [21].

6 Conclusions

The results of the present work can be summarized as follows:

• A new, more general, approach within the Coherent Density Fluctuation Model is proposed (CDFMII ).
We apply it to calculate the totalf(ψ), the longitudinalfL(ψ) and the transversefT (ψ) scaling functions
by taking as starting point the hadronic tensor and the longitudinal and transverse response functions in
the RFG model. The approach leads to a slight violation of thezero-kind scaling [fL(ψ) 6= fT (ψ)] in
contrast with the situation in the RFG and CDFMI models. It is found that the ratiofL(ψ)/fT (ψ) in the
CDFMII has similarities with that from the RPWIA approach (with Lorentz gauge) for positiveψ. It is
shown that the CDFMII scaling functions calculated for different values of the transferred momentumq
show a saturation of its asymptotic behavior. Scaling of first kind appears atq larger than≈ 0.5 GeV/c.

• The CDFM scaling functions are applied to calculate cross sections of inclusive electron scattering
(and their longitudinal and transverse components) in the quasielastic and∆-regions for nuclei with
12 ≤ A ≤ 208 at different energies and angles. The results are in good agreement with available
experimental data, especially in the QE region.

• The CDFMII approach is applied to calculate charge-changing neutrino(antineutrino) scattering on12C
at 1 GeV incident energy. The results are compared with thosefrom the RFG model, as well as from the
SuSA and RPWIA approaches. The CDFM scaling function is alsoapplied to calculate QE scattering
via the weak neutral current of neutrinos (antineutrinos) from nuclei.
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